
Copyright © 2003 ARM Limited. All rights reserved.

Application Note
Flash Programming with RealView Debugger

Document number: ARM DAI 110A

Issued: April 2003

Copyright ARM Limited 2003

110

ii Copyright © 2003 ARM Limited. All rights reserved. Application Note 110
ARM DAI 110A

Application Note 110
Flash Programming with RealView Debugger

Copyright © 2003 ARM Limited. All rights reserved.

Release information

The following changes have been made to this Application Note.

Change history

Date Issue Change

April 2003 A First release

Proprietary notice

ARM, the ARM Powered logo, Thumb and StrongARM are registered trademarks of ARM Limited.

The ARM logo, AMBA, Angel, ARMulator, EmbeddedICE, ModelGen, Multi-ICE, ARM7TDMI, ARM9TDMI, TDMI
and STRONG are trademarks of ARM Limited.

All other products, or services, mentioned herein may be trademarks of their respective owners.

Confidentiality status

This document is Open Access. This document has no restriction on distribution.

Feedback on this Application Note

If you have any comments on this Application Note, please send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments refer

• an explanation of your comments.

General suggestions for additions and improvements are also welcome.

ARM web address

http://www.arm.com

Table of Contents

Application Note 110 Copyright © 2003 ARM Limited. All rights reserved. 1
ARM DAI 110A

Table of Contents

1 Introduction...2

2 An overview of how flash programming works in RVD..4

3 Programming supported targets ..5
3.1 Programming flash on an Integrator/AP development board5

4 Adding flash memory support to RVD for your own target hardware10
4.1 Support for ARM based development platforms provided by third parties10
4.2 Unsupported development boards and custom hardware10

5 Example Port...12
5.1 Gathering information about your target..12
5.2 Creating an RVD project and building an FME file..13
5.3 Calling Pakflash...15
5.4 Checking your FME file with Dispflash ..16
5.5 Creating a Board Chip Definition (BCD) file ..17

6 Appendix A - Format of .ame files ..21

6.1 Board-Level .ame files ..21
6.2 Flash-Level .ame files...22

7 Appendix B - Board-level assembly code for supported flash types..................23

8 Appendix C - Adding support for other flash devices ..24

Introduction

2 Copyright © 2003 ARM Limited. All rights reserved. Application Note 110
ARM DAI 110A

1 Introduction

Unlike standard RAM based memory, Flash memory cannot be programmed directly by the
debugger. This is because of the block structure of flash and the various control signals that
must be generated to access the device.

The exact process needed to write to flash memory varies depending on:

• the flash type

• the specific device used

• how this device is integrated into your design.

A standard install of RealView Debugger (RVD) includes built-in support for programming
flash memory on the following ARM based platforms:

• Evaluator7T

• Integrator/AP

• ARM Evaluation Board (AEB-1)

Support for other ARM based hardware platforms must be added to RVD if required. To allow
this RVD is supplied with algorithms suitable for all four major flash types:

• AMD

• Atmel

• Intel

• SST

Note: These algorithms are designed to be run under debugger control, not to form the basis
of standalone flash programming code. For more details on developing standalone flash
programming code refer to ARM Application Note: 111

This application note examines how RVD can be used to program flash memory on your
hardware target. The two main aims are to:

• Describe the mechanism RVD uses to program flash.

• Offer a step-by-step guide to adding support (to RVD) for flash devices on custom
ARM based hardware platforms.

Introduction

Application Note 110 Copyright © 2003 ARM Limited. All rights reserved. 3
ARM DAI 110A

It should be read in association with the documentation supplied with RVD. In particular you
should refer to:

• RVD 1.6.1 Users Guide - Working with Flash.

• RVD 1.6.1 Target Configuration Guide - Configuring Custom Targets

It assumes the user has access to:

• RVD v1.6.1 and a compatible JTAG debug interface (for example ARM Multi-ICE or
RealView ICE)

• The ARM Developer Suite (ADS) or RealView Compiler Tools (RVCT) build tools.

An overview of how flash programming works in RVD

4 Copyright © 2003 ARM Limited. All rights reserved. Application Note 110
ARM DAI 110A

2 An overview of how flash programming works in RVD

RVD enables you to program Flash Memory (that is, download programs or patch code/data).
It does this using information provided in two target-specific files :

• Board Chip Definition (BCD) file

• Flash Method (FME) file

BCD files add extended target visibility to RVD. As a minimum the BCD file must specify
where in your memory map flash is located and reference an appropriate FME file.

FME files are produced from a standard axf image using a special RVD utility called
pakflash . They combine textual descriptive information (in .ame files) about the flash
devices on your target with appropriate code algorithms for reading, writing and erasing. This
code is run on the target (under debugger control) when you select options in the RVD Flash
Programming Window.

Source code, .ame and FME files are supplied with RVD for supported targets.

• ..\flash

contains example .ame files and source files.

• ..\flash\examples

contains the RVD project files and the resultant prebuilt flash method files.

An example of how to program flash memory on supported targets is provided in Section 3
Programming Supported Targets.

If your target is not one of the supported types you must create your own versions of these
files. This process is described by example in Section 5 of this application note.

Programming supported targets

Application Note 110 Copyright © 2003 ARM Limited. All rights reserved. 5
ARM DAI 110A

3 Programming supported targets

By default RVD is supplied with support for programming flash memory on the following ARM
based platforms:

• Evaluator7T

• Integrator/AP

• ARM Evaluation Board (AEB-1)

3.1 Programming flash on an Integrator/AP development board

The ARM Integrator/AP platform includes 32MB of flash memory for user applications. This is
located at address 0x24000000 .

To program this flash memory using RVD you must have specified an appropriate BCD in the
connection properties window.

3.1.1 Specifying a BCD file for your connection

The following steps assume you are using Multi-ICE.

First make sure you are disconnected from the target (by unchecking the tickbox in the RVD
Connection Control window). This ensures any changes made to your board file are applied
when you reconnect to the target.

1. Open the connection properties window

2. Expand the ARM RDI configuration.

3. Expand the Connection = Multi-ICE folder.

Programming supported targets

6 Copyright © 2003 ARM Limited. All rights reserved. Application Note 110
ARM DAI 110A

4. Highlight the entry for Boardchip name

5. Right click to select AP from the enumerated list.

3.1.2 Review the information contained in the AP BCD

At this point it is worth looking at exactly what information is stored in the Integrator/AP's BCD
that enables you to program the flash memory.

To do this:

1. open the Connection Properties window

2. expand the entry for BCD files.

3. Select the AP BCD and expand the Board=AP folder in the right hand pane.

4. Navigate to the Memory Block Folder where the memory map of the AP is defined.

5. Open the M_FLASHfolder.

Note the entries which specify the address range of the flash and reference the FME file. This
is the information RVD references when you attempt to program flash memory.

6. Close the connection properties window without making any further changes.

Programming supported targets

Application Note 110 Copyright © 2003 ARM Limited. All rights reserved. 7
ARM DAI 110A

3.1.3 3.1.3 Connecting to the target

Open the connection control window and connect to the target.

Open a register pane in RVD. A new AP tab is visible. This shows enumerated information
about the Integrator/AP board.

Open a Process Control pane in RVD and select the Map tab. This window shows the memory
map for the Integrator/AP platform which has been defined in the BCD for the AP. Note the
location of flash memory, highlighted in green.

Programming supported targets

8 Copyright © 2003 ARM Limited. All rights reserved. Application Note 110
ARM DAI 110A

Programming the flash

When writing to an area of memory defined as flash RVD automatically invokes the flash
memory control dialog. Normally this occurs when you either:

• use one of the memory/register operations from the RVD debug menu

• attempt to load an image to flash.

This example shows how to fill a small portion of flash memory with a pattern.

Open a memory pane in RVD and set it to view address 0x24000000 the start of flash
memory.

Select Debug, Memory Register Operations, Fill memory with Pattern.

Set the start address as 0x24000000 , length as 0x100 , size as natural and pattern as 0x11 .

Click OK and the Flash Memory Control Dialog appears.

Programming supported targets

Application Note 110 Copyright © 2003 ARM Limited. All rights reserved. 9
ARM DAI 110A

Note that Flash block 0 has been opened for modification. Click the Write button to actually
write the pattern to flash and close the window. Note the modified contents of the memory
window.

Adding flash memory support to RVD for your own target hardware

10 Copyright © 2003 ARM Limited. All rights reserved. Application Note 110
ARM DAI 110A

4 Adding flash memory support to RVD for your own target hardware

If you are not using an ARM development board suitable BCD and FME files are not supplied
with RVD. The process of generating your own BCD and FME files is described by example in
Section 5 Example Port.

4.1 Support for ARM based development platforms provided by third parties

If you are using a standard development platform from a third party supplier it is possible that
suitable BCD and FME files for use with RVD might be available for your development board.
Contact your supplier to enquire about this.

4.2 Unsupported development boards and custom hardware

If your development platform is not supported or you are working with your own custom
hardware then you must create your own BCD and FME file.

The figure below shows how an RVD project can be used to generate an FME file.

assemble/
link

flash algorithm.s board specific code.s

flash.axf pakflash.exe

board.ame flash.ame

Flash.fmeRVD project for generating
Flash method (.fme) file.

4.2.1 Flash Algorithm code

ARM provides support code, in the form of flash algorithms, for most of the major flash types.
The following files can be found in the RVD ..\flash directory :

f_amd_sst_arm.s

f_atmel_arm.s

f_intel_arm.s

You must provide all other files.

Note: If you are not using one of these flash types you must provide your own flash
programming algorithms. Integrating this code with RVD is discussed in Appendix C.

Adding flash memory support to RVD for your own target hardware

Application Note 110 Copyright © 2003 ARM Limited. All rights reserved. 11
ARM DAI 110A

4.2.2 Board specific code

Board specific code for your target must INCLUDE the appropriate flash algorithm code and
perform any board specific operations (for example: unlock operations) that might be
necessary to access flash. A basic example (with comments) is supplied with this application
note. Alternatively you can edit one of the supported target board files supplied in the RVD
..\flash directory. For example:

b_IntegratorAP.s

b_evaluator7t.s

4.2.3 Board-level . ame file

A board level .ame file must contain a text description of the type and configuration of flash
device(s) used on your target hardware. Examples of existing board level .ame files for
supported ARM targets are in the RVD ..\flash directory . For example:

board_intel_arm.ame

board_sst_eval7T.ame

4.2.4 Flash-level .ame file

The flash-level .ame file is used to describe the flash devices themselves. Examples of
existing flash-level ame files used on supported ARM targets are in the RVD ..\flash
directory. For example:

flash_amd.ame

flash_atmel.ame

Refer to Appendix A for details on the format of .ame files.

Example Port

12 Copyright © 2003 ARM Limited. All rights reserved. Application Note 110
ARM DAI 110A

5 Example Port

We have chosen to use the ARM Evaluator 7T board as an example platform to port to. This
contains a single SST 39VF400A 4 Mbit Multi-Purpose Flash device.

Note this is a somewhat academic exercise, as support for this platform is already included in
RVD. However the steps provided assume 'from scratch' generation of new BCD and FME
files and are exactly the same as those that are needed for any target.

The Appendices contain a more in depth guide on editing the assembler source and
descriptive .ame files to match your target.

The process of adding flash support can be split into three stages:

1. Gathering information about your target.

2. Creating an RVD project and building an FME file

3. Generating a BCD

5.1 Gathering information about your target

To provide flash support for your target you need the following information:

• A copy of the datasheet for the flash device used on your target.

• A memory map of your development board showing where flash and RAM are located

• Details of any board specific code which might be pertinent.

The Evaluator7T board used for this application note has an SST39VF400A flash device fitted.
The device is comprised of 256K 16bit words. (that is: 512K bytes). The sector size is 2K 16bit
words. (that is: 4K bytes).

The memory map for the Evaluator7T board is defined in the ARM Evaluator-7T Board Users
Guide (ARM DUI 0134A) as follows.

Address range Size Description

0x00000000 to 0x0003FFFF 256KB SRAM bank

0x00040000 to 0x0007FFFF 256KB SRAM bank

0x01800000 to 0x0187FFFF 512KB Flash

0x03FE0000 to 0x03FE1FFF 8KB Internal SRAM

Note: the bottom of flash contains the bootstrap loader, Angel and other utilities and must not
be edited by the user. Address 0x01820000 to 0x0187FFFF are available for application
code and data.

No board specific code (for example: unlock codes for specific memory regions) is required to
access flash on the Evaluator7T.

Example Port

Application Note 110 Copyright © 2003 ARM Limited. All rights reserved. 13
ARM DAI 110A

5.2 Creating an RVD project and building an FME file

This section assumes some familiarity with the process of managing projects with RVD.
Please refer to the Managing Projects chapter of the RVD version 1.6.1 User Guide for more
details.

5.2.1 Locate the source and .ame files required

Create a suitable directory on your hard drive and copy in the appropriate source and .ame
files specified below.

• b_flashwrapper.s (board specific code).

• f_amd_sst_arm.s (flash algorithm code)

The first is supplied with this application note and the second should be copied from the RVD
../flash directory.

• board_sst_eval7T.ame (board-level .ame file)

• flash_sst.ame (flash-level .ame file)

Both the above files are supplied with this application note. These are needed by the
pakflash utility called in the projects post link step.

5.2.2 Create a standard RVD project

Create a standard RVD project and add the board-level assembler source. The project can be
built using either the ADS or RVCT tool chain.

Note: b_flashwrapper.s INCLUDES f_amd_sst_arm.s and so does not need to be
added manually.

Example Port

14 Copyright © 2003 ARM Limited. All rights reserved. Application Note 110
ARM DAI 110A

5.2.3 Project Build folder settings

In the project build folder:

• Use application to name the axf you wish to generate. (for example:Evaluator.axf)

• Under link advanced set the RoBase = 0x40000 (Evaluator SRAM)

This value must specify an area of RAM on your target.

5.2.4 Adding "Extra args"

You must add an "Extra args" line to the build folder:

$DEF_LINK_ARGS -noremove

This prevents the linker removing the uninit RAM buffer.

Example Port

Application Note 110 Copyright © 2003 ARM Limited. All rights reserved. 15
ARM DAI 110A

5.3 Calling Pakflash

Under the Pre_Post_Link folder of the project include the following post link step.

'$RVDEBUG_BASE\mwbin\pakflash' -f ARM_EVAL7T debug\Evaluator.axf
board_sst_eval7T.ame -o ARM_EVAL7T.FME

The format is:

pakflash.exe -f flashname b_boardname.axf board_boardname.ame -o
ARM_EVAL7T.FME

where:

flashname = is specified in the board-level .ame file. For example: [BOARD=ARM_EVAL7T]

b_boardname.axf = is the axf produced by the project.

b_boardname.ame = the board-level .ame file. For example: board_sst_eval7T.ame

Now build the project. There should be no errors or warnings.

This produces an axf linked to run from address 0x40000 . (Evaluator SDRAM).The post link
step then calls the RVD utility pakflash to produce an FME file. This combines the text
information from the .ame file: board_sst_eval7T.ame with the axf to produce the FME
output file.

Note: If you want you can call pakflash.exe manually from the command line.

Example Port

16 Copyright © 2003 ARM Limited. All rights reserved. Application Note 110
ARM DAI 110A

5.4 Checking your FME file with Dispflash

You can check the contents of an FME file using a utility called dispflash.exe (a copy is
provided with this Application note).

This can be called from the command line using the following syntax:

dispflash.exe ARM_EVAL7T.FME

The output produced is:

#==

Flash 'Silicon Storage Tech 39VF400A' for processor 'ARM' (Little
Endian)

Width=2 with erase value of 0xFFFF

1 Block Groups:

(0) 128 blocks with byte size 4096/0x1000

Routine Code PC-rel. Can load at 0x40000

Init routine 0x0030 bytes from start

Erase routine 0x007C bytes from start

Erase then Write routine 0x010C bytes from start

Write routine 0x0110 bytes from start

Validate routine 0x015C bytes from start

Breakpoint routine 0x0188 bytes from start

Separate Data image (vars) 0x05CC bytes from start

RAM Buffer at 0x401CC (page 0) with byte size of 1024

0 Locked blocks

0 Memory Regions to Restore

0 Registers to Restore

#==

Example Port

Application Note 110 Copyright © 2003 ARM Limited. All rights reserved. 17
ARM DAI 110A

5.5 Creating a Board Chip Definition (BCD) file

By default RVD looks for BCD files in the ..\etc directory. There are a number of examples
provided for various ARM development boards.

You can create a new BCD from within RVD by copying an existing BCD. For more details on
board files refer to the section on Creating a *.BCD file in RVD version 1.6 Target
Configuration Guide.

This application note does not describe all aspects of Extended Target Visibility (ETV), for
example: enumeration of registers. It deals with those required to program the flash.

The steps needed to create a new minimal BCD for the Evaluator7T are as shown in this
section.

5.5.1 Copy and rename an existing BCD

Locate an existing BCD file (for example: Eval7T.BCD) in the RVD ../etc directory to
provide a basis for your new file. Make a copy of this file and rename it ARM_EVAL7T.BCD.

5.5.2 Delete any existing Board/Chip definitions

1. Open the Connection Properties window in RVD.

2. Select the new Board/Chip definition entry for the ARM_EVAL7Tyou have just created.

3. Delete any existing board or chip definitions that were part of the original BCD.

Example Port

18 Copyright © 2003 ARM Limited. All rights reserved. Application Note 110
ARM DAI 110A

5.5.3 Creating a new board group.

1. Right click on the new BCD entry and select Make New Group.

2. Create a new BOARDgroup entry called ARM_EVAL7T.

Note: This name must match the BOARD=entry used in your board-level .ame file.

Example Port

Application Note 110 Copyright © 2003 ARM Limited. All rights reserved. 19
ARM DAI 110A

5.5.4 Describe the Evaluator7T memory map.

1. Select the new ARM_EVAL7TBCD entry

2. Expand the BOARD=ARM_EVAL7Tfolder in the right hand pane.

3. Navigate to the Memory Block folder in the Advanced_Information tree. This is where
you can describe your target runtime memory system to RVD.

Note: You must set up definitions for all areas of memory you need to access on your target.
RVD aborts accesses to undefined areas of memory when using a BCD file.

4. Open the Memory Block folder and select the default entry.

5. Right click and select Make Copy to create the following folders.

Create folder Eval_App_Flash

Specify the following attributes (all others can be left as default).

Start = 0x01820000

Length = 0x60000

Access = Flash (right click and select from enumerated list)

Flash type: full path and name of your FME file.

Description = "Application Flash 384K"

Create folder SRAM_bank1

Specify the following attributes (all others can be left as default).

Start = 0x0

Length = 0x40000

Access = RAM (right click and select from enumerated list)

Description = "SRAM bank1 256K"

Create folder SRAM_bank2

Specify the following attributes (all others can be left as default).

Start = 0x40000

Length = 0x40000

Access = RAM (right click and select from enumerated list)

Description = "SRAM bank2 256K"

6. Now deleted the default entry.

7. The Connection Properties window Memory Block group will look as shown:

Example Port

20 Copyright © 2003 ARM Limited. All rights reserved. Application Note 110
ARM DAI 110A

5.5.5 Specify the new BCD in the connection properties for Multi-ICE or RVICE.

Close the RVD connection properties window saving the changes you have made to your
board file.

Open the Connection Control Window and select the new BCD you have created as the board
chip file for your connection.

You can now see the memory map you have defined in RVD's process control pane when you
connect to the target.

RVD now automatically displays the flash memory control dialog and accesses the new FME
file you have created when you attempt to write to flash memory.

Appendix A - Format of .ame files

Application Note 110 Copyright © 2003 ARM Limited. All rights reserved. 21
ARM DAI 110A

6 Appendix A - Format of .ame files

This appendix defines the minimum information that must be specified in board-level and
flash-level .ame files used to describe your targets flash memory.

6.1 Board-Level .ame files

Example:

#==

[BOARD=IntegratorAP]

proc_name=ARM

from_flash=DT28F320S3_AP

width=0x0004

reloc.start_addr=0x28000000

reloc.pc_rel=True

[INCLUDE] $RVDEBUG_INSTALL\flash\flash_intel.ame

#==

BOARD- defines board file name.

proc_name - always "ARM".

from_flash - references the relevant flash device in the lower level .ame file.

width - Resultant data width when writing to the flash. [4=32bit, 2=16bit, 1=8bit]

In this example there are two 16bit flash devices in parallel across the data bus. Therefore the
width = 4 so we write to the bottom 16bits of each flash simultaneously. This entry should
match the entry defined in the board-level assembler code.

reloc.start_addr - specifies the address to run the flash programming code from. It
should match the RO base address used in your RVD project link options. Note: This does not
have to be free 'scratch' memory. By default RVD saves the contents of affected RAM and
restores them after the flash operation has completed.

reloc.pc_rel - indicates PC relative code (normally True)

INCLUDE- specifies the relevant flash .ame file (with path)

Appendix A - Format of .ame files

22 Copyright © 2003 ARM Limited. All rights reserved. Application Note 110
ARM DAI 110A

6.2 Flash-Level .ame files

Example:

#==

[FLASH=DT28F320S3_AP]

flash_name="Intel DT28F320S3 2Mx16 x2 x4"

no_erase=False

width=4

Each Flash has 64 blocks(32K-halfwords x 2) as main blocks

block.1={count=64:size=128K}

block.2={count=64:size=128K}

block.3={count=64:size=128K}

block.4={count=64:size=128K}

proc_name="ARM"

#==

FLASH- defines a name for a specific flash device.

flash_name - text description displayed by RVD

no_erase - always be set to False by default

Setting to True might improve performance in some NOR style flashes that support auto-
erase.

width - width of the flash device. [4=32bit, 2=16bit, 1=8bit]

This entry is overridden by the board-level .ame file.

block - list of block groups.

size - size in bytes of each block. Can be specified in decimal, hex or K.

count - defines the number of blocks in each group.

proc_name - always "ARM".

Appendix B - Board-level assembly code for supported flash types

Application Note 110 Copyright © 2003 ARM Limited. All rights reserved. 23
ARM DAI 110A

7 Appendix B - Board-level assembly code for supported flash types

For targets that use one of the four main flash types supported by RVD (AMD, Atmel, Intel and
SST) sample board-level assembly code (complete with comments) is provided in the
associated file: b_flashwrapper.s .

This code must be included as part of an RVD project to produce an FME for your target. You
have to provide board and flash-level ame files and select the appropriate flash algorithm for
your flash type. (The process is described in Section 5 of this application note).

Note1: This code is designed to be linked to reside in a contiguous area of RAM on your
target. (So only an RO base should be specified in the linker options).

Note2: This does not have to be free 'scratch' memory. By default RVD saves the contents of
affected RAM and restores them after the flash operation has completed.

The areas of b_flashwrapper.s that are designed to be user editable are:

Equates.

You must set P_WIDTHand WIDTHto match your target.

Flash_init routine

The FLASH_init label is exported, enabling the routine to be called directly by RVD.

Executing this function ultimately results in a branch to a label FLASH_break . RVD
automatically places a breakpoint at this point enabling the debugger to halt the target while
the Flash Memory control dialog is displayed.

An area is marked for you to insert your own code if required. For example: you might want to
include code to disable watchdogs, enable chip selectors/enables to allow writes for example.
Note the RVD API rules in the comments, which specify that only R6,R7 and R8 are available
as scratch registers.

Buffer size

Buffer defines an area of uninitialised RAM which RVD can use to store data before writing it
to flash. Size is not flash dependant and therefore does not usually need editing. However for
large flash memory devices an increased RAM buffer size might improve write speeds.

Appendix C - Adding support for other flash devices

24 Copyright © 2003 ARM Limited. All rights reserved. Application Note 110
ARM DAI 110A

8 Appendix C - Adding support for other flash devices

If your target uses a flash device that cannot be programmed using the standard flash
algorithms provided with RVD, you must provide your own flash programming code.

The following files are provided with this application note:

• rvd2apcs.s

• flash.h

The first is an assembly wrapper intended to acts as an interface between the RVD API and
your flash programming code.

The second is a 'C' header file containing prototypes for the functions called by RVD.

These files must be included as part of an RVD project to produce an FME for your target.
You have to provide board and flash-level ame files to describe your target to RVD. (The
process is described in section 5 of this application note).

Note1: This code is designed to be linked to reside in a contiguous area of RAM on your
target. (so only an RO base should be specified in the linker options).

Note2: This does not have to be free 'scratch' memory. By default RVD saves the contents of
affected RAM and restores them after the flash operation has completed.

