
ARM® Compiler
Version 5.06

Migration and Compatibility Guide

Copyright © 2010-2016 ARM Limited or its affiliates. All rights reserved.
ARM DUI0530M

ARM® Compiler
Migration and Compatibility Guide
Copyright © 2010-2016 ARM Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

A 28 May 2010 Non-Confidential ARM Compiler v4.1 Release

B 30 September 2010 Non-Confidential Update 1 for ARM Compiler v4.1

C 28 January 2011 Non-Confidential Update 2 for ARM Compiler v4.1 Patch 3

D 30 April 2011 Non-Confidential ARM Compiler v5.0 Release

E 29 July 2011 Non-Confidential Update 1 for ARM Compiler v5.0

F 30 September 2011 Non-Confidential ARM Compiler v5.01 Release

G 29 February 2012 Non-Confidential Document update 1 for ARM Compiler v5.01 Release

H 27 July 2012 Non-Confidential ARM Compiler v5.02 Release

I 31 January 2013 Non-Confidential ARM Compiler v5.03 Release

J 27 November 2013 Non-Confidential ARM Compiler v5.04 Release

K 10 September 2014 Non-Confidential ARM Compiler v5.05 Release

L 29 July 2015 Non-Confidential ARM Compiler v5.06 Release

M 11 November 2016 Non-Confidential Update 3 for ARM Compiler v5.06 Release

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of ARM. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is
not intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document at
any time and without notice.

 ARM® Compiler

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

2

Non-Confidential

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this
document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms.
This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective
owners. Please follow ARM’s trademark usage guidelines at http://www.arm.com/about/trademark-usage-guidelines.php

Copyright © 2010-2016, ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Unrestricted Access is an ARM internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

http://www.arm.com

 ARM® Compiler

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3

Non-Confidential

http://www.arm.com/about/trademark-usage-guidelines.php
http://www.arm.com

Contents
ARM® Compiler Migration and Compatibility Guide

Preface
About this book 9

Chapter 1 Overview of Compatibility
1.1 Compatibility between ARM Compiler versions 1-13

Chapter 2 Configuration Information for Different Versions of the ARM Compilation
Tools
2.1 FlexNet versions supported 2-15
2.2 GCC versions emulated 2-16
2.3 Cygwin versions supported 2-17

Chapter 3 Migrating from ARM Compiler v5.05 to v5.06
3.1 Compatibility of ARM Compiler v5.06 with legacy objects and libraries 3-19
3.2 Compiler changes between ARM Compiler v5.05 and v5.06 3-20

Chapter 4 Migrating from ARM Compiler v5.04 to v5.05
4.1 Compatibility of ARM Compiler v5.05 with legacy objects and libraries 4-23
4.2 Compatibility of code compiled with C++11 with code compiled with C++03 4-24
4.3 Compiler changes between ARM Compiler v5.04 and v5.05 4-25

Chapter 5 Migrating from ARM Compiler v5.03 to v5.04
5.1 Compatibility of ARM Compiler v5.04 with legacy objects and libraries 5-30
5.2 Documentation changes between ARM Compiler v5.03 and v5.04 5-31

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

4

Non-Confidential

Chapter 6 Migrating from ARM Compiler v5.02 to v5.03
6.1 Compatibility of ARM Compiler v5.03 with legacy objects and libraries 6-33
6.2 Compiler changes between ARM Compiler v5.02 and v5.03 6-34
6.3 Documentation changes between ARM Compiler v5.02 and v5.03 6-35

Chapter 7 Migrating from ARM Compiler v5.0 to v5.01 or later
7.1 Compatibility of ARM Compiler v5.01 with legacy objects and libraries 7-37
7.2 General changes between ARM Compiler v5.0 and v5.01 or later 7-38
7.3 Documentation changes between ARM Compiler v5.0 and v5.01 or later 7-39

Chapter 8 Migrating from ARM Compiler v4.1 Patch 3 or later to v5.0
8.1 Compatibility of ARM Compiler v5.0 with legacy objects and libraries 8-41
8.2 General changes between ARM Compiler v4.1 Patch 3 or later and v5.0 8-42
8.3 Compiler changes between ARM Compiler v4.1 Patch 3 or later and v5.0 8-43
8.4 Linker changes between ARM Compiler v4.1 Patch 3 or later and v5.0 8-44
8.5 Documentation changes between ARM Compiler v4.1 Patch 3 or later and v5.0 . . 8-45

Chapter 9 Migrating from ARM Compiler v4.1 build 561 to v4.1 Patch 3 or later
9.1 Compatibility of ARM Compiler v4.1 Patch 3 with legacy objects and libraries 9-47
9.2 C and C++ library changes between ARM Compiler v4.1 build 561 and v4.1 Patch 3 or

later .. 9-48

Chapter 10 Migrating from ARM Compiler v4.1 to v4.1 build 561
10.1 Compatibility of ARM Compiler v4.1 build 561 with legacy objects and libraries

.. 10-50
10.2 Compiler changes between ARM Compiler v4.1 and v4.1 build 561 10-51
10.3 Linker changes between ARM Compiler v4.1 and v4.1 build 561 10-52
10.4 Assembler changes between ARM Compiler v4.1 and v4.1 build 561 10-53
10.5 C and C++ library changes between ARM Compiler v4.1 and v4.1 build 561 10-54
10.6 fromelf changes between ARM Compiler v4.1 and v4.1 build 561 10-55
10.7 Documentation changes between ARM Compiler v4.1 and v4.1 build 561 10-56

Chapter 11 Migrating from RVCT v4.0 to ARM Compiler v4.1
11.1 General changes between RVCT v4.0 and ARM Compiler v4.1 11-58
11.2 Compiler changes between RVCT v4.0 and ARM Compiler v4.1 11-59
11.3 Linker changes between RVCT v4.0 and ARM Compiler v4.1 11-60
11.4 Assembler changes between RVCT v4.0 and ARM Compiler v4.1 11-61
11.5 C and C++ library changes between RVCT v4.0 and ARM Compiler v4.1 11-63

Chapter 12 Migrating from RVCT v3.1 to RVCT v4.0
12.1 Default --gnu_version changed from 303000 (GCC 3.3) to 402000 (GCC 4.2) 12-65
12.2 General changes between RVCT v3.1 and RVCT v4.0 12-66
12.3 Changes to symbol visibility between RVCT v3.1 and RVCT v4.0 12-67
12.4 Compiler changes between RVCT v3.1 and RVCT v4.0 12-70
12.5 Linker changes between RVCT v3.1 and RVCT v4.0 .. 12-71
12.6 Assembler changes between RVCT v3.1 and RVCT v4.0 12-76
12.7 fromelf changes between RVCT v3.1 and RVCT v4.0 12-77
12.8 C and C++ library changes between RVCT v3.1 and RVCT v4.0 12-78

Chapter 13 Migrating from RVCT v3.0 to RVCT v3.1
13.1 General changes between RVCT v3.0 and RVCT v3.1 13-80

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

5

Non-Confidential

13.2 Assembler changes between RVCT v3.0 and RVCT v3.1 13-81
13.3 Linker changes between RVCT v3.0 and RVCT v3.1 .. 13-82

Chapter 14 Migrating from RVCT v2.2 to RVCT v3.0
14.1 General changes between RVCT v2.2 and RVCT v3.0 14-84
14.2 Compiler changes between RVCT v2.2 and RVCT v3.0 14-85
14.3 Linker changes between RVCT v2.2 and RVCT v3.0 .. 14-86
14.4 C and C++ library changes between RVCT v2.2 and RVCT v3.0 14-87

Appendix A Migration and Compatibility document revisions
A.1 Revisions for Migration and Compatibility Guide .. Appx-A-89

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

6

Non-Confidential

List of Tables
ARM® Compiler Migration and Compatibility Guide

Table 2-1 FlexNet versions .. 2-15
Table 2-2 GCC versions .. 2-16
Table 12-1 RVCT v3.1 symbol visibility summary .. 12-67
Table 12-2 RVCT v3.1 symbol visibility summary for references to run-time functions 12-68
Table 12-3 RVCT v4.0 symbol visibility summary ... 12-68
Table 12-4 RVCT v4.0 symbol visibility summary for references to run-time functions 12-68
Table A-1 Differences between Issue L and Issue M ... Appx-A-89
Table A-2 Differences between Issue K and Issue L ... Appx-A-89
Table A-3 Differences between Issue J and Issue K .. Appx-A-89
Table A-4 Differences between Issue I and Issue J ... Appx-A-90
Table A-5 Differences between Issue H and Issue I .. Appx-A-90
Table A-6 Differences between Issue G and Issue H .. Appx-A-90
Table A-7 Differences between Issue F and Issue G ... Appx-A-90
Table A-8 Differences between Issue D and Issue F ... Appx-A-90
Table A-9 Differences between Issue C and Issue D ... Appx-A-91
Table A-10 Differences between Issue B and Issue C ... Appx-A-91
Table A-11 Differences between Issue A and Issue B ... Appx-A-91

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7

Non-Confidential

Preface

This preface introduces the ARM® Compiler Migration and Compatibility Guide.

It contains the following:
• About this book on page 9.

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

8

Non-Confidential

 About this book
ARM® Compiler Migration and Compatibility Guide provides migration and compatibility information
between the latest released version and previous versions.

 Using this book

This book is organized into the following chapters:

Chapter 1 Overview of Compatibility
Describes the compatibility between different versions of ARM Compiler.

Chapter 2 Configuration Information for Different Versions of the ARM Compilation Tools
Describes the FlexNet, GCC, and Cygwin versions supported by the different versions of the
ARM compilation tools.

Chapter 3 Migrating from ARM Compiler v5.05 to v5.06
Describes the changes that affect migration and compatibility between ARM Compiler v5.05 and
v5.06.

Chapter 4 Migrating from ARM Compiler v5.04 to v5.05
Describes the changes that affect migration and compatibility between ARM Compiler v5.04 and
v5.05.

Chapter 5 Migrating from ARM Compiler v5.03 to v5.04
Describes the changes that affect migration and compatibility between ARM Compiler v5.03 and
v5.04.

Chapter 6 Migrating from ARM Compiler v5.02 to v5.03
Describes the changes that affect migration and compatibility between ARM Compiler v5.02 and
v5.03.

Chapter 7 Migrating from ARM Compiler v5.0 to v5.01 or later
Describes the changes that affect migration and compatibility between ARM Compiler v5.0 and
v5.01 or later.

Chapter 8 Migrating from ARM Compiler v4.1 Patch 3 or later to v5.0
Describes the changes that affect migration and compatibility between ARM Compiler v4.1 Patch
3 and v5.0.

Chapter 9 Migrating from ARM Compiler v4.1 build 561 to v4.1 Patch 3 or later
Describes the changes that affect migration and compatibility between ARM Compiler v4.1 build
561 and v4.1 Patch 3 or later.

Chapter 10 Migrating from ARM Compiler v4.1 to v4.1 build 561
Describes the changes that affect migration and compatibility between ARM Compiler v4.1 and
v4.1 build 561.

Chapter 11 Migrating from RVCT v4.0 to ARM Compiler v4.1
Describes the changes that affect migration and compatibility between RVCT v4.0 and ARM
Compiler v4.1.

Chapter 12 Migrating from RVCT v3.1 to RVCT v4.0
Describes the changes that affect migration and compatibility between RVCT v3.1 and RVCT
v4.0.

Chapter 13 Migrating from RVCT v3.0 to RVCT v3.1
Describes the changes that affect migration and compatibility between RVCT v3.0 and RVCT
v3.1.

Chapter 14 Migrating from RVCT v2.2 to RVCT v3.0
Describes the changes that affect migration and compatibility between RVCT v2.2 and RVCT
v3.0.

 Preface
 About this book

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

9

Non-Confidential

Appendix A Migration and Compatibility document revisions
Describes the technical changes that have been made to the Migration and Compatibility Guide.

 Glossary

The ARM Glossary is a list of terms used in ARM documentation, together with definitions for those
terms. The ARM Glossary does not contain terms that are industry standard unless the ARM meaning
differs from the generally accepted meaning.

See the ARM Glossary for more information.

 Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
ARM glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Feedback

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title ARM® Compiler Migration and Compatibility Guide.
• The number ARM DUI0530M.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

 Preface
 About this book

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

10

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html
mailto:errata@arm.com

ARM also welcomes general suggestions for additions and improvements.
 Note

ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Other information

• ARM Information Center.
• ARM Technical Support Knowledge Articles.
• Support and Maintenance.
• ARM Glossary.

 Preface
 About this book

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

11

Non-Confidential

http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/topic/com.arm.doc.faqs
http://www.arm.com/support/services/support-maintenance.php
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Chapter 1
Overview of Compatibility

Describes the compatibility between different versions of ARM Compiler.

It contains the following sections:
• 1.1 Compatibility between ARM Compiler versions on page 1-13.

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

1-12

Non-Confidential

1.1 Compatibility between ARM Compiler versions
Although compatibility between different versions of ARM Compiler cannot be guaranteed, there are
ways that you can aid compatibility.

ARM Compiler generated code conforms to the ARM Application Binary Interface (ABI). Also:
• For C code, ARM expects full backwards compatibility with earlier versions, except as described in

the specific sections relating to a given version.
• For C++ code, to guarantee binary compatibility, including backwards compatibility, ARM

recommends that you define your interfaces as extern "C". Although many objects and libraries are
binary compatible between versions and toolchains, ARM cannot guarantee that there are no
differences in some cases. For example, mangled names might be different for symbols.

Related information
ARM Application Binary Interface.

1 Overview of Compatibility
1.1 Compatibility between ARM Compiler versions

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

1-13

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi/index.html

Chapter 2
Configuration Information for Different Versions of
the ARM Compilation Tools

Describes the FlexNet, GCC, and Cygwin versions supported by the different versions of the ARM
compilation tools.

It contains the following sections:
• 2.1 FlexNet versions supported on page 2-15.
• 2.2 GCC versions emulated on page 2-16.
• 2.3 Cygwin versions supported on page 2-17.

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

2-14

Non-Confidential

2.1 FlexNet versions supported
Different versions of ARM® Compiler use different versions of FlexNet.

ARM recommends that you use the latest available version of the FlexNet license server software. You
can obtain the latest license server from the ARM Self-Service downloads area on silver.arm.com. The
following table shows the minimum license server software version required to use the tools.

Table 2-1 FlexNet versions

Compilation tools version Windows Linux

ARM Compiler 5.06 11.12.1.0 11.12.1.0

ARM Compiler 5.05 11.12.1.0 11.12.1.0

ARM Compiler 5.04 11.10.1.0 11.10.1.0

ARM Compiler 5.03 11.10.1.0 11.10.1.0

ARM Compiler 5.02 10.8.10.0 10.8.10.0

ARM Compiler 5.01 10.8.10.0 10.8.10.0

ARM Compiler 5.0 10.8.7.0 10.8.7.0

ARM Compiler 4.1 10.8.7.0 10.8.7.0

RVCT 4.0 build 471 10.8.7.0 10.8.7.0

RVCT 4.0 10.8.5.0 9.2

RVCT 3.1 build 836 10.8.7.0 10.8.7.0

RVCT 3.1 build 739 10.8.5.0 10.8.5.0

RVCT 3.1 10.8.5.0 9.2

RVCT 3.0 10.8.5.0 10.8.0

RVCT 2.2 9.0.0 9.0.0

RVCT 2.1 9.0.0 9.0.0

RVCT 2.0 8.1b 8.1b

ADS 1.2 7.2i 7.2i

Related information
ARM DS-5 License Management Guide.

2 Configuration Information for Different Versions of the ARM Compilation Tools
2.1 FlexNet versions supported

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

2-15

Non-Confidential

https://silver.arm.com/browse/BX002
http://infocenter.arm.com/help/topic/com.arm.doc.dui0577-/index.html

2.2 GCC versions emulated
Different versions of ARM Compiler emulate different versions of GCC in GNU mode.

The GCC versions emulated by default in the compilation tools are:

Table 2-2 GCC versions

Compilation tools version GCC version

ARM Compiler 5.06 4.7.0

ARM Compiler 5.05 4.2.0

ARM Compiler 5.04 4.2.0

ARM Compiler 5.03 4.2.0

ARM Compiler 5.02 4.2.0

ARM Compiler 5.01 4.2.0

ARM Compiler 5.0 4.2.0

ARM Compiler 4.1 4.2.0

RVCT 4.0 4.2.0

RVCT 3.1 3.3.0

Related information
--gnu (armcc).
--gnu_version=version (armcc).

2 Configuration Information for Different Versions of the ARM Compilation Tools
2.2 GCC versions emulated

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

2-16

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124921873.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124922699.html

2.3 Cygwin versions supported
ARM Compiler releases, including update releases, are validated against the Cygwin distribution
available at the time of release.

See the ARM® Compiler 5 Release Notes for your specific release of the compiler for additional
information.

 Note

You can use ARM Compiler with Cygwin on the supported Windows platforms. However, Cygwin path
translation enabled by CYGPATH is only supported on 32-bit Windows platforms.

Related information
About specifying Cygwin paths in compilation tools on Windows.

2 Configuration Information for Different Versions of the ARM Compilation Tools
2.3 Cygwin versions supported

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

2-17

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.coretools/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0529-/pge1362395716635.html

Chapter 3
Migrating from ARM Compiler v5.05 to v5.06

Describes the changes that affect migration and compatibility between ARM Compiler v5.05 and v5.06.

It contains the following sections:
• 3.1 Compatibility of ARM Compiler v5.06 with legacy objects and libraries on page 3-19.
• 3.2 Compiler changes between ARM Compiler v5.05 and v5.06 on page 3-20.

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-18

Non-Confidential

3.1 Compatibility of ARM Compiler v5.06 with legacy objects and libraries
Backwards compatibility of objects and libraries built with RVCT 3.0 and earlier is supported provided
they have not been built with --apcs /adsabi.

Given these restrictions, ARM strongly recommends that you rebuild your entire project, including any
user, or third-party supplied libraries, with ARM Compiler v5.06. This is to avoid any potential
incompatibilities, and to take full advantage of the improved optimization, enhancements, and new
features provided by ARM Compiler v5.06.

Related concepts
1.1 Compatibility between ARM Compiler versions on page 1-13.

Related information
--apcs (armasm).
--apcs (armcc).

3 Migrating from ARM Compiler v5.05 to v5.06
3.1 Compatibility of ARM Compiler v5.06 with legacy objects and libraries

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-19

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289818214.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124899798.html

3.2 Compiler changes between ARM Compiler v5.05 and v5.06
Various changes have been made to armcc in ARM Compiler toolchain v5.06.

The following changes have been made to the compiler:
• Some older processors are deprecated. Specify --cpu=list to see the supported processors. The tools

give a warning if you specify a deprecated processor.
• The behavior of #pragma arm section has changed with respect to inline functions.

This section contains the following subsections:
• 3.2.1 #pragma arm section and inline functions on page 3-20.
• 3.2.2 GCC default version changed on page 3-20.
• 3.2.3 __ldrex and __strex intrinsics deprecated on page 3-21.

3.2.1 #pragma arm section and inline functions

ARM Compiler v5.05 ignored #pragma arm section for inline functions.

By default, ARM Compiler v5.06 respects this pragma for inline functions.

The --no_ool_section_name command-line option lets you revert to the ARM Compiler v5.05
behavior.

3.2.2 GCC default version changed

The default value of --gnu_version is now 40700, that is GCC version 4.7.0.

There are some differences in behavior to be aware of:
• The accepted dialect of C/C++ has been changed in GCC. Therefore, existing code that compiles with

the former default, --gnu_version=40200 (GCC version 4.2.0), might not compile with
--gnu_version=40700.

• In C++, a friend class declaration no longer considers typedefs. For example, the friend declaration
refers to A<T> and not A<int>:

template< class T > class A { };
class B : public A {
 typedef A<int> A;
 friend class A; // finds injected class name of A
};

• In C++, it is no longer permissible to convert a pointer, or pointer to member conversion, to a
protected base class:

struct B {};
struct D1: protected B { };
void f(B*);
struct D2: B {
 D1 d;
 D2() {
 f(&d); // Not accepted with gnu_version >= 40400
 }
};

• In C++11, the type of an integer literal larger than can be represented as long int, has the type long
long int, providing it can be represented by the type long long int, otherwise it has the type
unsigned long long int. Previously in --gnu mode, integer literals that could be represented as an
unsigned long int had the type unsigned long int.

• The macro __cplusplus is defined as 199711L for C++03, or 201103L for C++11. Previously in --
gnu mode, if C++ or C++11 was used, it was defined to 1.

• In C++11, the compiler generates default Move and Move assignment operators, when required by
the standard.

• In C++ and C++11, functions with identical parameter names are no longer accepted:

void f(int i, int i); // No longer accepted
void g(){
 f(0, 0);
}

3 Migrating from ARM Compiler v5.05 to v5.06
3.2 Compiler changes between ARM Compiler v5.05 and v5.06

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-20

Non-Confidential

3.2.3 __ldrex and __strex intrinsics deprecated

The __ldrex and __strex family of intrinsics have been deprecated, and use of the LDREX and STREX
family of instructions in inline assembly code has also been deprecated.

Use one of the following alternatives:
• Write code that uses these instructions in an embedded assembler function.
• Use an appropriate member of the __sync_* family of GNU built-in functions, for example

__sync_lock_test_and_set().

For example, the following code uses the deprecated __ldrex and __strex intrinsics to implement a
mutex lock, preventing concurrent processes from writing to output at the same time:

#define LOCKED 1
#define UNLOCKED 0

static int output_mutex = UNLOCKED;

void lock_mutex(void) {
 int status;
 do {
 status = __ldrex(&output_mutex);
 } while(status == LOCKED || __strex(LOCKED, &output_mutex));
}

void unlock_mutex() {
 output_mutex = UNLOCKED;
}

void output_string(char * str)
{
 int i;
 /* Wait until the output mutex lock is acquired */
 lock_mutex();

 /* Output each character in turn */
 for(i=0 ; str[i] != '\0' ; i++) {
 putc(str[i], stdout);
 }

 /* Release output mutex lock */
 unlock_mutex();
}

The locking mechanism lock_mutex() can be refactored to use the __sync_* family of GNU built-in
functions as follows:

void lock_mutex(void) {
 while (!__sync_bool_compare_and_swap(&output_mutex, UNLOCKED, LOCKED)) {};
}

Related information
GNU built-in functions.

3 Migrating from ARM Compiler v5.05 to v5.06
3.2 Compiler changes between ARM Compiler v5.05 and v5.06

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

3-21

Non-Confidential

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0472l/chr1359125006834.html

Chapter 4
Migrating from ARM Compiler v5.04 to v5.05

Describes the changes that affect migration and compatibility between ARM Compiler v5.04 and v5.05.

It contains the following sections:
• 4.1 Compatibility of ARM Compiler v5.05 with legacy objects and libraries on page 4-23.
• 4.2 Compatibility of code compiled with C++11 with code compiled with C++03 on page 4-24.
• 4.3 Compiler changes between ARM Compiler v5.04 and v5.05 on page 4-25.

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

4-22

Non-Confidential

4.1 Compatibility of ARM Compiler v5.05 with legacy objects and libraries
Backwards compatibility of objects and libraries built with RVCT 3.0 and earlier is supported provided
they have not been built with --apcs /adsabi.

Given these restrictions, ARM strongly recommends that you rebuild your entire project, including any
user, or third-party supplied libraries, with ARM Compiler v5.05. This is to avoid any potential
incompatibilities, and to take full advantage of the improved optimization, enhancements, and new
features provided by ARM Compiler v5.05.

Related concepts
1.1 Compatibility between ARM Compiler versions on page 1-13.

Related information
--apcs (armasm).
--apcs (armcc).

4 Migrating from ARM Compiler v5.04 to v5.05
4.1 Compatibility of ARM Compiler v5.05 with legacy objects and libraries

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

4-23

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289818214.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124899798.html

4.2 Compatibility of code compiled with C++11 with code compiled with C++03
Appendix C of the C++11 standard describes incompatibilities between C++11 and C++03.

This section contains the following subsections:
• 4.2.1 Use of C++11 with the ARM C++ Standard Libraries on page 4-24.

4.2.1 Use of C++11 with the ARM C++ Standard Libraries

ARM Compiler provides the different types of C++ library.

The libraries provided are:
• The runtime library containing support for language features, such as exceptions.
• The Rogue Wave C++ standard library.

Changes in the standard libraries from ARM Compiler 5.05

The Rogue Wave C++ standard library implements the C++98 standard. There is no support for the
C++11 library standard.

Using the runtime libraries from previous versions of ARM Compiler

Older releases of the ARM Compiler runtime library do not contain support for the new language
runtime changes. You must compile your C++11 code with the --cpp_compat language option to prevent
the compiler from using features that require updated runtime library support.

C++11 compatibility mode

A command line option --cpp_compat has been added to armcc and armlink.

Related information
Rogue Wave Standard C++ Library Documentation.
--cpp_compat (armcc).
--cpp_compat (armlink).

4 Migrating from ARM Compiler v5.04 to v5.05
4.2 Compatibility of code compiled with C++11 with code compiled with C++03

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

4-24

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0729a/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1406727522718.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1406300005451.html

4.3 Compiler changes between ARM Compiler v5.04 and v5.05
Various changes have been made to armcc in ARM Compiler toolchain v5.05.

The following changes have been made to the compiler:
• Support for many C++11 language features.
• Support for a subset of C++11 that allows a runtime library from a previous version of the tools to be

used.
• The compiler front-end has been updated. There are a small number of C++ name mangling

differences.

This section contains the following subsections:
• 4.3.1 C++ name mangling differences in ARM Compiler v5.05 on page 4-25.

4.3.1 C++ name mangling differences in ARM Compiler v5.05

Various name mangling changes have been made in ARM Compiler v5.05.

Non-type non-dependent template arguments

When one template uses another template, the way that the non-type arguments to the used template that
do not depend on the type parameters of the using template are mangled has changed.

The cases affected are:

sizeof

In ARM Compiler v5.04 expressions involving sizeof(x) had a mangling that included the sizeof.
ARM Compiler v5.05 mangles the integer constant that the sizeof() expression evaluates to.

These changes in behavior might result in problems when all of the following conditions are true:
• A translation unit is compiled with ARM Compiler v5.05.
• A second translation unit is compiled with ARM Compiler v5.04 or earlier.
• The translation units instantiate or refer to a template that includes sizeof(x).

__alignof

In ARM Compiler v5.04 in --gnu mode, expressions involving __alignof__(x) had a mangling that
included the __alignof__. ARM Compiler v5.04 in --gnu mode mangles the integer constant that the
__alignof__(x) expression evaluates to.

These changes in behavior might result in problems when all of the following conditions are true:
• A translation unit is compiled with ARM Compiler v5.05 using the --gnu option.
• A second translation unit is compiled with ARM Compiler v5.04 or earlier using the --gnu option.
• The translation units instantiate or refer to a template that includes __alignof__(x) expressions.

Binary operations

In ARM Compiler v5.04, binary operations were included in the mangling. ARM Compiler v5.05 in
C++11 mode has the same behavior. ARM Compiler v5.05 in non-C++11 mode evaluates the integer
constant and then mangles the result.

This change might result in problems when all of the following conditions are true:
• A translation unit is compiled with ARM Compiler v5.05 without the --cpp11 option.
• A second translation unit is compiled with ARM Compiler v5.04 or earlier, or ARM Compiler v5.05

using the --cpp11 option.
• The translation units instantiate or refer to a template that includes binary operations.

Example

The following example contains templates that include a sizeof and a binary operation:

4 Migrating from ARM Compiler v5.04 to v5.05
4.3 Compiler changes between ARM Compiler v5.04 and v5.05

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

4-25

Non-Confidential

file1.cpp

template <class T, T N> struct S {};
// f1 undefined if file1.cpp is compiled with 5.04 and file2.cpp is
// compiled with 5.05
template <class T> int f1(S<T, sizeof(char)>);
// f2 undefined if file1.cpp is compiled with 5.05 with --cpp11 or
// with 5.04 and file2.cpp is compiled with 5.05 without --cpp11.
template <class T> int f2(S<T, 1+1>);
int function()
{
 S<int,sizeof(char)> s1;
 S<int,1+1> s2;
 return f1(s1) + f2(s2);
}

file2.cpp

template <class T, T N> struct S {};
template <class T> int f1(S<T, sizeof(char)>)
{
 return 1;
}
template <class T> int f2(S<T, 1+1>)
{
 return 2;
}

template int f1<int>(S<int,sizeof(char)>);
template int f2<int>(S<int,1+1>);

extern int function();

int main()
{
 function();
}

Substitution of _Complex types

_Complex types are only available in C++ when using --gnu.

In ARM Compiler v5.04, _Complex types failed to have the substitution mechanism applied when
generating name manglings. This has been fixed in ARM Compiler v5.05. However, this means that
problems might occur when all of the following conditions are true:
• A translation unit is compiled with ARM Compiler v5.05 using the --gnu option.
• A second translation unit is compiled with ARM Compiler v5.04 or earlier using the --gnu option.
• The translation units define or refer to a function that takes more than one _Complex argument.

Example

For example:

file1.cpp

// fn is undefined if file1.cpp is compiled with 5.04 and file2 is
// compiled with 5.05.
extern void fn(float _Complex a, float _Complex b);
int main()
{
 float _Complex cf;
 fn(cf, cf);
}

file2.cpp

void fn(float _Complex a, float _Complex b)
{

}

4 Migrating from ARM Compiler v5.04 to v5.05
4.3 Compiler changes between ARM Compiler v5.04 and v5.05

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

4-26

Non-Confidential

Const-volatile-qualified non-member function type as template argument

In ARM Compiler v5.04, armcc incorrectly mangled a const-volatile-qualified (cv-qualified) non-
member function type used as a template argument as if it was not cv-qualified. This has been fixed in
ARM Compiler v5.05.

This means that problems might occur when both of the following conditions are true:
• A translation unit is compiled with ARM Compiler v5.05.
• A second translation unit is compiled with ARM Compiler v5.04 or earlier.
• One of these translation units defines or refers to a function that takes as an argument a template with

an argument of cv-qualified non-member function type.

Example

file1.cpp

template <class T> struct A { };
typedef void cfn(int) const;
// f is undefined if file1.cpp is compiled with 5.04 and file2 is
// compiled with 5.05 or vice versa.
extern int f(A<cfn>);
int main()
{
 A<cfn> a;
 f(a);
}

file2.cpp

template <class T> struct A { };
typedef void cfn(int) const;
int f(A<cfn>)
{
 return 1;
}

lvalue of function type used as non-type template argument

In v5.04, an lvalue of function type used as a non-type template argument was incorrectly mangled as
&(function_name()) instead of function_name(). This has been fixed in v5.05.

This means that a link failure is possible when both of the following situations occur:
• A translation unit is compiled with ARM Compiler v5.05.
• A second translation unit is compiled with ARM Compiler v5.04 or earlier.
• The translation units instantiate or refer to a template with a non-type argument of lvalue of function

type.

Example

file1.cpp

template <class T> struct A
{
 template <void (*PF)()> struct B {};
};
void ff();
// f is undefined if file1.cpp is compiled with 5.04 and file2 is
// compiled with 5.05, or vice versa.
template<class T> typename A<T>::template B<ff> f(T);
int main()
{
 f(1);
}

file2.cpp

template <class T> struct A
{
 template <void (*PF)()> struct B {};

4 Migrating from ARM Compiler v5.04 to v5.05
4.3 Compiler changes between ARM Compiler v5.04 and v5.05

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

4-27

Non-Confidential

};
void ff();
template<class T> typename A<T>::template B<ff> f(T)
{
 typename A<T>::template B<ff> ret;
 return ret;
}
template A<int>::B<ff> f<int>(int);

Related information
__alignof__.
--cpp11.
--gnu.

4 Migrating from ARM Compiler v5.04 to v5.05
4.3 Compiler changes between ARM Compiler v5.04 and v5.05

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

4-28

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1360660801578.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1406800556948.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124921873.html

Chapter 5
Migrating from ARM Compiler v5.03 to v5.04

Describes the changes that affect migration and compatibility between ARM Compiler v5.03 and v5.04.

It contains the following sections:
• 5.1 Compatibility of ARM Compiler v5.04 with legacy objects and libraries on page 5-30.
• 5.2 Documentation changes between ARM Compiler v5.03 and v5.04 on page 5-31.

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

5-29

Non-Confidential

5.1 Compatibility of ARM Compiler v5.04 with legacy objects and libraries
Backwards compatibility of objects and libraries built with RVCT 3.0 and earlier is supported provided
they have not been built with --apcs /adsabi.

Given these restrictions, ARM strongly recommends that you rebuild your entire project, including any
user, or third-party supplied libraries, with ARM Compiler v5.04. This is to avoid any potential
incompatibilities, and to take full advantage of the improved optimization, enhancements, and new
features provided by ARM Compiler v5.04.

Related concepts
1.1 Compatibility between ARM Compiler versions on page 1-13.

Related information
--apcs (armasm).
--apcs (armcc).

5 Migrating from ARM Compiler v5.03 to v5.04
5.1 Compatibility of ARM Compiler v5.04 with legacy objects and libraries

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

5-30

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289818214.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124899798.html

5.2 Documentation changes between ARM Compiler v5.03 and v5.04
Various changes have been made to the documentation in ARM Compiler v5.04.

Changes to document structure and titles

The user and reference documents for each of the compiler, assembler, linker, and ARM C and C++
libraries have been merged, and the titles of all documents have changed. The changes are summarized in
the following table:

5.03 document 5.04 document

Introducing the ARM Compiler toolchain Getting Started Guide

Developing Software for ARM Processors Software Development Guide

Using the Compiler armcc User Guide

Compiler Reference Merged into the armcc User Guide

Using the Assembler armasm User Guide

Assembler Reference Merged into the armasm User Guide

Using the Linker armlink User Guide

Linker Reference Merged into the armlink User Guide

Using ARM C and C++ Libraries and Floating-Point Support ARM C and C++ Libraries and Floating-Point Support User Guide

ARM C and C++ Libraries and Floating-Point Support
Reference

Merged into the ARM C and C++ Libraries and Floating-Point
Support User Guide

Creating Static Software Libraries with armar armar User Guide

Using the fromelf Image Converter fromelf User Guide

Errors and Warnings Reference Errors and Warnings Reference Guide

Technical changes in the documentation
For technical changes that have been made to the ARM Compiler documentation, see the following
revision summaries:
• Revisions for Migration and Compatibility Guide on page Appx-A-89 (this document).
• Revisions for Getting Started Guide.
• Revisions for Software Development Guide.
• Revisions for armcc User Guide.
• Revisions for armasm User Guide.
• Revisions for armlink User Guide.
• Revisions for ARM C and C++ Libraries and Floating-Point Support User Guide.
• Revisions for armar User Guide.
• Revisions for fromelf User Guide.
• Revisions for Errors and Warnings Reference Guide.

5 Migrating from ARM Compiler v5.03 to v5.04
5.2 Documentation changes between ARM Compiler v5.03 and v5.04

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

5-31

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0529-/pge1374737142952.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0471-/pge1374218832817.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1374754470791.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1374575741805.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1374220845160.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0475-/chr1374842181441.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0476-/pge1374485240390.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0477-/pge1374489088826.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0496-/dom1374748724515.html

Chapter 6
Migrating from ARM Compiler v5.02 to v5.03

Describes the changes that affect migration and compatibility between ARM Compiler v5.02 and v5.03.

It contains the following sections:
• 6.1 Compatibility of ARM Compiler v5.03 with legacy objects and libraries on page 6-33.
• 6.2 Compiler changes between ARM Compiler v5.02 and v5.03 on page 6-34.
• 6.3 Documentation changes between ARM Compiler v5.02 and v5.03 on page 6-35.

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

6-32

Non-Confidential

6.1 Compatibility of ARM Compiler v5.03 with legacy objects and libraries
Backwards compatibility of objects and libraries built with RVCT 3.0 and earlier is supported provided
they have not been built with --apcs /adsabi.

Given these restrictions, ARM strongly recommends that you rebuild your entire project, including any
user, or third-party supplied libraries, with ARM Compiler v5.03. This is to avoid any potential
incompatibilities, and to take full advantage of the improved optimization, enhancements, and new
features provided by ARM Compiler v5.03.

Related concepts
1.1 Compatibility between ARM Compiler versions on page 1-13.

Related information
--apcs (armasm).
--apcs (armcc).

6 Migrating from ARM Compiler v5.02 to v5.03
6.1 Compatibility of ARM Compiler v5.03 with legacy objects and libraries

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

6-33

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289818214.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124899798.html

6.2 Compiler changes between ARM Compiler v5.02 and v5.03
Various changes have been made to armcc in ARM Compiler toolchain v5.03.

The following changes have been made in ARM Compiler toolchain v5.03:
• The armcc message numbers 3001 to 4001 have been modified. Therefore, if you suppress diagnostic

messages, you might have to modify the message numbers.

Related information
Toolchain environment variables.
--version_number (armasm).
--version_number (armcc).
--version_number (armlink).
--version_number (fromelf).
--version_number (armar).

6 Migrating from ARM Compiler v5.02 to v5.03
6.2 Compiler changes between ARM Compiler v5.02 and v5.03

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

6-34

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0529-/pge1362395708683.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/pge1362075624402.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/pge1362075624402.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075624402.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0477-/pge1362075624402.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0476-/pge1362075624402.html

6.3 Documentation changes between ARM Compiler v5.02 and v5.03
Various changes have been made to the documentation in ARM Compiler toolchain v5.03.

For technical changes that have been made to the ARM Compiler toolchain documentation, see the
following revision summaries:
• Revisions for Migration and Compatibility (this document).
• Revisions for Introducing the ARM Compiler toolchain.
• Revisions for Developing Software for ARM Processors.
• Revisions for Using the Compiler.
• Revisions for Using the Assembler.
• Using the Linker.
• Revisions for Using ARM C and C++ Libraries and Floating-Point Support.
• Revisions for Creating Static Software Libraries with armar.
• Revisions for Using the fromelf Image Converter.
• Revisions for Errors and Warnings Reference.
• Revisions for Assembler Reference.
• Revisions for Compiler Reference.
• Revisions for Linker Reference.
• Revisions for ARM C and C++ Libraries and Floating-Point Support.

 Note

Building Linux Applications with ARM Compiler toolchain and GNU Libraries is no longer being
provided as part of the ARM Compiler documentation set.

6 Migrating from ARM Compiler v5.02 to v5.03
6.3 Documentation changes between ARM Compiler v5.02 and v5.03

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

6-35

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0530i/CHDDBJIH.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0529i/CIHGECCD.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0471i/CIHHCDBH.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472i/CIHICHBI.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473i/CJAFCIEC.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474i/CHDEHAFB.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0475i/CJAHGADE.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0476i/CJADEGEJ.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0477i/CHDCIIHC.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0496i/CJAIGFIC.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0489i/CJAJJJAD.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0491i/CJAFJCBA.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0493i/CJAEJHHI.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0492i/CJAFCDHB.html

Chapter 7
Migrating from ARM Compiler v5.0 to v5.01 or later

Describes the changes that affect migration and compatibility between ARM Compiler v5.0 and v5.01 or
later.

It contains the following sections:
• 7.1 Compatibility of ARM Compiler v5.01 with legacy objects and libraries on page 7-37.
• 7.2 General changes between ARM Compiler v5.0 and v5.01 or later on page 7-38.
• 7.3 Documentation changes between ARM Compiler v5.0 and v5.01 or later on page 7-39.

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-36

Non-Confidential

7.1 Compatibility of ARM Compiler v5.01 with legacy objects and libraries
Backwards compatibility of objects and libraries built with RVCT 3.0 and earlier is supported provided
they have not been built with --apcs /adsabi.

Given these restrictions, ARM strongly recommends that you rebuild your entire project, including any
user, or third-party supplied libraries, with ARM Compiler v5.01. This is to avoid any potential
incompatibilities, and to take full advantage of the improved optimization, enhancements, and new
features provided by ARM Compiler v5.01.

Related concepts
1.1 Compatibility between ARM Compiler versions on page 1-13.

Related information
--apcs (armasm).
--apcs (armcc).

7 Migrating from ARM Compiler v5.0 to v5.01 or later
7.1 Compatibility of ARM Compiler v5.01 with legacy objects and libraries

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-37

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289818214.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124899798.html

7.2 General changes between ARM Compiler v5.0 and v5.01 or later
Various general changes have been made in ARM Compiler toolchain v5.01.

The following changes have been made in ARM Compiler toolchain v5.01:
• A separate NEON compiler license is no longer required in ARM Compiler 5.01 and later.
• The version-specific environment variables have changed to use a single digit version, for example,

ARMCC5INC.
• The version number reported by the tools using --version_number has changed:

— In version 5.0 and earlier, the format is VVbbbb.
— In version 5.01 and later, the format is VVVbbbb.

For example, version 5.01 build 2345 is reported as 5012345.

Related information
Toolchain environment variables.
--version_number (armasm).
--version_number (armcc).
--version_number (armlink).
--version_number (fromelf).
--version_number (armar).

7 Migrating from ARM Compiler v5.0 to v5.01 or later
7.2 General changes between ARM Compiler v5.0 and v5.01 or later

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-38

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0529-/pge1362395708683.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/pge1362075624402.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/pge1362075624402.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075624402.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0477-/pge1362075624402.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0476-/pge1362075624402.html

7.3 Documentation changes between ARM Compiler v5.0 and v5.01 or later
Various changes have been made to the documentation in ARM Compiler toolchain v5.01.

For technical changes that have been made to the ARM Compiler toolchain documentation, see the
following revision summaries:
• Revisions for Migration and Compatibility (this document).
• Revisions for Introducing the ARM Compiler toolchain.
• Revisions for Developing Software for ARM Processors.
• Revisions for Using the Compiler.
• Revisions for Using the Assembler.
• Using the Linker.
• Revisions for Using ARM C and C++ Libraries and Floating-Point Support.
• Revisions for Creating Static Software Libraries with armar.
• Revisions for Using the fromelf Image Converter.
• Revisions for Errors and Warnings Reference.
• Revisions for Assembler Reference.
• Revisions for Compiler Reference.
• Revisions for Linker Reference.
• Revisions for ARM C and C++ Libraries and Floating-Point Support.
• Revisions for Building Linux Applications with the ARM Compiler toolchain and GNU Libraries.

7 Migrating from ARM Compiler v5.0 to v5.01 or later
7.3 Documentation changes between ARM Compiler v5.0 and v5.01 or later

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

7-39

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0530g/CHDDBJIH.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0529g/CIHGECCD.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0471g/CIHHCDBH.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472g/CIHICHBI.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473g/CJAFCIEC.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474g/CHDEHAFB.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0475g/CJAHGADE.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0476g/CJADEGEJ.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0477g/CHDCIIHC.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0496g/CJAIGFIC.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0489g/CJAJJJAD.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0491g/CJAFJCBA.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0493g/CJAEJHHI.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0492g/CJAFCDHB.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0483g/CIHIEDCF.html

Chapter 8
Migrating from ARM Compiler v4.1 Patch 3 or later
to v5.0

Describes the changes that affect migration and compatibility between ARM Compiler v4.1 Patch 3 and
v5.0.

It contains the following sections:
• 8.1 Compatibility of ARM Compiler v5.0 with legacy objects and libraries on page 8-41.
• 8.2 General changes between ARM Compiler v4.1 Patch 3 or later and v5.0 on page 8-42.
• 8.3 Compiler changes between ARM Compiler v4.1 Patch 3 or later and v5.0 on page 8-43.
• 8.4 Linker changes between ARM Compiler v4.1 Patch 3 or later and v5.0 on page 8-44.
• 8.5 Documentation changes between ARM Compiler v4.1 Patch 3 or later and v5.0 on page 8-45.

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

8-40

Non-Confidential

8.1 Compatibility of ARM Compiler v5.0 with legacy objects and libraries
Backwards compatibility of objects and libraries built with RVCT 3.0 and earlier is supported provided
they have not been built with --apcs /adsabi.

Given these restrictions, ARM strongly recommends that you rebuild your entire project, including any
user, or third-party supplied libraries, with ARM Compiler v5.0. This is to avoid any potential
incompatibilities, and to take full advantage of the improved optimization, enhancements, and new
features provided by ARM Compiler v5.0.

Related concepts
1.1 Compatibility between ARM Compiler versions on page 1-13.

Related information
--apcs (armasm).
--apcs (armcc).

8 Migrating from ARM Compiler v4.1 Patch 3 or later to v5.0
8.1 Compatibility of ARM Compiler v5.0 with legacy objects and libraries

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

8-41

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289818214.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124899798.html

8.2 General changes between ARM Compiler v4.1 Patch 3 or later and v5.0
Various general changes have been made in ARM Compiler toolchain v5.0.

The following changes have been made in ARM Compiler toolchain v5.0:
• The tools no longer require any environment variables to be set.
• An additional convention for finding the default header and library directories has been added to the

v5.0 tools. When no environment variables or related command-line options are present:
— The compiler looks in ../include.
— The linker looks in ../lib.

These locations match the relative paths to the include and library directories from the DS-5 bin
directory.

Related information
Toolchain environment variables.

8 Migrating from ARM Compiler v4.1 Patch 3 or later to v5.0
8.2 General changes between ARM Compiler v4.1 Patch 3 or later and v5.0

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

8-42

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0529-/pge1362395708683.html

8.3 Compiler changes between ARM Compiler v4.1 Patch 3 or later and v5.0
Various changes have been made to armcc in ARM Compiler toolchain v5.0.

The following changes have been made to the compiler:
• The Edison Design Group (EDG) front-end used by the compiler has been updated to version 4.1.

However, this does not create any compatibility issues.
• In version 4.1, armcc searched for paths relative to the current working directory. In version 5.0 and

later, it searches relative to the current place.
• If ARMCC50INC is not set and -J is not present on the command line, the compiler searches for the

default includes in ../include, relative to the location of armcc.exe.
• Improved GCC compatibility, and supports a GCC fallback mode.
• The Link-time code generation (LTCG) feature is deprecated. As an alternative ARM recommends

you use the --multifile compiler option.
• Profiler-guided optimization with --profile is deprecated, and is not currently compatible with

ARM Streamline.

Related information
Using GCC fallback when building applications.
Compiler search rules and the current place.
-Jdir[,dir,...] (armcc).
--multifile, --no_multifile (armcc).
-Warmcc,--gcc_fallback (armcc).
Predefined macros.
Toolchain environment variables.

8 Migrating from ARM Compiler v4.1 Patch 3 or later to v5.0
8.3 Compiler changes between ARM Compiler v4.1 Patch 3 or later and v5.0

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

8-43

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124199444.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124197463.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124928050.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124934478.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124951311.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359125007083.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0529-/pge1362395708683.html

8.4 Linker changes between ARM Compiler v4.1 Patch 3 or later and v5.0
Various changes have been made to armlink in ARM Compiler toolchain v5.0.

The following changes have been made to the linker:
• If ARMCC50LIB is not set and --libpath is not present on the command line, the linker searches for

the default libraries in ../lib, relative to the location of armlink.exe.
• The Link-time code generation (LTCG) feature is deprecated. As an alternative ARM recommends

you use the --multifile compiler option.
• Profiler-guided optimization with --profile is deprecated, and is not currently compatible with

ARM Streamline.

Related information
--libpath=pathlist (armlink).
--multifile, --no_multifile (armcc).
Toolchain environment variables.

8 Migrating from ARM Compiler v4.1 Patch 3 or later to v5.0
8.4 Linker changes between ARM Compiler v4.1 Patch 3 or later and v5.0

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

8-44

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075504783.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124934478.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0529-/pge1362395708683.html

8.5 Documentation changes between ARM Compiler v4.1 Patch 3 or later and
v5.0

Various changes have been made to the documentation in ARM Compiler v5.0.

For technical changes that have been made to the ARM Compiler toolchain documentation, see the
following revision summaries:
• Revisions for Migration and Compatibility (this document).
• Revisions for Introducing the ARM Compiler toolchain.
• Revisions for Developing Software for ARM Processors.
• Revisions for Using the Compiler.
• Revisions for Using the Assembler.
• Using the Linker.
• Revisions for Using ARM C and C++ Libraries and Floating-Point Support
• Revisions for Creating Static Software Libraries with armar.
• Revisions for Using the fromelf Image Converter.
• Revisions for Errors and Warnings Reference.
• Revisions for Assembler Reference.
• Revisions for Compiler Reference
• Revisions for Linker Reference.
• Revisions for ARM C and C++ Libraries and Floating-Point Support.
• Revisions for Building Linux Applications with the ARM Compiler toolchain and GNU Libraries.

8 Migrating from ARM Compiler v4.1 Patch 3 or later to v5.0
8.5 Documentation changes between ARM Compiler v4.1 Patch 3 or later and v5.0

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

8-45

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0530e/CHDDBJIH.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0529e/CIHGECCD.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0471e/CIHHCDBH.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472e/CIHICHBI.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473e/CJAFCIEC.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474e/CHDEHAFB.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0475e/CJAHGADE.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0476e/CJADEGEJ.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0477e/CHDCIIHC.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0496e/CJAIGFIC.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0489e/CJAJJJAD.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0491e/CJAFJCBA.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0493e/CJAEJHHI.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0492e/CJAFCDHB.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0483e/CIHIEDCF.html

Chapter 9
Migrating from ARM Compiler v4.1 build 561 to v4.1
Patch 3 or later

Describes the changes that affect migration and compatibility between ARM Compiler v4.1 build 561
and v4.1 Patch 3 or later.

It contains the following sections:
• 9.1 Compatibility of ARM Compiler v4.1 Patch 3 with legacy objects and libraries on page 9-47.
• 9.2 C and C++ library changes between ARM Compiler v4.1 build 561 and v4.1 Patch 3 or later

on page 9-48.

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

9-46

Non-Confidential

9.1 Compatibility of ARM Compiler v4.1 Patch 3 with legacy objects and libraries
Backwards compatibility of objects and libraries built with RVCT 3.0 and earlier is supported provided
they have not been built with --apcs /adsabi.

Given these restrictions, ARM strongly recommends that you rebuild your entire project, including any
user, or third-party supplied libraries, with ARM Compiler v4.1 Patch 3. This is to avoid any potential
incompatibilities, and to take full advantage of the improved optimization, enhancements, and new
features provided by ARM Compiler v4.1 Patch 3.

Related concepts
1.1 Compatibility between ARM Compiler versions on page 1-13.

Related information
--apcs (armasm).
--apcs (armcc).

9 Migrating from ARM Compiler v4.1 build 561 to v4.1 Patch 3 or later
9.1 Compatibility of ARM Compiler v4.1 Patch 3 with legacy objects and libraries

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

9-47

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289818214.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124899798.html

9.2 C and C++ library changes between ARM Compiler v4.1 build 561 and v4.1
Patch 3 or later

Various changes have been made to the ARMC C and C++ library in ARM Compiler toolchain v4.1
Patch 3.

The new implementation of alloca() allocates memory on the stack and not on the heap. This does not
cause compatibility problems with software that assumes the old heap-based implementation of
alloca(). However, such software might contain operations that are no longer required, such as
implementing __user_perthread_libspace for the alloca state that is no longer used.

Related information
Library heap usage requirements of the ARM C and C++ libraries.
Use of the __user_libspace static data area by the C libraries (none).
Building an application without the C library.

9 Migrating from ARM Compiler v4.1 build 561 to v4.1 Patch 3 or later
9.2 C and C++ library changes between ARM Compiler v4.1 build 561 and v4.1 Patch 3 or later

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

9-48

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0475-/chr1358938938696.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0475-/chr1358938914047.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0475-/chr1358938918977.html

Chapter 10
Migrating from ARM Compiler v4.1 to v4.1 build 561

Describes the changes that affect migration and compatibility between ARM Compiler v4.1 and v4.1
build 561.

It contains the following sections:
• 10.1 Compatibility of ARM Compiler v4.1 build 561 with legacy objects and libraries

on page 10-50.
• 10.2 Compiler changes between ARM Compiler v4.1 and v4.1 build 561 on page 10-51.
• 10.3 Linker changes between ARM Compiler v4.1 and v4.1 build 561 on page 10-52.
• 10.4 Assembler changes between ARM Compiler v4.1 and v4.1 build 561 on page 10-53.
• 10.5 C and C++ library changes between ARM Compiler v4.1 and v4.1 build 561 on page 10-54.
• 10.6 fromelf changes between ARM Compiler v4.1 and v4.1 build 561 on page 10-55.
• 10.7 Documentation changes between ARM Compiler v4.1 and v4.1 build 561 on page 10-56.

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

10-49

Non-Confidential

10.1 Compatibility of ARM Compiler v4.1 build 561 with legacy objects and
libraries

Backwards compatibility of objects and libraries built with RVCT 3.0 and earlier is supported provided
they have not been built with --apcs /adsabi.

Given these restrictions, ARM strongly recommends that you rebuild your entire project, including any
user, or third-party supplied libraries, with ARM Compiler v4.1 build 561. This is to avoid any potential
incompatibilities, and to take full advantage of the improved optimization, enhancements, and new
features provided by ARM Compiler v4.1 build 561.

Related concepts
1.1 Compatibility between ARM Compiler versions on page 1-13.

Related information
--apcs (armasm).
--apcs (armcc).

10 Migrating from ARM Compiler v4.1 to v4.1 build 561
10.1 Compatibility of ARM Compiler v4.1 build 561 with legacy objects and libraries

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

10-50

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289818214.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124899798.html

10.2 Compiler changes between ARM Compiler v4.1 and v4.1 build 561
Various changes have been made to armcc in ARM Compiler toolchain v4.1 build 561.

The compiler faults use of the at attribute when it is used on declarations with incomplete non-array
types. For example, if foo is not declared, the following causes an error:

struct foo a __attribute__((at(0x16000)));

Related information
__attribute__((at(address))) variable attribute.

10 Migrating from ARM Compiler v4.1 to v4.1 build 561
10.2 Compiler changes between ARM Compiler v4.1 and v4.1 build 561

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

10-51

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124981140.html

10.3 Linker changes between ARM Compiler v4.1 and v4.1 build 561
There are no technical changes to armlink that affect migration between ARM Compiler v4.1 and v4.1
build 561.

10 Migrating from ARM Compiler v4.1 to v4.1 build 561
10.3 Linker changes between ARM Compiler v4.1 and v4.1 build 561

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

10-52

Non-Confidential

10.4 Assembler changes between ARM Compiler v4.1 and v4.1 build 561
There are no technical changes to armasm that affect migration between ARM Compiler v4.1 and v4.1
build 561.

10 Migrating from ARM Compiler v4.1 to v4.1 build 561
10.4 Assembler changes between ARM Compiler v4.1 and v4.1 build 561

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

10-53

Non-Confidential

10.5 C and C++ library changes between ARM Compiler v4.1 and v4.1 build 561
Various changes have been made to the ARM C and C++ library in ARM Compiler toolchain v4.1 build
561.

The symbol __use_accurate_range_reduction is retained for backward compatibility, but no longer
has any effect.

The C99 complex number functions in the previous hardware floating point version of the library only
had the hardfp linkage functions and not the softfp linkage functions. The new library has both the hardfp
linkage and softfp linkage functions. This means that existing object code that was built to use hardware
floating point might not function correctly when calling complex functions from the library. The linker
issues a warning in this case. You must recompile all the code that might use the affected functions and
that was built to use hardware floating point. You must relink them with the new library.

Related concepts
1.1 Compatibility between ARM Compiler versions on page 1-13.

Related information
--apcs=qualifier...qualifier (armcc).
--fpu=name (armcc).

10 Migrating from ARM Compiler v4.1 to v4.1 build 561
10.5 C and C++ library changes between ARM Compiler v4.1 and v4.1 build 561

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

10-54

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124899798.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124920656.html

10.6 fromelf changes between ARM Compiler v4.1 and v4.1 build 561
fromelf can now process all files, or a subset of files, in an archive.

Related information
input_file (fromelf).

10 Migrating from ARM Compiler v4.1 to v4.1 build 561
10.6 fromelf changes between ARM Compiler v4.1 and v4.1 build 561

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

10-55

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0477-/pge1362128909968.html

10.7 Documentation changes between ARM Compiler v4.1 and v4.1 build 561
Various changes have been made to the documentation in ARM Compiler toolchain v4.1 build 561.

For technical changes that have been made to the ARM Compiler toolchain documentation, see the
following revision summaries:
• Revisions for Migration and Compatibility (this document).
• Revisions for Introducing the ARM Compiler toolchain.
• Revisions for Developing Software for ARM Processors.
• Revisions for Using the Compiler.
• Revisions for Using the Assembler.
• Using the Linker.
• Revisions for Using ARM C and C++ Libraries and Floating-Point Support.
• Revisions for Using the fromelf Image Converter.
• Revisions for Errors and Warnings Reference.
• Revisions for Assembler Reference
• Revisions for Compiler Reference.
• Revisions for Linker Reference.
• Revisions for ARM C and C++ Libraries and Floating-Point Support.
• Revisions for Building Linux Applications with the ARM Compiler toolchain and GNU Libraries.

10 Migrating from ARM Compiler v4.1 to v4.1 build 561
10.7 Documentation changes between ARM Compiler v4.1 and v4.1 build 561

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

10-56

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0530c/CHDDBJIH.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0529c/CIHGECCD.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0471c/CIHHCDBH.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472c/CIHICHBI.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473c/CJAFCIEC.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474c/CHDEHAFB.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0475c/CJAHGADE.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0477c/CHDCIIHC.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0496c/CJAIGFIC.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0489c/CJAJJJAD.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0491c/CJAFJCBA.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0493c/CJAEJHHI.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0492c/CJAFCDHB.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0483c/CIHIEDCF.html

Chapter 11
Migrating from RVCT v4.0 to ARM Compiler v4.1

Describes the changes that affect migration and compatibility between RVCT v4.0 and ARM Compiler
v4.1.

It contains the following sections:
• 11.1 General changes between RVCT v4.0 and ARM Compiler v4.1 on page 11-58.
• 11.2 Compiler changes between RVCT v4.0 and ARM Compiler v4.1 on page 11-59.
• 11.3 Linker changes between RVCT v4.0 and ARM Compiler v4.1 on page 11-60.
• 11.4 Assembler changes between RVCT v4.0 and ARM Compiler v4.1 on page 11-61.
• 11.5 C and C++ library changes between RVCT v4.0 and ARM Compiler v4.1 on page 11-63.

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

11-57

Non-Confidential

11.1 General changes between RVCT v4.0 and ARM Compiler v4.1
Various general changes have been made in ARM Compiler toolchain v4.1.

The convention for naming environment variables, such as those for setting default header and library
directories, has changed. These are now prefixed with ARMCC rather than RVCT. For example, ARMCC41INC
rather than RVCT40INC.

Compatibility of ARM Compiler v4.1 with legacy objects and libraries

Backwards compatibility of objects and libraries built with RVCT 3.0 and earlier is supported provided
they have not been built with --apcs /adsabi.

Given these restrictions, ARM strongly recommends that you rebuild your entire project, including any
user, or third-party supplied libraries, with ARM Compiler v4.1. This is to avoid any potential
incompatibilities, and to take full advantage of the improved optimization, enhancements, and new
features provided by ARM Compiler v4.1.

Related concepts
1.1 Compatibility between ARM Compiler versions on page 1-13.

Related information
Toolchain environment variables.

11 Migrating from RVCT v4.0 to ARM Compiler v4.1
11.1 General changes between RVCT v4.0 and ARM Compiler v4.1

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

11-58

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0529-/pge1362395708683.html

11.2 Compiler changes between RVCT v4.0 and ARM Compiler v4.1
Various changes have been made to armcc in ARM Compiler toolchain v4.1.

Sign rules on enumerators has changed in line with convention. Enumerator container is now unsigned
unless a negative constant is defined. The RVCT v4.0 10Q1 patch made this change in GCC mode only.

-O3 no longer implies --multifile. The --multifile option has always been available as a separate
option and it is recommended you put this into your builds.

Related references
11.1 General changes between RVCT v4.0 and ARM Compiler v4.1 on page 11-58.

Related information
--multifile, --no_multifile (armcc).
-Onum (armcc).

11 Migrating from RVCT v4.0 to ARM Compiler v4.1
11.2 Compiler changes between RVCT v4.0 and ARM Compiler v4.1

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

11-59

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124934478.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124935804.html

11.3 Linker changes between RVCT v4.0 and ARM Compiler v4.1
Various changes have been made to armlink in ARM Compiler toolchain v4.1.

The following changes to the linker have been made:

GNU ld script support
armlink v4.1 supports a subset of GNU linker control scripts. To more closely match the
behavior of GNU ld, armlink uses an internal linker control script when you specify the --sysv
command-line option. In previous versions of armlink an internal scatter file was used.

The use of a control script produces a logically equivalent, but physically different layout to
RVCT v4.0. To revert back to the default scatter file layout use the command-line option --
no_use_sysv_default_script.

You can replace the internal control script with a user-defined control script using the -T option.

ARM/Thumb synonyms removed
Support for the deprecated feature ARM/Thumb Synonyms has been removed in 4.1. The ARM/
Thumb synonyms feature permits an ARM Global Symbol Definition of symbol S and a Thumb
Global Symbol Definition of S to coexist. All branches from ARM state are directed at the ARM
Definition, all branches from Thumb state are directed at the Thumb Definition.

In 4.0 armlink gives a deprecated feature warning L6455E when it detects ARM/Thumb
Synonyms.

In 4.1 armlink gives an error message L6822E when it detects ARM/Thumb Synonyms.

To recreate the behavior of synonyms rename both the ARM and Thumb definitions and relink.
For each undefined symbol you have to point it at the ARM or the Thumb synonym.

Related references
11.1 General changes between RVCT v4.0 and ARM Compiler v4.1 on page 11-58.

Related information
--use_sysv_default_script, --no_use_sysv_default_script linker option.
--sysv (armlink).

11 Migrating from RVCT v4.0 to ARM Compiler v4.1
11.3 Linker changes between RVCT v4.0 and ARM Compiler v4.1

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

11-60

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075615605.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075603809.html

11.4 Assembler changes between RVCT v4.0 and ARM Compiler v4.1
Various changes have been made to armasm in ARM Compiler toolchain v4.1.

The following changes to the assembler have been made:

Change to the way the assembler reads and processes files
Older assemblers sometimes permitted the source file being assembled to introduce new lines of
code between the two passes of the assembler. In the following example, the symbol num is
defined in the second pass because the symbol foo is not defined in the first pass when :DEF:
foo is evaluated.

 AREA x,CODE
 [:DEF: foo
num EQU 42
]
foo DCD num
 END

The way the assembler reads and processes the file has now changed, and is stricter. You must
rewrite code such as this to ensure that the path through the file is the same in both passes. The
introduction of new lines in the second pass of the assembler is considered an error, and results
in the following error:

Error: A1903E : Line not seen in first pass; cannot be assembled.

The following code shows another example where the assembler faults:

 AREA FOO, CODE
 IF :DEF: VAR
 ELSE
VAR EQU 0
 ENDIF
 END

To avoid this error, you must rewrite this code as:

 AREA FOO, CODE
 IF :LNOT: :DEF: VAR
VAR EQU 0
 ENDIF
 END

This works correctly because new lines are not seen in the second pass of the assembler. Instead
the lines that were in the first pass are ignored in the second pass.

Change to messages output by the assembler
Generally, any messages referring to a position on the source line now has a caret character
pointing to the offending part of the source line, for example:

"foo.s", line 3 (column 19): Warning: A1865W: '#' not seen before constant expression
 3 00000000 ADD r0,r1,1
 ^

Changes to diagnostic messages
In the ARM instruction set, various instructions using SP (r13) were deprecated when Thumb-2
technology was introduced. These instructions are no longer diagnosed as deprecated unless
assembling for a CPU that supports Thumb-2 technology. To enable the warnings on earlier
CPUs, you can use the option --diag_warning=1745,1786,1788,1789,1892. This change was
introduced in the RVCT v4.0 patch 5 (build 697).

Obsolete command-line option
The -O command-line option is obsolete. Use -o instead.

Related references
11.1 General changes between RVCT v4.0 and ARM Compiler v4.1 on page 11-58.

11 Migrating from RVCT v4.0 to ARM Compiler v4.1
11.4 Assembler changes between RVCT v4.0 and ARM Compiler v4.1

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

11-61

Non-Confidential

Related information
--diag_warning=tag{, tag} (armasm).
-o filename (armasm).
How the assembler works.
2 pass assembler diagnostics.

11 Migrating from RVCT v4.0 to ARM Compiler v4.1
11.4 Assembler changes between RVCT v4.0 and ARM Compiler v4.1

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

11-62

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289825953.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289839500.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1359731122720.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1359731169974.html

11.5 C and C++ library changes between RVCT v4.0 and ARM Compiler v4.1
Various changes have been made to the ARM C and C++ library in ARM Compiler toolchain v4.1.

The libraries now use more 32-bit encoded Thumb code on targets that support Thumb-2 technology.
This is expected to result in reduced code size without affecting performance. The linker option --
no_thumb2_library falls back to the old-style libraries if necessary.

Math function returns in some corner cases now conform to POSIX/C99 requirements. You can enable
older behavior with:

#pragma import __use_rvct_matherr

From RVCT v4.0 09Q4 patch onwards, you can enable the newer behavior with:

#pragma import __use_c99_matherr.

Related references
11.1 General changes between RVCT v4.0 and ARM Compiler v4.1 on page 11-58.

Related information
How the ARM C library fulfills ISO C specification requirements.
--thumb2_library, --no_thumb2_library (armlink).

11 Migrating from RVCT v4.0 to ARM Compiler v4.1
11.5 C and C++ library changes between RVCT v4.0 and ARM Compiler v4.1

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

11-63

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0475-/chr1358938933689.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075607215.html

Chapter 12
Migrating from RVCT v3.1 to RVCT v4.0

Describes the changes that affect migration and compatibility between RVCT v3.1 and RVCT v4.0.

It contains the following sections:
• 12.1 Default --gnu_version changed from 303000 (GCC 3.3) to 402000 (GCC 4.2) on page 12-65.
• 12.2 General changes between RVCT v3.1 and RVCT v4.0 on page 12-66.
• 12.3 Changes to symbol visibility between RVCT v3.1 and RVCT v4.0 on page 12-67.
• 12.4 Compiler changes between RVCT v3.1 and RVCT v4.0 on page 12-70.
• 12.5 Linker changes between RVCT v3.1 and RVCT v4.0 on page 12-71.
• 12.6 Assembler changes between RVCT v3.1 and RVCT v4.0 on page 12-76.
• 12.7 fromelf changes between RVCT v3.1 and RVCT v4.0 on page 12-77.
• 12.8 C and C++ library changes between RVCT v3.1 and RVCT v4.0 on page 12-78.

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-64

Non-Confidential

12.1 Default --gnu_version changed from 303000 (GCC 3.3) to 402000 (GCC 4.2)
The default GNU version has changed in RVCT v4.0.

This affects which GNU extensions are accepted, such as __attribute__((visibility(…))) and
lvalue casts, even in non-GNU modes.

Related information
--gnu_version=version (armcc).

12 Migrating from RVCT v3.1 to RVCT v4.0
12.1 Default --gnu_version changed from 303000 (GCC 3.3) to 402000 (GCC 4.2)

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-65

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124922699.html

12.2 General changes between RVCT v3.1 and RVCT v4.0
Various general changes have been made in RVCT v4.0.

The following changes affect multiple tools:

Restrictions on --fpu
--fpu=VFPv2 or --fpu=VFPv3 are only accepted if CPU architecture is greater than or equal to
ARMv5TE. This affects all tools that accept --fpu.

 Note

The assembler assembles VFP instructions when you use the --unsafe option, so do not use --fpu when
using --unsafe. If you use --fpu with --unsafe, the assembler downgrades the reported architecture
error to a warning.

Remove support for v5TExP and derivatives, and all ARMv5 architectures without T
The following --cpu choices are obsolete and have been removed:
• 5.
• 5E.
• 5ExP.
• 5EJ.
• 5EWMMX2.
• 5EWMMX.
• 5TEx.
• ARM9E-S-rev0.
• ARM946E-S-rev0.
• ARM966E-S-rev0.

Compatibility of RVCT v4.0 with legacy objects and libraries

Backwards compatibility of RVCT v2.x, v3.x and v4.0 object and library code is supported provided you
have not built them with --apcs /adsabi and use the RVCT v4.0 linker and C/C++ libraries. Forward
compatibility is not guaranteed.

Given these restrictions, ARM strongly recommends that you rebuild your entire project, including any
user, or third-party supplied libraries, with RVCT v4.0 and later. This is to avoid any potential
incompatibilities, and to take full advantage of the improved optimization, enhancements, and new
features provided by RVCT v4.0 and later.

Related information
--apcs=qualifier...qualifier (armcc).
--cpu=name (armcc).
--fpu=name (armcc).
--cpu=name (armlink).
--fpu=name (armlink).
--apcs=qualifier…qualifier (armasm).
--cpu=name (armasm).
--fpu=name (armasm).
--unsafe (armasm).

12 Migrating from RVCT v3.1 to RVCT v4.0
12.2 General changes between RVCT v3.1 and RVCT v4.0

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-66

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124899798.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124908721.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124920656.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075439817.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075484206.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289818214.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289822343.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289829592.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289846259.html

12.3 Changes to symbol visibility between RVCT v3.1 and RVCT v4.0
Changes to symbol visibility have been made in RVCT v4.0.

The following changes to symbol visibility have been made:

Change the ELF visibility that represents __declspec(dllexport)

When using the --hide_all compiler command-line option, which is the default, the ELF visibility that
represents __declspec(dllexport) in RVCT v3.1 and earlier was STV_DEFAULT. In RVCT v4.0 it is
STV_PROTECTED. Symbols that are STV_PROTECTED can be referred to by other DLLs but cannot
be preempted at load-time.

When using the --no_hide_all command-line option, the visibility of imported and exported symbols is
still STV_DEFAULT as it was in RVCT v3.1.

__attribute(visibility(…))

The GNU-style __attribute(visibility(…)) has been added and is available even without specifying
the --gnu compiler command-line option. Using it overrides any implicit visibility. For example, the
following results in STV_DEFAULT visibility instead of STV_HIDDEN:

 __declspec(visibility("default")) int x = 42;

RVCT v3.1 symbol visibility summary

The following tables summarize the visibility rules in RVCT v3.1:

Table 12-1 RVCT v3.1 symbol visibility summary

Code --hide_all (default) --no_hide_all --dllexport_all

extern int x;

extern int g(void);

STV_HIDDEN STV_DEFAULT STV_HIDDEN

extern int y = 42;

extern int f() { return g() + x; }

STV_HIDDEN STV_DEFAULT STV_DEFAULT

__declspec(dllimport) extern int imx;

__declspec(dllimport) extern int img(void);

STV_DEFAULT STV_DEFAULT STV_DEFAULT

__declspec(dllexport) extern int exy = 42;

__declspec(dllexport) extern int exf() { return
img() + imx; }

STV_DEFAULT STV_DEFAULT STV_DEFAULT

/* exporting undefs (unusual?) */

__declspec(dllexport) extern int exz;

__declspec(dllexport) extern int exh(void);

STV_HIDDEN STV_HIDDEN STV_HIDDEN

12 Migrating from RVCT v3.1 to RVCT v4.0
12.3 Changes to symbol visibility between RVCT v3.1 and RVCT v4.0

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-67

Non-Confidential

Table 12-2 RVCT v3.1 symbol visibility summary for references to run-time functions

Code --no_dllimport_runtime

--hide_all (default)

--no_hide_all --dllexport_all

/* references to runtime functions, for

example __aeabi_fmul */

float fn(float a, float b) { return a*b; }

STV_HIDDEN STV_DEFAULT STV_DEFAULT

RVCT v4.0 symbol visibility summary

The following tables summarize the visibility rules in RVCT v4.0:

Table 12-3 RVCT v4.0 symbol visibility summary

Code --hide_all (default) --no_hide_all --dllexport_all

extern int x;

extern int g(void);

STV_HIDDEN STV_DEFAULT STV_HIDDEN

extern int y = 42;

extern int f() { return g() + x; }

STV_HIDDEN STV_DEFAULT STV_PROTECTED

__declspec(dllimport) extern int imx;

__declspec(dllimport) extern int img(void);

STV_DEFAULT STV_DEFAULT STV_DEFAULT

__declspec(dllexport) extern int exy = 42;

__declspec(dllexport) extern int exf()
{ return img() + imx; }

STV_PROTECTED STV_PROTECTED STV_PROTECTED

/* exporting undefs (unusual?) */

__declspec(dllexport) extern int exz;

__declspec(dllexport) extern int exh(void);

STV_PROTECTED STV_PROTECTED STV_PROTECTED

Table 12-4 RVCT v4.0 symbol visibility summary for references to run-time functions

Code --no_dllimport_runtime

--hide_all (default)

--no_hide_all --dllexport_all

/* references to runtime functions, for

example __aeabi_fmul */

float fn(float a, float b) { return a*b; }

STV_HIDDEN STV_DEFAULT STV_DEFAULT

Related references
12.2 General changes between RVCT v3.1 and RVCT v4.0 on page 12-66.

Related information
--default_definition_visibility=visibility compiler option.
--dllexport_all, --no_dllexport_all (armcc).
--dllimport_runtime, --no_dllimport_runtime compiler option.

12 Migrating from RVCT v3.1 to RVCT v4.0
12.3 Changes to symbol visibility between RVCT v3.1 and RVCT v4.0

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-68

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124910313.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124915071.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124915320.html

--gnu (armcc).
--hide_all, --no_hide_all (armcc).

12 Migrating from RVCT v3.1 to RVCT v4.0
12.3 Changes to symbol visibility between RVCT v3.1 and RVCT v4.0

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-69

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124921873.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124925039.html

12.4 Compiler changes between RVCT v3.1 and RVCT v4.0
Various changes have been made to armcc in RVCT v4.0.

The following compiler changes have been made:

Single compiler executable

The executables tcc, armcpp and tcpp are no longer delivered.

To compile for Thumb, use the --thumb command-line option.

To compile for C++, use the --cpp command-line option.
 Note

The compiler automatically selects C++ for files with the .cpp extension, as before.

Vectorizing compiler

The NEON vectorizing compiler is provided as standard functionality, and is no longer provided as a
separate add-on. A license to use the NEON vectorizing compiler is provided with the Professional
Edition of the ARM development tools.

VAST Changes

VAST has been upgraded through two versions (VAST 11 for 4.0 Alpha and 4.0 Alpha2 and later). Apart
from the following issue, you do not have to make any changes to your v3.1 builds to use the new VAST.

RVCT v3.1 reassociated saturating ALU operations. This meant programs like the following could
produce different results with --vectorize and --no_vectorize:

int g_448464(short *a, short *b, int n)
{
 int i; short s = 0;
 for (i = 0; i < n; i++) s = L_mac(s, a[i], b[i]);
 return s;
}

In RVCT v4.0, you might see a performance degradation because of this issue.

The --reassociate_saturation and --no_reassociate_saturation command-line options have
been added to permit reassociation to occur.

Related references
12.2 General changes between RVCT v3.1 and RVCT v4.0 on page 12-66.

Related information
--cpp (armcc).
--reassociate_saturation, --no_reassociate_saturation compiler option.
--thumb (armcc).
--vectorize, --no_vectorize (armcc).

12 Migrating from RVCT v3.1 to RVCT v4.0
12.4 Compiler changes between RVCT v3.1 and RVCT v4.0

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-70

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124908207.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124940827.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124945944.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124948955.html

12.5 Linker changes between RVCT v3.1 and RVCT v4.0
Various changes have been made to armlink in RVCT v4.0.

The following linker changes have been made:

Helper functions

Before RVCT v4.0, helper functions were implemented in helper library files such as h_tf.l, provided
with the ARM compiler. All helper library filenames start with h_. RVCT v4.0 no longer requires helper
libraries. Instead, all helper functions are generated by the compiler and become part of an object file.

Placing ARM library helper functions with scatter files
In RVCT v3.1 and earlier, the helper functions reside in libraries provided with the ARM
compiler. Therefore, it was possible to use armlib and cpplib in a scatter file to inform the
linker where to place these helper functions in memory.

In RVCT v4.0 and later, the helper functions are generated by the compiler in the resulting
object files. They are no longer in the standard C libraries, so it is no longer possible to use
armlib and cpplib in a scatter file. Instead, place the helper functions using *.* (i.__ARM_*)
in your scatter file.

Warning L6932W when linking with helper libraries
When using RVCT v4.0 and later, you might see the following linker warning:

Warning: L6932W: Library reports warning: use of helper library h_xx.l is deprecated

Before RVCT v4.0, one reason for linking with a helper library is if an object file references the
helper function __ARM_switch8. You can find this out by looking at verbose output from the
linker using the --verbose option, for example:

Loading member object1.o from lib1.a.
reference : strncmp
reference : __ARM_switch8

In RVCT v4.0 and later, because helper libraries are no longer required, the verbose output from
the linker might show, for example:

Loading member object2.o from lib2.a.
…
definition: __ARM_common_switch8_thumb

In this case, the helper function __ARM_common_switch8_thumb is in the object file object2.o,
rather than in a helper library.

So, if you are using RVCT v4.0 and the linker is generating warning message L6932W, it is
likely that you are linking with objects or libraries that were built with RVCT v3.1, not RVCT
v4.0.

Linker steering files and symbol visibility

In RVCT v3.1 the visibility of a symbol was overridden by the steering file or .directive commands
IMPORT and EXPORT. When this occurred the linker issued a warning message, for example:

Warning: L6780W: STV_HIDDEN visibility removed from symbol hidden_symbol through
EXPORT.

In RVCT v4.0 the steering file mechanism respects the visibility of the symbol, so an IMPORT or EXPORT
of a STV_HIDDEN symbol is ignored. You can restore the v3.1 behavior with the --
override_visibility command-line option.

Linker-defined symbols

In the majority of cases region related symbols behave identically to v3.1.

12 Migrating from RVCT v3.1 to RVCT v4.0
12.5 Linker changes between RVCT v3.1 and RVCT v4.0

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-71

Non-Confidential

Section-relative symbols
The execution region Base and Limit symbols are now section-relative. There is no sensible
section for a $$Length symbol so this remains absolute.

This means that the linker-defined symbol is assigned to the most appropriate section in the
execution region. The following example shows this:

ExecRegion ER
RO Section 1 ; Image$$ER$$Base and Image$$ER$$RO$$Base, val 0
RO Section 2 ; Image$$ER$$RO$$Limit, val Limit(RO Section 2)
RW Section 1 ; Image$$ER$$RW$$Base, val 0
RW Section 2 ; Image$$ER$$Limit and Image$$ER$$RW$$Limit,
 ; val Limit(RW Section 2)
ZI Section 1 ; Image$$ER$$ZI$$Base, val 0
ZI Section 2 ; Image$$ER$$ZI$$Limit, val Limit(ZI Section 2)

In each case the value of the …$$Length symbol is the value of the …$$Limit symbol minus the
…$$Base symbol.

If there is no appropriate section that exists in the execution region then the linker defines a
zero-sized section of the appropriate type to hold the symbols.

Impact of the change
The change to section-relative symbols removes several special cases from the linker
implementation, that might improve reliability. It also means that dynamic relocations
work naturally on SysV and BPABI links.

Alignment
The …$$Limit symbols are no longer guaranteed to be four-byte aligned because the
limit of the section it is defined in might not be aligned to a four-byte boundary.

This might affect you if you have code that accidentally relies on the symbol values
being aligned. If you require an aligned $$Limit or $$Length then you must align the
symbol value yourself.

For example, the following legacy initialization code might fail if Image$
$<Region_Name>$$Length is not word aligned:

 LDR R1,|Load$$region_name$$Base|
 LDR R0,|Image$$region_name$$Base|
 LDR R4,|Image$$region_name$$Length|
 ADD R4, R4, R0
copy_rw_data
 LDRNE R3,[R1],#4
 STRNE R3,[R0],#4
 CMP R0,R4
 BNE copy_rw_data

Writing your own initialization code is not recommended, because system initialization
is more complex than in earlier toolchain releases. ARM recommends that you use the
__main code provided with the ARM Compiler toolchain.

12 Migrating from RVCT v3.1 to RVCT v4.0
12.5 Linker changes between RVCT v3.1 and RVCT v4.0

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-72

Non-Confidential

Delayed Relocations
The linker has introduced an extra address assignment and relocation pass after RW
compression. This permits more information about load addresses to be used in linker-
defined symbols.

Be aware that:

• Load$$region_name$$Base is the address of region_name prior to C-library
initialization

• Load$$region_name$$Limit is the limit of region_name prior to C-library
initialization

• Image$$region_name$$Base is the address of region_name after C-library
initialization

• Image$$region_name$$Limit is the limit of region_name after C-library
initialization.

Load Region Symbols have the following properties:
• They are ABSOLUTE because section-relative symbols can only have Execution

addresses.
• They take into account RW compression
• They do not include ZI because it does not exist prior to C-library initialization.

In addition to Load$$region_name$$Base, the linker now supports the following
linker-defined symbols:

Load$$region_name$$Limit
Load$$region_name$$Length
Load$$region_name$$RO$$Base
Load$$region_name$$RO$$Limit
Load$$region_name$$RO$$Length
Load$$region_name$$RW$$Base
Load$$region_name$$RW$$Limit
Load$$region_name$$RW$$Length

Limits of Delayed Relocation
All relocations from RW compressed execution regions must be performed prior to
compression because the linker cannot resolve a delayed relocation on compressed
data.

If the linker detects a relocation from a RW-compressed region REGION to a linker-
defined symbol that depends on RW compression then the linker disables compression
for REGION.

Load Region Symbols
RVCT v4.0 now permits linker-defined symbols for load regions. They follow the same
principle as the Load$$ symbols for execution regions. Because a load region might contain
many execution regions it is not always possible to define the $$RO and $$RW components.
Therefore, load region symbols only describe the region as a whole.

; Base address of <Load Region Name>
Load$$LR$$Load_Region_Name$$Base

; Load Address of last byte of content in Load region.
Load$$LR$$Load_Region_Name$$Limit

; Limit - Base
Load$$LR$$Load_Region_Name$$Length

12 Migrating from RVCT v3.1 to RVCT v4.0
12.5 Linker changes between RVCT v3.1 and RVCT v4.0

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-73

Non-Confidential

Image-related symbols
The RVCT v4.0 linker implements these in the same way as the execution region-related
symbols.

They are defined only when scatter files are not used. This means that they are available for the
--sysv and --bpabi linking models.

Image$$RO$$Base ; Equivalent to Image$$ER_RO$$Base
Image$$RO$$Limit ; Equivalent to Image$$ER_RO$$Limit
Image$$RW$$Base ; Equivalent to Image$$ER_RW$$Base
Image$$RW$$Limit ; Equivalent to Image$$ER_RW$$Limit
Image$$ZI$$Base ; Equivalent to Image$$ER_ZI$$Base
Image$$ZI$$Limit ; Equivalent to Image$$ER_ZI$$Limit

Interaction with ZEROPAD
An execution region with the ZEROPAD keyword writes all ZI data into the file:
• Image$$ symbols define execution addresses post initialization.

In this case, it does not matter that the zero bytes are in the file or generated. So for Image$$
symbols, ZEROPAD does not affect the values of the linker-defined symbols.

• Load$$ symbols define load addresses pre initialization.

In this case, any zero bytes written to the file are visible, Therefore, the Limit and Length
take into account the zero bytes written into the file.

Build attributes

The RVCT v4.0 linker fully supports reading and writing of the ABI Build Attributes section. The linker
can now check more properties such as wchar_t and enum size. This might result in the linker diagnosing
errors in old objects that might have inconsistencies in the Build Attributes. Most of the Build Attributes
messages can be downgraded to permit armlink to continue.

The --cpu option now checks the FPU attributes if the CPU chosen has a built-in FPU. For example, --
cpu=cortex-a8 implies --fpu=vfpv3. In RVCT v3.1 the --cpu option only checked the build attributes
of the chosen CPU.

The error message L6463U: Input Objects contain <archtype> instructions but could not
find valid target for <archtype> architecture based on object attributes. Suggest
using --cpu option to select a specific cpu. is given in one of two situations:
• The ELF file contains instructions from architecture archtype yet the Build Attributes claim that

archtype is not supported.
• The Build Attributes are inconsistent enough that the linker cannot map them to an existing CPU.

If setting the --cpu option still fails, the option --force_explicit_attr causes the linker to retry the
CPU mapping using Build Attributes constructed from --cpu=archtype. This might help if the Error is
being given solely because of inconsistent Build Attributes.

C library initialization

A change to the linker when dealing with C library initialization code causes specially named sections in
the linker map file created with the --map command-line option. You can ignore these specially named
sections.

ARM Linux

When building a shared object the linker automatically imports any reference with STV_DEFAULT
visibility that is undefined. This matches the behavior of GCC. This might result in some failed links
now being successful.

Prelink support reserves some extra space, this results in slightly larger images and shared objects. The
prelink support can be turned off with --no_prelink_support.

There have been numerous small changes with regards to symbol visibility, these are described in the
Symbol visibility changes.

12 Migrating from RVCT v3.1 to RVCT v4.0
12.5 Linker changes between RVCT v3.1 and RVCT v4.0

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-74

Non-Confidential

RW compression

Some error handling code is run later so that information from RW compression can be used. In almost
all cases, this means more customer programs are able to link. There is one case where RVCT v4.0 has
removed a special case so that it could diagnose more RW compression errors.

Multiple in-place execution regions with RW compression are no longer a special case. It was possible to
write:

 LR1 0x0
 {
 ER1 +0 { file1.o(+RW) }
 ER2 +0 { file2.o(+RW) }
 }

This is no longer possible under v4.0 and the linker gives an error message that ER1 decompresses over
ER2. This change has been made to permit the linker to diagnose:

 LR1 0x0
 {
 ER1 +0 { file1.o(+RW) }
 ER2 +0 { file2.o(+RO) } ; NOTE RO not RW
 }

This fails at runtime on RVCT v3.1.

Related references
12.2 General changes between RVCT v3.1 and RVCT v4.0 on page 12-66.

Related information
Optimization with RW data compression.
Accessing linker-defined symbols.
Region-related symbols.
Image$$ execution region symbols.
Load$$ execution region symbols.
Importing linker-defined symbols in C and C++.
Section-related symbols.
Example of placing ARM library helper functions.
Initialization of the execution environment and execution of the application.
--bpabi (armlink).
--cpu=name (armlink).
--force_explicit_attr (armlink).
--fpu=name (armlink).
--map, --no_map (armlink).
--override_visibility (armlink).
--prelink_support, --no_prelink_support (armlink).
--sysv (armlink).
--verbose (armlink).
EXPORT.
IMPORT.
Execution region attributes.

12 Migrating from RVCT v3.1 to RVCT v4.0
12.5 Linker changes between RVCT v3.1 and RVCT v4.0

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-75

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362065930871.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362065951495.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362065951979.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362065952432.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362065953229.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362065956104.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362065957151.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362066006915.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0475-/chr1358938922456.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075418787.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075439817.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075479518.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075484206.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075524125.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075534203.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075547109.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075603809.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075621495.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075640901.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075641838.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075670305.html

12.6 Assembler changes between RVCT v3.1 and RVCT v4.0
Various changes have been made to armasm in RVCT v4.0.

The following changes to the assembler have been made:
• The -O command-line option is deprecated. -O is a synonym for -o to output to a named file. This has

been deprecated to avoid user confusion with the armcc option with the same name.
• The -D command-line option is obsolete. Use --depend instead.
• LDM r0!,{r0-r4} no longer ignores writeback. Previously in Thumb, LDM r0!,{r0-r4} assembled

with a warning to the 16-bit encoded LDM instruction and no writeback was performed. Because the
syntax requests writeback, and this encoding is only available when 32-bit encoded Thumb
instructions are supported, it produces an error. To get the 16-bit encoded Thumb instruction you
must remove the writeback.

• The logical operator | is deprecated because it can cause problems with substitution of variables in
source. The assembler warns on the first use of | as a logical operator. Use the :OR: operator instead.

Related references
12.2 General changes between RVCT v3.1 and RVCT v4.0 on page 12-66.

Related information
Addition, subtraction, and logical operators (armasm).
--depend=dependfile (armasm).
-o filename (armasm).

12 Migrating from RVCT v3.1 to RVCT v4.0
12.6 Assembler changes between RVCT v3.1 and RVCT v4.0

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-76

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1359731181912.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289823073.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289839500.html

12.7 fromelf changes between RVCT v3.1 and RVCT v4.0
Various changes have been made to fromelf in RVCT v4.0.

Use of single letters as parameters to the --text option, either with a / or = as a separator is obsolete.
The syntax --text/cd or --text=cd are no longer accepted. You have to specify -cd.

Related references
12.2 General changes between RVCT v3.1 and RVCT v4.0 on page 12-66.

Related information
--text (fromelf).

12 Migrating from RVCT v3.1 to RVCT v4.0
12.7 fromelf changes between RVCT v3.1 and RVCT v4.0

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-77

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0477-/pge1362128925577.html

12.8 C and C++ library changes between RVCT v3.1 and RVCT v4.0
Various changes have been made to the ARM C and C++ library in RVCT v4.0.

The following changes to the libraries have been made:

Support for non-standard C library math functions

Non-standard C library math functions are no longer supplied in math.h. They are still provided in the
library itself. You can still request the header file from ARM if needed. Contact your supplier.

Remove __ENABLE_LEGACY_MATHLIB

In RVCT v2.2 changes were made to the behavior of some mathlib functions to bring them in-line with
C99. If you relied on the old non-C99 behavior, you could revert the behavior by defining the following
at compile time:

#define __ENABLE_LEGACY_MATHLIB

This has been removed in RVCT v4.0.

Related references
12.2 General changes between RVCT v3.1 and RVCT v4.0 on page 12-66.

12 Migrating from RVCT v3.1 to RVCT v4.0
12.8 C and C++ library changes between RVCT v3.1 and RVCT v4.0

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

12-78

Non-Confidential

Chapter 13
Migrating from RVCT v3.0 to RVCT v3.1

Describes the changes that affect migration and compatibility between RVCT v3.0 and RVCT v3.1.

It contains the following sections:
• 13.1 General changes between RVCT v3.0 and RVCT v3.1 on page 13-80.
• 13.2 Assembler changes between RVCT v3.0 and RVCT v3.1 on page 13-81.
• 13.3 Linker changes between RVCT v3.0 and RVCT v3.1 on page 13-82.

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

13-79

Non-Confidential

13.1 General changes between RVCT v3.0 and RVCT v3.1
Various general changes have been made in RVCT v3.1.

The following changes affect multiple tools:
• Support for the old ABI (--apcs=/adsabi) is no longer available.
• -O3 no longer implies --fpmode=fast.

Compatibility of RVCT v3.1 with legacy objects and libraries

RVCT v3.1 removes the option --apcs /adsabi. Compilation of ADS-compatible objects, and linking
of legacy ADS objects and libraries is no longer possible.

Backwards compatibility of RVCT 2.x object and library code is supported provided you use the RVCT
v3.1 linker and C/C++ libraries. Forward compatibility is not guaranteed.

Given these restrictions, ARM strongly recommends that you rebuild your entire project, including any
user, or third-party supplied libraries, with RVCT v3.1. This is to avoid any potential incompatibilities,
and to take full advantage of the improved optimization, enhancements, and new features provided by
RVCT v3.1.

Related information
--apcs=qualifier...qualifier (armcc).
--dwarf2 (armcc).
--dwarf3 (armcc).
--fpmode=model (armcc).
-g (armcc).
-Onum (armcc).

13 Migrating from RVCT v3.0 to RVCT v3.1
13.1 General changes between RVCT v3.0 and RVCT v3.1

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

13-80

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124899798.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124915882.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124916116.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124920125.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124921280.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124935804.html

13.2 Assembler changes between RVCT v3.0 and RVCT v3.1
Various changes have been made to armasm in RVCT v3.1.

Disassembly output now conforms to the new Unified Assembly Language (UAL) format. VFP
mnemonics have changed, so that FMULS is now VMUL.F32.

Related references
13.1 General changes between RVCT v3.0 and RVCT v3.1 on page 13-80.

Related information
Unified Assembler Language.
Assembly language changes after RVCT v2.1.
VFP directives and vector notation.

13 Migrating from RVCT v3.0 to RVCT v3.1
13.2 Assembler changes between RVCT v3.0 and RVCT v3.1

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

13-81

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1359731145130.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1359731157381.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1359731199049.html

13.3 Linker changes between RVCT v3.0 and RVCT v3.1
Various changes have been made to armlink in RVCT v3.1.

In a scatter file, special case handling of the load address of root ZI has been removed. Consider:

LR1 0x8000
{
 ER_RO +0
 {
 *(+RO)
 }
 ER_RW +0
 {
 *(+RW)
 }
 ER_ZI +0
 {
 *(+ZI)
 }
}
LR2 +0
{
 …
}

In versions of RVCT up to v3.0 the linker includes the size of ER_ZI when calculating the base address of
LR2. The justification being that at image initialization ER_ZI is written over the top of LR2.

In version 3.1 and later this special case has been removed because you can write an equivalent scatter
file using ImageLimit() built-in function, for example:

LR1 0x8000
{
 ER_RO +0
 {
 *(+RO)
 }
 ER_RW +0
 {
 *(+RW)
 }
 ER_ZI +0
 {
 *(+ZI)
 }
}
LR2 ImageLimit(LR1)
{
 …
}

Related references
13.1 General changes between RVCT v3.0 and RVCT v3.1 on page 13-80.

Related information
Execution address built-in functions for use in scatter files.

13 Migrating from RVCT v3.0 to RVCT v3.1
13.3 Linker changes between RVCT v3.0 and RVCT v3.1

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

13-82

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075691804.html

Chapter 14
Migrating from RVCT v2.2 to RVCT v3.0

Describes the changes that affect migration and compatibility between RVCT v2.2 and RVCT v3.0.

It contains the following sections:
• 14.1 General changes between RVCT v2.2 and RVCT v3.0 on page 14-84.
• 14.2 Compiler changes between RVCT v2.2 and RVCT v3.0 on page 14-85.
• 14.3 Linker changes between RVCT v2.2 and RVCT v3.0 on page 14-86.
• 14.4 C and C++ library changes between RVCT v2.2 and RVCT v3.0 on page 14-87.

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

14-83

Non-Confidential

14.1 General changes between RVCT v2.2 and RVCT v3.0
Various general changes have been made in RVCT v3.0.

The following changes affect multiple tools:
• DWARF3 is the default.
• Since RVCT v2.1, -g no longer implies -O0. If you specify -g without an optimization level, the

following warning is produced:

Warning: C2083W: -g defaults to -O2 if no optimisation level is specified

Compatibility with legacy RVCT v2.x objects and libraries

Backwards compatibility of RVCT v2.x object and library code is supported provided you use the RVCT
v3.0 linker and C/C++ libraries. Forward compatibility is not guaranteed.

You must link using the RVCT v3.0 linker, not the linker of older ARM tools. This is because older
linkers cannot process objects produced by the RVCT v3.0 compiler.

Given these restrictions, ARM strongly recommends that you rebuild your entire project, including any
user-supplied libraries, with RVCT v3.0 to avoid any potential incompatibilities, and to take full
advantage of the improved optimization, enhancements, and new features provided by RVCT v3.0.

Related information
--apcs=qualifier...qualifier (armcc).
--dwarf2 (armcc).
--dwarf3 (armcc).
--fpmode=model (armcc).
-g (armcc).
-Onum (armcc).

14 Migrating from RVCT v2.2 to RVCT v3.0
14.1 General changes between RVCT v2.2 and RVCT v3.0

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

14-84

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124899798.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124915882.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124916116.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124920125.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124921280.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124935804.html

14.2 Compiler changes between RVCT v2.2 and RVCT v3.0
Various changes have been made to armcc in RVCT v3.0.

With the resolution of C++ core issue #446, temporaries are now created in some cases of conditional
class rvalue expressions where they were not before.

Starting with RVCT v4.0 10Q1 (build 771) you can use the --diag_warning=2817 command-line option
to get a warning if this situation exists.

Related references
14.1 General changes between RVCT v2.2 and RVCT v3.0 on page 14-84.

Related information
--diag_warning=optimizations (armcc).

14 Migrating from RVCT v2.2 to RVCT v3.0
14.2 Compiler changes between RVCT v2.2 and RVCT v3.0

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

14-85

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124914821.html

14.3 Linker changes between RVCT v2.2 and RVCT v3.0
Various changes have been made to armlink in RVCT v3.0.

The following changes have been made to the linker:
• If you specify the compiler option --fpu=softvfp together with a CPU with implicit VFP hardware,

the linker no longer chooses a library that implements the software floating-point calls using VFP
instructions. If you require this legacy behavior, specify the compiler option --fpu=softvfp+vfp.

• armlink writes the contents of load regions into the output ELF file in the order that load regions are
written in the scatter file. Each load region is represented by one ELF program segment. In RVCT
v2.2 the Program Header Table entries describing the program segments are given the same order as
the program segments in the ELF file. To be more compliant with the ELF specification, in RVCT
v3.0 and later the Program Header Table entries are sorted in ascending virtual address order.

• The --no_strict_ph command-line option has been added to switch off the sorting of the Program
Header Table entries.

Related references
14.1 General changes between RVCT v2.2 and RVCT v3.0 on page 14-84.

Related information
--strict_ph, --no_strict_ph (armlink).
--cpu=name (armcc).
--fpu=name (armcc).

14 Migrating from RVCT v2.2 to RVCT v3.0
14.3 Linker changes between RVCT v2.2 and RVCT v3.0

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

14-86

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075589622.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124908721.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124920656.html

14.4 C and C++ library changes between RVCT v2.2 and RVCT v3.0
Various changes have been made to the ARM C and C++ library in RVCT v3.0.

The function __user_initial_stackheap() sets up and returns the locations of the initial stack and
heap. In RVCT v3.x and later, ARM recommends you modify your source code to use
__user_setup_stackheap() instead. __user_initial_stackheap() is still supported for backwards
compatibility with earlier versions of the ARM C and C++ libraries.

If you continue to use __user_initial_stackheap(), be aware of the following changes in RVCT v3.0.
• In RVCT v2.x and earlier, the default implementation of __user_initial_stackheap() uses the

value of the symbol Image$$ZI$$Limit. This symbol is not defined if you specify a scatter file using
the --scatter linker command line option. Therefore, you must re-implement
__user_initial_stackheap() to set the heap and stack boundaries if you are using a scatter file,
otherwise your link step fails.

In RVCT v3.x and later, multiple implementations of __user_initial_stackheap() are provided
by the ARM C library. RVCT automatically selects the correct implementation using information
given in the scatter file. This means that you do not have to re-implement this function if you are
using scatter files.

• When migrating your application from RVCT v2.2 to RVCT v3.0, you might see the following linker
error:

Error L6218E: Undefined symbol main (referred from kernel.o).

The linker is reporting that your application does not include a main() function. The error is
generated because of the way RVCT v3.0 selects from the multiple implementations of
__user_initial_stackheap(). These implementations refer to the __rt_exit() function. This is
contained in kernel.o, that also contains the __rt_lib_init() function. Because the
__rt_lib_init() function calls main(), this results in an undefined symbol error when main() is
not present.

If you do not provide a main() function as the entry point of your C code, the simplest solution is to
implement either:
— An empty, dummy main() function.
— A dummy implementation of __rt_exit().

If one of these stubs is contained in a separate source file, it is usually removed by the unused section
elimination feature of the linker so there is no overhead in the final linked image.

Related references
14.1 General changes between RVCT v2.2 and RVCT v3.0 on page 14-84.

Related information
Elimination of unused sections.
Image symbols.
__user_setup_stackheap() (none).
Legacy function __user_initial_stackheap() (none).
--scatter=filename (armlink).

14 Migrating from RVCT v2.2 to RVCT v3.0
14.4 C and C++ library changes between RVCT v2.2 and RVCT v3.0

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

14-87

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362065927214.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362065957713.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0475-/chr1359122863069.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0475-/chr1359122864988.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075565889.html

Appendix A
Migration and Compatibility document revisions

Describes the technical changes that have been made to the Migration and Compatibility Guide.

It contains the following sections:
• A.1 Revisions for Migration and Compatibility Guide on page Appx-A-89.

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

Appx-A-88

Non-Confidential

A.1 Revisions for Migration and Compatibility Guide
The following technical changes have been made to the Migration and Compatibility Guide.

Table A-1 Differences between Issue L and Issue M

Change Topics affected

Enhanced the topics describing the supported versions of:
• FlexNet.
• Cygwin.

• 2.1 FlexNet versions supported on page 2-15
• 2.3 Cygwin versions supported on page 2-17

Table A-2 Differences between Issue K and Issue L

Change Topics affected

Added new topic for new default GCC version. 3.2.2 GCC default version changed on page 3-20

Table A-3 Differences between Issue J and Issue K

Change Topics affected

Updated the supported versions of:
• FlexNet.
• GCC.
• Cygwin.

• 2.1 FlexNet versions supported on page 2-15
• 2.2 GCC versions emulated on page 2-16
• 2.3 Cygwin versions supported on page 2-17

Added new topic for compiler changes. 4.3 Compiler changes between ARM Compiler v5.04
and v5.05 on page 4-25

Added new topics that describe the compatibility with legacy objects and
libraries.

• 1.1 Compatibility between ARM Compiler
versions on page 1-13

• 4.1 Compatibility of ARM Compiler v5.05 with
legacy objects and libraries on page 4-23

• 5.1 Compatibility of ARM Compiler v5.04 with
legacy objects and libraries on page 5-30

• 6.1 Compatibility of ARM Compiler v5.03 with
legacy objects and libraries on page 6-33

• 7.1 Compatibility of ARM Compiler v5.01 with
legacy objects and libraries on page 7-37

• 10.1 Compatibility of ARM Compiler v4.1 build
561 with legacy objects and libraries
on page 10-50

• 9.1 Compatibility of ARM Compiler v4.1 Patch
3 with legacy objects and libraries on page 9-47

• 8.1 Compatibility of ARM Compiler v5.0 with
legacy objects and libraries on page 8-41

• 7.1 Compatibility of ARM Compiler v5.01 with
legacy objects and libraries on page 7-37

• 6.1 Compatibility of ARM Compiler v5.03 with
legacy objects and libraries on page 6-33

• 5.1 Compatibility of ARM Compiler v5.04 with
legacy objects and libraries on page 5-30

A Migration and Compatibility document revisions
A.1 Revisions for Migration and Compatibility Guide

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

Appx-A-89

Non-Confidential

Table A-4 Differences between Issue I and Issue J

Change Topics affected

Added new chapter for changes between v5.03 and v5.04. Chapter 5 Migrating from ARM Compiler v5.03 to
v5.04 on page 5-29

Enhanced the topics describing the supported versions of:
• FlexNet.
• GCC.
• Cygwin.

• 2.1 FlexNet versions supported on page 2-15
• 2.2 GCC versions emulated on page 2-16
• 2.3 Cygwin versions supported on page 2-17

Added information about the NEON compiler licensing 7.2 General changes between ARM Compiler v5.0
and v5.01 or later on page 7-38

Table A-5 Differences between Issue H and Issue I

Change Topics affected

Added new chapter for changes between v5.02 and v5.03. Chapter 6 Migrating from ARM Compiler v5.02 to
v5.03 on page 6-32

Where appropriate, changed the terminology that implied that 16-bit Thumb
and 32-bit Thumb are separate instruction sets.

 Note

There is only one Thumb instruction set. Thumb-2 is the technology, not a
separate instruction set.

Various topics

Enhanced the topic describing the supported Cygwin versions 2.3 Cygwin versions supported on page 2-17

Table A-6 Differences between Issue G and Issue H

Change Topics affected

Updated the FlexNet version used by ARM Compiler toolchain. 2.1 FlexNet versions supported on page 2-15

Corrected the GCC version emulated for ARM Compiler v5.01. 2.2 GCC versions emulated on page 2-16

Removed the changes that do not have an impact on migration or compatibility. 10.3 Linker changes between ARM Compiler v4.1
and v4.1 build 561 on page 10-52

Table A-7 Differences between Issue F and Issue G

Change Topics affected

Updated the table of FLEXnet versions. 2.1 FlexNet versions supported on page 2-15

Table A-8 Differences between Issue D and Issue F

Change Topics affected

Added new chapter for changes between v5.0.1 and v5.01. Chapter 7 Migrating from ARM Compiler v5.0 to
v5.01 or later on page 7-36

Updated the version of FLEXnet supported. 2.1 FlexNet versions supported on page 2-15

Updated the version of GCC supported. 2.2 GCC versions emulated on page 2-16

A Migration and Compatibility document revisions
A.1 Revisions for Migration and Compatibility Guide

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

Appx-A-90

Non-Confidential

Table A-8 Differences between Issue D and Issue F (continued)

Change Topics affected

Added details about backwards compatibility with legacy objects and library
code.

• 11.1 General changes between RVCT v4.0 and
ARM Compiler v4.1 on page 11-58

• 12.2 General changes between RVCT v3.1 and
RVCT v4.0 on page 12-66

• 13.1 General changes between RVCT v3.0 and
RVCT v3.1 on page 13-80

• 14.1 General changes between RVCT v2.2 and
RVCT v3.0 on page 14-84.

Where appropriate:
• changed Thumb-2 to 32-bit Thumb.

• 11.5 C and C++ library changes between RVCT
v4.0 and ARM Compiler v4.1 on page 11-63

• 12.6 Assembler changes between RVCT v3.1 and
RVCT v4.0 on page 12-76

Modified the description of the C and C++ library changes between RVCT v2.2
and RVCT v3.0.

14.4 C and C++ library changes between RVCT
v2.2 and RVCT v3.0 on page 14-87

Added a description of linker warning L6932W when linking with helper
libraries.

12.5 Linker changes between RVCT v3.1 and RVCT
v4.0 on page 12-71

Table A-9 Differences between Issue C and Issue D

Change Topics affected

Added topic for Cygwin supported versions. 2.3 Cygwin versions supported on page 2-17

Added migration chapter for v4.1 Patch 3 to v5.0. Chapter 8 Migrating from ARM Compiler v4.1
Patch 3 or later to v5.0 on page 8-40

Added details about how armlink chooses libraries when specifying the
compiler option --fpu=softvfp together with a CPU with implicit VFP
hardware.

14.3 Linker changes between RVCT v2.2 and RVCT
v3.0 on page 14-86

Table A-10 Differences between Issue B and Issue C

Change Topics affected

Added migration topic for v4.1 build 561 to v4.1 Patch 3. 9.2 C and C++ library changes between ARM
Compiler v4.1 build 561 and v4.1 Patch 3 or later
on page 9-48

Added details about placing ARM library helper functions with scatter files. 12.5 Linker changes between RVCT v3.1 and RVCT
v4.0 on page 12-71

Added more examples to demonstrate the change to the 2 pass assembler. 11.4 Assembler changes between RVCT v4.0 and
ARM Compiler v4.1 on page 11-61

Table A-11 Differences between Issue A and Issue B

Change Topics affected

Added details for migrating from ARM Compiler v4.1 to v4.1 build 561. Chapter 10 Migrating from ARM Compiler v4.1 to
v4.1 build 561 on page 10-49

Added details for __user_initial_stackheap() and
__user_setup_stackheap() for migrating from v2.2 to v3.0, and later.

14.4 C and C++ library changes between RVCT
v2.2 and RVCT v3.0 on page 14-87

A Migration and Compatibility document revisions
A.1 Revisions for Migration and Compatibility Guide

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

Appx-A-91

Non-Confidential

Table A-11 Differences between Issue A and Issue B (continued)

Change Topics affected

Added details for the addition of softfp linkage functions in the hardware
floating point version of the library.

10.5 C and C++ library changes between ARM
Compiler v4.1 and v4.1 build 561 on page 10-54

Added details for the deprecation of the | logical operator. 12.6 Assembler changes between RVCT v3.1 and
RVCT v4.0 on page 12-76

A Migration and Compatibility document revisions
A.1 Revisions for Migration and Compatibility Guide

ARM DUI0530M Copyright © 2010-2016 ARM Limited or its affiliates. All rights
reserved.

Appx-A-92

Non-Confidential

	ARM® Compiler Migration and Compatibility Guide
	Contents
	List of Tables
	Preface
	About this book
	Using this book
	Glossary
	Typographic conventions
	Feedback
	Feedback on this product
	Feedback on content

	Other information

	1 : Overview of Compatibility
	1.1 : Compatibility between ARM Compiler versions

	2 : Configuration Information for Different Versions of the ARM Compilation Tools
	2.1 : FlexNet versions supported
	2.2 : GCC versions emulated
	2.3 : Cygwin versions supported

	3 : Migrating from ARM Compiler v5.05 to v5.06
	3.1 : Compatibility of ARM Compiler v5.06 with legacy objects and libraries
	3.2 : Compiler changes between ARM Compiler v5.05 and v5.06
	3.2.1 : #pragma arm section and inline functions
	3.2.2 : GCC default version changed
	3.2.3 : __ldrex and __strex intrinsics deprecated

	4 : Migrating from ARM Compiler v5.04 to v5.05
	4.1 : Compatibility of ARM Compiler v5.05 with legacy objects and libraries
	4.2 : Compatibility of code compiled with C++11 with code compiled with C++03
	4.2.1 : Use of C++11 with the ARM C++ Standard Libraries

	4.3 : Compiler changes between ARM Compiler v5.04 and v5.05
	4.3.1 : C++ name mangling differences in ARM Compiler v5.05
	Non-type non-dependent template arguments
	Substitution of _Complex types
	Const-volatile-qualified non-member function type as template argument
	lvalue of function type used as non-type template argument

	5 : Migrating from ARM Compiler v5.03 to v5.04
	5.1 : Compatibility of ARM Compiler v5.04 with legacy objects and libraries
	5.2 : Documentation changes between ARM Compiler v5.03 and v5.04

	6 : Migrating from ARM Compiler v5.02 to v5.03
	6.1 : Compatibility of ARM Compiler v5.03 with legacy objects and libraries
	6.2 : Compiler changes between ARM Compiler v5.02 and v5.03
	6.3 : Documentation changes between ARM Compiler v5.02 and v5.03

	7 : Migrating from ARM Compiler v5.0 to v5.01 or later
	7.1 : Compatibility of ARM Compiler v5.01 with legacy objects and libraries
	7.2 : General changes between ARM Compiler v5.0 and v5.01 or later
	7.3 : Documentation changes between ARM Compiler v5.0 and v5.01 or later

	8 : Migrating from ARM Compiler v4.1 Patch 3 or later to v5.0
	8.1 : Compatibility of ARM Compiler v5.0 with legacy objects and libraries
	8.2 : General changes between ARM Compiler v4.1 Patch 3 or later and v5.0
	8.3 : Compiler changes between ARM Compiler v4.1 Patch 3 or later and v5.0
	8.4 : Linker changes between ARM Compiler v4.1 Patch 3 or later and v5.0
	8.5 : Documentation changes between ARM Compiler v4.1 Patch 3 or later and v5.0

	9 : Migrating from ARM Compiler v4.1 build 561 to v4.1 Patch 3 or later
	9.1 : Compatibility of ARM Compiler v4.1 Patch 3 with legacy objects and libraries
	9.2 : C and C++ library changes between ARM Compiler v4.1 build 561 and v4.1 Patch 3 or later

	10 : Migrating from ARM Compiler v4.1 to v4.1 build 561
	10.1 : Compatibility of ARM Compiler v4.1 build 561 with legacy objects and libraries
	10.2 : Compiler changes between ARM Compiler v4.1 and v4.1 build 561
	10.3 : Linker changes between ARM Compiler v4.1 and v4.1 build 561
	10.4 : Assembler changes between ARM Compiler v4.1 and v4.1 build 561
	10.5 : C and C++ library changes between ARM Compiler v4.1 and v4.1 build 561
	10.6 : fromelf changes between ARM Compiler v4.1 and v4.1 build 561
	10.7 : Documentation changes between ARM Compiler v4.1 and v4.1 build 561

	11 : Migrating from RVCT v4.0 to ARM Compiler v4.1
	11.1 : General changes between RVCT v4.0 and ARM Compiler v4.1
	11.2 : Compiler changes between RVCT v4.0 and ARM Compiler v4.1
	11.3 : Linker changes between RVCT v4.0 and ARM Compiler v4.1
	11.4 : Assembler changes between RVCT v4.0 and ARM Compiler v4.1
	11.5 : C and C++ library changes between RVCT v4.0 and ARM Compiler v4.1

	12 : Migrating from RVCT v3.1 to RVCT v4.0
	12.1 : Default --gnu_version changed from 303000 (GCC 3.3) to 402000 (GCC 4.2)
	12.2 : General changes between RVCT v3.1 and RVCT v4.0
	12.3 : Changes to symbol visibility between RVCT v3.1 and RVCT v4.0
	12.4 : Compiler changes between RVCT v3.1 and RVCT v4.0
	12.5 : Linker changes between RVCT v3.1 and RVCT v4.0
	12.6 : Assembler changes between RVCT v3.1 and RVCT v4.0
	12.7 : fromelf changes between RVCT v3.1 and RVCT v4.0
	12.8 : C and C++ library changes between RVCT v3.1 and RVCT v4.0

	13 : Migrating from RVCT v3.0 to RVCT v3.1
	13.1 : General changes between RVCT v3.0 and RVCT v3.1
	13.2 : Assembler changes between RVCT v3.0 and RVCT v3.1
	13.3 : Linker changes between RVCT v3.0 and RVCT v3.1

	14 : Migrating from RVCT v2.2 to RVCT v3.0
	14.1 : General changes between RVCT v2.2 and RVCT v3.0
	14.2 : Compiler changes between RVCT v2.2 and RVCT v3.0
	14.3 : Linker changes between RVCT v2.2 and RVCT v3.0
	14.4 : C and C++ library changes between RVCT v2.2 and RVCT v3.0

	A : Migration and Compatibility document revisions
	A.1 : Revisions for Migration and Compatibility Guide

