Application Note 110

Flash Programming with RealView Debugger

Document number: ARM DAI 110A
Issued: April 2003
Copyright ARM Limited 2003

ARM

Copyright © 2003 ARM Limited. All rights reserved.

Application Note 110
Flash Programming with RealView Debugger

Copyright © 2003 ARM Limited. All rights reserved.

Release information

The following changes have been made to this Application Note.

Change history

Date Issue Change

April 2003 A First release

Proprietary notice

ARM, the ARM Powered logo, Thumb and StrongARM are registered trademarks of ARM Limited.

The ARM logo, AMBA, Angel, ARMulator, EmbeddedICE, ModelGen, Multi-ICE, ARM7TDMI, ARMOTDMI, TDMI
and STRONG are trademarks of ARM Limited.

All other products, or services, mentioned herein may be trademarks of their respective owners.

Confidentiality status

This document is Open Access. This document has no restriction on distribution.

Feedback on this Application Note

If you have any comments on this Application Note, please send email to errata@arm.com giving:

¢ the document title

e the document number

¢ the page number(s) to which your comments refer
e an explanation of your comments.

General suggestions for additions and improvements are also welcome.

ARM web address

http://www.arm.com

ii Copyright © 2003 ARM Limited. All rights reserved. Application Note 110
ARM DAI 110A

Table of Contents

Table of Contents

N 101 1o o [T o) o SRR 2

2 Anoverview of how flash programming works in RVD..........cccooceiiiiiiii e, 4

3 Programming SUPPOIEd tArgetsSoooueieiiiiiieiiiiie et 5
3.1 Programming flash on an Integrator/AP development board.............cccvvvvveeeeee. 5

4 Adding flash memory support to RVD for your own target hardware 10
4.1 Support for ARM based development platforms provided by third parties........ 10
4.2 Unsupported development boards and custom hardwarecccoeeennnnnes 10

LS = 11 0]] (=T o o PP 12
5.1 Gathering information about Your target............ccovviiiiiiie i 12
5.2 Creating an RVD project and building an FME file............ccccovviiiiiiiiivieeeceeenn. 13
5.3 Calling Pakflash..........cooiuiiiiiii s 15
5.4 Checking your FME file with Dispflashccccco oo, 16
5.5 Creating a Board Chip Definition (BCD) fileccoviiviiiiiiiiiiiieeieeee 17

6 Appendix A - Format of .ame fileS.........coviiiiiiiii 21
6.1 Board-Level .ame fileS ... 21
6.2 Flash-Level .ame fileS.........ooo e 22

7 Appendix B - Board-level assembly code for supported flash types.................. 23

8 Appendix C - Adding support for other flash devices.........cccccoccvvveiiiiiiiiiinnnnn, 24

Application Note 110 Copyright © 2003 ARM Limited. All rights reserved. 1

ARM DAI 110A

Introduction

1 Introduction

Unlike standard RAM based memory, Flash memory cannot be programmed directly by the
debugger. This is because of the block structure of flash and the various control signals that
must be generated to access the device.

The exact process needed to write to flash memory varies depending on:

. the flash type
. the specific device used
. how this device is integrated into your design.

A standard install of RealView Debugger (RVD) includes built-in support for programming
flash memory on the following ARM based platforms:

. Evaluator7T
. Integrator/AP
. ARM Evaluation Board (AEB-1)

Support for other ARM based hardware platforms must be added to RVD if required. To allow
this RVD is supplied with algorithms suitable for all four major flash types:

. AMD
. Atmel
. Intel

. SST

Note: These algorithms are designed to be run under debugger control, not to form the basis
of standalone flash programming code. For more details on developing standalone flash
programming code refer to ARM Application Note: 111

This application note examines how RVD can be used to program flash memory on your
hardware target. The two main aims are to:

. Describe the mechanism RVD uses to program flash.

. Offer a step-by-step guide to adding support (to RVD) for flash devices on custom
ARM based hardware platforms.

Copyright © 2003 ARM Limited. All rights reserved. Application Note 110
ARM DAI 110A

Introduction

It should be read in association with the documentation supplied with RVD. In particular you
should refer to:

. RVD 1.6.1 Users Guide - Working with Flash.
. RVD 1.6.1 Target Configuration Guide - Configuring Custom Targets

It assumes the user has access to:

. RVD v1.6.1 and a compatible JTAG debug interface (for example ARM Multi-ICE or
RealView ICE)
. The ARM Developer Suite (ADS) or RealView Compiler Tools (RVCT) build tools.
Application Note 110 Copyright © 2003 ARM Limited. All rights reserved. 3

ARM DAI 110A

An overview of how flash programming works in RVD

2 An overview of how flash programming works in RVD

RVD enables you to program Flash Memory (that is, download programs or patch code/data).
It does this using information provided in two target-specific files :

. Board Chip Definition (BCD) file
. Flash Method (FME) file

BCD files add extended target visibility to RVD. As a minimum the BCD file must specify
where in your memory map flash is located and reference an appropriate FME file.

FME files are produced from a standard axf image using a special RVD utility called
pakflash . They combine textual descriptive information (in .ame files) about the flash
devices on your target with appropriate code algorithms for reading, writing and erasing. This
code is run on the target (under debugger control) when you select options in the RVD Flash
Programming Window.

Source code, .ame and FME files are supplied with RVD for supported targets.
. .\lash

contains example .ame files and source files.

. .\flash\examples

contains the RVD project files and the resultant prebuilt flash method files.

An example of how to program flash memory on supported targets is provided in Section 3
Programming Supported Targets.

If your target is not one of the supported types you must create your own versions of these
files. This process is described by example in Section 5 of this application note.

4 Copyright © 2003 ARM Limited. All rights reserved. Application Note 110
ARM DAI 110A

Programming supported targets

3 Programming supported targets

By default RVD is supplied with support for programming flash memory on the following ARM
based platforms:

. Evaluator7T
. Integrator/AP
. ARM Evaluation Board (AEB-1)

3.1 Programming flash on an Integrator/AP development board

The ARM Integrator/AP platform includes 32MB of flash memory for user applications. This is
located at address 0x24000000 .

To program this flash memory using RVD you must have specified an appropriate BCD in the
connection properties window.

3.1.1 Specifying a BCD file for your connection

The following steps assume you are using Multi-ICE.

First make sure you are disconnected from the target (by unchecking the tickbox in the RVD
Connection Control window). This ensures any changes made to your board file are applied
when you reconnect to the target.

1. Open the connection properties window
2. Expand the ARM RDI configuration.
3. Expand the Connection = Multi-ICE folder.

[EE Connection Properties —10] x|

File Wwiew Help

n | Description: |List: Pull &dvanced informeation from BOARDICHIPACOMPONENT entry

... yvruvdebug. brd Hame Ualue
=l (*.rhe] ARM FDI Confiour:|(y sropnect mith
—HA*CONNECTION=ARM MICE 3 -
" _ Femote
-*Connect_tuth o .
Remnte u Advan;ed_ln#ormat.lon _
(ladvanced_Information 7 *Confiquration armw.jty
FCA*RVEROEER=1ocalhost /é Luto connect l*lFalse
—H ?rvhroker.brd éeﬁa Pre conmtect

el (*.becd) Board/Chip Defind|# *Description "Multi-ICE direct connect”
#I#*CONNECTION=RealView ICE] Project
E}G*CDMGECTIDhl:ARHDAK_HICE T¢ *Disabled #Trge
E}D*CDM\]‘ECTIDI-I:TKL_I\IICE T en . i Fal
(1 *CONNECTION=MOT WIGGLER iy "o o0 aLse

- $ BoardChip name

$ *BoardChip name AP
éeﬁa Family select
4] | -+l
Shows description of selected item, LM 4
Application Note 110 Copyright © 2003 ARM Limited. All rights reserved. 5

ARM DAI 110A

Programming supported targets

4. Highlight the entry for Boardchip name

5. Right click to select AP from the enumerated list.

3.1.2 Review the information contained in the AP BCD
At this point it is worth looking at exactly what information is stored in the Integrator/AP's BCD
that enables you to program the flash memory.
To do this:
1. open the Connection Properties window
2. expand the entry for BCD files.
3. Select the AP BCD and expand the Board=AP folder in the right hand pane.
4. Navigate to the Memory Block Folder where the memory map of the AP is defined.
5. Open the M_FLASHfolder.
Note the entries which specify the address range of the flash and reference the FME file. This
is the information RVD references when you attempt to program flash memory.
Connection Properties o X
1ol x]
File Miew Help
& | pescription: | Mame of flash for suto-write
HHEIConnect_with 2|l Hame | value
%Evanced_lnfurmatiun B atcributes
. } &3 Fegister Pos Len
Appllu:atlu:un_Lu:uad = =
L *Memory block *Srart 0% 24000000
WH AP_BDDT'RDH .. *Length Oxz2000000
EI * Type default
+ *H_AP_SSRAH '$ thcoess Flash
) *M_C53 Wait states 0
*'*H_RP_REGS | *Flash type "¢RYDEEUG BASEYflash!ex
' :ﬁ—i;é s‘ﬁ: *hezcription "Intel”
o b 4 Volatile
M_CHz
Ei+m_cms _|;|
1] | A EX | M
Shows description of selected item. FLIR A
6. Close the connection properties window without making any further changes.
6 Copyright © 2003 ARM Limited. All rights reserved. Application Note 110

ARM DAI 110A

Programming supported targets

3.1.3 3.1.3 Connecting to the target

Open the connection control window and connect to the target.

% Connection Control {mnichols’rvdebug.brd = | I:Ilil
Hame | pescription -
(e AR - A -FE AFM Ltd. BDI targets
ﬁADI Agilent Debuy Interface
&ARHulatDr AFM instruction set simulator
Multi-ICE AFM JTAG debug interface (parallel
#|v| ARMIGEE- . AFM966E-5 on localhost
@Remnte_ﬂ Angel debug protocol (serial port)
@Realﬂunitnr AFM real-time monitor
e gerver Comnection Broker
%‘ll:u:alhcust Simulator Broker
e ARM - AR -1 FealViewICE b
gReal‘Fiew ICE ARM JTAG debug interface (TCP/IPR)
[=H%# ARM-ARM-PP Multi-ICE direct connect

A amarmatr aTom el dea TOT a2 o e M ATVER G M a1

1 I Ibr\.\CDnned J,.{Sf.-'nu:h f 1 | | j

Open a register pane in RVD. A new AP tab is visible. This shows enumerated information
about the Integrator/AP board.

Open a Process Control pane in RVD and select the Map tab. This window shows the memory
map for the Integrator/AP platform which has been defined in the BCD for the AP. Note the
location of flash memory, highlighted in green.

B[Type | value Ol mwro | HORL | HDR2 | HDR3 +
| Héfsrart 0x00000000 | Awail.
H®srare 0x 11000000 EXPO | ExPl | ExPz | Expa
F#f Srare 0x20000000 ees
EH start Ox 20080000 Alphal. |status
FH#F Srare OxZ4000000 0O0nnnrFs idle
E# start 0x 26000000 13 |1z |11 |10 1
w# sare Ox2&000000 OFF OFF OFF OFF
& srart 0x 28080000
¥ srart 0x2C000000 SNEENENER
& Srare Ox 30000000 OFF| OFF| OFF| OFF
5 [ID
I.': o|| ®0scillator
iii =l [+ Captrod
= 1|F|{Prncesshhﬂap/_j ﬂ ! 4|PP\CDre,{CP15‘{TCM "I I"I"’I

Application Note 110
ARM DAI 110A

Copyright © 2003 ARM Limited. All rights reserved. 7

Programming supported targets

Programming the flash

When writing to an area of memory defined as flash RVD automatically invokes the flash
memory control dialog. Normally this occurs when you either:

. use one of the memory/register operations from the RVD debug menu

. attempt to load an image to flash.

This example shows how to fill a small portion of flash memory with a pattern.

Open a memory pane in RVD and set it to view address 0x24000000 the start of flash
memory.

= |y

- Oxz4| 0xF0| 0x9F | OKES -]
24000004 0xC1| 0x12 | OxAD OxE3
24000008 | 0x00| 0x00| 0x91 OxES
2400000C | 0x04| 0x00| 080 DxE3
24000010 0x00| 0x00| 0x81 | OxES
24000014 0x14| 0x00| 0x9F OxES —
24000018 | 0xDZ | 0xF0| OxZ1 OXE3
B z200001c| 000 0xp0| 0xa0 | oxEZ
4l 24000020 | 0xD3 | 0xF0| 0x21| OKE3
4 24000024 0xan| 0xDF| x40 0xEZ &

2ANOAO220 OOl L OO0 O OO0 DR A

-

Select Debug, Memory Register Operations, Fill memory with Pattern.

Set the start address as 0x24000000 , length as 0x100 , size as natural and pattern as 0x11 .

E|Fill Memory with Pattern x|
Start | 0x24000000 =
EndiLer: I 01 00 j
Size: m [V Use Length (Count)
Pattern: | 011

[Pattern may be single expression, "string",
ot lizt of these (2.9, num,nUm))

0] ,4 | Cancel | Helg

Click OK and the Flash Memory Control Dialog appears.

Copyright © 2003 ARM Limited. All rights reserved. Application Note 110
ARM DAI 110A

Programming supported targets

Fe]Flash Memory Control X|
Flazh: | I ARMIGEE-5_0:ARM-A-RR &t 024000000 Intel DT28F 32055 2Mx16

—Dpen Flazh Blocks:
0: Q0000 bytes in, 020000 byte block.

Al | ANOTf |

Wr'rtel Erasel Cancel | Detailsl Cancel Al |

¥ Era=e Block befare Write

v “ferify Block after Wiite
[~ Use Current values for Unspecified data in block

Flash Log:
Flazh block 0 opened for modify. ﬂ

[

Cloze Helgp |

Note that Flash block 0 has been opened for modification. Click the Write button to actually
write the pattern to flash and close the window. Note the modified contents of the memory

window.

Application Note 110 Copyright © 2003 ARM Limited. All rights reserved.
ARM DAI 110A

Adding flash memory support to RVD for your own target hardware

4 Adding flash memory support to RVD for your own target hardware
If you are not using an ARM development board suitable BCD and FME files are not supplied
with RVD. The process of generating your own BCD and FME files is described by example in
Section 5 Example Port.
4.1 Support for ARM based development platforms provided by third parties
If you are using a standard development platform from a third party supplier it is possible that
suitable BCD and FME files for use with RVD might be available for your development board.
Contact your supplier to enquire about this.
4.2 Unsupported development boards and custom hardware
If your development platform is not supported or you are working with your own custom
hardware then you must create your own BCD and FME file.
The figure below shows how an RVD project can be used to generate an FME file.
board.ame flash.ame
assemble/
link
flash.axf » pakflash.exe
RVD project for generating
Flash method (.fme) file.
4.2.1 Flash Algorithm code
ARM provides support code, in the form of flash algorithms, for most of the major flash types.
The following files can be found in the RVD ..\flash directory
f amd_sst_arm.s
f_atmel_arm.s
f_intel_arm.s
You must provide all other files.
Note: If you are not using one of these flash types you must provide your own flash
programming algorithms. Integrating this code with RVD is discussed in Appendix C.
10 Copyright © 2003 ARM Limited. All rights reserved. Application Note 110

ARM DAI 110A

Adding flash memory support to RVD for your own target hardware

4.2.2 Board specific code

Board specific code for your target must INCLUDEthe appropriate flash algorithm code and
perform any board specific operations (for example: unlock operations) that might be
necessary to access flash. A basic example (with comments) is supplied with this application
note. Alternatively you can edit one of the supported target board files supplied in the RVD
.\Mlash directory. For example:

b_IntegratorAP.s

b_evaluator7t.s

4.2.3 Board-level . amefile

A board level .ame file must contain a text description of the type and configuration of flash
device(s) used on your target hardware. Examples of existing board level .ame files for
supported ARM targets are in the RVD ..\flash directory . For example:

board_intel_arm.ame

board_sst_eval7T.ame

4.2.4 Flash-level .ame file

The flash-level .ame file is used to describe the flash devices themselves. Examples of
existing flash-level ame files used on supported ARM targets are in the RVD ..\flash
directory. For example:

flash_amd.ame

flash_atmel.ame

Refer to Appendix A for details on the format of .ame files.

Application Note 110 Copyright © 2003 ARM Limited. All rights reserved. 11
ARM DAI 110A

Example Port

5 Example Port

We have chosen to use the ARM Evaluator 7T board as an example platform to port to. This
contains a single SST 39VF400A 4 Mbit Multi-Purpose Flash device.

Note this is a somewhat academic exercise, as support for this platform is already included in
RVD. However the steps provided assume ‘from scratch' generation of new BCD and FME
files and are exactly the same as those that are needed for any target.

The Appendices contain a more in depth guide on editing the assembler source and
descriptive .ame files to match your target.

The process of adding flash support can be split into three stages:

1. Gathering information about your target.
2. Creating an RVD project and building an FME file
3. Generating a BCD

5.1 Gathering information about your target

To provide flash support for your target you need the following information:
* A copy of the datasheet for the flash device used on your target.
A memory map of your development board showing where flash and RAM are located

¢ Details of any board specific code which might be pertinent.

The Evaluator7T board used for this application note has an SST39VF400A flash device fitted.
The device is comprised of 256K 16bit words. (that is: 512K bytes). The sector size is 2K 16bit
words. (that is: 4K bytes).

The memory map for the Evaluator7T board is defined in the ARM Evaluator-7T Board Users
Guide (ARM DUI 0134A) as follows.

Address range Size Description
0x00000000 to OXO003FFFF 256KB SRAM bank
0x00040000 to OXO0007FFFF 256KB SRAM bank
0x01800000 to Ox0187FFFF 512KB Flash
Ox03FEO000 to OXO3FE1FFF 8KB Internal SRAM

Note: the bottom of flash contains the bootstrap loader, Angel and other utilities and must not
be edited by the user. Address 0x01820000 to 0x0187FFFF are available for application
code and data.

No board specific code (for example: unlock codes for specific memory regions) is required to
access flash on the Evaluator7T.

12

Copyright © 2003 ARM Limited. All rights reserved. Application Note 110
ARM DAI 110A

Example Port

5.2 Creating an RVD project and building an FME file

This section assumes some familiarity with the process of managing projects with RVD.

Please refer to the Managing Projects chapter of the RVD version 1.6.1 User Guide for more
details.

5.2.1 Locate the source and .ame files required

Create a suitable directory on your hard drive and copy in the appropriate source and .ame
files specified below.

. b_flashwrapper.s (board specific code).
. f amd_sst arm.s (flash algorithm code)

The first is supplied with this application note and the second should be copied from the RVD
.[flash directory.

. board_sst_eval7T.ame (board-level .ame file)
. flash_sst.ame (flash-level .ame file)

Both the above files are supplied with this application note. These are needed by the
pakflash utility called in the projects post link step.

5.2.2 Create a standard RVD project

Create a standard RVD project and add the board-level assembler source. The project can be
built using either the ADS or RVCT tool chain.

Fo|create Standard Project '::Ef- x|

Project Mame: Flazhprog

Toalchain: IARM-ADS j

Sources [CIC++fAszembly] to build fram: (] |

b_flash wrapper_evalit.s
O

sod | el | Rep | anon| mio|

Executahble: I Flashprog.axf [k |

Description: I Standard project

Ok | Cancel | Help |

Note: b_flashwrapper.s INCLUDES f_amd_sst_ arm.s and so does not need to be
added manually.

Application Note 110 Copyright © 2003 ARM Limited. All rights reserved.

13
ARM DAI 110A

Example Port

5.2.3

Project Build folder settings

In the project build folder:

. Use application to name the axf you wish to generate. (for example:Evaluator.axf

. Under link advanced set the RoBase = 0x40000 (Evaluator SRAM)

This value must specify an area of RAM on your target.

ﬂE Project Properties

File Wiew Help

=10l %]

H | Description: |Elase gddress for output (read-only), (see -r0)

.« WFlashprog.pe] L
(I*PROJECT
[1SETTINGS
(3 *CONFIGURATION
[J*COMPILE=arm
[A*COMPILE=aru cpp
£ *COMPILE=thunh
[1*a%3EMELE=arm
3 *453EMELE = thuub
CICUSTOM=default
*EUILD
Listings
HE ssages
Ei+Link Advanced
Fymbol Control
Pre Post Link
BIRVDEBUG_Commands = |

5.2.4 Adding "Extra args"

Name | value -
sﬁ Entrey
H Gcatter file
Relocatable ®laisabled
l‘IFalse

Te splic

s’ﬁ Last

& *Remowe unused
& Partial

4]

Maizamiea

default

M aizahled =
B

Shows description of selected ikem, FILIR v
You must add an "Extra args" line to the build folder:
$DEF_LINK_ARGS -noremove
This prevents the linker removing the uninit RAM buffer.
[EE Project Properties -0l x|
File Wiew Help
n | Description: IAn_.r extra Linker arguments to use
v ZWFlashprog.prj 15 Mame VJalue ;l
g;iﬁi EE’; (3 *Link_advanced
+
(1*CONFIGURATION g Ayubol_tontrol
[1*COMPILE=arm Pre Post_Link
ﬁwcnnplLE:arm cpp ﬁ R‘.?DEBUG_CDII]I&EIIEIS
Ij*EDHPILE=thuE.h H *hpplication "Flashprog.axt™
[1%ASSEMBLE=arm W objects $DEF_OEJ_FILE
(3 +A%SEMELE=thumh W Lib paths $?DEF_LIE_PATH
LICUsTON=default W Libraries $DEF_LIE_FILE
+ r
TI:TIL[; i!| "Extra args "DEF LINE ARGS -horemowve'™ |-
H;;;Egz W File args $7DEF_CMD FILE
Bi*Link_Advanced W Tool patn
Sym.hu:ul Control W Makerile "Flashprog.mk™
EBirre_Post_Link e H Make template

ERVDEETG_Conmands ~|

Shows description of selected item.

s

14

Copyright © 2003 ARM Limited. All rights reserved.

Application Note 110
ARM DAI 110A

Example Port

5.3 Calling Pakflash

Under the Pre_Post_Link folder of the project include the following post link step.

'$SRVDEBUG_BASE\mwhbin\pakflash' -f ARM_EVAL7T debug\Evaluator.axf
board_sst_eval7T.ame -0 ARM_EVAL7T.FME

The format is:

pakflash.exe -f flashname b_boardname.axf board_boardname.ame -0
ARM_EVAL7T.FME

where:
flashname =is specified in the board-level .ame file. For example: [BOARD=ARM_EVALT7T]
b_boardname.axf = is the axf produced by the project.

b_boardname.ame = the board-level .ame file. For example: board_sst_eval7T.ame

Now build the project. There should be no errors or warnings.

This produces an axf linked to run from address 0x40000 . (Evaluator SDRAM).The post link
step then calls the RVD utility pakflash to produce an FME file. This combines the text
information from the .ame file: board_sst_eval7T.ame with the axf to produce the FME
output file.

Note: If you want you can call pakflash.exe manually from the command line.

Application Note 110
ARM DAI 110A

Copyright © 2003 ARM Limited. All rights reserved. 15

Example Port

5.4 Checking your FME file with Dispflash

You can check the contents of an FME file using a utility called dispflash.exe (a copy is

provided with this Application note).

This can be called from the command line using the following syntax:

dispflash.exe ARM_EVAL7T.FME

The output produced is:

H===== === ===

Flash 'Silicon Storage Tech 39VF400A' for processor 'ARM' (Little
Endian)

Width=2 with erase value of OxFFFF
1 Block Groups:

(0) 128 blocks with byte size 4096/0x1000
Routine Code PC-rel. Can load at 0x40000
Init routine 0x0030 bytes from start
Erase routine 0x007C bytes from start
Erase then Write routine 0x010C bytes from start
Write routine 0x0110 bytes from start
Validate routine 0x015C bytes from start
Breakpoint routine 0x0188 bytes from start
Separate Data image (vars) OxO5CC bytes from start
RAM Buffer at 0x401CC (page 0) with byte size of 1024
0 Locked blocks
0 Memory Regions to Restore

0 Registers to Restore

16

Copyright © 2003 ARM Limited. All rights reserved.

Application Note 110
ARM DAI 110A

Example Port

5.5 Creating a Board Chip Definition (BCD) file

By default RVD looks for BCD files in the ..\etc directory. There are a number of examples
provided for various ARM development boards.

You can create a new BCD from within RVD by copying an existing BCD. For more details on
board files refer to the section on Creating a *.BCD file in RVD version 1.6 Target
Configuration Guide.

This application note does not describe all aspects of Extended Target Visibility (ETV), for
example: enumeration of registers. It deals with those required to program the flash.

The steps needed to create a new minimal BCD for the Evaluator7T are as shown in this
section.

5.5.1 Copy and rename an existing BCD

Locate an existing BCD file (for example: Eval7T.BCD) in the RVD ../etc directory to
provide a basis for your new file. Make a copy of this file and rename it ARM_EVAL7T.BCD

5.5.2 Delete any existing Board/Chip definitions

1. Open the Connection Properties window in RVD.
2. Select the new Board/Chip definition entry for the ARM_EVAL7Tyou have just created.

3. Delete any existing board or chip definitions that were part of the original BCD.

ﬂE Connection Properties : ;IEIEI

File ‘iew Help

E | Description: |C:1Prngram Files\ARMEYDW arey! 5.1 7 wvin_32-pentiumietciaRi_Eval? T b

Sl (*.bcd) Board/Chip Definition:~|| Hame | value
... Y&P.bod {3 *CHIP=K$32C50100
H| . WADRM Ewal7T.bed | qw_—-
... Yvatmel eb.bcd Explore
... cHl0zo0.bed Expand whale Tree
... \cHM720T. bed
... \CH740T. bed Cuk
... \CH7TDMI.bcd Copy
... CcM920T. bed
... CcM9Z0T ETH.bed Celete
... cH940T, bod Rename
H ...%CHM946E5 . bed Reset Cantents
... cH966ES. bed b
W....cr.bca Make Mew. .,
... es£40.bcd Make Copy...
|... Eval?T.becd Add Hot Link to a File, ..
... lu osk.bed -
o L R TS T NI M Detailed Description, ..
4| | _'>|_I
Shiowes descripkion of selecked ke, W l_ S
Application Note 110 Copyright © 2003 ARM Limited. All rights reserved. 17

ARM DAI 110A

Example Port

5.5.3 Creating a new board group.

1. Right click on the new BCD entry and select Make New Group.

EE Connection Properties = |EI|£|
File Wiew Help
E | Description: |C:'IPrugram Files\&RMEY DV aret 6.1 7 wyin_32-pentiumietc bR _EvalTT bod
= {*.beod) Board/Chip Definit:i.uns;l Hame Ualue
... %AP.bed 3 ...\ARM Eval7T.bcd
W[. \ARM Fval?T.bod | -
... Yatmel eb.becd Explore
...\cHML0200.bed
Save fs,.,
W...\cH7z0T.bea
... \cH740T. bea Delete
.. ..CH7TDNI.bod FAT
... \cHM920T.bed
" IR llvu gy] Make Hew Group...
... \CcM240T. bea Add Hot Link to a File..,
... cH945E5. bed
... cM966ES. bod Detailed Description. ..
W...\cP.bad
... vesfa0.bcd
W...\Eval?T.bcd
... 1w oak.bed -
< | _>I_I
Shows description of selected item. FILIT v

2. Create a new BOARDyroup entry called ARM_EVAL7T

E|Eruup Type,/Mame selector £|

Group Type:

CORMECTION - JTAG Scan file or Configuration using processo
DEYICE - Specification of a specific device

BOARD - Commercialfzustom board or chip with all info
CHIP - CommercialiCustom board or chigp with all info
COMPORMENT - CommercialfCustom board or chip wwith all info

R‘-.iEIROHEH - Connection broker for remotessimulator use
4

Group Name: | ARM_EVALTT

[Group Mame may be namel name2inamed)

Ok | Cancel | Helg |

Note: This name must match the BOARD=entry used in your board-level .ame file.

18

Copyright © 2003 ARM Limited. All rights reserved.

Application Note 110
ARM DAI 110A

Example Port

5.5.4 Describe the Evaluator7T memory map.
1. Select the new ARM_EVAL7TBCD entry

2. Expand the BOARD=ARM_EVAL7®lder in the right hand pane.

3. Navigate to the Memory Block folder in the Advanced_Information tree. This is where
you can describe your target runtime memory system to RVD.

Note: You must set up definitions for all areas of memory you need to access on your target.
RVD aborts accesses to undefined areas of memory when using a BCD file.

4. Open the Memory Block folder and select the default entry.

5. Right click and select Make Copy to create the following folders.
Create folder Eval_App_Flash

Specify the following attributes (all others can be left as default).
Start = 0x01820000

Length = 0x60000

Access = Flash (right click and select from enumerated list)
Flash type: full path and name of your FME file.

Description = "Application Flash 384K"

Create folder SRAM_bankl

Specify the following attributes (all others can be left as default).
Start = 0x0

Length = 0x40000

Access = RAM (right click and select from enumerated list)
Description = "SRAM bankl 256K"

Create folder SRAM_bank2

Specify the following attributes (all others can be left as default).
Start = 0x40000

Length = 0x40000

Access = RAM (right click and select from enumerated list)

Description = "SRAM bank2 256K"

6. Now deleted the default entry.

7. The Connection Properties window Memory Block group will look as shown:

Application Note 110 Copyright © 2003 ARM Limited. All rights reserved. 19
ARM DAI 110A

Example Port

ﬂE Connection Properties

File Wiew Help

=101 x|

E | Description: IDefine an external/ASIC memary region

G“CDI\H']'EETIDI\#ARH_HICE
[I+*RVEROKER=localhost
H *rvbhroker.brd
= (*.bcd) Board/Chip Definitions
il . VAP beod
= g . WARM Eval7T.bhed
3 *BOARD=ARM EVALTT
Eonnect_with
ELd*advanced Information
S *Default
Application_Lu:uad
=H_d*Memory block
Ei*ipp Flash

Ijl‘![ap_rul S
[(dRegiste r_Ehum

[T S —

1

=

il

e Ualue

1 accributes

& Register Fos_Len

T3tart 0x0000
*Length 0x 40000
¥ Type default
£ Locess FaM
Mait states 0

H Flaszh type

ﬁ’; *hezcription TAEAM bankl ZLGE"T
Volatile

Shows description of selected item. P v
5.5.5 Specify the new BCD in the connection properties for Multi-ICE or RVICE.
Close the RVD connection properties window saving the changes you have made to your
board file.
Open the Connection Control Window and select the new BCD you have created as the board
chip file for your connection.
EE Connection Properties R = |EI|£|
File Wiew Help
n | Description: |List: Pull Advanced informstion from BOARDICHIPICOMPOMENT entry:
g. .Lhrvdebug.brd Hame | Jalue i
[y E.rhe] E!.RH EDT Conficure B *Connect_with
...%adi.rhe Bl Rennte
W... . aroulator. che & s ;
L. hmultiice. rhe Hataed, tnketilal g
ﬁl’kCDIﬂI‘EETIDI‘I:Hultl—IEE H *Configquration "multiice.cnt"”
H ...%remoteas. rthe T’E AITo connect ﬂFalse
H...‘-.rm.rhe s"ﬁx Pre connect
BHEE *COMMECTION=ARM MICE & *Description "LEM JTA4G debuy interface (parallel
1 *RVEROFER=localhost @ rroject
—H rrvbroker.brd T
! : , - % pisablea #ralze
Gl (*.bed) Board/Chip Defing oo A ral
F1*CONNECTION=RealView ICE | ~or- 88 =
é EoardChip name
sJ *BoardChip name AFM EVALYT =
P A
| | e | _’|_I
Shows description of selected item. [Ce v
You can now see the memory map you have defined in RVD's process control pane when you
connect to the target.
RVD now automatically displays the flash memory control dialog and accesses the new FME
file you have created when you attempt to write to flash memory.
20 Copyright © 2003 ARM Limited. All rights reserved.

Application Note 110

ARM DAI 110A

Appendix A - Format of .ame files

6 Appendix A - Format of .ame files

6.1 Board-Level

This appendix defines the minimum information that must be specified in board-level and
flash-level .ame files used to describe your targets flash memory.

.ame files

Example:

[BOARD=IntegratorAP]
proc_name=ARM
from_flash=DT28F320S3_AP
width=0x0004
reloc.start_addr=0x28000000
reloc.pc_rel=True

[INCLUDE] $RVDEBUG_INSTALL\flash\flash_intel.ame

BOARD defines board file name.

proc_name - always "ARM".

from_flash - references the relevant flash device in the lower level .ame file.

width - Resultant data width when writing to the flash. [4=32bit, 2=16bit, 1=8bit]

In this example there are two 16bit flash devices in parallel across the data bus. Therefore the
width = 4 so we write to the bottom 16bits of each flash simultaneously. This entry should
match the entry defined in the board-level assembler code.

reloc.start_addr - specifies the address to run the flash programming code from. It
should match the RO base address used in your RVD project link options. Note: This does not
have to be free 'scratch’ memory. By default RVD saves the contents of affected RAM and
restores them after the flash operation has completed.

reloc.pc_rel - indicates PC relative code (normally True)

INCLUDE - specifies the relevant flash .ame file (with path)

Application Note 110
ARM DAI 110A

Copyright © 2003 ARM Limited. All rights reserved. 21

Appendix A - Format of .ame files

6.2 Flash-Level .ame files
Example:
H===== === ===
[FLASH=DT28F320S3_AP]
flash_name="Intel DT28F320S3 2Mx16 x2 x4"
no_erase=False
width=4
Each Flash has 64 blocks(32K-halfwords x 2) as main blocks
block.1={count=64:size=128K}
block.2={count=64:size=128K}
block.3={count=64:size=128K}
block.4={count=64:size=128K}
proc_name="ARM"
H===== === ===
FLASH- defines a name for a specific flash device.
flash_name - text description displayed by RVD
no_erase - always be setto False by default
Setting to True might improve performance in some NOR style flashes that support auto-
erase.
width - width of the flash device. [4=32bit, 2=16bit, 1=8bit]
This entry is overridden by the board-level .ame file.
block - list of block groups.
size - size in bytes of each block. Can be specified in decimal, hex or K.
count - defines the number of blocks in each group.
proc_name - always "ARM".
22 Copyright © 2003 ARM Limited. All rights reserved. Application Note 110

ARM DAI 110A

Appendix B - Board-level assembly code for supported flash types

7 Appendix B - Board-level assembly code for supported flash types

For targets that use one of the four main flash types supported by RVD (AMD, Atmel, Intel and
SST) sample board-level assembly code (complete with comments) is provided in the
associated file: b_flashwrapper.s

This code must be included as part of an RVD project to produce an FME for your target. You
have to provide board and flash-level ame files and select the appropriate flash algorithm for
your flash type. (The process is described in Section 5 of this application note).

Notel: This code is designed to be linked to reside in a contiguous area of RAM on your
target. (So only an RO base should be specified in the linker options).

Note2: This does not have to be free 'scratch’ memory. By default RVD saves the contents of
affected RAM and restores them after the flash operation has completed.

The areas of b_flashwrapper.s that are designed to be user editable are:

Equates.

You must set P_WIDTHand WIDTHto match your target.

Flash_init routine

The FLASH_init label is exported, enabling the routine to be called directly by RVD.

Executing this function ultimately results in a branch to a label FLASH_break . RVD
automatically places a breakpoint at this point enabling the debugger to halt the target while
the Flash Memory control dialog is displayed.

An area is marked for you to insert your own code if required. For example: you might want to
include code to disable watchdogs, enable chip selectors/enables to allow writes for example.
Note the RVD API rules in the comments, which specify that only R6,R7 and R8 are available
as scratch registers.

Buffer size

Buffer defines an area of uninitialised RAM which RVD can use to store data before writing it
to flash. Size is not flash dependant and therefore does not usually need editing. However for
large flash memory devices an increased RAM buffer size might improve write speeds.

Application Note 110 Copyright © 2003 ARM Limited. All rights reserved. 23
ARM DAI 110A

Appendix C - Adding support for other flash devices

8 Appendix C - Adding support for other flash devices

If your target uses a flash device that cannot be programmed using the standard flash
algorithms provided with RVD, you must provide your own flash programming code.

The following files are provided with this application note:
e rvd2apcs.s
e flash.h

The first is an assembly wrapper intended to acts as an interface between the RvVD API and
your flash programming code.

The second is a 'C' header file containing prototypes for the functions called by RVD.

These files must be included as part of an RVD project to produce an FME for your target.
You have to provide board and flash-level ame files to describe your target to RVD. (The
process is described in section 5 of this application note).

Notel: This code is designed to be linked to reside in a contiguous area of RAM on your
target. (so only an RO base should be specified in the linker options).

Note2: This does not have to be free 'scratch’' memory. By default RVD saves the contents of
affected RAM and restores them after the flash operation has completed.

24 Copyright © 2003 ARM Limited. All rights reserved. Application Note 110
ARM DAI 110A

