
Building Linux applications using RVCT
v4.0 and the GNU Tools and Libraries

Application Note 212
Copyright © 2008 ARM Limited. All rights reserved.
ARM DAI 0212A

Building Linux applications using RVCT v4.0 and the GNU Tools and Libraries
Building Linux applications using RVCT v4.0 and the GNU Tools
and Libraries
Application Note 212

Copyright © 2008 ARM Limited. All rights reserved.

Release Information

Proprietary Notice

Words and logos marked with or are registered trademarks or trademarks of ARM Limited in the EU and other
countries, except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be
the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith. However, all warranties implied or
expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable for any
loss or damage arising from the use of any information in this document, or any error or omission in such information,
or any incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Unrestricted Access is an ARM internal classification.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Table 1 Change history

Date Issue Change

August 2008 A First release
2 Copyright © 2008 ARM Limited. All rights reserved. ARM DAI 0212A
Non-Confidential Unrestricted Access

Building Linux applications using RVCT v4.0 and the GNU Tools and Libraries
1 Introduction

This section provides important legal notices and support status information.

1.1 Legal notices and support status

Your attention is drawn to the following.

IMPORTANT LEGAL NOTE

ALL USE OF THE RVDS SOFTWARE IS GOVERNED BY THE TERMS OF THE RVDS
END USER LICENSE AGREEMENT. NOTHING IN THIS DOCUMENT VARIES THIS
LICENSE OR GRANTS YOU ANY ADDITIONAL RIGHTS. NOTHING IN THIS
DOCUMENT CONSTITUTES LEGAL ADVICE. IF YOU HAVE ANY QUESTIONS
PLEASE CONSULT YOUR LAWYER.

Disclaimer

Please note that should you choose to use the example code referred to elsewhere in this
document in conjunction with your own or third party proprietary software and the GNU C
library or any other open source code, you do so entirely at your own risk. ARM makes no
representation or warranty as to the legal or business implications of such use. You should
consult your own legal advisors if you have any concerns about this. Also, for the avoidance of
any doubt, the example code is not open source software. Nothing in your license for this
example code or your license (if any) for the ARM RealView Development Suite or, if
applicable, RealView Compilation Tools or other ARM development tools products, allows you
to distribute this example code, or the libraries or example code supplied by ARM with RVDS
or RVCT, or any derivative or collective work created using such software, under a GNU Public
License, or other open source license.

Support status

Please note that ARM does not provide support on the use of GNU tools or Linux. The
information provided here is given for your reference only. Your supplier may be able to provide
limited support for information in this document if you have a valid tools support contract with
them. However, we suggest that in the first instance you discuss your issue in one of the various
public forums, such as the comp.sys.arm newsgroup and the ARM website forums.

Alternatively you may prefer to contact CodeSourcery, who can provide paid support and
assistance on the GNU tools or accept defect reports. Further information is available from
CodeSourcery’s GNU toolchain page at: http://www.codesourcery.com/gnu_toolchains/arm/

CodeSourcery also provide a mailing list for queries on the ARM GNU toolchain. Details of
how to subscribe to this list can be found on the CodeSourcery website.
ARM DAI 0212A Copyright © 2008 ARM Limited. All rights reserved. 3
Unrestricted Access Non-Confidential

Building Linux applications using RVCT v4.0 and the GNU Tools and Libraries
2 Scope of this document

This Application Note introduces you to building a Linux application or library, linked with the
GNU C and C++ libraries, using the RealView Compilation Tools (RVCT) provided as part of
RealView Development Suite (RVDS) v4.0. You can create dynamic images with RVCT v4.0
that can run under Linux using the GNU C library (glibc).

This Application Note covers the command-line options used to build a Linux-compatible
executable, and describes how to use header files and libraries from glibc.

2.1 Expected use

This Application Note is intended to cover most expected use cases. It is specifically aimed at
developing Linux applications and libraries in these situations:

• Building a standalone Linux application with RVCT.

• Building static and shared libraries with RVCT, and linking these to an application built
with RVCT.

• Building a static or shared library with RVCT, and linking this to an application built with
the GNU toolchain.

• Migrating an existing Linux application build using RVCT v3.1 to RVCT v4.0, retaining
explicit search paths on the command line.

• Migrating an existing Linux application build using RVCT v3.1 to RVCT v4.0, using a
standard configuration of system search paths and libraries.

• Using armcc and armlink as drop-in replacements for GCC and GNU ld using
command-line translation.

Note
 The Eclipse IDE supplied with RVDS v4.0 includes support for creating new ARM Linux
applications (but not libraries) with --arm_linux and --arm_linux_paths.

Examples to demonstrate the interoperation between the GNU toolchain/libraries and RVCT for
building applications and shared libraries to run on Linux are found in
install_directory\RVDS\Examples\4.0\...\platform\linux_apps

2.2 Limitations

There are several limitations on interoperation between the GNU tools and libraries and RVCT:

The GNU binutils (including ld) from CodeSourcery’s 2005-q3-2 release cannot consume
RVCT v4.0 objects

For linking with the GNU C library, you should use the 2005-q3-2 release of the
CodeSourcery tools (or a later release). Because of updates in the ARM
Application Binary Interface (ABI) ELF specification, the binary utilities
(binutils) from this CodeSourcery release cannot consume object files built by
RVCT v4.0. Support for the new ELF ABI revision is in the 2006-q1 and later
releases.
4 Copyright © 2008 ARM Limited. All rights reserved. ARM DAI 0212A
Non-Confidential Unrestricted Access

Building Linux applications using RVCT v4.0 and the GNU Tools and Libraries
RVCT cannot be used for building the Linux kernel or kernel-based code, such as device
drivers or other kernel modules

This is because a significant portion of the kernel code is written in assembly
language using the GNU assembler (GAS) syntax. This is incompatible with
armasm, and there is no performance gain to be made from rebuilding such code
with a different assembler.

In addition, the function interfaces for the kernel code prior to version 2.6.16 have
not been written to comply with the ABI. This means that drivers and other kernel
modules cannot be compiled using RVCT because there are no guarantees that
calls would be made correctly between the kernel and the driver code. You must
use the GNU toolchain when building the kernel and kernel modules.

ARM architecture v4T is not fully supported

See Target requirements on page 6.

C++ exceptions are only supported with CodeSourcery’s 2007-q1-10 or later releases

Due to slight implementation differences in the way C++ exceptions are handled
between RVCT and GCC, the GNU C/C++ library prior to the CodeSourcery
2007-q1-10 release did not support code generated by RVCT that used C++
exceptions. Therefore to use C++ exceptions you must use the CodeSourcery
2007-q1-10 release or later. This includes using these libraries on your target’s
filesystem.

If you choose to link with the RVCT exception handling code, this only supports
exceptions within a statically linked image. To throw exceptions between
applications and shared libraries you must use the unwinding code provided in the
GCC support libraries.

You must take care when using alloca()

The alloca() function is implemented in a compiler-specific way. In RVCT, this
is implemented as calls to library functions that allocate storage on the heap using
malloc(). For use with ARM Linux, a special version of these functions is
provided with the RVCT libraries in arm_linux/armlinux_*, that makes use of
thread-local storage (TLS) to ensure that alloca() is safe to use in the presence of
multiple threads. This library is automatically added to the system configuration
file, and is therefore passed to the linker in GNU emulation mode or when
--arm_linux_paths is used.

Note
 This implementation of alloca() does not interact with the glibc setjmp() and

longjmp() functions. Using the RVCT version of alloca() in the presence of
setjmp() and longjmp() from glibc might lead to memory leaks.

GCC inline assembly code is not compatible with RVCT and vice versa

RVCT and GCC use different syntax for inline assembly. RVCT cannot compile
GCC syntax and vice versa. The recommended solution is to conditionally use
alternative copies of your inline assembly code with the appropriate syntax for
each toolchain.

GAS assembly files are not compatible with the RVCT assembler and vice versa

Assembly language files cannot be built by both armasm and the GNU assembler
because they use different syntax.
ARM DAI 0212A Copyright © 2008 ARM Limited. All rights reserved. 5
Unrestricted Access Non-Confidential

Building Linux applications using RVCT v4.0 and the GNU Tools and Libraries
Some GCC language extensions are not supported

Some of the language extensions supported by GCC are not provided by armcc. In
particular, using nested functions is not supported.

2.3 Requirements

This Application Note assumes that you are familiar with RVDS, GNU tools and Linux.

Target requirements

Please note that the instructions in this document relate to building Linux applications for ARM
architecture v5TE (ARMv5TE) or later targets, such as the ARM926EJ-S or ARM1176JZ-S.
This is because the ARM ABI uses ARMv5TE as its base architecture, and earlier architecture
versions are not fully covered by the ABI.

You might be able to use these instructions to build Linux applications for ARM architecture
v4T (ARMv4T) cores (such as the ARM720T and ARM920T) with RVCT. This is, however,
entirely at your own risk and is not supported. In particular, you are not able to use Thumb code
built for ARMv4T in shared libraries. It is recommended that you only use the GNU toolchain
when building Linux applications for ARMv4T targets.

Your target’s filesystem must contain the ABI-compliant library binaries. These are included in
the CodeSourcery GNU toolchain releases described in Build requirements. Finally, the target
must be running a Linux kernel with support for the Native POSIX Threading Library (NPTL),
which is the more recent mechanism for supporting multithreaded code under Linux with the
GNU C library, and TLS. See About the ARM Application Binary Interface on page 7 for more
details on the ABI requirements on your target system.

For the mainstream kernel source, this means that your target must be running version 2.6.12 (or
later) of the Linux kernel. Your Linux distribution, however, may have applied the appropriate
patches to its release of an earlier kernel. For more details, you must contact your Linux
distributor.

Prebuilt binary images of the Linux kernel configured for the ARM development boards can be
found on the ARM website at http://www.arm.com/products/os/linux.html

Build requirements

All information in this document relates to the use of RVCT v4.0.

Note that CodeSourcery’s 2005-q1 release was the first to allow Embedded Application Binary
Interface (EABI) compliant interoperation between RVCT and the GNU toolchain. Several
enhancements and fixes, however, have been made since then, and the instructions in this
document relate only to the CodeSourcery 2006-q1-6 and later releases, because it is now
simpler and safer to link with a newer release.

At the time of writing, the CodeSourcery binary and source packages for the GNU toolchains
are found at http://www.codesourcery.com/gnu_toolchains/arm/

Your ARM Linux distribution might already use the CodeSourcery toolchain or have the
appropriate patches applied. For more details, you must contact your ARM Linux distributor.
6 Copyright © 2008 ARM Limited. All rights reserved. ARM DAI 0212A
Non-Confidential Unrestricted Access

Building Linux applications using RVCT v4.0 and the GNU Tools and Libraries
2.4 About the ARM Application Binary Interface

The ABI for the ARM Architecture is a collection of standards, some open and some specific to
the ARM architecture. The standards regulate the interoperation of binary code, development
tools, and a spectrum of ARM core-based execution environments from bare metal to platform
operating systems such as ARM Linux.

A third-party toolchain such as the GNU tools must comply with the standards given in the ABI
for its objects to link and interoperate correctly with those produced by RVCT. The
CodeSourcery release of the GNU tools is specifically tailored to fully support the ARM ABI
and allow objects produced using both RVCT and the GNU tools to work together successfully.

For more details of the ARM ABI, including the full ABI documents, see the ARM website at
http://www.arm.com/products/DevTools/ABI.html

Interactions between mixed-ABI components

If you are not using an ABI-compliant kernel, you might need to build a mixed ABI system.
Kernels before version 2.6.16 can only be built using the legacy GNU ABI (use GCC option
-mabi=apcs-gnu when using the CodeSourcery toolchain). This includes all kernel modules and
device drivers.

This can cause problems when your applications or libraries must interface directly with kernel
structures or functions (system calls), including through the use of a shared header file
describing kernel structures. In this case, you must use assembly code or modified descriptions
of the structures to translate between the two ABIs when calling kernel functions or
manipulating kernel data structures in your applications or libraries.

From kernel 2.6.16 onwards, the Linux kernel can be built using the new ARM EABI. This
allows for much simpler integration of applications and libraries to form a completely
EABI-compliant system.
ARM DAI 0212A Copyright © 2008 ARM Limited. All rights reserved. 7
Unrestricted Access Non-Confidential

Building Linux applications using RVCT v4.0 and the GNU Tools and Libraries
3 Using RVCT to build a Linux application or library

There are several possible routes to producing a Linux application or library with RVCT,
depending on the requirements of your build.

In most cases, you have to configure the tools based on an existing GNU toolchain or by
providing an alternative location for system header files and libraries. Configuring RVCT for
Linux applications describes how to configure the tools. Once the tools are configured, you can
use RVCT in one of these ways:

• Use the tools directly to produce an application using the standard configuration, but with
normal RVCT command-line options. See Building for ARM Linux using normal RVCT
options on page 9.

• Use RVCT as a drop-in replacement for GCC and the GNU linker. See Using RVCT as a
drop-in replacement for GCC and GNU Id on page 10.

• Migrate a build from an earlier version of RVCT to use the new features in RVCT v4.0.
See Migrating a build from an earlier version of RVCT on page 11.

3.1 Configuring RVCT for Linux applications

When building for ARM Linux, it is necessary to use paths to the appropriate system header files
and libraries (for example, glibc and libstdc++) together with any appropriate standard options
and object files (such as those containing the application entry point function and C library
initialization code) for your library configuration. In RVCT v4.0, this information can be
obtained automatically from an existing GNU toolchain, or specified manually. This can be a
complicated procedure, and the paths and options used remain the same unless you modify your
libraries. Consequently, this configuration information is obtained once and stored in a
configuration file that you specify on the command line. The information in this configuration
file is then re-used when compiling or linking for ARM Linux.

RVCT v4.0 can be configured manually, by specifying particular paths that are used for finding
header files and libraries. Alternatively, if you have an existing GNU toolchain, RVCT can
configure itself automatically by querying the GNU tools for the paths that they use.

The configuration produced by this process is written to a configuration file used later when
building for ARM Linux. You must specify this location by using the
--arm_linux_config_file=path option, where path gives the filename of the configuration file.
You must specify this both when producing the configuration file and when using the
configuration during compilation or linking.

Configuring RVCT automatically

If GCC is in a directory listed in the PATH environment variable, you can configure the tools using
the command:

armcc --arm_linux_configure --arm_linux_config_file=path

If GCC is not on your system path, you can specify this explicitly:

armcc --arm_linux_configure --arm_linux_config_file=config_file_path
--configure_gcc=path_to_gcc

where path_to_gcc is the path and filename of the GCC driver binary, that is, the actual gcc
executable (with .exe suffix on Windows). For a cross-compiler the filename is, for example,
arm-none-linux-gnueabi-gcc (with .exe suffix on Windows).
8 Copyright © 2008 ARM Limited. All rights reserved. ARM DAI 0212A
Non-Confidential Unrestricted Access

Building Linux applications using RVCT v4.0 and the GNU Tools and Libraries
During configuration, the compiler also determines the location of the GNU linker used by GCC
and queries that for additional information. If this cannot be determined, or you wish to override
the normal path to the GNU linker, you can specify this using the --configure_gld=path_to_gld
option, where path_to_gld is the complete path and filename of the GNU ld binary.

You can also override the sysroot path or the location of the C++ header files, and specify
additional search paths for header files and libraries. See Configuring RVCT manually for details
of these options.

Configuring RVCT manually

To configure the tools manually, you must specify:

• the sysroot path

• the path to the C++ header files.

The sysroot path is the root of the tree into which header files and libraries are normally
installed. If you are configuring against a CodeSourcery distribution or another, self-contained
cross-compilation GNU toolchain this is typically the root of the directory tree into which glibc
was installed. For recent CodeSourcery releases, this is the arm-none-linux-gnueabi/libc
subdirectory. If you are configuring against the target’s own filesystem (for example, to pick up
new libraries as they are built and installed into the target filesystem tree) the sysroot is the root
of this filesystem.

The C++ header file path is the path of the directory containing the header files from libstdc++.
In a CodeSourcery distribution, this is typically the
arm-none-linux-gnueabi/include/c++/version subdirectory, where version is the GCC version.

To configure the tools manually, use:

armcc --arm_linux_configure --configure_sysroot=sysroot_path
--configure_cpp_headers=headers_path --arm_linux_config_file=filename

You can also specify additional header search paths and library search paths as a
comma-separated list using the --configure_extra_includes=list and
--configure_extra_libraries=list options.

To manually configure against a CodeSourcery distribution, you must provide extra library
paths for the GCC support libraries, since these are not packaged in the glibc sysroot. For
example, you can use a command similar to the following:

armcc --arm_linux_configure --arm_linux_config_file=filename
--configure_sysroot=<codesourcery_root>/arm-none-linux-gnueabi/libc
--configure_cpp_headers=<codesourcery_root>/arm-none-linux-gnueabi/include/c++/gcc_vers
ion
--configure_extra_libraries=<codesourcery_root>/lib/gcc/arm-none-linux-gnueabi/gcc_vers
ion,<codesourcery_root>/arm-none-linux-gnueabi/lib

3.2 Building for ARM Linux using normal RVCT options

Once the tools are configured, you can use this configuration to build code for ARM Linux using
the --arm_linux_paths option. This is a compiler option only; this follows the typical GCC usage
model where the compiler driver is used to direct linking and selection of standard system object
files and libraries. You must also specify the location of the configuration file with
--arm_linux_config_file=filename. Using these options, you can build application code
directly, for example to build “hello world”:

armcc --arm_linux_paths --arm_linux_config_file=filename -o hello hello.c
ARM DAI 0212A Copyright © 2008 ARM Limited. All rights reserved. 9
Unrestricted Access Non-Confidential

Building Linux applications using RVCT v4.0 and the GNU Tools and Libraries
See the example code in install_directory\RVDS\Examples\4.0\...\windows\linux_apps\hello
for more details.

To create a shared library, compile and link your code using --apcs=/fpic --shared. The
compiler provides the --shared option to select variants of the system object files and libraries
from the configuration that are suitable for linking into a shared library.

For example, to compile a source file source.c suitable for use in a shared library:

armcc --arm_linux_paths --arm_linux_config_file=filename --apcs=/fpic -c source.c

To link two object files obj1.o and obj2.o into a shared library libexample.so:

armcc --arm_linux_paths --arm_linux_config_file=filename --shared -o libexample.so
obj1.o obj2.o source.o

Note
 When linking a C++ application with --arm_linux_paths, you must specify the --cpp option to
the compiler driver so that it passes the appropriate C++ libraries to the linker.

3.3 Using RVCT as a drop-in replacement for GCC and GNU Id

This section describes the use of RVCT as a replacement for GCC and GNU ld.

Overview of the GCC emulation mode

RVCT v4.0 supports a GCC emulation mode, where armcc accepts command lines intended for
GCC and GNU ld and translates these internally into standard armcc and armlink command lines.
This follows the typical GCC usage model of using the compiler driver to direct linking, rather
than invoking the linker directly. However, armcc does provide support for being invoked as if
emulating GNU ld directly, and reports itself as the linker if invoked in GCC emulation mode
with --print-prog-name=ld. This is primarily intended to support a limited number of cases
where the linker is invoked directly by existing build scripts targeting the GNU tools, for
example in a partial link step.

Using GCC emulation mode

To enable emulation of GCC, invoke armcc with one of the following options:

• --translate_gcc to emulate gcc

• --translate_g++ to emulate g++

• --translate_gld to emulate GNU ld

You must also provide --arm_linux_config_file=filename to give a location for the
configuration file.

Note
 If you do not provide a configuration file with the --arm_linux_config_file option when in
translation mode, the compiler performs translation of options but does not set any defaults for
ARM Linux, including ABI defaults such as enum size. This mode of operation is provided for
convenience and is not intended for building Linux applications.
10 Copyright © 2008 ARM Limited. All rights reserved. ARM DAI 0212A
Non-Confidential Unrestricted Access

Building Linux applications using RVCT v4.0 and the GNU Tools and Libraries
Passing normal armcc options in GNU emulation mode

In order to take advantage of features specific to RVCT, you can pass normal RVCT options to
the compiler when in GCC emulation mode. To do this, use -Wrvct,option,... This is a fake
GCC-like option that accepts a comma-separated list of armcc options. These options are passed
verbatim to the compiler, and are appended to the translated command line so that they can
override any translation options.

Differences in behavior and limitations

There are some differences in behavior between GCC and the emulation mode supported by
RVCT v4.0.

• If no optimization level is specified, the armcc default (-O2 -Ospace) is used rather than the
GCC default (-O0). If a GCC numeric optimization level (-O0 through -O3) is used, this is
translated into -On -Otime for armcc. The GCC -Os option translates as -O3 -Ospace.

• Support for diagnostic control is limited. In particular, warnings are suppressed by default
(similar to GCC) and are re-enabled with -W or -Wall. The -w option (lower case -w) is
supported to suppress warnings, for example to override a -Wall earlier on the command
line. Other GCC -W… options are ignored; if you require control of individual messages
then you can use the normal RVCT options (-Wrvct,--diag_suppress,
-Wrvct,--diag_error, and so on.)

• Many GCC options do not have an equivalent in armcc. These include, for example, many
of the -f... GCC options that control optimization phases that are specific to the GCC
code generator, and are not applicable to RVCT. Any GCC options that do not have an
equivalent in armcc are silently ignored.

3.4 Migrating a build from an earlier version of RVCT

Existing code for ARM Linux that builds successfully using RVCT v3.0 or RVCT v3.1 can work
without changes. You can, however, take advantage of the new features in RVCT v4.0 to
simplify your makefiles or other build scripts.

Minimal migration path without using a configuration file

The compiler and linker both provide a --arm_linux option. This does not require a configuration
file, and enables a set of default configuration options, for example ABI-variant options such as
--enum_is_int. This permits you to simplify the compiler options used in existing makefiles
while retaining full and explicit control over the header and library search paths used. When
migrating a build from an earlier version of RVCT, you can remove these standard switches from
the list of those supplied to the compiler and linker with the single --arm_linux switch.

The --arm_linux option in the compiler enables the following switches:

--gnu --enum_is_int --wchar32 --library_interface=aeabi_glibc
--no_hide_all --apcs=/interwork --preinclude=linux_rvct.h

The --arm_linux option in the linker enables the following switches:

--sysv --no_startup --no_ref_cpp_init --no_scanlib --keep=*(.init) --keep=*(.fini)
--keep=*(.init_array) --keep=*(.fini_array) --linux_abitag=2.6.12
--diag_suppress=6332,6318,6319,6765,6747,6420

For more information on the above options, see Application Note 178, Building Linux
Applications using RVDS 3.1 and the GNU Tools and Libraries, which is available from the
ARM website at http://infocenter.arm.com/
ARM DAI 0212A Copyright © 2008 ARM Limited. All rights reserved. 11
Unrestricted Access Non-Confidential

Building Linux applications using RVCT v4.0 and the GNU Tools and Libraries
Migration using a configuration

If you wish to take advantage of the configuration capabilities in RVCT v4.0, you can create a
configuration file as described in Configuring RVCT for Linux applications on page 8. Once this
configuration file is created, you can modify an existing build by replacing the list of standard
options and search paths with the --arm_linux_paths option. See Building for ARM Linux using
normal RVCT options on page 9 for more details on how to use the --arm_linux_paths option.

General notes for migrating builds

In RVCT v4.0, you no longer need to link with the helper libraries, for example h_5.l. If you are
recompiling an entire project from source, the required functions are generated in the object files
by the compiler. If, however, you are linking with legacy object files compiled using a previous
version of RVCT, you must still link with an appropriate helper library.

3.5 Assembler command-line options

When using assembly code in your application or library, two switches must typically be given
to the assembler:

--apcs/interwork

This instructs the assembler to set the build attributes in the object file to indicate
that the code is ARM/Thumb interworking-safe.

--no_hide_all

This indicates that the assembler must use dynamic import and export for all
global symbols.

3.6 Additional headers from RVCT

Some of the standard RVCT headers must be used when building for ARM Linux. These
headers define some implementation-specific macros that are dependent on the compiler rather
than the C library used. The files are provided in the arm_linux subdirectory of the RVCT v4.0
header files, and this directory should be given before the GNU C library include directories in
the path list. If the RVCT40INC environment variable is set, then this path is automatically used by
the --arm_linux and --arm_linux_paths options and by GCC emulation mode.

An additional header file, linux_rvct.h, is also provided. This defines a number of macros for
compatibility with GCC and the Linux environment. This is automatically included (equivalent
to using --preinclude=linux_rvct.h) when using --arm_linux or --arm_linux_paths. When using
RVCT to emulate GCC, these macros are defined internally in the compiler to permit
preprocessing of files other than C or C++ source without automatically including the file.

If you would like to use the DSP or NEON intrinsics available in RVCT v4.0, these are also
provided in the arm_linux subdirectory for convenience, for example #include <arm_neon.h>.
Note that both dspfns.h and math.h include a definition round(), therefore you must rename one
definition if you want to use both versions of these functions. For example:

#define round dsp_round
#include <dspfns.h>
#undef round
12 Copyright © 2008 ARM Limited. All rights reserved. ARM DAI 0212A
Non-Confidential Unrestricted Access

Building Linux applications using RVCT v4.0 and the GNU Tools and Libraries
3.7 Creating and using shared libraries

In a Linux system, you might often want to create a dynamic shared library that can be linked
with a variety of applications. This section describes methods of building and using shared
libraries.

Building a shared library with RVCT

This section provides details on compiler and linker options for building a shared library.

Compiler options

When building dynamic shared libraries, all of the library code must be compiled and linked to
be position-independent. To do this, use the --apcs/fpic compiler switch. In GCC emulation
mode, use -shared -fPIC.

Linker options

armlink supports the creation of dynamic shared libraries; however this requires some additional
options.

--shared

This instructs the linker to create a dynamic shared library and not a static library.

--soname <name>

This specifies the shared object name (SONAME) for the library.

--fpic

This enables you to link position-independent code (compiled with --apcs/fpic).

For example, to link libfunc.o and asmfunc.o into a dynamic shared library libdynamic.so, you
can use the following linker command line:

armlink --arm_linux --fpic --shared --soname libdynamic.so -o libdynamic.so libfunc.o
asmfunc.o libc.so.6

When using GCC emulation mode, if -shared is passed to the compiler driver this automatically
passes --shared --fpic to armlink. You can still specify the shared object name or other options,
for example using -Wl, -soname, libexample.so.

Using shared libraries in your application

Shared libraries can be used with armlink in the same way as normal libraries by specifying them
on the linker command line. References to the shared library are added to the image and resolved
to the library by the dynamic loader at runtime.

Library search order

The order in which references are resolved to libraries is the order in which libraries are
specified on the command line. This is also the order in which the dependencies are resolved by
the dynamic linker. You can specify the runtime location of libraries using the --rpath linker
option.

Unlike GNU ld, armlink repeatedly searches libraries in command-line order until either all
references are resolved or no further references can be resolved by the given libraries. That is,
armlink behaves similarly to:

ld --start-group lib1.a lib2.a lib3.a … --end-group
ARM DAI 0212A Copyright © 2008 ARM Limited. All rights reserved. 13
Unrestricted Access Non-Confidential

Building Linux applications using RVCT v4.0 and the GNU Tools and Libraries
Selection of static and dynamic libraries

In RVCT v4.0, armlink supports a --library=name option similar to the -l option in GNU ld.
This can search for libraries named as libname.so or libname.a depending on whether dynamic
library searching is enabled at that point on the command line. The searching of dynamic
libraries is controlled by the --[no_]search_dynamic_libraries option, as shown in the last two
lines of the example given below. These two command lines would perform a link searching for
libfoo.so before libfoo.a, but only searching for libbar.a:

gcc -shared -fPIC -Wl,-Bdynamic -lfoo -Wl,-Bstatic -lbar

armcc --arm_linux -L--shared -L--fpic \
-L--search_dynamic_libraries -L--library=foo \
-L--no_search_dynamic_libraries -L--library=bar
14 Copyright © 2008 ARM Limited. All rights reserved. ARM DAI 0212A
Non-Confidential Unrestricted Access

Building Linux applications using RVCT v4.0 and the GNU Tools and Libraries
4 Frequently-asked questions and troubleshooting

This section provides answers to common questions as well as additional information.

4.1 Frequently-asked questions

Here is a list of potential questions that you might want to ask.

Where can I find further information?

The recommended starting point for further information is the CodeSourcery toolchain FAQ at
http://www.codesourcery.com/gnu_toolchains/arm/faq.html

You may also wish to look at ARM and Linux forums and newsgroups, or at mailing list
archives. http://www.arm.linux.org.uk/ and the ARM Linux wiki http://www.linux-arm.org/
provide resources relating specifically to ARM Embedded Linux.

Note
 ARM does not provide support on the use of the GNU tools. For more information, see
http://gcc.gnu.org.

How do I build an EABI-compliant Linux kernel?

Prior to kernel version 2.6.16 an EABI-compliant kernel could not be built. This is only,
however, an issue for applications and libraries which directly access kernel structures or
functions because the EABI-compliant GNU C library translates calls appropriately from
EABI-compliant applications to the non-EABI compliant kernel system calls.

From kernel version 2.6.16, it is possible to build an EABI kernel, however you must still use
the GNU toolchain.

Can I build the Linux kernel using RVCT?

The Linux kernel has a large amount of assembly code that is written in GNU assembler syntax.
The RVCT assembler does not support the GAS syntax and therefore cannot be used to build
the Linux kernel.

Also, because the most critical parts of the kernel are written in assembly and not C, you are
unlikely to see a significant improvement if RVCT was used to build the kernel.

Which kernel version should I use?

The CodeSourcery toolchain as provided in binary form is built to use NPTL and it expects to
have TLS support in the kernel. Recent CodeSourcery binary releases have a dependency on
kernel version 2.6.16 or later, so you might have to use kernel version 2.6.16 or later.
Alternatively, your Linux distributor may have already applied the appropriate patches to their
kernel build. You should contact your Linux distributor for more information.

Can I use EABI-compliant and non-EABI-compliant applications together?

Yes. You should place the libraries and the dynamic linker in a different directory to the normal
libraries. We recommend that you use /libeabi for the EABI-compliant libraries, and leave the
original, non-EABI compliant libraries in/lib.
ARM DAI 0212A Copyright © 2008 ARM Limited. All rights reserved. 15
Unrestricted Access Non-Confidential

Building Linux applications using RVCT v4.0 and the GNU Tools and Libraries
You must then set the library search path for EABI applications using the environment variable
LD_LIBRARY_PATH=/libeabi or by using the --rpath linker option. You are recommended to
rebuild all applications to use the EABI in your final system because the extra libraries take up
a significant amount of space in the filesystem.

The GNU tools report “ERROR: Source object … has EABI version 5, but target
… has EABI version 4” when used on objects generated by RVCT v4.0

RVCT v4.0 generates ELF files conforming to revision 5 of the ARM ABI ELF (AAELF)
specification. However, CodeSourcery’s 2005-q3-2 release only supports revision 4 of the
AAELF specification, and does not consume objects produced by RVCT v4.0 tools. Support for
the new ABI revision is included in the 2006-q1-3 and later releases of the CodeSourcery
toolchain.

The GNU linker reports “ld: ERROR: … : Conflicting definitions of wchar_t”, or
armlink reports: “Error: L6242E: Cannot link object dummy.o as its attributes are
incompatible with the image attributes ... wchart-16 clashes with wchart-32”

This is because the linker has detected a mismatch between the wchar_t types used. The
CodeSourcery document ARM GNU/Linux Application Binary Interface Supplement for
building Linux applications specifies that wchar_t must be 32 bits.

A similar error exists for incompatible sizes of enumeration types. For ARM Linux, an enum
must be 32 bits wide.

To resolve these errors, ensure that all of your code is compiled for 32-bit wchar_t and 32-bit
enums, for example using the --wchar32 and --enum_is_int armcc options. This is done
automatically if --arm_linux is used.

Alternatively, armlink supports the options --no_strict_wchar_size and --no_strict_enum_size
that avoid these errors. Be aware, however, that binary compatibility might be broken between
the objects with differing attributes if they pass data of enum or wchar_t types between each
other and this might lead to runtime failures.

armlink reports “Fatal error: L6033U: Symbol in crt1.o is defined relative to an
invalid section”

In the 2006-q1-3 release of the CodeSourcery toolchain the crt1.o object file has not been
correctly stripped. This has been fixed in the 2006-q1-6 CodeSourcery release. Alternatively
you can strip the crt1.o object yourself.

armlink reports “Error: L6449E: While processing …/libgcc.a: Symbol #7 in
symbol table section #10 is defined in section #17 but the last section is #11”

The libgcc.a contained in some CodeSourcery distributions contains object files with invalid
symbols in their symbol table. These symbols are never used or needed, but armlink generates
an error when trying to read these object files. There are three alternative solutions:

• Under GCC emulation mode, invoke the link step using -shared-libgcc. This forces the
use of the shared library version of libgcc.

• Strip your copy of the libgcc.a member object files to remove the corrupt symbols from
the symbol table.

• Upgrade to a newer CodeSourcery release. This issue is fixed in the 2008-q1 release.
16 Copyright © 2008 ARM Limited. All rights reserved. ARM DAI 0212A
Non-Confidential Unrestricted Access

Building Linux applications using RVCT v4.0 and the GNU Tools and Libraries
Using hardware VFP instructions

ARM Linux uses software floating-point linkage, where floating-point arguments are passed in
integer registers even if functions themselves perform operations in hardware VFP registers. To
use hardware VFP instructions within functions, compile your code with, for example,
--fpu=SoftVFP+VFP to select software floating-point linkage.

Can I use the RVCT libraries in a Linux application?

In general, you are not recommended to use the RVCT libraries when building a Linux
application. The libraries provided with RVCT are targeted at standalone applications running
directly on the target hardware, that is, without an OS. They contain semihosting calls and
memory handling that is not suitable for use under an operating system like Linux. It is
sometimes possible to use small, self-contained portions of the RVCT library code. However,
you must take care to retarget any semihosted I/O functions and signal handling. Also, the
RVCT libraries can only be statically linked into an application or shared library.

How can I see which libraries are being used?

The linker provides an option --info=libraries that lists the libraries it uses. For information on
which library functions are being used, you can request verbose output from the linker with
--verbose and redirect this to a file with --list=filename.txt.

When using --arm_linux_paths or the GCC emulation mode, the configuration file provides the
list of system paths and standard libraries with which to link. This file is in XML format, and
you can examine this file in a text editor to check the libraries that are used by the tools.

How can I have greater control over which libraries are linked into my
application?

If you require explicit control over the libraries that are linked with your application, this can be
done with a manual link step by passing the --arm_linux linker option. The --arm_linux option
sets the --no_scanlib option, which disables searching of system library paths. You are then free
to provide your own list of search paths with --userlibpath, and a list of libraries to use.

4.2 Common problems with running your application

Some common problems with running your application are described in Table 2.

Table 2 Common problems with running applications

Problem Solution

Cannot find the application • Check that the application is on the path, or you are running it with ./program in the
current directory.

• The dynamic loader may not be the same as specified at link time. In this case, use
/path-to-linker/dynamic-loader program-path/program. For example:
/libeabi/ld-linux.so.3 /opt/bin/eabi/hello

Note
 You can specify an alternative dynamic loader for an application by passing, for example,

--dynamiclinker=/libeabi/ld-linux.so.3

Permission denied Check that you have set the executable flag for the program (use chmod +x program).
ARM DAI 0212A Copyright © 2008 ARM Limited. All rights reserved. 17
Unrestricted Access Non-Confidential

Building Linux applications using RVCT v4.0 and the GNU Tools and Libraries
Segmentation faults

There are a variety of possible causes of segmentation faults. They might be caused by problems
with your application. You must also ensure that:

• When you are using a manual link step, --no_scanlib or --arm_linux are passed to the
linker. This ensures that the linker does not search the RVCT libraries and accidentally
link in semihosted I/O functions. If you are explicitly linking with any portions of the
RVCT libraries, ensure that any semihosted I/O and signal handling functions are
retargeted appropriately.

• When creating a dynamic library, you have compiled and linked as position-independent
code (use --apcs/fpic for the compiler and --fpic for the linker).

• When creating an application using a manual link, you have used either the two linker
switches --no_startup and --entry _start, or the linker switch --arm_linux.

• When you are using C++ exceptions you must be linking with libraries from an
appropriate CodeSourcery release (2007-q1-10 or later) and using these libraries on your
target filesystem.

4.3 Image sizes and stripping debug data

Both the GNU and ARM toolchains add a significant amount of information to an image that is
generally only of use for debugging.

For production systems, it is likely that you want to strip the debugging data from your
applications and shared libraries. With RVCT, this can be removed using the --no_debug switch
at the link stage or by running fromelf on the linked image. In addition, you can use fromelf to
remove the .comment sections and symbols from the file. For example:

fromelf --strip debug,comment,symbols --elf -o stripped.axf image.axf

“GLIBC_2.4 not found” error

“unable to find library XXX.so.X”

This is the dynamic linker reporting that it cannot use the libraries found on its default path. You
can use the LD_LIBRARY_PATH environment variable to access the correct libraries. For example:
LD_LIBRARY_PATH=/libeabi ./helloworld

Alternatively, you can use the --rpath linker option.

“Illegal instruction” error before
main()

This indicates that the image has been built for the incorrect architecture (for example, ARMv6
code running on an ARMv5TE core), or the kernel has been built without NPTL support.

Check that you have built the image for the correct ARM architecture and check that you are
using either a 2.6.12 (or later) Linux kernel or one with the appropriate patches applied as part
of your distribution.

Also ensure that the system call interface matches between the Linux kernel and the EABI C
library you are using. That is, an old-ABI kernel uses the old system call interface and the C
library might have been built to use the new system call interface. Note that the binary libraries
from recent CodeSourcery releases are built for the new system call interface.

Once at main() this is likely to be an actual undefined instruction in the application.

Various dynamic linker errors The pre-built libraries supplied in the 2006-q1-3 and later releases of the CodeSourcery
toolchain use the new system call interface and have been built with an ABI tag that require
Linux kernel 2.6.16 or later. The dynamic linker generates various error messages when run on
older kernel revisions. To avoid this you must update to the 2.6.16 or later kernel which supports
the new system call interface or rebuild the libraries to support an older kernel revision. The
2.6.16 or later kernel can be configured to support both the new and old system call interface.

Table 2 Common problems with running applications (continued)

Problem Solution
18 Copyright © 2008 ARM Limited. All rights reserved. ARM DAI 0212A
Non-Confidential Unrestricted Access

Building Linux applications using RVCT v4.0 and the GNU Tools and Libraries
In addition, the data sizes in RVCT images can be slightly larger than those in GNU images.
This is typically because some ZI data (BSS) is moved into the RW data area for performance
reasons on bare-metal systems. You can move this data to ZI sections using the compiler switch
--bss_threshold=0. For more details, see --bss_threshold=num in the RVCT v4.0 Compiler
Reference Guide.
ARM DAI 0212A Copyright © 2008 ARM Limited. All rights reserved. 19
Unrestricted Access Non-Confidential

Building Linux applications using RVCT v4.0 and the GNU Tools and Libraries
5 Further reading

This section lists publications by ARM and by third parties.

5.1 ARM publications

The full documentation of the ABI for the ARM Architecture can be found at
http://www.arm.com/products/DevTools/ABI.html

The ARM GNU/Linux ABI Supplement can also be found at
http://www.codesourcery.com/gnu_toolchains/arm/arm_gnu_linux_abi.pdf

Prebuilt kernel, binaries, and an example filesystem image for the ARM development boards are
available from the ARM website at http://www.arm.com/linux/

Additional information on the ARM tools can be found in the relevant RVCT v4.0
documentation:

• RVCT v4.0 Compiler Reference Guide

• RVCT v4.0 Compiler User Guide

• RVCT v4.0 Developer Guide

• RVCT v4.0 Libraries and Floating Point Support Guide

• RVCT v4.0 Linker Reference Guide

• RVCT v4.0 Linker User Guide

• RVCT v4.0 Utilities Guide.

See also Application Note 201, Building and Debugging ARM Linux Using ARM Embedded
Linux, ARM RealView Development Suite 3.1 and RealView ICE 3.2, which is available from the
ARM website at http://infocenter.arm.com/

General information on ARM Linux can be found from the open-source community. Useful
starting points are:

• The comp.sys.arm newsgroup

• The ARM Linux project website: http://www.arm.linux.org.uk/

• The ARM Linux wiki: http://www.linux-arm.org/

5.2 Other information

The following items might also be useful to you:

• For further information on the GNU toolchain supplied by CodeSourcery, see
http://www.codesourcery.com/gnu_toolchains/arm/

• In particular, the FAQ for the ARM GNU toolchain can be found at
http://www.codesourcery.com/gnu_toolchains/arm/faq.html
20 Copyright © 2008 ARM Limited. All rights reserved. ARM DAI 0212A
Non-Confidential Unrestricted Access

	Building Linux applications using RVCT v4.0 and the GNU Tools and Libraries
	1 Introduction
	1.1 Legal notices and support status

	2 Scope of this document
	2.1 Expected use
	2.2 Limitations
	2.3 Requirements
	2.4 About the ARM Application Binary Interface

	3 Using RVCT to build a Linux application or library
	3.1 Configuring RVCT for Linux applications
	3.2 Building for ARM Linux using normal RVCT options
	3.3 Using RVCT as a drop-in replacement for GCC and GNU Id
	3.4 Migrating a build from an earlier version of RVCT
	3.5 Assembler command-line options
	3.6 Additional headers from RVCT
	3.7 Creating and using shared libraries

	4 Frequently-asked questions and troubleshooting
	4.1 Frequently-asked questions
	4.2 Common problems with running your application
	4.3 Image sizes and stripping debug data

	5 Further reading
	5.1 ARM publications
	5.2 Other information

