
ARM® DS-5™

 Version 5.6

Getting Started with DS-5
Copyright © 2010, 2011 ARM. All rights reserved.
ARM DUI 0478F (ID071411)

ARM DS-5
Getting Started with DS-5

Copyright © 2010, 2011 ARM. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM in the EU and other countries,
except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the
trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith. However, all warranties implied or
expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for any loss or
damage arising from the use of any information in this document, or any error or omission in such information, or any
incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Change History

Date Issue Confidentiality Change

June 2010 A Non-Confidential First release for DS-5

September 2010 B Non-Confidential Update for DS-5 version 5.2

November 2010 C Non-Confidential Update for DS-5 version 5.3

January 2011 D Non-Confidential Update for DS-5 version 5.4

May 2011 E Non-Confidential Update for DS-5 version 5.5

July 2011 F Non-Confidential Update for DS-5 version 5.6
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. ii
ID071411 Non-Confidential

Contents
ARM DS-5 Getting Started with DS-5

Chapter 1 Conventions and feedback

Chapter 2 ARM DS-5 product overview
2.1 About DS-5 2-2
2.2 About Eclipse for DS-5 2-3
2.3 About DS-5 Debugger 2-4
2.4 About Real-Time System Models 2-5
2.5 About ARM Compiler 2-6
2.6 About GNU Compilation Tools 2-7
2.7 About ARM Streamline Performance Analyzer 2-8
2.8 About Debug hardware configuration utilities 2-9

Chapter 3 ARM DS-5 tutorials
3.1 Importing the example projects into Eclipse 3-2
3.2 Creating a new C or C++ project in Eclipse 3-3
3.3 Building the Gnometris project from Eclipse 3-4
3.4 Building the Gnometris project from the command-line 3-5
3.5 Loading the Gnometris application on a Real-Time System Model 3-6
3.6 Loading the Gnometris application on to an ARM Linux target 3-7
3.7 Using an SSH connection to set up and run Gnometris on an ARM Linux target 3-8
3.8 Connecting to the Gnometris application that is already running on a ARM Linux target

 3-13
3.9 Debugging Gnometris 3-16
3.10 Debugging a loadable kernel module 3-17
3.11 Performance analysis of threads application running on ARM Linux 3-22
3.12 Debugging Android native C/C++ applications and libraries 3-24
3.13 Managing DS-5 licenses 3-29
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. iii
ID071411 Non-Confidential

Contents
Chapter 4 ARM DS-5 installation and examples
4.1 System requirements 4-2
4.2 Installation directories 4-3
4.3 Licensing and product updates 4-4
4.4 Documentation 4-5
4.5 Examples 4-6
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. iv
ID071411 Non-Confidential

Chapter 1
Conventions and feedback

The following describes the typographical conventions and how to give feedback:

Typographical conventions
The following typographical conventions are used:
monospace Denotes text that can be entered at the keyboard, such as commands,

file and program names, and source code.
monospace Denotes a permitted abbreviation for a command or option. The

underlined text can be entered instead of the full command or option
name.

monospace italic
Denotes arguments to commands and functions where the argument is
to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Also used for
emphasis in descriptive lists, where appropriate, and for ARM®
processor signal names.

Feedback on this product
If you have any comments and suggestions about this product, contact your
supplier and give:
• your name and company
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 1-1
ID071411 Non-Confidential

Conventions and feedback
• the serial number of the product
• details of the release you are using
• details of the platform you are using, such as the hardware platform,

operating system type and version
• a small standalone sample of code that reproduces the problem
• a clear explanation of what you expected to happen, and what actually

happened
• the commands you used, including any command-line options
• sample output illustrating the problem
• the version string of the tools, including the version number and build

numbers.

Feedback on content
If you have comments on content then send an e-mail to errata@arm.com. Give:
• the title
• the number, ARM DUI 0478F
• if viewing online, the topic names to which your comments apply
• if viewing a PDF version of a document, the page numbers to which your

comments apply
• a concise explanation of your comments.
ARM also welcomes general suggestions for additions and improvements.

ARM periodically provides updates and corrections to its documentation on the ARM
Information Center, together with knowledge articles and Frequently Asked Questions (FAQs).

Other information
• ARM Information Center, http://infocenter.arm.com/help/index.jsp
• ARM Technical Support Knowledge Articles,

http://infocenter.arm.com/help/topic/com.arm.doc.faqs
• Support and Maintenance,

http://www.arm.com/support/services/support-maintenance.php
• ARM Glossary,

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 1-2
ID071411 Non-Confidential

Chapter 2
ARM DS-5 product overview

The following topics give an overview of ARM® Development Studio (DS-5™).

Concepts
• About DS-5 on page 2-2
• About Eclipse for DS-5 on page 2-3
• About DS-5 Debugger on page 2-4
• About Real-Time System Models on page 2-5
• About ARM Compiler on page 2-6
• About GNU Compilation Tools on page 2-7
• About ARM Streamline Performance Analyzer on page 2-8
• About Debug hardware configuration utilities on page 2-9.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 2-1
ID071411 Non-Confidential

ARM DS-5 product overview
2.1 About DS-5
DS-5 is a professional software development solution for Linux-based systems and bare-metal
embedded systems, covering all stages in development from boot code and kernel porting to
application and bare-metal debug. It also includes performance analysis.

DS-5 includes:
• DS-5 Debugger.
• Eclipse for DS-5. An Integrated Development Environment (IDE) that combines the

Eclipse IDE from the Eclipse Foundation with compilation and debug tools.
• Real-Time System Models.
• ARM Streamline™ Performance Analyzer.
• Dedicated examples, applications, and supporting documentation to help you get started

with using the DS-5 tools.
• Debug hardware configuration utitlities for bare-metal.
• ARM Compiler tools for development of bare-metal embedded systems.
• GNU compilation tools for development of boot code and ARM Linux applications.

2.1.1 See also

Concepts
• About Eclipse for DS-5 on page 2-3
• About DS-5 Debugger on page 2-4
• About Real-Time System Models on page 2-5
• About ARM Compiler on page 2-6
• About GNU Compilation Tools on page 2-7
• About ARM Streamline Performance Analyzer on page 2-8
• About Debug hardware configuration utilities on page 2-9.

Reference
• Licensing and product updates on page 4-4
• Documentation on page 4-5
• Examples on page 4-6.

Other information
• DS-5 Knowledge Articles,

http://infocenter.arm.com/help/topic/com.arm.doc.faqs/kiXXwMK1Sxk7vf.html.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 2-2
ID071411 Non-Confidential

ARM DS-5 product overview
2.2 About Eclipse for DS-5
Eclipse for DS-5 is an Integrated Development Environment (IDE) that combines the Eclipse
IDE from the Eclipse Foundation with the compilation and debug technology of the ARM tools.
It also combines the GNU toolchain for ARM Linux targets.

Eclipse for DS-5 provides:

Project manager
This enables you to perform various project tasks such as adding or removing
files and dependencies to projects, importing, exporting, or creating projects, and
managing build options.

Editors These enables you read, write, or modify C/C++ or ARM assembly language
source files.

Perspectives and views
These provide customized views, menus, and toolbars to suit a particular type of
environment. DS-5 uses the C/C++ and DS-5 Debug perspectives.

2.2.1 See also

Tasks
• ARM® DS-5™ Using Eclipse:

— Chapter 3 Getting started with Eclipse.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 2-3
ID071411 Non-Confidential

ARM DS-5 product overview
2.3 About DS-5 Debugger
DS-5 Debugger is a graphical debugger supporting end-to-end software development on ARM
processor-based targets and Real-Time System Models (RTSMs). It makes it easy to debug Linux
and bare-metal applications with comprehensive and intuitive views, including sychronized
source and disassembly, call stack, memory, registers, expressions, variables, threads,
breakpoints, and trace.

Using the Debug Control view you can single step through either at source level or instruction
level and see the other views update as the code is executed. Setting breakpoints or watchpoints
can assist you by stopping the application and enabling you to explore the behavior of the
application. You can also use the Trace view on some targets to trace function executions in your
application with a timeline showing the sequence of events.

You can also debug using the DS-5 Command Prompt command-line console.

2.3.1 See also

Tasks
• ARM® DS-5™ Using the Debugger:

— Chapter 2 Getting started with the debugger.

Concepts
• About Real-Time System Models on page 2-5.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 2-4
ID071411 Non-Confidential

ARM DS-5 product overview
2.4 About Real-Time System Models
Real-Time System Models (RTSM) enable development of software without the requirement for
actual hardware. The functional behavior of the model is equivalent to real hardware from a
programmers view.

Absolute timing accuracy is sacrificed to achieve fast simulated execution speed. This means
that you can use a model for confirming software functionality, but you must not rely on the
accuracy of cycle counts, low-level component interactions, or other hardware-specific
behavior.

DS-5 includes a Cortex™-A8 RTSM that is preconfigured to boot ARM Linux.

2.4.1 See also

Reference
• RealView® Development Suite Real-Time System Models User Guide,

http://infocenter.arm.com/help/topic/com.arm.doc.dui0424-
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 2-5
ID071411 Non-Confidential

ARM DS-5 product overview
2.5 About ARM Compiler

DS-5 includes a distribution of the ARM® Compiler tools.

These tools can be used to build applications and libraries suitable for bare-metal embedded
systems, including the examples that are available in the DS-5 examples directory.

The ARM Compiler tools are located in tools_directory. You can use them to build your
applications from either the command-line or within Eclipse.

2.5.1 See also

Tasks
• Creating a new C or C++ project in Eclipse on page 3-3.

Table 2-1 ARM Compiler tools

Tool Description

armar Librarian. This enables sets of ELF format object files to be collected
together and maintained in archives or libraries. You can pass such a library
or archive to the linker in place of several ELF files. You can also use the
archive for distribution to a third party for application development.

armasm Assembler. This assembles ARM and Thumb® assembly language sources.

armcc Compiler. This compiles your C and C++ code. It supports inline and
embedded assemblers, and also includes the NEON™ vectorizing compiler.

armlink Linker. This combines the contents of one or more object files with selected
parts of one or more object libraries to produce an executable program.

fromelf Image conversion utility. This can also generate textual information about the
input image, such as disassembly and its code and data size
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 2-6
ID071411 Non-Confidential

ARM DS-5 product overview
2.6 About GNU Compilation Tools
DS-5 includes a distribution of the GNU Compilation Tools.

These tools can be used to build applications and libraries suitable for ARM Linux targets,
including the example ARM Linux distribution that is available in the DS-5 examples directory.
They are not suitable for building:
• bare-metal ARM targets
• ARM targets running any operating system other than ARM Linux
• non-ARM targets.

The GNU Compilation Tools are located in tools_directory. You can use them to build your
applications from either the command-line or within Eclipse.

Getting Started with the GNU Compilation Tools is located in documents_directory\gcc.

2.6.1 See also

Tasks
• Creating a new C or C++ project in Eclipse on page 3-3
• Building the Gnometris project from Eclipse on page 3-4
• Building the Gnometris project from the command-line on page 3-5.

Table 2-2 GNU Compilation Tools

Tool Description

arm-none-linux-gnueabi-ar GNU librarian

arm-none-linux-gnueabi-as GNU assembler

arm-none-linux-gnueabi-gcc GNU c compiler

arm-none-linux-gnueabi-g++ GNU C++ compiler

arm-none-linux-gnueabi-ld GNU linker
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 2-7
ID071411 Non-Confidential

ARM DS-5 product overview
2.7 About ARM Streamline Performance Analyzer
ARM Streamline is a graphical performance analysis tool. Combining a kernel driver, target
daemon, and an Eclipse-based user interface, it transforms sampling data and system trace into
reports that present the data in both visual and statistical forms. Streamline uses hardware
performance counters with kernel metrics to provide an accurate representation of system
resources.

2.7.1 See also

Tasks
• Performance analysis of threads application running on ARM Linux on page 3-22.

Reference
• ARM® DS-5™ Using ARM Streamline,

http://infocenter.arm.com/help/topic/com.arm.doc.dui0482-/index.html.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 2-8
ID071411 Non-Confidential

ARM DS-5 product overview
2.8 About Debug hardware configuration utilities
The debug hardware configuration utilities enable you to connect to the debug hardware unit
that provides the interface between your development platform and your PC. The following
utilities are provided:

Debug Hardware Config IP
Used to configure the IP address on a debug hardware unit.

Debug Hardware Update
Used to update the firmware and devices on a debug hardware unit.

Debug Hardware Configuration
Used to configure a debug hardware unit.

2.8.1 See also

Reference
• ARM® DSTREAM™ and RVI™ Using the Debug Hardware Configuration Utilities,

http://infocenter.arm.com/help/topic/com.arm.doc.dui0498-/index.html.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 2-9
ID071411 Non-Confidential

Chapter 3
ARM DS-5 tutorials

The following tutorials show you how to run and debug applications using ARM® DS-5™ tools.

Tasks
• Importing the example projects into Eclipse on page 3-2
• Creating a new C or C++ project in Eclipse on page 3-3
• Building the Gnometris project from Eclipse on page 3-4
• Building the Gnometris project from the command-line on page 3-5
• Loading the Gnometris application on a Real-Time System Model on page 3-6
• Loading the Gnometris application on to an ARM Linux target on page 3-7

— Using an SSH connection to set up and run Gnometris on an ARM Linux target on
page 3-8

— Connecting to the Gnometris application that is already running on a ARM Linux
target on page 3-13.

• Debugging Gnometris on page 3-16
• Debugging a loadable kernel module on page 3-17
• Performance analysis of threads application running on ARM Linux on page 3-22
• Debugging Android native C/C++ applications and libraries on page 3-24
• Managing DS-5 licenses on page 3-29.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 3-1
ID071411 Non-Confidential

ARM DS-5 tutorials
3.1 Importing the example projects into Eclipse
Many tasks described in the documentation use the example projects provided with DS-5.

To use the example projects in Eclipse, you must first import them:

1. Launch Eclipse:
• On Windows, select Start → All Programs → ARM DS-5 → Eclipse for DS-5.
• On Linux, enter eclipse in the Unix bash shell.

2. ARM recommends that you create a new workspace for the example projects so that they
remain separate from your own projects. To do this you can either:
• Create a new workspace directory during the startup of Eclipse.
• If Eclipse is already open, select File → Switch Workspace → Other from the

main menu.

3. Select Cheat Sheet... from the Help menu.

4. Expand the ARM -Eclipse for DS-5 group.

5. Select Automatically Import the DS-5 Example Projects into the Current Workspace
from the list of ARM cheat sheets.

6. Click OK.

7. Follow the steps in the cheat sheet to import all the DS-5 example projects into your
workspace.

When the examples are imported, you can optionally follow the remaining cheat sheet
instructions to switch on working sets if required.

3.1.1 See also

Tasks
• Building the Gnometris project from Eclipse on page 3-4
• Building the Gnometris project from the command-line on page 3-5
• Loading the Gnometris application on a Real-Time System Model on page 3-6
• Loading the Gnometris application on to an ARM Linux target on page 3-7
• Debugging Gnometris on page 3-16
• ARM® DS-5™ Using Eclipse:

— Launching Eclipse on page 3-3
— Creating a working set on page 3-16
— Changing the top level element when displaying working sets on page 3-19
— Deselecting a working set on page 3-20
— Using the import wizard on page 3-35.

Concepts
• About Eclipse for DS-5 on page 2-3
• Examples on page 4-6
• ARM® DS-5™ Using Eclipse:

— About working sets on page 3-15.

Reference
• Examples on page 4-6.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 3-2
ID071411 Non-Confidential

ARM DS-5 tutorials
3.2 Creating a new C or C++ project in Eclipse
To create a new C or C++ Project:

1. Select File → New → Project... from the main menu.

2. Expand the C/C++ group.

3. Select either C Project or C++ Project.

4. Select the type of project that you wish to create.

5. Click on Next.

6. Enter a project name.

7. Leave the Use default location option selected so that the project is created in the default
directory shown. Alternatively, deselect this option and browse to your preferred project
directory.

8. Select the type of project that you want to create.

9. Click on Finish to create your new project.
The project is visible in the Project Explorer view.

3.2.1 See also

Tasks
• ARM® DS-5™ Using Eclipse:

— Creating a new C or C++ project on page 4-4.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 3-3
ID071411 Non-Confidential

ARM DS-5 tutorials
3.3 Building the Gnometris project from Eclipse

Gnometris is an ARM® Linux application that you can run and debug on your target. The
supplied project does not contain the image binaries for the Gnometris application. To create the
image, you must build the project.

To build the project:
1. Download the optional package, Linux_distribution_example.zip, containing the

example Linux distribution project and the compatible headers and libraries from the
ARM website or from the DS-5 installation media.

2. Import both the gnometris and distribution example projects from the relevant ZIP
archive files into Eclipse.

3. Select the gnometris project in the Project Explorer view.
4. Select Build Project from the Project menu.

The Gnometris example contains a Makefile to build the project. The Makefile provides
the usual make rules: clean, all, and rebuild.

When you build the Gnometris project, it produces the following applications:

• A stripped version of the application containing no debug information. This is for
downloading to the target.

• A larger sized version of the application containing full debug information for use by the
debugger when debugging at the source level.

3.3.1 See also

Tasks
• Importing the example projects into Eclipse on page 3-2
• Building the Gnometris project from the command-line on page 3-5
• Loading the Gnometris application on a Real-Time System Model on page 3-6
• Loading the Gnometris application on to an ARM Linux target on page 3-7
• Debugging Gnometris on page 3-16
• ARM® DS-5™ Using Eclipse:

— Chapter 4 Working with projects.

Reference
• Examples on page 4-6.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 3-4
ID071411 Non-Confidential

ARM DS-5 tutorials
3.4 Building the Gnometris project from the command-line

Gnometris is an ARM® Linux application that you can run and debug on your target. The
supplied project does not contain the image binaries for the Gnometris application.

To build the project:
1. Download the optional package, Linux_distribution_example.zip, containing the

example Linux distribution project and the compatible headers and libraries from the
ARM website or from the DS-5 installation media.

2. Extract both the gnometris and distribution example projects from the relevant ZIP
archive files into a working directory.

3. Open the DS-5 Command Prompt command-line console or a Unix bash shell.
4. Navigate to ...\ARMLinux\gnometris.
5. At the prompt, enter make. The example contains a Makefile to build the project. The

Makefile provides the usual make rules: clean, all, and rebuild.

When you build the Gnometris project, it produces the following applications:

• A stripped version of the application containing no debug information. This is for
downloading to the target.

• A larger sized version of the application containing full debug information for use by the
debugger when debugging at the source level.

3.4.1 See also

Tasks
• Building the Gnometris project from Eclipse on page 3-4
• Loading the Gnometris application on a Real-Time System Model on page 3-6
• Loading the Gnometris application on to an ARM Linux target on page 3-7
• Debugging Gnometris on page 3-16.

Reference
• Examples on page 4-6.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 3-5
ID071411 Non-Confidential

ARM DS-5 tutorials
3.5 Loading the Gnometris application on a Real-Time System Model
You can load the Gnometris application on to a Real-Time System Model (RTSM) that is running
ARM Linux. An RTSM enables you to run and debug applications on your host workstation
without using any hardware targets.

A preconfigured RTSM connection is available that automatically boots Linux, launches
gdbserver, and then launches the application.

To load Gnometris:

1. Launch Eclipse.

2. Click on the Project Explorer view.

3. Expand the gnometris project folder.

4. Right-click on the launch file, gnometris-RTSM-example.launch.

5. In the context menu, select Debug As.

6. Select the gnometris-RTSM-example entry in the submenu.

7. Debugging requires the DS-5 Debug perspective. If the Confirm Perspective Switch
dialog box opens, click on Yes to switch perspective.

3.5.1 See also

Tasks
• Importing the example projects into Eclipse on page 3-2
• Building the Gnometris project from Eclipse on page 3-4
• Building the Gnometris project from the command-line on page 3-5
• Debugging Gnometris on page 3-16
• ARM® DS-5™ Using the Debugger:

— Configuring a connection to an RTSM model on page 3-3.

Reference
• Documentation on page 4-5
• Examples on page 4-6
• ARM® DS-5™ Using the Debugger:

— Debug Configurations - Connection tab on page 11-60
— Debug Configurations - Files tab on page 11-64
— Debug Configurations - Debugger tab on page 11-68
— Debug Configurations - Environment tab on page 11-74.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 3-6
ID071411 Non-Confidential

ARM DS-5 tutorials
3.6 Loading the Gnometris application on to an ARM Linux target

You can load the Gnometris application on to a target that is running ARM® Linux.

DS-5 provides preconfigured target connection settings that connect the debugger to gdbserver
running on supported ARM architecture-based platforms.

To load an application:

1. Obtain the IP address of the target. You can use the ifconfig application in a Linux
console. The IP address is denoted by the inet addr.

2. Boot the appropriate Linux distribution on the target.

3. Launch Eclipse.

4. Transfer the application and related files to the ARM Linux target, run the application, and
then connect the debugger. There are several ways to do this:
• On the Beagle board you can use a Secure SHell (SSH) connection with the Remote

System Explorer (RSE) provided with DS-5 to set up the target and run the
application. When the application is running you can then connect the debugger to
the running target.

• For other targets you can use an external file transfer utility such as PuTTY.

3.6.1 See also

Tasks
• Using an SSH connection to set up and run Gnometris on an ARM Linux target on

page 3-8
• Connecting to the Gnometris application that is already running on a ARM Linux target

on page 3-13
• Debugging Gnometris on page 3-16.

Reference
• Documentation on page 4-5
• Examples on page 4-6
• ARM® DS-5™ Using the Debugger:

— Debug Configurations - Connection tab on page 11-60
— Debug Configurations - Files tab on page 11-64
— Debug Configurations - Debugger tab on page 11-68
— Debug Configurations - Environment tab on page 11-74
— Connecting the DSTREAM unit,

http://infocenter.arm.com/help/topic/com.arm.doc.dui0481-/I1004916.html.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 3-7
ID071411 Non-Confidential

ARM DS-5 tutorials
3.7 Using an SSH connection to set up and run Gnometris on an ARM Linux target
On some targets you can use a Secure SHell (SSH) connection with the Remote System Explorer
(RSE) provided with DS-5.

To set up a Linux SSH connection to an ARM Linux target and run the Gnometris application:

1. Add the Remote Systems view to the DS-5 Debug perspective:
a. Ensure that you are in the DS-5 perspective. To change perspective either use the

perspective toolbar or select Window → Open perspective → DS-5 Debug from
the main menu.

b. Select Window → Show View → Other... to open the Show View dialog box.
c. Select the Remote Systems view in the Remote Systems group.
d. Click OK.

2. In the Remote Systems view, set up a Linux connection to a remote target using SSH:
a. Click on Define a connection to remote system in the Remote Systems view

toolbar.
b. In the Select Remote System Type dialog box, expand the General group and select

Linux.

Figure 3-1 Selecting a connection type

c. Click Next.
d. In the Remote Linux System Connection, enter the remote target IP address or name

in the Host name field.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 3-8
ID071411 Non-Confidential

ARM DS-5 tutorials
Figure 3-2 Defining the connection information

e. Click Next.
f. Select SSH protocol file access.

Figure 3-3 Defining the file system

g. Click Next.
h. Select the shell processes for Linux systems.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 3-9
ID071411 Non-Confidential

ARM DS-5 tutorials
Figure 3-4 Defining the processes

i. Click Next.
j. Select SSH shells.

Figure 3-5 Defining the shell services

k. Click Next.
l. Select SSH terminals.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 3-10
ID071411 Non-Confidential

ARM DS-5 tutorials
Figure 3-6 Defining the terminal services

m. Click Finish.

3. In the Remote Systems view:
a. Right-click on the Linux target and select Connect from the context menu.
b. In the Enter Password dialog box, enter a User ID and Password if required.
c. Click OK to close the dialog box.
d. Copy the stripped version of the Gnometris application, gnometris, and the

libgames-support.so library from the local file system on to the target file system.
e. Ensure that the files on the target have execute permissions. To do this, right-click

on each file, select Properties from the context menu and change the checkboxes
as required.

Figure 3-7 Modifying file properties from the Remote Systems view
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 3-11
ID071411 Non-Confidential

ARM DS-5 tutorials
4. Open a terminal shell that is connected to the target and launch gdbserver with the
application:
a. In the Remote Systems view, right-click on Ssh Terminals.
b. Select Launch Terminal to open a terminal shell.
c. In the terminal shell, navigate to the directory where you copied the gnometris

application, then execute the following command:
export DISPLAY=ip:0.0
gdbserver :port gnometris

where:
ip is the IP address of the host to display the Gnometris game
port is the connection port between gdbserver and the application, for

example 5000.

Note
 If the target has a display that you can use, then you do not need to export DISPLAY.

3.7.1 See also

Tasks
• Connecting to the Gnometris application that is already running on a ARM Linux target

on page 3-13
• Debugging Gnometris on page 3-16.

Reference
• Examples on page 4-6
• ARM® DS-5™ Using the Debugger:

— Debug Configurations - Connection tab on page 11-60
— Debug Configurations - Files tab on page 11-64
— Debug Configurations - Debugger tab on page 11-68
— Connecting the DSTREAM unit,

http://infocenter.arm.com/help/topic/com.arm.doc.dui0481-/I1004916.html.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 3-12
ID071411 Non-Confidential

ARM DS-5 tutorials
3.8 Connecting to the Gnometris application that is already running on a ARM Linux
target

To connect the debugger to the Gnometris application that is already running on an ARM Linux
target:

1. Select Debug Configurations... from the Run menu.

2. Select DS-5 Debugger from the configuration tree and then click on New to create a new
configuration. Alternatively you can select an existing DS-5 Debugger configuration and
then click on Duplicate from the toolbar.

3. In the Name field, enter a suitable name for the new configuration.

4. Click on the Connection tab to see the target and connection options.

5. In the Select target panel:
a. Select the required platform, for example, beagleboard.org - OMAP_3530.
b. Select Connect to already running gdbserver for the debug operation.

6. In the Connections panel, for the connection between gdbserver and the application:
a. Enter the IP address of the target.
b. Enter the port number.

Figure 3-8 Typical connection configuration for a Beagle board

7. Click on the Files tab to see the file options.

8. In the Files panel:
a. Select Load symbols from file and then select the application image containing

debug information. For example: H:\workspace\gnometris\gnometris.
b. Click Add a new resource to the list to add another file entry.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 3-13
ID071411 Non-Confidential

ARM DS-5 tutorials
c. Select Load symbols from file and then select the shared library that is required by
the Gnometris application. For example:
H:\workspace\gnometris\libgames-support.so.

Figure 3-9 Typical file selection for a Beagle board

9. Click on the Debugger tab to see the debugging options for the configuration.

10. In the Run control panel:
a. Select Debug from symbol.
b. Enter main in the field provided.

11. In the Host working directory panel, select Use default.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 3-14
ID071411 Non-Confidential

ARM DS-5 tutorials
Figure 3-10 Typical debugger settings for a Beagle board

12. Click on Debug to start the debugger and run to the main() function.

13. Debugging requires the DS-5 Debug perspective. If the Confirm Perspective Switch
dialog box opens, click on Yes to switch perspective.

3.8.1 See also

Tasks
• Debugging Gnometris on page 3-16.

Reference
• Examples on page 4-6
• ARM® DS-5™ Using the Debugger:

— Debug Configurations - Connection tab on page 11-60
— Debug Configurations - Files tab on page 11-64
— Debug Configurations - Debugger tab on page 11-68
— Connecting the DSTREAM unit,

http://infocenter.arm.com/help/topic/com.arm.doc.dui0481-/I1004916.html.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 3-15
ID071411 Non-Confidential

ARM DS-5 tutorials
3.9 Debugging Gnometris
To debug the Gnometris application:

1. Ensure that you are connected to the target, Gnometris is running, and the debugger is
waiting at the main() function.

2. In the Project Explorer view, open the Gnometris directory to see a list of all the source
files.

3. Double-click on the file blockops-noclutter.cpp to open the file.

4. In the blockops-noclutter.c file, find the line BlockOps::rotateBlock(), and double click
in the vertical bar on the left-hand side of the C/C++ editor to add a breakpoint. A marker
is placed in the vertical bar of the editor and the Breakpoints view updates to display the
new information.

5. Click on Continue in the Debug Control view to continue running the program.

6. Start a new Gnometris game on the target. When a block arrives, press the up cursor key
to hit the breakpoint.

7. Select the Registers view to see the values of the registers.

8. Select the Disassembly view to see the disassembly instructions. You can also double
click in the vertical bar on the left-hand side of this view to set breakpoints on individual
instructions.

9. In the Debug Control view, click on Step Over Source Line to move to the next line in
the source file. All the views update as you step through the source code.

10. Select the History view to see a list of all the debugger commands generated during the
current debug session. You can select one or more commands and then click on Exports
the selected lines as a script to create a script file for future use.

3.9.1 See also

Tasks
• Importing the example projects into Eclipse on page 3-2
• Building the Gnometris project from Eclipse on page 3-4
• Building the Gnometris project from the command-line on page 3-5
• Loading the Gnometris application on a Real-Time System Model on page 3-6.
• Loading the Gnometris application on to an ARM Linux target on page 3-7.
• ARM® DS-5™ Using the Debugger:

— Configuring a connection to a Linux target using gdbserver on page 3-5.
• ARM® DS-5™ Using Eclipse:

— Remote Systems view on page 6-3.

Reference
• Examples on page 4-6
• ARM® DS-5™ Using the Debugger:

— C/C++ editor on page 11-12
— Debug Control view on page 11-18
— Registers view on page 11-36.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 3-16
ID071411 Non-Confidential

ARM DS-5 tutorials
3.10 Debugging a loadable kernel module
You can use DS-5 to develop and debug a loadable kernel module. Loadable modules can be
dynamically inserted and removed from a running kernel during development without the need
to frequently recompile the kernel.

DS-5 provides an example of a simple character device driver, modex.c that you can compile,
run, and debug on your target. Pre-built image binaries are provided for Windows users that
match the Linux distribution project provided by DS-5. Alternatively, see the readme.html
provided with the kernel_module example for more information on how to compile the kernel
and the module.

3.10.1 Prerequisites

Before you can debug the module you must ensure that you:
• Unpack kernel source code and compile the kernel against exactly the same kernel version

as the target
• Compile the loadable module against exactly the same kernel version as the target.

Note
 Ensure that you compile both images with debug information. The debugger requires run-time
information from both images when debugging the module.

3.10.2 Procedure

To debug the loadable module, modex.c:

1. Connect the debugger to the target. The device driver example provides a preconfigured
launch file:
a. Select Debug Configurations... from the Run menu.
b. Expand the DS-5 Debugger the configuration tree.
c. Select the module-beagle-example entry.
d. The Connection tab contains most of the connection settings with the exception of

the Debug Hardware Address field. Enter the IP address or name for the connection
between the debugger and the debug hardware agent.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 3-17
ID071411 Non-Confidential

ARM DS-5 tutorials
Figure 3-11 Typical connection for a Linux kernel module configuration

e. The Files tab contains the debugger settings to load debug information for the Linux
kernel and the module. For this example, ignore the Application on host to
download field and select both the kernel image and the module image as shown in
the following figure.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 3-18
ID071411 Non-Confidential

ARM DS-5 tutorials
Figure 3-12 Typical file selection for a Linux kernel module configuration

f. In the Debugger tab, select Connect only in the Run control panel.
g. Click on Debug to connect the debugger to the target.

2. Configure and connect a terminal shell to the target. You can use the Remote System
Explorer (RSE) provided with DS-5.

3. Using RSE, copy the compiled module to the target:
a. Navigate to the .../linux_system/kernel_module/stripped directory on the host

workstation.
b. Drag and drop the module, modex.ko to a writeable directory on the target.

4. In the terminal shell, insert the module:
a. Navigate to the location of the module.
b. Execute the following command:

insmod modex.ko

The Modules view updates to display details of the loaded module.

5. To debug the module, set breakpoints, run, and step as required.

6. To modify the module source code:
a. Remove the module. For example:

rmmod modex

b. Recompile the module.
c. Repeat steps 3, 4 and 5 as required.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 3-19
ID071411 Non-Confidential

ARM DS-5 tutorials
Note
 When you insert and remove a module, the debugger stops the target and automatically resolves
memory locations for debug information and existing breakpoints. This means that you do not
have to stop the debugger and reconnect when you recompile the source code.

Useful terminal shell commands:

lsmod Displays information about all the loaded modules.

insmod Inserts a loadable module.

rmmod Removes a module.

Useful DS-5 Debugger commands:

info os-modules Displays a list of OS modules loaded after connection.

info os-log Displays the contents of the OS log buffer.

info os-version Displays the version of the OS.

info processes Displays a list of processes showing ID, current state and related stack
frame information.

set os-log-capture Controls the capturing and printing of Operating System (OS) logging
messages to the console.

OS modules loaded after connection are displayed in the Modules view.

3.10.3 See also

Tasks

• ARM® DS-5™ Using the Debugger:
— Configuring a connection to a Linux Kernel on page 3-7
— Chapter 4 Controlling execution
— Chapter 5 Examining the target.

Concepts
• ARM® DS-5™ Using the Debugger:

— About debugging a Linux kernel on page 6-10
— About debugging Linux kernel modules on page 6-12
— ARM Linux problems and solutions on page 12-2
— Target connection problems and solutions on page 12-4.

Reference
• Examples on page 4-6
• ARM® DS-5™ Using the Debugger:

— Breakpoints view on page 11-8
— Commands view on page 11-15
— Debug Control view on page 11-18
— Modules view on page 11-34.

• ARM® DS-5™ Debugger Command Reference:
— info os-log on page 2-90
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 3-20
ID071411 Non-Confidential

ARM DS-5 tutorials
— info os-modules on page 2-91
— info os-version on page 2-92
— info processes on page 2-93
— set os on page 2-149
— show os on page 2-176.

• ARM® DS-5™ Using Eclipse:
— Terminals view on page 6-6.

• Connecting the DSTREAM unit,
http://infocenter.arm.com/help/topic/com.arm.doc.dui0481-/I1004916.html.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 3-21
ID071411 Non-Confidential

ARM DS-5 tutorials
3.11 Performance analysis of threads application running on ARM Linux
ARM Streamline is a graphical performance analysis tool. It provides timeline and analysis
reports that highlight problem areas at system, process, and thread level, in addition to hot spots
in the applications.

3.11.1 Prerequisites

Before capturing the analysis data, ensure that:

1. You obtain the IP address of the target. You can use the ifconfig application in a Linux
console. The IP address is denoted by the inet addr.

2. The ARM Linux Kernel is configured for Streamline.

3. The threads application is copied to the target.

4. The gator daemon is running on the target.

3.11.2 Procedure

To capture the data:

1. Launch Eclipse.

2. Launch a terminal shell and connect it to the target. You can use the terminal shell
provided with Remote System Explorer (RSE).

3. In the terminal shell, navigate to the directory where you copied the threads application.

4. Ensure that you are in the C/C++ Perspective.

5. Create a target connection:
a. Select the Change capture options... toolbar icon in the Streamline Capture Data

view.
b. In the Name field, enter a suitable name for the new configuration.
c. In the Connection panel, enter the IP address or name and the associated port

number for the connection between the host workstation and the target.
d. In the Capture panel, accept the default settings or customize as required.
e. Click on Add Program... or Add program from Workspace... in the Program

Images panel to open a dialog box where you can select the application image.
f. Navigate to the threads application and click on Open or OK to close the dialog

box.
g. Click on Apply to save the settings.
h. To start capturing the data, click on the Start capture toolbar icon in the Streamline

Capture Data view.

6. In the terminal shell, execute the following command to run the threads application:
./threads

7. After you have completed running the threads application, return to the C/C++
Perspective in Eclipse.

8. Click on the report in the Streamline Capture Data view to analyze the graphical data.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 3-22
ID071411 Non-Confidential

ARM DS-5 tutorials
Figure 3-13 Streamline Capture Data file

A Streamline Analysis Data file is generated automatically when you stop capturing the data or
you can double-click on an existing analysis file to view it in the Editor.

Figure 3-14 Streamline Analysis Data file

3.11.3 See also

Concepts
• About ARM Streamline Performance Analyzer on page 2-8.

Reference
• Documentation on page 4-5
• Examples on page 4-6
• ARM® DS-5™ Using Eclipse:

— Terminals view on page 6-6
• ARM® DS-5™ Using ARM Streamline,

http://infocenter.arm.com/help/topic/com.arm.doc.dui0482-/index.html.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 3-23
ID071411 Non-Confidential

ARM DS-5 tutorials
3.12 Debugging Android native C/C++ applications and libraries
This tutorial describes how to debug the hello-neon application provided with the Android
Native Development Kit (NDK). It uses the Android SDK Platform 2.2 and the Android
emulator as the target.

Note
 It does not describe how to install any of the Android tools. See the Android Developers website
for more information.

3.12.1 Prerequisites

Before you can debug an Android package containing native C/C++ code you must:

1. Download and install the Android Software Development Kit (SDK). This enables you to
build Java applications together with any native C/C++ code into an Android package
with a .apk file extension.

2. Download and install the Android NDK. This is a companion tool to the Android SDK
that enables you to build performance-critical parts of your applications in native code
such as C and C++ languages.

Note
 On Windows, you must also download and install cygwin, including the make package so

that you can run the scripts inside the Android NDK.

3. Update the version of gdbserver in the relevant Android NDK toolchain directory by
copying the Android version provided with DS-5 arm_directory\gdbserver\...\android.
This tutorial uses the ...\toolchains\arm-eabi-4.4.0\prebuilt directory.

4. Set up the Eclipse plug-in for Android:
a. Launch Eclipse.
b. Install the Android Development Tools (ADT) Eclipse plug-ins. For example, from

the following site: http://dl-ssl.google.com/android/eclipse.
c. Select Window → Preferences → Android and click on Browse... to set the

location of the Android SDK.
d. Open the Android SDK and AVD Manager dialog box by selecting Window →

Android SDK and AVD Manager.
e. Expand the Available packages group and add SDK platforms as required. For

example, Android SDK Platform Android 2.2.
f. Create a new Android Virtual Device (AVD).

5. Edit the Android NDK script file, ndk-gdb to debug using DS-5. The Android NDK
contains a script file to run gdbserver and the application on the target before launching
the debugger. By default, the script file is not set up to debug using DS-5. To change this
behavior you must comment out the last line as shown:
#$GDBCLIENT -x `native_path $GDBSETUP`
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 3-24
ID071411 Non-Confidential

ARM DS-5 tutorials
3.12.2 Procedure

To debug the application:

1. Build the hello-neon source files with debug information using the scripts provided by the
Android NDK. This tutorial uses the ...\toolchains\arm-eabi-4.4.0\prebuilt directory.
For example:
./ndk-build -C samples/hello-neon NDK_TOOLCHAIN=arm-eabi-4.4.0 NDK_DEBUG=1

2. Launch Eclipse.

3. Create a new Android project:
a. Select File → New → Project...
b. Expand the Android group and select Android Project.
c. Click Next.
d. Enter a suitable project name. For example, HelloNeon.
e. Select Create project from your existing source and locate the hello-neon folder.
f. Leave the Use default location option selected so that the project is created in the

default directory shown. Alternatively, deselect this option and browse to your
preferred project directory.

g. Select the required Build Target. For example, Android 2.2.
h. Enter a suitable Application name. For example, Hello, Neon.
i. Enter a suitable Package name. For example, com.example.neon.
j. Enter a suitable Activity name. For example, HelloNeon.
k. Click Finish.

4. Ensure that the application builds with debug information. You can do this by:
a. Open the AndroidManifest.xml file.
b. Click on the Application tab.
c. Select true in the Debuggable field.
d. Save the changes and close the file.

5. Clean and rebuild the Android project.

6. If the application is already installed on the target you must uninstall it. For example:
path\adb uninstall com.example.neon

7. Install the application. For example:
path\adb install samples/hello-neon/bin/HelloNeon.apk

8. Run the ndk-gdb script to start the application and connect gdbserver. For example:
./ndk-gdb --project=samples/hello-neon --verbose --port=5000 --start --force
--adb=adb

See the Android NDK documentation for more information on using the script file and the
command-line options.

9. Connect DS-5 to the application using a gdbserver TCP connection:
a. Select Debug Configurations... from the Run menu.
b. Select DS-5 Debugger from the configuration tree and then click on New to create

a new configuration. Alternatively you can select an existing DS-5 Debugger
configuration and then click on Duplicate from the toolbar.

c. In the Name field, enter a suitable name for the new configuration.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 3-25
ID071411 Non-Confidential

ARM DS-5 tutorials
d. Click on the Connection tab and configure a DS-5 Debugger target connection as
shown in the following figure.

Figure 3-15 Typical connection configuration for an Android application

e. Click on the Files tab and select the app_process object file.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 3-26
ID071411 Non-Confidential

ARM DS-5 tutorials
Figure 3-16 Typical file selection for an Android application

f. Click on the Debugger tab and select Connect only in the Run Control panel.
g. Select Execute debugger commands and enter sharedlibrary in the associated text

box to load debug information from all shared libraries into the debugger.
h. In the Paths panel, specify the shared library search directory on the host that the

debugger uses when it displays source code.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 3-27
ID071411 Non-Confidential

ARM DS-5 tutorials
Figure 3-17 Typical debugger connection settings for an Android application

i. Click on Debug to connect to the target.

10. Debugging requires the DS-5 Debug perspective. If the Confirm Perspective Switch
dialog box opens, click on Yes to switch perspective.

11. To debug the application, set breakpoints, run, and step as required.

3.12.3 See also

Reference
• ARM® DS-5™ Using Eclipse:

— Installing new features on page 3-40
— Adding a new source file to your project on page 4-16
— Linked resources on page 3-11.

Other information
• DS-5 Knowledge Articles,

http://infocenter.arm.com/help/topic/com.arm.doc.faqs/kiXXwMK1Sxk7vf.html

• Android Developers, http://developer.android.com.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 3-28
ID071411 Non-Confidential

ARM DS-5 tutorials
3.13 Managing DS-5 licenses
You can manage DS-5 licenses by selecting ARM License Manager... from the Help menu
within Eclipse.

Installed licenses are display in the ARM License Manager dialog box.

•
Figure 3-18 View and edit licenses

• Click on Obtain License... to request a new license and follow the instructions in the
dialog box.

Figure 3-19 Obtain a new license

• Click on Add License... to install a new license. License files are copied into the
%APPDATA%\ARM\DS-5\licenses folder for Windows and $HOME/.ds-5/licenses folder for
Linux. Server licenses can be entered separately in the host and port fields or you can
paste the complete string port@host in the Host field.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 3-29
ID071411 Non-Confidential

ARM DS-5 tutorials
Figure 3-20 Add a new license

• Click on Delete License to uninstall the license and remove the file from the DS-5 license
folder.

3.13.1 See also

Reference
• Licensing and product updates on page 4-4
• ARM® DS-5™ License Management Guide,

http://infocenter.arm.com/help/topic/com.arm.doc.dui0577-/index.html.

Other information
• ARM Self-Service Portal, http://silver.arm.com/.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 3-30
ID071411 Non-Confidential

Chapter 4
ARM DS-5 installation and examples

The following topics describe the installation and licensing requirements. It also includes
information on the documentation and examples provided with ARM® DS-5™.

Reference
• System requirements on page 4-2
• Installation directories on page 4-3
• Licensing and product updates on page 4-4
• Documentation on page 4-5
• Examples on page 4-6.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 4-1
ID071411 Non-Confidential

ARM DS-5 installation and examples
4.1 System requirements
To install and use DS-5, you must have a minimum specification of computer with a dual core
2GHz processor (or equivalent) and 2GB of RAM. 4GB or more of RAM is recommended to
improve performance when debugging large images, using models with large simulated
memory maps, or when using ARM Streamline™ Performance Analyzer.

A full installation requires approximately 1.5 GB of hard disk space.

4.1.1 Supported platforms

DS-5 is supported (except where specified) on 32-bit and 64-bit versions of the following
platforms (and service packs):
• Windows XP Professional service pack 3 (32-bit only)
• Windows 7 Professional
• Windows 7 Enterprise
• Windows Server 2003 (ARM Compiler only)
• Windows Server 2008 (ARM Compiler only)
• Red Hat Enterprise Linux 5 Desktop and Workstation option, Standard.

4.1.2 DS-5 requirements

Android and ARM Linux application debug require gdbserver to be available on your target.
The recommended version of gdbserver is 6.8. gdbserver 7.0 executables built for ARMv4T™,
ARMv5T™, and Thumb®-2 architectures are provided with DS-5 in the install_directory\arm
directory. DS-5 Debugger is unable to provide reliable multi-threaded debug support with
gdbserver versions prior to 6.8.

DS-5 Debugger supports debugging ARM Linux kernel versions 2.6.28 to 2.6.36. Other kernel
versions might work, but have not been tested. The minimum ARM Linux kernel version for
use with ARM Streamline Performance Analyzer is 2.6.32. Application debug on Symmetric
Multi-Processing (SMP) systems requires ARM Linux kernel version 2.6.36 or later.

ARM Linux kernel and bare-metal debugging require the use of a DSTREAM or RVI unit with
the latest firmware for DS-5 target connections. Use the debug hardware configuration utilities
to check the firmware version that is currently installed and update it if necessary. Updated
firmware is available in the install_directory/sw/debughw/firmware directory.

4.1.3 See also

Reference
• About Debug hardware configuration utilities on page 2-9
• Installation directories on page 4-3
• Licensing and product updates on page 4-4
• ARM® DSTREAM™ Setting up the Hardware,

http://infocenter.arm.com/help/topic/com.arm.doc.dui0481-
• ARM® RVI™ and RVT™ Setting up the Hardware,

http://infocenter.arm.com/help/topic/dui0515-
• DS-5 Knowledge Articles,

http://infocenter.arm.com/help/topic/com.arm.doc.faqs/kiXXwMK1Sxk7vf.html.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 4-2
ID071411 Non-Confidential

ARM DS-5 installation and examples
4.2 Installation directories
Various directories are installed with DS-5 that contain example code and documentation. The
DS-5 documentation refers to these directories as required.

The main installation, examples, and documentation directories are identified in the following
table. The install_directory shown is the default installation directory. If you specify a
different installation directory, then the path names are relative to your chosen directory.

4.2.1 See also

Reference
• Documentation on page 4-5
• Examples on page 4-6.

Table 4-1 DS-5 default directories

Directory Windows Linux

install_directory C:\Program Files\DS-5 ~/ds-5

arm_directory install_directory\arm\... install_directory/arm/...

examples_directory install_directory\examples\... install_directory/examples/...

tools_directory install_directory\bin\... install_directory/bin/...

documents_directory install_directory\documents\... install_directory/documents/...
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 4-3
ID071411 Non-Confidential

ARM DS-5 installation and examples
4.3 Licensing and product updates
DS-5 is a licensed product that uses the FLEXnet license management software to enable
features corresponding to specific editions.

To request a license or to access the latest DS-5 product information and updates, go to the ARM
Self-Service Portal.

You can access the license management software by selecting ARM License Manager... from
the Help menu in Eclipse for DS-5.

4.3.1 See also

Tasks
• Managing DS-5 licenses on page 3-29.

Reference
• ARM® DS-5™ License Management Guide,

http://infocenter.arm.com/help/topic/com.arm.doc.dui0577-/index.html.

Other information
• ARM Self-Service Portal, http://silver.arm.com/.

Table 4-2 DS-5 Editions

Application
Edition Linux Edition Professional

Edition

Eclipse for DS-5 X X X

GNU Compilation Tools X X X

Linux application debug X X X

ARM Streamline Performance Analyzer X X X

Cortex™-A8 real-time system model X X X

Kernel space debug and trace X X

Bare-metal debug and trace X X

ARM Compiler toolchain X
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 4-4
ID071411 Non-Confidential

ARM DS-5 installation and examples
4.4 Documentation
The DS-5 documentation suite comprises:
• ARM® DS-5™ Getting Started with DS-5 (this document)
• ARM® DS-5™ Using the Debugger
• ARM® DS-5™ Debugger Command Reference
• ARM® DS-5™ Using Eclipse
• ARM® DSTREAM™ Setting Up the Hardware
• ARM® DSTREAM™ System and Interface Design Reference
• ARM® RVI™ and RVT™ Setting Up the Harware
• ARM® RVI™ and RVT™ System and Interface Design Reference
• ARM® DSTREAM™ and RVI™ Using the Debug Hardware Configuration Utilities
• ARM® Streamline™ Performance Analyzer Using ARM Streamline

To access the DS-5 documentation:

1. Launch Eclipse:
• On Windows, select Start → All Programs → ARM DS-5 → Eclipse for DS-5.
• On Linux, enter eclipse in the Unix bash shell.

2. Select Help Contents from the Help menu.

Documentation on using the examples is available in examples_directory\docs.

Documentation on using the GNU compilation tools is available in documents_directory\gcc.

4.4.1 See also

Reference
• Installation directories on page 4-3
• Examples on page 4-6
• Documentation on the ARM website,

http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.ds5.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 4-5
ID071411 Non-Confidential

ARM DS-5 installation and examples
4.5 Examples
DS-5 provides a selection of examples to help you get started:

• Bare-metal software development examples that illustrate armcc managed builder,
bare-metal debug, performance optimization, and measurement techniques. The files are
located in the archive file, examples_directory\Bare-metal_examples.zip.

• Bare-metal example projects for supported boards that demonstrate board connection and
basic debug into on-chip RAM. The files are located in the archive file,
examples_directory\Bare-metal_boards_examples.zip.

• ARM Linux examples that illustrate build, debug, and performance analysis of simple
C/C++ console applications, shared libraries, and multi-threaded applications. These
examples run on a Real-Time System Model (RTSM) that is preconfigured to boot ARM
Linux. The files are located in the archive file, examples_directory\Linux_examples.zip.

• Optional packages with source files, libraries, and prebuilt images for running the
examples. These can be downloaded from the DS-5 Downloads page on the ARM
website or from the DS-5 installation media.
— Linux distribution project with header files and libraries for the purpose of

rebuilding the ARM Linux examples. The files are located in the archive file,
examples_directory\Linux_distribution_example.zip.

— Linux SD card image for the BeagleBoard configured for DS-5. The files are
located in the archive file, examples_directory\beagle.zip.

— Linux SD card image for the BeagleBoard-xM configured for DS-5. The files are
located in the archive file, examples_directory\beaglexm.zip.

You can extract these examples to a working directory and build them from the command-line,
or you can import them into Eclipse using the import wizard. All examples provided with DS-5
contain a preconfigured Eclipse launch script that enables you to easily load and debug example
code on a target.

Each example provides instructions on how to build, run and debug the example code. You can
access the instructions from the main index, examples_directory\docs\index.html.

4.5.1 See also

Tasks
• Importing the example projects into Eclipse on page 3-2

Concepts
• About Real-Time System Models on page 2-5.

Reference
• Documentation on page 4-5
• Installation directories on page 4-3
• Using Eclipse:

— Using the welcome screen on page 3-4.

Other information
• ARM Development Studio 5 (DS-5™),

http://www.arm.com/products/tools/software-tools/ds-5.
ARM DUI 0478F Copyright © 2010, 2011 ARM. All rights reserved. 4-6
ID071411 Non-Confidential

	ARM DS-5 Getting Started with DS-5
	Contents
	Conventions and feedback
	ARM DS-5 product overview
	2.1 About DS-5
	2.1.1 See also

	2.2 About Eclipse for DS-5
	2.2.1 See also

	2.3 About DS-5 Debugger
	2.3.1 See also

	2.4 About Real-Time System Models
	2.4.1 See also

	2.5 About ARM Compiler
	2.5.1 See also

	2.6 About GNU Compilation Tools
	2.6.1 See also

	2.7 About ARM Streamline Performance Analyzer
	2.7.1 See also

	2.8 About Debug hardware configuration utilities
	2.8.1 See also

	ARM DS-5 tutorials
	3.1 Importing the example projects into Eclipse
	3.1.1 See also

	3.2 Creating a new C or C++ project in Eclipse
	3.2.1 See also

	3.3 Building the Gnometris project from Eclipse
	3.3.1 See also

	3.4 Building the Gnometris project from the command-line
	3.4.1 See also

	3.5 Loading the Gnometris application on a Real-Time System Model
	3.5.1 See also

	3.6 Loading the Gnometris application on to an ARM Linux target
	3.6.1 See also

	3.7 Using an SSH connection to set up and run Gnometris on an ARM Linux target
	3.7.1 See also

	3.8 Connecting to the Gnometris application that is already running on a ARM Linux target
	3.8.1 See also

	3.9 Debugging Gnometris
	3.9.1 See also

	3.10 Debugging a loadable kernel module
	3.10.1 Prerequisites
	3.10.2 Procedure
	3.10.3 See also

	3.11 Performance analysis of threads application running on ARM Linux
	3.11.1 Prerequisites
	3.11.2 Procedure
	3.11.3 See also

	3.12 Debugging Android native C/C++ applications and libraries
	3.12.1 Prerequisites
	3.12.2 Procedure
	3.12.3 See also

	3.13 Managing DS-5 licenses
	3.13.1 See also

	ARM DS-5 installation and examples
	4.1 System requirements
	4.1.1 Supported platforms
	4.1.2 DS-5 requirements
	4.1.3 See also

	4.2 Installation directories
	4.2.1 See also

	4.3 Licensing and product updates
	4.3.1 See also

	4.4 Documentation
	4.4.1 See also

	4.5 Examples
	4.5.1 See also

