
ARM® Compiler
Version 6.4

Software Development Guide

Copyright © 2014-2016 ARM. All rights reserved.
ARM DUI0773E

Vasee Vinayagamoorthy (vvinayag@arm.com)
Review PDF

ARM® Compiler
Software Development Guide
Copyright © 2014-2016 ARM. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

A 14 March 2014 Non-Confidential ARM Compiler v6.00 Release

B 15 December 2014 Non-Confidential ARM Compiler v6.01 Release

C 30 June 2015 Non-Confidential ARM Compiler v6.02 Release

D 18 November 2015 Non-Confidential ARM Compiler v6.3 Release

E 24 February 2016 Non-Confidential ARM Compiler v6.4 Release

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of ARM. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is
not intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this
document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms.
This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective
owners. Please follow ARM’s trademark usage guidelines at http://www.arm.com/about/trademark-usage-guidelines.php

Copyright © [2014-2016], ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

 ARM® Compiler

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 2
Non-Confidential

http://www.arm.com/about/trademark-usage-guidelines.php

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Unrestricted Access is an ARM internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

http://www.arm.com

 ARM® Compiler

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 3
Non-Confidential

http://www.arm.com

Contents
ARM® Compiler Software Development Guide

Preface
About this book 9

Chapter 1 Introducing the Toolchain
1.1 Toolchain overview .. 1-12
1.2 Support level definitions 1-13
1.3 LLVM component versions and language compatibility 1-16
1.4 Common ARM Compiler toolchain options .. 1-18
1.5 "Hello world" example .. 1-21
1.6 Passing options from the compiler to the linker 1-22

Chapter 2 Diagnostics
2.1 Understanding diagnostics 2-24
2.2 Options for controlling diagnostics with armclang 2-26
2.3 Pragmas for controlling diagnostics with armclang 2-27
2.4 Options for controlling diagnostics with the other tools 2-28

Chapter 3 Compiling C and C++ Code
3.1 Specifying a target architecture, processor, and instruction set 3-30
3.2 Using inline assembly code 3-33
3.3 Using intrinsics 3-34
3.4 Preventing the use of floating-point instructions and registers 3-35
3.5 Bare-metal Position Independent Executables .. 3-36
3.6 Execute-only memory .. 3-38

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 4
Non-Confidential

3.7 Building applications for execute-only memory 3-39

Chapter 4 Assembling Assembly Code
4.1 Assembling ARM and GNU syntax assembly code 4-41
4.2 Preprocessing assembly code 4-43

Chapter 5 Linking Object Files to Produce an Executable
5.1 Linking object files to produce an executable .. 5-45

Chapter 6 Optimization
6.1 Optimizing for code size or performance 6-47
6.2 Optimizing across modules with link time optimization [ALPHA] 6-48
6.3 How optimization affects the debug experience .. 6-52

Chapter 7 Coding Considerations
7.1 Optimization of loop termination in C code .. 7-54
7.2 Loop unrolling in C code .. 7-56
7.3 Compiler optimization and the volatile keyword 7-58
7.4 Stack use in C and C++ 7-60
7.5 Methods of minimizing function parameter passing overhead 7-62
7.6 Inline functions 7-63
7.7 Integer division-by-zero errors in C code 7-64
7.8 Infinite Loops 7-66

Chapter 8 Building Secure and Non-secure Images Using ARMv8-M Security
Extensions
8.1 Overview of building Secure and Non-secure images 8-68
8.2 Building a Secure image using the ARMv8-M Security Extensions 8-71
8.3 Building a Non-secure image that can call a Secure image 8-74
8.4 Building a Secure image using a previously generated import library 8-76

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 5
Non-Confidential

List of Figures
ARM® Compiler Software Development Guide

Figure 1-1 Compiler toolchain ... 1-12
Figure 1-2 Integration boundaries in ARM Compiler 6. ... 1-14
Figure 6-1 Link time optimization .. 6-48

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 6
Non-Confidential

List of Tables
ARM® Compiler Software Development Guide

Table 1-1 LLVM component versions .. 1-16
Table 1-2 Language support levels ... 1-16
Table 1-3 armclang common options .. 1-18
Table 1-4 armlink common options .. 1-19
Table 1-5 armar common options .. 1-19
Table 1-6 fromelf common options .. 1-20
Table 1-7 armasm common options .. 1-20
Table 1-8 armclang linker control options .. 1-22
Table 3-1 Compiling for different combinations of architecture, processor, and instruction set 3-31
Table 7-1 C code for incrementing and decrementing loops ... 7-54
Table 7-2 C disassembly for incrementing and decrementing loops ... 7-54
Table 7-3 C code for rolled and unrolled bit-counting loops .. 7-56
Table 7-4 Disassembly for rolled and unrolled bit-counting loops ... 7-57
Table 7-5 C code for nonvolatile and volatile buffer loops ... 7-58
Table 7-6 Disassembly for nonvolatile and volatile buffer loop .. 7-59

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 7
Non-Confidential

Preface

This preface introduces the ARM® Compiler Software Development Guide.

It contains the following:
• About this book on page 9.

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 8
Non-Confidential

 About this book
The ARM® Compiler Software Development Guide provides tutorials and examples to develop code for
various ARM architecture-based processors.

 Using this book

This book is organized into the following chapters:

Chapter 1 Introducing the Toolchain
Provides an overview of the ARM compilation tools, and shows how to compile a simple code
example.

Chapter 2 Diagnostics
Describes the format of compiler toolchain diagnostic messages and how to control the diagnostic
output.

Chapter 3 Compiling C and C++ Code
Describes how to compile C and C++ code with armclang.

Chapter 4 Assembling Assembly Code
Describes how to assemble assembly source code with armclang and armasm.

Chapter 5 Linking Object Files to Produce an Executable
Describes how to link object files to produce an executable image with armlink.

Chapter 6 Optimization
Describes how to use armclang to optimize for either code size or performance, and the impact of
the optimization level on the debug experience.

Chapter 7 Coding Considerations
Describes how you can use programming practices and techniques to increase the portability,
efficiency and robustness of your C and C++ source code.

Chapter 8 Building Secure and Non-secure Images Using ARMv8-M Security Extensions
Describes how to use the ARMv8-M Security Extensions to build a secure image, and how to
allow a non-secure image to call a secure image.

 Glossary

The ARM Glossary is a list of terms used in ARM documentation, together with definitions for those
terms. The ARM Glossary does not contain terms that are industry standard unless the ARM meaning
differs from the generally accepted meaning.

See the ARM Glossary for more information.

 Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

 Preface
 About this book

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 9
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
ARM glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Feedback

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title ARM® Compiler Software Development Guide.
• The number ARM DUI0773E.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.
 Note

ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Other information

• ARM Information Center.
• ARM Technical Support Knowledge Articles.
• Support and Maintenance.
• ARM Glossary.

 Preface
 About this book

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 10
Non-Confidential

mailto:errata@arm.com
http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/topic/com.arm.doc.faqs
http://www.arm.com/support/services/support-maintenance.php
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Chapter 1
Introducing the Toolchain

Provides an overview of the ARM compilation tools, and shows how to compile a simple code example.

It contains the following sections:
• 1.1 Toolchain overview on page 1-12.
• 1.2 Support level definitions on page 1-13.
• 1.3 LLVM component versions and language compatibility on page 1-16.
• 1.4 Common ARM Compiler toolchain options on page 1-18.
• 1.5 "Hello world" example on page 1-21.
• 1.6 Passing options from the compiler to the linker on page 1-22.

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 1-11
Non-Confidential

1.1 Toolchain overview
The ARM® Compiler 6 compilation tools allow you to build executable images, partially linked object
files, and shared object files, and to convert images to different formats.

Flash format

.s

armclang

armasm
or

armclang

C/C++ ARM
and Thumb

Assembly
code

armlink fromelf

ImageObject codeSource code

code

data

debug

Plain binary
Intel Hex

Motorola-S

.o data

.o data

.c
code

debug

code

debug

Figure 1-1 Compiler toolchain

The ARM Compiler toolchain comprises the following tools:

armclang
The armclang compiler and assembler. This compiles C and C++ code, and assembles A64,
A32, and T32 GNU syntax assembly code.

armasm
The legacy assembler. This assembles A32, A64, and T32 assembly code, using ARM syntax.

Only use armasm for legacy ARM syntax assembly code. Use the armclang assembler and GNU
syntax for all new assembly files.

armlink
The linker. This combines the contents of one or more object files with selected parts of one or
more object libraries to produce an executable program.

armar
The librarian. This enables sets of ELF object files to be collected together and maintained in
archives or libraries. You can pass such a library or archive to the linker in place of several ELF
files. You can also use the archive for distribution to a third party for further application
development.

fromelf
The image conversion utility. This can also generate textual information about the input image,
such as its disassembly and its code and data size.

 Note

Disassembly is generated in ARM assembler syntax and not GNU assembler syntax.

Related tasks
1.5 "Hello world" example on page 1-21.

Related references
1.4 Common ARM Compiler toolchain options on page 1-18.

1 Introducing the Toolchain
1.1 Toolchain overview

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 1-12
Non-Confidential

1.2 Support level definitions
Describes the levels of support for various ARM Compiler features.

ARM Compiler 6 is built on Clang and LLVM technology and as such, has more functionality than the
set of product features described in the documentation. The following definitions clarify the levels of
support and guarantees on functionality that are expected from these features.

ARM welcomes feedback regarding the use of all ARM Compiler 6 features, and endeavors to support
users to a level that is appropriate for that feature. You can contact support at http://www.arm.com/
support.

Identification in the documentation

All features that are documented in the ARM Compiler 6 documentation are product features, except
where explicitly stated. The limitations of non-product features are explicitly stated.

Product features
Product features are suitable for use in a production environment. The functionality is well-tested, and is
expected to be stable across feature and update releases.
• ARM endeavors to give advance notice of significant functionality changes to product features.
• If you have a support and maintenance contract, ARM provides full support for use of all product

features.
• ARM welcomes feedback on product features.
• Any issues with product features that ARM encounters or is made aware of are considered for fixing

in future versions of ARM Compiler.

In addition to fully supported product features, some product features are only alpha or beta quality.

Beta product features
Beta product features are implementation complete, but have not been sufficiently tested to be
regarded as suitable for use in production environments.
Beta product features are indicated with [BETA].
• ARM endeavors to document known limitations on beta product features.
• Beta product features are expected to eventually become product features in a future release

of ARM Compiler 6.
• ARM encourages the use of beta product features, and welcomes feedback on them.
• Any issues with beta product features that ARM encounters or is made aware of are

considered for fixing in future versions of ARM Compiler.

Alpha product features
Alpha product features are not implementation complete, and are subject to change in future
releases, therefore the stability level is lower than in beta product features.
Alpha product features are indicated with [ALPHA].
• ARM endeavors to document known limitations of alpha product features.
• ARM encourages the use of alpha product features, and welcomes feedback on them.
• Any issues with alpha product features that ARM encounters or is made aware of are

considered for fixing in future versions of ARM Compiler.

Community features

ARM Compiler 6 is built on LLVM technology and preserves the functionality of that technology where
possible. This means that there are additional features available in ARM Compiler that are not listed in
the documentation. These additional features are known as community features. For information on these
community features, see the documentation for the Clang/LLVM project.

1 Introducing the Toolchain
1.2 Support level definitions

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 1-13
Non-Confidential

http://www.arm.com/support
http://www.arm.com/support
http://clang.llvm.org/docs/UsersManual.html

Where community features are referenced in the documentation, they are indicated with
[COMMUNITY].
• ARM makes no claims about the quality level or the degree of functionality of these features, except

when explicitly stated in this documentation.
• Functionality might change significantly between feature releases.
• ARM makes no guarantees that community features are going to remain functional across update

releases, although changes are expected to be unlikely.

Some community features might become product features in the future, but ARM provides no roadmap
for this. ARM is interested in understanding your use of these features, and welcomes feedback on them.
ARM supports customers using these features on a best-effort basis, unless the features are unsupported.
ARM accepts defect reports on these features, but does not guarantee that these issues are going to be
fixed in future releases.

Guidance on use of community features
There are several factors to consider when assessing the likelihood of a community feature being
functional:
• The following figure shows the structure of the ARM Compiler 6 toolchain:

armasm

armclang

ARM C library

ARM C++ library

armlink

LLVM Project
clang

AssemblyAssembly Source codeSource code AssemblyAssembly

Source code
headers

Source code
headers

ObjectsObjects ObjectsObjects ObjectsObjects

Scatter/Steering/
Symdefs file

Scatter/Steering/
Symdefs file

ImageImage

LLVM Project
libc++

Figure 1-2 Integration boundaries in ARM Compiler 6.

The dashed boxes are toolchain components, and any interaction between these components is an
integration boundary. Community features that span an integration boundary might have significant
limitations in functionality. The exception to this is if the interaction is codified in one of the
standards supported by ARM Compiler 6. See Application Binary Interface (ABI) for the ARM®

1 Introducing the Toolchain
1.2 Support level definitions

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 1-14
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi/index.html

Architecture. Community features that do not span integration boundaries are more likely to work as
expected.

• Features primarily used when targeting hosted environments such as Linux or BSD, might have
significant limitations, or might not be applicable, when targeting bare-metal environments.

• The Clang implementations of compiler features, particularly those that have been present for a long
time in other toolchains, are likely to be mature. The functionality of new features, such as support
for new language features, is likely to be less mature and therefore more likely to have limited
functionality.

Unsupported features

With both the product and community feature categories, specific features and use-cases are known not
to function correctly, or are not intended for use with ARM Compiler 6.

Limitations of product features are stated in the documentation. ARM cannot provide an exhaustive list
of unsupported features or use-cases for community features. The known limitations on community
features are listed in Community features on page 1-13.

List of known unsupported features
The following is an incomplete list of unsupported features, and might change over time:
• The Clang option -stdlib=libstdc++ is not supported.
• The ARM Compiler 6 libc++ libraries do not support the Thread support library <thread>.
• Use of C11 library features is unsupported.
• Any community feature that exclusively pertains to non-ARM architectures is not supported by ARM

Compiler 6.

1 Introducing the Toolchain
1.2 Support level definitions

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 1-15
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi/index.html

1.3 LLVM component versions and language compatibility
armclang is based on LLVM components and provides different levels of support for different source
language standards.

 Note

This topic includes descriptions of [COMMUNITY] on page 1-13 features.

Base LLVM components

ARM Compiler 6 is based on the following LLVM components:

Table 1-1 LLVM component versions

Component Version More information

Clang 3.8 http://clang.llvm.org

Language support levels

ARM Compiler 6 in conjunction with libc++ provides varying levels of support for different source
language standards:

Table 1-2 Language support levels

Language standard Support level

C90 Supported.

C99 Supported, with the exception of complex numbers.

[COMMUNITY] C11 The base Clang component provides C11 language functionality. However, ARM has
performed no independent testing of these features so they are a community feature. Use
of C11 library features is unsupported.

Note that C11 is the default language standard for C code. However, usage of the new
C11 language features is a community feature. Use the -std option to restrict the
language standard if required. Use the -Wc11-extensions option to warn about any
use of C11-specific features.

C++98 Supported, including the use of C++ exceptions.

Support for -fno-exceptions is limited.

See Standard C++ library implementation definition in the ARM C and C++ Libraries
and Floating-Point Support User Guide for more information about support for
exceptions.

C++11 Supported, with the following exceptions:
• [COMMUNITY] ARM Compiler 6 provides access to the Atomic operations library

<atomic> as a [COMMUNITY] feature.
• The Thread support library is not supported. libc++ can only be used for creating

single-threaded operations.

See Standard C++ library implementation definition in the ARM C and C++ Libraries
and Floating-Point Support User Guide for more information.

[COMMUNITY] C++14 The base Clang and libc++ components provide C++14 language functionality. However,
ARM has performed no independent testing of these features so they are a community
feature.

1 Introducing the Toolchain
1.3 LLVM component versions and language compatibility

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 1-16
Non-Confidential

http://clang.llvm.org
http://infocenter.arm.com/help/topic/com.arm.doc.dui0808-/pge1431942002578.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0808-/pge1431942002578.html

Additional information

See the armclang Reference Guide for information about ARM-specific language extensions.

For more information about libc++ support, see Standard C++ library implementation definition, in the
ARM C and C++ Libraries and Floating-Point Support User Guide.

The Clang documentation provides additional information about language compatibility:
• Language compatibility:

http://clang.llvm.org/compatibility.html
• Language extensions:

http://clang.llvm.org/docs/LanguageExtensions.html
• C++ status:

http://clang.llvm.org/cxx_status.html

Related information
armclang Reference Guide.

1 Introducing the Toolchain
1.3 LLVM component versions and language compatibility

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 1-17
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0808-/pge1431942002578.html
http://clang.llvm.org/compatibility.html
http://clang.llvm.org/docs/LanguageExtensions.html
http://clang.llvm.org/cxx_status.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/index.html

1.4 Common ARM Compiler toolchain options
Lists the most commonly used command-line options for each of the tools in the ARM Compiler
toolchain.

armclang common options

See the armclang Reference Guide for more information about armclang command-line options.

Common armclang options include the following:

Table 1-3 armclang common options

Option Description

-c Performs the compilation step, but not the link step.

-x Specifies the language of the subsequent source files, -xc inputfile.s or -xc++
inputfile.s for example.

-std Specifies the language standard to compile for, -std=c90 for example.

--target=arch-
vendor-os-abi

Generates code for the selected execution state (AArch32 or AArch64), for example
--target=aarch64-arm-none-eabi or --target=arm-arm-none-eabi.

-march=name Generates code for the specified architecture, for example -mcpu=armv8-a or
-mcpu=armv7-a.

-march=list Displays a list of all the supported architectures for your target.

-mcpu=name Generates code for the specified processor, for example -mcpu=cortex-a53,
-mcpu=cortex-a57, or -mcpu=cortex-a15.

-mcpu=list Displays a list of all the supported processors for your target.

-marm Requests that the compiler targets the A32 instruction set,
--target=arm-arm-none-eabi -march=armv7-a -marm for example.

The -marm option is not valid with AArch64 targets. The compiler ignores the -marm
option and generates a warning with AArch64 targets.

-mthumb Requests that the compiler targets the T32 instruction set,
--target=arm-arm-none-eabi -march=armv8-a -mthumb for example.

The -mthumb option is not valid with AArch64 targets. The compiler ignores the
-mthumb option and generates a warning with AArch64 targets.

-g Generates DWARF debug tables.

-E Executes only the preprocessor step.

-I Adds the specified directories to the list of places that are searched to find included
files.

-o Specifies the name of the output file.

-Onum Specifies the level of performance optimization to use when compiling source files.

-Os Balances code size against code speed.

-Oz Optimizes for code size.

-S Outputs the disassembly of the machine code generated by the compiler.

-### Displays diagnostic output showing the options that would be used to invoke the
compiler and linker. Neither the compilation nor the link steps are performed.

1 Introducing the Toolchain
1.4 Common ARM Compiler toolchain options

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 1-18
Non-Confidential

armlink common options

See the armlink User Guide for more information about armlink command-line options.

Common armlink options include the following:

Table 1-4 armlink common options

Option Description

--ro_base Sets the load and execution addresses of the region containing the RO output section
to a specified address.

--rw_base Sets the execution address of the region containing the RW output section to a
specified address.

--scatter Creates an image memory map using the scatter-loading description contained in the
specified file.

--split Splits the default load region containing the RO and RW output sections, into separate
regions.

--entry Specifies the unique initial entry point of the image.

--info Displays information about linker operation, for example --info=exceptions
displays information about exception table generation and optimization.

--list=filename Redirects diagnostics output from options including --info and --map to the
specified file.

--map Displays a memory map containing the address and the size of each load region,
execution region, and input section in the image, including linker-generated input
sections.

--symbols Lists each local and global symbol used in the link step, and their values.

armar common options

See the armar User Guide for more information about armar command-line options.

Common armar options include the following:

Table 1-5 armar common options

Option Description

--debug_symbols Includes debug symbols in the library.

-a pos_name Places new files in the library after the file pos_name.

-b pos_name Places new files in the library before the file pos_name.

-d file_list Deletes the specified files from the library.

--sizes Lists the Code, RO Data, RW Data, ZI Data, and Debug sizes of each member in
the library.

-t Prints a table of contents for the library.

fromelf common options

See the fromelf User Guide for more information about fromelf command-line options.

Common fromelf options include the following:

1 Introducing the Toolchain
1.4 Common ARM Compiler toolchain options

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 1-19
Non-Confidential

Table 1-6 fromelf common options

Option Description

--elf Selects ELF output mode.

--text [options] Displays image information in text format.

The optional options specify additional information to include in the image
information. Valid options include -c to disassemble code, and -s to print the
symbol and versioning tables.

--info Displays information about specific topics, for example --info=totals lists the
Code, RO Data, RW Data, ZI Data, and Debug sizes for each input object and
library member in the image.

armasm common options
See the armasm User Guide for more information about armasm command-line options.

 Note

Only use armasm to assemble legacy assembly code using ARM syntax. Use GNU syntax for new
assembly files, and assemble with the armclang assembler.

Common armasm options include the following:

Table 1-7 armasm common options

Option Description

--cpu=name Sets the target processor.

-g Generates DWARF debug tables.

--fpu=name Selects the target floating-point unit (FPU) architecture.

-o Specifies the name of the output file.

1 Introducing the Toolchain
1.4 Common ARM Compiler toolchain options

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 1-20
Non-Confidential

1.5 "Hello world" example
This example shows how to build a simple C program hello_world.c with armclang and armlink.

Procedure
1. Create a C file hello_world.c with the following content:

#include <stdio.h>

int main()
{
 printf("Hello World\n");
 return 0;
}

2. Compile the C file hello_world.c with the following command:

armclang --target=aarch64-arm-none-eabi -march=armv8-a -c hello_world.c

The -c option tells the compiler to perform the compilation step only. The -march=armv8-a option
tells the compiler to target the ARMv8-A architecture, and --target=aarch64-arm-none-eabi
targets AArch64 state.

The compiler creates an object file hello_world.o
3. Link the file:

armlink -o hello_world.axf hello_world.o

The -o option tells the linker to name the output image hello_world.axf, rather than using the
default image name __image.axf.

4. Use a DWARF 4 compatible debugger to load and run the image.
The compiler produces debug information that is compatible with the DWARF 4 standard.

1 Introducing the Toolchain
1.5 "Hello world" example

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 1-21
Non-Confidential

1.6 Passing options from the compiler to the linker
By default, when you run armclang the compiler automatically invokes the linker, armlink.

A number of armclang options control the behavior of the linker. These options are translated to
equivalent armlink options.

Table 1-8 armclang linker control options

armclang Option armlink Option Description

-e --entry Specifies the unique initial entry point of the image.

-L --userlibpath Specifies a list of paths that the linker searches for user libraries.

-l --library Add the specified library to the list of searched libraries.

-u --undefined Prevents the removal of a specified symbol if it is undefined.

In addition, the -Xlinker and -Wl options let you pass options directly to the linker from the compiler
command line. These options perform the same function, but use different syntaxes:

• The -Xlinker option specifies a single option, a single argument, or a single option=argument pair.
If you want to pass multiple options, use multiple -Xlinker options.

• The -Wl, option specifies a comma-separated list of options and arguments or option=argument
pairs.

For example, the following are all equivalent because armlink treats the single option --list=diag.txt
and the two options --list diag.txt equivalently:

-Xlinker --list -Xlinker diag.txt -Xlinker --split

-Xlinker --list=diag.txt -Xlinker --split

-Wl,--list,diag.txt,--split

-Wl,--list=diag.txt,--split
 Note

The -### compiler option produces diagnostic output showing exactly how the compiler and linker are
invoked, displaying the options for each tool. With the -### option, armclang only displays this
diagnostic output. It does not compile source files or invoke armlink.

The following example shows how to use the -Xlinker option to pass the --split option to the linker,
splitting the default load region containing the RO and RW output sections into separate regions:

armclang hello.c --target=aarch64-arm-none-eabi -Xlinker --split

You can use fromelf --text to compare the differences in image content:

armclang hello.c --target=aarch64-arm-none-eabi -o hello_DEFAULT.axf
armclang hello.c --target=aarch64-arm-none-eabi -o hello_SPLIT.axf -Xlinker --split

fromelf --text hello_DEFAULT.axf > hello_DEFAULT.txt
fromelf --text hello_SPLIT.axf > hello_SPLIT.txt

Use a file comparison tool, such as the UNIX diff tool, to compare the files hello_DEFAULT.txt and
hello_SPLIT.txt.

1 Introducing the Toolchain
1.6 Passing options from the compiler to the linker

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 1-22
Non-Confidential

Chapter 2
Diagnostics

Describes the format of compiler toolchain diagnostic messages and how to control the diagnostic
output.

It contains the following sections:
• 2.1 Understanding diagnostics on page 2-24.
• 2.2 Options for controlling diagnostics with armclang on page 2-26.
• 2.3 Pragmas for controlling diagnostics with armclang on page 2-27.
• 2.4 Options for controlling diagnostics with the other tools on page 2-28.

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 2-23
Non-Confidential

2.1 Understanding diagnostics
All the tools in the ARM Compiler 6 toolchain produce detailed diagnostic messages, and let you control
how much or how little information is output.

The format of diagnostic messages and the mechanisms for controlling diagnostic output are different for
armclang than for the other tools in the toolchain.

Message format for armclang

armclang produces messages in the following format:

file:line:col: type: message

where:

file
The filename that generated the message.

line
The line number that generated the message.

col
The column number that generated the message.

type
The type of the message, for example error or warning.

message
The message text.

For example:

hello.c:7:3: error: use of undeclared identifier 'i'
i++;
^
1 error generated.

Message format for other tools

The other tools in the toolchain (such as armasm and armlink) produce messages in the following
format:

type: prefix id suffix: message_text

Where:

type
is one of:
Internal fault

Internal faults indicate an internal problem with the tool. Contact your supplier with
feedback.

Error
Errors indicate problems that cause the tool to stop.

Warning
Warnings indicate unusual conditions that might indicate a problem, but the tool
continues.

Remark
Remarks indicate common, but sometimes unconventional, tool usage. These
diagnostics are not displayed by default. The tool continues.

prefix
indicates the tool that generated the message, one of:
• A - armasm
• L - armlink or armar
• Q - fromelf

2 Diagnostics
2.1 Understanding diagnostics

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 2-24
Non-Confidential

id
a unique numeric message identifier.

suffix
indicates the type of message, one of:
• E - Error
• W - Warning
• R - Remark

message_text
the text of the message.

For example:

Error: L6449E: While processing /home/scratch/a.out: I/O error writing file '/home/scratch/
a.out': Permission denied

Related concepts
2.2 Options for controlling diagnostics with armclang on page 2-26.
2.4 Options for controlling diagnostics with the other tools on page 2-28.

2 Diagnostics
2.1 Understanding diagnostics

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 2-25
Non-Confidential

2.2 Options for controlling diagnostics with armclang
A number of options control the output of diagnostics with the armclang compiler.

See Controlling Errors and Warnings in the Clang Compiler User's Manual for full details about
controlling diagnostics with armclang.

The following are some of the common options that control diagnostics:

-Werror
Turn warnings into errors.

-Werror=foo
Turn warning foo into an error.

-Wno-error=foo
Leave warning foo as a warning even if -Werror is specified.

-Wfoo
Enable warning foo.

-Wno-foo
Suppress warning foo.

-w
Suppress all warnings.

-Weverything
Enable all warnings.

Where a message can be suppressed, the compiler provides the appropriate suppression flag in the
diagnostic output.

For example, by default armclang checks the format of printf() statements to ensure that the number
of % format specifiers matches the number of data arguments. The following code generates a warning:

printf("Result of %d plus %d is %d\n", a, b);

armclang --target=aarch64-arm-none-eabi -c hello.c
hello.c:25:36: warning: more '%' conversions than data arguments [-Wformat]
 printf("Result of %d plus %d is %d\n", a, b);

To suppress this warning, use -Wno-format:

armclang --target=aarch64-arm-none-eabi -c hello.c -Wno-format

Related references
Chapter 7 Coding Considerations on page 7-53.

Related information
The LLVM Compiler Infrastructure Project.
Clang Compiler User's Manual.

2 Diagnostics
2.2 Options for controlling diagnostics with armclang

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 2-26
Non-Confidential

http://clang.llvm.org/docs/UsersManual.html#options-to-control-error-and-warning-messages
http://clang.llvm.org/docs/UsersManual.html
http://llvm.org
http://clang.llvm.org/docs/UsersManual.html

2.3 Pragmas for controlling diagnostics with armclang
Pragmas within your source code can control the output of diagnostics from the armclang compiler.

See Controlling Errors and Warnings in the Clang Compiler User's Manual for full details about
controlling diagnostics with armclang.

The following are some of the common options that control diagnostics:

#pragma clang diagnostic ignored "-Wname"
Ignores the diagnostic message specified by name.

#pragma clang diagnostic warning "-Wname"
Sets the diagnostic message specified by name to warning severity.

#pragma clang diagnostic error "-Wname"
Sets the diagnostic message specified by name to error severity.

#pragma clang diagnostic fatal "-Wname"
Sets the diagnostic message specified by name to fatal error severity.

#pragma clang diagnostic push
Saves the diagnostic state so that it can be restored.

#pragma clang diagnostic pop
Restores the last saved diagnostic state.

The compiler provides appropriate diagnostic names in the diagnostic output.
 Note

Alternatively, you can use the command-line option, -Wname, to suppress or change the severity of
messages, but the change applies for the entire compilation.

Related information
-W.

2 Diagnostics
2.3 Pragmas for controlling diagnostics with armclang

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 2-27
Non-Confidential

http://clang.llvm.org/docs/UsersManual.html#controlling-diagnostics-via-pragmas
http://clang.llvm.org/docs/UsersManual.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1418135836190.html

2.4 Options for controlling diagnostics with the other tools
A number of different options control diagnostics with the armasm, armlink, armar, and fromelf tools.

The following options control diagnostics:

--brief_diagnostics
armasm only. Uses a shorter form of the diagnostic output. In this form, the original source line
is not displayed and the error message text is not wrapped when it is too long to fit on a single
line.

--diag_error=tag[,tag]...
Sets the specified diagnostic messages to Error severity. Use --diag_error=warning to treat all
warnings as errors.

--diag_remark=tag[,tag]...
Sets the specified diagnostic messages to Remark severity.

--diag_style=arm|ide|gnu
Specifies the display style for diagnostic messages.

--diag_suppress=tag[,tag]...
Suppresses the specified diagnostic messages. Use --diag_suppress=error to suppress all
errors that can be downgraded, or --diag_suppress=warning to suppress all warnings.

--diag_warning=tag[,tag]...
Sets the specified diagnostic messages to Warning severity. Use --diag_warning=error to set
all errors that can be downgraded to warnings.

--errors=filename
Redirects the output of diagnostic messages to the specified file.

--remarks
armlink only. Enables the display of remark messages (including any messages redesignated to
remark severity using --diag_remark).

tag is the four-digit diagnostic number, nnnn, with the tool letter prefix, but without the letter suffix
indicating the severity.

For example, to downgrade a warning message to Remark severity:

$ armasm test.s --cpu=8-A.32
"test.s", line 55: Warning: A1313W: Missing END directive at end of file
0 Errors, 1 Warning

$ armasm test.s --cpu=8-A.32 --diag_remark=A1313
"test.s", line 55: Missing END directive at end of file

2 Diagnostics
2.4 Options for controlling diagnostics with the other tools

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 2-28
Non-Confidential

Chapter 3
Compiling C and C++ Code

Describes how to compile C and C++ code with armclang.

It contains the following sections:
• 3.1 Specifying a target architecture, processor, and instruction set on page 3-30.
• 3.2 Using inline assembly code on page 3-33.
• 3.3 Using intrinsics on page 3-34.
• 3.4 Preventing the use of floating-point instructions and registers on page 3-35.
• 3.5 Bare-metal Position Independent Executables on page 3-36.
• 3.6 Execute-only memory on page 3-38.
• 3.7 Building applications for execute-only memory on page 3-39.

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 3-29
Non-Confidential

3.1 Specifying a target architecture, processor, and instruction set
When compiling code, the compiler must know which architecture or processor to target, which optional
architectural features are available, and which instruction set to use.

Overview

If you only want to run code on one particular processor, you can target that specific processor.
Performance is optimized, but code is only guaranteed to run on that processor.

If you want your code to run on a wide range of processors, you can target an architecture. The code runs
on any processor implementation of the target architecture, but performance might be impacted.

The options for specifying a target are as follows:
1. Target the execution state (AArch64 or AArch32) using the --target option.
2. Target one of the following:

• an architecture using the -march option.
• a specific processor using the -mcpu option.

3. (AArch32 targets only) Specify the floating-point hardware available using the -mfpu option, or omit
to use the default for the target.

4. (AArch32 targets only) For processors that support both ARM and Thumb, specify the instruction set
using -marm or -mthumb, or omit to default to -marm.

Specifying the target execution state

To specify a target execution state with armclang, use the --target command-line option:

--target=arch-vendor-os-abi

Supported targets are as follows:

aarch64-arm-none-eabi
Generates A64 instructions for AArch64 state. Implies -march=armv8-a unless -mcpu is
specified.

arm-arm-none-eabi
Generates A32/T32 instructions for AArch32 state. Must be used in conjunction with -march (to
target an architecture) or -mcpu (to target a processor).

 Note

The --target option is an armclang option. For all of the other tools, such as armasm and armlink, use
the --cpu and --fpu options to specify target processors and architectures.

 Note

The --target option is mandatory. You must always specify a target execution state.

Specifying the target architecture

Targeting an architecture with --target and -march generates generic code that runs on any processor
with that architecture.

Use the -march=list option to see all supported architectures.
 Note

The -march option is an armclang option. For all of the other tools, such as armasm and armlink, use
the --cpu and --fpu options to specify target processors and architectures.

3 Compiling C and C++ Code
3.1 Specifying a target architecture, processor, and instruction set

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 3-30
Non-Confidential

Specifying a particular processor

Targeting a processor with --target and -mcpu optimizes code for the specified processor.

Use the -mcpu=list option to see all supported processors.

You can specify feature modifiers with -mcpu and -march. For example -mcpu=cortex-a57+nocrypto.

Specifying the floating-point hardware available on the target
The -mfpu option overrides the default FPU option implied by the target architecture or processor.

 Note

The -mfpu option is ignored with ARMv8-A AArch64 targets. Use the -mcpu option to override the
default FPU for AArch64 targets. For example, to prevent the use of the cryptographic extensions for
AArch64 targets use the -mcpu=name+nocrypto option.

Specifying the instruction set

Different architectures support different instruction sets:

• ARMv8-A processors in AArch64 state execute A64 instructions.
• ARMv8-A processors in AArch32 state, as well as ARMv7 and earlier A- and R- profile processors

execute A32 (formerly ARM) and T32 (formerly Thumb) instructions.
• M-profile processors execute T32 (formerly Thumb) instructions.

To specify the target instruction set, use the following command-line options:
• -marm targets the A32 (formerly ARM) instruction set. This is the default for all targets that support

ARM or A32 instructions.
• -mthumb targets the T32 (formerly Thumb) instruction set. This is the default for all targets that only

support Thumb or T32 instructions.

 Note

The -marm and -mthumb options are not valid with AArch64 targets. The compiler ignores the -marm and
-mthumb options and generates a warning with AArch64 targets.

Command-line examples

The following examples show how to compile for different combinations of architecture, processor, and
instruction set:

Table 3-1 Compiling for different combinations of architecture, processor, and instruction set

Architecture Processor Instruction set armclang command

ARMv8-A AArch64 state Generic A64 armclang --target=aarch64-arm-none-eabi test.c

ARMv8-A AArch64 state Cortex®-A57 A64 armclang --target=aarch64-arm-none-eabi -mcpu=cortex-
a57 test.c

ARMv8-A AArch32 state Generic A32 armclang --target=arm-arm-none-eabi -march=armv8-a
test.c

ARMv8-A AArch32 state Cortex-A53 A32 armclang --target=arm-arm-none-eabi -mcpu=cortex-a53
test.c

ARMv8-A AArch32 state Cortex-A57 T32 armclang --target=arm-arm-none-eabi -mcpu=cortex-a57 -
mthumb test.c

ARMv7-A Generic A32 armclang --target=arm-arm-none-eabi -march=armv7-a
test.c

3 Compiling C and C++ Code
3.1 Specifying a target architecture, processor, and instruction set

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 3-31
Non-Confidential

Table 3-1 Compiling for different combinations of architecture, processor, and instruction set (continued)

Architecture Processor Instruction set armclang command

ARMv7-A Cortex-A9 A32 armclang --target=arm-arm-none-eabi -mcpu=cortex-a9
test.c

ARMv7-A Cortex-A15 T32 armclang --target=arm-arm-none-eabi -mcpu=cortex-a15 -
mthumb test.c

Related information
-mcpu.
--target.
-marm.
-mthumb.
-mfpu.

3 Compiling C and C++ Code
3.1 Specifying a target architecture, processor, and instruction set

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 3-32
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1392632801932.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1383664654486.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1385546380826.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1385546391098.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1392305424052.html

3.2 Using inline assembly code
The compiler provides an inline assembler that enables you to write optimized assembly language
routines, and to access features of the target processor not available from C or C++.

The __asm keyword can incorporate inline GCC syntax assembly code into a function. For example:

#include <stdio.h>

int add(int i, int j)
{
 int res = 0;
 __asm (
 "ADD %[result], %[input_i], %[input_j]"
 : [result] "=r" (res)
 : [input_i] "r" (i), [input_j] "r" (j)
);
 return res;
}

int main(void)
{
 int a = 1;
 int b = 2;
 int c = 0;

 c = add(a,b);

 printf("Result of %d + %d = %d\n", a, b, c);
}

 Note

The inline assembler does not support legacy assembly code written in ARM assembler syntax. See the
Migration and Compatibility Guide for more information about migrating ARM syntax assembly code to
GCC syntax.

The general form of an __asm inline assembly statement is:

__asm(code [: output_operand_list [: input_operand_list [:
clobbered_register_list]]]);

code is the assembly code. In this example, this is "ADD %[result], %[input_i], %[input_j]".

output_operand_list is an optional list of output operands, separated by commas. Each operand
consists of a symbolic name in square brackets, a constraint string, and a C expression in parentheses. In
this example, there is a single output operand: [result] "=r" (res).

input_operand_list is an optional list of input operands, separated by commas. Input operands use the
same syntax as output operands. In this example there are two input operands: [input_i] "r" (i),
[input_j] "r" (j).

clobbered_register_list is an optional list of clobbered registers. In this example, this is omitted.

Related information
Migrating ARM syntax assembly code to GNU syntax.

3 Compiling C and C++ Code
3.2 Using inline assembly code

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 3-33
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0742-/chr1398241769674.html

3.3 Using intrinsics
Compiler intrinsics are functions provided by the compiler. They enable you to easily incorporate
domain-specific operations in C and C++ source code without resorting to complex implementations in
assembly language.

The C and C++ languages are suited to a wide variety of tasks but they do not provide in-built support
for specific areas of application, for example, Digital Signal Processing (DSP).

Within a given application domain, there is usually a range of domain-specific operations that have to be
performed frequently. However, often these operations cannot be efficiently implemented in C or C++. A
typical example is the saturated add of two 32-bit signed two’s complement integers, commonly used in
DSP programming. The following example shows a C implementation of a saturated add operation:

#include <limits.h>
int L_add(const int a, const int b)
{
 int c;
 c = a + b;
 if (((a ^ b) & INT_MIN) == 0)
 {
 if ((c ^ a) & INT_MIN)
 {
 c = (a < 0) ? INT_MIN : INT_MAX;
 }
 }
 return c;
}

Using compiler intrinsics, you can achieve more complete coverage of target architecture instructions
than you would from the instruction selection of the compiler.

An intrinsic function has the appearance of a function call in C or C++, but is replaced during
compilation by a specific sequence of low-level instructions. The following example shows how to
access the __qadd saturated add intrinsic:

#include <arm_acle.h> /* Include ACLE intrinsics */

int foo(int a, int b)
{
 return __qadd(a, b); /* Saturated add of a and b */
}

The use of compiler intrinsics offers a number of performance benefits:
• The low-level instructions substituted for an intrinsic might be more efficient than corresponding

implementations in C or C++, resulting in both reduced instruction and cycle counts. To implement
the intrinsic, the compiler automatically generates the best sequence of instructions for the specified
target architecture. For example, the __qadd intrinsic maps directly to the A32 assembly language
instruction qadd:

QADD r0, r0, r1 /* Assuming r0 = a, r1 = b on entry */

• More information is given to the compiler than the underlying C and C++ language is able to convey.
This enables the compiler to perform optimizations and to generate instruction sequences that it could
not otherwise have performed.

These performance benefits can be significant for real-time processing applications. However, care is
required because the use of intrinsics can decrease code portability.

3 Compiling C and C++ Code
3.3 Using intrinsics

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 3-34
Non-Confidential

3.4 Preventing the use of floating-point instructions and registers
You can instruct the compiler to prevent the use of floating-point instructions and floating-point registers.

Floating-point computations and linkage

Floating-point computations can be performed by:

• Floating-point instructions, executed by a hardware coprocessor. The resulting code can only be run
on processors with Vector Floating Point (VFP) coprocessor hardware.

• Software library functions, through the floating-point library fplib. This library provides functions
that can be called to implement floating-point operations using no additional hardware.

Code that uses hardware floating-point instructions is more compact and offers better performance than
code that performs floating-point arithmetic in software. However, hardware floating-point instructions
require a VFP coprocessor.

Floating-point linkage controls which registers are used to pass floating-point parameters and return
values:
• Software floating-point linkage means that the parameters and return values for functions are passed

using the ARM integer registers r0 to r3 and the stack. The benefits of using software floating-point
linkage include:
— Code can run on a processor with or without a VFP coprocessor.
— Code can link against libraries compiled for software floating-point linkage.

• Hardware floating-point linkage uses the VFP coprocessor registers to pass the arguments and return
value. The benefit of using hardware floating-point linkage is that it is more efficient than software
floating-point linkage, but you must have a VFP coprocessor

Configuring the use of floating-point instructions and registers

When compiling for AArch64 state:

• By default, the compiler uses hardware floating-point instructions and hardware floating-point
linkage.

• Use the -mcpu=name+nofp+nosimd option to prevent the use of both floating-point instructions and
floating-point registers:

armclang --target=aarch64-arm-none-eabi -mcpu=cortex-a53+nofp+nosimd test.c

Subsequent use of floating-point data types in this mode is unsupported.

When compiling for AArch32 state:
• When using --target=arm-arm-none-eabi, the compiler uses hardware floating-point instructions

and software floating-point linkage. This corresponds to the option -mfloat-abi=softfp.
• Use the -mfloat-abi=soft option to use software library functions for floating-point operations and

software floating-point linkage:

armclang --target=arm-arm-none-eabi -march=armv8-a -mfloat-abi=soft test.c

• Use the -mfloat-abi=hard option to use hardware floating-point instructions and hardware floating-
point linkage:

armclang --target=arm-arm-none-eabi -march=armv8-a -mfloat-abi=hard test.c

Related information
-mcpu.
-mfloat-abi.
-mfpu.

3 Compiling C and C++ Code
3.4 Preventing the use of floating-point instructions and registers

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 3-35
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1392632801932.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1417451577871.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1392305424052.html

3.5 Bare-metal Position Independent Executables
A bare-metal Position Independent Executable (PIE) is an executable that does not need to be executed
at a specific address but can be executed at any suitably aligned address.

 Note

This topic includes descriptions of [BETA] on page 1-13 features.

 Note

• Bare-metal PIE support is deprecated.
• [BETA] There is beta support for -fropi and -frwpi in armclang. You can use these options to

create bare-metal position independent executables.

Position independent code uses PC-relative addressing modes where possible and otherwise accesses
global data via the Global Offset Table (GOT). The address entries in the GOT and initialized pointers in
the data area are updated with the executable load address when the executable runs for the first time.

All objects and libraries linked into the image must be compiled to be position independent.

Compiling and linking a bare-metal PIE

Consider the following simple example code:

#include <stdio.h>

int main(void)
{
 printf(“hello\n”);
 return 0;
}

To compile and automatically link this code for bare-metal PIE, use the -fbare-metal-pie option with
armclang:

armclang -fbare-metal-pie --target=arm-arm-none-eabi -march=armv8-a hello.c -o hello

Alternatively, you can compile with armclang -fbare-metal-pie and link with armlink --
bare_metal_pie as separate steps:

armclang -fbare-metal-pie --target=arm-arm-none-eabi -march=armv8-a -c hello.c
armlink --bare_metal_pie hello.o -o hello

The resulting executable hello is a bare-metal Position Independent Executable.
 Note

Legacy code that is compiled with armcc to be included in a bare-metal PIE must be compiled with
either the option --apcs=/fpic, or if it contains no references to global data it may be compiled with the
option --apcs=/ropi.

If you are using link time optimization, use the armlink --lto-set-relocation-model=pic option to
tell the link time optimizer to produce position independent code:

armclang -flto -fbare-metal-pie --target=arm-arm-none-eabi -march=armv8-a -c hello.c -o
hello.bc
armlink --lto --lto_set_relocation_model=pic --bare_metal_pie hello.bc -o hello

Restrictions
A bare-metal PIE executable must conform to the following:
• AArch32 state only.
• The .got section must be placed in a writable region.

3 Compiling C and C++ Code
3.5 Bare-metal Position Independent Executables

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 3-36
Non-Confidential

• All references to symbols must be resolved at link time.
• The image must be linked Position Independent with a base address of 0x0.
• The code and data must be linked at a fixed offset from each other.
• The stack must be set up before the runtime relocation routine __arm_relocate_pie_ is called. This

means that the stack initialization code must only use PC-relative addressing if it is part of the image
code.

• It is the responsibility of the target platform that loads the PIE to ensure that the ZI region is zero-
initialized.

• When writing assembly code for position independence, be aware that some instructions (LDR, for
example) let you specify a PC-relative address in the form of a label. For example:

LDR r0,=__main

This causes the link step to fail when building with --bare-metal-pie, because the symbol is in a
read-only section. The workaround is to specify symbols indirectly in a writable section, for example:

 LDR r0, __main_addr
...
 AREA WRITE_TEST, DATA, READWRITE
__main_addr DCD __main
 END

Using a scatter file

An example scatter file is:

LR 0x0 PI
{
 er_ro +0 { *(+RO) }
 DYNAMIC_RELOCATION_TABLE +0 { *(DYNAMIC_RELOCATION_TABLE) }

 got +0 { *(.got) }
 er_rw +0 { *(+RW) }
 er_zi +0 { *(+ZI) }

 ; Add any stack and heap section required by the user supplied
 ; stack/heap initialization routine here
}

The linker generates the DYNAMIC_RELOCATION_TABLE section. This section must be placed in an
execution region called DYNAMIC_RELOCATION_TABLE. This allows the runtime relocation routine
__arm_relocate_pie_ that is provided in the C library to locate the start and end of the table using the
symbols Image$$DYNAMIC_RELOCATION_TABLE$$Base and Image$$DYNAMIC_RELOCATION_TABLE$
$Limit.

When using a scatter file and the default entry code supplied by the C library the linker requires that the
user provides their own routine for initializing the stack and heap. This user supplied stack and heap
routine is run prior to the routine __arm_relocate_pie_ so it is necessary to ensure that this routine only
uses PC relative addressing.

Related information
--fpic.
--pie.
--bare_metal_pie.
--ref_pre_init.
-fbare-metal-pie.
-fropi.
-frwpi.

3 Compiling C and C++ Code
3.5 Bare-metal Position Independent Executables

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 3-37
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0803-/pge1362075483299.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0803-/pge1422875136855.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0803-/pge1422874399726.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0803-/pge1422875175643.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1405438608367.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/sam1445439435970.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/sam1445441877518.html

3.6 Execute-only memory
Execute-only memory (XOM) allows only instruction fetches. Read and write accesses are not allowed.

Execute-only memory allows you to protect your intellectual property by preventing executable code
being read by users. For example, you can place firmware in execute-only memory and load user code
and drivers separately. Placing the firmware in execute-only memory prevents users from trivially
reading the code.

 Note

The ARM architecture does not directly support execute-only memory. Execute-only memory is
supported at the memory device level.

3 Compiling C and C++ Code
3.6 Execute-only memory

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 3-38
Non-Confidential

3.7 Building applications for execute-only memory
Placing code in execute-only memory prevents users from trivially reading that code.

To build an application with code in execute-only memory:

Procedure
1. Compile your C or C++ code using the -mexecute-only option.

armclang --target=arm-arm-none-eabi -march=armv7-m -mexecute-only -c test.c -o
test.o

The -mexecute-only option prevents the compiler from generating any data accesses to the code
sections.

To keep code and data in separate sections, the compiler disables the placement of literal pools inline
with code.

Compiled execute-only code sections in the ELF object file are marked with the SHF_ARM_NOREAD
flag.

2. Specify the memory map to the linker using either of the following:
• The +XO selector in a scatter file.
• The armlink --xo-base option on the command-line.

armlink --xo-base=0x8000 test.o -o test.axf
The XO execution region is placed in a separate load region from the RO, RW, and ZI execution
regions.

 Note

If you do not specify --xo-base, then by default:
• The XO execution region is placed immediately before the RO execution region, at address

0x8000.
• All execution regions are in the same load region.

3 Compiling C and C++ Code
3.7 Building applications for execute-only memory

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 3-39
Non-Confidential

Chapter 4
Assembling Assembly Code

Describes how to assemble assembly source code with armclang and armasm.

It contains the following sections:
• 4.1 Assembling ARM and GNU syntax assembly code on page 4-41.
• 4.2 Preprocessing assembly code on page 4-43.

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 4-40
Non-Confidential

4.1 Assembling ARM and GNU syntax assembly code
The ARM Compiler 6 toolchain can assemble both ARM and GNU syntax assembly language source
code.

ARM and GNU are two different syntaxes for assembly language source code. They are similar, but have
a number of differences. For example, ARM syntax identifies labels by their position at the start of a line,
while GNU syntax identifies them by the presence of a colon.

 Note

The GNU Binutils - Using as documentation provides complete information about GNU syntax assembly
code.

The Migration and Compatibility Guide contains detailed information about the differences between
ARM and GNU syntax assembly to help you migrate legacy assembly code.

The following examples show equivalent ARM and GNU syntax assembly code for incrementing a
register in a loop.

ARM syntax assembly:

; Simple ARM syntax example
;
; Iterate round a loop 10 times, adding 1 to a register each time.

 AREA ||.text||, CODE, READONLY, ALIGN=2

main PROC
 MOV w5,#0x64 ; W5 = 100
 MOV w4,#0 ; W4 = 0
 B test_loop ; branch to test_loop
loop
 ADD w5,w5,#1 ; Add 1 to W5
 ADD w4,w4,#1 ; Add 1 to W4
test_loop
 CMP w4,#0xa ; if W4 < 10, branch back to loop
 BLT loop
 ENDP

 END

You might have legacy assembly source files that use the ARM syntax. Use armasm to assemble legacy
ARM syntax assembly code. Typically, you invoke the armasm assembler as follows:

armasm --cpu=8-A.64 -o file.o file.s

GNU syntax assembly:

// Simple GNU syntax example
//
// Iterate round a loop 10 times, adding 1 to a register each time.

 .section .text,"x"
 .balign 4

main:
 MOV w5,#0x64 // W5 = 100
 MOV w4,#0 // W4 = 0
 B test_loop // branch to test_loop
loop:
 ADD w5,w5,#1 // Add 1 to W5
 ADD w4,w4,#1 // Add 1 to W4
test_loop:
 CMP w4,#0xa // if W4 < 10, branch back to loop
 BLT loop
 .end

Use GNU syntax for newly created assembly files. Use the armclang assembler to assemble GNU
assembly language source code. Typically, you invoke the armclang assembler as follows:

armclang --target=aarch64-arm-none-eabi -c -o file.o file.s

4 Assembling Assembly Code
4.1 Assembling ARM and GNU syntax assembly code

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 4-41
Non-Confidential

Related information
GNU Binutils - Using as.
Migrating ARM syntax assembly code to GNU syntax.

4 Assembling Assembly Code
4.1 Assembling ARM and GNU syntax assembly code

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 4-42
Non-Confidential

https://sourceware.org/binutils/docs-2.24/as/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0742-/chr1398241769674.html

4.2 Preprocessing assembly code
Assembly code that contains C directives, for example #include or #define, must be resolved by the C
preprocessor prior to assembling.

By default, armclang uses the assembly code source file suffix to determine whether or not to run the C
preprocessor:

• The .s (lower-case) suffix indicates assembly code that does not require preprocessing.
• The .S (upper-case) suffix indicates assembly code that requires preprocessing.

The -x option lets you override the default by specifying the language of the subsequent source files,
rather than inferring the language from the file suffix. Specifically, -x assembler-with-cpp indicates
that the assembly code contains C directives and armclang must run the C preprocessor. The -x option
only applies to input files that follow it on the command line.

To preprocess an assembly code source file, do one of the following:
• Ensure that the assembly code filename has a .S suffix.

For example:

armclang --target=arm-arm-none-eabi -march=armv8-a -E test.S

• Use the -x assembler-with-cpp option to tell armclang that the assembly source file requires
preprocessing.

For example:

armclang --target=arm-arm-none-eabi -march=armv8-a -E -x assembler-with-cpp test.s

 Note

The -E option specifies that armclang only executes the preprocessor step.

Related information
-x.

4 Assembling Assembly Code
4.2 Preprocessing assembly code

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 4-43
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1383664576926.html

Chapter 5
Linking Object Files to Produce an Executable

Describes how to link object files to produce an executable image with armlink.

It contains the following sections:
• 5.1 Linking object files to produce an executable on page 5-45.

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 5-44
Non-Confidential

5.1 Linking object files to produce an executable
The linker combines the contents of one or more object files with selected parts of any required object
libraries to produce executable images, partially linked object files, or shared object files.

The command for invoking the linker is:

armlink options input-file-list

where:

options
are linker command-line options.

input-file-list
is a space-separated list of objects, libraries, or symbol definitions (symdefs) files.

For example, to link the object file hello_world.o into an executable image hello_world.axf:

armlink -o hello_world.axf hello_world.o

5 Linking Object Files to Produce an Executable
5.1 Linking object files to produce an executable

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 5-45
Non-Confidential

Chapter 6
Optimization

Describes how to use armclang to optimize for either code size or performance, and the impact of the
optimization level on the debug experience.

It contains the following sections:
• 6.1 Optimizing for code size or performance on page 6-47.
• 6.2 Optimizing across modules with link time optimization [ALPHA] on page 6-48.
• 6.3 How optimization affects the debug experience on page 6-52.

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 6-46
Non-Confidential

6.1 Optimizing for code size or performance
The compiler and associated tools use numerous techniques for optimizing your code. Some of these
techniques improve the performance of your code, while other techniques reduce the size of your code.

These optimizations often work against each other. That is, techniques for improving code performance
might result in increased code size, and techniques for reducing code size might reduce performance. For
example, the compiler can unroll small loops for higher performance, with the disadvantage of increased
code size.

By default, armclang does not perform optimization. That is, the default optimization level is -O0.

The following armclang options help you optimize for code performance:

-O0 | -O1 | -O2 | -O3
Specify the level of optimization to be used when compiling source files, where -O0 is the
minimum and -O3 is the maximum.

-Ofast
Enables all the optimizations from -O3 along with other aggressive optimizations that might
violate strict compliance with language standards.

The following armclang options help you optimize for code size:

-Os
Performs optimizations to reduce the image size at the expense of a possible increase in
execution time. This option balances code size against performance.

-Oz
Optimizes for smaller code size.

The following armclang option helps you optimize for both code size and code performance:

[ALPHA] -flto
[ALPHA] Enables link time optimization, which lets the linker make additional optimizations
across multiple source files.

In addition, choices you make during coding can affect optimization. For example:
• Optimizing loop termination conditions can improve both code size and performance. In particular,

loops with counters that decrement to zero usually produce smaller, faster code than loops with
incrementing counters.

• Manually unrolling loops by reducing the number of loop iterations, but increasing the amount of
work done in each iteration can improve performance at the expense of code size.

• Reducing debug information in objects and libraries reduces the size of your image.
• Using inline functions offers a trade-off between code size and performance.
• Using intrinsics can improve performance.

6 Optimization
6.1 Optimizing for code size or performance

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 6-47
Non-Confidential

6.2 Optimizing across modules with link time optimization [ALPHA]
Additional optimization opportunities are available at link time, because source code from different
modules can be optimized together.

 Note

This topic describes an [ALPHA] on page 1-13 feature.

By default, the compiler optimizes each source module independently, translating C or C++ source code
into an ELF file containing object code. At link time the linker combines all the ELF object files into an
executable by resolving symbol references and relocations. Compiling each source file separately means
the compiler might miss some optimization opportunities, such as cross-module inlining.

When link time optimization is enabled, the compiler translates source code into an intermediate form
called bitcode. At link time, the linker collects all bitcode files together and sends them to the link time
optimizer (llvm-lto) as one or more larger units. Collecting modules together means the link time
optimizer can perform more optimizations because it has more information about the dependencies
between modules. The link time optimizer then sends a single ELF object file back to the linker. Finally,
the linker combines all object and library code to create an executable.

C/C++ Source
.c

Bitcode
.o

C/C++ Source
.c

ELF Object
.o

armclang -flto

armclang

Libraries

armlink --lto

Link time optimizer
llvm-lto

ELF
Executable

ELF Object
.o

Bitcode
.o

Figure 6-1 Link time optimization

 Note

Bitcode files and ELF object files both have the default extension .o. You can use armclang -c -o
filename to specify a different filename and extension for bitcode files if desired, for example .bc.

This section contains the following subsections:
• 6.2.1 Enabling link time optimization [ALPHA] on page 6-48.
• 6.2.2 Restrictions with link time optimization [ALPHA] on page 6-49.

6.2.1 Enabling link time optimization [ALPHA]

The -flto option enables link time optimization.

 Note

This topic describes an [ALPHA] on page 1-13 feature.

6 Optimization
6.2 Optimizing across modules with link time optimization [ALPHA]

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 6-48
Non-Confidential

To enable link time optimization:
1. At compilation time, use the armclang option -flto to produce bitcode files suitable for link time

optimization.
2. At link time, use the armlink option --lto to enable link time optimization for the specified bitcode

files.
 Note

armclang automatically passes the --lto option to armlink if the -flto option is used without the -
c option.

Example 1: Optimizing all source files

The following example performs link time optimization across all source files:

armclang --target=arm-arm-none-eabi -march=armv8-a -flto src1.c src2.c src3.c -o output.axf

This example does the following:
1. armclang compiles the C source files src1.c, src2.c, and src3.c to the bitcode files src1.o,

src2.o, and src3.o.
2. armclang automatically invokes armlink with the --lto option.
3. armlink passes the bitcode files src1.o, src2.o, and src3.o to the link time optimizer to produce a

single optimized ELF object file.
4. armlink creates the executable output.axf from the ELF object file.

Example 2: Optimizing a subset of source files

The following example performs link time optimization for a subset of source files.

armclang --target=arm-arm-none-eabi -march=armv8-a -c src1.c -o src1.o
armclang --target=arm-arm-none-eabi -march=armv8-a -c -flto src2.c -o src2.bc
armclang --target=arm-arm-none-eabi -march=armv8-a -c -flto src3.c -o src3.bc
armlink --lto src1.o src2.bc src3.bc -o output.axf

This example does the following:
1. armclang compiles the C source file src1.c to the ELF object file src1.o.
2. armclang compiles the C source files src2.c and src3.c to the bitcode files src2.bc and src3.bc.
3. armlink passes the bitcode files src2.bc and src3.bc to the link time optimizer to produce a single

optimized ELF object file.
4. armlink combines the ELF object file src1.o with the object file produced by the link time

optimizer to create the executable output.axf.

Related references
6.2.2 Restrictions with link time optimization [ALPHA] on page 6-49.

Related information
-flto.
--lto armlink option.
--keep armlink option.

6.2.2 Restrictions with link time optimization [ALPHA]

Link time optimization has a few restrictions in ARM Compiler 6. Future releases might have fewer
restrictions and more features. The user interface to link time optimization might change in future
releases.

 Note

This topic describes an [ALPHA] on page 1-13 feature.

6 Optimization
6.2 Optimizing across modules with link time optimization [ALPHA]

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 6-49
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1413472574438.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0803-/pge1422897199682.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0803-/pge1362075498955.html

Libraries
armlink resolves all link time code generation before libraries are loaded. This allows bitcode
files to reference code and data that resides in libraries, however this means that the link time
optimizer cannot use any bitcode files in libraries or be aware of references from library objects
to bitcode files as the objects from the libraries have not yet been loaded. See References to
symbols in bitcode files from libraries for more information.

No bitcode libraries
armlink only supports bitcode objects on the command line. It does not support bitcode objects
coming from libraries. armlink gives an error message if it encounters a bitcode file while
loading from a library.

References to symbols in bitcode files from libraries
The link time optimizer might remove global symbols that have not been referenced from other
bitcode or other ELF files. If there are symbols that are referenced only from objects in libraries
then the link time optimizer might remove them, leading to an undefined symbol error at link
time.

For example, consider the following source code:

file_in_library.c

extern void function(void);

void library_function(void)
{
 function();
}

file.c

void function(void)
{
 ...
}

extern void library_function(void);

int main(void)
{
 library_function();
 function();
}

The following commands compile the library source code, create a library file, compile the
program source code, then link the resulting object files using link time optimization:

armclang --target=arm-arm-none-eabi -march=armv8-a -c file_in_library.c
armar --create library.a file_in_library.o
armclang --target=arm-arm-none-eabi -march=armv8-a -c -flto file.c
armlink --lto file.o library.a

The link time optimizer might remove function() as unused because it is only referenced by a
library function. This results in the following error:

Error: L6218E: Undefined symbol function (referred from file_in_library.o).
Finished: 0 information, 0 warning and 1 error messages.

To prevent the link time optimizer from removing the symbol you must use one or more of the
following armlink command line options:
• --keep symbol for each symbol in bitcode objects that is referenced only from objects from

libraries.
• --lto_keep_all_symbols to prevent the optimizer from removing symbols.

Partial linking
The armlink options --partial and --ldpartial only work with ELF files. The linker will
give an error message if it detects a bitcode file.

6 Optimization
6.2 Optimizing across modules with link time optimization [ALPHA]

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 6-50
Non-Confidential

Weak symbol definitions
If there is a weak definition and a global (non-weak) definition of the same name, the linker
must prefer the global definition and ignore the weak definition. When the weak definition for a
symbol is in the ELF file and the non-weak definition is in the bitcode file, the link time
optimizer might remove the non-weak definition from the bitcode files if there are no references
to it from other bitcode files. This can result in the weak definition from the ELF file being used.
To prevent this, use the --keep symbol option to prevent the link time optimizer from removing
the non-weak definition of the symbol.

Scatter loading
The output of the link time optimizer is a single ELF object file that by default is given a
temporary filename. This ELF object file contains sections and symbols just like any other ELF
object file, and these will be matched by scatter loading selectors as normal.

Use the armlink option --lto_set_intermediate_filename to name the ELF object file
output. This ELF file name can be referenced in the scatter loading file.

ARM recommends that link time optimization is only performed on code and data that does not
require precise placement in the scatter file, with general scatter loading selectors such as
*(+RO) and .ANY(+RO) used to select sections generated by link time optimization.
It is not possible to match bitcode files by name in scatter loading.

 Note

The scatter loading interface is subject to change in future versions of ARM Compiler 6.

Limited compatibility checking
The linker does not perform extensive checks on the bitcode files before passing them to the
optimizer. Extra care must be taken to present compatible bitcode files to armlink.

Executable and library compatibility
The armclang and llvm-lto executables and the libLTO library must come from the same
ARM Compiler 6 installation. Any use of llvm-lto or libLTO other than those supplied with
ARM Compiler 6 is unsupported.

Processor support
Link time optimization is supported for targeting architectures, for example with -march. There
is no support for targeting specific processors.

Related references
6.2.1 Enabling link time optimization [ALPHA] on page 6-48.

Related information
-flto.
--lto armlink option.
--keep armlink option.

6 Optimization
6.2 Optimizing across modules with link time optimization [ALPHA]

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 6-51
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1413472574438.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0803-/pge1422897199682.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0803-/pge1362075498955.html

6.3 How optimization affects the debug experience
There is a trade-off between optimizing code and the debug experience.

The precise optimizations performed by the compiler depend both on the level of optimization chosen,
and whether you are optimizing for performance or code size.

The lowest optimization level, -O0, provides the best debug experience because the structure of the
generated code directly corresponds to the source code.

Higher optimization levels result in an increasingly degraded debug view because the mapping of object
code to source code is not always clear. The compiler might perform optimizations that cannot be
described by debug information.

Related information
-O.

6 Optimization
6.3 How optimization affects the debug experience

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 6-52
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1383664854780.html

Chapter 7
Coding Considerations

Describes how you can use programming practices and techniques to increase the portability, efficiency
and robustness of your C and C++ source code.

It contains the following sections:
• 7.1 Optimization of loop termination in C code on page 7-54.
• 7.2 Loop unrolling in C code on page 7-56.
• 7.3 Compiler optimization and the volatile keyword on page 7-58.
• 7.4 Stack use in C and C++ on page 7-60.
• 7.5 Methods of minimizing function parameter passing overhead on page 7-62.
• 7.6 Inline functions on page 7-63.
• 7.7 Integer division-by-zero errors in C code on page 7-64.
• 7.8 Infinite Loops on page 7-66.

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 7-53
Non-Confidential

7.1 Optimization of loop termination in C code
Loops are a common construct in most programs. Because a significant amount of execution time is
often spent in loops, it is worthwhile paying attention to time-critical loops.

The loop termination condition can cause significant overhead if written without caution. Where
possible:
• Use simple termination conditions.
• Write count-down-to-zero loops.
• Use counters of type unsigned int.
• Test for equality against zero.

Following any or all of these guidelines, separately or in combination, is likely to result in better code.

The following table shows two sample implementations of a routine to calculate n! that together
illustrate loop termination overhead. The first implementation calculates n! using an incrementing loop,
while the second routine calculates n! using a decrementing loop.

Table 7-1 C code for incrementing and decrementing loops

Incrementing loop Decrementing loop

int fact1(int n)
{
 int i, fact = 1;
 for (i = 1; i <= n; i++)
 fact *= i;
 return (fact);
}

int fact2(int n)
{
 unsigned int i, fact = 1;
 for (i = n; i != 0; i--)
 fact *= i;
 return (fact);
}

The following table shows the corresponding disassembly of the machine code produced by
armclang -Os -S --target=arm-arm-none-eabi -march=armv8-a for each of the sample
implementations above.

Table 7-2 C disassembly for incrementing and decrementing loops

Incrementing loop Decrementing loop

fact1:
 mov r1, r0
 mov r0, #1
 cmp r1, #1
 bxlt lr
 mov r2, #0
.LBB0_1:
 add r2, r2, #1
 mul r0, r0, r2
 cmp r1, r2
 bne .LBB0_1
 bx lr

fact2:
 mov r1, r0
 mov r0, #1
 cmp r1, #0
 bxeq lr
.LBB1_1:
 mul r0, r0, r1
 subs r1, r1, #1
 bne .LBB1_1
 bx lr

Comparing the disassemblies shows that the ADD and CMP instruction pair in the incrementing loop
disassembly has been replaced with a single SUBS instruction in the decrementing loop disassembly.
Because the SUBS instruction updates the status flags, including the Z flag, there is no requirement for an
explicit CMP r1,r2 instruction.

In addition to saving an instruction in the loop, the variable n does not have to be available for the
lifetime of the loop, reducing the number of registers that have to be maintained. This eases register
allocation. It is even more important if the original termination condition involves a function call. For
example:

for (...; i < get_limit(); ...);

7 Coding Considerations
7.1 Optimization of loop termination in C code

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 7-54
Non-Confidential

The technique of initializing the loop counter to the number of iterations required, and then decrementing
down to zero, also applies to while and do statements.

7 Coding Considerations
7.1 Optimization of loop termination in C code

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 7-55
Non-Confidential

7.2 Loop unrolling in C code
Loops are a common construct in most programs. Because a significant amount of execution time is
often spent in loops, it is worthwhile paying attention to time-critical loops.

Small loops can be unrolled for higher performance, with the disadvantage of increased code size. When
a loop is unrolled, the loop counter requires updating less often and fewer branches are executed. If the
loop iterates only a few times, it can be fully unrolled so that the loop overhead completely disappears.
The compiler unrolls loops automatically at -O3. Otherwise, any unrolling must be done in source code.

 Note

Manual unrolling of loops might hinder the automatic re-rolling of loops and other loop optimizations by
the compiler.

The advantages and disadvantages of loop unrolling can be illustrated using the two sample routines
shown in the following table. Both routines efficiently test a single bit by extracting the lowest bit and
counting it, after which the bit is shifted out.

The first implementation uses a loop to count bits. The second routine is the first implementation
unrolled four times, with an optimization applied by combining the four shifts of n into one shift.

Unrolling frequently provides new opportunities for optimization.

Table 7-3 C code for rolled and unrolled bit-counting loops

Bit-counting loop Unrolled bit-counting loop

int countbit1(unsigned int n)
{
 int bits = 0;
 while (n != 0)
 {
 if (n & 1) bits++;
 n >>= 1;
 }
 return bits;
}

int countbit2(unsigned int n)
{
 int bits = 0;
 while (n != 0)
 {
 if (n & 1) bits++;
 if (n & 2) bits++;
 if (n & 4) bits++;
 if (n & 8) bits++;
 n >>= 4;
 }
 return bits;
}

The following table shows the corresponding disassembly of the machine code produced by the compiler
for each of the sample implementations above, where the C code for each implementation has been
compiled using armclang -Os -S --target=arm-arm-none-eabi -march=armv8-a.

7 Coding Considerations
7.2 Loop unrolling in C code

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 7-56
Non-Confidential

Table 7-4 Disassembly for rolled and unrolled bit-counting loops

Bit-counting loop Unrolled bit-counting loop

countbit1:
 mov r1, r0
 mov r0, #0
 cmp r1, #0
 bxeq lr
 mov r2, #0
.LBB0_1:
 and r3, r1, #1
 cmp r2, r1, lsr #1
 add r0, r0, r3
 lsr r3, r1, #1
 mov r1, r3
 bne .LBB0_1
 bx lr

countbit2:
 mov r1, r0
 mov r0, #0
 cmp r1, #0
 bxeq lr
 mov r2, #0
.LBB1_1:
 and r3, r1, #1
 cmp r2, r1, lsr #4
 add r0, r0, r3
 ubfx r3, r1, #1, #1
 add r0, r0, r3
 ubfx r3, r1, #2, #1
 add r0, r0, r3
 ubfx r3, r1, #3, #1
 add r0, r0, r3
 lsr r3, r1, #4
 mov r1, r3
 bne .LBB1_1
 bx lr

The unrolled version of the bit-counting loop is faster than the original version, but has a larger code
size.

7 Coding Considerations
7.2 Loop unrolling in C code

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 7-57
Non-Confidential

7.3 Compiler optimization and the volatile keyword
Higher optimization levels can reveal problems in some programs that are not apparent at lower
optimization levels, for example, missing volatile qualifiers.

This can manifest itself in a number of ways:

• Code might become stuck in a loop while polling hardware.
• Multi-threaded code might exhibit strange behavior.
• Optimization might result in the removal of code that implements deliberate timing delays.

In such cases, it is possible that some variables are required to be declared as volatile.

The declaration of a variable as volatile tells the compiler that the variable can be modified at any time
externally to the implementation, for example, by the operating system, by another thread of execution
such as an interrupt routine or signal handler, or by hardware. Because the value of a volatile-qualified
variable can change at any time, the actual variable in memory must always be accessed whenever the
variable is referenced in code. This means the compiler cannot perform optimizations on the variable, for
example, caching its value in a register to avoid memory accesses. Similarly, when used in the context of
implementing a sleep or timer delay, declaring a variable as volatile tells the compiler that a specific
type of behavior is intended, and that such code must not be optimized in such a way that it removes the
intended functionality.

In contrast, when a variable is not declared as volatile, the compiler can assume its value cannot be
modified externally to the implementation. Therefore, the compiler can perform optimizations on the
variable.

The use of the volatile keyword is illustrated in the two sample routines in the following table. Both of
these routines read a buffer in a loop until a status flag buffer_full is set to true. The state of
buffer_full can change asynchronously with program flow.

The two versions of the routine differ only in the way that buffer_full is declared. The first routine
version is incorrect. Notice that the variable buffer_full is not qualified as volatile in this version. In
contrast, the second version of the routine shows the same loop where buffer_full is correctly qualified
as volatile.

Table 7-5 C code for nonvolatile and volatile buffer loops

Nonvolatile version of buffer loop Volatile version of buffer loop

int buffer_full;
int read_stream(void)
{
 int count = 0;
 while (!buffer_full)
 {
 count++;
 }
 return count;
}

volatile int buffer_full;
int read_stream(void)
{
 int count = 0;
 while (!buffer_full)
 {
 count++;
 }
 return count;
}

The following table shows the corresponding disassembly of the machine code produced by the compiler
for each of the examples above, where the C code for each implementation has been compiled using
armclang -Os -S --target=arm-arm-none-eabi -march=armv8-a.

7 Coding Considerations
7.3 Compiler optimization and the volatile keyword

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 7-58
Non-Confidential

Table 7-6 Disassembly for nonvolatile and volatile buffer loop

Nonvolatile version of buffer loop Volatile version of buffer loop

read_stream:
 movw r0, :lower16:buffer_full
 movt r0, :upper16:buffer_full
 ldr r1, [r0]
 mvn r0, #0
.LBB0_1:
 add r0, r0, #1
 cmp r1, #0
 beq .LBB0_1 ; infinite loop
 bx lr

read_stream:
 movw r1, :lower16:buffer_full
 mvn r0, #0
 movt r1, :upper16:buffer_full
.LBB1_1:
 ldr r2, [r1] ; buffer_full
 add r0, r0, #1
 cmp r2, #0
 beq .LBB1_1
 bx lr

In the disassembly of the nonvolatile version of the buffer loop in the above table, the statement LDR r1,
[r0] loads the value of buffer_full into register r1 outside the loop labeled .LBB0_1. Because
buffer_full is not declared as volatile, the compiler assumes that its value cannot be modified
outside the program. Having already read the value of buffer_full into r0, the compiler omits
reloading the variable when optimizations are enabled, because its value cannot change. The result is the
infinite loop labeled .LBB0_1.

In contrast, in the disassembly of the volatile version of the buffer loop, the compiler assumes the value
of buffer_full can change outside the program and performs no optimizations. Consequently, the value
of buffer_full is loaded into register r2 inside the loop labeled .LBB1_1. As a result, the loop .LBB1_1
is implemented correctly in assembly code.

To avoid optimization problems caused by changes to program state external to the implementation, you
must declare variables as volatile whenever their values can change unexpectedly in ways unknown to
the implementation.

In practice, you must declare a variable as volatile whenever you are:
• Accessing memory-mapped peripherals.
• Sharing global variables between multiple threads.
• Accessing global variables in an interrupt routine or signal handler.

The compiler does not optimize the variables you have declared as volatile.

7 Coding Considerations
7.3 Compiler optimization and the volatile keyword

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 7-59
Non-Confidential

7.4 Stack use in C and C++
C and C++ both use the stack intensively.

For example, the stack holds:

• The return address of functions.
• Registers that must be preserved, as determined by the ARM Architecture Procedure Call Standard

for the ARM 64-bit Architecture (AAPCS64), for instance, when register contents are saved on entry
into subroutines.

• Local variables, including local arrays, structures, unions, and in C++, classes.

Some stack usage is not obvious, such as:
• Local integer or floating point variables are allocated stack memory if they are spilled (that is, not

allocated to a register).
• Structures are normally allocated to the stack. A space equivalent to sizeof(struct) padded to a

multiple of 16 bytes is reserved on the stack. The compiler tries to allocate structures to registers
instead.

• If the size of an array is known at compile time, the compiler allocates memory on the stack. Again, a
space equivalent to sizeof(array) padded to a multiple of 16 bytes is reserved on the stack.

 Note

Memory for variable length arrays is allocated at runtime, on the heap.

• Several optimizations can introduce new temporary variables to hold intermediate results. The
optimizations include: CSE elimination, live range splitting and structure splitting. The compiler tries
to allocate these temporary variables to registers. If not, it spills them to the stack.

• Generally, code compiled for processors that support only 16-bit encoded Thumb® instructions makes
more use of the stack than A64 code, ARM code and code compiled for processors that support 32-
bit encoded Thumb instructions. This is because 16-bit encoded Thumb instructions have only eight
registers available for allocation, compared to fourteen for ARM code and 32-bit encoded Thumb
instructions.

• The AAPCS64 requires that some function arguments are passed through the stack instead of the
registers, depending on their type, size, and order.

Methods of estimating stack usage
Stack use is difficult to estimate because it is code dependent, and can vary between runs depending on
the code path that the program takes on execution. However, it is possible to manually estimate the
extent of stack utilization using the following methods:
• Link with --callgraph to produce a static callgraph. This shows information on all functions,

including stack use.

This uses DWARF frame information from the .debug_frame section. Compile with the -g option to
generate the necessary DWARF information.

• Link with --info=stack or --info=summarystack to list the stack usage of all global symbols.
• Use the debugger to set a watchpoint on the last available location in the stack and see if the

watchpoint is ever hit. Compile with the -g option to generate the necessary DWARF information.
• Use the debugger, and:

1. Allocate space in memory for the stack that is much larger than you expect to require.
2. Fill the stack space with copies of a known value, for example, 0xDEADDEAD.
3. Run your application, or a fixed portion of it. Aim to use as much of the stack space as possible in

the test run. For example, try to execute the most deeply nested function calls and the worst case
path found by the static analysis. Try to generate interrupts where appropriate, so that they are
included in the stack trace.

7 Coding Considerations
7.4 Stack use in C and C++

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 7-60
Non-Confidential

4. After your application has finished executing, examine the stack space of memory to see how
many of the known values have been overwritten. The space has garbage in the used part and the
known values in the remainder.

5. Count the number of garbage values and multiply by sizeof(value), to give their size, in bytes.

The result of the calculation shows how the size of the stack has grown, in bytes.
• Use Fixed Virtual Platforms (FVP), and define a region of memory where access is not allowed

directly below your stack in memory, with a map file. If the stack overflows into the forbidden
region, a data abort occurs, which can be trapped by the debugger.

Methods of reducing stack usage
In general, you can lower the stack requirements of your program by:
• Writing small functions that only require a small number of variables.
• Avoiding the use of large local structures or arrays.
• Avoiding recursion, for example, by using an alternative algorithm.
• Minimizing the number of variables that are in use at any given time at each point in a function.
• Using C block scope and declaring variables only where they are required, so overlapping the

memory used by distinct scopes.

7 Coding Considerations
7.4 Stack use in C and C++

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 7-61
Non-Confidential

7.5 Methods of minimizing function parameter passing overhead
There are a number of ways in which you can minimize the overhead of passing parameters to functions.

For example:
• In AArch64 state, 8 integer and 8 floating point arguments (16 in total) can be passed efficiently. In

AArch32 state, ensure that functions take four or fewer arguments if each argument is a word or less
in size. In C++, ensure that nonstatic member functions take no more than one fewer argument than
the efficient limit, because of the implicit this pointer argument that is usually passed in R0.

• Ensure that a function does a significant amount of work if it requires more than the efficient limit of
arguments, so that the cost of passing the stacked arguments is outweighed.

• Put related arguments in a structure, and pass a pointer to the structure in any function call. This
reduces the number of parameters and increases readability.

• For 32-bit architectures, minimize the number of long long parameters, because these take two
argument words that have to be aligned on an even register index.

• For 32-bit architectures, minimize the number of double parameters when using software floating-
point.

7 Coding Considerations
7.5 Methods of minimizing function parameter passing overhead

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 7-62
Non-Confidential

7.6 Inline functions
Inline functions offer a trade-off between code size and performance. By default, the compiler decides
for itself whether to inline code or not.

See the Clang documentation for more information about inline functions.

Related information
Language Compatibility.

7 Coding Considerations
7.6 Inline functions

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 7-63
Non-Confidential

http://clang.llvm.org/compatibility.html

7.7 Integer division-by-zero errors in C code
For targets that do not support hardware division instructions (for example SDIV and UDIV), you can trap
and identify integer division-by-zero errors with the appropriate C library helper functions,
__aeabi_idiv0() and __rt_raise().

Trapping integer division-by-zero errors with __aeabi_idiv0()

You can trap integer division-by-zero errors with the C library helper function __aeabi_idiv0() so that
division by zero returns some standard result, for example zero.

Integer division is implemented in code through the C library helper functions __aeabi_idiv() and
__aeabi_uidiv(). Both functions check for division by zero.

When integer division by zero is detected, a branch to __aeabi_idiv0() is made. To trap the division by
zero, therefore, you only have to place a breakpoint on __aeabi_idiv0().

The library provides two implementations of __aeabi_idiv0(). The default one does nothing, so if
division by zero is detected, the division function returns zero. However, if you use signal handling, an
alternative implementation is selected that calls __rt_raise(SIGFPE, DIVBYZERO).

If you provide your own version of __aeabi_idiv0(), then the division functions call this function. The
function prototype for __aeabi_idiv0() is:

int __aeabi_idiv0(void);

If __aeabi_idiv0() returns a value, that value is used as the quotient returned by the division function.

On entry into __aeabi_idiv0(), the link register LR contains the address of the instruction after the call
to the __aeabi_uidiv() division routine in your application code.

The offending line in the source code can be identified by looking up the line of C code in the debugger
at the address given by LR.

If you want to examine parameters and save them for postmortem debugging when trapping
__aeabi_idiv0, you can use the $Super$$ and $Sub$$ mechanism:
1. Prefix __aeabi_idiv0() with $Super$$ to identify the original unpatched function

__aeabi_idiv0().
2. Use __aeabi_idiv0() prefixed with $Super$$ to call the original function directly.
3. Prefix __aeabi_idiv0() with $Sub$$ to identify the new function to be called in place of the

original version of __aeabi_idiv0().
4. Use __aeabi_idiv0() prefixed with $Sub$$ to add processing before or after the original function

__aeabi_idiv0().

The following example shows how to intercept __aeabi_div0 using the $Super$$ and $Sub$$
mechanism.

extern void $Super$$__aeabi_idiv0(void);
/* this function is called instead of the original __aeabi_idiv0() */
void $Sub$$__aeabi_idiv0()
{
 // insert code to process a divide by zero
 ...
 // call the original __aeabi_idiv0 function
 $Super$$__aeabi_idiv0();
}

Trapping integer division-by-zero errors with __rt_raise()

By default, integer division by zero returns zero. If you want to intercept division by zero, you can re-
implement the C library helper function __rt_raise().

The function prototype for __rt_raise() is:

void __rt_raise(int signal, int type);

7 Coding Considerations
7.7 Integer division-by-zero errors in C code

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 7-64
Non-Confidential

If you re-implement __rt_raise(), then the library automatically provides the signal-handling library
version of __aeabi_idiv0(), which calls __rt_raise(), then that library version of __aeabi_idiv0()
is included in the final image.

In that case, when a divide-by-zero error occurs, __aeabi_idiv0() calls __rt_raise(SIGFPE,
DIVBYZERO). Therefore, if you re-implement __rt_raise(), you must check (signal == SIGFPE) &&
(type == DIVBYZERO) to determine if division by zero has occurred.

7 Coding Considerations
7.7 Integer division-by-zero errors in C code

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 7-65
Non-Confidential

7.8 Infinite Loops
armclang considers infinite loops with no side-effects to be undefined behavior, as stated in the C11 and
C++11 standards. In certain situations armclang deletes or moves infinite loops, resulting in a program
that eventually terminates, or does not behave as expected.

How to write an infinite loop in armclang

To ensure that a loop executes for an infinite length of time, ARM recommends writing infinite loops in
the following way:

void infinite_loop(void) {
 while (1)
 asm volatile(""); // this line is considered to have side-effects
}

armclang does not delete or move the loop, because it has side-effects.

7 Coding Considerations
7.8 Infinite Loops

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 7-66
Non-Confidential

Chapter 8
Building Secure and Non-secure Images Using
ARMv8-M Security Extensions

Describes how to use the ARMv8-M Security Extensions to build a secure image, and how to allow a
non-secure image to call a secure image.

It contains the following sections:
• 8.1 Overview of building Secure and Non-secure images on page 8-68.
• 8.2 Building a Secure image using the ARMv8-M Security Extensions on page 8-71.
• 8.3 Building a Non-secure image that can call a Secure image on page 8-74.
• 8.4 Building a Secure image using a previously generated import library on page 8-76.

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 8-67
Non-Confidential

8.1 Overview of building Secure and Non-secure images
ARM Compiler 6 tools allow you to build images that run in the Secure state of the ARMv8-M Security
Extensions. You can also create an import library package that developers of Non-secure images must
have for those images to call the Secure image.

To build an image that runs in the Secure state you must include the <arm_cmse.h> header in your code,
and compile using the -mcmse armclang command-line option. Doing this makes the following
available:
• The Test Target, TT, instruction.
• TT instruction intrinsics.
• Non-secure function pointer intrinsics.
• The __attribute__((cmse_nonsecure_call)) and __attribute__((cmse_nonsecure_entry))

function attributes.

On startup, your Secure code must set up the Security Attribution Unit (SAU) and call the Non-secure
startup code.

How a Non-secure image calls a Secure image using veneers

Calling a Secure image from a Non-secure image requires a transition from Non-secure to Secure state.
A transition is initiated through Secure gateway veneers. Secure gateway veneers decouple the addresses
from the rest of the Secure code.

An entry point in the Secure image, entryname, is identified with:

__acle_se_entryname:
entryname:

The calling sequence is as follows:
1. The Non-secure image uses the branch BL instruction to call the Secure gateway veneer for the

required entry function in the Secure image:

bl entryname

2. The Secure gateway veneer consists of the SG instruction and a call to the entry function in the Secure
image using the B instruction:

entryname SG
 B.W __acle_se_entryname

3. The Secure image returns from the entry function using the BXNS instruction:

bxns lr

The following figure is a graphical representation of the calling sequence, but for clarity, the return from
the entry function is not shown:

8 Building Secure and Non-secure Images Using ARMv8-M Security Extensions
8.1 Overview of building Secure and Non-secure images

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 8-68
Non-Confidential

Non-secure Region

Non-secure code

...
 bl entry1
…
 bl entry2
…
 bl entry3
..
 bl entry4

NSC Region

Vector of secure gateway
veneers

entry4
 SG
 B.W __acle_se_entry4

entry3
 SG
 B.W __acle_se_entry3

entry2
 SG
 B.W __acle_se_entry2

entry1
 SG
 B.W __acle_se_entry1

Secure Region

Secure
code

entry1 function

entry2 function

entry3 function

entry4 function

Internal
functions

Secure data

Stack Heap Global data

Import library package
An import library package identifies the entry functions available in a Secure image. The import library
package contains:
• An interface header file, for example myinterface.h. You manually create this file using any text

editor.
• An import library, for example importlib.o. armlink generates this library during the link stage for

a Secure image.
 Note

You must do separate compile and link stages:
— To create an import library when building a Secure image.
— To use an import library when building a Non-secure image.

Related tasks
8.2 Building a Secure image using the ARMv8-M Security Extensions on page 8-71.
8.4 Building a Secure image using a previously generated import library on page 8-76.
8.3 Building a Non-secure image that can call a Secure image on page 8-74.

Related information
Whitepaper - ARMv8-M Architecture Technical Overview.
-mcmse.
__attribute__((cmse_nonsecure_call)) function attribute.
__attribute__((cmse_nonsecure_entry)) function attribute.
Predefined macros.
TT instruction intrinsics.
Non-secure function pointer intrinsics.
B instruction.
BL instruction.
BXNS instruction.
SG instruction.

8 Building Secure and Non-secure Images Using ARMv8-M Security Extensions
8.1 Overview of building Secure and Non-secure images

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 8-69
Non-Confidential

https://community.arm.com/docs/DOC-10896
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/pge1444647306157.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/pge1446817925499.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/pge1446817691182.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1383660321827.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/pge1446715440722.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/pge1446819324298.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/pge1425889934568.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/pge1425889981170.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/pge1425889997181.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/pge1447175165109.html

TT, TTT, TTA, TTAT instruction.
Placement of CMSE veneer sections for a Secure image.

8 Building Secure and Non-secure Images Using ARMv8-M Security Extensions
8.1 Overview of building Secure and Non-secure images

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 8-70
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/pge1447175167080.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0803-/pge1444640127623.html

8.2 Building a Secure image using the ARMv8-M Security Extensions
When building a Secure image you must also generate an import library that specifies the entry points to
the Secure image. The import library is used when building a Non-secure image that needs to call the
Secure image.

Prerequisites

The following procedure is not a complete example, and assumes that your code sets up the Security
Attribution Unit (SAU) and calls the Non-secure startup code.

Procedure
1. Create an interface header file, myinterface_v1.h, that is to be used by Non-secure code:

int entry1(int x);
int entry2(int x);

2. In the C program for your Secure code, secure.c, include the following:

#include <arm_cmse.h>
#include "myinterface_v1.h"

int func1(int x) { return x; }
int __attribute__((cmse_nonsecure_entry)) entry1(int x) { return func1(x) ; }
int __attribute__((cmse_nonsecure_entry)) entry2(int x) { return entry1(x); }

int main(void) { return 0; }

In addition to the implementation of the two entry functions, the code defines the function func1()
that can only be called by Secure code.

3. Create an object file using the armclang -mcmse -mfpu=none command-line options:

$ armclang -c --target arm-arm-none-eabi -march=armv8-m.main -mcmse -mfpu=none secure.c
-o secure.o

4. To see the disassembly of the machine code generated by armclang, enter:

$ armclang -c --target arm-arm-none-eabi -march=armv8-m.main -mcmse -mfpu=none -S secure.c

The disassembly is stored in the file secure.s, for example:

 .text
 ...
 .code 16
 .thumb_func
 ...
func1:
 .fnstart
 ...
 bx lr
 ...
__acle_se_entry1:
entry1:
 .fnstart
@ BB#0:
 .save {r7, lr}
 push {r7, lr}
 ...
 bl func1
 ...
 pop.w {r7, lr}
 ...
 bxns lr
 ...
__acle_se_entry2:
entry2:
 .fnstart
@ BB#0:
 .save {r7, lr}
 push {r7, lr}
 ...
 bl entry1
 ...
 pop.w {r7, lr}
 bxns lr

8 Building Secure and Non-secure Images Using ARMv8-M Security Extensions
8.2 Building a Secure image using the ARMv8-M Security Extensions

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 8-71
Non-Confidential

 ...
main:
 .fnstart
@ BB#0:
 ...
 movs r0, #0
 ...
 bx lr
 ...

An entry function does not start with a Secure Gateway (SG) instruction. The two symbols
__acle_se_entry_name and entry_name indicate the start of an entry function to the linker.

5. You can control the placement of the section with the veneers using a scatter file and place it in your
Non-Secure Callable (NSC) region memory region. Create a scatter file containing the Veneer$$CMSE
selector to place the entry function veneers, for example:

LOAD_REGION 0x0 0x3000
{
 EXEC_R 0x0
 {
 *(+RO,+RW,+ZI)
 }
 EXEC_NSCR 0x4000 0x1000
 {
 *(Veneer$$CMSE)
 }
 ARM_LIB_STACK 0x700000 EMPTY -0x10000
 {
 }
 ARM_LIB_HEAP +0 EMPTY 0x10000
 {
 }
}
...

6. Link the object file using the armlink --fpu softvfp and --import-cmse-lib-out command-line
options and the scatter file to create the Secure image:

$ armlink secure.o -o secure.axf --cpu 8-M.Main --fpu SoftVFP --import-cmse-lib-out
importlib_v1.o --scatter secure.scf

In addition to the final image, the link in this example also produces the import library,
importlib_v1.o, for use when building a Non-secure image. Assuming that the section with veneers
is placed at address 0x4000, the import library consists of a relocatable file containing only a symbol
table with the following entries:

Symbol type Name Address

STB_GLOBAL, SHN_ABS, STT_FUNC entry1 0x4001

STB_GLOBAL, SHN_ABS, STT_FUNC entry2 0x4009

 Note

If you have an import library from a previous build of the Secure image, you can ensure the addresses
in the output import library do not change when producing a new version of the Secure image. To do
this, specify the --import-cmse-lib-in command-line option together with the --import-cmse-
lib-out option. However, make sure the input and output libraries have different names.

7. When you link the relocatable file corresponding to this assembly code into an image, the linker
creates veneers in a section containing only entry veneers. To see the entry veneers generated by the
linker, enter:

$ fromelf --text -s -c secure.axf

The following entry veneers are generated in the EXEC_NSCR execute-only (XO) region for this
example:

...

** Section #3 'EXEC_NSCR' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR + SHF_ARM_NOREAD]

8 Building Secure and Non-secure Images Using ARMv8-M Security Extensions
8.2 Building a Secure image using the ARMv8-M Security Extensions

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 8-72
Non-Confidential

 Size : 32 bytes (alignment 32)
 Address: 0x00004000

 $t
 entry1
 0x00004000: e97fe97f SG ; [0x3e08]
 0x00004004: f7fcb85e ..^. B __acle_se_entry1 ; 0xc4
 entry2
 0x00004008: e97fe97f SG ; [0x3e10]
 0x0000400c: f7fcb86c ..l. B __acle_se_entry2 ; 0xe8

...

The section with the veneers is aligned on a 32-byte boundary and padded to a 32-byte boundary.

If you do not use a scatter file, the entry veneers are placed in an ER_XO section as the first
execution region, for example:

...

** Section #1 'ER_XO' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR + SHF_ARM_NOREAD]
 Size : 32 bytes (alignment 32)
 Address: 0x00008000

 $t
 entry1
 0x00008000: e97fe97f SG ; [0x7e08]
 0x00008004: f000b85a ..Z. B.W __acle_se_entry1 ; 0x80bc
 entry2
 0x00008008: e97fe97f SG ; [0x7e10]
 0x0000800c: f000b868 ..h. B.W __acle_se_entry2 ; 0x80e0

...

Postrequisites

After you have built your Secure image:
1. Pre-load the Secure image onto your device.
2. Deliver your device with the pre-loaded image, together with the import library package, to a party

who develops the Non-secure code for this device. The import library package contains:
• The interface header file, myinterface_v1.h.
• The import library, importlib_v1.o.

Related tasks
8.4 Building a Secure image using a previously generated import library on page 8-76.
8.3 Building a Non-secure image that can call a Secure image on page 8-74.

Related information
Whitepaper - ARMv8-M Architecture Technical Overview.
-c armclang option.
-march armclang option.
-mcmse armclang option.
-mfpu armclang option.
-S armclang option.
--target armclang option.
__attribute__((cmse_nonsecure_entry)) function attribute.
SG instruction.
--cpu armlink option.
--fpu linker option.
--import_cmse_lib_in armlink option.
--import_cmse_lib_out armlink option.
--scatter armlink option.
--text fromelf option.

8 Building Secure and Non-secure Images Using ARMv8-M Security Extensions
8.2 Building a Secure image using the ARMv8-M Security Extensions

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 8-73
Non-Confidential

https://community.arm.com/docs/DOC-10896
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1383664602614.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1411547793198.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/pge1444647306157.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1392305424052.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1383664929471.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1383664654486.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/pge1446817691182.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/pge1447175165109.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0803-/pge1362075439817.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0803-/pge1362075484206.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0803-/pge1444635646136.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0803-/pge1444636329852.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0803-/pge1362075565889.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0805-/pge1362128925577.html

8.3 Building a Non-secure image that can call a Secure image
If you are building a Non-secure image that is to call a Secure image, you must obtain the import library
package that was created for that Secure image.

Prerequisites

The following procedure assumes that you have the import library package created in 8.2 Building a
Secure image using the ARMv8-M Security Extensions on page 8-71. The import library package
identifies the entry points for the Secure image.

Procedure
1. In the C program for your Non-secure code, nonsecure.c, include the interface header file and use

the entry functions as required, for example:

#include <stdio.h>
#include "myinterface_v1.h"

int main(void) {
 int val1, val2, x;

 val1 = entry1(x);
 val2 = entry2(x);

 if (val1 == val2) {
 printf("val2 is equal to val1\n");
 } else {
 printf("val2 is different from val1\n");
 }

 return 0;
}

2. Create an object file, nonsecure.o:

$ armclang -c --target arm-arm-none-eabi -march=armv8-m.main nonsecure.c -o nonsecure.o

3. Create a scatter file for the Non-secure image, but without the Non-Secure Callable (NSC) memory
region, for example:

LOAD_REGION 0x8000 0x3000
{
 ER 0x8000
 {
 *(+RO,+RW,+ZI)
 }
 ARM_LIB_STACK 0x800000 EMPTY -0x10000
 {
 }
 ARM_LIB_HEAP +0 EMPTY 0x10000
 {
 }
}
...

4. Link the object file using the import library, importlib_v1.o, and the scatter file to create the Non-
secure image:

$ armlink nonsecure.o importlib_v1.o -o nonsecure.axf --cpu=8-M.Main --scatter
nonsecure.scf

Related tasks
8.2 Building a Secure image using the ARMv8-M Security Extensions on page 8-71.

Related information
Whitepaper - ARMv8-M Architecture Technical Overview.
-march armclang option.
--target armclang option.

8 Building Secure and Non-secure Images Using ARMv8-M Security Extensions
8.3 Building a Non-secure image that can call a Secure image

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 8-74
Non-Confidential

https://community.arm.com/docs/DOC-10896
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1411547793198.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1383664654486.html

--cpu armlink option.
--scatter armlink option.

8 Building Secure and Non-secure Images Using ARMv8-M Security Extensions
8.3 Building a Non-secure image that can call a Secure image

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 8-75
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0803-/pge1362075439817.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0803-/pge1362075565889.html

8.4 Building a Secure image using a previously generated import library
You can build a new version of a Secure image and use the same addresses for the entry points that were
present in the previous version. You specify the import library generated for the previous version of the
Secure image and generate another import library for the new Secure image.

Prerequisites

The following procedure is not a complete example, and assumes that your code sets up the Security
Attribution Unit (SAU) and calls the Non-secure startup code.

This procedure also requires that you have the import library generated for the Secure image in
8.2 Building a Secure image using the ARMv8-M Security Extensions on page 8-71.

Procedure
1. Create an interface header file, myinterface_v2.h, that is to be used by Non-secure code:

int entry1(int x);
int entry2(int x);
int entry3(int x);
int entry4(int x);

2. In the C program for your Secure code, secure.c, include the following:

#include <arm_cmse.h>
#include "myinterface_v2.h"

int func1(int x) { return x; }
int __attribute__((cmse_nonsecure_entry)) entry1(int x) { return func1(x) ; }
int __attribute__((cmse_nonsecure_entry)) entry2(int x) { return entry1(x); }
int __attribute__((cmse_nonsecure_entry)) entry3(int x) { return func1(x) + entry1(x) ; }
int __attribute__((cmse_nonsecure_entry)) entry4(int x) { return entry1(x) * entry2(x); }

int main(void) { return 0; }

In addition to the implementation of the two entry functions, the code defines the function func1()
that can only be called by Secure code.

3. Create an object file using the armclang -mcmse -mfpu=none command-line options:

$ armclang -c --target arm-arm-none-eabi -march=armv8-m.main -mcmse -mfpu=none secure.c
-o secure.o

4. To see the disassembly of the machine code generated by armclang, enter:

$ armclang -c --target arm-arm-none-eabi -march=armv8-m.main -mcmse -mfpu=none -S secure.c

The disassembly is stored in the file secure.s, for example:

 .text
 ...
 .code 16
 .thumb_func

 ...

func1:
 .fnstart
 ...
 bx lr

 ...

__acle_se_entry1:
entry1:
 .fnstart
@ BB#0:
 .save {r7, lr}
 push {r7, lr}
 ...
 bl func1
 pop.w {r7, lr}
 ...
 bxns lr

8 Building Secure and Non-secure Images Using ARMv8-M Security Extensions
8.4 Building a Secure image using a previously generated import library

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 8-76
Non-Confidential

 ...

__acle_se_entry4:
entry4:
 .fnstart
@ BB#0:
 .save {r7, lr}
 push {r7, lr}
 ...
 bl entry1
 ...
 pop.w {r7, lr}
 bxns lr

 ...

main:
 .fnstart
@ BB#0:
 ...
 movs r0, #0
 ...
 bx lr

 ...

An entry function does not start with a Secure Gateway (SG) instruction. The two symbols
__acle_se_entry_name and entry_name indicate the start of an entry function to the linker.

5. You can control the placement of the section with the veneers using a scatter file and place it in your
Non-Secure Callable (NSC) memory region. Create a scatter file containing the Veneer$$CMSE
selector to place the entry function veneers, for example:

LOAD_REGION 0x0 0x3000
{
 EXEC_R 0x0
 {
 *(+RO,+RW,+ZI)
 }
 EXEC_NSCR 0x4000 0x1000
 {
 *(Veneer$$CMSE)
 }
 ARM_LIB_STACK 0x700000 EMPTY -0x10000
 {
 }
 ARM_LIB_HEAP +0 EMPTY 0x10000
 {
 }
}
...

6. Link the object file using the armlink --fpu softvfp, --import-cmse-lib-out,
--import-cmse-lib-in command-line option and the preprocessed scatter file to create the Secure
image:

$ armlink secure.o -o secure.axf --cpu 8-M.Main --fpu SoftVFP --import-cmse-lib-out
importlib_v2.o --import-cmse-lib-in importlib_v1.o --scatter secure.scf

In addition to the final image, the link in this example also produces the import library,
importlib_v2.o, for use when building a Non-secure image. Assuming that the section with veneers
is placed at address 0x4000, the import library consists of a relocatable file containing only a symbol
table with the following entries:

Symbol type Name Address

STB_GLOBAL, SHN_ABS, STT_FUNC entry1 0x4001

STB_GLOBAL, SHN_ABS, STT_FUNC entry2 0x4009

STB_GLOBAL, SHN_ABS, STT_FUNC entry3 0x4021

STB_GLOBAL, SHN_ABS, STT_FUNC entry4 0x4029

8 Building Secure and Non-secure Images Using ARMv8-M Security Extensions
8.4 Building a Secure image using a previously generated import library

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 8-77
Non-Confidential

7. When you link the relocatable file corresponding to this assembly code into an image, the linker
creates veneers in a section containing only entry veneers. To see the entry veneers generated by the
linker, enter:

$ fromelf --text -s -c secure.axf

The following entry veneers are generated in the EXEC_NSCR execute-only (XO) region for this
example:

...

** Section #3 'EXEC_NSCR' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR + SHF_ARM_NOREAD]
 Size : 64 bytes (alignment 32)
 Address: 0x00004000

 $t
 entry1
 0x00004000: e97fe97f SG ; [0x3e08]
 0x00004004: f7fcb85e ..^. B __acle_se_entry1 ; 0xc4
 entry2
 0x00004008: e97fe97f SG ; [0x3e10]
 0x0000400c: f7fcb86c ..l. B __acle_se_entry2 ; 0xe8

...

 entry3
 0x00004020: e97fe97f SG ; [0x3e28]
 0x00004024: f7fcb872 ..r. B __acle_se_entry3 ; 0x10c
 entry4
 0x00004028: e97fe97f SG ; [0x3e30]
 0x0000402c: f7fcb888 B __acle_se_entry4 ; 0x140

...

The section with the veneers is aligned on a 32-byte boundary and padded to a 32-byte boundary.

If you do not use a scatter file, the entry veneers are placed in an ER_XO section as the first
execution region. The entry veneers for the existing entry points are placed in a CMSE veneer
section. For example:

...

** Section #1 'ER_XO' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR + SHF_ARM_NOREAD]
 Size : 32 bytes (alignment 32)
 Address: 0x00008000

 $t
 entry3
 0x00008000: e97fe97f SG ; [0x7e08]
 0x00008004: f000b87e ..~. B.W __acle_se_entry3 ; 0x8104
 entry4
 0x00008008: e97fe97f SG ; [0x7e10]
 0x0000800c: f000b894 B.W __acle_se_entry4 ; 0x8138

...

** Section #4 'ER$$Veneer$$CMSE_AT_0x00004000' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR
+ SHF_ARM_NOREAD]
 Size : 32 bytes (alignment 32)
 Address: 0x00004000

 $t
 entry1
 0x00004000: e97fe97f SG ; [0x3e08]
 0x00004004: f004b85a ..Z. B.W __acle_se_entry1 ; 0x80bc
 entry2
 0x00004008: e97fe97f SG ; [0x3e10]
 0x0000400c: f004b868 ..h. B.W __acle_se_entry2 ; 0x80e0

...

Postrequisites

After you have built your updated Secure image:
1. Pre-load the updated Secure image onto your device.
2. Deliver your device with the pre-loaded image, together with the new import library package, to a

party who develops the Non-secure code for this device. The import library package contains:

8 Building Secure and Non-secure Images Using ARMv8-M Security Extensions
8.4 Building a Secure image using a previously generated import library

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 8-78
Non-Confidential

• The interface header file, myinterface_v2.h.
• The import library, importlib_v2.o.

Related tasks
8.2 Building a Secure image using the ARMv8-M Security Extensions on page 8-71.
8.3 Building a Non-secure image that can call a Secure image on page 8-74.

Related information
Whitepaper - ARMv8-M Architecture Technical Overview.
-c armclang option.
-march armclang option.
-mcmse armclang option.
-mfpu armclang option.
-S armclang option.
--target armclang option.
__attribute__((cmse_nonsecure_entry)) function attribute.
SG instruction.
--cpu armlink option.
--fpu linker option.
--import_cmse_lib_in armlink option.
--import_cmse_lib_out armlink option.
--scatter armlink option.
--text fromelf option.

8 Building Secure and Non-secure Images Using ARMv8-M Security Extensions
8.4 Building a Secure image using a previously generated import library

ARM DUI0773E Copyright © 2014-2016 ARM. All rights reserved. 8-79
Non-Confidential

https://community.arm.com/docs/DOC-10896
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1383664602614.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1411547793198.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/pge1444647306157.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1392305424052.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1383664929471.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1383664654486.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/pge1446817691182.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/pge1447175165109.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0803-/pge1362075439817.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0803-/pge1362075484206.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0803-/pge1444635646136.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0803-/pge1444636329852.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0803-/pge1362075565889.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0805-/pge1362128925577.html

	ARM® Compiler Software Development Guide
	Contents
	List of Figures
	List of Tables
	Preface
	About this book
	Using this book
	Glossary
	Typographic conventions
	Feedback
	Feedback on this product
	Feedback on content

	Other information

	1 : Introducing the Toolchain
	1.1 : Toolchain overview
	1.2 : Support level definitions
	1.3 : LLVM component versions and language compatibility
	1.4 : Common ARM Compiler toolchain options
	1.5 : "Hello world" example
	1.6 : Passing options from the compiler to the linker

	2 : Diagnostics
	2.1 : Understanding diagnostics
	2.2 : Options for controlling diagnostics with armclang
	2.3 : Pragmas for controlling diagnostics with armclang
	2.4 : Options for controlling diagnostics with the other tools

	3 : Compiling C and C++ Code
	3.1 : Specifying a target architecture, processor, and instruction set
	3.2 : Using inline assembly code
	3.3 : Using intrinsics
	3.4 : Preventing the use of floating-point instructions and registers
	3.5 : Bare-metal Position Independent Executables
	3.6 : Execute-only memory
	3.7 : Building applications for execute-only memory

	4 : Assembling Assembly Code
	4.1 : Assembling ARM and GNU syntax assembly code
	4.2 : Preprocessing assembly code

	5 : Linking Object Files to Produce an Executable
	5.1 : Linking object files to produce an executable

	6 : Optimization
	6.1 : Optimizing for code size or performance
	6.2 : Optimizing across modules with link time optimization [ALPHA]
	6.2.1 : Enabling link time optimization [ALPHA]
	6.2.2 : Restrictions with link time optimization [ALPHA]

	6.3 : How optimization affects the debug experience

	7 : Coding Considerations
	7.1 : Optimization of loop termination in C code
	7.2 : Loop unrolling in C code
	7.3 : Compiler optimization and the volatile keyword
	7.4 : Stack use in C and C++
	7.5 : Methods of minimizing function parameter passing overhead
	7.6 : Inline functions
	7.7 : Integer division-by-zero errors in C code
	7.8 : Infinite Loops

	8 : Building Secure and Non-secure Images Using ARMv8-M Security Extensions
	8.1 : Overview of building Secure and Non-secure images
	8.2 : Building a Secure image using the ARMv8-M Security Extensions
	8.3 : Building a Non-secure image that can call a Secure image
	8.4 : Building a Secure image using a previously generated import library

