
Application Note 174
Changing clocks on the ARM1136JF-S Core Module

Released on: 21 March, 2007
Copyright © 2007. All rights reserved.
DAI0174A

Application Note 174
Application Note 174
Changing clocks on the ARM1136JF-S Core Module

Copyright © 2007. All rights reserved.

Release Information

The following changes have been made to this application note.

Proprietary Notice

Words and logos marked with ® and ™ are registered trademarks owned by ARM Limited, except as otherwise stated
below in this proprietary notice. Other brands and names mentioned herein may be the trademarks of their respective
owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith. However, all warranties implied or
expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable for any
loss or damage arising from the use of any information in this document, or any error or omission in such information,
or any incorrect use of the product.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Table 1 Change history

Date Issue Change

March 2007 A First release
2 Copyright © 2007. All rights reserved. DAI0174A

Application Note 174
1 Introduction

Many customers want to increase the performance of ARM development boards to be nearer
their final ASIC. For example, the ARM1136JF-S core was designed to run at 330-550MHz, but
the test chip on our boards runs at a default 240MHz. Please note that we cannot guarantee the
maximum operating frequency of our boards, there will be some variation between boards, and
you may only be able to achieve a relatively small increase, for example to 285MHz.

Some customers want to reduce clock speeds for benchmarking or to prototype their hardware
in an FPGA. The minimum AHB bus frequency is 25MHz, due to the delay locked loop (DLL)
used in the FPGA.

Unfortunately, the CM1136JF-S user guide does not include all the details you need to change
the clocks. This application note describes the clock circuits, gives step-by-step instructions how
to change the frequencies, and includes two programs to set and measure the clocks. The
calculator program assumes you have an Integrator/CP baseboard; it does not work with an
Integrator/AP or no baseboard.

1.1 Overview

There are three clocks locked together by programmable divide ratios: core CLK, internal bus
HCLKI, and external bus HCLKE. They each have a maximum operating frequency that will
vary for different boards and test chips. Finding the maximum operating frequencies is an
iterative process: select some frequencies to test, work out the register settings you need, set the
registers, run a test program to check the board is stable at the frequencies chosen, then repeat
with increasing frequencies.

For best performance you should try and get the highest core frequency CLK, since this is also
the speed of the L1 cache, and caches have a large impact on performance. External bus
frequency HCLKE is usually less important unless your application is doing a lot of DMA or
I/O accesses.

HCLKI should be run as fast as possible, at CLK / 2, to avoid AHB components on the test chip
adding unnecessary delays. This assumes you do not want to access the SRAM on the test chip,
which may require a slower speed.

When you have found the best operating frequencies for your board, you should run a 'soak test'
for several hours to confirm that the board is stable with these settings. You should do this with
the ambient temperature a few degrees higher than normal room temperature. This is because
temperature and voltage variations cause silicon timing to change. We recommend using the
Dhrystone program provided in the RVDS Examples directory to test stable operation. You
should also use the Cached Dhrystone example, since memory cells (in this case the L1 cache)
tend to push the silicon design rules more than processors.
DAI0174A Copyright © 2007. All rights reserved. 3

Application Note 174
2 Hardware

2.1 Core Module

Figure 1 shows the clock signals on the CM1136JF-S Core Module. The clock circuit inside the
ARM1136JF-S test chip is described in more detail later.

Figure 1 Clock signals on the CM1136 Core Module

The clock output from the test chip, HCLKE, is used as the timing reference for most of the Core
Module. It is used for the local AHB bus, SDRAM, SSRAM, PLD and peripherals in the FPGA.
If the Core Module is fitted on top of a CP baseboard then it is also used for the AHB system
bus between boards.

HCLKE is fed into the CM1136 FPGA which uses a delay-locked loop (DLL) to distribute the
clock internally. The DLL has a minimum rated operating frequency of 25MHz. This lower limit
may be a problem if you are using a CP baseboard (so it applies to the system bus) and are
prototyping hardware in a Logic Tile FPGA.

2.2 Test Chip

Figure 2 on page 5 shows the clock circuit inside the ARM1136JF-S test chip. The default clock
frequencies, divider and multiplexer settings for a CM1136 fitted on top of an Integrator/CP are
shown.
4 Copyright © 2007. All rights reserved. DAI0174A

Application Note 174
Figure 2 Clock circuit inside the ARM1136 test chip

The test chip clock circuit has three parts: an analogue Phase Locked Loop (PLL) surrounded
by 3 dividers that can generate arbitrary frequencies from the incoming REFCLK signal;
multiplexers to bypass the PLL or select an alternative clock source for asynchronous mode; and
3 dividers for the different clock domains on and off the test chip.

2.3 Default Frequencies

Table 2 lists default clock frequencies for the CM1136 when used with the CP and AP
baseboards, and on its own. These defaults apply to boards with the latest FPGA image, Rev B
build 3 / Rev D build 7. There should be a label on the CM1136 FPGA stating the version it was
shipped with.

The 'Rev B' image is used when the CM1136 is fitted on top of an AP baseboard or without a
baseboard; and the 'Rev D' image applies to CM1136 with a CP baseboard. Note that the Rev D
image has been developed further since the AP is now obsolete.

Table 2 Default clock frequencies for the CM1136

Signal Description Measure at CM1136 + CP
CM1136 + AP
or stand-alone

REFCLK Input to test chip PLL U32 pin 11 20MHz 180MHz

ARM_HCLK Input to test chip for
asynchronous mode

U33 pin 11 24MHz 16MHz

CLK ARM1136 core clock Run test program 240MHz 180MHz

HCLKI Internal (on-chip) AHB
clock

Cannot measure 120MHz 90MHz

HCLKE External (off-chip) AHB
clock

Test point TP16 30MHz 36MHz

AUXCLK Auxiliary clock (CLCD
pixel clock for CP)

Test point TP15 25MHz ~97MHz
DAI0174A Copyright © 2007. All rights reserved. 5

Application Note 174
2.4 Asynchronous Mode

The ARM1136 bus interface ports can operate either synchronously or asynchronously to the
core clock, enabling the choice of core and bus clock frequencies. To keep things simple we will
not discuss how to use asynchronous mode here. You might want to use it on your ASIC design
if:

• the different ARM1136 ports are connected to AHB buses with asynchronous frequencies

• it is difficult to synchronise the core clock with the AHB clock across the whole chip

• the AHB clock is fixed at say 133MHz for the SDRAM and you are trying to run the core
as fast as possible, say 633MHz

• the AHB clock is fixed and you have multiple masters each with a different core frequency

• the AHB clock is fixed and you want to reduce the core clock to say 10MHz for power
saving.

The additional 1-cycle latency of using an asynchronous bridge is small compared to the 5 or
6-cycle latency of a normal access. For more details, see figure 8-2 in the ARM1136 Technical
Reference Manual, which compares the performance lost through synchronization penalty with
the performance lost through reducing the core frequency to be an integer multiple of the bus
frequency.

2.5 Constraints

Here is a list of constraints for the clock control registers. The registers are summarized in a table
at the end of this document.

• CM_OSC, CM_AUXOSC and CM_INIT are locked from accidental changes by the
CM_LOCK register. Write 0x0000A05F to CM_LOCK to unlock them, and any other
value to lock them.

• Changes to the clock dividers for CLK, HCLKI or HCLKE take place immediately. If you
are using the ARM1136JF-S in asynchronous mode (CPU asynchronous to bus ports),
you must make sure changes to these dividers propagate before selecting the
asynchronous ratio.

• HCLKI must be an integer multiple of HCLKE. In ARM1136JF-S synchronous mode (the
default), CLK must be an integer multiple of HCLKI greater than 1.

• Changes to PLLREFDIV, PLLFBDIV and PLLOUTDIV take place after a soft reset. That
is, when you press the CM1136 reset button S1, or when you set the RESET bit (bit 3) in
the CM_CTRL register. Reads from the CM_AUXOSC register (PLLOUTDIV and
PLLREFDIV control bits) will not show the updated values until a soft reset has occurred.

• When the Core Module is mounted on an AP baseboard or standalone, writes to CM_OSC
take effect immediately. When the Core Module is mounted on an Integrator/CP
baseboard (which uses a different FPGA image) you must perform a soft reset for changes
in CM_OSC to take effect.

• When mounted on a CP baseboard there is an undocumented feature to change clocks
without a soft reset. Setting bit 26 of the CM_OSC register forces the CM_INIT,
CM_OSC and CM_AUX registers to immediately update the hardware. To prevent the
test chip PLL and FPGA DLL losing lock you must keep the frequency changes small.
The DLL is more sensitive, its input can accept a change of up to 1ns period (where period
= 1 / frequency) without losing lock, for example changing HCLKE from 30 to 30.9MHz.
6 Copyright © 2007. All rights reserved. DAI0174A

Application Note 174
• All divider ratios are (register value + 1). For example, a PLLOUTDIV value of 0 means
divide by 1, a value of 1 means divide by 2.

• You must preserve the original values of bits you are not writing to (read-modify-write the
register).

2.6 Clock control registers

Table 2 shows the Core Module and test chip clock registers that control clocks. You must
preserve the original values of bits that you are not writing to.

Table 3 Clock control registers

Register Address Bits Parameter Description

CM_OSCa 0x10000008 26 UPDATE Set to 1 update all ICS307 chips with new
register settings. If you change HCLKE in steps
greater than 1ns period the FPGA's
delay-locked loop (DLL) may lose lock

CM_OSCa 0x10000008 22:15 BUS_VDW Generates ARM_HCLK using ICS307 chip
U33. Only needed in async mode

CM_OSCa 0x10000008 14:12 BUS_OD Generates ARM_HCLK using ICS307 chip
U33. Only needed in async mode

CM_OSCa 0x10000008 7:0 PLL_VDW Generates REFCLK using ICS307 chip U32.
The REFCLK frequency in MHz is PLL_VDW
+ 8. REFCLK can be in the range 16 to 180MHz

CM_CTRL 0x1000000C 3 RESET Set to 1 to do a soft reset and use the new clock
register values. Same effect as pressing the
RESET button S1

CM_CTRL 0x1000000C 2 REMAP Set to 1 to map SDRAM at address 0x0 instead
of flash (the default)

CM_LOCK 0x10000014 15:0 LOCKVAL Set to 0xA05F to unlock the protected control
registers CM_INIT, CM_OSC and
CM_AUXOSC

CM_AUXOSCa 0x1000000C 31:28 PLLOUTDIV Test chip PLL output divider. Maximum value is
0x7. The divide ratio is PLLOUTDIV + 1

CM_AUXOSCa 0x1000000C 27:24 PLLREFDIV Test chip PLL reference input divider. The
divide ratio is PLLREFDIV + 1

CM_INITa 0x10000024 15:8 PLLFBDIV Test chip PLL feedback loop divider. Maximum
value is 0x3F. The divide ratio is PLLFBDIV +
1

CM_INITa 0x10000024 0 PLLBYPASS Set to 0 to use the test chip PLL, or 1 to bypass
the PLL

ClkGenCtrlRegb 0x3F200080 31:26 Various Set to 0x0 for ARM1136 ports in sync mode and
PLL not bypassed
DAI0174A Copyright © 2007. All rights reserved. 7

Application Note 174
ClkGenCtrlRegb 0x3F200080 25:20 HCLKEDIVc Divides the PLL output (or REFCLK if PLL
bypassed, or ARM_HCLK in async mode) to
generate HCLKE. Maximum value is 0x3E. The
divide ratio is HCLKE_DIV + 1

ClkGenCtrlRegb 0x3F200080 19:14 HCLKEDIVc Divides the PLL output (or REFCLK if PLL
bypassed, or ARM_HCLK in async mode) to
generate HCLKI. Maximum value is 0x3E. The
divide ratio is HCLKI_DIV + 1

ClkGenCtrlRegb 0x3F200080 13:8 CLKDIVd Divides the PLL output (or REFCLK if PLL
bypassed) to make the ARM1136 core clock.
Maximum value is 0x3E. The divide ratio is
CLK_DIV + 1

a. Locked from accidental changes by the CM_LOCK register.
b. Clock Generator Control Register. The change takes place immediately; other register changes take place on a soft reset.
c. The HCLKI frequency must be an integer multiple of the HCLKE frequency.
d. In synchronous mode, the core frequency CLK must be an integer multiple greater than 1 of HCLKI.

Table 3 Clock control registers (continued)

Register Address Bits Parameter Description
8 Copyright © 2007. All rights reserved. DAI0174A

Application Note 174
3 Measuring the Frequency

If you manually set the registers you should measure the resulting frequencies to be sure you
have set them correctly. You can use an oscilloscope to measure the input to the test chip
(REFCLK at U32 pin 11) and the output (HCLKE at test point TP16).

Figure 3 shows the test points for clocks on the CM1136. It also shows the connectors and LEDs
mentioned elsewhere.

Figure 3 CM1136 test points for clocks
DAI0174A Copyright © 2007. All rights reserved. 9

Application Note 174
A utility is provided with this application note so you can measure the ARM1136 core
frequency. The utility comprises two stand-alone programs called InitTCM.axf and
Speedtest.axf. Tightly Coupled Memory (TCM) on the ARM1136 test chip runs at the core
frequency with zero wait states; the utility measures how long it takes for the processor to run
around a loop in TCM. The steps to use the utility are:

1. Use your debugger to load and run InitTCM.axf, then stop execution. This program
initializes the TCM. It only needs to be run once per debug session, unless the TCM
settings are subsequently changed by another program.

2. Use your debugger to load and run Speedtest.axf, then stop execution. This program was
linked to be loaded by the debugger into TCM at address 0x80000000. Speedtest executes
1,000,000 loops that each take 20 core clock cycles on an ARM11. It uses a hardware
timer clocked at 24MHz to measure how long it takes. The final count value is left in
register R3.

3. Use the value in R3 to calculate the core frequency. For example:

R3 = 0x001E8486 = 2,000,006 counts

1 count = 1 / 24MHz = 41.67ns

Total program execution time = 2,000,006 x 41.67ns = 83.33ms

Core frequency = total cycles / total time= 20,000,000 / 83.33ms = 240MHz
10 Copyright © 2007. All rights reserved. DAI0174A

Application Note 174
4 Instructions to set the clocks

You will need:

• An Integrator/CM1136JF-S Core Module with a test chip with a working PLL and the
latest FPGA version: Check that the test chip is not marked "0344" (for details please see
our FAQ 'Problems with CM1136JF-S test chip internal PLL and SRAMs'
http://www.arm.com/support/faqdev/5303.html). Check that the label on the FPGA says
"Rev D build 7" (Rev D is for the CM1136 with a CP baseboard; ignore the "Rev B" build
which applies to CM1136 with an AP or no baseboard).

• An Integrator/CP baseboard and its 12V DC power supply. These instructions do not work
for CM1136 without a baseboard or on an Integrator/AP baseboard.

• Debugger software and JTAG run control hardware that supports ARM 'semihosting'.
These instructions assume you have a RealView ICE (RVI) and RealView Debugger
(RVD) version 3.0, although earlier versions are similar.

The steps are:

1. To assemble the CM1136 on top of CP: Check that the SDRAM DIMM is connected to
the CM1136. Check the holes on the HDRA and HDRB connectors on CM1136 have no
obstructions and that the pins on the HDRA and HDRB connectors on Integrator/CP are
not bent. On a level surface, carefully line up the HDRA and HDRB connectors then push
down evenly.

2. Connect RVI to the JTAG connector on the CM1136.

3. Connect the supplied 12V DC power supply to the Integrator/CP baseboard. Turn on the
mains power and the red STANDBY LED D12 should light on the CP.

4. Press the POWER button S1 (near the STANDBY LED) to power up the boards. On the
CP you should see the 3V3 and 5V LEDs lit and the alphanumeric LED display should
say 'CP'. On the CM1136 you should see the PWR, DONE and MISC LEDs lit. When the
boot monitor runs it configures the SDRAM.

5. 5.Run RVD and connect to the ARM1136 core:

a. In the RVDEBUG window select Target → Connect to Target…

b. In the Connection Control window that pops up, right-click on RealView-ICE and
select Configure…

c. In the RVConfig window that pops up, click on the Auto Configure Scan Chain
button. It should detect two devices, ETMBUF and ARM1136JF-S.

d. Select File → Save then File → Exit.

e. In the Connection Control window, select the RealView-ICE line, click on the Open
Target Access button, then select the line that appears underneath RealView-ICE
and click on the Connect button.

Note that you do not have to do steps b, c, d the next time you connect to this target.

6. In the RVD window (labeled RVDEBUG) locate the memory pane and enter address
0x10000000 to display the Core Module control registers.

7. The calculator program CM1136_clocks.axf calculates the register values needed for a
given ARM core frequency, then sets the registers to change the frequency. Load and run
the CM1136_clocks.axf program in RVD: select Target → Load Image then Debug →
Run.
DAI0174A Copyright © 2007. All rights reserved. 11

Application Note 174
8. The program prompts you to enter a target ARM1136 core frequency in the range 100 to
340MHz. You can enter a number such as 233 or 233.33 but do not enter 'MHz'. The
program will calculate the new register settings and prompt you to accept them. Enter 'Y'
and the program will write the new values and initiate a soft reset to make the values take
effect.

a. If you are increasing the core frequency:

After the soft reset, flash is mapped to the bottom of memory instead of SDRAM.
Use the RVD memory pane to write 0x4 to address 0x1000000C. This 're-maps'
SDRAM to address zero so that you can load and run programs normally again.

If you cannot write the value to memory, or cannot load a program with RVD, then
the core frequency you chose is too fast. Disconnect RVD (select Target →
Disconnect), power-down the system by pressing the POWER button S1, then go
back to step 4 and enter a lower target frequency.

b. b)If you are reducing the core frequency:

It may not be possible to reduce the core frequency to the value you entered in one
step, while keeping the HCLKE frequency within its normal operating range. If the
program tells you this is the case, run the program again and enter a core frequency
that is not as low, and repeat until you get to the frequency you want.

As it finishes, the program may prompt you to write the HCLKE divider value into
the test chip register at address 0x3F200080. The program cannot do this itself
because it must occur after the soft reset, which stops the program.

After the soft reset, flash is mapped to the bottom of memory instead of SDRAM.
Use the RVD memory pane to write 0x4 to address 0x1000000C. This 're-maps'
SDRAM to address zero so that you can load and run programs normally again.

9. You can measure the clock frequencies to confirm that your changes have taken effect as
planned:

You can measure REFCLK at U32 pin 11 on the CM1136.

You can measure HCLKE at test point TP16 on the CM1136.

You can measure the ARM1136 core frequency using the Speedtest program.

10. Now run a program to check the CM1136 is stable in this configuration. While searching
for the maximum operating frequency you only need to run the test program for a minute
to see if it crashes. You can use the Dhrystone program in the RVDS Examples directory
for this; with the default CM1136 settings enter a value of 600,000 runs to give about 1
minute.

11. If the test program crashes then the target core frequency you chose is too fast. Disconnect
RVD (select Target → Disconnect), power-down the system by pressing the POWER
button S1, then go back to step 4 and enter a lower target frequency.

12. If the test program does not crash and you have not yet found the highest stable frequency,
then go back to step 7 and enter a higher target frequency.

13. When you have found the highest stable frequency for your CM1136, run a 'soak test' for
several hours to ensure the hardware is stable for software development. Ideally you
should do this with a higher ambient temperature than normal room temperature, in which
case you may need to use a frequency 1 or 2MHz slower. Run the Dhrystone program to
test the core and external bus. Then run the Cached Dhrystone program to test the core
and cache. If these programs do not crash then the hardware is stable at the core frequency
you entered. For each program, time how long it takes for 600,000 runs and extrapolate
for the time you want to run your soak test.

14. In development you can use the calculator program to initialize the CM1136 to the
operating frequency you need.
12 Copyright © 2007. All rights reserved. DAI0174A

Application Note 174
5 Software

The calculator program is fairly straightforward: it prompts you to enter a target core frequency,
it searches all combinations to find a core frequency closest to the target, then it searches for a
suitable external bus frequency, and finally it sets the registers and initiates a soft reset.

If you do not wish to use the program then replace step 7 above with the following method:

1. Using the test chip diagram above, determine the REFCLK frequency and divider values
that you want to use. See for constraints on the range of values.

2. Unlock the protected registers by writing 0x0000A05F to the CM_LOCK register at
address 0x10000014.

3. Enter the new register values you want to change, see Table 2 for the bit fields and
addresses. You must preserve the original values of bits you are not writing to.

The first time you try this just write to one register, for example change the value of
CM_OSC at address 0x10000008 from the default 0x010B100C to 0x010B100B. This
should reduce the REFCLK frequency input to the test chip from 20MHz to 19MHz,
which you can measure at U32 pin 11.

Note that changes to the Clock Control Generator Register (CLKDIV, HCLKIDIV,
HCLKEDIV) take place immediately, while changes to the ICS307 chips and the test chip
PLL take place after a soft reset. You must update the registers in the correct order so that
clock frequencies remain within operational values. For example, increasing REFCLK to
increase the ARM1136 core frequency also increases HCLKI and HCLKE. If HCLKE
exceeds 38MHz the external memory may fail, so you must select a larger HCLKEDIV
value before doing the soft reset to update REFCLK.

4. Generate a soft reset by pressing the RESET button S1 on the Core Module, or write a '1'
to the RESET bit, which is bit 3 of the CM_CTRL register (just write 0x8 to address
0x1000000C). You will see the MISC LED turn off. RVD should trap the reset vector and
stop execution at address 0x0.
DAI0174A Copyright © 2007. All rights reserved. 13

Application Note 174
14 Copyright © 2007. All rights reserved. DAI0174A

	Application Note 174
	1 Introduction
	1.1 Overview

	2 Hardware
	2.1 Core Module
	2.2 Test Chip
	2.3 Default Frequencies
	2.4 Asynchronous Mode
	2.5 Constraints
	2.6 Clock control registers

	3 Measuring the Frequency
	4 Instructions to set the clocks
	5 Software

