
Arm® C/C++ Compiler
Version 20.1

Reference Guide

Copyright © 2018–2020 Arm Limited or its affiliates. All rights reserved.
101458_2010_01_en

Arm® C/C++ Compiler
Reference Guide
Copyright © 2018–2020 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

1900-00 02 November 2018 Non-Confidential Document release for Arm® C/C++ Compiler version 19.0

1910-00 08 March 2019 Non-Confidential Update for Arm® C/C++ Compiler version 19.1

1920-00 07 June 2019 Non-Confidential Update for Arm® C/C++ Compiler version 19.2

1930-00 30 August 2019 Non-Confidential Update for Arm® C/C++ Compiler version 19.3

2000-00 29 November 2019 Non-Confidential Update for Arm® C/C++ Compiler version 20.0

2010-00 23 April 2020 Non-Confidential Update for Arm® C/C++ Compiler version 20.1

2010-01 23 April 2020 Non-Confidential Documentation update 1 for Arm® C/C++ Compiler version
20.1

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the

 Arm® C/C++ Compiler

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2

Non-Confidential

trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/
trademarks.

Copyright © 2018–2020 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

www.arm.com

 Arm® C/C++ Compiler

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3

Non-Confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks
https://www.arm.com

Contents
Arm® C/C++ Compiler Reference Guide

Preface
About this book 8

Chapter 1 Get started
1.1 Get started with Arm® C/C++ Compiler .. 1-11
1.2 Using the compiler 1-13
1.3 Generate annotated assembly code from C and C++ code 1-16
1.4 Compile C/C++ code for Arm SVE and SVE2 architectures 1-18
1.5 Get help 1-20

Chapter 2 Compiler options
2.1 Actions 2-22
2.2 File options 2-23
2.3 Basic driver options 2-24
2.4 Optimization options .. 2-25
2.5 Workload compilation options .. 2-31
2.6 Development options 2-32
2.7 Warning options 2-33
2.8 Pre-processor options 2-34
2.9 Linker options 2-35

Chapter 3 Coding best practice
3.1 Coding best practice for auto-vectorization 3-40
3.2 Control auto-vectorization with pragmas 3-41

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4

Non-Confidential

3.3 Optimizing C/C++ code with Arm SIMD (Neon™) 3-44
3.4 Optimizing C/C++ code with SVE and SVE2 3-45
3.5 Prefetching with __builtin_prefetch .. 3-46
3.6 Writing inline SVE assembly .. 3-48

Chapter 4 Standards support
4.1 OpenMP 4.0 4-54
4.2 OpenMP 4.5 4-55

Chapter 5 Arm Optimization Report
5.1 How to use Arm Optimization Report 5-58
5.2 arm-opt-report reference 5-60

Chapter 6 Optimization remarks
6.1 Enable Optimization remarks 6-64

Chapter 7 Vector routines support
7.1 Vector math routines in Arm® C/C++ Compiler .. 7-66
7.2 Support level for declare simd 7-68
7.3 Attribute acfl_simd_variant 7-73

Chapter 8 Troubleshoot
8.1 Application segfaults at -Ofast optimization level 8-78
8.2 Compiling with the -fpic option fails when using GCC compilers 8-79
8.3 Error messages when installing Arm® Compiler for Linux 8-80

Chapter 9 Further resources
9.1 Further resources for Arm® C/C++ Compiler 9-82

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5

Non-Confidential

List of Tables
Arm® C/C++ Compiler Reference Guide

Table 2-1 Compiler actions .. 2-22
Table 2-2 Compiler file options .. 2-23
Table 2-3 Compiler basic driver options .. 2-24
Table 2-4 Compiler optimization options ... 2-25
Table 2-5 Workload compilation options .. 2-31
Table 2-6 Compiler development options .. 2-32
Table 2-7 Compiler warning options .. 2-33
Table 2-8 Compiler pre-processing options ... 2-34
Table 2-9 Compiler linker options .. 2-35
Table 4-1 Supported OpenMP 4.0 features ... 4-54
Table 4-2 Supported OpenMP 4.5 features ... 4-55

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

6

Non-Confidential

Preface

This preface introduces the Arm® C/C++ Compiler Reference Guide.

It contains the following:
• About this book on page 8.

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

7

Non-Confidential

 About this book
Provides information to help you use the Arm C/C++ Compiler component of Arm Compiler for Linux.
Arm C/C++ Compiler is an auto-vectorizing, Linux-space C and C++ compiler, tailored for Server and
High Performance Computing (HPC) workloads. Arm C/C++ Compiler supports Standard C and C++
source code and is tuned for Armv8-A based processors.

 Using this book

This book is organized into the following chapters:

Chapter 1 Get started
This chapter describes how to use Arm C/C++ Compiler to compile C/C++ code for Arm-based
and Arm SVE-based platforms, optimize your code, and generate an executable binary.

Chapter 2 Compiler options
This page lists the command-line options supported by armclang|armclang++ in Arm C/C++
Compiler. You can also view the available options in the in-tool man pages. To view the man
pages, use man armflang.

Chapter 3 Coding best practice
Discusses the best practices when writing C/C++ code for Arm C/C++ Compiler.

Chapter 4 Standards support
The support status of Arm C/C++ Compiler with the OpenMP standards.

Chapter 5 Arm Optimization Report
Arm Optimization Report builds on the llvm-opt-report tool available in open source LLVM. Arm
Optimization Report shows you the optimization decisions that the compiler is making, in-line
with your source code, enabling you to better understand the unrolling, vectorization, and
interleaving behavior.

Chapter 6 Optimization remarks
Optimization remarks provide you with information about the choices that are made by the
compiler. You can use them to see which code has been inlined or they can help you understand
why a loop has not been vectorized.

Chapter 7 Vector routines support
Describes how to vectorize loops in C and C++ workloads that invoke the math routines from
libm, how to interface user vector functions with serial code, and how to expose the vector
variants that are available to the compiler with the attribute acfl_simd_variant.

Chapter 8 Troubleshoot
Describes how to diagnose problems when compiling applications using Arm Fortran Compiler.

Chapter 9 Further resources
Describes where to find more resources about Arm C/C++ Compiler (part of Arm Compiler for
Linux).

 Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

 Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

 Preface
 About this book

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

8

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Feedback

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Arm C/C++ Compiler Reference Guide.
• The number 101458_2010_01_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
 Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Other information

• Arm® Developer.
• Arm® Information Center.
• Arm® Technical Support Knowledge Articles.
• Technical Support.
• Arm® Glossary.

 Preface
 About this book

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

9

Non-Confidential

mailto:errata@arm.com
https://developer.arm.com/
http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/topic/com.arm.doc.faqs
http://www.arm.com/support/technical-support
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Chapter 1
Get started

This chapter describes how to use Arm C/C++ Compiler to compile C/C++ code for Arm-based and Arm
SVE-based platforms, optimize your code, and generate an executable binary.

It contains the following sections:
• 1.1 Get started with Arm® C/C++ Compiler on page 1-11.
• 1.2 Using the compiler on page 1-13.
• 1.3 Generate annotated assembly code from C and C++ code on page 1-16.
• 1.4 Compile C/C++ code for Arm SVE and SVE2 architectures on page 1-18.
• 1.5 Get help on page 1-20.

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

1-10

Non-Confidential

1.1 Get started with Arm® C/C++ Compiler
Describes how to compile your C/C++ source code and generate an executable binary with Arm C/C++
Compiler (part of Arm Compiler for Linux).

Prerequisites

• Install Arm Compiler for Linux. For information about installing Arm Compiler for Linux, see Install
Arm Compiler for Linux.

Procedure
1. Load the environment module for Arm Compiler for Linux:

a. As part of the installation, your system administrator must make the Arm Compiler for Linux
environment modules available. To see which environment modules are available, run:

module avail

 Note

Depending on the configuration of Environment Modules on your system, you might need to
configure the MODULEPATH environment variable to include the installation directory:

export MODULEPATH=$MODULEPATH:/opt/arm/modulefiles/

If you chose to install Arm Compiler for Linux to a custom location, replace /opt/arm/ with the
path to your installation.

b. To load the module for Arm Compiler for Linux, run:

module load <architecture>/<linux_variant>/<linux_version>/suites/arm-linux-compiler/
<version>

For example:

module load Generic-AArch64/SUSE/12/suites/arm-linux-compiler/20.1

c. Check your environment. Examine the PATH variable. PATH must contain the
appropriate bin directory from /opt/arm, as installed in the previous section:

echo $PATH
/opt/arm/arm-linux-compiler-20.1_Generic-AArch64_SUSE-
12_aarch64-linux/bin:...

 Note

To automatically load the Arm Compiler for Linux every time you log into your Linux terminal, add
the module load command for your system and product version to your .profile file.

2. Create a “Hello World” program and save it in a file, for example: hello.c.

/* Hello World */
#include <stdio.h>
int main()
{
 printf("Hello World");
 return 0;
}

3. To generate an executable binary, compile your program with Arm C/C++ Compiler and specify (-o)
the input file, hello.c, and the binary name, hello:

armclang -o hello hello.c

4. Run the generated binary hello:

./hello

1 Get started
1.1 Get started with Arm® C/C++ Compiler

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

1-11

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio/installation
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio/installation

Next Steps

For more information about compiling and linking as separate steps, and how optimization levels effect
auto-vectorization, see Using the compiler on page 1-13.

Related references
Chapter 3 Coding best practice on page 3-39
Chapter 2 Compiler options on page 2-21

1 Get started
1.1 Get started with Arm® C/C++ Compiler

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

1-12

Non-Confidential

1.2 Using the compiler
Describes how to generate executable binaries, compile and link object files, and enable optimization
options.

Compile and link

To generate an executable binary, for example example1, compile the source file example1.c using:

armclang -o example1 example1.c

You can also specify multiple source files on a single line. Each source file is compiled individually and
then linked into a single executable binary. For example:

armclang -o example1 example1a.c example1b.c

To compile each of your source files individually into an object file, specify the -c (compile-only)
option, and then pass the resulting object files into another invocation of armclang to link them into an
executable binary.

armclang -c -o example1a.o example1a.c
armclang -c -o example1b.o example1b.c
armclang -o example1 example1a.o example1b.o

Increase the optimization level

To increase the optimization level, use the -Olevel option. The -O0 option is the lowest optimization
level, while -O3 is the highest. Arm C/C++ Compiler only performs auto-vectorization at -O2 and higher,
and uses -O0 as the default setting. The optimization option can be specified when generating a binary,
such as:

armclang -O3 -o example1 example1.c

The optimization option can also be specified when generating an object file:

armclang -O3 -c -o example1a.o example1a.c
armclang -O3 -c -o example1b.o example1b.c

 or when linking object files:

armclang -O3 -o example1 example1a.o example1b.o

Compile and optimize using CPU auto-detection

Arm C/C++ Compiler supports the use of the -mcpu=native option, for example:

armclang -O3 -mcpu=native -o example1 example1.c

This option enables the compiler to automatically detect the architecture and processor type of the CPU
you are running the compiler on, and optimize accordingly.

This option supports a range of Armv8-A-based SoCs, including ThunderX2, Neoverse N1, and A64FX.
 Note

The optimization performed according to the auto-detected architecture and processor is independent of
the optimization level that is denoted by the -O<level> option.

Common compiler options

See man armclang, armclang --help, or Compiler options on page 2-21, for more information about
all the supported compiler options.

1 Get started
1.2 Using the compiler

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

1-13

Non-Confidential

-S

Outputs assembly code, rather than object code. Produces a text .s file containing annotated
assembly code.

-c

Performs the compilation step, but does not perform the link step. Produces an ELF object .o
file. To later link object files into an executable binary, run armclang again, passing in the
object files.

-o <file>

Specifies the name of the output file.

-march=name[+[no]feature]
Targets an architecture profile, generating generic code that runs on any processor of that
architecture. For example -march=armv8-a, -march=armv8-a+sve, or -march=armv8-a+sve2.

 Note

If you know your target microarchitecture, Arm recommends using the -mcpu option instead of
-march.

-mcpu=native

Enables the compiler to automatically detect the CPU you are running the compiler on, and
optimize accordingly. The compiler selects a suitable architecture profile for that CPU. If you
use -mcpu, you do not need to use the -march option.

mcpu supports a range of Armv8-A-based System-on-Chips (SoCs), including ThunderX2,
Neoverse N1, and A64FX.

 Note

When -mcpu is not specified, it defaults to mcpu=generic which generates portable output
suitable for any Armv8-A-based computer.

-Olevel

Specifies the level of optimization to use when compiling source files. The default is -O0.

--config /path/to/<config-file>.cfg

Passes the location of a configuration file to the compile command. Use a configuration file to
specify a set of compile options to be run at compile time. The configuration file can be passed
at compile time, or an environment variable can be set for it to be used for every invocation of
the compiler. For more information about creating and using a configuration file, see Configure
Arm Compiler for Linux.

--help

Describes the most common options that are supported by Arm C/C++ Compiler. To see more
detailed descriptions of all the options, use man armclang.

--version

Displays version information.

For a detailed description of all the supported compiler options, see Compiler options on page 2-21.

To view the supported options on the command-line, use the man pages:

man {armclang|armclang++}

1 Get started
1.2 Using the compiler

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

1-14

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio/installation/configure
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio/installation/configure

Related tasks
1.4 Compile C/C++ code for Arm SVE and SVE2 architectures on page 1-18
Related references
Chapter 2 Compiler options on page 2-21
1.5 Get help on page 1-20

1 Get started
1.2 Using the compiler

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

1-15

Non-Confidential

1.3 Generate annotated assembly code from C and C++ code
Arm C/C++ Compiler can produce annotated assembly code. Generating annotated assembly code is a
good first step to see how the compiler vectorizes loops.

 Note

To use SVE functionality, you need to use a different set of compiler options. For more information, refer
to Compile C/C++ code for Arm SVE and SVE2 architectures on page 1-18.

Prerequisites

• Install Arm Compiler for Linux. For information about installing Arm Compiler for Linux, see Install
Arm Compiler for Linux.

• Load the module for Arm Compiler for Linux, run:

module load <architecture>/<linux_variant>/<linux_version>/suites/arm-linux-compiler/
<version>

Procedure
1. Compile your source and specify an assembly code output:

armclang -O<level> -S -o <assembly-filename>.s <source-filename>.c

The option -S is used to output assembly code.

The -O<level> option specifies the optimization level. The -O0 option is the lowest optimization
level, while -O3 is the highest. Arm C/C++ Compiler only performs auto-vectorization at -O2 and
higher.

2. Inspect the <assembly-filename>.s file to see the annotated assembly code that was created.
3. Run the executable:

./<binary-filename>

Example 1-1 Example

This example compiles an example application source into assembly code without auto-vectorization,
then re-compiles it with auto-vectorization enabled. You can compare the assembly code to see the effect
the auto-vectorization has.

The following C application subtracts corresponding elements in two arrays, writing the result to a third
array. The three arrays are declared using the restrict keyword, indicating to the compiler that they do
not overlap in memory.

// example1.c
#define ARRAYSIZE 1024
int a[ARRAYSIZE];
int b[ARRAYSIZE];
int c[ARRAYSIZE];
void subtract_arrays(int *restrict a, int *restrict b, int *restrict c)
{
 for (int i = 0; i < ARRAYSIZE; i++)
 {
 a[i] = b[i] - c[i];
 }
}
int main()
{
 subtract_arrays(a, b, c);
}

1 Get started
1.3 Generate annotated assembly code from C and C++ code

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

1-16

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio/installation
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio/installation

1. Compile the example source without auto-vectorization (-O1) and specify an assembly code
output (-S``):

armclang -O1 -S -o example1.s example1.c

The output assembly code is saved as example1.s. The section of the generated assembly language
file that contains the compiled subtract_arrays function is as follows:

subtract_arrays: // @subtract_arrays
// BB#0:
 mov x8, xzr
.LBB0_1: // =>This Inner Loop Header: Depth=1
 ldr w9, [x1, x8]
 ldr w10, [x2, x8]
 sub w9, w9, w10
 str w9, [x0, x8]
 add x8, x8, #4 // =4
 cmp x8, #1, lsl #12 // =4096
 b.ne .LBB0_1
// BB#2:
 ret

This code shows that the compiler has not performed any vectorization, because we specified the -O1
(low optimization) option. Array elements are iterated over one at a time. Each array element is a 32-
bit or 4-byte integer, so the loop increments by 4 each time. The loop stops when it reaches the end of
the array (1024 iterations * 4 bytes later).

2. Recompile the application with auto-vectorization enabled (-O2):

armclang -O2 -S -o example1.s example1.c

The output assembly code is saved as example1.s. The section of the generated assembly language
file that contains the compiled subtract_arrays function is as follows:

subtract_arrays: // @subtract_arrays
// BB#0:
 mov x8, xzr
 add x9, x0, #16 // =16
.LBB0_1: // =>This Inner Loop Header: Depth=1
 add x10, x1, x8
 add x11, x2, x8
 ldp q0, q1, [x10]
 ldp q2, q3, [x11]
 add x10, x9, x8
 add x8, x8, #32 // =32
 cmp x8, #1, lsl #12 // =4096
 sub v0.4s, v0.4s, v2.4s
 sub v1.4s, v1.4s, v3.4s
 stp q0, q1, [x10, #-16]
 b.ne .LBB0_1
// BB#2:
 ret

This time, we can see that Arm C/C++ Compiler has done something different. SIMD (Single
Instruction Multiple Data) instructions and registers have been used to vectorize the code. Notice that
the LDP instruction is used to load array values into the 128-bit wide Q registers. Each vector
instruction is operating on four array elements at a time, and the code is using two sets of Q registers
to double up and operate on eight array elements in each iteration. Therefore, each loop iteration
moves through the array by 32 bytes (2 sets * 4 elements * 4 bytes) at a time.

1 Get started
1.3 Generate annotated assembly code from C and C++ code

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

1-17

Non-Confidential

1.4 Compile C/C++ code for Arm SVE and SVE2 architectures
Arm C/C++ Compiler supports compiling for Scalable Vector Extension (SVE) and Scalable Vector
Extension version two (SVE2)-enabled target processors.

SVE and SVE2 support enables you to:
• Assemble source code containing SVE and SVE2 instructions.
• Disassemble ELF object files containing SVE and SVE2 instructions.
• Compile C and C++ code for SVE and SVE2-enabled targets, with an advanced auto-vectorizer that

is capable of taking advantage of the SVE and SVE2 features.

This tutorial shows you how to compile code to take advantage of SVE (or SVE2) functionality. The
executable that is generated during the tutorial can only be run on SVE-enabled (or SVE2-enabled)
hardware, or with Arm Instruction Emulator.

Prerequisites

• Install Arm Compiler for Linux. For information about installing Arm Compiler for Linux, see Install
Arm Compiler for Linux.

• Load the module for Arm Compiler for Linux, run:

module load <architecture>/<linux_variant>/<linux_version>/suites/arm-linux-compiler/
<version>

Procedure
1. Compile your SVE or SVE2 source and specify an SVE-enabled (or SVE2-enabled) architecture:

• To compile without linking to Arm Performance Libraries, set -march to the architecture and
feature set you want to target:

For SVE:

armclang -O<level> -march=armv8-a+sve -o <binary-filename> <source-filename>.c

For SVE2:

armclang -O<level> -march=armv8-a+sve2 -o <binary-filename> <source-filename>.c

• To compile and link to the SVE version of Arm Performance Libraries, set -march to the
architecture and feature set you want to target and add the -armpl=sve option to your command
line:

For SVE:

armclang -O<level> -march=armv8-a+sve -armpl=sve -o <binary-filename> <source-
filename>.c

For SVE2:

armclang -O<level> -march=armv8-a+sve2 -armpl=sve -o <binary-filename> <source-
filename>.c

For more information about the supported options for -armpl, see the -armpl description in
Linker options on page 2-35.

There are several SVE2 Cryptographic Extensions available: sve2-aes, sve2-bitperm, sve2-sha3,
and sve2-sm4. Each extension is enabled using the march compiler option. For a full list of supported
-march options, see ../compiler-options/optimization-options.

 Note

sve2 also enables sve.

1 Get started
1.4 Compile C/C++ code for Arm SVE and SVE2 architectures

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

1-18

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio/installation
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio/installation

2. Run the executable:

./<binary-filename>

Example 1-2 Example

This example compiles an example application source into assembly with auto-vectorization enabled.

The following C program subtracts corresponding elements in two arrays and writes the result to a third
array. The three arrays are declared using the restrict keyword, telling the compiler that they do not
overlap in memory.

// example1.c
#define ARRAYSIZE 1024
int a[ARRAYSIZE];
int b[ARRAYSIZE];
int c[ARRAYSIZE];
void subtract_arrays(int *restrict a, int *restrict b, int *restrict c)
{
 for (int i = 0; i < ARRAYSIZE; i++)
 {
 a[i] = b[i] - c[i];
 }
}
int main()
{
 subtract_arrays(a, b, c);
}

1. Compile example1.c and specify the output file to be assembly (-S):

armclang -O3 -S -march=armv8-a+sve -o example1.s example1.c

The output assembly code is saved as example1.s.
2. (Optional) Inspect the output assembly code.

The section of the generated assembly language file containing the compiled subtract_arrays
function appears as follows:

subtract_arrays: // @subtract_arrays
// BB#0:
 orr w9, wzr, #0x400
 mov x8, xzr
 whilelo p0.s, xzr, x9
.LBB0_1: // =>This Inner Loop Header: Depth=1
 ld1w {z0.s}, p0/z, [x1, x8, lsl #2]
 ld1w {z1.s}, p0/z, [x2, x8, lsl #2]
 sub z0.s, z0.s, z1.s
 st1w {z0.s}, p0, [x0, x8, lsl #2]
 incw x8
 whilelo p0.s, x8, x9
 b.mi .LBB0_1
// BB#2:
 ret

SVE instructions operate on the z and p register banks. In this example, the inner loop is almost
entirely composed of SVE instructions. The auto-vectorizer has converted the scalar loop from the
original C source code into a vector loop, that is independent of the width of SVE vector registers.

3. Run the executable:

./example1

Related information
Porting and Optimizing HPC Applications for Arm SVE

1 Get started
1.4 Compile C/C++ code for Arm SVE and SVE2 architectures

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

1-19

Non-Confidential

https://developer.arm.com/docs/101726/latest

1.5 Get help
Describes where to find help for Arm C/C++ Compiler.

In-tool
• The --help option:

armclang --help

• The man pages:

man armclang

• The offline HTML version of this, and more, documentation, in: <install-directory>/share.

On the Arm Developer website

See: Further resources for Arm® C/C++ Compiler on page 9-82

Arm Support team

Contact Arm Support

1 Get started
1.5 Get help

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

1-20

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/get-support

Chapter 2
Compiler options

This page lists the command-line options supported by armclang|armclang++ in Arm C/C++ Compiler.
You can also view the available options in the in-tool man pages. To view the man pages, use man
armflang.

 Note

For simplicity, we have only shown the command usage with armclang. The options can also be used
with armclang++, unless otherwise stated.

It contains the following sections:
• 2.1 Actions on page 2-22.
• 2.2 File options on page 2-23.
• 2.3 Basic driver options on page 2-24.
• 2.4 Optimization options on page 2-25.
• 2.5 Workload compilation options on page 2-31.
• 2.6 Development options on page 2-32.
• 2.7 Warning options on page 2-33.
• 2.8 Pre-processor options on page 2-34.
• 2.9 Linker options on page 2-35.

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-21

Non-Confidential

2.1 Actions
Options that control what action to perform on the input.

Table 2-1 Compiler actions

Option Description

-E Only run the preprocessor.

Usage

armclang -E

-S Only run the preprocess and compile steps. The preprocess step is not run on files that do not need it.

Usage

armclang -S

-c Only run the preprocess, compile, and assemble steps. The preprocess step is not run on files that do not need it.

Usage

armclang -c

-fopenmp Enable OpenMP and link in the OpenMP library, libomp.

Usage

armclang -fopenmp

-fsyntax-only Show syntax errors but do not perform any compilation.

Usage

armclang -fsyntax-only

2 Compiler options
2.1 Actions

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-22

Non-Confidential

2.2 File options
Options that specify input or output files.

Table 2-2 Compiler file options

Option Description

--config Passes the location of a configuration file to the compile command.

Use a configuration file to specify a set of compile options to be run at compile time. The configuration file can
be passed at compile time, or you can set an environment variable for it to be used for every invocation of the
compiler. For more information about creating and using a configuration file, see Configure Arm Compiler for
Linux.

Usage

armclang --config /path/to/this/<filename>.cfg

-I<dir> Add directory to include search path.

Usage

armclang -I<dir>

-include
<file>

Include file before parsing.

Usage

armclang -include <file>

Or

armclang --include <file>

-o <file> Write output to <file>.

Usage

armclang -o <file>

2 Compiler options
2.2 File options

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-23

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio/installation/configure
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio/installation/configure

2.3 Basic driver options
Options that affect basic functionality of the armclang driver.

Table 2-3 Compiler basic driver options

Option Description

--gcc-toolchain=<arg> Use the gcc toolchain at the given directory.

Usage

armclang --gcc-toolchain=<arg>

-help

--help

Display available options.

Usage

armclang -help

armclang --help

--help-hidden Display hidden options. Only use these options if advised to do so by your Arm representative.

Usage

armclang --help-hidden

-v Show the commands to run and use verbose output.

Usage

armclang -v

--version

--vsn Show the version number and some other basic information about the compiler.

Usage

armclang --version

armclang --vsn

2 Compiler options
2.3 Basic driver options

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-24

Non-Confidential

2.4 Optimization options
Options that control optimization behavior and performance.

Table 2-4 Compiler optimization options

Option Description

-O0 Minimum optimization for the performance of the compiled binary. Turns off most
optimizations. When debugging is enabled, this option generates code that directly
corresponds to the source code. Therefore, this might result in a larger image. This is the
default optimization level.

Usage

armclang -O0

-O1 Restricted optimization. When debugging is enabled, this option gives the best debug view
for the trade-off between image size, performance, and debug.

Usage

armclang -O1

-O2 High optimization. When debugging is enabled, the debug view might be less satisfactory
because the mapping of object code to source code is not always clear. The compiler might
perform optimizations that cannot be described by debug information.

Usage

armclang -O2

-O3 Very high optimization. When debugging is enabled, this option typically gives a poor
debug view. Arm recommends debugging at lower optimization levels.

Usage

armclang -O3

-Ofast Enable all the optimizations from level 3, including those performed with the
‑ffp‑mode=fast armclang option.

This level also performs other aggressive optimizations that might violate strict compliance
with language standards.

Usage

armclang -Ofast

2 Compiler options
2.4 Optimization options

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-25

Non-Confidential

Table 2-4 Compiler optimization options (continued)

Option Description

-fassociative-math

-fno-associative-math

Allows (-fassociative-math) or prevents (-fno-associative-math) the re-
association of operands in a series of floating-point operations.

For example, (a * b) + (a * c) => a * (b + c).

The default is -fno-associative-math.
 Note

This violates the ISO C and C++ language standard because it changes the program order
of operations.

Usage

armclang -fassociative-math

armclang -fno-associative-math

-ffast-math Allow aggressive, lossy floating-point optimizations.

Usage

armclang -ffast-math

-ffinite-math-only Enable optimizations that ignore the possibility of NaN and +/‑Inf.

Usage

armclang -ffinite-math-only

-ffp-contract={fast|on|off} Controls when the compiler is permitted to form fused floating-point operations (for
example, FMAs).

These instructions typically operate to a higher degree of accuracy than individual multiply
and add instructions:
• fast: Always (default for Fortran workloads). Note: They are not strictly allowed

according to the C/C++ standard because they can lead to deviates from expected
results.

• on: Only in the presence of the FP_CONTRACT pragma (default for C/C++
workloads).

• off: Never.

Usage

armclang -ffp-contract={fast|on|off}

-finline

-fno-inline

Enable or disable inlining (enabled by default).

Usage

armclang -finline

(enable)

armclang -fno-inline

(disable)

2 Compiler options
2.4 Optimization options

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-26

Non-Confidential

Table 2-4 Compiler optimization options (continued)

Option Description

-flto

-fno-lto

Enable (-flto) or disable (-fno-lto) link time optimization. Disabled by default.

You must pass the option to both the link and compile commands.

Usage

armclang -flto

armclang -fno-lto

-fsave-optimization-record

-fno_save_optimization_record

Enable (-fsave-optimization-record) or disable (-fno-save-optimization-
record) the generation of a YAML optimization record file.

Default is -fno_save_optimization_record.

Usage

armclang -fsave-optimization-record

armclang -fno-save-optimization-record

-fsigned-zeros

-fno-signed-zeros

Allow (-fsigned-zeros) or prevent (-fno-signed-zeros) optimizations that ignore
the sign of floating point zeros. Default is -fsigned-zeros.

Usage

armclang -fsigned-zeros

armclang -fno-signed-zeros

-fsimdmath

-fno-simdmath

Enables (fsimdmath) or disables (fno-simdmath) the use of vectorized libm libraries, to
support the vectorization of loops containing calls to basic library functions, such as those
declared in math.h and string.h.

For more information, see https://developer.arm.com/docs/101458/latest.

Default is -fno-simdmath.

Usage

armclang -fsimdmath

armclang -fno-simdmath

-fstrict-aliasing Tells the compiler to adhere to the aliasing rules defined in the source language.

In some circumstances, this flag allows the compiler to assume that pointers to different
types do not alias. Enabled by default when using -Ofast.

Usage

armclang -fstrict-aliasing

2 Compiler options
2.4 Optimization options

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-27

Non-Confidential

https://developer.arm.com/docs/101458/latest

Table 2-4 Compiler optimization options (continued)

Option Description

-ftrapping-math

-fno-trapping-math

-ftrapping-math tells the compiler to assume that floating point operations will cause a
trap.

-fno-trapping-math tells the compiler to assume that none of the floating point
operations will cause a trap, for example, divide by zero.

Possible traps include:
• Division by zero
• Underflow
• Overflow
• Inexact result
• Invalid operation.

Usage

armclang -ftrapping-math

armclang -fno-trapping-math

-funsafe-math-optimizations

-fno-unsafe-math-optimizations

This option enables reassociation and reciprocal math optimizations, and does not honor
trapping nor signed zero.

Usage

armclang -funsafe-math-optimizations

(enable)

armclang-fno-unsafe-math-optimizations

(disable)

-fvectorize

-fno-vectorize

Enable loop vectorization (default).

Disable loop vectorization.

Usage

armclang -fvectorize

(enable)

armclang -fno-vectorize

(disable)

2 Compiler options
2.4 Optimization options

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-28

Non-Confidential

Table 2-4 Compiler optimization options (continued)

Option Description

-mcpu=<arg> Select which CPU architecture to optimize for. Choose from:
• a64fx: Optimize for A64FX-based computers.
• generic (Default): Generates portable output suitable for any Armv8-A-based

computer. To enable portable code, this is the default option when -mcpu is not
specified.

• native: Auto-detect the CPU architecture from the build computer.
• neoverse-n1: Optimize for Neoverse N1-based computers.
• thunderx2t99: Optimize for Cavium ThunderX2-based computers.

Usage

armclang -mcpu=<arg>

2 Compiler options
2.4 Optimization options

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-29

Non-Confidential

Table 2-4 Compiler optimization options (continued)

Option Description

-march=<arg> Specifies the base architecture and extensions available on the target.

-march=<arg> where <arg> is constructed as name[+[no]feature+…]:

name

armv8-a: Armv8-A application architecture profile.

armv8.1-a: Armv8.1 application architecture profile.

armv8.2-a: Armv8.2 application architecture profile.

feature

Is the name of an optional architectural feature that can be explicitly enabled with
+feature and disabled with +nofeature.

For AArch64, the following features can be specified:
• crc - Enable CRC extension. On by default for -march=armv8.1-a or

higher.
• crypto - Enable Cryptographic Extension.
• fullfp16 - Enable FP16 extension.
• lse - Enable Large System Extension instructions. On by default for -

march=armv8.1-a or higher.
• sve - Scalable Vector Extension (SVE). This feature also enables fullfp16.

See Scalable Vector Extension for more information.
• sve2- Scalable Vector Extension version two (SVE2). This feature also

enables sve. See Arm A64 Instruction Set Architecture for SVE and SVE2
instructions.

• sve2-aes - SVE2 Cryptographic Extension. This feature also enables sve2.
• sve2-bitperm - SVE2 Cryptographic Extension. This feature also enables

sve2.
• sve2-sha3 - SVE2 Cryptographic Extension. This feature also enables

sve2.
• sve2-sm4 - SVE2 Cryptographic Extension. This feature also enables sve2.

 Note

When enabling either the sve2 or sve features, to link to the SVE-enabled
version of Arm Performance Libraries, you must also include the -armpl=sve
option. For more information about the supported options for -armpl, see the -
armpl description.

Usage

armclang -march=<arg>

Examples

armclang -march=armv8-a

armclang -march=armv8-a+sve

armclang -march=armv8-a+sve2

2 Compiler options
2.4 Optimization options

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-30

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/sve
https://developer.arm.com/docs/ddi0602/latest/a64-sve-instructions-alphabetic-order

2.5 Workload compilation options
Options that affect the way C language workloads compile.

Table 2-5 Workload compilation options

Option Description

-std=<arg>

--std=<arg>

Language standard to compile for. The list of valid standards depends on the input language, but adding -std=<arg>
to a build line will generate an error message listing valid choices.

Usage

armclang -std=<arg>

armclang --std=<arg>

2 Compiler options
2.5 Workload compilation options

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-31

Non-Confidential

2.6 Development options
Options that support code development.

Table 2-6 Compiler development options

Option Description

-fcolor-diagnostics

-fno-color-
diagnostics

Use colors in diagnostics.

Usage

armclang -fcolor-diagnostics

Or

armclang -fno-color-diagnostics

-g

-g0 (default)

-gline-tables-only

-g, -g0, and -gline-tables-only control the generation of source-level debug information:
• -g enables debug generation.
• -g0 disables generation of debug and is the default setting.
• -gline-tables-only enables DWARF line information for location tracking only (not for

variable tracking).

 Note

If more than one of these options are specified on the command line, the option specified last overrides
any before it.

Usage

armclang -g

Or

armclang -g0

Or

armclang -gline-tables-only

2 Compiler options
2.6 Development options

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-32

Non-Confidential

2.7 Warning options
Options that control the behavior of warnings.

Table 2-7 Compiler warning options

Option Description

fno-math-errno Require math functions to indicate errors.

Use this flag if your source code never uses errno to check the status of math function calls. This will unlock
optimizations such as:
1. In C/C++ it allows sin() and cos() calls that take the same input to be combined into a more efficient

sincos() call.
2. In C/C++ it allows certain pow(x, y) function calls to be eliminated completely when y is a small integral

value.

-W<warning>

-Wno-<warning>

Enable or disable the specified warning.

Usage

armclang -W<warning>

-Wall Enable all warnings.

Usage

armclang -Wall

-Warm-extensions Enable warnings about the use of non-standard language features supported by Arm Compiler for Linux.

Usage

armclang -Warm-extensions

-Warm-warnings Enable warnings about deprecated features which will not be supported in newer versions of Arm Compiler for
Linux.

Usage

armclang -Warm-warnings

-w Suppress all warnings.

Usage

armclang -w

2 Compiler options
2.7 Warning options

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-33

Non-Confidential

2.8 Pre-processor options
Options that control pre-processor behavior.

Table 2-8 Compiler pre-processing options

Option Description

-D <macro>=<value> Define <macro> to <value> (or 1 if <value> is omitted).

Usage

armclang -D<macro>=<value>

-U Undefine macro <macro>.

Usage

armclang -U<macro>

2 Compiler options
2.8 Pre-processor options

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-34

Non-Confidential

2.9 Linker options
Options that control linking behavior and performance.

Table 2-9 Compiler linker options

Option Description

-Wl,<arg> Pass the comma-separated arguments in <arg> to the linker.

Usage

armclang -Wl,<arg>, <arg2>...

-Xlinker <arg> Pass <arg> to the linker.

Usage

armclang -Xlinker <arg>

2 Compiler options
2.9 Linker options

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-35

Non-Confidential

Table 2-9 Compiler linker options (continued)

Option Description

-armpl Instructs the compiler to load the optimum version of Arm Performance Libraries for your target architecture and
implementation. This option also enables optimized versions of the C mathematical functions declared in the
math.h library, tuned scalar and vector implementations of Fortran math intrinsics, and auto-vectorization of
mathematical functions (disable this using -fno-simdmath).

Supported arguments are:

• sve: Use the SVE library from <pl>.
 Note

To target SVE-enabled architectures and use the SVE library of Arm Performance Libraries library, use -
armpl=sve,<arg2>,<arg3> with -march=armv8-a+sve.

• lp64: Use 32-bit integers. (default)
• ilp64: Use 64-bit integers. Inverse of lp64.
• sequential: Use the single-threaded implementation of Arm Performance Libraries. (default)
• parallel: Use the OpenMP multi-threaded implementation of Arm Performance Libraries. Inverse of

sequential. (default if using -fopenmp)

Separate multiple arguments using a comma, for example: -armpl=<arg1>,<arg2>.

Default option behavior

By default, -armpl is not set (in other words, OFF).

Default argument behavior

If -armpl is set with no arguments, the default behavior of the option is armpl=lp64,sequential.

If the -fopenmpActions on page 2-22 option is also specified, the default behavior of armpl becomes -
armpl=lp64,parallel.

For more information on using -armpl, see the Library selection web page.

Usage

armclang code_with_math_routines.c -armpl{=<arg1>,<arg2>}

Examples

To specify a 64-bit integer, OpenMP multi-threaded implementation for an A64FX-based computer: armclang
code_with_math_routines.c -armpl=lp64,parallel -mcpu=a64fx

 Note

Specifying the A64FX target enables the compiler to use SVE instructions and to link in the SVE-enabled A64FX
library (without the requirement to specify sve as one of the arguments passed to -armpl).

To specify a 32-bit integer single-threaded implementation for a Neoverse N1-based computer: armclang
code_with_math_routines.c -armpl=lp64,sequential -mcpu=neoverse-n1

To use the serial, ilp64 ArmPL libraries that are optimized for the CPU architecture of the build computer:
armclang code_with_math_routines.c -armpl=ilp64 -mcpu=native

To use the parallel, lp64 ArmPL libraries, with portable output suitable for any Armv8-A-based computer:
armclang code_with_math_routines.c -armpl -fopenmp -mcpu=generic

To use the parallel, lp64 ArmPL SVE libraries, with output suitable for any SVE-enabled Armv8-A-based
computer: armclang code_with_math_routines.c -armpl=sve -fopenmp -march=armv8-a+sve

To use the parallel, ilp64 ArmPL libraries, optimized for a Neoverse N1-based computer: armclang
code_with_math_routines.c -armpl=parallel,ilp64 -mcpu=neoverse-n1

2 Compiler options
2.9 Linker options

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-36

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-performance-libraries/library-selection

Table 2-9 Compiler linker options (continued)

Option Description

-l<library> Search for the library named <library> when linking.

-l<library> Search for the library named <library> when linking.

Usage

armclang -l<library>

-larmflang At link-time, include this option to use the default Fortran libarmflang runtime library for both serial and parallel
(OpenMP) Fortran workloads.

 Note

• This option is set by default when linking using armflang.
• You need to explicitly include this option if you are linking with armclang instead of armflang at link-

time.
• This option only applies to link-time operations.

Usage

armclang -larmflang

See notes in description.

-larmflang-
nomp

At link-time, use this option to avoid linking against the OpenMP Fortran runtime library.
 Note

• Enabled by default when compiling and linking using armflang with the -fno-openmp option.
• You need to explicitly include this option if you are linking with armclang instead of armflang at link-

time.
• Do not use -larmflang-nomp if your code has been compiled with the -lomp or -fopenmp options.
• Use this option with care. When using this option, do not link to any OpenMP-utilizing Fortran runtime

libraries in your code.
• This option only applies to link-time operations.

Usage

armclang -larmflang-nomp

See notes in description.

2 Compiler options
2.9 Linker options

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-37

Non-Confidential

Table 2-9 Compiler linker options (continued)

Option Description

-shared

--shared

Causes library dependencies to be resolved at runtime by the loader.

This is the inverse of ‑static. If both options are given, all but the last option will be ignored.

Usage

armclang -shared

Or

armclang --shared

-static

--static

Causes library dependencies to be resolved at link-time.

This is the inverse of -shared. If both options are given, all but the last option is ignored.

Usage

armclang -static

Or

armclang --static

To link serial or parallel Fortran workloads using armclang instead of armflang, include the -
larmflang option to link with the default Fortran runtime library for serial and parallel Fortran
workloads. You also need to pass any options that are required to link using the required mathematical
routines for your code.

To statically link, in addition to passing -larmflang and the mathematical routine options, you also need
to pass:

• -static
• -lomp
• -lrt

To link serial or parallel Fortran workloads using armclang instead of armflang, without linking against
the OpenMP runtime libraries, instead pass -armflang-nomp, at link-time. For example, pass:

• -larmflang-nomp
• Any mathematical routine options, for example: -lm or -lamath.

Again, to statically link, in addition to -larmflang-nomp and the mathematical routine options, you also
need to pass:
• -static
• -lrt

 warn

• Do not link against any OpenMP-utlizing Fortran runtime libraries when using this option.
• All lockings and thread local storage will be disabled.
• Arm does not recommend using the -larmflang-nomp option for typical workloads. Use this option

with caution..

 Note

The -lompstub option (for linking against libompstub) might still be needed if you have imported
omp_lib in your Fortran code but not compiled with -fopenmp.

2 Compiler options
2.9 Linker options

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-38

Non-Confidential

Chapter 3
Coding best practice

Discusses the best practices when writing C/C++ code for Arm C/C++ Compiler.

It contains the following sections:
• 3.1 Coding best practice for auto-vectorization on page 3-40.
• 3.2 Control auto-vectorization with pragmas on page 3-41.
• 3.3 Optimizing C/C++ code with Arm SIMD (Neon™) on page 3-44.
• 3.4 Optimizing C/C++ code with SVE and SVE2 on page 3-45.
• 3.5 Prefetching with __builtin_prefetch on page 3-46.
• 3.6 Writing inline SVE assembly on page 3-48.

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-39

Non-Confidential

3.1 Coding best practice for auto-vectorization
Describes some best practices to follow to optimize your code for auto-vectorization.

To produce optimal and auto-vectorized output, structure your code to provide hints to the compiler. A
well-structured application with hints enables the compiler to detect features that it would otherwise not
be able to detect. The more features the compiler detects, the better vectorized your output code is.

Use restrict
If appropriate, Use the restrict keyword when using C/C++ code. The C99 restrict keyword (or the
non-standard C/C++ __restrict__ keyword) indicates to the compiler that a specified pointer does not
alias with any other pointers, for the lifetime of that pointer. restrict allows the compiler to vectorize
loops more aggressively because it becomes possible to prove that loop iterations are independent and
can be executed in parallel.

 Note

C code might use either the restrict or __restrict__ keywords. C++ code must use the
__restrict__ keyword.

If the restrict keywords are used incorrectly (that is, if another pointer is used to access the same
memory) then the behavior is undefined. It is possible that the results of optimized code will differ from
that of its unoptimized equivalent.

Use pragmas

The compiler supports pragmas. Use pragmas to explicitly indicate that loop iterations are independent
of each other.

For more information, see Control auto-vectorization with pragmas on page 3-41.

Use < to construct loops

Where possible, use < conditions, rather than <= or != conditions, when constructing loops. < conditions
help the compiler to prove that a loop terminates before the index variable wraps.

If signed integers are used, the compiler might be able to perform more loop optimizations because the C
standard allows for undefined behavior in signed integer overflow. However, the C standard does not
allow for undefined behavior in unsigned integers.

Use the -ffast-math option
The -ffast-math option can significantly improve the performance of generated code. However, it
breaks compliance with IEEE and ISO standards for mathematical operations.

 warn

Ensure that your algorithms are tolerant of potential inaccuracies that could be introduced by the use of
this option.

3 Coding best practice
3.1 Coding best practice for auto-vectorization

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-40

Non-Confidential

3.2 Control auto-vectorization with pragmas
Arm C/C++ Compiler supports pragmas to both encourage and suppress auto-vectorization. These
pragmas use, and extend, the pragma clang loop directives.

For more information about the pragma clang loop directives, see .
 Note

In each of the following examples, the pragma only affects the loop statement immediately following it.
If your code contains multiple nested loops, you must insert a pragma before each one to affect all the
loops in the nest.

Enable auto-vectorization with pragmas

Auto-vectorization is enabled at the optimization level -O2 or higher. When enabled, auto-vectorization
examines all loops.

If static analysis of a loop indicates that it might contain dependencies that hinder parallelism, auto-
vectorization might not be performed. If you know that these dependencies do not hinder vectorization,
use the vectorize pragma to inform the compiler.

To use the vectorize pragma, insert the following line immediately before the loop:

#pragma clang loop vectorize(assume_safety)

The pragma above indicates to the compiler that the following loop contains no data dependencies
between loop iterations that would prevent vectorization. The compiler might be able to use this
information to vectorize a loop, where it would not typically be possible.

 Note

The vectorize pragma does not guarantee auto-vectorization. There might be other reasons why auto-
vectorization is not possible or worthwhile for a particular loop.

 warn

Ensure that you only use this pragma when it is safe to do so. Using the vectorize pragma when there
are data dependencies between loop iterations might result in incorrect behavior.

For example, consider the following loop, that processes an array indices. Each element in indices
specifies the index into a larger histogram array. The referenced element in the histogram array is
incremented.

void update(int *restrict histogram, int *restrict indices, int count)
{
 for (int i = 0; i < count; i++)
 {
 histogram[indices[i]]++;
 }
}

The compiler is unable to vectorize this loop, because the same index could appear more than once in the
indices array. Therefore, a vectorized version of the algorithm would lose some of the increment
operations if two identical indices are processed in the same vector load/increment/store sequence.

However, if you know that the indices array only ever contains unique elements, then it is useful to be
able to force the compiler to vectorize this loop. This is accomplished by placing the vectorize pragma
before the loop:

void update_unique(int *restrict histogram, int *restrict indices, int count)
{
 #pragma clang loop vectorize(assume_safety)
 for (int i = 0; i < count; i++)

3 Coding best practice
3.2 Control auto-vectorization with pragmas

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-41

Non-Confidential

 {
 histogram[indices[i]]++;
 }
}

Suppress auto-vectorization with pragmas

If auto-vectorization is not required for a specific loop, you can disable it or restrict it to only use Arm
SIMD (Neon™) instructions.

To suppress auto-vectorization on a specific loop, add #pragma clang loop vectorize(disable)
immediately before the loop.

In this example, a loop that would be trivially vectorized by the compiler is ignored:

void combine_arrays(int *restrict a, int *restrict b, int count)
{
 #pragma clang loop vectorize(disable)
 for (int i = 0; i < count; i++)
 {
 a[i] = b[i] + 1;
 }
}

You can also suppress SVE instructions while allowing Arm Neon instructions by adding a
vectorize_style hint:

vectorize_style(fixed_width)

Prefer fixed-width vectorization, resulting in Arm Neon instructions. For a loop with
vectorize_style(fixed_width), the compiler prefers to generate Arm Neon instructions,
though SVE instructions might still be used with a fixed-width predicate (such as gather loads or
scatter stores).

vectorize_style(scaled_width) (default)

Prefer scaled-width vectorization, resulting in SVE instructions. For a loop with
vectorize_style(scaled_width), the compiler prefers SVE instructions but can choose to
generate Arm Neon instructions or not vectorize at all.

For example:

void combine_arrays(int *restrict a, int *restrict b, int count)
{
 #pragma clang loop vectorize(enable) vectorize_style(fixed_width)
 for (int i = 0; i < count; i++)
 {
 a[i] = b[i] + 1;
 }
}

Unrolling and interleaving with pragmas

To better use processor resources, duplicate loops to reduce the loop iteration count and increase the
Instruction-Level Parallelism (ILP). For scalar loops, the method is called unrolling. For vectorizable
loops, it is interleaving that is performed.

Unrolling

Unrolling a scalar loop, for example:

for (int i = 0; i < 64; i++) {
 data[i] = input[i] * other[i];
}

by a factor of two, gives:

for (int i = 0; i < 32; i +=2) {
 data[i] = input[i] * other[i];
 data[i+1] = input[i+1] * other[i+1];
}

3 Coding best practice
3.2 Control auto-vectorization with pragmas

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-42

Non-Confidential

For the example above, the unrolling factor (UF) is two. To unroll to the internal limit, the unroll
pragma is inserted before the loop:

#pragma clang loop unroll(enable)

To unroll to a user-defined UF, instead insert:

#pragma clang loop unroll_count(_value_)

Interleaving

To interleave, an Interleaving Factor (IF) is used instead of a UF. To accurately generate interleaved
code, the loop vectorizer models the cost on the register pressure and the generated code size. When a
loop is vectorized, the interleaved code can be more optimal than unrolled code.

Like the UF, the IF can be the internal limit or a user-defined integer. To interleave to the internal limit,
the interleave pragma is inserted before the loop:

#pragma clang loop interleave(enable)

To interleave to a user-defined IF, instead insert:

#pragma clang loop interleave_count(_value_)

 Note

Interleaving performed on a scalar loop does not unroll the loop correctly.

3 Coding best practice
3.2 Control auto-vectorization with pragmas

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-43

Non-Confidential

3.3 Optimizing C/C++ code with Arm SIMD (Neon™)
Describes how to optimize with Advanced SIMD (Neon) using Arm C/C++ Compiler.

The Arm SIMD (or Advanced SIMD) architecture, its associated implementations, and supporting
software, are commonly referred to as Neon technology. There are SIMD instruction sets for both
AArch32 (equivalent to the Armv7 instructions) and for AArch64. Both can be used to accelerate
repetitive operations on the large data sets commonly encountered with High Performance Computing
(HPC) applications.

Arm SIMD instructions perform “Packed SIMD” processing; the SIMD instructions pack multiple lanes
of data into large registers, then perform the same operation across all data lanes.

For example, consider the following SIMD instruction:

ADD V0.2D, V1.2D, V2.2D

The instruction specifies that an addition (ADD) operation is performed on two 64-bit data lanes (2D). D
specifies the width of the data lane (doubleword, or 64 bits) and 2 specifies that two lanes are used (that
is the full 128-bit register). Each lane in V1 is added to the corresponding lane in V2 and the result is
stored in V0. Each lane is added separately. There are no carries between the lanes.

Coding with SIMD
To take advantage of SIMD instructions in your code:
• Let the compiler auto-vectorize your code for you.

Arm C/C++ Compiler automatically vectorizes your code at higher optimization levels (-O2 and
higher). The compiler identifies appropriate vectorization opportunities in your code and uses SIMD
instructions where appropriate.

At optimization level -O1 you can use the -fvectorize option to enable auto-vectorization.

At the lowest optimization level -O0 auto-vectorization is never performed, even if you specify -
fvectorize.

• Use intrinsics directly in your C code.

Intrinsics are C or C++ pseudo-function calls that the compiler replaces with the appropriate SIMD
instructions. Intrinsics let you use the data types and operations available in the SIMD
implementation, while allowing the compiler to handle instruction scheduling and register allocation.
The available intrinsics are defined in the language extensions document.

• Write SIMD assembly code.

Although it is technically possible to optimize SIMD assembly by hand, it can be difficult because
the pipeline and memory access timings have complex inter-dependencies. Instead of hand-writing
assembly, Arm recommends the use of intrinsics.

3 Coding best practice
3.3 Optimizing C/C++ code with Arm SIMD (Neon™)

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-44

Non-Confidential

https://developer.arm.com/docs/ihi0053/latest

3.4 Optimizing C/C++ code with SVE and SVE2
The Scalable Vector Extension (SVE and SVE2) to the Armv8-A architecture (AArch64) can be used to
accelerate repetitive operations on the large data sets commonly encountered with High Performance
Computing (HPC) applications.

SVE (and SVE2) instructions pack multiple lanes of data into large registers then perform the same
operation across all data lanes, with predication to control which lanes are active. For example, consider
the following SVE instruction:

ADD Z0.D, P0/M, Z1.D, Z2.D

The instruction specifies that an addition (ADD) operation is performed on a SVE vector register, split
into 64-bit data lanes. D specifies the width of the data lane (doubleword, or 64 bits). The width of each
vector register is some multiple of 128 bits, between 128 and 2048, but is not specified by the
architecture. The predicate register P0 specifies which lanes must be active. Each active lane in Z1 is
added to the corresponding lane in Z2 and the result is stored in Z0. Each lane is added separately. There
are no carries between the lanes. The merge flag /M on the predicate specifies that inactive lanes retain
their prior value.

Optimize your code for SVE
To optimize your code using SVE, you can either:
• Let the compiler auto-vectorize your code for you.

Arm Compiler for Linux automatically vectorizes your code at optimization levels -O2 and higher.
The compiler identifies appropriate vectorization opportunities in your code and uses SVE
instructions where appropriate.

At optimization level -O1 you can use the -fvectorize option to enable auto-vectorization.

At the lowest optimization level, -O0, auto-vectorization is never performed, even if you specify -
fvectorize. See Optimization options on page 2-25 for more information on setting these options.

• Write SVE assembly code.

For more information, see Writing inline SVE assembly on page 3-48.

For more information about porting and optimizing existing applications to Arm SVE, see the
Porting and Tuning HPC Applications for Arm SVE guide.

Related information
Scalable Vector Extension (SVE, and SVE2) information
Explore the Scalable Vector Extension (SVE)
Arm A64 Instruction Set Architecture
White Paper: A sneak peek into SVE and VLA programming
White Paper: Arm Scalable Vector Extension and application to Machine Learning
Arm C Language Extensions (ACLE) for SVE
DWARF for the ARM 64-bit Architecture (AArch64) with SVE support
Procedure Call Standard for the ARM 64-bit Architecture (AArch64) with SVE support
Arm Architecture Reference Manual Supplement - The Scalable Vector Extension (SVE), for ARMv8-A

3 Coding best practice
3.4 Optimizing C/C++ code with SVE and SVE2

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-45

Non-Confidential

https://developer.arm.com/docs/101726/latest
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator/resources/tutorials/sve
https://developer.arm.com/docs/101726/latest/explore-the-scalable-vector-extension-sve
https://developer.arm.com/docs/ddi0602/latest/a64-sve-instructions-alphabetic-order
https://developer.arm.com//hpc/resources/hpc-white-papers/a-sneak-peek-into-sve-and-vla-programming
https://developer.arm.com/hpc/resources/hpc-white-papers/arm-scalable-vector-extensions-and-application-to-machine-learning
https://developer.arm.com/docs/100987/latest/arm-c-language-extensions-for-sve
https://developer.arm.com//docs/100985/latest/dwarf-for-the-arm-64-bit-architecture-aarch64-with-sve-support
https://developer.arm.com//docs/100986/latest/procedure-call-standard-for-the-arm-64-bit-architecture-aarch64-with-sve-support
https://developer.arm.com//docs/ddi0584/latest/arm-architecture-reference-manual-supplement-the-scalable-vector-extension-sve-for-armv8-a

3.5 Prefetching with __builtin_prefetch
This topic describes how you can enable prefetching in your C/C++ code with Arm Compiler for Linux.

To reduce the cache-miss latency of memory accesses, you can prefetch data. When you know the
addresses of data in memory that are going to be accessed soon, you can inform the target, through
instructions in the code, to fetch the data and place them in the cache before they are required for
processing.

Note that the prefetching instruction is a hint, which means that your target processor might, or might
not, actually prefetch the data.

__builtin_prefetch syntax

In Arm Compiler for Linux the target can be instructed to prefetch data using the __builtin_prefetch
C/C++ function, which takes the syntax:

__builtin_prefetch (const void *addr[, rw[, locality]])

where:

addr (required)

Represents the address of the memory.

rw (optional)
A compile-time constant which can take the values:
• 0 (default): prepare the prefetch for a read
• 1 : prepare the prefetch for a write to the memory

locality (optional)
A compile-time constant integer which can take the following temporal locality (L) values:
• 0: None, the data can be removed from the cache after the access.
• 1: Low, L3 cache, leave the data in the L3 cache level after the access.
• 2: Moderate, L2 cache, leave the data in L2 and L3 cache levels after the access.
• 3 (default): High, L1 cache, leave the data in the L1, L2, and L3 cache levels after the

access.

 Note

addr must be expressed correctly or Arm C/C++ Compiler will generate an error.

 Note

Take care when inserting prefetch instructions into the inner loops of code because these instructions will
inhibit vectorization. Depending on the context in the code, it might be possible to include prefetch
instructions outside of the inner loop of your source code, and not inhibit vectorization.

Example

To illustrate the different forms the __builtin_prefetch function can take, see the example functions in
the following code:

void streaming_load(void *foo) { // Streaming load
 __builtin_prefetch(foo + 1024, // Address can be offset
 0, // Read
 0 // No locality - streaming access
);
}
void l3_load(void *foo) {
 __builtin_prefetch(foo, 0, 1); // L3 load prefetch (locality)
}
void l2_load(void *foo) {
 __builtin_prefetch(foo, 0, 2); // L2 load prefetch (locality)

3 Coding best practice
3.5 Prefetching with __builtin_prefetch

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-46

Non-Confidential

}
void l1_load(void *foo) {
 __builtin_prefetch(foo, 0, 3); // L1 load prefetch (locality)
}
void streaming_store(void *foo) {
 __builtin_prefetch(foo + 1024, 1, 0); // Streaming store
}
void l3_store(void *foo) {
 __builtin_prefetch(foo, 1, 1); // L3 store prefetch (locality)
}
void l2_store(void *foo) {
 __builtin_prefetch(foo, 1, 2); // L2 store prefetch (locality)
}
void l1_store(void *foo) {
 __builtin_prefetch(foo, 1, 3); // L1 store prefetch (locality)
}

Which, when compiled using the -c -march=armv8-a -O3 compiler options, generates the following
assembly:

streaming_load:
 prfm PLDL1STRM, [x0, 1024] ; Streaming load
 ret
l3_load:
 prfm PLDL3KEEP, [x0] ; L3 load prefetch (locality)
 ret
l2_load:
 prfm PLDL2KEEP, [x0] ; L2 load prefetch (locality)
 ret
l1_load:
 prfm PLDL1KEEP, [x0] ; L1 load prefetch (locality)
 ret
streaming_store:
 prfm PSTL1STRM, [x0, 1024] ; Streaming store
 ret
l3_store:
 prfm PSTL3KEEP, [x0] ; L3 store prefetch (locality)
 ret
l2_store:
 prfm PSTL2KEEP, [x0] ; L2 store prefetch (locality)
 ret
l1_store:
 prfm PSTL1KEEP, [x0] ; L1 store prefetch (locality)
 ret

Related information
Explore the Scalable Vector Extension (SVE)
SVE Vector Length Agnostic programming

3 Coding best practice
3.5 Prefetching with __builtin_prefetch

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-47

Non-Confidential

https://developer.arm.com/docs/101726/latest/explore-the-scalable-vector-extension-sve
https://developer.arm.com/docs/101726/latest/sve-vector-length-agnostic-programming

3.6 Writing inline SVE assembly
Inline assembly (or inline asm) provides a mechanism for inserting hand-written assembly instructions
into C and C++ code. This lets you vectorize parts of a function by hand without having to write the
entire function in assembly code.

 Note

This information assumes that you are familiar with details of the SVE Architecture, including vector-
length agnostic registers, predication, and WHILE operations.

Using inline assembly instead of writing a separate .s file has the following advantages:
• Inline assembly code shifts the burden of handling the procedure call standard (PCS) from the

programmer to the compiler. This includes allocating the stack frame and preserving all necessary
callee-saved registers.

• Inline assembly code gives the compiler more information about what the assembly code does.
• The compiler can inline the function that contains the assembly code into its callers.
• Inline assembly code can take immediate operands that depend on C-level constructs, such as the size

of a structure or the byte offset of a particular structure field.

Structure of an inline assembly statement

The compiler supports the GNU form of inline assembly. It does not support the Microsoft form of inline
assembly.

More detailed documentation of the asm construct is available at the GCC website.

Inline assembly statements have the following form:

asm ("instructions" : outputs : inputs : side-effects);

Where:

instructions

is a text string that contains AArch64 assembly instructions, with at least one newline sequence
n between consecutive instructions.

outputs

is a comma-separated list of outputs from the assembly instructions.

inputs

is a comma-separated list of inputs to the assembly instructions.

side-effects

is a comma-separated list of effects that the assembly instructions have, besides reading from
inputs and writing to outputs.

Also, the asm keyword might need to be followed by the volatile keyword.

Outputs

Each entry in outputs has one of the following forms:

[name] "=®ister-class" (destination)
[name] "=register-class" (destination)

The first form has the register class preceded by =&. This specifies that the assembly instructions might
read from one of the inputs (specified in the asm statement’s inputs section) after writing to the output.

3 Coding best practice
3.6 Writing inline SVE assembly

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-48

Non-Confidential

The second form has the register class preceded by =. This specifies that the assembly instructions never
read from inputs in this way. Using the second form is an optimization. It allows the compiler to allocate
the same register to the output as it allocates to one of the inputs.

Both forms specify that the assembly instructions produce an output that the compiler can store in the C
object specified by destination. This can be any scalar value that is valid for the left-hand side of a C
assignment. The register-class field specifies the type of register that the assembly instructions require. It
can be one of:

r

if the register for this output when used within the assembly instructions is a general-purpose
register (x0-x30)

w

if the register for this output when used within the assembly instructions is a SIMD and floating-
point register (v0-v31).

It is not possible for outputs to contain an SVE vector or predicate value. All uses of SVE registers must
be internal to the inline assembly block.

It is the responsibility of the compiler to allocate a suitable output register and to copy that register into
the destination after the asm statement is executed. The assembly instructions within the instructions
section of the asm statement can use one of the following forms to refer to the output value:

%[name]

to refer to an r-class output as xN or a w-class output as vN

%w[name]

to refer to an r-class output as wN

%s[name]

to refer to a w-class output as sN

%d[name]

to refer to a w-class output as dN

In all cases N represents the number of the register that the compiler has allocated to the output. The use
of these forms means that it is not necessary for the programmer to anticipate precisely which register is
selected by the compiler. The following example creates a function that returns the value 10. It shows
how the programmer is able to use the %w[res] form to describe the movement of a constant into the
output register without knowing which register is used.

int f()
{
int result;
asm("movz %w[res], #10" : [res] "=r" (result));
return result;
}

In optimized output the compiler picks the return register (0) for res, resulting in the following assembly
code:

movz w0, #10
ret

Inputs

Within an asm statement, each entry in the inputs section has the form:

[name] "operand-type" (value)

3 Coding best practice
3.6 Writing inline SVE assembly

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-49

Non-Confidential

This construct specifies that the asm statement uses the scalar C expression value as an input, referred to
within the assembly instructions as name. The operand-type field specifies how the input value is
handled within the assembly instructions. It can be one of the following:

r

if the input is to be placed in a general-purpose register (x0-x30)

w

if the input is to be placed in a SIMD and floating-point register (v0-v31).

[output-name]

if the input is to be placed in the same register as output output-name. In this case the [name]
part of the input specification is redundant and can be omitted. The assembly instructions can
use the forms described in the Outputs section above (%[name], %w[name], %s [name],
%d[name]) to refer to both the input and the output.

i

if the input is an integer constant and is used as an immediate operand. The assembly
instructions use %[name] in place of immediate operand #N, where N is the numerical value of
value.

In the first two cases, it is the responsibility of the compiler to allocate a suitable register and to ensure
that it contains value on entry to the assembly instructions. The assembly instructions must refer to these
registers using the same syntax as for the outputs (%[name], %w[name], %s [name], %d[name]).

It is not possible for inputs to contain an SVE vector or predicate value. All uses of SVE registers must
be internal to instructions.

This example shows an asm directive with the same effect as the previous example, except that an i-form
input is used to specify the constant to be assigned to the result.

int f()
{
int result;
asm("movz %w[res], %[value]" : [res] "=r" (result) : [value] "i" (10));
return result;
}

Side effects

Many asm statements have effects other than reading from inputs and writing to outputs. This is true of
asm statements that implement vectorized loops, since most such loops read from or write to memory.
The side-effects section of an asm statement tells the compiler what these additional effects are. Each
entry must be one of the following:

"memory"

if the asm statement reads from or writes to memory. This is necessary even if inputs contain
pointers to the affected memory.

"cc"

if the asm statement modifies the condition-code flags.

"xN"

if the asm statement modifies general-purpose register N.

"vN"

if the asm statement modifies SIMD and floating-point register N.

3 Coding best practice
3.6 Writing inline SVE assembly

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-50

Non-Confidential

"zN"

if the asm statement modifies SVE vector register N. Since SVE vector registers extend the
SIMD and floating-point registers, this is equivalent to writing “vN”.

"pN"

if the asm statement modifies SVE predicate register N.

Use of volatile

Sometimes an asm statement might have dependencies and side effects that cannot be captured by the
asm statement syntax. For example, if there are three separate asm statements (not three lines within a
single asm statement), that do the following:

• The first sets the floating-point rounding mode.
• The second executes on the assumption that the rounding mode set by the first statement is in effect.
• The third statement restores the original floating-point rounding mode.

It is important that these statements are executed in order, but the asm statement syntax provides no direct
method for representing the dependency between them. Instead, each statement must add the keyword
volatile after asm. This prevents the compiler from removing the asm statement as dead code, even if
the asm statement does not modify memory and if its results appear to be unused. The compiler always
executes asm volatile statements in their original order.

For example:

asm volatile ("msr fpcr, %[flags]" :: [flags] "r" (new_fpcr_value));

 Note

An asm volatile statement must still have a valid side effects list. For example, an asm volatile
statement that modifies memory must still include "memory" in the side-effects section.

Labels

The compiler might output a given asm statement more than once, either as a result of optimizing the
function that contains the asm statement or as a result of inlining that function into some of its callers.
Therefore, asm statements must not define named labels like .loop, since if the asm statement is written
more than once, the output contains more than one definition of label .loop. Instead, the assembler
provides a concept of relative labels. Each relative label is simply a number and is defined in the same
way as a normal label. For example, relative label 1 is defined by:

1:

The assembly code can contain many definitions of the same relative label. Code that refers to a relative
label must add the letter f to refer the next definition (f is for forward) or the letter b (backward) to refer
to the previous definition. A typical assembly loop with a pre-loop test would therefore have the
following structure. This allows the compiler output to contain many copies of this code without creating
any ambiguity.

 ...pre-loop test...
 b.none 2f
1:
 ...loop...
 b.any 1b
2:

Example

The following example shows a simple function that performs a fused multiply-add operation (x=a·b+c)
across four passed-in arrays of a size that is specified by n:

void f(double *restrict x, double *restrict a, double *restrict b, double *restrict c,
 unsigned long n)

3 Coding best practice
3.6 Writing inline SVE assembly

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-51

Non-Confidential

{
for (unsigned long i = 0; i < n; ++i)
{
 x[i] = fma(a[i], b[i], c[i]);
}
}

An asm statement that exploited SVE instructions to achieve equivalent behavior might look like the
following:

void f(double *x, double *a, double *b, double *c, unsigned long n)
{
unsigned long i;
asm ("whilelo p0.d, %[i], %[n] \n\
1: \n\
 ld1d z0.d, p0/z, [%[a], %[i], lsl #3] \n\
 ld1d z1.d, p0/z, [%[b], %[i], lsl #3] \n\
 ld1d z2.d, p0/z, [%[c], %[i], lsl #3] \n\
 fmla z2.d, p0/m, z0.d, z1.d \n\
 st1d z2.d, p0, [%[x], %[i], lsl #3] \n\
 uqincd %[i] \n\
 whilelo p0.d, %[i], %[n] \n\
 b.any 1b"
: [i] "=&r" (i)
: "[i]" (0),
 [x] "r" (x),
 [a] "r" (a),
 [b] "r" (b),
 [c] "r" (c),
 [n] "r" (n)
: "memory", "cc", "p0", "z0", "z1", "z2");
}

 Note

Keeping the restrict qualifiers would be valid but would have no effect.

The input specifier "[i]" (0) indicates that the assembly statements take an input 0 in the same register
as output [i]. In other words, the initial value of [i] must be zero. The use of =& in the specification of
[i] indicates that [i] cannot be allocated to the same register as [x], [a], [b], [c], or [n] (because the
assembly instructions use those inputs after writing to [i]).

In this example, the C variable i is not used after the asm statement. The asm statement reserves a
register that it can use as scratch space. Including "memory" in the side effects list indicates that the asm
statement reads from and writes to memory. Therefore, the compiler must keep the asm statement even
though i is not used.

3 Coding best practice
3.6 Writing inline SVE assembly

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-52

Non-Confidential

Chapter 4
Standards support

The support status of Arm C/C++ Compiler with the OpenMP standards.

It contains the following sections:
• 4.1 OpenMP 4.0 on page 4-54.
• 4.2 OpenMP 4.5 on page 4-55.

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-53

Non-Confidential

4.1 OpenMP 4.0
Describes which OpenMP 4.0 features are supported by Arm C/C++ Compiler.

Table 4-1 Supported OpenMP 4.0 features

Open MP 4.0 Feature Support

C/C++ Array Sections Yes

Thread affinity policies Yes

“simd” construct Yes

“declare simd” construct No

Device constructs No

Task dependencies Yes

“taskgroup” construct Yes

User defined reductions Yes

Atomic capture swap Yes

Atomic seq_cst Yes

Cancellation Yes

OMP_DISPLAY_ENV Yes

4 Standards support
4.1 OpenMP 4.0

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-54

Non-Confidential

4.2 OpenMP 4.5
Describes which OpenMP 4.5 features are supported by Arm C/C++ Compiler.

Table 4-2 Supported OpenMP 4.5 features

Open MP 4.5 Feature Support

doacross loop nests with ordered Yes

“linear” clause on loop construct Yes

“simdlen” clause on simd construct Yes

Task priorities Yes

“taskloop” construct Yes

Extensions to device support No

“if” clause for combined constructs Yes

“hint” clause for critical construct Yes

“source” and “sink” dependence types Yes

C++ Reference types in data sharing attribute clauses Yes

Reductions on C/C++ array sections Yes

“ref”, “val”, “uval” modifiers for linear clause. Yes

Thread affinity query functions Yes

Hints for lock API Yes

4 Standards support
4.2 OpenMP 4.5

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-55

Non-Confidential

Chapter 5
Arm Optimization Report

Arm Optimization Report builds on the llvm-opt-report tool available in open source LLVM. Arm
Optimization Report shows you the optimization decisions that the compiler is making, in-line with your
source code, enabling you to better understand the unrolling, vectorization, and interleaving behavior.

Unrolling

Example questions: Was a loop unrolled? If so, what was the unroll factor?

Unrolling is when a scalar loop is transformed to perform multiple iterations at once, but still as scalar
instructions.

The unroll factor is the number of iterations of the original loop that are performed at once. Sometimes,
loops with known small iteration counts are completely unrolled, such that no loop structure remains. In
completely unrolled cases, the unroll factor is the total scalar iteration count.

Vectorization

Example questions: Was a loop vectorized? If so, what was the vectorization factor?

Vectorization is when multiple iterations of a scalar loop are replaced by a single iteration of vector
instructions.

The vectorization factor is the number of lanes in the vector unit, and corresponds to the number of scalar
iterations that are performed by each vector instruction.

 Note

The true vectorization factor is unknown at compile time for SVE, because SVE supports scalable
vectors.

When SVE is enabled, Arm Optimization Report reports a vectorization factor that corresponds to a 128-
bit SVE implementation.

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-56

Non-Confidential

If you are working with an SVE implementation with a larger vector width (for example, 256 bits or 512
bits), the number of scalar iterations that are performed by each vector instruction increases
proportionally.

SVE scaling factor = <true SVE vector width> / 128

Loops vectorized using scalable vectors are annotated with VS<F,I>. For more information, see arm-opt-
report reference on page 5-60.

Interleaving

Example question: What was the interleave count?

Interleaving is a combination of vectorization followed by unrolling; multiple streams of vector
instructions are performed in each iteration of the loop.

The combination of vectorization and unrolling information tells you how many iterations of the original
scalar loop are performed in each iteration of the generated code.

Number of scalar iterations = <unroll factor> x <vectorization factor> x <interleave count>
x <SVE scaling factor>

Reference

The annotations Arm Optimization Report uses to annotate the source code, and the options that can be
passed to arm-opt-report are described in the Arm Optimization Report reference.

It contains the following sections:
• 5.1 How to use Arm Optimization Report on page 5-58.
• 5.2 arm-opt-report reference on page 5-60.

5 Arm Optimization Report

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-57

Non-Confidential

5.1 How to use Arm Optimization Report
This topic describes how to use Arm Optimization Report.

Prerequisites

Download and install Arm Compiler for Linux version 20.0+. For more information, see Download Arm
Compiler for Linux and Installation.

Procedure
1. To generate a machine-readable .opt.yaml report, at compile time add -fsave-optimization-

record to your command line.

An <filename>.opt.yaml report is generated by Arm Compiler, where <filename> is the name of
the binary.

2. To inspect the <filename>.opt.yaml report, as augmented source code, use arm-opt-report:

arm-opt-report <filename>.opt.yaml

Annotated source code appears in the terminal.

Example 5-1 Example

1. Create an example file called example.c containing the following code:

void bar();
void foo() { bar(); }
void Test(int *res, int *c, int *d, int *p, int n) {
int i;
#pragma clang loop vectorize(assume_safety)
for (i = 0; i < 1600; i++) {
 res[i] = (p[i] == 0) ? res[i] : res[i] + d[i];
}
for (i = 0; i < 16; i++) {
 res[i] = (p[i] == 0) ? res[i] : res[i] + d[i];
}
foo();
foo(); bar(); foo();
}

2. Compile the file, for example to a shared object example.o:

armclang -O3 -fsave-optimization-record -c -o example.o example.c

This generates a file, example.opt.yaml, in the same directory as the built object.

For compilations that create multiple object files, there is a report for each build object.
 Note

This example compiles to a shared object, however, you could also compile to a static object or to a
binary.

3. View the example.opt.yaml file using arm-opt-report:

arm-opt-report example.opt.yaml

Annotated source code is displayed in the terminal:

< example.c
 1 | void bar();
 2 | void foo() { bar(); }
 3 |
 4 | void Test(int *res, int *c, int *d, int *p, int n) {
 5 | int i;
 6 |
 7 | #pragma clang loop vectorize(assume_safety)
 8 V4,1 | for (i = 0; i < 1600; i++) {
 9 | res[i] = (p[i] == 0) ? res[i] : res[i] + d[i];

5 Arm Optimization Report
5.1 How to use Arm Optimization Report

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-58

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio/download
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio/download
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio/installation

 10 | }
 11 |
 12 U16 | for (i = 0; i < 16; i++) {
 13 | res[i] = (p[i] == 0) ? res[i] : res[i] + d[i];
 14 | }
 15 |
 16 I | foo();
 17 |
 18 | foo(); bar(); foo();
 I | ^
 I | ^
 19 | }

The example Arm Optimization Report output can be interpreted as follows:
• The for loop on line 8:

— Is vectorized
— Has a vectorization factor of four (there are four 32-bit integer lanes)
— Has an interleave factor of one (so there is no interleaving)

• The for loop on line 12 wis unrolled 16 times. This means it is completely unrolled, with no
remaining loops.

• All three instances of foo() are inlined

Related references
5.2 arm-opt-report reference on page 5-60
Related information
Arm Compiler for Linux and Arm Allinea Studio
Take a trial
Help and tutorials

5 Arm Optimization Report
5.1 How to use Arm Optimization Report

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-59

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio
https://pages.arm.com/Hpc-trial-request
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/documentation

5.2 arm-opt-report reference
Arm Optimization Report (arm-opt-report) is a tool to generate an optimization report from YAML
optimization record files.

arm-opt-report uses a YAML optimization record, as produced by the -fsave-optimization-record
option of LLVM, to output annotated source code that shows the various optimization decisions taken by
the compiler.

 Note

-fsave-optimization-record is not set by default by Arm Compiler for Linux.

Possible annotations are:

Annotation Description

I A function was inlined.

U<N> A loop was unrolled <N> times.

V<F, I> A loop has been vectorized.

Each vector iteration that is performed has the equivalent of F*I scalar iterations.

Vectorization Factor, F, is the number of scalar elements that are processed in parallel.

Interleave count, I, is the number of times the vector loop was unrolled.

VS<F,I> A loop has been vectorized using scalable vectors.

Each vector iteration performed has the equivalent of N*F*I scalar iterations, where N is the number of vector granules,
which can vary according to the machine the program is run on.

For example, LLVM assumes a granule size of 128 bits when targeting SVE.

F (Vectorization Factor) and I (Interleave count) are as described for V<F,I>.

Syntax

arm-opt-report [options] <input>

Options

Generic Options:

--help

Displays the available options (use --help-hidden for more).

--help-list

Displays a list of available options (--help-list-hidden for more).

--version

Displays the version of this program.

llvm-opt-report options:

--hide-detrimental-vectorization-info

Hides remarks about vectorization being forced despite the cost-model indicating that it is not
beneficial.

5 Arm Optimization Report
5.2 arm-opt-report reference

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-60

Non-Confidential

--hide-inline-hints

Hides suggestions to inline function calls which are preventing vectorization.

--hide-lib-call-remark

Hides remarks about the calls to library functions that are preventing vectorization.

--hide-vectorization-cost-info

Hides remarks about the cost of loops that are not beneficial for vectorization.

--no-demangle

Does not demangle function names.

-o=<string>

Specifies an output file to write the report to.

-r=<string>

Specifies the root for relative input paths.

-s

Omits vectorization factors and associated information.

--strip-comments

Removes comments for brevity

--strip-comments=<arg>
Removes comments for brevity. Arguments are:
• none: Do not strip comments.
• c: Strip C-style comments.
• c++: Strip C++-style comments.
• fortran: Strip Fortran-style comments.

Outputs

Annotated source code.

Related tasks
5.1 How to use Arm Optimization Report on page 5-58

5 Arm Optimization Report
5.2 arm-opt-report reference

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-61

Non-Confidential

Chapter 6
Optimization remarks

Optimization remarks provide you with information about the choices that are made by the compiler. You
can use them to see which code has been inlined or they can help you understand why a loop has not
been vectorized.

By default, Arm C/C++ Compiler prints compilation information to stderr. Optimization remarks prints
this optimization information to the terminal, or you can choose to pipe them to an output file.

To enable optimization remarks, choose from following Rpass options:

• -Rpass=<regex>: Information about what the compiler has optimized.
• -Rpass-analysis=<regex>: Information about what the compiler has analyzed.
• -Rpass-missed=<regex>: Information about what the compiler failed to optimize.

For each option, replace <regex> with an expression for the type of remarks you wish to view.

Recommended <regexp> queries are:

• -Rpass=\(loop-vectorize\|inline\|loop-unroll)
• -Rpass-missed=\(loop-vectorize\|inline\|loop-unroll)
• -Rpass-analysis=\(loop-vectorize\|inline\|loop-unroll)

where loop-vectorize filters remarks regarding vectorized loops, inline for remarks regarding
inlining, and loop-unroll for remarks about unrolled loops.

 Note

To search for all remarks, use the expression .*. Use this expression with caution; depending on the size
of code, and the level of optimization, a lot of information can print.

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

6-62

Non-Confidential

To compile with optimization remarks enabled and pipe the information to an output file, pass the
selected above options and debug information to armclang, and use > <output_filename>.txt. For
example:

armclang -O<level> -Rpass[-<option>]=<remark> <filename>.c 2> <output_filename>.txt

It contains the following section:
• 6.1 Enable Optimization remarks on page 6-64.

6 Optimization remarks

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

6-63

Non-Confidential

6.1 Enable Optimization remarks
Describes how to enable optimization remarks and pipe the information they provide to an output file.

Procedure
1. Compile your code. Use the -Rpass=<regex>, -Rpass-missed=<regex>, or Rpass-

analysis=<regex> options:

For example, for an input file example.c:

armclang -O3 -Rpass=.* -Rpass-analysis=.* example.c

Result:

example.c:8:18: remark: hoisting zext [-Rpass=licm]
 for (int i=0;i<K; i++)
 ^
example.c:8:4: remark: vectorized loop (vectorization width: 4, interleaved count: 2) [-
Rpass=loop-vectorize]
 for (int i=0;i<K; i++)
 ^
example.c:7:1: remark: 28 instructions in function [-Rpass-analysis=asm-printer]
 void foo(int K) {
 ^

2. Pipe the loop vectorization optimization remarks to a file. For example, to pipe to a file called
vecreport.txt, use:

armclang -O3 -Rpass=loop-vectorize -Rpass-analysis=loop-vectorize
-Rpass-missed=loop-vectorize example.c 2> vecreport.txt

Alternatively, to enable optimization remarks and pipe the output information to a file, use:

armclang -O<level> -Rpass[-<option>]=<remark> <example>.c 2> <output_filename>.txt

A vecreport.txt file is output with the optimization remarks in it.

Related information
Arm C/C++ Compiler

6 Optimization remarks
6.1 Enable Optimization remarks

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

6-64

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-cpp-compiler

Chapter 7
Vector routines support

Describes how to vectorize loops in C and C++ workloads that invoke the math routines from libm, how
to interface user vector functions with serial code, and how to expose the vector variants that are
available to the compiler with the attribute acfl_simd_variant.

It contains the following sections:
• 7.1 Vector math routines in Arm® C/C++ Compiler on page 7-66.
• 7.2 Support level for declare simd on page 7-68.
• 7.3 Attribute acfl_simd_variant on page 7-73.

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

7-65

Non-Confidential

7.1 Vector math routines in Arm® C/C++ Compiler
Arm C/C++ Compiler supports the vectorization of loops within C and C++ workloads that invoke the
math routines from libm.

Any C loop-using functions from <math.h> (or from <cmath> for C++) can be vectorized by invoking
the compiler with the option -fsimdmath, together with the options that are needed to activate the auto-
vectorizer (optimization level -O2 and above).

Examples

The following examples show loops with math function calls that can be vectorized by invoking the
compiler with:

armclang -fsimdmath -c -O2 source.c``

C example with loop invoking sin:

/* C code example: source.c */
#include <math.h>
void do_something(double * a, double * b, unsigned N) {
 for (unsigned i = 0; i < N; ++i) {
 /* some computation */
 a[i] = sin(b[i]);
 /* some computation */
 }
}

C++ example with loop invoking std::pow:

// C++ code example: source.cpp
#include <cmath>
void do_something(float * a, float * b, unsigned N) {
 for (unsigned i = 0; i < N; ++i) {
 // some computation
 a[i] = std::pow(a[i], b[i]);
 // some computation
 }
}

How it works

Arm C/C++ Compiler contains libamath, a library with SIMD implementations of the routines that are
provided by libm, along with a math.h file that declares the availability of these SIMD functions to the
compiler.

During loop vectorization, the compiler is aware of these vectorized routines, and can replace a call to a
scalar function (for example, a double-precision call to sin) with a call to a libamath function that takes
a vector of double-precision arguments, and returns a result vector of doubles.

The libamath library is built using the fastest implementations of scalar and vector functions from the
following Open Source projects:
• Arm Optimized Routines
• SLEEF
• PGMath

Limitations

This is an experimental feature which can sometimes lead to performance degradations. Arm encourages
users to test the applicability of this feature on their non-production code, and will address any possible
inefficiency in a future release.

Contact Arm Support

Related information
SLEEF
Arm Optimized Routines

7 Vector routines support
7.1 Vector math routines in Arm® C/C++ Compiler

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

7-66

Non-Confidential

https://github.com/ARM-software/optimized-routines
https://sleef.org/
https://github.com/flang-compiler/flang/tree/master/runtime/libpgmath
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/get-support
https://sleef.org/
https://github.com/ARM-software/optimized-routines

PGMath
Vector function ABI specification for AArch64

7 Vector routines support
7.1 Vector math routines in Arm® C/C++ Compiler

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

7-67

Non-Confidential

https://github.com/flang-compiler/flang/tree/master/runtime/libpgmath
https://developer.arm.com/docs/101129/latest

7.2 Support level for declare simd
declare simd cannot be used to auto-vectorize scalar function declarations using Arm Compiler for
Linux.

To vectorize loops that invoke serial functions, armclang can interface with user-provided vector
functions.

To expose the vector functions available to the compiler, use the #pragma omp declare variant
directive on the scalar function declaration or definition.

The following example shows the basic functionality for Advanced SIMD vectorization:

// declarations or definitions visible at compile time in myvecroutines.h
#include <arm_neon.h>
int32x2_t neon_foo(float64x2_t);
#pragma omp declare variant(neon_foo) \
 match(construct = {simd(simdlen(2), notinbranch)}, \
 device = {isa("simd")})
int foo(double);
// loop in the user code, in user_code.c
#include "path/to/myvecroutines.h"
void do_something(int * a, double * b, unsigned N) {
 for (unsigned i = 0; i < N; ++i)
 a[i] = foo(b[i]);
}

To compile the code, invoke armclang with either the -fopenmp or the -fopenmp-simd options
(automatic loop vectorization is activated starting from optimization level -O2):

$> armclang -fopenmp -O2 -c user_code.c -o objfile.o

You must link the output object file against an object file or library that provides the symbol neon_foo.

The following example shows the basic functionality for SVE vectorization:

// declarations or definitions visible at compile time in myvecroutines.h
#include <arm_sve.h>
svint32_t sve_foo(svfloat64_t, svbool_t);
#pragma omp declare variant(sve_foo) \
 match(construct = {simd(notinbranch)}, \
 device = {isa("sve")}, \
 implementation = {extension("scalable")})
int foo(double);
// loop in the user code, in user_code.c
#include "path/to/myvecroutines.h"
void do_something(int * a, double * b, unsigned N) {
 for (unsigned i = 0; i < N; ++i)
 a[i] = foo(b[i]);
}

To compile the code, invoke armclang with either the -fopenmp or the -fopenmp-simd options
(automatic loop vectorization is activated starting from optimization level -O2):

armclang -march=armv8-a+sve -fopenmp -O2 -c user_code.c -o objfile.o

You must link the output object file against an object file or library that provides the symbol sve_foo.

The vector function that is associated to the scalar function must have a signature that obeys to the rules
of the chapter on USER DEFINED VECTOR FUNCTIONS of the Vector Function Application Binary
Interface (VFABI) Specification for AArch64. The rules are summarized in section Mapping rules.

declare variant support

For a complete description of ‘declare variant’, refer to the OpenMP 5.0 specifications.

7 Vector routines support
7.2 Support level for declare simd

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

7-68

Non-Confidential

https://developer.arm.com/docs/101129/latest
https://developer.arm.com/docs/101129/latest
https://www.openmp.org/specifications/

The current level of support covers the following features:

• OpenMP 5.0 declare variant, for the simd trait of the construct trait set.
 Note

There is no support for the following clauses in the simd trait of the construct set:
— uniform
— aligned

The linear clause in the simd trait is only supported for pointers with a linear step of 1. There is no
support for linear modifiers.

For VFABI specifications, there is support for the following features:
• simdlen(N) is supported when targeting Advanced SIMD vectorization. Its value must be a power of

2 so that the WDS(f) x N is either 8 or 16.

f is the name of the scalar function the directive applies to. For a definition of WDS(f), refer to the
VFABI.

 Note

To ensure the vector w function obeys the AAVPCS defined in the VFABI, you must explicitly mark
the function with __attribute__((aarch64_vector_pcs)).

• To allow scalable vectorization when targeting SVE, you must omit the simdlen clause, and you
must specify the implementation trait extension extension("scalable").

• The supported scalar function signature in C and C++ are in the forms:

1. void (Ty1, Ty2,..., TyN)
2. Ty1 (Ty2, Ty3,..., TyN)

where Ty#n are:
1. Any of the integral type values of size 1, 2, 4, or 8 (in bytes), signed and unsigned.
2. Floating-point type values of half, single or double-precision.
3. Pointers to any of the previous types.

There is no support for variadic functions or C++ templates.

Mapping rules

Common mapping rules

1. Each parameter and the return value of the scalar function, maps to a correspondent parameter and
return value in the vector signature, in the same order.

2. A parameter that is marked with linear is left unchanged in the vector signature.
3. The void return type is left unchanged in the vector signature.

Mapping rules for Advanced SIMD

1. Each parameter type Ty#n maps to the correspondent Neon ACLE type <Ty#n>x<N>_t, where N is the
value that is specified in the simdlen(N) clause. Values of N that do not correspond to NEON ACLE
types are unsupported.

2. If you specify inbranch, an extra mask parameter is added as the last parameter of the vector
signature. The type of the parameter is the NEON ACLE type uint<BITS>x<N>_t, where:
a. N is the value that is specified in the simdlen(N) clause.
b. BITS is the size (in bits) of the Narrowest Data Size (NDS) associated to the scalar function, as

defined in the VFABI.
c. To select active or inactive lanes, set all bits to 1 (active) or 0 (inactive) in the corresponding

uint<BITS>_t integer in the mask vector.

7 Vector routines support
7.2 Support level for declare simd

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

7-69

Non-Confidential

Mapping rules for SVE
1. Each parameter type Ty#n is mapped to the correspondent SVE ACLE type sv<Ty#n>_t.
2. An extra mask parameter of type svbool_t is always added to the signature of the vector function,

whether inbranch or notinbranch is used. Active and inactive lanes of the mask are set as described
in the section SVE Masking of the VFABI:

“The logical lane subdivision of the predicate corresponds to the lane subdivision of the vector data
type generated for the Widest Data Type (WDS), with one bit in the predicate lane for each byte of
the data lane. Active logical lanes of the predicate have the least significant bit set to 1, and the rest
set to zero. The bits of the inactive logical lanes of the predicate are set to zero.”

For example, in the function svfloat64_t F(svfloat32_t vx, svbool_t), the WDS is 8, therefore
the lane subdivision of the mask is 8-bit. Active lanes are set by the bit sequence 00000001, inactive
lanes are set with 00000000.

Examples
The following examples show you how to vectorize with the custom user vector function. The examples
use:
• -O2 to enable the minimal level of optimizations to allow the loop auto-vectorization process.
• -fopenmp to enable the parsing of the OpenMP directives.

 Note

• The same functionality for declare variant can also be achieved with -fopenmp-simd.
• -mllvm -force-vector-interleave=1 simplifies the output and can be omitted for regular

compiler invocations.

The code in these examples has been produced by Arm Compiler for Linux 20.0.

For both Advanced SIMD and SVE, the linear clause can improve the vectorization of functions
accessing memory through contiguous pointers. For example, in the function double sincos(double,
double *, double *), the memory pointed to by the pointer parameters is contiguous across loop
iterations. To improve the vectorization of this function, use the linear clause:

#include <arm_sve.h>
void CustomSinCos(svfloat64_t, double *, double *);
#pragma omp declare variant(CustomSinCos) \
 match(construct = {simd(notinbranch, linear(sinp), linear(cosp))}, \
 device = {isa("sve")}, \
 implementation = {extension("scalable")})
double sincos(double in, double *sinp, double *cosp);
void f(double *in, double *sin, double *cos, unsigned N) {
 for (unsigned i = 0; i < N; ++i)
 sincos(in[i], &sin[i], &cos[i]);
}

Examples: Advanced SIMD

Simple:

// filename: example01.c
#include <arm_neon.h>
__attribute__((aarch64_vector_pcs)) float64x2_t user_vector_foo(float64x2_t a);
#pragma omp declare variant(user_vector_foo) \
 match(construct = {simd(simdlen(2), notinbranch)}, \
 device = {isa("simd")})
double foo(double);
void do_something(double * restrict a, double * b, unsigned N) {
 for (unsigned i = 0; i < N; ++i)
 a[i] = foo(b[i]);
}

To produce a vector loop that invokes user_vector_foo, compile the example code with armclang -
fopenmp -O2 -c -S -o - example01.c -mllvm -force-vector-interleave=1:

//...
.LBB0_4: // =>This Inner Loop Header: Depth=1

7 Vector routines support
7.2 Support level for declare simd

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

7-70

Non-Confidential

 ldr q0, [x25], #16
 bl user_vector_foo
 subs x23, x23, #2 // =2
 str q0, [x24], #16
 b.ne .LBB0_4

With linear:

// filename: example02.c
#include <arm_neon.h>
__attribute__((aarch64_vector_pcs)) float64x2_t user_vector_foo_linear(float64x2_t, float *);
 #pragma omp declare variant(user_vector_foo_linear) \
 match(construct = {simd(simdlen(2), notinbranch, linear(b))}, \
 device = {isa("simd")})
double foo_linear(double a, float* b);
void do_something_linear(double * restrict a, double * b, float * x, unsigned N) {
 for (unsigned i = 0; i < N; ++i)
 a[i] = foo_linear(b[i], &x[i]);
}

To produce a vector loop that invokes user_vector_foo_linear, compile this code with armclang -
fopenmp -O2 -c -S -o - example02.c -mllvm -force-vector-interleave=1:

.LBB0_4: // =>This Inner Loop Header: Depth=1
 str q1, [sp, #32] // 16-byte Folded Spill
 ldr q0, [x26], #16
 ldp q2, q1, [sp, #16] // 32-byte Folded Reload
 shl v1.2d, v1.2d, #2
 add v1.2d, v2.2d, v1.2d
 fmov x0, d1
 bl user_vector_foo_linear
 ldr q1, [sp, #32] // 16-byte Folded Reload
 str q0, [x25], #16
 ldr q0, [sp] // 16-byte Folded Reload
 subs x24, x24, #2 // =2
 add v1.2d, v1.2d, v0.2d
 b.ne .LBB0_4

Examples: SVE

Simple:

// filename: example03.c
#include <arm_sve.h>
svfloat16_t user_vector_foo_sve(svfloat64_t a, svbool_t mask);
#pragma omp declare variant(user_vector_foo_sve) \
 match(construct = {simd(notinbranch)}, \
 device = {isa("sve")}, \
 implementation = {extension("scalable")})
float16_t foo(double);
void do_something(float16_t * restrict a, double * b, unsigned N) {
 for (unsigned i = 0; i < N; ++i)
 a[i] = foo(b[i]);
}

Compile this code with armclang example03.c -march=armv8-a+sve -O2 -o - -S -fopenmp:

.LBB0_2: // %vector.body
 // =>This Inner Loop Header: Depth=1
 ld1d { z0.d }, p4/z, [x19, x21, lsl #3]
 mov p0.b, p4.b
 bl user_vector_foo_sve
 st1h { z0.d }, p4, [x20, x21, lsl #1]
 incd x21
 whilelo p4.d, x21, x22
 b.mi .LBB0_2

With linear:

// filename: example04.c
#include <arm_sve.h>
svfloat64_t user_vector_foo_linear_sve(svfloat64_t, float *, svbool_t);
#pragma omp declare variant(user_vector_foo_linear_sve) \
 match(construct = {simd(notinbranch, linear(b))}, \
 device = {isa("sve")}, \
 implementation = {extension("scalable")})
double foo_linear(double a, float* b);
void do_something_linear(double * restrict a, double * b, float * x, unsigned N) {
 for (unsigned i = 0; i < N; ++i)

7 Vector routines support
7.2 Support level for declare simd

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

7-71

Non-Confidential

 a[i] = foo_linear(b[i], &x[i]);
}

To generate an invocation to the user vector function user_vector_foo_linear in the vector loop,
compile the code with armclang example04.c -march=armv8-a+sve -O2 -o - -S -fopenmp:

.LBB0_2: // %vector.body
 // =>This Inner Loop Header: Depth=1
 ld1d { z0.d }, p4/z, [x20, x22, lsl #3]
 add x0, x19, x22, lsl #2
 mov p0.b, p4.b
 bl user_vector_foo_linear_sve
 st1d { z0.d }, p4, [x21, x22, lsl #3]
 incd x22
 whilelo p4.d, x22, x23
 b.mi .LBB0_2

7 Vector routines support
7.2 Support level for declare simd

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

7-72

Non-Confidential

7.3 Attribute acfl_simd_variant
armclang can interface with user-provided vector functions to vectorize loops that invoke serial
functions. In the following test we refer to such vector functions as vector variants.

To expose the vector variants that are available to the compiler, use the attribute acfl_simd_variant on
the declarations of the scalar functions.

#include <arm_sve.h>
// Declaration of the vector function.
svint32_t sve_foo(svfloat64_t, svbool_t);
// Declaration of the scalar function.
int foo(double) __attribute__((acfl_simd_variant(sve_foo, 0, "mask", "sve")));
// Loop invoking scalar `foo`.
void do_something(int * a, double * b, unsigned N) {
 for (unsigned i = 0; i < N; ++i) {
 a[i] = foo(b[i]);
 }
}

The compiler vectorizes the loop in the example when targeting SVE with at least -O2 optimization level,
invoking sve_foo in the body of the vector loop:

$> armclang -march=armv8a+sve -O2 -c user_code.c -o objfile.o

The attribute can target the following cases:
1. Advanced SIMD (Neon) vector variants.
2. Vector Length Agnostic (VLA) SVE vector variants.

The compiler checks that the signature of the vector variant conforms to the Vector Function ABI
specification for AArch64 (VFABI), available at https://developer.arm.com/architectures/system-
architectures/software-standards/abi.

Attribute syntax

The attribute operates with the syntax:

 acfl_simd_variant(<variant-func-id>, <simdlen>, <mask>, <isa>{, <linears>})
 <variant-func-id>:= The name of a function variant that is a
 base language identifier.
<simdlen> := <non negative number> (0 is for "scalable")
 <mask> := "mask" | "nomask"
 <isa> := "simd" | "sve"
<linears> := <parameter_position>{,<parameter_position>, ...}
<parameter_position> := Position of the linear parameter (starts with 1).

Level of support

The supported scalar function signature in C and C++ (template functions excluded) are in the forms:

• void (Ty1, Ty2,..., TyN)
• Ty1 (Ty2, Ty3,..., TyN)

where Ty#n are:
• Any of the integral type values of size 1, 2, 4, or 8 (in bytes), signed and unsigned.
• Floating-point type values of half, single, or double precision.
• Pointers to any of the previous types, which must be listed in the <linears> section of the attribute.

Note that this feature is limited to only enable vectorization of functions whose pointer parameters
are operating on contiguous memory that is traversed during the loop execution. In particular,
vectorization of calls that operates on loop-invariant pointers is disabled.

Common mapping rules
1. Each parameter and the return value of the scalar function, maps to a correspondent parameter and

return value in the signature of the vector variant, in the same order.
2. A parameter that is listed in the <linears> of the attribute is left unchanged in the vector signature.
3. The void return type is left unchanged in the vector signature.

7 Vector routines support
7.3 Attribute acfl_simd_variant

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

7-73

Non-Confidential

https://developer.arm.com/architectures/system-architectures/software-standards/abi
https://developer.arm.com/architectures/system-architectures/software-standards/abi

Mapping rules for Advanced SIMD

1. Each parameter type Ty#n maps to the correspondent Neon ACLE type <Ty#n>x<N>_t, where N is the
value specified in the <simdlen> parameter of the attribute. Values of N that do not correspond to
Neon ACLE types are unsupported.

2. If you specify <mask>="mask" an additional mask parameter is added as the last parameter of the
vector signature. The type of the parameter is the Neon ACLE type uint<BITS>x<N>_t, where:
• N is the value specified in the <simdlen> field of the attribute.
• BITS is the size (in bits) of the Narrowest Data Size (NDS) associated to the scalar function, as

defined in the VFABI.
• To select active or inactive lanes, set all bits to 1 (active) or 0 (inactive) in the corresponding

uint<BITS>_t integer in the mask vector.

For example, consider the vector variant float64x2_t F(float32x2_t vx, uint43x2_t mask),
associated to the scalar function double f(float f) with <simdlen>=2, <mask>="mask", and
<isa>="simd". The NDS of f is 4, therefore the lane subdivision of the mask parameter of the vector
variant is 32-bit. Active lanes are set by the byte sequence 0xffffffff, inactive lanes are set with
0x00000000. Conversely, consider the vector variant int16x4_t G(float32x4_t vx, uint16x4_t),
associated to the scalar function int16_t g(float). The NDS of g is 2, therefore the lane subdivision of
the mask is 16-bit. Active lanes are set by the byte sequence 0xffff, inactive lanes are set with 0x0000.

Mapping rules for SVE
1. Each parameter type Ty#n is mapped to the correspondent SVE ACLE type sv<Ty#n>_t.
2. An extra mask parameter of type svbool_t is always added as the last parameter in the signature of

the vector variant, whether <mask> is set to "mask" or "nomask". Active and inactive lanes of the
mask are set as described in the section SVE Masking of the VFABI:

“The logical lane subdivision of the predicate corresponds to the lane subdivision of the vector data
type generated for the Widest Data Type (WDS), with one bit in the predicate lane for each byte of the
data lane. Active logical lanes of the predicate have the least significant bit set to 1, and the rest set to
zero. The bits of the inactive logical lanes of the predicate are set to zero.”

For example, consider the vector variant svfloat64_t f_vector(svfloat32_t vx, svbool_t),
associated to the scalar function double f_scalar(float f) with <simdlen>=0, <mask>="mask", and
<isa>="sve". The WDS of f_scalar is 8, therefore the lane subdivision of the mask parameter of the
vector variant is 8-bit. Active lanes are set by the bit sequence 00000001, inactive lanes are set with
00000000. Conversely, consider the vector variant svfloat16_t g_vector(svfloat32_t vx,
svbool_t), associated to the scalar function float16_t g_scalar(float), with <simdlen>=0,
<mask>="mask", and <isa>="sve". The WDS of g_scalar is 4, therefore the lane subdivision of the
mask is 2-bit. Active lanes are set by the bit sequence 01, inactive lanes are set with 00.

Examples

The following examples show you how to vectorize with the custom user vector function. The examples
use -O2 to enable the minimal level of optimizations to allow the loop auto-vectorization process.

Note that the use of -mllvm -force-vector-interleave=1 simplifies the output and can be omitted for
regular compiler invocations.

The code in these examples has been produced by Arm Compiler for Linux 20.1.

For both Advanced SIMD and SVE, the <linears> lits of parameters of the attribute can improve the
vectorization of functions accessing memory through contiguous pointers (check Level of support for a
list of limitation of this feature). For example, in the function double sincos(double, double *,
double *), the memory pointed to by the pointer parameters is contiguous across loop iterations. To
improve the vectorization of this function, the position of the pointers in the scalar definition (in
positions 2 and 3 in the signature) must be passed to the attribute as follows:

#include <arm_sve.h>
void CustomSinCos(svfloat64_t, double *, double *, svbool_t);
void sincos(double in, double *, double *) \
 __attribute__((acfl_simd_variant(CustomSinCos, 0, "mask", "sve", 2, 3)));

7 Vector routines support
7.3 Attribute acfl_simd_variant

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

7-74

Non-Confidential

void f(double *in, double *sin, double *cos, unsigned N) {
 for (unsigned i = 0; i < N; ++i)
 sincos(in[i], &sin[i], &cos[i]);
}

Examples: Advanced SIMD

The following two examples demonstrate using the acfl_simd_variant attribute, without and with
passing pointer parameters in the <linears> list of the attribute, in Advanced SIMD code.

Note that the attribute aarch64_vector_pcs (see VFABI) needs to be manually specified to the
definition of the Neon vector variants to enable better calling conventions for vector functions.

Simple

// filename: example01.c
#include <arm_neon.h>
__attribute__((aarch64_vector_pcs)) float64x2_t user_vector_foo(float64x2_t a);
double foo(double) __attribute__((acfl_simd_variant(user_vector_foo, 2, "nomask", "simd")));
void do_something(double * restrict a, double * b, unsigned N) {
 for (unsigned i = 0; i < N; ++i)
 a[i] = foo(b[i]);
}

To produce a vector loop that invokes user_vector_foo, compile the example code with armclang -O2
-c -S example01.c -o - -mllvm -force-vector-interleave=1:

.LBB0_4: // %vector.body
 ldr q0, [x25], #16
 bl user_vector_foo
 subs x23, x23, #2 // =2
 str q0, [x24], #16
 b.ne .LBB0_4

With linear parameters

Refer to Level of support for the limitation of this feature.

// filename: example02.c
#include <arm_neon.h>
__attribute__((aarch64_vector_pcs)) float64x2_t user_vector_foo_linear(float64x2_t, float *);
double foo_linear(double a, float* b) \
 __attribute__((acfl_simd_variant(user_vector_foo_linear, 2, "nomask", "simd", 2)));
void do_something_linear(double * restrict a, double * b, float * x, unsigned N) {
 for (unsigned i = 0; i < N; ++i)
 a[i] = foo_linear(b[i], &x[i]);
}

To produce a vector loop that invokes user_vector_foo, compile the example code with armclang -O2
-c -S example02.c -o - -mllvm -force-vector-interleave=1:

.LBB0_4: // %vector.body
 ldr q0, [x26], #16
 shl v1.2d, v16.2d, #2
 add v1.2d, v17.2d, v1.2d
 fmov x0, d1
 bl user_vector_foo_linear
 str q0, [x25], #16
 subs x24, x24, #2 // =2
 add v16.2d, v16.2d, v18.2d
 b.ne .LBB0_4

SVE examples

The following two examples demonstrate using the acfl_simd_variant attribute, without and with
passing pointer paramters in the <linears> list of the attribute, in SVE code.

Simple

// filename: example03.c
#include <arm_sve.h>
svfloat64_t user_vector_foo_sve(svfloat64_t, svbool_t);
double foo(double) __attribute__((acfl_simd_variant(user_vector_foo_sve, 0, "nomask",
"sve")));
void do_something(double * restrict a, double * b, unsigned N) {
 for (unsigned i = 0; i < N; ++i)

7 Vector routines support
7.3 Attribute acfl_simd_variant

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

7-75

Non-Confidential

 a[i] = foo(b[i]);
}

To produce a vector loop that invokes user_vector_foo, compile the example code with armclang -
march=armv8-a+sve -O2 -c -S example03.c -o - -mllvm -force-vector-interleave=1:

.LBB0_2: // %vector.body
 ld1d { z0.d }, p4/z, [x19, x21, lsl #3]
 mov p0.b, p4.b
 bl user_vector_foo_sve
 st1d { z0.d }, p4, [x20, x21, lsl #3]
 incd x21
 whilelo p4.d, x21, x22
 b.mi .LBB0_2

With linear parameters

Refer to Level of support for the limitation of this feature.

// filename: example04.c
#include <arm_sve.h>
svfloat64_t user_vector_foo_linear_sve(svfloat64_t, float *, svbool_t);
double foo_linear(double a, float* b) \
 __attribute__((acfl_simd_variant(user_vector_foo_linear_sve, 0, "mask", "sve", 2)));
void do_something_linear(double * restrict a, double * b, float * x, unsigned N) {
 for (unsigned i = 0; i < N; ++i)
 a[i] = foo_linear(b[i], &x[i]);
}

To produce a vector loop that invokes user_vector_foo_linear _sve, compile the example code with
armclang -march=armv8-a+sve -O2 -c -S example04.c -o - -mllvm -force-vector-
interleave=1:

.LBB0_2: // %vector.body
 ld1d { z0.d }, p4/z, [x20, x22, lsl #3]
 add x0, x19, x22, lsl #2
 mov p0.b, p4.b
 bl user_vector_foo_linear_sve
 st1d { z0.d }, p4, [x21, x22, lsl #3]
 incd x22
 whilelo p4.d, x22, x23
 b.mi .LBB0_2

7 Vector routines support
7.3 Attribute acfl_simd_variant

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

7-76

Non-Confidential

Chapter 8
Troubleshoot

Describes how to diagnose problems when compiling applications using Arm Fortran Compiler.

It contains the following sections:
• 8.1 Application segfaults at -Ofast optimization level on page 8-78.
• 8.2 Compiling with the -fpic option fails when using GCC compilers on page 8-79.
• 8.3 Error messages when installing Arm® Compiler for Linux on page 8-80.

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

8-77

Non-Confidential

8.1 Application segfaults at -Ofast optimization level
A Fortran program runs correctly when the binary is built with armflang at -O3 level, but encounters a
runtime crash or segfault with -Ofast optimization level.

Condition

The runtime segfault only occurs when -Ofast is used to compile the code. The segfault disappears
when you add the -fno-stack-arrays option at the compilation with armflang.

The -fstack-arrays option is enabled by default at -Ofast

When the -fstack-arrays option is enabled, either on its own or enabled with -Ofast by default, the
compiler allocates arrays for all sizes using the local stack for local and temporary arrays. This helps to
improve performance, because it avoids slower heap operations with malloc() and free(). However,
applications that use large arrays might reach the Linux stack-size limit at runtime and produce program
segfaults. On typical Linux systems, a default stack-size limit is set, such as 8192 kilobytes. You can
adjust this default stack-size limit to a suitable value.

Solution

Use -Ofast -fno-stack-arrays instead. This disables automatic arrays on the local stack, and keeps all
other -Ofast optimizations. Alternatively, to set the stack so that it is larger than the default size, call
ulimit -s unlimited before running the program.

If you continue to experience problems, Contact Arm Support.

8 Troubleshoot
8.1 Application segfaults at -Ofast optimization level

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

8-78

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/get-support

8.2 Compiling with the -fpic option fails when using GCC compilers
Describes the difference between the -fpic and -fPIC options when compiling for Arm with GCC and
Arm Compiler for Linux.

Condition
Failure can occur at the linking stage when building Position-Independent Code (PIC) on AArch64 using
the lower-case -fpic compiler option with GCC compilers (gfortran, gcc, g++), in preference to using
the upper-case -fPIC option.

 Note

• This issue does not occur when using the -fpic option with Arm Compiler for Linux (armflang/
armclang/armclang++), and it also does not occur on x86_64 because -fpic operates the same as -
fPIC.

• PIC is code which is suitable for shared libraries.

Cause
Using the -fpic compiler option with GCC compilers on AArch64 causes the compiler to generate one
less instruction per address computation in the code, and can provide code size and performance benefits.
However, it also sets a limit of 32k for the Global Offset Table (GOT), and the build can fail at the
executable linking stage because the GOT overflows.

 Note

When building PIC with Arm Compiler for Linux on AArch64, or building PIC on x86_64, -fpic does
not set a limit for the GOT, and this issue does not occur.

Solution

Consider using the -fPIC compiler option with GCC compilers on AArch64, because it ensures that the
size of the GOT for a dynamically linked executable will be large enough to allow the entries to be
resolved by the dynamic loader.

8 Troubleshoot
8.2 Compiling with the -fpic option fails when using GCC compilers

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

8-79

Non-Confidential

8.3 Error messages when installing Arm® Compiler for Linux
If you experience a problem when installing Arm Compiler for Linux, consider the following points.

• To perform a system-wide install, ensure that you have the correct permissions. If you do not have the
correct permissions, the following errors are returned:
— Systems using RPM Package Manager (RPM):

error: can't create transaction lock on /var/lib/rpm/.rpm.lock (Permission denied)

— Debian systems using dpkg:

dpkg: error: requested operation requires superuser privilege

• If you install using the --install-to <directory> option, ensure that the system you are installing
on has the required rpm or dpkg binaries installed. If it does not, the following errors are returned:
— Systems using RPM Package Manager (RPM):

Cannot find 'rpm' on your PATH. Unable to extract .rpm files.

— Debian systems using dpkg:

Cannot find 'dpkg' on your PATH. Unable to extract .deb files.

8 Troubleshoot
8.3 Error messages when installing Arm® Compiler for Linux

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

8-80

Non-Confidential

Chapter 9
Further resources

Describes where to find more resources about Arm C/C++ Compiler (part of Arm Compiler for Linux).

It contains the following section:
• 9.1 Further resources for Arm® C/C++ Compiler on page 9-82.

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

9-81

Non-Confidential

9.1 Further resources for Arm® C/C++ Compiler
To learn more about Arm C/C++ Compiler (part of Arm Compiler for Linux) and other Arm HPC tools,
refer to the following information:

Arm Allinea Studio:

• Arm Allinea Studio
• Arm C/C++ Compiler web page
• Installation instructions
• Release history
• Supported platforms

Porting guidance

• Porting and tuning resources
• Arm GitLab Packages wiki
• Arm HPC Ecosystem

SVE and SVE2 information

• Scalable Vector Extension (SVE, and SVE2) information
• For an overview of SVE and why it is useful for HPC, see Explore the Scalable Vector Extension

(SVE).
• For a list of SVE and SVE2 instructions, see the Arm A64 Instruction Set Architecture.
• White Paper: A sneak peek into SVE and VLA programming. An overview of SVE with information

on the new registers, the new instructions, and the Vector Length Agnostic (VLA) programming
technique, with some examples.

• White Paper: Arm Scalable Vector Extension and application to Machine Learning. In this white
paper, code examples are presented that show how to vectorize some of the core computational
kernels that are part of machine learning system. These examples are written with the Vector Length
Agnostic (VLA) approach introduced by the Scalable Vector Extension (SVE).

• Arm C Language Extensions (ACLE) for SVE. The SVE ACLE defines a set of C and C++ types and
accessors for SVE vectors and predicates.

• DWARF for the ARM® 64-bit Architecture (AArch64) with SVE support. This document describes the
use of the DWARF debug table format in the Application Binary Interface (ABI) for the Arm 64-bit
architecture.

• Procedure Call Standard for the ARM 64-bit Architecture (AArch64) with SVE support. This
document describes the Procedure Call Standard use by the Application Binary Interface (ABI) for
the Arm 64-bit architecture.

• Arm Architecture Reference Manual Supplement - The Scalable Vector Extension (SVE), for ARMv8-
A. This supplement describes the Scalable Vector Extension to the Armv8-A architecture profile.

Support and sales:
• If you encounter a problem when developing your application and compiling with the Arm C/C++

Compiler, see the troubleshooting topics on the Arm Developer website.
• Contact Arm Support
• Get software

 Note

An HTML version of this guide is available in the <install_location>/<package_name>/share
directory of your product installation.

9 Further resources
9.1 Further resources for Arm® C/C++ Compiler

101458_2010_01_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

9-82

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/arm-allinea-studio
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-compiler-for-linux/arm-cpp-compiler
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio/installation
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio/release-history
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio/supported-platforms
https://developer.arm.com/products/software-development-tools/hpc/resources/porting-and-tuning
https://gitlab.com/arm-hpc/packages/wikis/categories/allPackages
https://developer.arm.com/solutions/hpc
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator/resources/tutorials/sve
https://developer.arm.com/docs/101726/latest/explore-the-scalable-vector-extension-sve
https://developer.arm.com/docs/101726/latest/explore-the-scalable-vector-extension-sve
https://developer.arm.com/docs/ddi0602/latest/a64-sve-instructions-alphabetic-order
https://developer.arm.com//hpc/resources/hpc-white-papers/a-sneak-peek-into-sve-and-vla-programming
https://developer.arm.com/hpc/resources/hpc-white-papers/arm-scalable-vector-extensions-and-application-to-machine-learning
https://developer.arm.com/docs/100987/latest/arm-c-language-extensions-for-sve
https://developer.arm.com//docs/100985/latest/dwarf-for-the-arm-64-bit-architecture-aarch64-with-sve-support
https://developer.arm.com//docs/100986/latest/procedure-call-standard-for-the-arm-64-bit-architecture-aarch64-with-sve-support
https://developer.arm.com//docs/ddi0584/latest/arm-architecture-reference-manual-supplement-the-scalable-vector-extension-sve-for-armv8-a
https://developer.arm.com//docs/ddi0584/latest/arm-architecture-reference-manual-supplement-the-scalable-vector-extension-sve-for-armv8-a
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-cpp-compiler/troubleshooting
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/get-support
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-compiler-for-linux/get-software

	Arm® C/C++ Compiler Reference Guide
	Table of Contents
	List of Tables
	Preface
	About this book
	Using this book
	Glossary
	Typographic conventions
	Feedback
	Feedback on this product
	Feedback on content

	Other information

	1 : Get started
	1.1 : Get started with Arm® C/C++ Compiler
	1.2 : Using the compiler
	1.3 : Generate annotated assembly code from C and C++ code
	1.4 : Compile C/C++ code for Arm SVE and SVE2 architectures
	1.5 : Get help

	2 : Compiler options
	2.1 : Actions
	2.2 : File options
	2.3 : Basic driver options
	2.4 : Optimization options
	2.5 : Workload compilation options
	2.6 : Development options
	2.7 : Warning options
	2.8 : Pre-processor options
	2.9 : Linker options

	3 : Coding best practice
	3.1 : Coding best practice for auto-vectorization
	3.2 : Control auto-vectorization with pragmas
	3.3 : Optimizing C/C++ code with Arm SIMD (Neon™)
	3.4 : Optimizing C/C++ code with SVE and SVE2
	3.5 : Prefetching with __builtin_prefetch
	3.6 : Writing inline SVE assembly

	4 : Standards support
	4.1 : OpenMP 4.0
	4.2 : OpenMP 4.5

	5 : Arm Optimization Report
	5.1 : How to use Arm Optimization Report
	5.2 : arm-opt-report reference

	6 : Optimization remarks
	6.1 : Enable Optimization remarks

	7 : Vector routines support
	7.1 : Vector math routines in Arm® C/C++ Compiler
	7.2 : Support level for declare simd
	7.3 : Attribute acfl_simd_variant

	8 : Troubleshoot
	8.1 : Application segfaults at -Ofast optimization level
	8.2 : Compiling with the -fpic option fails when using GCC compilers
	8.3 : Error messages when installing Arm® Compiler for Linux

	9 : Further resources
	9.1 : Further resources for Arm® C/C++ Compiler

