
Arm® CoreLink™ MMU-600 System
Memory Management Unit

Revision: r2p2

Technical Reference Manual

Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights reserved.
100310_0202_00_en

Arm® CoreLink™ MMU-600 System Memory Management Unit
Technical Reference Manual
Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

0000-00 16 December 2016 Confidential First release for r0p0 LAC

0000-01 19 May 2017 Confidential Second release for r0p0 LAC

0001-00 23 August 2017 Confidential First release for r0p1 EAC

0001-01 10 November 2017 Non-Confidential Second release for r0p1 EAC

0002-00 15 December 2017 Non-Confidential First release for r0p2 REL

0100-00 20 March 2018 Non-Confidential First release for r1p0 EAC

0200-00 29 June 2018 Non-Confidential First release for r2p0 EAC

0201-00 05 October 2018 Non-Confidential First release for r2p1 REL

0202-00 07 May 2020 Non-Confidential First release for r2p2 REL

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

 Arm® CoreLink™ MMU-600 System Memory Management Unit

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2

Non-Confidential

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/
trademarks.

Copyright © 2016–2018, 2020 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Additional Notices

Some material in this document is based on IEEE 754-2008 IEEE Standard for Binary Floating-Point Arithmetic. The IEEE
disclaims any responsibility or liability resulting from the placement and use in the described manner.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

www.arm.com

 Arm® CoreLink™ MMU-600 System Memory Management Unit

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3

Non-Confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks
https://www.arm.com

Contents
Arm® CoreLink™ MMU-600 System Memory
Management Unit Technical Reference Manual

Preface
About this book 7
Feedback .. 10

Chapter 1 Introduction
1.1 About the MMU-600 1-12
1.2 Compliance .. 1-13
1.3 Features 1-14
1.4 Interfaces 1-16
1.5 Configurable options .. 1-17
1.6 Product documentation and design flow .. 1-18
1.7 Product revisions 1-20

Chapter 2 Functional description
2.1 About the functions .. 2-22
2.2 Interfaces 2-28
2.3 Operation 2-36
2.4 Constraints and limitations of use .. 2-51

Chapter 3 Programmer's model
3.1 About the programmer's model 3-59
3.2 SMMU architectural registers 3-61

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

4

Non-Confidential

3.3 MMU-600 memory map 3-66
3.4 Register summary 3-68
3.5 TCU component and peripheral ID registers 3-71
3.6 TCU PMU component and peripheral ID registers .. 3-72
3.7 TCU microarchitectural registers 3-73
3.8 TCU RAS registers .. 3-82
3.9 TBU component and peripheral ID registers 3-87
3.10 TBU PMU component and peripheral ID registers 3-88
3.11 TBU microarchitectural registers 3-89
3.12 TBU RAS registers 3-91

Appendix A Signal descriptions
A.1 Clock and reset signals .. Appx-A-96
A.2 TCU QTW/DVM interface signals .. Appx-A-97
A.3 TCU programming interface signals Appx-A-100
A.4 TCU SYSCO interface signals Appx-A-101
A.5 TCU PMU snapshot interface signals .. Appx-A-102
A.6 TCU LPI_PD interface signals Appx-A-103
A.7 TCU LPI_CG interface signals Appx-A-104
A.8 TCU DTI interface signals .. Appx-A-105
A.9 TCU interrupt signals Appx-A-106
A.10 TCU event interface signal Appx-A-107
A.11 TCU tie-off signals Appx-A-109
A.12 TCU and TBU test and debug signals Appx-A-110
A.13 TBU TBS interface signals Appx-A-111
A.14 TBU TBM interface signals Appx-A-114
A.15 TBU PMU snapshot interface signals Appx-A-117
A.16 TBU LPI_PD interface signals Appx-A-118
A.17 TBU LPI_CG interface signals Appx-A-119
A.18 TBU DTI interface signals .. Appx-A-120
A.19 TBU interrupt signals Appx-A-121
A.20 TBU tie-off signals Appx-A-122
A.21 DTI interconnect switch signals Appx-A-124
A.22 DTI interconnect sizer signals .. Appx-A-126
A.23 DTI interconnect register slice signals Appx-A-128

Appendix B Software initialization examples
B.1 Initializing the SMMU Appx-B-131
B.2 Enabling the SMMU Appx-B-136

Appendix C Revisions
C.1 Revisions Appx-C-138

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

5

Non-Confidential

Preface

This preface introduces the Arm® CoreLink™ MMU‑600 System Memory Management Unit Technical
Reference Manual.

It contains the following:
• About this book on page 7.
• Feedback on page 10.

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

6

Non-Confidential

 About this book
This book is for the Arm® CoreLink™ MMU‑600 System Memory Management Unit.

 Product revision status

The rmpn identifier indicates the revision status of the product described in this book, for example, r1p2,
where:

rm Identifies the major revision of the product, for example, r1.
pn Identifies the minor revision or modification status of the product, for example, p2.

 Intended audience

This book is written for system designers, system integrators, and programmers who are designing or
programming a System-on-Chip (SoC) that uses the MMU‑600.

 Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
This chapter provides an overview of the MMU‑600.

Chapter 2 Functional description
This chapter describes the functionality of the MMU‑600.

Chapter 3 Programmer's model
This chapter describes the MMU‑600 programmer's model.

Appendix A Signal descriptions
This appendix describes the MMU‑600 external signals.

Appendix B Software initialization examples
This appendix provides examples of how software can initialize and enable the MMU‑600.

Appendix C Revisions
This appendix describes the technical changes between released issues of this book.

Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

 Preface
 About this book

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

7

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

Timing diagrams

The following figure explains the components used in timing diagrams. Variations, when they occur,
have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded
area at that time. The actual level is unimportant and does not affect normal operation.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus

Figure 1 Key to timing diagram conventions

Signals

The signal conventions are:

Signal level
The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW.
Asserted means:
• HIGH for active-HIGH signals.
• LOW for active-LOW signals.

Lowercase n

At the start or end of a signal name, n denotes an active-LOW signal.

 Preface
 About this book

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

8

Non-Confidential

 Additional reading

Arm publications
This book contains information that is specific to this product. See the following documents for
other relevant information:
• Arm® System Memory Management Unit Architecture Specification, SMMU architecture

version 3.0 and version 3.1 (IHI 0070).
• Arm® Architecture Reference Manual, ARMv8, for ARMv8‑A architecture profile

(DDI 0487).
• Arm® AMBA® Distributed Translation Interface (DTI) Protocol Specification (100225).
• Arm® AMBA® APB Protocol Specification (IHI 0024).
• Arm® AMBA® AXI and ACE Protocol Specification, AXI3, AXI4, AXI5, ACE and ACE5

(IHI 0022).
• Arm® AMBA® 4 AXI4‑Stream Protocol Specification (IHI 0051).
• AMBA® Low Power Interface Specification, Arm® Q‑Channel and P‑Channel Interfaces

(IHI 0068).
• Arm® CoreLink™ LPD‑500 Low Power Distributor Technical Reference Manual (100361).
• Arm® Server Base System Architecture (DEN‑0029).

The following confidential books are only available to licensees:
• Arm® CoreLink™ MMU‑600 System Memory Management Unit Configuration and

Integration Manual (100311).
• Arm® CoreLink™ ADB‑400 AMBA® Domain Bridge User Guide (DUI 0615).

 Preface
 About this book

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

9

Non-Confidential

 Feedback

 Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

 Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Arm CoreLink MMU‑600 System Memory Management Unit Technical Reference Manual.
• The number 100310_0202_00_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
 Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Preface
 Feedback

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

10

Non-Confidential

mailto:errata@arm.com

Chapter 1
Introduction

This chapter provides an overview of the MMU‑600.

It contains the following sections:
• 1.1 About the MMU‑600 on page 1-12.
• 1.2 Compliance on page 1-13.
• 1.3 Features on page 1-14.
• 1.4 Interfaces on page 1-16.
• 1.5 Configurable options on page 1-17.
• 1.6 Product documentation and design flow on page 1-18.
• 1.7 Product revisions on page 1-20.

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

1-11

Non-Confidential

1.1 About the MMU-600
The MMU‑600 is a System-level Memory Management Unit (SMMU) that translates an input address to
an output address. This translation is based on address mapping and memory attribute information that is
available from configuration tables and translation tables that are stored in memory.

The MMU‑600 implements the Arm SMMU architecture version 3.1, SMMUv3.1, as the Arm® System
Memory Management Unit Architecture Specification, SMMU architecture version 3.0 and version 3.1
defines.

An address translation from an input address to an output address is described as a stage of address
translation. The MMU‑600 can perform:

• Stage 1 translations that translate an input virtual address (VA) to an output physical address (PA) or
intermediate physical address (IPA).

• Stage 2 translations that translate an input IPA to an output PA.
• Combined stage 1 and stage 2 translations that translate an input VA to an IPA, and then translate that

IPA to an output PA. The MMU‑600 performs translation table walks for each stage of the translation.

In addition to translating an input address to an output address, a stage of address translation also defines
the memory attributes of the output address. With a two-stage translation, the stage 2 translation can
modify the attributes that the stage 1 translation defines. A stage of address translation can be disabled or
bypassed, and the MMU‑600 can define memory attributes for disabled and bypassed stages of
translation.

The MMU‑600 uses inputs from the requesting master to identify a context. Configuration tables in
memory define how the MMU‑600 is to translate each context, such as which translation tables to use.

The MMU‑600 can cache the result of a translation table lookup in a Translation Lookaside Buffer
(TLB). It can also cache configuration tables in a configuration cache.

The MMU‑600 contains the following key components:
• Translation Buffer Units (TBUs) that use a TLB to cache translation tables.
• A Translation Control Unit (TCU) that controls and manages address translations.
• Distributed Translation Interface (DTI) interconnect components that connect multiple TBUs to the

TCU.

Related concepts
2.1 About the functions on page 2-22

1 Introduction
1.1 About the MMU-600

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

1-12

Non-Confidential

1.2 Compliance
The MMU‑600 complies with, or implements, the specifications that this section describes. This
Technical Reference Manual (TRM) complements architecture reference manuals, architecture
specifications, protocol specifications, and relevant external standards. It does not duplicate information
from these sources.

1.2.1 Arm architecture

The MMU‑600 implements parts of the Armv8 Virtual Memory System Architecture (VMSA), as the
Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile defines. The SMMUv3
architecture describes the parts of VMSA that apply to the MMU‑600.

1.2.2 SMMU architecture

The MMU‑600 implements the SMMUv3.1 architecture, as the Arm® System Memory Management Unit
Architecture Specification, SMMU architecture version 3.0 and version 3.1 defines.

Related concepts
2.4.1 SMMUv3 support on page 2-51

1.2.3 AMBA Distributed Translation Interface protocol

The MMU‑600 implements the Distributed Translation Interface (DTI) protocol, as the Arm® AMBA®

Distributed Translation Interface (DTI) Protocol Specification defines.

The DTI interfaces use an AXI4‑Stream interface, as the Arm® AMBA® 4 AXI4‑Stream Protocol
Specification defines.

Related concepts
2.3.1 DTI overview on page 2-36

1.2.4 AMBA ACE5-Lite and AMBA® AXI5 protocol

The MMU‑600 complies with the AMBA ACE5‑Lite protocol.

See the Arm® AMBA® AXI and ACE Protocol Specification, AXI3, AXI4, AXI5, ACE and ACE5 for more
information.

Related references
2.4.2 AMBA support on page 2-54

1.2.5 AMBA APB protocol

The MMU‑600 complies with the AMBA APB4 protocol, as the Arm® AMBA® APB Protocol
Specification defines.

1 Introduction
1.2 Compliance

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

1-13

Non-Confidential

1.3 Features
The MMU‑600 provides the following features:

• Compliance with the SMMUv3.1 architecture:
— Support for Stage 1 translation, Stage 2 translation, and Stage 1 followed by Stage 2 translation
— Support for Armv8 AArch32 and AArch64 translation table formats
— Support for 4KB, 16KB, and 64KB granule sizes in AArch64 format
— Support for PCI Express (PCIe) integration, including Address Translation Services (ATS) and

Process Address Space IDs (PASIDs)
— Support for Page Request Interface (PRI), as SMMUv3 defines. PRI is an optional PCIe ATS

extension that enables support for unpinned memory in PCIe
— Support for ACE5‑Lite atomic transactions in the TBU
— Masters can be stalled while a processor handles translation faults, enabling software support for

demand paging.
— Configuration tables in memory can support millions of active translation contexts.
— Queues in memory perform MMU‑600 management. There is no requirement to stall a processor

when it accesses the MMU‑600.
— Support for Generic Interrupt Controller (GIC) integration, with Message Signaled Interrupts

(MSIs) supported for common interrupt types
— A Performance Monitoring Unit (PMU) in each TBU and TCU that enables MMU‑600

performance to be investigated
— Reliability, Serviceability, and Availability (RAS) features for cache corruption detection and

correction

• Support for AMBA interfaces, including:
— ACE5‑Lite TBU transaction interfaces that support cache stash transactions, deallocating

transactions, and cache maintenance
— Option to disable cache maintenance operations on a TBU, a sideband channel protection feature
— An architected AXI5 extension that communicates per‑transaction translation stream information
— An ACE5‑Lite+Distributed Virtual Memory (DVM) TCU table walk interface that enables

Armv8.2 processors to perform shared TLB invalidate operations without accessing the
MMU‑600 directly

— An ACE5 Low-Power extension that enables the TCU to subscribe to DVM TLB invalidate
requests on powerup and powerdown without reprogramming the DTI interconnect

— AMBA DTI communication between the TCU and TBUs, enabling masters to request translations
and implement TBU functionality internally

— Support for the AMBA Low‑Power Interface (LPI) Q‑Channel so that standard controllers can
control power and clock gating

— AXI5 WAKEUP signaling on all interfaces, including DTI and APB interfaces

• Support for flexible integration:
— You can place a configurable number of TBUs close to the masters being translated.
— Communication between TBU and TCU over AXI4‑Stream is supported using the supplied DTI

interconnect components, or any other AXI4‑Stream interconnect.
— DTI interconnect components support hierarchical topologies and control the tradeoff between the

number of wires and the DTI bandwidth.

• Support for high‑performance translation:
— Scalable configurable micro TLB and Main TLB (MTLB) in the TBU can reduce the number of

translation requests to the TCU.
— TBU direct indexing and MTLB partitioning enable the use of MTLB entries to be managed

outside the TBU, improving real‑time translation performance.
— Optimization enables storage of all architecturally‑defined page and block sizes, including

contiguous page and block entries, as a single entry in the TBU and TCU TLBs.
— Per‑TBU prioritization in the TCU enables high‑priority transaction streams to be translated

before low‑priority streams.

1 Introduction
1.3 Features

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

1-14

Non-Confidential

— TCU prefetch of translation tables, which can be enabled on a per‑context basis, improves
translation performance for real‑time masters that access memory linearly.

— Hit‑Under‑Miss (HUM) support in the TBU enables transactions with different AXI IDs to be
propagated out of order, when a translation is available.

— TBU detects multiple transactions that require the same translation so that only one TBU request
to the TCU is required.

— TCU detects multiple translations that require the same table in memory so that only one TCU
memory request is required.

— Multi‑level, multi‑stage walk caches in the TCU reduce translation cost by performing only part
of the table walk process on a miss.

— A configurable number of concurrent translations in the TBU and TCU promotes high translation
throughput.

1 Introduction
1.3 Features

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

1-15

Non-Confidential

1.4 Interfaces
Both the TCU and TBU support the following common interfaces:

• DTI
• Tie-offs
• Interrupts
• PMU snapshot
• Test and debug
• LPI clock gating
• LPI powerdown

The TCU also supports the following interfaces:

• Programming
• System coherency
• Queue and Table Walk (QTW)/DVM

The TBU also supports the following interfaces:
• Transaction slave (TBS)
• Transaction master (TBM)

Related concepts
2.2 Interfaces on page 2-28

1 Introduction
1.4 Interfaces

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

1-16

Non-Confidential

1.5 Configurable options
The MMU‑600 is highly configurable and provides configuration options for each of the main blocks.

For the TCU, you can configure the following:

• Size of each cache
• Data width of the QTW/DVM interface
• Number of translations that can be performed at the same time
• Number of translation requests that can be accepted from all DTI masters

For the TBU, you can configure the following:
• Write data buffer depth
• Size of each cache
• Number of transactions that can be translated at the same time
• Number of outstanding read and write transactions that the TBM interface supports
• Width of data, ID, user, StreamID, and SubstreamID signals on the TBS and TBM interfaces

 Note

Depths are specified as a discrete number of entries.

You can also configure the DTI interconnect components to meet your system requirements.

1 Introduction
1.5 Configurable options

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

1-17

Non-Confidential

1.6 Product documentation and design flow
This section describes the MMU‑600 documentation in relation to the design flow.

1.6.1 Documentation

The MMU‑600 documentation is as follows:

Technical Reference Manual
The Technical Reference Manual (TRM) describes the functionality and the effects of functional
options on the behavior of the MMU‑600. It is required at all stages of the design flow. The
choices that are made in the design flow can mean that some behaviors that are described in the
TRM are not relevant. If you are programming the MMU‑600, then contact:
• The implementer to determine:

— The build configuration of the implementation
— The integration, if any, that was performed before implementing the MMU‑600

• The integrator to determine the pin configuration of the device that you are using.

Configuration and Integration Manual
The Configuration and Integration Manual (CIM) describes:
• The available build configuration options and related issues in selecting them.
• How to integrate the MMU‑600 into an SoC. This section describes the pins that the

integrator must tie off to configure the macrocells for the required integration.
• The processes to sign off on the configuration, integration, and implementation of the design.

The CIM is a confidential book that is only available to licensees.

1.6.2 Design flow

The MMU‑600 is delivered as synthesizable RTL. Before it can be used in a product, it must go through
the following processes:

Implementation
The implementer configures and synthesizes the RTL to produce a hard macrocell. This process
might include integrating RAMs into the design.

Integration
The integrator connects the implemented design into an SoC. Integration includes connecting
the design to a memory system and peripherals.

Programming
The system programmer develops the software to configure and initialize the MMU‑600, and
tests the required application software.

Each process is separate, and can include implementation and integration choices that affect the behavior
and features of the MMU‑600.

The operation of the final device depends on:

Build configuration
The implementer chooses the options that affect how the RTL source files are pre-processed.
These options usually include or exclude logic that affects one or more of the following:
• Area
• Maximum frequency
• Features of the resulting macrocell

Configuration inputs
The integrator configures some features of the MMU‑600 by tying inputs to specific values.
These configurations affect the start-up behavior before any software configuration is made.

1 Introduction
1.6 Product documentation and design flow

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

1-18

Non-Confidential

Software configuration
The programmer configures the MMU‑600 by programming particular values into registers.
This configuration affects the behavior of the MMU‑600.

Related concepts
1.5 Configurable options on page 1-17
Related references
1.2 Compliance on page 1-13

1 Introduction
1.6 Product documentation and design flow

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

1-19

Non-Confidential

1.7 Product revisions
This section describes the differences in functionality between product revisions:

r0p0 First release.
r0p0-r0p1 The following changes apply to this release:

• Modified bits in TCU_CTRL.
• Modified bits in TBU_CTRL.

r0p1-r0p2 This release has no functional changes.
r0p2-r1p0 The following changes apply to this release:

• TCU prefetch of translation tables.
• Access protection for ACE interfaces.
• TBU direct indexing and MTLB partitioning.
• Support for Page Request Interface (PRI), as SMMUv3 defines.
• Other minor features:

— Change to the behavior of S1HWATTR.
— TBU option to support 20‑bit StreamIDs.
— Option to disable cache maintenance operations on a TBU, a sideband channel

protection feature.

r1p0-r2p0 The following changes apply to this release:
• Removal of access protection for ACE interfaces.
• ACE5‑Lite atomic transaction support in TBU.
• Support for a higher number of outstanding read and write transactions in the TBU.

r2p0-r2p1 This release has no functional changes.
r2p1-r2p2 This release has no functional changes.

1 Introduction
1.7 Product revisions

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

1-20

Non-Confidential

Chapter 2
Functional description

This chapter describes the functionality of the MMU‑600.

It contains the following sections:
• 2.1 About the functions on page 2-22.
• 2.2 Interfaces on page 2-28.
• 2.3 Operation on page 2-36.
• 2.4 Constraints and limitations of use on page 2-51.

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-21

Non-Confidential

2.1 About the functions
The major functional blocks of the MMU‑600 are the TBU, TCU, and DTI interconnect.

The following figure shows an example system that uses the MMU‑600.

I/O coherent
masters

DTI-TBUDTI-TBU

DTI

DTI-ATS

Fully coherent
masters

Slaves

Processor Processor GPU

Other
master

PCIe master with
ATS

Memory system PeripheralPeripheral

CoreLink Cache Coherent Interconnect

TBU TBU
CoreLink
MMU-600

DTI interconnect

TCU

Figure 2-1 Example system with the MMU-600

The MMU‑600 contains the following key components:

Translation Buffer Unit (TBU)
The TBU contains Translation Lookaside Buffers (TLBs) that cache translation tables. The
MMU‑600 implements at least one TBU for each connected master, and these TBUs are local to
the corresponding master.

Translation Control Unit (TCU)
The TCU controls and manages the address translations. The MMU‑600 implements a single
TCU. In MMU‑600-based systems, the AMBA DTI protocol defines the standard for
communicating with the TCU.

DTI interconnect
The DTI interconnect connects multiple TBUs to the TCU.

When an MMU‑600 TBU receives a transaction on the TBS interface, it looks for a matching translation
in its TLBs. If it has a matching translation, it uses it to translate the transaction and outputs the
transaction on the TBM interface. If it does not have a matching translation, it requests a new translation
from the TCU using the DTI interface.

When the TCU receives a DTI translation request, it uses the QTW interface to perform:

• Configuration table walks, which return configuration information for the translation context.
• Translation table walks, that return translation information that is specific to the transaction address.

The TCU contains caches that reduce the number of configuration and translation table walks that are to
be performed. Sometimes no walks are required.

When the TBU receives the translation from the TCU, it stores it in its TLBs. If the translation was
successful, the TBU uses it to translate the transaction, otherwise it terminates it.

A processor controls the TCU by:

2 Functional description
2.1 About the functions

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-22

Non-Confidential

• Writing commands to a Command queue in memory.
• Receiving events from an Event queue in memory.
• Writing to its configuration registers using the programming interface.

See the Arm® System Memory Management Unit Architecture Specification, SMMU architecture version
3.0 and version 3.1 for more information about the following:
• Translation.
• How software communicates with the TCU.

This section contains the following subsections:
• 2.1.1 Translation Buffer Unit on page 2-23.
• 2.1.2 Translation Control Unit on page 2-24.
• 2.1.3 DTI interconnect on page 2-26.

2.1.1 Translation Buffer Unit

A typical SMMUv3-based system includes multiple Translation Buffer Units (TBUs). Each TBU is
located close to the component that it provides address translation for.

A TBU intercepts transactions and provides the required translation from a Translation Lookaside Buffer
(TLB) if possible. If a TLB does not contain the required translation, the TBU requests translations from
the TCU and then caches the translation in one of the TLBs.

The following figure shows the TBU.

Q-Channel

MMU-600 TBU

ACE-Lite

DTI over AXI4-Stream

ACE-Lite

Slave interface

Write data buffer Micro TLB

PMU
Main TLB

Clock and power
control

Transaction
tracker

Translation
manager

Master interface

DTI
interface

Figure 2-2 MMU-600 TBU

The TBU consists of:

Master and slave interfaces
These interfaces manage the TBS and TBM interfaces.

Micro TLB
The TBU compares incoming transactions with translations that are cached in the micro TLB
before looking in the Main TLB (MTLB). The micro TLB is a fully associative TLB that
provides configuration cache and TLB functionality. You can use a tie‑off signal to configure the
cache replacement policy as either round‑robin or Pseudo Least Recently Used (PLRU).

2 Functional description
2.1 About the functions

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-23

Non-Confidential

Main TLB
Each TBU includes an optional Main TLB (MTLB) that caches translation table walk entries
from:
• Stage 1 translations
• Stage 2 translations
• Stage 1 combined with stage 2 translations

The MTLB is a configurable four‑way set associative cache structure that uses a random cache
replacement policy.
If multiple translation sizes are in use, a single transaction might require multiple lookups.
Lookups are pipelined to permit a sustained rate of one lookup per cycle.
TBU direct indexing enables the MMU‑600 to manage MTLB entries externally to the TBU.
Direct indexing improves the predictability of TBU performance, for bus masters that have real-
time performance requirements.

Translation manager
The translation manager manages translation requests that are in progress. Each transaction
occupies a translation slot until it is propagated downstream through the master interface. All
transactions are hazard-checked to reduce the possibility of duplicate translation requests being
sent to the TCU.
There is no restriction on the ordering of transactions with different AXI IDs. Transactions with
different AXI IDs can be propagated downstream out‑of‑order.
All transactions with a given AXI ID value must remain ordered. The translation manager
propagates such transactions when the translation is ready, provided no other transaction with
the same AXI ID is already waiting.
See the Arm® AMBA® AXI and ACE Protocol Specification, AXI3, AXI4, AXI5, ACE and ACE5
for more information about AXI transaction identifiers.

Write data buffer

The optional write data buffer enables write transactions with different AXI IDs to progress
through the TBU out‑of‑order. It reorders the data to match the downstream transaction order.

PMU
The PMU counts TBU performance-related events.

Clock and power control
The TBU has its own clock and power control, that the Q‑Channel provides.

DTI interface
The master DTI interface uses the DTI protocol, typically over AXI4‑Stream, to enable the TBU
to communicate with a slave component. For the MMU‑600, the slave component is the TCU.
Although you can implement DTI over different transport protocols, the MMU‑600 interfaces
use AXI4‑Stream.

Transaction tracker
The transaction trackers manage outstanding read and write transactions, permitting invalidation
and synchronization to take place without stalling the AXI interfaces.

Related references
2.3.3 TBU direct indexing and MTLB partitioning on page 2-43
3.2 SMMU architectural registers on page 3-61

2.1.2 Translation Control Unit

A typical SMMUv3-based system includes a single Translation Control Unit TCU. The TCU is usually
the largest block in the system, and performs several roles.

The TCU:
• Manages the memory queues
• Performs translation table walks

2 Functional description
2.1 About the functions

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-24

Non-Confidential

• Performs configuration table walks
• Implements backup caching structures
• Implements the SMMU programmers model

The following figure shows the TCU.

Q-Channel

APB

MMU-600 TCU

ACE-Lite + DVM

DTI over AXI4-Stream

RAM-based logic

Translation
request buffer

Configuration
cache

DTI
interface

Walk caches and TLB

S1L0 S1L1 S1L2 S1L3

S2L0 S2L1 S2L2 S2L3

PMU Translation
manager

Clock and power
control Queue manager

QTW/DVM
interface Register file

Figure 2-3 MMU-600 TCU

The TCU consists of:

Walk caches
The TCU includes separate four-way set-associative walk caches to store results of translation
table walks. During MMU‑600 configuration, the cache line entries are split to create separate
walk caches that are reserved for:
• Stage 1 level 0 table entries
• Stage 1 level 1 table and block entries
• Stage 1 level 2 table and block entries
• Stage 1 level 3 table entries
• Stage 2 level 0 table entries
• Stage 2 level 1 table and block entries
• Stage 2 level 2 table and block entries
• Stage 2 level 3 table entries

To enable and disable the walk cache for a particular stage and level of translation, use the
TCU_CTRL register. If an error occurs for a cache line entry, the TCU_ERRSTATUS register
identifies the affected entry.
The walk cache is useful in cases where a translation request results in a miss in other TCU
caches. A subsequent hit in the walk cache requires only a single memory access to complete
the translation table walk and fetch the required descriptor.

Configuration cache
The configuration caches are 4-way set-associative cache structures that store configuration
information. Each entry stores the Context Descriptor (CD) and Stream Table Entry (STE)
contents for a translation context.

 Note

The configuration cache does not cache the contents of intermediate configuration tables.

2 Functional description
2.1 About the functions

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-25

Non-Confidential

Translation manager
The translation manager manages translation requests that are in progress. All translation table
walks and configuration table walks are hazard-checked to reduce the possibility of multiple
transactions requesting duplicate walks.

Translation request buffer
The translation request buffer stores translation requests from TBUs when all translation
manager slots are full. The translation request buffer supports more slots than the translation
manager. When correctly configured, this buffer has enough space to store all translation
requests that TBUs can issue simultaneously. This buffer therefore prevents the DTI interface
from becoming blocked.

PMU
The PMU counts TCU performance‑related events.

Clock and power control
The TCU has its own clock and power control, that the Q‑Channel provides.

Queue manager
The queue manager manages all SMMUv3 Command queues and Event queues that are stored
in memory.

QTW/DVM interface
The Queue and Table Walk (QTW)/Distributed Virtual Memory (DVM) interface is an ACE-Lite
+DVM master interface.

Register file
The register file implements the SMMUv3 programmers model, as the Arm® System Memory
Management Unit Architecture Specification, SMMU architecture version 3.0 and version 3.1
defines.

DTI interface
The slave DTI interface uses the DTI protocol, typically over AXI4-Stream, to enable the TCU
to communicate with a master component. For the MMU‑600, the master component is either a
TBU or a PCIe master.

Related concepts
2.2 Interfaces on page 2-28
2.3.7 TCU transaction handling on page 2-45
2.3.8 TCU prefetch on page 2-46
Related references
3.2 SMMU architectural registers on page 3-61

2.1.3 DTI interconnect

The TBU and TCUs use a DTI interface to communicate. The DTI interconnect enables the DTI
interface to use the AXI4‑Stream transport protocol.

The DTI interconnect can connect any components that conform to the AXI4‑Stream protocol, as the
Arm® AMBA® Distributed Translation Interface (DTI) Protocol Specification defines.

The DTI interconnect contains internal components that are hierarchically composable, that is, they can
be connected in different ways to suit your system requirements. For example, within an MMU‑600
system, you can use the switch component to combine the DTI interfaces of multiple TBUs into a single
DTI interface. You can then connect the combined DTI interface to another DTI interconnect that is
closer to the TCU.

The DTI interconnect includes switch, sizer, and register slice components.

2 Functional description
2.1 About the functions

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-26

Non-Confidential

Switch
The switch connects multiple DTI masters, such as TBUs, to a DTI slave such as a TCU. The
switch implements the following parallel networks:
• For TBU to TCU traffic, a network that connects multiple AXI4‑Stream slave interfaces to a

single AXI4‑Stream master interface
• For TCU to TBU traffic, a network that connects a single AXI4‑Stream slave interface to

multiple AXI4‑Stream master interfaces

 Note

The switch does not store any data, and therefore does not require a Q‑Channel clock‑gating
interface.

Sizer
The sizer connects channels that have different data widths, enabling different tradeoffs of
bandwidth to area. The sizer supports conversion between any of the supported AXI4‑Stream
data widths:
• 1 byte
• 4 bytes
• 10 bytes
• 20 bytes

The sizer includes a Q‑Channel interface to provide clock‑gating control.

Register slice
Use the register slice to improve timing. The register slice includes a Q‑Channel interface to
provide clock‑gating control.
The MMU‑600 DTI interconnect components do not include a component to connect different
clock and power domains. You can connect DTI interfaces in different clock and power domains
by using the Bidirectional AXI4-Stream (BAS) configuration of the ADB-400 AMBA Domain
Bridge.

Related concepts
2.3 Operation on page 2-36

2 Functional description
2.1 About the functions

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-27

Non-Confidential

2.2 Interfaces
The MMU‑600 includes interfaces for each of the TCU, TBU, and DTI interconnect components.

The DTI interconnect consists of switch, sizer, and register slice components that you can connect
separately, and these components therefore have their own interfaces.

The PMU snapshot interface is common to both TCU and TBU.

This section contains the following subsections:
• 2.2.1 TCU interfaces on page 2-28.
• 2.2.2 TBU interfaces on page 2-30.
• 2.2.3 DTI interconnect interfaces on page 2-32.

2.2.1 TCU interfaces

The MMU‑600 TCU includes several master and slave interfaces.

The following figure shows the TCU interfaces.

APB4

PROG

MMU-600 TCU

Clock and reset

DTI

ACE-Lite+DVM

Q-Channel

Q-ChannelLPI_CG

LPI_PD

QTW/DVMSYSCO

Coherency
connection
signaling

Figure 2-4 TCU interfaces

TCU Queue and Table Walk/Distributed Virtual Memory interface

The Queue and Table Walk/Distributed Virtual Memory (QTW/DVM) interface is an ACE-Lite+DVM
master interface.

The QTW/DVM interface issues the following transaction types:
• ReadNoSnoop
• WriteNoSnoop
• ReadOnce
• WriteUnique
• DVM Complete

The QTW/DVM interface uses the write address transaction ID signal awid_qtw, and the read address
transaction ID signal, arid_qtw. The value of awid_qtw is always 0, and the value of arid_qtw depends
on the transaction type. The following table shows the possible values of arid_qtw.

Table 2-1 Possible arid_qtw values

Transaction type arid_qtw[n:1] arid_qtw[0]

Translation table walk Indicates the slot that is requesting the translation table walk 1

Command queue read All bits = 0 0

DVM Complete All bits = 1 0

2 Functional description
2.2 Interfaces

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-28

Non-Confidential

To support 16-bit Virtual Machine IDentifiers (VMIDs), the interface provides DVMv8.1 support.

The interface does not issue cache maintenance operations or exclusive accesses.

Related concepts
2.3.6 Distributed Virtual Memory (DVM) messages on page 2-44
2.3.9 Error responses on page 2-47
Related references
AXI5 support on page 2-56
A.2 TCU QTW/DVM interface signals on page Appx-A-97

TCU PROG interface

The PROG interface is an AMBA APB4 slave interface. It enables software to program the MMU‑600
internal registers and read the Performance Monitoring Unit (PMU) registers and the Debug registers.

This interface runs synchronously with the other TCU interfaces.

The applicable address width for this interface depends on the value of TCUCFG_NUM_TBU:

• When TCUCFG_NUM_TBU = 14, the address width is 21 bits
• When TCUCFG_NUM_TBU = 62, the address width is 23 bits

Transactions are Read-As-Zero, Writes Ignored (RAZ/WI) when any of the following apply:
• An unimplemented register is accessed
• PSTRB[3:0] is not 0b1111 for write transfers
• PPROT[1] is not set to 0 for Secure register accesses

See the Arm® AMBA® APB Protocol Specification for more information.

Related references
A.3 TCU programming interface signals on page Appx-A-100

TCU LPI_PD interface

This Q‑Channel slave interface manages LPI powerdown for the TCU.

See the AMBA® Low Power Interface Specification, Arm® Q‑Channel and P‑Channel Interfaces for more
information.

Related references
A.6 TCU LPI_PD interface signals on page Appx-A-103

TCU LPI_CG interface

This Q‑Channel slave interface enables LPI clock‑gating for the TCU.

See the AMBA® Low Power Interface Specification, Arm® Q‑Channel and P‑Channel Interfaces for more
information.

Related references
A.7 TCU LPI_CG interface signals on page Appx-A-104

TCU DTI interface

The DTI interface manages communication between the TBUs and the TCU, using the DTI protocol.
The DTI protocol can be conveyed over different transport layer mediums, including AXI4-Stream.

The TCU includes a slave DTI interface and each TBU includes a master DTI interface. To permit
bidirectional communication, each DTI interface includes one AXI4-Stream master interface and one
AXI4-Stream slave interface.

See the Arm® AMBA® Distributed Translation Interface (DTI) Protocol Specification and the Arm®

AMBA® 4 AXI4-Stream Protocol Specification for more information.

2 Functional description
2.2 Interfaces

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-29

Non-Confidential

Related concepts
2.3.1 DTI overview on page 2-36
Related references
A.8 TCU DTI interface signals on page Appx-A-105

TCU interrupt interfaces

This interface provides global, per-context, and performance interrupts.

Related references
A.9 TCU interrupt signals on page Appx-A-106

TCU SYSCO interface

The MMU‑600 provides a hardware system coherency interface. This master interface permits the TCU
to remove itself from a coherency domain in response to an LPI request.

The SYSCO interface uses the syscoreq and syscoack handshake signals to enter or exit a coherency
domain.

If the sup_btm signal is tied LOW, the syscoreq signal is always driven LOW and syscoack is ignored.

Related references
A.4 TCU SYSCO interface signals on page Appx-A-101

TCU tie-off signals

The TCU tie-off signals enable you to initialize various operating parameters on exit from reset state.

At reset, the value of each tie-off signal controls the respective bits in the SMMU_IDR0 Register.

Related references
A.11 TCU tie-off signals on page Appx-A-109

2.2.2 TBU interfaces

Each MMU‑600 TBU includes several master and slave interfaces.

The following figure shows the TBU interfaces:

MMU-600 TBU

ACE-Lite

TBM

TBS

Clock and reset

DTI

ACE-Lite

Q-Channel

Q-ChannelLPI_CG

LPI_PD

Figure 2-5 TBU interfaces

2 Functional description
2.2 Interfaces

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-30

Non-Confidential

TBU TBS interface

The transaction slave (TBS) interface is an ACE5-Lite interface on which the TBU receives incoming
untranslated memory accesses.

This interface supports a 64‑bit address width.

The interface implements optional signals to support the following AXI5 extensions:
• Wakeup_Signals
• Untranslated_Transactions
• Cache_Stash_Transactions
• DeAllocation_Transactions

The TBS interface supports ACE Exclusive accesses.

If a transaction is terminated in the TBU, the transaction tracker returns the transaction with the
user‑defined AXI RUSER and BUSER bits set to 0.

Related concepts
2.3.9 Error responses on page 2-47
Related references
A.13 TBU TBS interface signals on page Appx-A-111

TBU TBM interface

The TBM transaction master interface is an ACE5‑Lite interface on which the TBU sends outgoing
translated memory accesses.

The AXI ID of a transaction on this interface is the same as the AXI ID of the corresponding transaction
on the TBS interface.

This interface supports a 48‑bit address width, and TBUCFG_DATA_WIDTH defines the data width.

This interface can issue read and write transactions until the outstanding transaction limit is reached. The
MMU‑600 provides parameters that permit you to configure:

• The outstanding read transactions limit
• The outstanding write transactions limit
• The total outstanding read and write transactions limit.

The interface implements optional signals to support the following AXI5 extensions:
• Wakeup_Signals
• Untranslated_Transactions
• Cache_Stash_Transactions
• DeAllocation_Transactions

When receiving an SLVERR or DECERR response to a downstream transaction, the TBM interface
propagates the same response to the TBS interface.

The TBM interface supports ACE Exclusive accesses.

Related concepts
2.3.9 Error responses on page 2-47
Related references
2.4.2 AMBA support on page 2-54
A.14 TBU TBM interface signals on page Appx-A-114

TBU LPI_PD interface

This Q‑Channel slave interface manages LPI powerdown for the TBU.

See the AMBA® Low Power Interface Specification, Arm® Q‑Channel and P‑Channel Interfaces for more
information.

2 Functional description
2.2 Interfaces

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-31

Non-Confidential

Related references
A.16 TBU LPI_PD interface signals on page Appx-A-118

TBU LPI_CG interface

This Q‑Channel slave interface enables LPI clock‑gating for the TBU.

See the Arm® AMBA® Low Power Interface Specification, Arm® Q‑Channel and P‑Channel Interfaces for
more information.

Related references
A.17 TBU LPI_CG interface signals on page Appx-A-119

TBU DTI interface

The TBU DTI interface enables master devices with their own TLB and prefetch capability to request
translations from the MMU‑600. This interface uses the DTI‑TBU protocol for communication between
the TBU and the TCU.

The TCU includes a slave DTI interface and each TBU includes a master DTI interface. To permit
bidirectional communication, each DTI interface includes one AXI4‑Stream master interface and one
AXI4‑Stream slave interface.

See the Arm® AMBA® Distributed Translation Interface (DTI) Protocol Specification and the Arm®

AMBA® 4 AXI4-Stream Protocol Specification for more information.

Related concepts
2.3.1 DTI overview on page 2-36
Related references
A.18 TBU DTI interface signals on page Appx-A-120

TBU interrupt interfaces

This interface provides global, per-context, and performance interrupts.

Related references
A.19 TBU interrupt signals on page Appx-A-121

TBU tie-off signals

The TBU tie-off signals enable you to initialize various operating parameters on exit from reset state.

At reset, the value of each tie-off signal controls the respective bits in the SMMU_IDR0 Register.

Related references
A.20 TBU tie-off signals on page Appx-A-122

2.2.3 DTI interconnect interfaces
The DTI interconnect includes interfaces for each of the switch, sizer, and register slice components.

DTI interconnect switch interfaces

The DTI interconnect switch component includes dedicated interfaces.

The following figure shows the DTI interconnect switch interfaces.

2 Functional description
2.2 Interfaces

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-32

Non-Confidential

DTI interconnect switch

UP_M

DN_S0

DN_M

UP_S0 DN_S1 UP_S1 DN_Sn UP_Sn

Figure 2-6 DTI interconnect switch interfaces

The following table provides more information about the switch interfaces.

Table 2-2 DTI interconnect switch interfaces

Interface Interface type Protocol Description

DN_Sn Slave AXI4‑Stream Slave downstream interface. One DN_Sn interface is present for each slave interface.

UP_Sn Master Slave upstream interface. One UP_Sn interface is present for each slave interface.

DN_M Master Master downstream interface

UP_M Slave Master upstream interface

 Note

The interconnect switch does not store any data, and therefore does not require a Q‑Channel clock‑gating
interface.

DTI interconnect sizer interfaces

The DTI interconnect sizer component includes dedicated interfaces.

The following figure shows the DTI interconnect sizer interfaces.

2 Functional description
2.2 Interfaces

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-33

Non-Confidential

DTI interconnect sizer

UP_M

DN_S

DN_M

UP_SLPI_CG

Figure 2-7 DTI interconnect sizer interfaces

The following table provides more information about the sizer interfaces.

Table 2-3 DTI interconnect sizer interfaces

Interface Interface type Protocol Description

LPI_CG Slave Q‑Channel Clock‑gating interface

DN_S Slave AXI4‑Stream Slave downstream interface

UP_S Master Slave upstream interface

DN_M Master Master downstream interface

UP_M Slave Master upstream interface

DTI interconnect register slice interfaces

The DTI interconnect register slice component includes dedicated interfaces.

The following figure shows the DTI interconnect register slice interfaces.

DTI interconnect register slice

UP_M

DN_S

DN_M

UP_SLPI_CG

Figure 2-8 DTI interconnect register slice interfaces

2 Functional description
2.2 Interfaces

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-34

Non-Confidential

The following table provides more information about the register slice interfaces.

Table 2-4 DTI interconnect register slice interfaces

Interface Interface type Protocol Description

LPI_CG Slave Q‑Channel Clock‑gating interface

DN_S Slave AXI4‑Stream Slave downstream interface

UP_S Master Slave upstream interface

DN_M Master Master downstream interface

UP_M Slave Master upstream interface

2 Functional description
2.2 Interfaces

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-35

Non-Confidential

2.3 Operation
This section provides information about the operation of the MMU‑600 features.

This section contains the following subsections:
• 2.3.1 DTI overview on page 2-36.
• 2.3.2 Performance Monitoring Unit on page 2-37.
• 2.3.3 TBU direct indexing and MTLB partitioning on page 2-43.
• 2.3.4 Reliability, Availability, and Serviceability on page 2-44.
• 2.3.5 Quality of Service on page 2-44.
• 2.3.6 Distributed Virtual Memory (DVM) messages on page 2-44.
• 2.3.7 TCU transaction handling on page 2-45.
• 2.3.8 TCU prefetch on page 2-46.
• 2.3.9 Error responses on page 2-47.
• 2.3.10 Conversion between ACE-Lite and Arm®v8 attributes on page 2-47.
• 2.3.11 AXI USER bits defined by the MMU‑600 TBU on page 2-49.

2.3.1 DTI overview

In an MMU‑600-based system, the AMBA DTI protocol defines the standard for communicating with a
TCU.

The AMBA DTI protocol includes both:

• DTI-TBU protocol, for communication between a TBU and a TCU
• DTI-ATS protocol, for communication between a PCIe Root Complex and a TCU

The DTI protocol is a point-to-point protocol. Each channel consists of a link, a DTI master, and a DTI
slave. The DTI masters in the respective protocols are:

• The TBU, in the DTI-TBU protocol
• The PCIe Root Complex, in the DTI-ATS protocol

The DTI slave in both DTI-TBU and DTI-ATS is the TCU.

DTI masters and slaves communicate using defined DTI messages. The DTI protocol defines the
following message groups:

• Page request
• Register access
• Translation request
• Connection and disconnection
• Invalidation and synchronization

The DTI_TBU_CONDIS_REQ message initiates a TBU connection or disconnection handshake. The
TBU uses this message to connect to the TCU. During connection, the TBU can specify the number of
requested translation tokens.

The TBU uses the TOK_TRANS_REQ field to request translation tokens. The max_tok_trans signal
defines the number of translation tokens that the TBU requests.

The TBU uses the TOK_INV_GNT field to grant invalidation tokens. The TBU grants only one
invalidation token, and the TCU is only capable of issuing one invalidate message at a time.

A DTI master uses a DTI_TBU_CONDIS_REQ or a DTI_ATS_CONDIS_REQ message to initiate a
connection handshake. If the master provides a TID value that is greater than the maximum supported
TID that TCUCFG_NUM_TBU defines, the slave sends a Connect Deny message.

A translation request to the TCU where StreamID ≥ 224 results in a fault and an SMMUv3
C_BAD_STREAMID event. If the TBU receives an invalidation request where StreamID ≥ 224, any

2 Functional description
2.3 Operation

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-36

Non-Confidential

comparisons with a StreamID value fail. No TLB entries are invalidated, but other effects that do not
consider the supplied StreamID occur as normal.

 Note

• The TBU never generates translation requests with StreamID ≥ 224

• The TCU never generates invalidation requests with StreamID ≥ 224

See the Arm® AMBA® Distributed Translation Interface (DTI) Protocol Specification for more
information.

2.3.2 Performance Monitoring Unit

The MMU‑600 includes a PMU for the TCU and a PMU for each TBU. The PMU events and counters
indicate the runtime performance of the MMU‑600.

The MMU‑600 includes logic to gather various statistics on the operation of the MMU during runtime,
using events and counters. These events, which the SMMUv3 architecture defines, provide useful
information about the behavior of the MMU. You can use this information when debugging or profiling
traffic.

SMMUv3 architectural performance events

Both the TCU and the TBU implement performance events that the SMMUv3 Performance Monitor
extension defines.

The SMMU_PMCG_SMR0 register can filter some events so that only events with a particular StreamID
are counted. This event filtering includes:
• Speculative transactions and translations
• Transactions and translations that result in a terminated transaction or a translation fault

The following table shows the architecturally defined MMU‑600 TCU performance events.

Table 2-5 SMMUv3 performance events for the TCU

Event Event ID SMMU_PMCG_SMR0
filterable

Description

Clock cycle 0x0 No Counts clock cycles.

Cycles where the clock is gated after a clock Q-
Channel handshake are not counted.

Transaction 0x1 Yes Counts translation requests that originate from a
DTI-TBU or DTI-ATS master

TLB miss caused by incoming
transaction or translation request

0x2 Yes Counts translation requests where the translation
walks new translation table entries

Configuration cache miss caused
by transaction or translation
request

0x3 Yes Counts translation requests where the translation
walks new configuration table entries

Translation table walk access 0x4 Yes Counts translation table walk accesses

Configuration structure access 0x5 Yes Counts configuration table walk accesses

PCIe ATS Translation Request
received

0x6 Yes Counts translation requests that originate from a
DTI-ATS master

2 Functional description
2.3 Operation

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-37

Non-Confidential

The following table shows the architecturally defined MMU‑600 TBU performance events.

Table 2-6 SMMUv3 performance events for the TBU

Event Event ID SMMU_PMCG_SMR0
filterable

Description

Clock cycle 0x0 No Counts clock cycles.

Cycles where the clock is gated after a clock Q-Channel
handshake are not counted.

Transaction 0x1 Yes Counts transactions that are issued on the TBM interface

TLB miss caused by
incoming transaction or
translation request

0x2 Yes Counts non-speculative translation requests that are
issued to the TCU

PCIe ATS Translation
Request received

0x7 Yes Counts ATS-translated transactions that are issued on the
TBM interface

See the Arm® System Memory Management Unit Architecture Specification, SMMU architecture version
3.0 and version 3.1 for more information.

MMU-600 TCU events

The MMU‑600 PMU can be configured to monitor a range of IMPLEMENTATION DEFINED TCU performance
events.

The SMMU_PMCG_SMR0 register can filter some TCU performance events so that only events with a
particular StreamID are counted. This event filtering includes:

• Speculative transactions and translations
• Transactions and translations that result in a terminated transaction or a translation fault

The following table shows the TCU performance events.

Table 2-7 MMU-600 TCU performance events

Event Event ID SMMU_PMCG_SMR0
filterable

Description

S1L0WC lookup 0x80 Yes Counts translation requests that access the S1L0WC walk cache

S1L0WC miss 0x81 Yes Counts translation requests that access the S1L0WC walk cache and
do not result in a hit

S1L1WC lookup 0x82 Yes Counts translation requests that access the S1L1WC walk cache

S1L1WC miss 0x83 Yes Counts translation requests that access the S1L1WC walk cache and
do not result in a hit

S1L2WC lookup 0x84 Yes Counts translation requests that access the S1L2WC walk cache

S1L2WC miss 0x85 Yes Counts translation requests that access the S1L2WC walk cache and
do not result in a hit

S1L3WC lookup 0x86 Yes Counts translation requests that access the S1L3WC walk cache

2 Functional description
2.3 Operation

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-38

Non-Confidential

Table 2-7 MMU-600 TCU performance events (continued)

Event Event ID SMMU_PMCG_SMR0
filterable

Description

S1L3WC miss 0x87 Yes Counts translation requests that access the S1L3WC walk cache and
do not result in a hit

S2L0WC lookup 0x88 Yes Counts translation requests that access the S2L0WC walk cache

S2L0WC miss 0x89 Yes Counts translation requests that access the S2L0WC walk cache and
do not result in a hit

S2L1WC lookup 0x8A Yes Counts translation requests that access the S2L1WC walk cache

S2L1WC miss 0x8B Yes Counts translation requests that access the S2L1WC walk cache and
do not result in a hit

S2L2WC lookup 0x8C Yes Counts translation requests that access the S2L2WC walk cache

S2L2WC miss 0x8D Yes Counts translation requests that access the S2L2WC walk cache and
do not result in a hit

S2L3WC lookup 0x8E Yes Counts translation requests that access the S2L3WC walk cache

S2L3WC miss 0x8F Yes Counts translation requests that access the S2L3WC walk cache and
do not result in a hit

WC read 0x90 Yes Counts reads from the walk cache RAMs, excluding reads that are
caused by invalidation requests

 Note

A single walk cache lookup might result in multiple RAM reads.
This behavior permits contiguous entries to be located.

Buffered translation 0x91 Yes Counts translations written to the translation request buffer because
all translation slots are full.

CC lookup 0x92 Yes Counts lookups into the configuration cache

CC read 0x93 Yes Counts reads from the configuration cache RAMs, excluding reads
that are caused by invalidation requests

 Note

A single cache lookup might result in multiple RAM reads. This
behavior permits contiguous entries to be located.

CC miss 0x94 Yes Counts lookups into the configuration cache that result in a miss

Speculative
translation

0xA0 Yes Counts translation requests that are marked as speculative

S1L0WC error 0xC0 No RAS corrected error in S1L0 walk cache.

This Secure event is visible only when the SMMU_PMCG_SCR.SO
bit is set to 1.

2 Functional description
2.3 Operation

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-39

Non-Confidential

Table 2-7 MMU-600 TCU performance events (continued)

Event Event ID SMMU_PMCG_SMR0
filterable

Description

S1L1WC error 0xC1 No RAS corrected error in S1L1 walk cache.

This Secure event is visible only when the SMMU_PMCG_SCR.SO
bit is set to 1.

S1L2WC error 0xC2 No RAS corrected error in S1L2 walk cache.

This Secure event is visible only when the SMMU_PMCG_SCR.SO
bit is set to 1.

S1L3WC error 0xC3 No RAS corrected error in S1L3 walk cache.

This Secure event is visible only when the SMMU_PMCG_SCR.SO
bit is set to 1.

S2L0WC error 0xC4 No RAS corrected error in S2L0 walk cache.

This Secure event is visible only when the SMMU_PMCG_SCR.SO
bit is set to 1.

S2L1WC error 0xC5 No RAS corrected error in S2L1 walk cache.

This Secure event is visible only when the SMMU_PMCG_SCR.SO
bit is set to 1.

S2L2WC error 0xC6 No RAS corrected error in S2L2 walk cache.

This Secure event is visible only when the SMMU_PMCG_SCR.SO
bit is set to 1.

S2L3WC error 0xC7 No RAS corrected error in S2L3 walk cache.

This Secure event is visible only when the SMMU_PMCG_SCR.SO
bit is set to 1.

Configuration cache
error

0xC8 No RAS corrected error in configuration cache.

This Secure event is visible only when the SMMU_PMCG_SCR.SO
bit is set to 1.

 Note

A single DTI translation request might correspond to multiple translation request events in either of the
following circumstances:
• A translation results in a stall fault event and is restarted.
• If a translation results in a stall fault event because of the Event queue being full, the translation is

retried when an Event queue slot becomes available.

MMU-600 TBU events

The MMU‑600 PMU can be configured to monitor a range of IMPLEMENTATION DEFINED TBU performance
events.

2 Functional description
2.3 Operation

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-40

Non-Confidential

The SMMU_PMCG_SMR0 register can filter the TBU performance events so that only events with a
particular StreamID are counted. This event filtering includes:
• Speculative transactions and translations
• Transactions and translations that result in a terminated transaction or a translation fault

The following table shows the TBU performance events.

Table 2-8 MMU-600 TBU performance events

Event Event ID SMMU_PMCG_SMR0
filterable

Description

Main TLB lookup 0x80 Yes Counts Main TLB lookups

Main TLB miss 0x81 Yes Counts translation requests that miss in the Main TLB

Main TLB read 0x82 Yes Counts once per access to the Main TLB RAMs, excluding reads that
invalidation requests cause

 Note

A transaction might access the Main TLB multiple times to look for
different page sizes.

Micro TLB lookup 0x83 Yes Counts micro TLB lookups

Micro TLB miss 0x84 Yes Counts translation requests that miss in the micro TLB

Slots full 0x85 No Counts once per cycle when all slots are occupied and not ready to
issue transactions downstream.

This Secure event is visible only when the SMMU_PMCG_SCR.SO
bit is set to 1.

Out of translation
tokens

0x86 No Counts once per cycle when a translation request cannot be issued
because all translation tokens are in use.

This Secure event is visible only when the SMMU_PMCG_SCR.SO
bit is set to 1.

Write data buffer
full

0x87 No Counts once per cycle when a transaction is blocked because the write
data buffer is full.

This Secure event is visible only when the SMMU_PMCG_SCR.SO
bit is set to 1.

Translation request 0x88 Yes Counts translation requests, including both speculative and non-
speculative requests

Write data uses
write data buffer

0x89 Yes Counts transactions with write data that is stored in the write data
buffer

Write data bypasses
write data buffer

0x8A Yes Counts transactions with write data that bypasses the write data buffer

MakeInvalid
downgrade

0x8B Yes Counts when either:
• A MakeInvalid transaction on the TBS interface is output as

CleanInvalid on the TBM interface
• A ReadOnceMakeInvalid transaction on the TBS interface is

output as ReadOnceCleanInvalid on the TBM interface

2 Functional description
2.3 Operation

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-41

Non-Confidential

Table 2-8 MMU-600 TBU performance events (continued)

Event Event ID SMMU_PMCG_SMR0
filterable

Description

Stash fail 0x8C Yes Counts when either.
• A WriteUniquePtlStash or WriteUniqueFullStash transaction on

TBS is output as a WriteNoSnoop or WriteUnique transaction on
the TBM interface

• A StashOnceShared or StashOnceUnique transaction on the TBS
interface has a valid translation, but is terminated in the TBU

 Note

A StashOnceShared or StashOnceUnique transaction that is
terminated because of a StreamDisable or GlobalDisable translation
response does not cause this event to count.

Main TLB error 0xC0 No RAS corrected error in Main TLB.

This Secure event is visible only when the SMMU_PMCG_SCR.SO
bit is set to 1.

SMMUv3 PMU register architectural options

The SMMUv3 architecture defines the Performance Monitor Counter Group (PMCG) configuration
register, SMMU_PMCG_CFGR. An MMU‑600 implementation assumes fixed values for
SMMU_PMCG_CFGR, and these values define behavioral aspects of the implementation.

The following table shows the SMMU_PMCG_CFGR register options that the MMU‑600 TCU and
TBU use.

Table 2-9 MMU-600 SMMU_PMCG_CFGR register architectural options

Field Default value Description for default value

SID_FILTER_TYPE 1 A single StreamID filter applies to all PMCG counters

CAPTURE 1 Capture of counter values into SVRn registers is supported

MSI 0 The counter group does not support Message Signaled Interrupts (MSIs)

RELOC_CTRS 1 The PMCG registers are relocated to page 1 of the PMU address map

SIZE 0x31 The counter group implements 32-bit counters

NCTR 0x3 The counter group includes 4 counters

Related references
3.3 MMU‑600 memory map on page 3-66

PMU snapshot interface

The Performance Monitoring Unit (PMU) snapshot interface is included on the TCU and on each TBU.
You can use this asynchronous interface to initiate a PMU snapshot. A simultaneous snapshot of each
counter register is created and copied to the respective SMMU_PMCG_SVRn register.

2 Functional description
2.3 Operation

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-42

Non-Confidential

The PMU snapshot sequence is a 4-phase handshake. Both pmusnapshot_req and pmusnapshot_ack
are LOW after reset. A snapshot occurs on the rising edge of pmusnapshot_req, and is equivalent to
writing the value 1 to SMMU_PMCG_CAPR.CAPTURE.

The pmusnapshot_req signal is sampled using synchronizing registers. A register drives
pmusnapshot_ack so that the connected component can sample the signal asynchronously.

Related concepts
2.3.4 Reliability, Availability, and Serviceability on page 2-44
Related references
A.5 TCU PMU snapshot interface signals on page Appx-A-102
A.15 TBU PMU snapshot interface signals on page Appx-A-117

2.3.3 TBU direct indexing and MTLB partitioning

TBU direct indexing can help your system to meet real‑time translation requirements by enabling the
MMU‑600 to manage Main TLB (MTLB) entries externally to the TBU.

Direct indexing enables real‑time translation requirements to be met, as follows:

• It can be guaranteed that different streams do not overwrite prefetched entries
• The MTLB can be partitioned into different sets of entries that different streams use

If you configure your system to not use direct indexing, you can select MTLB partitioning. MTLB
partitioning has similar behavior, but only the most significant TLB index bits are provided, and the other
bits are generated internally.

Direct indexing is enabled for a TBU when TBUCFG_DIRECT_IDX = 1.

When TBUCFG_DIRECT_IDX = 1, or when an MTLB is partitioned, the width of the AxUSER signals on
the TBS interface is extended to convey the indexing information that is required for TBU direct
indexing or MTLB partitioning.

 Note

The table lists the extended bits in the order MSB first.

Table 2-10 Extended aruser_s and awuser_s bits for MTLB partitioning

Field name Width Description

mtlbidx When direct indexing is enabled, the width of this field is log2(TBUCFG_MTLB_DEPTH) - 2.

When direct indexing is not enabled, the width of this field is 0.

MTLB index

mtlbway When direct indexing is enabled, the width of this field is 2.

When direct indexing is not enabled, the width of this field is 0.

MTLB way

mtlbpart log2(TBUCFG_MTLB_PARTS) MTLB partition

- TBUCFG_AWUSER_WIDTH for awuser_s.

TBUCFG_ARUSER_WIDTH for aruser_s.

Regular AxUSER signals

If an MTLB is partitioned:

• The MTLB size is multiplied by TBUCFG_MTLB_PARTS
• The mtlbpart field defines the log2(TBUCFG_MTLB_PARTS) most significant index bits

2 Functional description
2.3 Operation

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-43

Non-Confidential

When direct indexing is enabled for a TBU:
• Lookups and updates to the MTLB use the mtlbidx field
• Updates to the MTLB use the way that mtlbway specifies
• Lookups to the MTLB operate on all ways simultaneously

To maintain system performance, Arm recommends that DVM invalidation is disabled on TBUs on
which direct indexing is enabled. Disable DVM invalidation by setting the appropriate
TCU_NODE_CTRLn.DIS_DVM bit. See 3.7.6 TCU_NODE_CTRLn on page 3-79.

2.3.4 Reliability, Availability, and Serviceability

Reliability, Serviceability, and Availability (RAS) features enable cache corruption to be detected and
corrected, optionally generating interrupts into the system. All MMU‑600 RAM-based caches support
RAS error detection and correction.

The RAS Extension registers permit software to monitor the following caches for errors:
• TBU Main TLB (MTLB)
• TCU configuration cache
• TCU translation table walk cache

Within a coherent system, these caches are always clean, and there is no requirement to correct data on
these caches. Any incorrect data is discarded and refetched. From an RAS standpoint, discarding and
refetching counts as a corrected error.

See the Arm® System Memory Management Unit Architecture Specification, SMMU architecture version
3.0 and version 3.1 for more information.

Related references
3.8.1 TCU_ERRFR on page 3-82
3.8.2 TCU_ERRCTLR on page 3-82
3.8.3 TCU_ERRSTATUS on page 3-83
3.12.1 TBU_ERRFR on page 3-91
3.12.2 TBU_ERRCTLR on page 3-91
3.12.3 TBU_ERRSTATUS on page 3-92

2.3.5 Quality of Service

You can program the TCU with a priority level for each TBU. The priority level is applied to every
translation from that TBU.

The TCU uses this priority level to:
• Arbitrate between translations that are waiting in the translation request buffer when translation

manager slots become available
• Arbitrate between translation manager slots when they access the caches and perform configuration

table walks and translation table walks
• Determine the AXI AxQOS value for translation table walks and configuration table walks that the

TCU issues on the QTW/DVM interface

The arbiters contain starvation avoidance mechanisms to prevent transactions from being stalled
indefinitely.

The TBU does not implement any prioritization between transactions. Arm recommends that bus masters
with different QoS requirements use separate TBUs for translation.

Related references
3.7.2 TCU_QOS on page 3-75
3.7.6 TCU_NODE_CTRLn on page 3-79

2.3.6 Distributed Virtual Memory (DVM) messages

The QTW/DVM interface supports DVM messages. The MMU‑600 supports DVMv8.1.

2 Functional description
2.3 Operation

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-44

Non-Confidential

The interface supports DVM transactions of message types TLB Invalidate and Synchronization. The
interface accepts all other DVM transaction message types, and sends a snoop response, but otherwise
ignores such transactions.

Tie the sup_btm input signal HIGH when the system supports Broadcast TLB Maintenance.

When Broadcast TLB Maintenance is supported, you can use SMMU_CR2 and SMMU_S_CR2 to
control how the SMMU handles TLB Invalidate operations as follows:

SMMU_CR2.PTM = 0 Non‑secure TLB Invalidate operations are applied to the TLBs.
SMMU_CR2.PTM = 1 Non‑secure TLB Invalidate operations have no effect.
SMMU_S_CR2.PTM = 0 Secure TLB Invalidate operations are applied to the TLBs.
SMMU_S_CR2.PTM = 1 Secure TLB Invalidate operations have no effect.

 Note

When sup_btm is tied HIGH, the reset value of SMMU_CR2.PTM and SMMU_S_CR2.PTM is 1.

 Note

Although TLB Invalidate operations have no effect when PTM = 1, the QTW/DVM interface still returns
the appropriate response.

The QTW/DVM interface might receive DVM Sync transactions without receiving a DVM TLB
Invalidate transaction, or when the PTM bits have masked a TLB Invalidate. If no DVM TLB Invalidate
operations have occurred since the most recent DVM Sync transaction, subsequent DVM Sync
transactions result in an immediate DVM Complete transaction. This behavior ensures that the TCU does
not affect system DVM performance unless TLB Invalidate operations are performed.

The DTI interface allocates the access permissions and shareability of DVM Complete transactions as
follows:
• ARPROT = 0b000, indicating Unprivileged, Secure, Data access
• ARDOMAIN = 0b01, indicating Inner Shareable

For a DVM Operation or DVM Sync request on the AC channel, the snoop response signal
CRRESP[4:0] is always set to 0b00000.

Related references
3.2 SMMU architectural registers on page 3-61

2.3.7 TCU transaction handling

The transaction width, burst length, and transfer size that the TCU supports depend on the transaction
type.

The following table shows the TCU support for read transactions.

Table 2-11 TCU support for read transactions

Transaction type Transaction width, bits ARID[n:1] ARID[0]

Stage 1 Stream table lookup 64 PTW slot number 1

Stream table lookup 256 PTW slot number 1

Translation table lookup 64 PTW slot number 1

Command queue read 128 All 0 0

DVM Complete - All 1 0

DVM Complete transactions are always one beat of full data width.

2 Functional description
2.3 Operation

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-45

Non-Confidential

Command queue reads and DVM Complete transactions are independent of translation slots. Therefore,
the maximum number of read transactions that the TCU can issue at any time is TCUCFG_PTW_SLOTS + 2.

The following table shows the TCU support for write transactions.

Table 2-12 TCU support for write transactions

Transaction type Transaction width, bits AWID

Event queue write 256 0

PRI queue write 128 0

Message Signaled Interrupt (MSI) 32 0

Only one write transaction can be outstanding at a time.

All read and write transactions are aligned to the transaction size.

2.3.8 TCU prefetch

TCU prefetch enables the TCU to prefetch translations on a per‑context basis, improving translation
performance for real‑time masters that access memory linearly. Software can request a TCU prefetch of
the next translation table to be accessed, when it is required.

Prefetched translations are placed in the TCU walk caches. When the TBU requires the prefetched
translation, it is passed from the TCU to the TBU.

If TCU prefetch is enabled, a second translation fetch occurs after the original fetch. This second
translation fetch is regarded as the prefetch because it is an advance fetch of the next translation that is to
be accessed.

This prefetch can only occur when the original fetch is complete. Waiting for completion of the first
fetch means that by the time it becomes possible for the prefetch to be initiated, the TCU might already
require the next translation and might have already begun a fetch for it. Therefore, TCU prefetch only
results in a performance advantage if the number of cycles that is taken for the sequence of incoming
transactions to move from one page to the next sequential page is greater than the number of cycles that
is taken for the TCU to complete the original translation fetch and to start the subsequent prefetch.

 Note

The number of memory accesses that are performed for this prefetch are unrelated to the number of
memory accesses of the original translation fetch.

Bits [121:120] of the STE are IMPLEMENTATION DEFINED in SMMUv3, and have the following meanings for
the MMU‑600:

0b00 Prefetch disabled
0b01 Reserved
0b10 Prefetch forwards
0b11 Prefetch backwards

2 Functional description
2.3 Operation

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-46

Non-Confidential

 Note

Even if TCU prefetch is enabled, a second translation fetch does not occur if one of the following caused
the original fetch:
• A Speculative translation request, that is, DTI_TBU_TRANS_REQ.PERM[1:0] = 2'b11, if a TBU

receives a StashOnceShared, StashOnceUnique, or StashTranslation transaction
• A translation request for an atomic transaction that provides a data response, that is,

DTI_TBU_TRANS_REQ.PERM[1:0] = 2'b10, if a TBU receives an AtomicLoad, AtomicSwap, or
AtomicCompare transaction

2.3.9 Error responses

AMBA defines external AXI slave error, SLVERR, and external AXI decode error, DECERR. The
MMU‑600 error response behavior depends on the interface.

The TCU QTW/DVM interface treats SLVERR and DECERR identically, as an abort.

When terminating a transaction, the TBS interface generates a SLVERR response.

If the TBU TBM interface receives a SLVERR or DECERR response to a downstream transaction, it
propagates the same abort type to the TBS interface.

2.3.10 Conversion between ACE-Lite and Arm®v8 attributes

The SMMUv3 architecture defines attributes in terms of the Armv8 architecture. The MMU‑600
components are therefore required to perform conversion between ACE‑Lite and Armv8 attributes.

The TBU must convert:
• ACE‑Lite attributes to Armv8 attributes when it receives transactions on the Transaction Slave (TBS)

interface
• Armv8 attributes to ACE‑Lite attributes when it outputs transactions on the Transaction Master

(TBM) interface

The TCU must convert Armv8 attributes to ACE‑Lite attributes when it outputs transactions on the
QTW/DVM interface.

Slave interface memory type attribute handling

The memory attributes that apply to the TBS interface are contained in the AxCACHE and
AxDOMAIN signals.

The following table shows the ACE‑Lite to ARMv8 attribute conversions that the TBU TBS interface
performs.

Table 2-13 MMU-600 ACE-Lite to ARMv8 memory attribute conversions

AxCACHE attribute AxDOMAIN attribute ARMv8 memory attribute ARMv8 shareability

Device Non‑bufferable System Device‑nGnRnE Outer Shareable

Device Bufferable System Device‑nGnRE Outer Shareable

2 Functional description
2.3 Operation

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-47

Non-Confidential

Table 2-13 MMU-600 ACE-Lite to ARMv8 memory attribute conversions (continued)

AxCACHE attribute AxDOMAIN attribute ARMv8 memory attribute ARMv8 shareability

Normal Non‑cacheable Bufferable

Normal Non‑cacheable Non‑bufferable

Write‑Through No Allocate

Write‑Through Read‑allocate

Write‑Through Write‑Allocate

Write‑Through Read and Write‑Allocate

Any Normal Inner Non‑cacheable Outer
Non‑cacheable

Outer Shareable

Write‑Back No Allocate

Write‑Back Read‑Allocate

Write‑Back Write‑Allocate

Write‑Back Read Allocate Write‑Allocate

Non‑shareable

Inner Shareable

Outer Shareable

Normal Inner Write‑Back Outer
Write‑Back

Non‑shareable

Non‑shareable

Outer Shareable

 Note

• WriteBack transactions are always treated as non-transient.
• The ARMv8‑A Read‑Allocate and Write‑Allocate hints are the same as the hints that the AxCACHE

Write‑Back type provides.
• The TBU TBS interface converts instruction writes into data writes. That is, it treats awprot_s[2] as

0.

Master interface memory type attribute handling

The memory attributes that apply to the TBM and the QTW/DVM interfaces are contained in the
AxCACHE and AxDOMAIN signals.

In addition, the TBU TBM interface can use the AxLOCK signal to indicate an Exclusive access. The
QTW/DVM interface does not use the AxLOCK signal.

On the TBU TBM interface, a bit on AxUSER indicates whether the memory type before the conversion
is Outer Cacheable.

The following table shows the ARMv8 to ACE‑Lite attribute conversions that the master interfaces
perform.

Table 2-14 MMU-600 ARMv8 to ACE-Lite memory attribute conversions

ARMv8 memory
attribute

AxCACHE attribute AxDOMAIN attribute AxLOCK attribute AxUSER Outer
Cacheable

Device-nGnRnE Device Non‑bufferable System As Transaction Slave
(TBS) AxLOCK value

0

Device-GRE

Device-nGRE

Device-nGnRE

Device Bufferable System As TBS AxLOCK value 0

2 Functional description
2.3 Operation

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-48

Non-Confidential

Table 2-14 MMU-600 ARMv8 to ACE-Lite memory attribute conversions (continued)

ARMv8 memory
attribute

AxCACHE attribute AxDOMAIN attribute AxLOCK attribute AxUSER Outer
Cacheable

Normal Inner Non-
cacheable Outer Non-
cacheable

Normal Inner Write-
Through Outer Non-
cacheable

Normal Inner Write-
Back Outer Non-
cacheable

Normal Non‑cacheable
Bufferable

System As TBS AxLOCK value 0

Normal Inner Non-
cacheable Outer Write-
Through

Normal Inner Write-
Through Outer Write-
Through

Normal Inner Write-
Back Outer Write-
Through

Normal Inner Non-
cacheable Outer Write-
Back

Normal Inner Write-
Through Outer Write-
Back

Normal Non‑cacheable
Bufferable

System As TBS AxLOCK value 1

Normal Inner Write-
Back Outer Write-Back

Write‑Back No Allocate

Write‑Back
Read‑Allocate

Write‑Back
Write‑Allocate

Write‑Back Read and
Write‑Allocate

If AxBURST ==
FIXED, Non‑shareable.

If AxBURST != FIXED,
the attribute reflects the
ARMv8 shareability:
• Non‑shareable
• Inner Shareable
• Outer Shareable

0 1

2.3.11 AXI USER bits defined by the MMU-600 TBU

The TBU TBM interface AxUSER signals, aruser_m and awuser_m, have 13 bits more than
TBUCFG_AxUSER_WIDTH defines. These extra bits are output in higher-order bits of aruser_m and
awuser_m.

The following table shows the MMU‑600-defined aruser_m and awuser_m bits, where w represents the
AXI USER bus width that TBUCFG_AxUSER_WIDTH defines.

2 Functional description
2.3 Operation

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-49

Non-Confidential

Table 2-15 MMU-600 defined aruser_m and awuser_m bits

Bit position Value

[w+12] Outer Cacheable

[w+11:w+8] The Stream Table Entry (STE) defines the attributes

[w+7:w+4] The IMPLEMENTATION DEFINED stage 2 hardware attributes

[w+3:w] The IMPLEMENTATION DEFINED stage 1 hardware attributes

Bits[119:116] of the STE are IMPLEMENTATION DEFINED in SMMUv3. When the TCU sends a DTI
translation response message to a TBU, it outputs these bits in the
DTI_TBU_TRANS_RESP.CTXTATTR field. The MMU‑600 TBU outputs these bits as STE‑defined
attributes.

The TCU DTI_TBU_TRANS_RESP response also includes S1HWATTR[3:0] and S2HWATTR[3:0]
fields. These fields provide the IMPLEMENTATION DEFINED hardware attributes for each stage of translation.
The TBU reports these fields using awuser_m and aruser_m.

The S1HWATTR and S2HWATTR fields are calculated as follows:

S1HWATTR
S1HWATTR[n] is equal to bit[n+59] of the stage 1 translation table final-level descriptor when
both of the following conditions apply:
• SMMUv3 permits the bit to have an IMPLEMENTATION DEFINED hardware use
• SMMUv3 does not permit bit[n+59] of the stage 2 translation table final‑level descriptor to

have an IMPLEMENTATION DEFINED hardware use

Otherwise, S1HWATTR[n] = 0.

S2HWATTR
S2HWATTR[n] is equal to bit[n+59] of the stage 2 translation table final-level descriptor when
SMMUv3 permits that bit to have an IMPLEMENTATION DEFINED hardware use. Otherwise,
S2HWATTR[n] = 0.

Arm recommends that systems always use the value of S1HWATTR[n] | S2HWATTR[n], that is:
• The value of the corresponding stage 2 final-level descriptor bit, if it is enabled for hardware use and

stage 2 translation is enabled
• The value of the corresponding stage 1 final-level descriptor bit, if it is enabled for hardware use and

stage 1 translation is enabled
• Otherwise, 0

Related references
Master interface memory type attribute handling on page 2-48

2 Functional description
2.3 Operation

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-50

Non-Confidential

2.4 Constraints and limitations of use
Certain usage constraints and limitations apply to the MMU‑600.

Unless otherwise specified:
• An IMPLEMENTATION DEFINED field in a structure that the MMU‑600 generates is 0.
• An IMPLEMENTATION DEFINED field in a structure that the MMU‑600 reads is ignored.

This section contains the following subsections:
• 2.4.1 SMMUv3 support on page 2-51.
• 2.4.2 AMBA support on page 2-54.

2.4.1 SMMUv3 support

The MMU‑600 does not implement, or require, certain SMMUv3 functionality.

The SMMUv3 architectural registers include a set of ID registers that indicate the SMMUv3 features that
the MMU‑600 implements. The following table shows the SMMUv3 ID register values that the
MMU‑600 uses.

 Note

The values in this table are not configurable except for values that are specified in bold.

2 Functional description
2.4 Constraints and limitations of use

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-51

Non-Confidential

Table 2-16 MMU-600 SMMUv3 ID register architectural options

Register Field Value Description for value

SMMU_IDR0 S2P 1 Stage 2 translations are supported.

S1P 1 Stage 1 translations are supported.

TTF 0b11 Both AArch32 Long-descriptor and AArch64
translation tables are supported.

COHACC sup_cohacc Coherent access to translations, structure, and queues is
supported.

BTM sup_btm Broadcast TLB maintenance is supported.

HTTU[1:0] 0b00 Updates of the Dirty state and Access flag are not
supported.

DORMHINT 0 Dormant hint is not supported.

HYP 1 Hypervisor stage 1 context is supported.

ATS 1 PCIe Root Complex ATS is supported.

NS1ATS 1 Stage 1-only ATS is not supported.

ASID16 1 16-bit ASID is supported.

MSI 1 Message Signaled Interrupts (MSIs) are supported.

SEV sup_sev SMMU and system support for the generation of
events.

ATOS 0 Address translation operations are not supported.

PRI 1 PCIe Page Request Interface (PRI) is supported.

VMW 1 VMID wildcard-matching is supported for TLB
invalidation.

VMID16 1 16-bit VMIDs are supported.

CD2L 1 2-level Context Descriptor (CD) tables are supported.

VATOS 0 Virtual ATOS page interface is not supported.

TTENDIAN 0b00 Mixed-endian translation walks are supported.

STALL_MODEL {0, SMMU_S_CR0.NSSTALLD} Stall model and Terminate model are both supported,
unless the Secure world disables Non-secure stalling.

TERM_MODEL 0 Terminated transactions can terminate with either
RAZ/WI behavior or abort.

ST_LEVEL 0b01 2-level Stream tables are supported.

SMMU_IDR1 SIDSIZE 0b11000 24-bit stream IDs are supported.

SSIDSIZE 0b10100 20-bit substream IDs are supported.

PRIQS 0b10011 219 PRI queue entries are supported.

EVENTQS 0b10011 219 Event queue entries are supported.

CMDQS 0b10011 219 Command queue entries are supported.

ATTR_PERMS_OVR 1 Incoming permission attributes can be overridden.

ATTR_TYPES_OVR 1 Incoming memory attributes can be overridden.

REL 0 Base addresses are not fixed.

QUEUES_PRESET 0 The queue base addresses are not fixed.

TABLES_PRESET 0 The table base addresses are not fixed.

2 Functional description
2.4 Constraints and limitations of use

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-52

Non-Confidential

Table 2-16 MMU-600 SMMUv3 ID register architectural options (continued)

Register Field Value Description for value

SMMU_IDR2 BA_VATOS 0 No VATOS page is present.

SMMU_IDR3 HAD 1 Hierarchical Attribute Disable is supported.

PBHA 1 Page‑based hardware attributes are supported.

XNX 1 EL0/EL1 execute control distinction at stage 2 is
supported for both AArch64 and AArch32 stage 2
translation tables.

PPS 1 If the request has a Process Address Space ID (PASID),
the PASID is included in PRI queue overflow auto-
generated responses. The STE.PPAR field is not
checked and is treated as 1.

SMMU_IDR4 IMPDEF 0 No IMPLEMENTATION DEFINED features apply.

SMMU_IDR5 OAS sup_oas The size of the physical address that is output from the
SMMU.

GRAN4K 1 4KB translation granule is supported.

GRAN16K 1 16KB translation granule is supported.

GRAN64K 1 64KB translation granule is supported.

VAX 0b00 Virtual addresses of 48 bits per CD.TTBx are
supported.

STALL_MAX TCUCFG_XLATE_SLOTS Maximum number of outstanding stalled transactions
that the SMMU supports.

SMMU_IIDR Implementer 0x43B Arm implementation.

Revision MAX[0x2, ecorevnum] Minor revision is p2.
 Note

ecorevnum is not configurable.

Variant 2 Product variant, or major revision is r2.

ProductID 0x483 Arm ID.

SMMU_AIDR ArchMinorRev 0b0001 Architecture minor revision is SMMUv3.1.

ArchMajorRev 0b0000 Architecture major revision is SMMUv3.

SMMU_S_IDR0 MSI 1 Secure MSIs are supported.

STALL_MODEL 0b00 Stall model and Terminate model are both supported.

SMMU_S_IDR1 S_SIDSIZE 0b11000 24‑bit Secure stream IDs are supported.

SECURE_IMPL 1 Security implemented.

SMMU_S_IDR3 SAMS 1 Secure Address Translation Services (ATS)
maintenance is not implemented.

In an MMU‑600-based system, the SFM_ERR global error cannot occur, because Service Failure Mode
(SFM) is not required.

The MMU‑600 accepts but does not act on the following SMMUv3 Prefetch commands:

CMD_PREFETCH_CONFIG
Prefetch configuration. This command prefetches the required configuration for a StreamID.

2 Functional description
2.4 Constraints and limitations of use

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-53

Non-Confidential

CMD_PREFETCH_ADDR
Prefetch address. This command prefetches configuration and TLB entries for an address range.

The MMU‑600 does not generate any of the following SMMUv3 events, because they are not required:

F_UUT
Unsupported Upstream Transaction.

F_TLB_CONFLICT
TLB conflict.

F_CFG_CONFLICT
Configuration cache conflict.

E_PAGE_REQUEST
Speculative page request hint.

IMPDEF_EVENTn
IMPLEMENTATION DEFINED event allocation.

 Note

F_TLB_CONFLICT and F_CFG_CONFLICT are not required because the MMU‑600 caches include
logic to ensure that only one entry can match at a time. If multiple cache entries match a transaction or
translation request, only one entry is used and the others are ignored.

The MMU‑600 never merges events. The STE.MEV field is ignored.

The TBU ignores the STE.ALLOCCFG field that the TCU communicates to the TBU in the
ALLOCCFG field of the DTI_TBU_TRANS_RESP message.

The TCU sup_oas[2:0] signal must not be set to 0b110. If this value is used, the TCU treats it as 0b101,
that is, 48 bits. The TBU supports a 48‑bit PA size. The MMU‑600 TBU and TCU cannot be used with
other components that implement DTI and are configured for a 52‑bit PA size.

Related references
3.2 SMMU architectural registers on page 3-61

2.4.2 AMBA support

Certain behavior applies to how the MMU‑600 implements its ACE-Lite interfaces.

TBU support for ACE-Lite transactions

The MMU‑600 TBU supports many ACE-Lite transaction types, and handles these transactions in
certain ways. Typically, when propagating downstream transactions on the TBU TBM interface, the
MMU‑600 uses the same transaction type that the upstream master presents to the TBU TBS interface.

If the shareability domain of a downstream WriteLineUnique transaction is not Inner Shareable or Outer
Shareable, the MMU‑600 outputs the transaction as WriteNoSnoop. That is, AWSNOOP = 0b0000. The
AWDOMAIN signal indicates the shareability domain of write transactions.

Transactions that can result in a translation fault

In an MMU‑600 system, some transactions can result in a translation fault, and certain behavior is
associated with such transactions.

The MMU‑600 treats the following transactions as ordinary reads when calculating translation faults:

• CleanShared.
• CleanInvalid.
• MakeInvalid.
• CleanSharedPersist.

2 Functional description
2.4 Constraints and limitations of use

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-54

Non-Confidential

• ReadOnceMakeInvalid.
• ReadOnceCleanInvalid.

Therefore, these transactions might require either read permission or execute permission at the
appropriate privilege level.

The MMU‑600 treats the following transactions as ordinary writes when calculating translation faults:
• WriteUniquePtlStash.
• WriteUniqueFullStash.

Therefore, these transactions require write permission at the appropriate privilege level.

CleanShared, CleanInvalid, MakeInvalid, and CleanSharedPersist transactions do not have a memory
type. The input transaction and output transaction memory type and allocation hints are ignored and
replaced by Normal, Inner Write-Back, Outer Write-Back, Read Allocate, Write Allocate. This behavior
means that the ARDOMAIN output on the TBM interface is never System Shareable for these
transactions, because they are never Non-cacheable or Device.

The MMU‑600 treats transactions that pass the translation fault check as follows:

MakeInvalid transactions
The MMU‑600 converts MakeInvalid transactions to CleanInvalid transactions, unless the
translation also grants write permission and Destructive Read Enable (DRE) permission.

ReadOnceMakeInvalid and ReadOnceCleanInvalid transactions
The MMU‑600 outputs ReadOnceMakeInvalid transactions as ReadOnceCleanInvalid
transactions, unless the translation also granted write permission and DRE permission.
If the final transaction attributes on the TBU TBM interface are not Inner Shareable Write-Back
or Outer Shareable Write-Back, the MMU‑600 converts ReadOnceMakeInvalid and
ReadOnceCleanInvalid transactions into ordinary reads.

WriteUniquePtlStash and WriteUniqueFullStash transactions
If they pass the translation fault check, the MMU‑600 converts WriteUniquePtlStash and
WriteUniqueFullStash transactions to ordinary write transactions if either:
• The translation did not grant Directed Cache Prefetch (DCP) permission.
• The final transaction attributes on the TBU TBM interface are not Inner Shareable or Outer

Shareable Write-Back.

If such a conversion occurs, AWSTASH* is driven as 0.

Transactions that cannot result in a translation fault

In an MMU‑600 system, certain transactions cannot result in a translation fault, and certain behavior is
associated with such transactions.

The following transactions never result in a translation fault:

• StashOnceShared
• StashOnceUnique
• StashTranslation

If any of these transactions require a translation request to the TCU, the MMU‑600 issues a Speculative
translation request on the DTI interconnect. StashOnceShared and StashOnceUnique transactions are
terminated in the TBU, with a BRESP value of OKAY, when any of the following cases apply:

• The translation did not grant Directed Cache Prefetch (DCP) permission
• The final transaction attributes on the TBM interface are not Inner Shareable or Outer Shareable

Write‑Back
• The translation did not grant any of read, write, or execute permission at the appropriate privilege

level

2 Functional description
2.4 Constraints and limitations of use

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-55

Non-Confidential

 Note

Only one of these permissions is required for the stash transaction to be permitted.

 Note

A BRESP value of OKAY indicates transaction success. The MMU‑600 always generates this value
when a StashOnceShared or a StashOnceUnique transaction is terminated in the TBU. This behavior
applies even when a StreamDisable or GlobalDisable translation response causes the transaction to be
terminated.

The MMU‑600 never propagates StashTranslation transactions downstream, and uses StashTranslation
only to prefetch Main TLB contents. MMU‑600 always terminates StashTranslation transactions with a
BRESP value of OKAY, even if no translation could be stored in the Main TLB.

The TBU ignores AWPROT[0] and AWPROT[2] for StashTranslation transactions, because they do not
affect Speculative translation requests.

 Note

A StashTranslation transaction can be used to prefetch translations into the Main TLB of the MMU‑600.
However, for this prefetching to be useful, any subsequent transactions that intend to take advantage of
the translations that have been prefetched into the Main TLB must use the same StreamID as the original
prefetch. The StreamID identifies a translation context. Using a different StreamID for a subsequent
transaction means that this subsequent transaction uses a different translation context to the translation
that has been prefetched into the Main TLB and might lead to a TLB miss.

AXI5 support

The AXI5 protocol includes extensions that are not included in previous AXI versions. The Arm® AMBA®

AXI and ACE Protocol Specification, AXI3, AXI4, AXI5, ACE and ACE5 defines these extensions.

The following table shows whether individual TCU and TBU interfaces support the AXI5 extensions.

Table 2-17 TCU and TBU interface support for AXI5 extensions

AXI5 extension QTW/DVM TBU TBS TBU TBM

DVM_v8.1 Yes - -

Wakeup_Signals Yes Yes Yes

Atomic_Transactions - Yes Yes

Coherency_Connection_Signals Yes - -

Cache_Stash_Transactions - Yes Yes

DeAllocation_Transactions - Yes Yes

Untranslated_Transactions - Yes Yes

Poison - - -

Check_Type - - -

QoS_Accept - - -

2 Functional description
2.4 Constraints and limitations of use

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-56

Non-Confidential

Table 2-17 TCU and TBU interface support for AXI5 extensions (continued)

AXI5 extension QTW/DVM TBU TBS TBU TBM

Trace_Signals - - -

Loopback_Signals - - -

NSAccess_Identifiers - - -

Persist_CMO - Yes Yes

2 Functional description
2.4 Constraints and limitations of use

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

2-57

Non-Confidential

Chapter 3
Programmer's model

This chapter describes the MMU‑600 programmer's model.

It contains the following sections:
• 3.1 About the programmer's model on page 3-59.
• 3.2 SMMU architectural registers on page 3-61.
• 3.3 MMU‑600 memory map on page 3-66.
• 3.4 Register summary on page 3-68.
• 3.5 TCU component and peripheral ID registers on page 3-71.
• 3.6 TCU PMU component and peripheral ID registers on page 3-72.
• 3.7 TCU microarchitectural registers on page 3-73.
• 3.8 TCU RAS registers on page 3-82.
• 3.9 TBU component and peripheral ID registers on page 3-87.
• 3.10 TBU PMU component and peripheral ID registers on page 3-88.
• 3.11 TBU microarchitectural registers on page 3-89.
• 3.12 TBU RAS registers on page 3-91.

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-58

Non-Confidential

3.1 About the programmer's model
This section provides general information about the MMU‑600 register properties.

The following information applies to the MMU‑600 registers:

• The base address is not fixed, and can be different for any particular system implementation. The
offset of each register from the base address is fixed.

• Access type is described as follows:

RW Read and write.
RO Read‑only.
WO Write‑only.
RAZ Read‑As‑Zero.
WI Writes ignored.

• Do not attempt to access reserved or unused address locations. Reading these locations results in
RAZ and writing to these locations results in WI.

• Unless otherwise stated in the accompanying text:
— Do not modify UNDEFINED register bits.
— Ignore UNDEFINED register bits on reads.
— All register bits are reset to 0 by a system or Cold reset.

• Bit positions that are described as reserved are:
— In an RW register, RAZ/WI.
— In an RO register, RAZ.
— In a WO register, WI.

The MMU‑600 registers are accessed using the PROG APB4 slave interface on the TCU, and cannot be
accessed directly through any other slave interfaces.

Some registers are 64 bits, but the PROG APB4 interface is 32 bits. Because software accesses 64‑bit
registers 32 bits at a time, such accesses are not guaranteed to be 64‑bit atomic. This behavior does not
cause problems for software, because the SMMUv3 architecture does not require 64‑bit atomic access to
any registers.

The programmer's model contains separate TBU and TCU regions for internal control, RAS, and
identification registers. Accesses to unmapped or reserved registers are RAZ/WI. Non-secure accesses to
Secure registers are RAZ/WI. The MMU‑600 implements the identification register scheme that the
SMMUv3 architecture defines.

The MMU‑600 implements all the Performance Monitor Counter Group (PMCG) registers that the
SMMUv3 architecture defines, except for:

• SMMU_PMCG_IRQ_CFG0
• SMMU_PMCG_IRQ_CFG1
• SMMU_PMCG_IRQ_CFG2
• SMMU_PMCG_IRQ_STATUS

The MMU‑600 does not implement the following SMMUv3 architectural registers, and accesses to these
locations are RAZ/WI:
• SMMU_IDR4
• SMMU_STATUSR
• SMMU_AGBPA
• SMMU_GATOS_*
• SMMU_S_IDR4
• SMMU_S_AGBPA
• SMMU_S_GATOS_*
• SMMU_VATOS_*

3 Programmer's model
3.1 About the programmer's model

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-59

Non-Confidential

See the Arm® System Memory Management Unit Architecture Specification, SMMU architecture version
3.0 and version 3.1 for more information about the SMMU architectural registers.

3 Programmer's model
3.1 About the programmer's model

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-60

Non-Confidential

3.2 SMMU architectural registers
The MMU‑600 implements many of the SMMU architectural registers, as defined by the Arm® System
Memory Management Unit Architecture Specification, SMMU architecture version 3.0 and version 3.1.

The following table lists the SMMUv3 architectural registers that the MMU‑600 implements.
 Note

All writable register fields reset to 0 unless the SMMU architecture specifies otherwise.

Table 3-1 SMMUv3 architectural registers

Register Name Description

SMMU_S_IDR0 - SMMU_S_IDR3 SMMU Secure feature Identification
Registers

Provides information about the Secure features that
the SMMU implementation supports.

SMMU_S_CR0 Secure global Control Register 0 Provides global configuration of the Secure SMMU.

SMMU_S_CR0ACK Secure global Control Register 0
update Acknowledge

Provides acknowledgement of completion of updates
to SMMU_S_CR0.

SMMU_S_CR1

SMMU_S_CR2

Secure global Control Registers Provides the controls for Secure table and queue
access attributes.

SMMU_S_INIT Secure Initialization control register Provides a control to invalidate all Secure SMMU
caching on system initialization.

SMMU_S_GBPA Secure Global Bypass Attribute
register

Controls the global bypass attributes that are used for
transactions from Secure streams when the MMU is
disabled.

SMMU_S_IRQ_CTRL Secure Interrupt Control register Contains enables for SMMU interrupts.

SMMU_S_IRQ_CTRLACK Secure Interrupt Control register
update Acknowledge

Provides acknowledgement of the completion of
updates to SMMU_S_IRQ_CTRL.

SMMU_S_GERROR Secure Global Error status register Provides information on Secure global programming
interface errors.

SMMU_S_GERRORN Secure Global Error
Acknowledgement register

Contains the acknowledgement fields for
SMMU_S_GERROR errors.

SMMU_S_GERROR_IRQ_CFG0 -
SMMU_S_GERROR_IRQ_CFG2

Secure Global Error IRQ
Configuration register

Contains the Secure MSI address configuration for
the GERROR IRQ.

SMMU_S_STRTAB_BASE Secure Stream Table Base address
register

Contains the base address and attributes for the
Secure Stream table.

SMMU_S_STRTAB_BASE_CFG Secure Stream Table Base
Configuration register

Contains configuration fields for the Secure Stream
table.

SMMU_S_CMDQ_BASE Secure Command queue Base
address register

Contains the base address and attributes for the
Secure Command queue.

3 Programmer's model
3.2 SMMU architectural registers

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-61

Non-Confidential

Table 3-1 SMMUv3 architectural registers (continued)

Register Name Description

SMMU_S_CMDQ_PROD Secure Command queue Producer
index register

Contains the Secure Command queue index for writes
by the producer.

SMMU_S_CMDQ_CONS Secure Command queue Consumer
index register

Contains the Secure Command queue index for reads
by the consumer.

SMMU_S_EVENTQ_BASE Secure Event queue Base address
register

Contains the base address and attributes for the
Secure Event queue.

SMMU_S_EVENTQ_PROD Secure Event queue Producer index
register

Contains the Secure Event queue index for writes by
the producer.

SMMU_S_EVENTQ_CONS Secure Event queue Consumer
index register

Contains the Secure Event queue index for reads by
the consumer.

SMMU_S_EVENTQ_IRQ_CFG0 -
SMMU_S_EVENTQ_IRQ_CFG2

Secure Event queue IRQ
Configuration registers

Contains the MSI address configuration for the
Secure Event queue IRQ.

SMMU_IDR0 - SMMU_IDR3

SMMU_IDR5

SMMU feature Identification
Registers

Provides information about the features that the
SMMU implementation supports.

SMMU_IIDR Implementation Identification
Register

Provides implementer, part, and revision information
for the SMMU implementation.

SMMU_AIDR Architecture Identification Register Identifies the SMMU architecture version to which
the implementation conforms.

SMMU_CR0 Non‑secure global Control Register
0

Provides the controls for the global configuration of
the Non‑secure SMMU.

SMMU_CR0ACK Non‑secure global Control Register
0 update Acknowledge register

Provides acknowledgement of completion of updates
to SMMU_CR0.

SMMU_CR1 Non‑secure global Control Register
1

Provides the controls for Non‑secure table and queue
access attributes.

SMMU_CR2 Non‑secure global Control Register
2

Provides the controls for the configuration of the
global Non‑secure features.

SMMU_GBPA Non‑secure Global Bypass Attribute
register

Controls the global bypass attributes that are used for
transactions from Non‑secure streams when the
MMU is disabled.

SMMU_IRQ_CTRL Non‑secure Interrupt Control
register

Provides IRQ enable flags for edge‑triggered wired
outputs, if implemented, and MSI writes, if
implemented.

SMMU_IRQ_CTRLACK Non‑secure Interrupt Control
register update Acknowledge
register

Provides acknowledgement of the completion of
updates to SMMU_IRQ_CTRL.

SMMU_GERROR Non‑secure Global Error status
register

Provides information about Non-secure global
programming interface errors.

3 Programmer's model
3.2 SMMU architectural registers

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-62

Non-Confidential

Table 3-1 SMMUv3 architectural registers (continued)

Register Name Description

SMMU_GERRORN Non‑secure Global Error
acknowledgement register

Contains the acknowledgement fields for
SMMU_GERROR errors.

SMMU_GERROR_IRQ_CFG0 Non‑secure Global Error IRQ
Configuration register 0

Contains the MSI address configuration for the
GERROR IRQ.

SMMU_GERROR_IRQ_CFG1 Non‑secure Global Error IRQ
Configuration register 1

Contains the MSI payload configuration for the
GERROR IRQ.

SMMU_GERROR_IRQ_CFG2 Non‑secure Global Error IRQ
Configuration register 2

Contains the MSI attribute configuration for the
GERROR IRQ.

SMMU_STRTAB_BASE Non‑secure Stream Table Base
address register

Contains the base address and attributes for the Non-
secure Stream table.

SMMU_STRTAB_BASE_CFG Non‑secure Stream Table
Configuration register

Contains configuration fields for the Non‑secure
Stream table.

SMMU_CMDQ_BASE Non‑secure Command queue Base
address register

Contains the base address and attributes for the
Non‑secure Command queue.

SMMU_CMDQ_PROD Non‑secure Command queue
Producer index register

Contains the Non‑secure Command queue index for
writes by the producer.

SMMU_CMDQ_CONS Non‑secure Command queue
Consumer index register

Contains the Non‑secure Command queue index for
reads by the consumer.

SMMU_EVENTQ_BASE Non‑secure Event queue Base
address register

Contains the base address and attributes for the
Non‑secure Event queue.

SMMU_EVENTQ_PROD Non‑secure Event queue Producer
index register

Contains the Non‑secure Event queue index for writes
by the producer.

SMMU_EVENTQ_CONS Non‑secure Event queue Consumer
index register

Contains the Non‑secure Event queue index for reads
by the consumer.

SMMU_EVENTQ_IRQ_CFG0 Non‑secure Event queue IRQ
Configuration register 0

Contains the MSI address configuration for the Event
queue IRQ.

SMMU_EVENTQ_IRQ_CFG1 Non‑secure Event queue IRQ
Configuration register 1

Contains the MSI payload configuration for the Event
queue IRQ.

SMMU_EVENTQ_IRQ_CFG2 Non‑secure Event queue IRQ
Configuration register 2

Contains the MSI attribute configuration for the Event
queue IRQ.

SMMU_PRIQ_BASE Non‑secure PRI queue Base address
register

Contains the base address and attributes for the
Non‑secure PRI queue.

SMMU_PRIQ_PROD Non‑secure PRI queue Producer
index register

Contains the Non‑secure PRI queue index for writes
by the producer.

SMMU_PRIQ_CONS Non‑secure PRI queue Consumer
index register

Contains the Non‑secure PRI queue index for reads
by the consumer.

3 Programmer's model
3.2 SMMU architectural registers

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-63

Non-Confidential

Table 3-1 SMMUv3 architectural registers (continued)

Register Name Description

SMMU_PRIQ_IRQ_CFG0 Non‑secure PRI queue IRQ
Configuration register 0

Contains the MSI address configuration for the PRI
queue IRQ.

SMMU_PRIQ_IRQ_CFG1 Non‑secure PRI queue IRQ
Configuration register 1

Contains the MSI payload configuration for the PRI
queue IRQ.

SMMU_PRIQ_IRQ_CFG2 Non‑secure PRI queue IRQ
Configuration register 2

Contains the MSI attribute configuration for the PRI
queue IRQ.

The MMU‑600 implements an SMMUv3 Performance Monitor Counter Group (PMCG) in the TCU and
in each TBU. The following table lists the registers that the MMU‑600 implements in each PMCG.

Table 3-2 SMMUv3 PMCG registers

Register Name Description

SMMU_PMCG_EVCNTR0 -
SMMU_PMCG_EVCNTR3

SMMU PMCG Event Counter
registers

Contains the values of the event counters.

SMMU_PMCG_EVTYPER0 -
SMMU_PMCG_EVTYPER3

SMMU PMCG Event Type
configuration registers

Configures the events that the corresponding counter
counts.

SMMU_PMCG_SVR0 -
SMMU_PMCG_SVR3

SMMU PMCG Shadow Value
Registers

Contains the shadow value of the corresponding event
counter.

SMMU_PMCG_SMR0 SMMU PMCG Stream Match
filter Register

Configures the stream match filter for the
corresponding event counter.

SMMU_PMCG_CNTENSET0 SMMU PMCG Counter Enable
Set register

Provides the set mechanism for the counter enables.

SMMU_PMCG_CNTENCLR0 SMMU PMCG Counter Enable
Clear register

Provides the clear mechanism for the counter enables.

SMMU_PMCG_INTENSET0 SMMU PMCG Interrupt
contribution Enable Set register

Provides the set mechanism for the counter interrupt
contribution enables.

SMMU_PMCG_INTENCLR0 SMMU PMCG Interrupt
contribution Enable Clear
register

Provides the clear mechanism for the counter interrupt
enables.

SMMU_PMCG_OVSCLR0 SMMU PMCG Overflow Status
Clear register

Provides the clear mechanism for the overflow status
bits and provides read access to the overflow status bit
values.

SMMU_PMCG_OVSSET0 SMMU PMCG Overflow Status
Set register

Provides the set mechanism for the overflow status bits
and provides read access to the overflow status bit
values.

SMMU_PMCG_CAPR SMMU PMCG Counter shadow
value Capture Register

Controls the counter shadow value capture mechanism.

3 Programmer's model
3.2 SMMU architectural registers

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-64

Non-Confidential

Table 3-2 SMMUv3 PMCG registers (continued)

Register Name Description

SMMU_PMCG_SCR SMMU PMCG Secure Control
Register

Secure Control Register.

SMMU_PMCG_CFGR SMMU PMCG Configuration
information Register

Provides information about the PMCG
implementation.

SMMU_PMCG_CR SMMU PMCG Control Register Contains the Performance Monitor control flags.

SMMU_PMCG_CEID0 -
SMMU_PMCG_CEID1

SMMU PMCG Common Event
ID registers

Contains the lower and upper 64 bits of the Common
Event identification bitmap.

SMMU_PMCG_IRQ_CTRL SMMU PMCG IRQ enable
register

Contains the Performance Monitors IRQ enable.

SMMU_PMCG_IRQ_CTRLACK SMMU PMCG IRQ enable
Acknowledge register

Provides acknowledgement of the completion of
updates to SMMU_PMCG_IRQ_CTRL.

SMMU_PMCG_AIDR SMMU PMCG Architecture
Identification Register

Provides the Performance Monitor Architecture
Identification.

SMMU_PMCG_ID_REGS ID registers IMPLEMENTATION DEFINED.

SMMU_PMCG_PMAUTHSTATUS PMU Authentication Status
register

Performance Monitor authentication status.

SMMU_PMCG_PMDEVARCH PMU Device Architecture
register

Performance Monitor architecture identifier.

SMMU_PMCG_PMDEVTYPE PMU Device Type register Performance Monitor device type.

3 Programmer's model
3.2 SMMU architectural registers

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-65

Non-Confidential

3.3 MMU-600 memory map
The MMU‑600 memory map contains all registers.

The following table shows the MMU‑600 memory map with the maximum number of implemented
TBUs.

Table 3-3 MMU-600 memory map

Address range Description

0x000000 - 0x03FFFC TCU registers.

0x040000 - 0x05FFFC

0x060000 - 0x07FFFC

0x080000 - 0x09FFFC

.

.

.

0x7C0000 - 0x7DFFFC

0x7E0000 - 0x7FFFFC

TBU0 registers.

TBU1 registers

TBU2 registers.

.

.

.

TBU60 registers.

TBU61 registers.

 Note

All TBU and TCU register addresses in this manual are described relative to the base address for that
component.

The following table shows the MMU‑600 TCU memory map.

Table 3-4 MMU-600 TCU memory map

Address Description

0x00000 - 0x0FFFC TCU registers, page 0, including:
• SMMUv3 registers, page 0.
• TCU Performance Monitor Counter Group (PMCG) registers, page 0, starting at offset 0x02000.
• TCU microarchitectural registers.

0x10000 - 0x1FFFC TCU registers, page 1.

This address range contains the SMMUv3 registers, page 1.

0x20000 - 0x2FFFC TCU registers, page 2.

This address range contains the TCU PMCG registers, page 1, starting at offset 0x22000.

0x30000 - 0x3FFFC Reserved.

The following table shows the MMU‑600 TBU memory map.

3 Programmer's model
3.3 MMU-600 memory map

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-66

Non-Confidential

Table 3-5 MMU-600 TBU memory map

Address Description

0x00000 - 0x0FFFC TBU registers, page 0, including:
• TBU PMCG registers, page 0, starting at offset 0x02000.
• TBU microarchitectural registers.

0x10000 - 0x1FFFC TBU registers, page 1.

This address range contains the TBU PMCG registers, page 1, starting at offset 0x12000.

3 Programmer's model
3.3 MMU-600 memory map

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-67

Non-Confidential

3.4 Register summary
The register summary lists all MMU‑600 registers and some key characteristics.

TBU identification register summary

The following table shows the TBU identification registers in offset order from the base memory
address.

Table 3-6 TBU identification register summary

Offset Name Type Description

0x00FD0 SMMU_PIDR4 RO 3.9 TBU component and peripheral ID registers on page 3-87

0x00FD4 SMMU_PIDR5 RO

0x00FD8 SMMU_PIDR6 RO

0x00FDC SMMU_PIDR7 RO

0x00FE0 SMMU_PIDR0 RO

0x00FE4 SMMU_PIDR1 RO

0x00FE8 SMMU_PIDR2 RO

0x00FEC SMMU_PIDR3 RO

0x00FF0 SMMU_CIDR0 RO

0x00FF4 SMMU_CIDR1 RO

0x00FF8 SMMU_CIDR2 RO

0x00FFC SMMU_CIDR3 RO

TBU RAS register summary

The following table shows the TBU Reliability, Availability, and Serviceability (RAS) registers in offset
order from the base memory address.

Table 3-7 TBU RAS register summary

Offset Name Type Description

0x08E80 TBU_ERRFR RO 3.12.1 TBU_ERRFR on page 3-91

0x08E88 TBU_ERRCTLR RW 3.12.2 TBU_ERRCTLR on page 3-91

0x08E90 TBU_ERRSTATUS RW 3.12.3 TBU_ERRSTATUS on page 3-92

0x08EC0 TBU_ERRGEN RW 3.12.4 TBU_ERRGEN on page 3-93

TBU microarchitectural register summary

The following table shows the TBU microarchitectural registers in offset order from the base memory
address.

Table 3-8 TBU microarchitectural register summary

Offset Name Type Description

0x08E00 TBU_CTRL RW 3.11.1 TBU_CTRL on page 3-89

0x08E18 TBU_SCR RW 3.11.2 TBU_SCR on page 3-89

3 Programmer's model
3.4 Register summary

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-68

Non-Confidential

TCU identification register summary

The following table shows the TCU identification registers in offset order from the base memory
address.

Table 3-9 TCU identification register summary

Offset Name Type Description

0x00FD0 SMMU_PIDR4 RO 3.5 TCU component and peripheral ID registers on page 3-71

0x00FD4 SMMU_PIDR5 RO

0x00FD8 SMMU_PIDR6 RO

0x00FDC SMMU_PIDR7 RO

0x00FE0 SMMU_PIDR0 RO

0x00FE4 SMMU_PIDR1 RO

0x00FE8 SMMU_PIDR2 RO

0x00FEC SMMU_PIDR3 RO

0x00FF0 SMMU_CIDR0 RO

0x00FF4 SMMU_CIDR1 RO

0x00FF8 SMMU_CIDR2 RO

0x00FFC SMMU_CIDR3 RO

TCU and TBU PMU identification register summary

The TCU and the TBU use the same PMU identification registers. The following table shows the TCU
and TBU PMU identification registers in offset order from the base memory address.

Table 3-10 TCU and TBU PMU identification register summary

Offset Name Type Description

0x02FB8 SMMU_PMCG_PMAUTHSTATUS RO 3.6 TCU PMU component and peripheral ID registers on page 3-72

3.10 TBU PMU component and peripheral ID registers on page 3-880x02FD0 SMMU_PMCG_PIDR4 RO

0x02FD4 SMMU_PMCG_PIDR5 RO

0x02FD8 SMMU_PMCG_PIDR6 RO

0x02FDC SMMU_PMCG_PIDR7 RO

0x02FE0 SMMU_PMCG_PIDR0 RO

0x02FE4 SMMU_PMCG_PIDR1 RO

0x02FE8 SMMU_PMCG_PIDR2 RO

0x02FEC SMMU_PMCG_PIDR3 RO

0x02FF0 SMMU_PMCG_CIDR0 RO

0x02FF4 SMMU_PMCG_CIDR1 RO

0x02FF8 SMMU_PMCG_CIDR2 RO

0x02FFC SMMU_PMCG_CIDR3 RO

3 Programmer's model
3.4 Register summary

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-69

Non-Confidential

TCU RAS register summary

The following table shows the TCU RAS registers in offset order from the base memory address.

Table 3-11 TCU RAS register summary

Offset Name Type Description

0x08E80 TCU_ERRFR RO 3.8.1 TCU_ERRFR on page 3-82

0x08E88 TCU_ERRCTLR RW 3.8.2 TCU_ERRCTLR on page 3-82

0x08E90 TCU_ERRSTATUS RW 3.8.3 TCU_ERRSTATUS on page 3-83

0x08EC0 TCU_ERRGEN RW 3.8.4 TCU_ERRGEN on page 3-85

TCU microarchitectural register summary

The following table shows the TCU microarchitectural registers in offset order from the base memory
address.

Table 3-12 TCU microarchitectural register summary

Offset Name Type Description

0x08E00 TCU_CTRL RW 3.7.1 TCU_CTRL on page 3-73

0x08E04 TCU_QOS RW 3.7.2 TCU_QOS on page 3-75

0x08E08 TCU_CFG RO 3.7.3 TCU_CFG on page 3-76

0x08E10 TCU_STATUS RO 3.7.4 TCU_STATUS on page 3-77

0x08E18 TCU_SCR RW 3.7.5 TCU_SCR on page 3-78

0x09000 - 0x093FC TCU_NODE_CTRLn RW 3.7.6 TCU_NODE_CTRLn on page 3-79

0x09400 - 0x097FC TCU_NODE_STATUSn RO 3.7.7 TCU_NODE_STATUSn on page 3-80

3 Programmer's model
3.4 Register summary

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-70

Non-Confidential

3.5 TCU component and peripheral ID registers
The component and peripheral identity registers comply with the format that the Arm CoreLink and
CoreSight components use, and recommended in the SMMUv3 architecture. They provide key
information about the MMU‑600 hardware, including the product and associated revision number. They
also identify Arm as the designer of the SMMU.

These registers are all read‑only. Each field defines a single byte in the least significant 8 bits, and the
most significant 24 bits are reserved. The least significant 8 bits of the four Component ID registers form
a single 32‑bit conceptual ID register. In a similar way, the defined fields of the eight Peripheral ID
registers form a conceptual 64‑bit ID register.

Table 3-13 TCU Component and Peripheral ID registers bit descriptions

Register Offset Bits Value Description

SMMU_PIDR4 0x00FD0 [7:4] 0x0 4KB region count.

[3:0] 0x4 JEP106 continuation code for Arm.

SMMU_PIDR5 0x00FD4 [7:0] 0x00 Reserved.

SMMU_PIDR6 0x00FD8 [7:0] 0x00 Reserved.

SMMU_PIDR7 0x00FDC [7:0] 0x00 Reserved.

SMMU_PIDR0 0x00FE0 [7:0] 0x83 Part number[7:0].

SMMU_PIDR1 0x00FE4 [7:4] 0xB JEP106 ID code[3:0] for Arm.

[3:0] 0x4 Part number[11:8].

SMMU_PIDR2 0x00FE8 [7:4] 0x2 MMU‑600 major revision.

The value 0x2 indicates major product revision r2.

[3] 0b1 The component uses a manufacturer identity code that JEDEC allocates,
according to the JEP106 specification.

[2:0] 0b011 JEP106 ID code[6:4] for Arm.

SMMU_PIDR3 0x00FEC [7:4] MAX[0x2,ecorevnum] MMU‑600 minor revision.

The value 0x2 indicates minor product revision p2.

[3:0] 0x0 CMOD. This field is not used.

SMMU_CIDR0 0x00FF0 [7:0] 0x0D Preamble.

SMMU_CIDR1 0x00FF4 [7:0] 0xF0

SMMU_CIDR2 0x00FF8 [7:0] 0x05

SMMU_CIDR3 0x00FFC [7:0] 0xB1

3 Programmer's model
3.5 TCU component and peripheral ID registers

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-71

Non-Confidential

3.6 TCU PMU component and peripheral ID registers
The component and peripheral identity registers comply with the format that Arm CoreLink and
CoreSight components use, and that the SMMUv3 architecture recommends. They provide key
information about the MMU‑600 hardware, including the product and associated revision number. They
also identify Arm as the designer of the SMMU.

These registers are all read‑only. Each field defines a single byte in the least significant 8 bits, and the
most significant 24 bits are reserved. The least significant 8 bits of the four Component ID registers form
a single 32‑bit conceptual ID register. In a similar way, the defined fields of the eight Peripheral ID
registers form a conceptual 64‑bit ID register.

Table 3-14 TCU PMU Component and Peripheral ID registers bit descriptions

Register Offset Bits Value Description

SMMU_PMCG_PMAUTHSTATUS 0x02FB8 [7:0] 0x00 No authentication interface is implemented.

SMMU_PMCG_PIDR4 0x02FD0 [7:4] 0x0 4KB region count.

[3:0] 0x4 JEP106 continuation code for Arm.

SMMU_PMCG_PIDR5 0x02FD4 [7:0] 0x00 Reserved.

SMMU_PMCG_PIDR6 0x02FD8 [7:0] 0x00 Reserved.

SMMU_PMCG_PIDR7 0x02FDC [7:0] 0x00 Reserved.

SMMU_PMCG_PIDR0 0x02FE0 [7:0] 0x83 Part number[7:0].

SMMU_PMCG_PIDR1 0x02FE4 [7:4] 0xB JEP106 ID code[3:0] for Arm.

[3:0] 0x4 Part number[11:8].

SMMU_PMCG_PIDR2 0x02FE8 [7:4] 0x2 MMU‑600 revision.

The value 0x2 indicates major product revision r2.

[3] 0b1 The component uses a manufacturer identity code
that JEDEC allocates, according to the JEP106
specification.

[2:0] 0b011 JEP106 ID code[6:4] for Arm.

SMMU_PMCG_PIDR3 0x02FEC [7:4] MAX[0x2,ecorevnum] MMU‑600 minor revision.

The value 0x2 indicates minor product revision p2.

[3:0] 0x0 CMOD. This field is not used.

SMMU_PMCG_CIDR0 0x02FF0 [7:0] 0x0D Preamble.

SMMU_PMCG_CIDR1 0x02FF4 [7:0] 0x90

SMMU_PMCG_CIDR2 0x02FF8 [7:0] 0x05

SMMU_PMCG_CIDR3 0x02FFC [7:0] 0xB1

3 Programmer's model
3.6 TCU PMU component and peripheral ID registers

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-72

Non-Confidential

3.7 TCU microarchitectural registers
You can set the TCU microarchitectural registers at boot time to optimize TCU behavior for your system.
Arm recommends the default settings for most systems.

This section contains the following subsections:
• 3.7.1 TCU_CTRL on page 3-73.
• 3.7.2 TCU_QOS on page 3-75.
• 3.7.3 TCU_CFG on page 3-76.
• 3.7.4 TCU_STATUS on page 3-77.
• 3.7.5 TCU_SCR on page 3-78.
• 3.7.6 TCU_NODE_CTRLn on page 3-79.
• 3.7.7 TCU_NODE_STATUSn on page 3-80.

3.7.1 TCU_CTRL

The TCU Control register disables TCU features. If the hit rate of the individual walk cache is too low,
you can disable individual walk caches to improve performance in some systems. Do not modify the
AUX bits unless directed to do so by Arm.

The TCU_CTRL characteristics are:

Usage constraints

When TCU_SCR.NS_UARCH = 0, Non‑secure accesses to this register are RAZ/WI.

Writes to this register are possible only when both SMMU_CR0.SMMUEN = 0 and
SMMU_S_CR0.SMMUEN = 0. Writes at other times are ignored.

After modifying this register, software must issue an INV_ALL operation using the
SMMU_S_INIT register, before it sets SMMUEN to 1. Failure to issue an INV_ALL operation
results in UNPREDICTABLE behavior.

Configurations

This register exists in all TCU configurations.

Attributes

Offset 0x08E00

Type RW

Reset 0x00000000

Width 32

The following figure shows the bit assignments.

3 Programmer's model
3.7 TCU microarchitectural registers

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-73

Non-Confidential

31 0

WCS2L3_DIS

78910111213141516

AUX[31:20]

WCS1L0_DIS
WCS1L1_DIS
WCS1L2_DIS
WCS1L3_DIS
WCS2L0_DIS
WCS2L1_DIS
WCS2L2_DIS

AUX[7:0]

181920

ASID_VMID_HASH
AUX[18:16]

Figure 3-1 TCU_CTRL register bit assignments

The following table shows the bit descriptions.

Table 3-15 TCU_CTRL register bit descriptions

Bits Name Description

[31:20] AUX[31:20] Leave each of these bits as 0.

[19] ASID_VMID_HASH 0 VMID and input address are used for walk cache indexing. Transactions with the same VMID
and input address, but different ASID, use the same walk cache index. Walk cache utilization is
poor if such transactions are common.

1 ASID, VMID, and input address are used for walk cache indexing. Transactions with the same
VMID and input address, but different ASID, use different walk cache indexes. This improves
walk cache utilization if different ASIDs are used for the same input address and VMID, but
invalidation performance is worse for invalidations that do not provide an ASID because the
whole cache must be walked instead of invalidating based on a specific index.

[18:16] AUX[18:16] Leave each of these bits as 0.

[15] WCS2L3_DIS Walk cache disable:

0 Stage 2 level 3 walk cache is enabled.

1 Stage 2 level 3 walk cache is disabled.

[14] WCS2L2_DIS Walk cache disable:

0 Stage 2 level 2 walk cache is enabled.

1 Stage 2 level 2 walk cache is disabled.

[13] WCS2L1_DIS Walk cache disable:

0 Stage 2 level 1 walk cache is enabled.

1 Stage 2 level 1 walk cache is disabled.

[12] WCS2L0_DIS Walk cache disable:

0 Stage 2 level 0 walk cache is enabled.

1 Stage 2 level 0 walk cache is disabled.

3 Programmer's model
3.7 TCU microarchitectural registers

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-74

Non-Confidential

Table 3-15 TCU_CTRL register bit descriptions (continued)

Bits Name Description

[11] WCS1L3_DIS Walk cache disable:

0 Stage 1 level 3 walk cache is enabled.

1 Stage 1 level 3 walk cache is disabled.

[10] WCS1L2_DIS Walk cache disable:

0 Stage 1 level 2 walk cache is enabled.

1 Stage 1 level 2 walk cache is disabled.

[9] WCS1L1_DIS Walk cache disable:

0 Stage 1 level 1 walk cache is enabled.

1 Stage 1 level 1 walk cache is disabled.

[8] WCS1L0_DIS Walk cache disable:

0 Stage 1 level 0 walk cache is enabled.

1 Stage 1 level 0 walk cache is disabled.

[7:0] AUX[7:0] Leave each of these bits as 0.

3.7.2 TCU_QOS

The TCU Quality of Service (QoS) register specifies AxQOS values for each transaction type that is
issued on the QTW/DVM interface. The MMU‑600 does not use this value internally, but a downstream
interconnect can use the value to control how it prioritizes transactions.

The AxQOS value that is associated with each transaction does not take account of other transactions
that are blocked behind it. For example, although higher priority translations are normally progressed
before lower priority translations, a low‑priority translation table walk might prevent the TCU from
issuing a translation table walk with a higher priority.

The TCU_QOS characteristics are:

Usage constraints

When TCU_SCR.NS_UARCH = 0, Non-secure accesses to this register are RAZ/WI.

Writes to this register are possible only when both SMMU_CR0.SMMUEN = 0 and
SMMU_S_CR0.SMMUEN = 0. Writes at other times are ignored.

After modifying this register, software must issue an INV_ALL operation using the
SMMU_S_INIT register, before it sets SMMUEN to 1. Failure to issue an INV_ALL operation
results in UNPREDICTABLE behavior.

Configurations

This register exists in all TCU configurations.

Attributes

Offset 0x08E04

Type RW

Reset 0x00000000

Width 32

3 Programmer's model
3.7 TCU microarchitectural registers

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-75

Non-Confidential

The following figure shows the bit assignments.

31 0

QOS_PTW0

347811121516

Reserved

QOS_QUEUE

192023242728

QOS_PTW1
QOS_PTW2
QOS_PTW3

QOS_MSI
QOS_DVMSYNC

Figure 3-2 TCU_QOS register bit assignments

The following table shows the bit descriptions.

Table 3-16 TCU_QOS register bit descriptions

Bits Name Description

[31:28] - Reserved.

[27:24] QOS_DVMSYNC The AxQOS value that is used for DVM Sync Completion messages.

[23:20] QOS_MSI The AxQOS value that is used for MSIs.

[19:16] QOS_QUEUE The AxQOS value that is used for queue accesses.

[15:12] QOS_PTW3 The AxQOS value that is used for translation table walks for translations where
TCU_NODE_CTRLn.PRIORITY = 3 for the requesting node.

[11:8] QOS_PTW2 The AxQOS value that is used for translation table walks for translations where
TCU_NODE_CTRLn.PRIORITY = 2 for the requesting node.

[7:4] QOS_PTW1 The AxQOS value that is used for translation table walks for translations where
TCU_NODE_CTRLn.PRIORITY = 1 for the requesting node.

[3:0] QOS_PTW0 The AxQOS value that is used for translation table walks for translations where
TCU_NODE_CTRLn.PRIORITY = 0 for the requesting node.

3.7.3 TCU_CFG

This is the TCU Configuration Information register.

Its characteristics are:

Usage constraints

When TCU_SCR.NS_UARCH = 0, Non‑secure accesses to this register are RAZ.

Configurations

This register exists in all TCU configurations.

Attributes

Offset 0x08E08

Type RO

Reset See register bit assignments.

Width 32

The following figure shows the bit assignments.

3 Programmer's model
3.7 TCU microarchitectural registers

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-76

Non-Confidential

31 0341516

Reserved XLATE_SLOTS Reserved

Figure 3-3 TCU_CFG register bit assignments

The following table shows the bit descriptions.

Table 3-17 TCU_CFG register bit descriptions

Bits Name Description

[31:16] - Reserved.

[15:4] XLATE_SLOTS The number of translation slots that are available for sharing between all nodes.

The reset value of this field is TCUCFG_XLATE_SLOTS.

[3:0] - Reserved.

3.7.4 TCU_STATUS

TCU_STATUS is the TCU Status Information register.

Its characteristics are:

Usage constraints

When TCU_SCR.NS_UARCH = 0, Non‑secure accesses to this register are RAZ.

Configurations

This register exists in all TCU configurations.

Attributes

Offset 0x08E10

Type RO

Reset 0x00000000

Width 32

The following figure shows the bit assignments.

31 0341516

Reserved GNT_XLATE_SLOTS Reserved

Figure 3-4 TCU_STATUS register bit assignments

The following table shows the bit descriptions.

Table 3-18 TCU_STATUS register bit descriptions

Bits Name Description

[31:16] - Reserved.

[15:4] GNT_XLATE_SLOTS GNT_XLATE_SLOTS is the number of translation slots that are currently allocated to connected
nodes. You can use this value for debugging purposes.

[3:0] - Reserved.

3 Programmer's model
3.7 TCU microarchitectural registers

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-77

Non-Confidential

3.7.5 TCU_SCR

The TCU Secure Control register controls whether Non‑secure software is permitted to access each TCU
register group.

The TCU_SCR characteristics are:

Usage constraints

Non‑secure accesses to this register are RAZ/WI.

This register does not control Secure access to the MMU‑600 PMU registers. To control Secure
PMU register access, use the SMMU_PMCG_SCR register.

Configurations

This register exists in all TCU configurations.

Attributes

Offset 0x08E18

Type RW

Reset See register bit assignments.

Width 32

The following figure shows the bit assignments.

31 1 0

NS_INIT

234

Reserved

NS_UARCH
NS_RAS

Reserved

Figure 3-5 TCU_SCR register bit assignments

The following table shows the bit descriptions.

Table 3-19 TCU_SCR register bit descriptions

Bits Name Description

[31:4] - Reserved.

[3] NS_INIT Non‑secure register access to SMMU_S_INIT. When this bit is set to 0, Non‑secure accesses to the
SMMU_S_INIT register are RAZ/WI.

The sec_override input signal defines the reset value of this bit.

[2] - Reserved.

3 Programmer's model
3.7 TCU microarchitectural registers

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-78

Non-Confidential

Table 3-19 TCU_SCR register bit descriptions (continued)

Bits Name Description

[1] NS_RAS Non‑secure register access is permitted for RAS registers. When this bit is set to 0, Non‑secure accesses to
register addresses 0x08E80–0x08EC0 are RAZ/WI.

The sec_override input signal defines the reset value of this bit.

[0] NS_UARCH Non‑secure register access is permitted for MMU‑600 registers. When this bit is set to 0, Non‑secure accesses
to register addresses 0x08E00–0x08E7C and 0x09000–0x093FC are RAZ/WI.

The sec_override input signal defines the reset value of this bit.

If your implementation might use Secure translation, Arm recommends setting this bit to 0.

3.7.6 TCU_NODE_CTRLn

Each TCU Node Control register controls how the TCU communicates with a single node. A node is a
DTI master that is typically either a TBU or a PCIe Root Complex that implements ATS.

The TCU_NODE_CTRLn characteristics are:

Usage constraints

The DIS_DVM bit can be used for TBU nodes, but is ignored for ATS nodes.

When TCU_SCR.NS_UARCH = 0, Non‑secure accesses to this register are RAZ/WI.

Writes to this register are possible only when both SMMU_CR0.SMMUEN = 0 and
SMMU_S_CR0.SMMUEN = 0. Writes at other times are ignored.

After modifying this register, software must issue an INV_ALL operation using the
SMMU_S_INIT register, before it sets SMMUEN to 1. Failure to issue an INV_ALL operation
results in UNPREDICTABLE behavior.

Configurations

The value of the TCUCFG_NUM_TBU configuration parameter defines n, that is, the number of
TCU_NODE_CTRL registers that are implemented. Each register has an address width of 4
bytes, therefore the offset of a register n is:

0x09000 + (4 × n)

Attributes

Offset 0x09000‑0x093FC

Type RW

Reset 0x00000000

Width 32

The following figure shows the bit assignments.

31 1 0234

Reserved

PRI_LEVEL
Reserved
DIS_DVM

5

Figure 3-6 TCU_NODE_CTRL register bit assignments

The following table shows the bit descriptions.

3 Programmer's model
3.7 TCU microarchitectural registers

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-79

Non-Confidential

Table 3-20 TCU_NODE_CTRL register bit descriptions

Bits Name Description

[31:5] - Reserved.

[4] DIS_DVM Disable DVM. When this bit is set to 1, the
corresponding node does not participate in
DVM invalidation.

Software should set this bit to 1 if all the
following are true:
• The node is slow to respond to

invalidations that are issued over DTI
• Software has knowledge that the node

does not require to be part of the DVM
domain

• Software has knowledge that
invalidations for the node can be issued
using the Command queue

 Note

This bit is ignored for connected DTI‑ATS
masters, because they never participate in
DVM invalidation.

[3:2] - Reserved.

[1:0] PRI_LEVEL Priority level. This field indicates the
priority level of the corresponding node.
Translation requests from a node with a
higher priority level are normally
progressed before requests from a node
with a lower priority level.

3.7.7 TCU_NODE_STATUSn

Each TCU Node Status register provides the status of a DTI master. A node is a DTI master that is
typically either a TBU or a PCIe Root Complex that implements ATS.

The TCU_NODE_STATUSn characteristics are:

Usage constraints

This register indicates the status of the corresponding node only when the node is connected.

When TCU_SCR.NS_UARCH = 0, Non-secure accesses to this register are RAZ.

Configurations

The value of the TCUCFG_NUM_TBU configuration parameter defines the number of
TCU_NODE_CTRL registers that are implemented. Each register has an address width of 4
bytes, therefore the offset of a register n is:

0x09400 + (4 × n)

Attributes

Offset 0x09400‑0x097FC

Type RO

3 Programmer's model
3.7 TCU microarchitectural registers

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-80

Non-Confidential

Reset 0x00000000

Width 32

The following figure shows the bit assignments.

31 1 02

Reserved

CONNECTED
ATS

Figure 3-7 TCU_NODE_STATUS register bit assignments

The following table shows the bit descriptions.

Table 3-21 TCU_NODE_STATUS register bit descriptions

Bits Name Description

[31:2] - Reserved.

[1] ATS ATS implemented:

0 The corresponding node is a TBU that is connected to the TCU using the DTI‑TBU protocol.

1 The corresponding node is a PCIe Root Complex that supports ATS, and is connected to the TCU using
the DTI‑ATS protocol.

[0] CONNECTED DTI link is connected:

0 The DTI link for the corresponding node is not connected.

1 The DTI link for the corresponding node is connected.

If a DTI link is not connected, accesses to TBU registers are RAZ/WI. However, the state might change
between reading this register and attempting to access the TBU.

3 Programmer's model
3.7 TCU microarchitectural registers

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-81

Non-Confidential

3.8 TCU RAS registers
The MMU‑600 includes TCU registers that are related to Reliability, Availability, and Serviceability
(RAS).

This section contains the following subsections:
• 3.8.1 TCU_ERRFR on page 3-82.
• 3.8.2 TCU_ERRCTLR on page 3-82.
• 3.8.3 TCU_ERRSTATUS on page 3-83.
• 3.8.4 TCU_ERRGEN on page 3-85.

3.8.1 TCU_ERRFR

Use the TCU Error Feature register to discover how the TCU handles errors.

The TCU_ERRFR characteristics are:

Usage constraints

This register is read-only. When TCU_SCR.NS_RAS = 0, Non‑secure accesses to this register
are RAZ.

Configurations

This register exists in all TCU configurations.

Attributes

Offset 0x08E80

Type RO

Reset 0x00000081

Width 32

The following figure shows the bit assignments.

31 1 02

Reserved

567

EDReservedFI

8

Figure 3-8 TCU_ERRFR register bit assignments

The following table shows the bit descriptions.

Table 3-22 TCU_ERRFR register bit descriptions

Bits Name Description

[31:8] - Reserved

[7:6] FI The value 0b10 indicates that the fault handling interrupt is controllable

[5:2] - Reserved

[1:0] ED The value 0b01 indicates that TCU error detection is always enabled

3.8.2 TCU_ERRCTLR

Use the TCU Error Control register to enable fault handling interrupts.

The TCU_ERRCTLR characteristics are:

3 Programmer's model
3.8 TCU RAS registers

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-82

Non-Confidential

Usage constraints

When TCU_SCR.NS_RAS = 0, Non‑secure accesses to this register are RAZ/WI.

Configurations

This register exists in all TCU configurations.

Attributes

Offset 0x08E88

Type RW

Reset 0x00000008

Width 32

The following figure shows the bit assignments.

31 02

Reserved

34

FI
Reserved

Figure 3-9 TCU_ERRCTLR register bit assignments

The following table shows the bit descriptions.

Table 3-23 TCU_ERRCTLR register bit descriptions

Bits Name Description

[31:4] - Reserved.

[3] FI Enable fault handling interrupts:

0 No interrupt is generated when a fault occurs.

1 An interrupt is generated on ras_irpt when a fault occurs.

[2:0] - Reserved.

3.8.3 TCU_ERRSTATUS

Use the TCU Error Record Primary Syndrome register to find out whether different types of error have
occurred on the TCU.

The TCU_ERRSTATUS characteristics are:

Usage constraints

When TCU_SCR.NS_RAS = 0, Non‑secure accesses to this register are RAZ/WI.

To prevent race conditions, under certain circumstances, writes to some bits in this register are
ignored. Typically, these writes are ignored when software has not yet observed a new error.

Configurations

This register exists in all TCU configurations.

Attributes

Offset 0x08E90

Type RW

3 Programmer's model
3.8 TCU RAS registers

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-83

Non-Confidential

Reset 0x00000000

Width 32

The following figure shows the bit assignments.

31 15 016 7

Reserved IERR

Reserved

SERR

82324252627282930

CE

OF
Reserved

V

Reserved

Figure 3-10 TCU_ERRSTATUS register bit assignments

The following table shows the bit descriptions.

Table 3-24 TCU_ERRSTATUS register bit descriptions

Bits Name Description

[31] - Reserved.

[30] V Register valid. This bit is set to 1 to indicate that at least one RAS error was recorded.

Clear this bit by writing a 1 to it. If CE is not 0b00 and is not being cleared, the write is ignored. A write of 0 is
ignored.

[29:28] - Reserved.

[27] OF Overflow. This bit is set to 1 to indicate that multiple correctable errors were recorded. That is, at least one
correctable error was recorded when CE != 0b00.

Clear this bit by writing a 1 to it. A write of 0 is ignored.

[26] - Reserved.

[25:24] CE Correctable Error. This field is set to 0b10 to indicate that a corrected error occurred. Clear this field by writing
0b11 to it. If OF is set to 1 and is not being cleared, the write is ignored. A write of any value other than 0b11 is
ignored.

[23:16] - Reserved.

3 Programmer's model
3.8 TCU RAS registers

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-84

Non-Confidential

Table 3-24 TCU_ERRSTATUS register bit descriptions (continued)

Bits Name Description

[15:8] IERR IMPLEMENTATION DEFINED error code. When SERR is not set to 0, this field indicates the source of the error, as
follows:

0x00 Stage 1, level 0 walk cache.

0x01 Stage 1, level 1 walk cache.

0x02 Stage 1, level 2 walk cache.

0x03 Stage 1, level 3 walk cache.

0x04 Stage 2, level 0 walk cache.

0x05 Stage 2, level 1 walk cache.

0x06 Stage 2, level 2 walk cache.

0x07 Stage 2, level 3 walk cache.

0x08 Configuration cache.

Writes to this field are ignored.

[7:0] SERR Error code. This read‑only field provides information about the earliest unacknowledged correctable error, as
follows:

0x00 No error. This code occurs when CE = 0b00.

0x07 Tag corrupted. This code can occur when CE != 0b00.

0x08 Data corrupted. This code can occur when CE != 0b00.

3.8.4 TCU_ERRGEN

Use the TCU Error Generation Register to generate tag parity errors, for example when testing
error‑handling software.

The TCU_ERRGEN characteristics are:

Usage constraints

When TCU_SCR.NS_RAS = 0, Non‑secure accesses to this register are RAZ/WI.

Configurations

This register exists in all TCU configurations.

Attributes

Offset 0x08EC0

Type RW

Reset 0x00000000

Width 32

The following figure shows the bit assignments.

3 Programmer's model
3.8 TCU RAS registers

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-85

Non-Confidential

31 3 04 1

DWC

Reserved

2

TWC
DCC
TCC

Figure 3-11 TCU_ERRGEN register bit assignments

The following table shows the bit descriptions.

Table 3-25 TCU_ERRGEN register bit descriptions

Bits Name Description

[31:4] - Reserved.

[3] TCC Configuration cache tag parity error:

0 No tag parity error is written to the configuration cache.

1 Entries that are written to the configuration cache include a tag parity error. A fault occurs when the entry is used.

[2] DCC Configuration cache data parity error:

0 No data parity error is written to the configuration cache.

1 Entries that are written to the configuration cache include a data parity error. A fault occurs when the entry is
used.

 Note

Tag parity errors mask data parity errors. When testing data parity error functionality, ensure that software does not set
this bit and the TCC bit at the same time.

[1] TWC Walk cache tag parity error:

0 No tag parity error is written to the walk cache.

1 Entries that are written to the walk cache include a tag parity error. A fault occurs when the entry is used.

[0] DWC Walk cache data parity error:

0 No data parity error is written to the walk cache.

1 Entries that are written to the walk cache include a data parity error. A fault occurs when the entry is used.

 Note

Tag parity errors mask data parity errors. When testing data parity error functionality, ensure that software does not set
this bit and the TWC bit at the same time.

3 Programmer's model
3.8 TCU RAS registers

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-86

Non-Confidential

3.9 TBU component and peripheral ID registers
The component and peripheral identity registers comply with the format that Arm CoreLink and
CoreSight components use, and that the SMMUv3 architecture recommends. They provide key
information about the MMU‑600 hardware, including the product and associated revision number. They
also identify Arm as the designer of the SMMU.

These registers are all read‑only. Each field defines a single byte in the least significant 8 bits, and the
most significant 24 bits are reserved. The least significant 8 bits of the four Component ID registers form
a single 32‑bit conceptual ID register. In a similar way, the defined fields of the eight Peripheral ID
registers form a conceptual 64‑bit ID register.

Table 3-26 TBU Component and Peripheral ID registers bit descriptions

Register Offset Bits Value Description

SMMU_PIDR4 0x00FD0 [7:4] 0x0 4KB region count.

[3:0] 0x4 JEP106 continuation code for Arm.

SMMU_PIDR5 0x00FD4 [7:0] 0x00 Reserved.

SMMU_PIDR6 0x00FD8 [7:0] 0x00 Reserved.

SMMU_PIDR7 0x00FDC [7:0] 0x00 Reserved.

SMMU_PIDR0 0x00FE0 [7:0] 0x84 Part number[7:0].

SMMU_PIDR1 0x00FE4 [7:4] 0xB JEP106 ID code[3:0] for Arm.

[3:0] 0x4 Part number[11:8].

SMMU_PIDR2 0x00FE8 [7:4] 0x2 MMU‑600 major revision.

The value 0x2 indicates major product revision r2.

[3] 0b1 The component uses a manufacturer identity code that JEDEC allocates,
according to the JEP106 specification.

[2:0] 0b011 JEP106 ID code[6:4] for Arm.

SMMU_PIDR3 0x00FEC [7:4] MAX[0x2,ecorevnum] MMU‑600 minor revision.

The value 0x2 indicates minor product revision p2.

[3:0] 0x0 CMOD. This field is not used.

SMMU_CIDR0 0x00FF0 [7:0] 0x0D Preamble.

SMMU_CIDR1 0x00FF4 [7:0] 0xF0

SMMU_CIDR2 0x00FF8 [7:0] 0x05

SMMU_CIDR3 0x00FFC [7:0] 0xB1

3 Programmer's model
3.9 TBU component and peripheral ID registers

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-87

Non-Confidential

3.10 TBU PMU component and peripheral ID registers
The component and peripheral identity registers comply with the format that Arm CoreLink and
CoreSight components use, and recommended in the SMMUv3 architecture. They provide key
information about the MMU‑600 hardware, including the product and associated revision number. They
also identify Arm as the designer of the SMMU.

These registers are all read‑only. Each field defines a single byte in the least significant 8 bits, and the
most significant 24 bits are reserved. The least significant 8 bits of the four Component ID registers form
a single 32‑bit conceptual ID register. In a similar way, the defined fields of the eight Peripheral ID
registers form a conceptual 64‑bit ID register.

Table 3-27 TBU PMU Component and Peripheral ID registers bit descriptions

Register Offset Bits Value Description

SMMU_PMCG_PMAUTHSTATUS 0x02FB8 [7:0] 0x00 No authentication interface is implemented.

SMMU_PMCG_PIDR4 0x02FD0 [7:4] 0x0 4KB region count.

[3:0] 0x4 JEP106 continuation code for Arm.

SMMU_PMCG_PIDR5 0x02FD4 [7:0] 0x00 Reserved.

SMMU_PMCG_PIDR6 0x02FD8 [7:0] 0x00 Reserved.

SMMU_PMCG_PIDR7 0x02FDC [7:0] 0x00 Reserved.

SMMU_PMCG_PIDR0 0x02FE0 [7:0] 0x83 Part number[7:0].

SMMU_PMCG_PIDR1 0x02FE4 [7:4] 0xB JEP106 ID code[3:0] for Arm.

[3:0] 0x4 Part number[11:8].

SMMU_PMCG_PIDR2 0x02FE8 [7:4] 0x2 MMU‑600 major revision.

The value 0x2 indicates major product revision r2.

[3] 0b1 The component uses a manufacturer identity code
that JEDEC allocates, according to the JEP106
specification.

[2:0] 0b011 JEP106 ID code[6:4] for Arm.

SMMU_PMCG_PIDR3 0x02FEC [7:4] MAX[0x2,ecorevnum] MMU‑600 minor revision.

The value 0x2 indicates minor product revision p2.

[3:0] 0x0 CMOD. This field is not used.

SMMU_PMCG_CIDR0 0x02FF0 [7:0] 0x0D Preamble.

SMMU_PMCG_CIDR1 0x02FF4 [7:0] 0x90

SMMU_PMCG_CIDR2 0x02FF8 [7:0] 0x05

SMMU_PMCG_CIDR3 0x02FFC [7:0] 0xB1

3 Programmer's model
3.10 TBU PMU component and peripheral ID registers

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-88

Non-Confidential

3.11 TBU microarchitectural registers
You can set the TBU microarchitectural registers at boot time to optimize TBU behavior for your system.
Arm recommends the default settings for most systems.

This section contains the following subsections:
• 3.11.1 TBU_CTRL on page 3-89.
• 3.11.2 TBU_SCR on page 3-89.

3.11.1 TBU_CTRL

The TBU_CTRL register disables TBU features. Do not modify the bits in this register unless directed to
do so by Arm.

Its characteristics are:

Usage constraints

When TBU_SCR.NS_UARCH = 0, Non‑secure accesses to this register are RAZ/WI. See
3.11.2 TBU_SCR on page 3-89.

Configurations

This register exists in all TBU configurations.

Attributes

Offset 0x08E00

Type RW

Reset 0x00000000

Width 32

The following figure shows the bit assignments.

31 015

Reserved

16

AUX[15:0]

Figure 3-12 TBU_CTRL register bit assignments

The following table shows the bit descriptions.

Table 3-28 TBU_CTRL register bit descriptions

Bits Name Description

[31:16] - Reserved

[15:0] AUX[15:0] Leave each of these bits as 0

3.11.2 TBU_SCR

The TBU Secure Control register controls whether Non‑secure software is permitted to access the TBU
registers.

Its characteristics are:

Usage constraints

This register is accessible only by Secure software. Non‑secure accesses to this register are
RAZ/WI.

3 Programmer's model
3.11 TBU microarchitectural registers

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-89

Non-Confidential

Configurations

This register exists in all TBU configurations.

Attributes

Offset 0x08E18

Type RW

Reset 0x00000000

Width 32

The following figure shows the bit assignments.

31 01

Reserved

2

NS_UARCH
NS_RAS

Figure 3-13 TBU_SCR register bit assignments

The following table shows the bit descriptions.

Table 3-29 TBU_SCR register bit descriptions

Bits Name Description

[31:2] - Reserved.

[1] NS_RAS Non‑secure register access to RAS registers:

0 Non‑secure accesses to register addresses 0x08E80–0x08EC0 are RAZ/WI.

1 Non‑secure access to RAS registers is permitted.

[0] NS_UARCH Non‑secure register access to TBU_CTRL:

0 Non‑secure accesses to TBU_CTRL are RAZ/WI.

1 Non‑secure accesses to TBU_CTRL are permitted.

3 Programmer's model
3.11 TBU microarchitectural registers

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-90

Non-Confidential

3.12 TBU RAS registers
The MMU‑600 includes TBU registers that are related to Reliability, Availability, and Serviceability
(RAS).

This section contains the following subsections:
• 3.12.1 TBU_ERRFR on page 3-91.
• 3.12.2 TBU_ERRCTLR on page 3-91.
• 3.12.3 TBU_ERRSTATUS on page 3-92.
• 3.12.4 TBU_ERRGEN on page 3-93.

3.12.1 TBU_ERRFR

Use the TBU Error Feature register to discover how the TBU handles errors.

The TBU_ERRFR characteristics are:

Usage constraints

This register is read‑only. When TBU_SCR.NS_RAS = 0, Non‑secure accesses to this register
are RAZ.

Configurations

This register exists in all TBU configurations.

Attributes

Offset 0x08E80

Type RO

Reset 0x00000081

Width 32

The following figure shows the bit assignments.

31 1 02

Reserved

567

EDReservedFI

8

Figure 3-14 TBU_ERRFR register bit assignments

The following table shows the bit descriptions.

Table 3-30 TBU_ERRFR register bit descriptions

Bits Name Description

[31:8] - Reserved

[7:6] FI The value 0b10 indicates that the fault handling interrupt is controllable

[5:2] - Reserved

[1:0] ED The value 0b01 indicates that TBU error detection is always enabled

3.12.2 TBU_ERRCTLR

Use the TBU Error Control register to enable fault handling interrupts.

The TBU_ERRCTLR characteristics are:

3 Programmer's model
3.12 TBU RAS registers

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-91

Non-Confidential

Usage constraints

When TBU_SCR.NS_RAS = 0, Non‑secure accesses to this register are RAZ/WI.

Configurations

This register exists in all MMU‑600 configurations. An instance of this register exists for each
implemented TBU.

Attributes

Offset 0x08E88

Type RW

Reset 0x00000008

Width 32

The following figure shows the bit assignments.

31 02

Reserved

34

FI
Reserved

Figure 3-15 TBU_ERRCTLR register bit assignments

The following table shows the bit descriptions.

Table 3-31 TBU_ERRCTLR register bit descriptions

Bits Name Description

[31:4] - Reserved.

[3] FI Enable fault handling interrupts:

0 No interrupt is generated when a fault occurs

1 An interrupt is generated on ras_irpt when a fault occurs

[2:0] - Reserved

3.12.3 TBU_ERRSTATUS

Use the TBU Error Record Primary Syndrome register to find out whether different types of error have
occurred on the TBU.

The TBU_ERRSTATUS characteristics are:

Usage constraints

When TBU_SCR.NS_RAS = 0, Non‑secure accesses to this register are RAZ/WI. To prevent
race conditions, under certain circumstances, writes to some bits in this register are ignored.
Typically, these writes are ignored when software has not yet observed a new error.

Configurations

This register exists in all MMU‑600 configurations. An instance of this register exists for each
implemented TBU.

Attributes

Offset 0x08E90

3 Programmer's model
3.12 TBU RAS registers

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-92

Non-Confidential

Type RW

Reset 0x00000000

Width 32

The following figure shows the bit assignments.

31 07

Reserved

Reserved

SERR

82324252627282930

CE

OF
Reserved

V

Reserved

Figure 3-16 TBU_ERRSTATUS register bit assignments

The following table shows the bit descriptions.

Table 3-32 TBU_ERRSTATUS register bit descriptions

Bits Name Description

[31] - Reserved.

[30] V Register valid. This bit is set to 1 to indicate that at least one RAS error was recorded.

Clear this bit by writing a 1 to it. If CE is not 0b00 and is not being cleared, the write is ignored. A write of 0 is
ignored.

[29:28] - Reserved.

[27] OF Overflow. This bit is set to 1 to indicate that multiple correctable errors were recorded. That is, at least one
correctable error was recorded when CE != 0b00.

Clear this bit by writing a 1 to it. A write of 0 is ignored.

[26] - Reserved.

[25:24] CE Correctable Error. This field is set to 0b10 to indicate that a corrected error occurred. Clear this field by writing
0b11 to it. If OF is set to 1 and is not being cleared, the write is ignored. A write of any value other than 0b11 is
ignored.

[23:8] - Reserved.

[7:0] SERR Error code. This field provides information about the earliest unacknowledged correctable error, as follows:

0x00 No error. This code occurs when CE = 0b00.

0x07 Main TLB tag is corrupted. This code can occur when CE != 0b00.

0x08 Main TLB data is corrupted. This code can occur when CE != 0b00.

Writes to this field are ignored.

3.12.4 TBU_ERRGEN

Use the TBU Error Generation register to generate tag parity errors. You might want to generate errors in
certain cases, such as when testing error‑handling software.

The TBU_ERRGEN characteristics are:

Usage constraints

When TBU_SCR.NS_RAS = 0, Non‑secure accesses to this register are RAZ/WI.

3 Programmer's model
3.12 TBU RAS registers

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-93

Non-Confidential

Configurations

This register exists in all TBU configurations.

Attributes

Offset 0x08EC0

Type RW

Reset 0x00000000

Width 32

The following figure shows the bit assignments.

31 01

Reserved

2

DMTLB
TMTLB

Figure 3-17 TBU_ERRGEN register bit assignments

The following table shows the bit descriptions.

Table 3-33 TBU_ERRGEN register bit descriptions

Bits Name Description

[31:2] - Reserved.

[1] TMTLB Main TLB tag parity error:

0 No tag parity error is written to the Main TLB.

1 Entries that are written to the Main TLB include a tag parity error. A fault occurs when the entry is used.

[0] DMTLB Main TLB data parity error:

0 No data parity error is written to the Main TLB.

1 Entries that are written to the Main TLB include a data parity error. A fault occurs when the entry is used.

 Note

Tag parity errors mask data parity errors. When testing data parity error functionality, ensure that software does not
set this bit and the TMTLB bit at the same time.

3 Programmer's model
3.12 TBU RAS registers

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

3-94

Non-Confidential

Appendix A
Signal descriptions

This appendix describes the MMU‑600 external signals.

It contains the following sections:
• A.1 Clock and reset signals on page Appx-A-96.
• A.2 TCU QTW/DVM interface signals on page Appx-A-97.
• A.3 TCU programming interface signals on page Appx-A-100.
• A.4 TCU SYSCO interface signals on page Appx-A-101.
• A.5 TCU PMU snapshot interface signals on page Appx-A-102.
• A.6 TCU LPI_PD interface signals on page Appx-A-103.
• A.7 TCU LPI_CG interface signals on page Appx-A-104.
• A.8 TCU DTI interface signals on page Appx-A-105.
• A.9 TCU interrupt signals on page Appx-A-106.
• A.10 TCU event interface signal on page Appx-A-107.
• A.11 TCU tie-off signals on page Appx-A-109.
• A.12 TCU and TBU test and debug signals on page Appx-A-110.
• A.13 TBU TBS interface signals on page Appx-A-111.
• A.14 TBU TBM interface signals on page Appx-A-114.
• A.15 TBU PMU snapshot interface signals on page Appx-A-117.
• A.16 TBU LPI_PD interface signals on page Appx-A-118.
• A.17 TBU LPI_CG interface signals on page Appx-A-119.
• A.18 TBU DTI interface signals on page Appx-A-120.
• A.19 TBU interrupt signals on page Appx-A-121.
• A.20 TBU tie-off signals on page Appx-A-122.
• A.21 DTI interconnect switch signals on page Appx-A-124.
• A.22 DTI interconnect sizer signals on page Appx-A-126.
• A.23 DTI interconnect register slice signals on page Appx-A-128.

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-95

Non-Confidential

A.1 Clock and reset signals
The MMU‑600 uses a single set of standard clock and reset signals.

The following table shows the clock and reset signals.

Table A-1 Clock and reset signals

Signal Direction Description

aclk Input Global clock.

aresetn Input Global reset.

A Signal descriptions
A.1 Clock and reset signals

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-96

Non-Confidential

A.2 TCU QTW/DVM interface signals
The TCU QTW/DVM interface signals are based on the AMBA ACE5-Lite signals. See the Arm®

AMBA® AXI and ACE Protocol Specification, AXI3, AXI4, AXI5, ACE and ACE5 for more information
about these signals.

The following table shows the TCU QTW/DVM interface signals.

Table A-2 TCU QTW/DVM interface signals

Signal Direction Description

acaddr_qtw Input Snoop address.

acprot_qtw Input Snoop protection type.

acready_qtw Output Snoop address ready.

acsnoop_qtw Input Snoop transaction type.

acvalid_qtw Input Snoop address valid.

arid_qtw Output Read address ID.

araddr_qtw Output Read address.

arburst_qtw Output Burst type.

arcache_qtw Output Memory type.

ardomain_qtw Output Shareability domain.

arlen_qtw Output Burst length.

arlock_qtw Output Lock type.

arprot_qtw Output Protection type.

arqos_qtw Output QoS identifier.

arready_qtw Input Read address ready.

arregion_qtw Output Region identifier.

arsize_qtw Output Burst size.

arsnoop_qtw Output Transaction type.

arvalid_qtw Output Read address valid.

awid_qtw Output Write address ID.

awaddr_qtw Output Write address.

awburst_qtw Output Burst type.

awcache_qtw Output Memory type.

A Signal descriptions
A.2 TCU QTW/DVM interface signals

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-97

Non-Confidential

Table A-2 TCU QTW/DVM interface signals (continued)

Signal Direction Description

awdomain_qtw Output Shareability domain.

awlen_qtw Output Burst length.

awlock_qtw Output Lock type.

awprot_qtw Output Protection type.

awqos_qtw Output QoS identifier.

awready_qtw Input Write address ready.

awregion_qtw Output Region identifier.

awsize_qtw Output Burst size.

awsnoop_qtw Output Transaction type.

awvalid_qtw Output Write address valid.

crready_qtw Input Snoop response ready.

crresp_qtw Output Snoop response.

crvalid_qtw Output Snoop response valid.

rid_qtw Input Read data ID.

rdata_qtw Input Read data.

rlast_qtw Input Read last.

rready_qtw Output Read ready.

rresp_qtw Input Read response.

rvalid_qtw Input Read valid.

wdata_qtw Output Write data.

wlast_qtw Output Write last.

wready_qtw Input Write ready.

wstrb_qtw Output Write strobe.

wvalid_qtw Output Write valid.

bid_qtw Input Response ID.

bready_qtw Output Response ready.

bresp_qtw Input Write response.

A Signal descriptions
A.2 TCU QTW/DVM interface signals

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-98

Non-Confidential

Table A-2 TCU QTW/DVM interface signals (continued)

Signal Direction Description

bvalid_qtw Input Write response valid.

awakeup_qtw Output Wakeup.

acwakeup_qtw Input Snoop wakeup.

acvmidext_qtw Input Snoop Extended Virtual Machine IDentifier (VMID).

A Signal descriptions
A.2 TCU QTW/DVM interface signals

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-99

Non-Confidential

A.3 TCU programming interface signals
The TCU programming interface signals are based on the AMBA APB4 signals. See the Arm® AMBA®

APB Protocol Specification for more information about these signals.

The following table shows the TCU programming interface signals.

Table A-3 TCU programming interface signals

Signal Direction Description

paddr_prog Input Peripheral address.

psel_prog Input Peripheral select.

penable_prog Input Enable for transfer.

pwrite_prog Input Write transaction indicator.

pprot_prog Input Protection type.

pwdata_prog Input Write data.

pstrb_prog Input Write data strobe.

pslverr_prog Output Error response.

prdata_prog Output Read data.

pready_prog Output Transfer ready.

pwakeup_prog Input Interface wakeup.

A Signal descriptions
A.3 TCU programming interface signals

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-100

Non-Confidential

A.4 TCU SYSCO interface signals
The following table shows the TCU SYSCO interface signals.

Table A-4 TCU SYSCO interface signals

Signal Direction Description

syscoreq Output System coherency request.

This output transitions:

HIGH To indicate that the master is requesting to enter the coherency domain.

LOW To indicate that the master is requesting to exit the coherency domain.

syscoack Input System coherency acknowledge.

This input transitions to the same level as syscoreq when the request to enter or exit the coherency domain is
complete.

See the Arm® AMBA® AXI and ACE Protocol Specification, AXI3, AXI4, AXI5, ACE and ACE5 for more
information about these signals.

A Signal descriptions
A.4 TCU SYSCO interface signals

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-101

Non-Confidential

A.5 TCU PMU snapshot interface signals
The following table shows the TCU PMU snapshot interface signals.

Table A-5 TCU PMU snapshot interface signals

Signal Direction Description

pmusnapshot_req Input PMU snapshot request. The PMU snapshot occurs on the rising edge of pmusnapshot_req.
 Note

Connect to the debug infrastructure of your SoC.

pmusnapshot_ack Output PMU snapshot acknowledge. The TCU uses this signal to acknowledge that the PMU snapshot has
occurred.

This signal is LOW after reset.
 Note

Connect to the debug infrastructure of your SoC.

A Signal descriptions
A.5 TCU PMU snapshot interface signals

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-102

Non-Confidential

A.6 TCU LPI_PD interface signals
The following table shows the TCU LPI_PD interface signals.

Table A-6 TCU LPI_PD interface signals

Signal Direction Description

qactive_pd Output Component active.

qreqn_pd Input Quiescence request.

qacceptn_pd Output Quiescence accept.

qdeny_pd Output Quiescence deny.

See the AMBA® Low Power Interface Specification, Arm® Q‑Channel and P‑Channel Interfaces for more
information about these signals.

A Signal descriptions
A.6 TCU LPI_PD interface signals

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-103

Non-Confidential

A.7 TCU LPI_CG interface signals
The following table shows the TCU LPI_CG interface signals.

Table A-7 TCU LPI_CG interface signals

Signal Direction Description

qactive_cg Output Component active.

qreqn_cg Input Quiescence request.

qacceptn_cg Output Quiescence accept.

qdeny_cg Output Quiescence deny.

See the AMBA® Low Power Interface Specification, Arm® Q‑Channel and P‑Channel Interfaces for more
information about these signals.

A Signal descriptions
A.7 TCU LPI_CG interface signals

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-104

Non-Confidential

A.8 TCU DTI interface signals
The following table shows the TCU DTI interface signals.

Table A-8 TCU DTI interface signals

Signal Direction Description

tvalid_dti_dn Master to slave. Flow control signal.

tready_dti_dn Slave to master. Flow control signal.

tdata_dti_dn Master to slave. Message data signal.

tid_dti_dn Master to slave. Identifies the master that initiated the message.

tlast_dti_dn Master to slave. Indicates the last cycle of a message.

tkeep_dti_dn Master to slave. This signal indicates valid bytes.

tvalid_dti_up Slave to master. Flow control signal.

tready_dti_up Master to slave. Flow control signal.

tdata_dti_up Slave to master. Message data signal.

tdest_dti_up Slave to master. Identifies the master that is receiving the message.

tlast_dti_up Slave to master. Indicates the last cycle of a message.

tkeep_dti_up Slave to master. Indicates valid bytes.

twakeup_dti_up Slave to master. Wakeup signal.

twakeup_dti_dn Master to slave. Wakeup signal.

See the Arm® AMBA® 4 AXI4‑Stream Protocol Specification for more information about the DTI signals.

See the Arm® AMBA® Distributed Translation Interface (DTI) Protocol Specification for more
information about DTI protocol messages.

A Signal descriptions
A.8 TCU DTI interface signals

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-105

Non-Confidential

A.9 TCU interrupt signals
The TCU interrupt signals are edge‑triggered. The interrupt controller must detect the rising edge of
these signals.

The TCU can also output the Secure and Non-secure Event queue, SYNC complete commands, and
global interrupts as Message Signaled Interrupts (MSIs) on the QTW/DVM interface. If the system
supports capturing MSIs from the TCU, there is no requirement to connect the corresponding interrupt
signals in this interface.

The following table shows the TCU interrupt signals.

Table A-9 TCU interrupt interface signals

Signal Direction Description

event_q_irpt_s Output Event queue, Secure interrupt. Asserts a Secure interrupt to indicate that the Event queue is not
empty or has overflowed.

event_q_irpt_ns Output Event queue, Non‑secure interrupt. Asserts a Non‑secure interrupt to indicate that the Event queue is
not empty or has overflowed.

cmd_sync_irpt_ns Output SYNC complete, Non‑secure interrupt. Asserts a Non‑secure interrupt to indicate that the CMD_SYNC
command is complete.

cmd_sync_irpt_s Output SYNC complete, Secure interrupt. Asserts a Secure interrupt to indicate that the CMD_SYNC
command is complete.

global_irpt_ns Output Asserts a global Non‑secure interrupt.

global_irpt_s Output Asserts a global Secure interrupt.

ras_irpt Output Asserts a Reliability, Availability, and Serviceability (RAS) interrupt.
 Note

The MMU‑600 cannot output RAS interrupts as MSIs. You must connect this output to an interrupt
controller.

pmu_irpt Output Asserts a PMU interrupt.
 Note

The MMU‑600 cannot output PMU interrupts as MSIs. You must connect this output to an interrupt
controller.

pri_q_irpt_ns Output Asserts a Page Request Interface (PRI) queue interrupt.

A Signal descriptions
A.9 TCU interrupt signals

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-106

Non-Confidential

A.10 TCU event interface signal
The TCU event interface signal is an event output for connection to processors.

The following table shows the TCU event interface signal.

A Signal descriptions
A.10 TCU event interface signal

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-107

Non-Confidential

Table A-10 TCU event interface signal

Signal Direction Description

evento Output The evento signal is asserted for one cycle to indicate an event that enables processors to wake up from the Wait
For Event (WFE) low‑power state.

Connect the evento signal of the TCU to the event interface of Arm processors. Processors that use the
DynamIQ Shared Unit (DSU) have a different event handshake mechanism.

The mechanism that the DSU uses is the successor to the mechanism that some MMUs use.

Arm processors can use the following event mechanisms:

• Some processors have an eventi input to connect directly to the evento output from the MMU.
• Some processors, including DSU‑based systems, have a req/ack handshake mechanism that requires the

evento signal from the MMU to be converted and uses the eventiack, eventireq, eventoack, and eventoreq
signals.

 Note

You can also route the evento signal through other interconnects such as the Arm CoreLink CMN‑600 Coherent
Mesh Network instead of connecting evento directly to the processor. These interconnects, like the DSU, only
support the newer event mechanism.

If the rest of your system uses the newer event mechanism, you must add logic to convert events that the
MMU‑600 generates, which uses the older event mechanism.

In both mechanisms, in the signal names:

i Represents events that are inputs to a particular component.

o Represents events that are outputs from a particular component.

 Note

For the signals, the handshake mechanism uses one input and one output in each direction. This is because the
acknowledgment of the request operates in the opposite direction to the original request.

The MMU‑600 has an event output and therefore only has the evento signal. The processor has an input
interface to receive the event from the MMU‑600, and other devices. This input interface uses the eventiack and
eventireq signals, if the processor uses the newer mechanism.

The required conversion is from the older mechanism, eventi and evento signals, to the newer mechanism,
eventiack, eventireq, eventoack, and eventoreq signals.

When connecting the MMU‑600 to a DSU, the only signals to consider are the following:

• evento signal of the MMU‑600.
• eventiack and eventireq signals of the DSU.

Some processors have an eventi input instead.

You can use the Channel Pulse to Channel adapter that is provided in the CoreSight System‑on‑Chip SoC-600.
See Chapter 6.11 in the Arm® CoreSight™ System‑on‑Chip SoC‑600 Technical Reference Manual for more
information about this component.

 Note

To use the Channel Pulse to Channel adapter from CoreSight System‑on‑Chip SoC‑600, you must be a licensee
of the SoC‑600 product. If you are not a licensee of SoC‑600, you must add your own logic.

For more information, see the documentation for your processor or DSU.

A Signal descriptions
A.10 TCU event interface signal

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-108

Non-Confidential

A.11 TCU tie-off signals
The TCU tie-off signals are sampled between exiting reset and the LPI_PD interface first entering the
Q_RUN state. Ensure that the value of these signals does not change when the LPI_PD interface is in the
Q_STOPPED or Q_EXIT state for the first time after exiting reset.

The following table shows the TCU tie-off signals.

Table A-11 TCU tie-off signals

Signal Direction Description

sup_cohacc Input This signal indicates whether the QTW interface is I/O-coherent. Tie HIGH when the TCU is
connected to a coherent interconnect.

sup_btm Input This signal indicates whether the Broadcast TLB Maintenance is supported. Tie HIGH when the TCU
is connected to an interconnect that supports DVM.

sup_sev Input This signal indicates whether the Send Event mechanism is supported. Tie HIGH when evento is
connected.

sup_oas[2:0] Input Output address size supported.

The encodings for this input are:

0b000 32 bits.

0b001 36 bits.

0b010 40 bits.

0b011 42 bits.

0b100 44 bits.

0b101 48 bits.

You must not use other encodings, including 0b110 that SMMUv3.1 defines to indicate 52-bit
addresses. They are treated as 0b101.

sec_override Input When HIGH, certain registers are accessible to Non-secure accesses from reset, as the TCU_SCR
register settings describe.

ecorevnum[3:0] Input Tie this signal to 0 unless directed otherwise by Arm.

See the Arm® System Memory Management Unit Architecture Specification, SMMU architecture version
3.0 for more information about the SMMUv3 ID signals.

A Signal descriptions
A.11 TCU tie-off signals

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-109

Non-Confidential

A.12 TCU and TBU test and debug signals
The test and debug signals are common to the TCU and TBU.

The following table shows the test and debug signals.

Table A-12 Test and debug signals

Signal Direction Description

dftcgen Input Clock gate enable.

To enable architectural clock gates for the aclk clock, set this signal HIGH during scan shift.

dftrstdisable Input Reset disable.

To disable reset, set this signal HIGH during scan shift.

dftramhold Input Preserve RAM state.

To preserve the state of the RAMs and their connected registers, set this signal HIGH during scan shift.

mbistresetn Input MBIST mode reset. This active-LOW signal is encoded as follows:

0 Reset MBIST functional logic.

1 Normal operation.

mbistreq Input MBIST test request. This signal is encoded as follows:

0 Normal operation.

1 Enable MBIST testing.

A Signal descriptions
A.12 TCU and TBU test and debug signals

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-110

Non-Confidential

A.13 TBU TBS interface signals
The TBU TBS interface signals are based on the AMBA ACE5-Lite signals.

The following table shows the TBU TBS interface signals.

Table A-13 TBU TBS interface signals

Signal Direction Description

aclk Input Clock input.

araddr_s Input Read address.

arburst_s Input Burst type.

arcache_s Input Memory type.

ardomain_s Input Shareability domain.

aresetn Input Active-LOW reset signal.

arid_s Input Read address ID.

arlen_s Input Burst length.

arlock_s Input Lock type.

arprot_s Input Protection type.

arqos_s Input Quality of Service (QoS).

arready_s Output Read address ready.

arregion_s Input Region identifier.

arsize_s Input Burst size.

armmussid_s Input These signals indicate the StreamID, SubstreamID, and ATS translated status of the originating
transaction.

These signals are defined by the AXI5 Untranslated_Transactions extension.
armmusid_s Input

armmussidv_s Input

armmusecsid_s Input

armmuatst_s Input

arvalid_s Input Read address valid.

awaddr_s Input Write address.

awatop_s Input Atomic operation.

awburst_s Input Burst type.

awcache_s Input Memory type.

A Signal descriptions
A.13 TBU TBS interface signals

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-111

Non-Confidential

Table A-13 TBU TBS interface signals (continued)

Signal Direction Description

awdomain_s Input Shareability domain.

awid_s Input Write address ID.

awlen_s Input Burst length.

awlock_s Input Lock type.

awprot_s Input Protection type.

awqos_s Input QoS.

awready_s Output Write address ready.

awregion_s Input Region identifier.

awsize_s Input Burst size.

awmmussid_s Input These signals indicate the StreamID, SubstreamID, and ATS translated status of the originating
transaction.

These signals are defined by the AXI5 Untranslated_Transactions extension.
awmmusid_s

awmmussidv_s

awmmusecsid_s

awmmuatst_s

awvalid_s Input Write address valid.

bid_s Output Response ID.

bready_s Input Response ready.

bresp_s Output Write response.

bvalid_s Output Write response valid.

rdata_s Output Read data.

rid_s Output Read ID.

rlast_s Output Read last.

rready_s Input Read ready.

rresp_s Output Read response.

rvalid_s Output Read valid.

wdata_s Input Write data.

wlast_s Input Write last.

A Signal descriptions
A.13 TBU TBS interface signals

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-112

Non-Confidential

Table A-13 TBU TBS interface signals (continued)

Signal Direction Description

wready_s Output Write ready.

wstrb_s Input Write strobes.

wvalid_s Input Write valid.

aruser_s Input Read address (AR) channel user signal.

awuser_s Input Write address (AW) channel user signal.

wuser_s Input Write data (W) channel user signal.

ruser_s Output Read data (R) channel user signal.

buser_s Output Write response (B) channel user signal.

awakeup_s Input Wakeup signal.

arsnoop_s Input Transaction type of read transaction.

awsnoop_s[3] Input Transaction type of write transaction.

awstashnid_s[10:0] Input These signals are defined by the AXI5 Cache_Stash_Transactions extension.

If TBUCFG_STASH = 0, these signals are ignored.awstashniden_s Input

awstashlpid_s[4:0] Input

awstashlpiden_s Input

A Signal descriptions
A.13 TBU TBS interface signals

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-113

Non-Confidential

A.14 TBU TBM interface signals
The TBU TBM interface signals are based on the AMBA ACE5-Lite signals.

The following table shows the TBU TBM interface signals.

Table A-14 TBU TBM interface signals

Signal Direction Description

aclk Input Clock input.

araddr_m Output Read address.

arburst_m Output Burst type.

arcache_m Output Memory type.

ardomain_m Output Shareability domain.

aresetn Input Active-LOW reset signal.

arid_m Output Read address ID.

arlen_m Output Burst length.

arlock_m Output Lock type.

arprot_m Output Protection type.

arqos_m Output Quality of Service (QoS).

arready_m Input Read address ready.

arregion_m Output Region identifier.

arsize_m Output Burst size.

armmusid_m Output These signals indicate the StreamID of the originating transaction.

armmusecsid_m Output

arvalid_m Output Read address valid.

awaddr_m Output Write address.

awatop_m Output Atomic operation.

awburst_m Output Burst type.

awcache_m Output Memory type.

awdomain_m Output Shareability domain.

awid_m Output Write address ID.

awlen_m Output Burst length.

A Signal descriptions
A.14 TBU TBM interface signals

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-114

Non-Confidential

Table A-14 TBU TBM interface signals (continued)

Signal Direction Description

awlock_m Output Lock type.

awprot_m Output Protection type.

awqos_m Output QoS.

awready_m Input Write address ready.

awregion_m Output Region identifier.

awsize_m Output Burst size.

awmmusid_m Output These signals indicate the StreamID of the originating transaction.

The Generic Interrupt Controller (GIC) uses these signals to determine the DeviceID of MSIs that
originate from upstream masters.

awmmusecsid_m Output

awvalid_m Output Write address valid.

bid_m Input Response ID.

bready_m Output Response ready.

bresp_m Input Write response.

bvalid_m Input Write response valid.

rdata_m Input Read data.

rid_m Input Read ID.

rlast_m Input Read last.

rready_m Output Read ready.

rresp_m Input Read response.

rvalid_m Input Read valid.

wdata_m Output Write data.

wlast_m Output Write last.

wready_m Input Write ready.

wstrb_m Output Write strobes.

wvalid_m Output Write valid.

aruser_m Output Read address (AR) channel user signal.

awuser_m Output Write address (AW) channel user signal.

wuser_m Output Write data (W) channel user signal.

A Signal descriptions
A.14 TBU TBM interface signals

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-115

Non-Confidential

Table A-14 TBU TBM interface signals (continued)

Signal Direction Description

ruser_m Input Read data (R) channel user signal.

buser_m Input Write response (B) channel user signal.

awakeup_m Output Wakeup signal.

arsnoop_m Output Transaction type of read transaction.

awsnoop_m[3] Output Transaction type of write transaction.

awstashnid_m[10:0] Output These signals are defined by the AXI5 Cache_Stash_Transactions extension.

If TBUCFG_STASH = 0, these signals are ignored.awstashniden_m Output

awstashlpid_m[4:0] Output

awstashlpiden_m Output

A Signal descriptions
A.14 TBU TBM interface signals

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-116

Non-Confidential

A.15 TBU PMU snapshot interface signals
The following table shows the TBU PMU snapshot interface signals.

Table A-15 TBU PMU snapshot interface signals

Signal Direction Description

pmusnapshot_req Input PMU snapshot request. The PMU snapshot occurs on the rising edge of pmusnapshot_req.
 Note

Connect to the debug infrastructure of your SoC.

pmusnapshot_ack Output PMU snapshot acknowledge. The TBU uses this signal to acknowledge that the PMU snapshot has
occurred.

This signal is LOW after reset.
 Note

Connect to the debug infrastructure of your SoC.

A Signal descriptions
A.15 TBU PMU snapshot interface signals

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-117

Non-Confidential

A.16 TBU LPI_PD interface signals
The following table shows the TBU LPI_PD interface signals.

Table A-16 TBU LPI_PD interface signals

Signal Direction Description

qactive_pd Output Component active.

qreqn_pd Input Quiescence request.

qacceptn_pd Output Quiescence accept.

qdeny_pd Output Quiescence deny.

See the AMBA® Low Power Interface Specification, Arm® Q‑Channel and P‑Channel Interfaces for more
information about these signals.

A Signal descriptions
A.16 TBU LPI_PD interface signals

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-118

Non-Confidential

A.17 TBU LPI_CG interface signals
The following table shows the TBU LPI_CG interface signals.

Table A-17 TBU LPI_CG interface signals

Signal Direction Description

qactive_cg Output Component active.

qreqn_cg Input Quiescence request.

qacceptn_cg Output Quiescence accept.

qdeny_cg Output Quiescence deny.

See the AMBA® Low Power Interface Specification, Arm® Q‑Channel and P‑Channel Interfaces for more
information about these signals.

A Signal descriptions
A.17 TBU LPI_CG interface signals

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-119

Non-Confidential

A.18 TBU DTI interface signals
The following table shows the TBU DTI interface signals.

Table A-18 TBU DTI interface signals

Signal Direction Description

tvalid_dti_dn Master to slave. Flow control signal.

tready_dti_dn Slave to master. Flow control signal.

tdata_dti_dn Master to slave. Message data signal.

tlast_dti_dn Master to slave. Indicates the last cycle of a message.

tkeep_dti_dn Master to slave. Indicates valid bytes.

tvalid_dti_up Slave to master. Flow control signal.

tready_dti_up Master to slave. Flow control signal.

tdata_dti_up Slave to master. Message data signal.

tlast_dti_up Slave to master. Indicates the last cycle of a message.

tkeep_dti_up Slave to master. Indicates valid bytes.

twakeup_dti_up Slave to master. Wakeup signal.

twakeup_dti_dn Master to slave. Wakeup signal.

See the Arm® AMBA® 4 AXI4‑Stream Protocol Specification for more information about the DTI signals.

See the Arm® AMBA® Distributed Translation Interface (DTI) Protocol Specification for more
information about DTI protocol messages.

A Signal descriptions
A.18 TBU DTI interface signals

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-120

Non-Confidential

A.19 TBU interrupt signals
The TBU interrupt signals are edge‑triggered. The interrupt controller must detect the rising edge of
these signals.

The MMU‑600 TBU cannot output these interrupts as Message Signaled Interrupts (MSIs). These
signals must be connected to an interrupt controller.

The following table shows the TBU interrupt signals.

Table A-19 TBU interrupt signals

Signal Direction Description

ras_irpt Output RAS interrupt

pmu_irpt Output PMU interrupt

A Signal descriptions
A.19 TBU interrupt signals

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-121

Non-Confidential

A.20 TBU tie-off signals
The TBU tie‑off signals are sampled between exiting reset and the LPI_PD interface first entering the
Q_RUN state. Ensure that the value of these signals does not change when the LPI_PD interface is in the
Q_STOPPED or Q_EXIT state for the first time after exiting reset.

The following table shows the TBU tie‑off signals.

Table A-20 TBU tie-off signals

Signal Direction Description

ns_sid_high[23:TBUCFG_SID_WIDTH] Input Provides the high‑order StreamID bits for all transactions with a
Non‑secure StreamID that pass through the TBU.

s_sid_high[23:TBUCFG_SID_WIDTH] Input Provides the high‑order StreamID bits for all transactions with a
Secure StreamID that pass through the TBU.

max_tok_trans[log2(TBUCFG_XLATE_SLOTS)-1:0] Input Indicates the number of DTI translation tokens to request when
connecting to the TCU, minus 1.

pcie_mode Input You must tie this signal HIGH when the TBU is connected to a
PCIe interface.

When this signal is HIGH, the TBU behaves as if the PCIe 'No
Snoop' property is applied to transactions downstream of the
SMMU, as long as the PCIe interface outputs transactions with the
following AXI memory types:

Normal Non‑Cacheable Bufferable
When 'No Snoop' is set for the transaction

Write‑Back
When 'No Snoop' is not set for the transaction

This TBU behavior is a requirement of the Arm Server Base System
Architecture.

If this signal is HIGH, the attributes of TBS interface transactions
are always combined with the translation attributes, even if stage 1
translation is enabled. That is, the transaction attributes are always
calculated as if the DTI_TBU_TRANS_RESP.STRW field is
EL1‑S2, regardless of the actual STRW value.

If this signal is HIGH, the input attribute and shareability override
information in the ATTR_OVR field of the
DTI_TBU_TRANS_RESP message is ignored. For SMMUv3,
PCIe masters do not support this feature.

sec_override Input When HIGH, certain registers are accessible to Non‑secure
accesses from reset, as the TBU_SCR register settings describe.
See 3.11.2 TBU_SCR on page 3-89.

ecorevnum[3:0] Input Tie this signal to 0 unless directed otherwise by Arm.

A Signal descriptions
A.20 TBU tie-off signals

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-122

Non-Confidential

Table A-20 TBU tie-off signals (continued)

Signal Direction Description

utlb_roundrobin Input Defines the Micro TLB entry replacement policy.

When LOW, the Micro TLB uses a Pseudo Least Recently Used
(PLRU) replacement policy. This policy typically provides the best
average performance.

When HIGH, the Micro TLB uses a round-robin replacement
policy. With this policy, the oldest entry is evicted when the Micro
TLB is full.

Tie this signal HIGH if you want to prevent newer translations from
being evicted, even if older translations have been used more
recently. Otherwise, tie this signal LOW.

cmo_disable Input To disable cache maintenance operations, tie this signal HIGH.
When this signal is HIGH, the following transactions are always
aborted with an SLVERR response:
• CleanInvalid
• CleanShared
• CleanSharedPersist
• MakeInvalid

Cache maintenance operations can sometimes break the
requirements of limited sideband channel communication, such as
when a master component accesses protected content. You can
disable cache maintenance operations in such cases.

Related references
3.7.5 TCU_SCR on page 3-78

A Signal descriptions
A.20 TBU tie-off signals

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-123

Non-Confidential

A.21 DTI interconnect switch signals
The DTI interconnect switch provides signals for each of its interfaces.

The switch provides one DN_Sn slave downstream interface per slave interface. The following table
shows the DN_Sn signals.

Table A-21 DTI interconnect switch DN_Sn interface signals

Signal Direction Description

tvalid_dti_dn_sn Slave to master. Flow control signal.

tready_dti_dn_sn Master to slave. Flow control signal.

tdata_dti_dn_sn Slave to master. Message data signal.

tid_dti_dn_sn Slave to master. Indicates the master that initiated the message.

tlast_dti_dn_sn Slave to master. Indicates the last cycle of a message.

tkeep_dti_dn_sn Slave to master. Indicates valid bytes.

twakeup_dti_dn_sn Slave to master. Wakeup signal.

The switch provides one UP_Sn slave upstream interface per slave interface. The following table shows
the UP_Sn signals.

Table A-22 DTI interconnect switch UP_Sn interface signals

Signal Direction Description

tvalid_dti_up_sn Master to slave. Flow control signal.

tready_dti_up_sn Slave to master. Flow control signal.

tdata_dti_up_sn Master to slave. Message data signal.

tdest_dti_up_sn Master to slave. Indicates the master that initiated the message.

tlast_dti_up_sn Master to slave. Indicates the last cycle of a message.

tkeep_dti_up_sn Master to slave. Indicates valid bytes.

twakeup_dti_up_sn Master to slave. Wakeup signal.

The switch provides a DN_M master downstream interface. The following table shows the DN_M
signals.

Table A-23 DTI interconnect switch DN_M interface signals

Signal Direction Description

tvalid_dti_dn_m Slave to master. Flow control signal.

tready_dti_dn_m Master to slave. Flow control signal.

A Signal descriptions
A.21 DTI interconnect switch signals

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-124

Non-Confidential

Table A-23 DTI interconnect switch DN_M interface signals (continued)

Signal Direction Description

tdata_dti_dn_m Slave to master. Message data signal.

tid_dti_dn_m Slave to master. Indicates the master that initiated the message.

tlast_dti_dn_m Slave to master. Indicates the last cycle of a message.

tkeep_dti_dn_m Slave to master. Indicates valid bytes.

twakeup_dti_dn_m Slave to master. Wakeup signal.

The switch provides an UP_M master upstream interface. The following table shows the UP_M signals.

Table A-24 DTI interconnect switch UP_M interface signals

Signal Direction Description

tvalid_dti_up_m Master to slave. Flow control signal.

tready_dti_up_m Slave to master. Flow control signal.

tdata_dti_up_m Master to slave. Message data signal.

tdest_dti_up_m Master to slave. Indicates the master that initiated the message.

tlast_dti_up_m Master to slave. Indicates the last cycle of a message.

tkeep_dti_up_m Master to slave. Indicates valid bytes.

twakeup_dti_up_m Slave to master. Wakeup signal.

A Signal descriptions
A.21 DTI interconnect switch signals

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-125

Non-Confidential

A.22 DTI interconnect sizer signals
The DTI interconnect sizer provides signals for each of its interfaces.

The sizer provides an LPI_CG clock gating interface. The following table shows the LPI_CG signals.

Table A-25 DTI interconnect sizer LPI_CG interface signals

Signal Direction Description

qactive_cg Output. Component active.

qreqn_cg Input. Quiescence request.

qacceptn_cg Output. Quiescence accept.

qdeny_cg Output. Quiescence deny.

The sizer provides a DN_S slave downstream interface. The following table shows the DN_S signals.

Table A-26 DTI interconnect sizer DN_S interface signals

Signal Direction Description

tvalid_dti_dn_s Slave to master. Flow control signal.

tready_dti_dn_s Master to slave. Flow control signal.

tdata_dti_dn_s Slave to master. Message data signal.

tid_dti_dn_s Slave to master. Indicates the master that initiated the message.

tlast_dti_dn_s Slave to master. Indicates the last cycle of a message.

tkeep_dti_dn_s Slave to master. Indicates valid bytes.

twakeup_dti_dn_s Slave to master. Wakeup signal.

The sizer provides an UP_S slave upstream interface. The following table shows the UP_S signals.

Table A-27 DTI interconnect sizer UP_S interface signals

Signal Direction Description

tvalid_dti_up_s Master to slave. Flow control signal.

tready_dti_up_s Slave to master. Flow control signal.

tdata_dti_up_s Master to slave. Message data signal.

tdest_dti_up_s Master to slave. Indicates the master that initiated the message.

tlast_dti_up_s Master to slave. Indicates the last cycle of a message.

A Signal descriptions
A.22 DTI interconnect sizer signals

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-126

Non-Confidential

Table A-27 DTI interconnect sizer UP_S interface signals (continued)

Signal Direction Description

tkeep_dti_up_s Master to slave. Indicates valid bytes.

twakeup_dti_up_s Master to slave. Wakeup signal.

The sizer provides a DN_M master downstream interface. The following table shows the DN_M signals.

Table A-28 DTI interconnect sizer DN_M interface signals

Signal Direction Description

tvalid_dti_dn_m Slave to master. Flow control signal.

tready_dti_dn_m Master to slave. Flow control signal.

tdata_dti_dn_m Slave to master. Message data signal.

tid_dti_dn_m Slave to master. Indicates the master that initiated the message.

tlast_dti_dn_m Slave to master. Indicates the last cycle of a message.

tkeep_dti_dn_m Slave to master. Indicates valid bytes.

twakeup_dti_dn_m Slave to master. Wakeup signal.

The sizer provides an UP_M master upstream interface. The following table shows the UP_M signals.

Table A-29 DTI interconnect sizer UP_M interface signals

Signal Direction Description

tvalid_dti_up_m Master to slave. Flow control signal.

tready_dti_up_m Slave to master. Flow control signal.

tdata_dti_up_m Master to slave. Message data signal.

tdest_dti_up_m Master to slave. Indicates the master that initiated the message.

tlast_dti_up_m Master to slave. Indicates the last cycle of a message.

tkeep_dti_up_m Master to slave. Indicates valid bytes.

twakeup_dti_up_m Slave to master. Wakeup signal.

A Signal descriptions
A.22 DTI interconnect sizer signals

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-127

Non-Confidential

A.23 DTI interconnect register slice signals
The DTI interconnect register slice provides signals for each of its interfaces.

The register slice provides an LPI_CG clock gating interface. The following table shows the LPI_CG
signals.

Table A-30 DTI interconnect register slice LPI_CG interface signals

Signal Direction Description

qactive_cg Output. Component active.

qreqn_cg Input. Quiescence request.

qacceptn_cg Output. Quiescence accept.

qdeny_cg Output. Quiescence deny.

The register slice provides a DN_S slave downstream interface. The following table shows the DN_S
signals.

Table A-31 DTI interconnect register slice DN_S interface signals

Signal Direction Description

tvalid_dti_dn_s Slave to master. Flow control signal.

tready_dti_dn_s Master to slave. Flow control signal.

tdata_dti_dn_s Slave to master. Message data signal.

tid_dti_dn_s Slave to master. Indicates the master that initiated the message.

tlast_dti_dn_s Slave to master. Indicates the last cycle of a message.

tkeep_dti_dn_s Slave to master. Indicates valid bytes.

The register slice provides an UP_S slave upstream interface. The following table shows the UP_S
signals.

Table A-32 DTI interconnect register slice UP_S interface signals

Signal Direction Description

tvalid_dti_up_s Master to slave. Flow control signal.

tready_dti_up_s Slave to master. Flow control signal.

tdata_dti_up_s Master to slave. Message data signal.

tdest_dti_up_s Master to slave. Indicates the master that initiated the message.

tlast_dti_up_s Master to slave. Indicates the last cycle of a message.

tkeep_dti_up_s Master to slave. Indicates valid bytes.

A Signal descriptions
A.23 DTI interconnect register slice signals

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-128

Non-Confidential

The register slice provides a DN_M master downstream interface. The following table shows the DN_M
signals.

Table A-33 DTI interconnect register slice DN_M interface signals

Signal Direction Description

tvalid_dti_dn_m Slave to master. Flow control signal.

tready_dti_dn_m Master to slave. Flow control signal.

tdata_dti_dn_m Slave to master. Message data signal.

tid_dti_dn_m Slave to master. Indicates the master that initiated the message.

tlast_dti_dn_m Slave to master. Indicates the last cycle of a message.

tkeep_dti_dn_m Slave to master. Indicates valid bytes.

The register slice provides an UP_M master upstream interface. The following table shows the UP_M
signals.

Table A-34 DTI interconnect register slice UP_M interface signals

Signal Direction Description

tvalid_dti_up_m Master to slave. Flow control signal.

tready_dti_up_m Slave to master. Flow control signal.

tdata_dti_up_m Master to slave. Message data signal.

tdest_dti_up_m Master to slave. Indicates the master that initiated the message.

tlast_dti_up_m Master to slave. Indicates the last cycle of a message.

tkeep_dti_up_m Master to slave. Indicates valid bytes.

A Signal descriptions
A.23 DTI interconnect register slice signals

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-129

Non-Confidential

Appendix B
Software initialization examples

This appendix provides examples of how software can initialize and enable the MMU‑600.

It contains the following sections:
• B.1 Initializing the SMMU on page Appx-B-131.
• B.2 Enabling the SMMU on page Appx-B-136.

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-130

Non-Confidential

B.1 Initializing the SMMU
Software must initialize the MMU‑600 before you can use it.

The MMU‑600 supports Secure and Non-secure translation worlds. This section defines how to initialize
Non-secure translation. The procedures for initializing Secure translation are similar, and require you to
access the corresponding MMU‑600 Secure registers.

 Note

This section does not describe how to create translation tables. See the Arm® Architecture Reference
Manual, ARMv8, for ARMv8‑A architecture profile for more information.

See the Arm® System Memory Management Unit Architecture Specification, SMMU architecture version
3.0 and version 3.1 for more information about MMU‑600 initialization.

This section contains the following subsections:
• B.1.1 Allocating the Command queue on page Appx-B-131.
• B.1.2 Allocating the Event queue on page Appx-B-131.
• B.1.3 Configuring the Stream table on page Appx-B-132.
• B.1.4 Initializing the Command queue on page Appx-B-132.
• B.1.5 Initializing the Event queue on page Appx-B-132.
• B.1.6 Invalidating TLBs and configuration caches on page Appx-B-133.
• B.1.7 Creating a basic Context Descriptor on page Appx-B-133.
• B.1.8 Creating a Stream Table Entry on page Appx-B-134.

B.1.1 Allocating the Command queue

The MMU‑600 uses the Command queue to receive commands. Software must allocate memory for the
Command queue and configure the appropriate registers in the SMMU.

To allocate the Command queue, ensure that your software performs the following steps:

Procedure
1. Allocate memory for the Command queue.
2. Configure the Command queue size and base address by writing to the SMMU_CMDQ_BASE

register.
 Note

The queue size can affect how many bits of the SMMU_CMDQ_CONS and SMMU_CMDQ_PROD
indices are writeable. It is therefore important that you perform this step before writing to
SMMU_CMDQ_CONS and SMMU_CMDQ_PROD.

3. Set the queue read index in SMMU_CMDQ_CONS and the queue write index in
SMMU_CMDQ_PROD to 0.

 Note

Setting the queue read index and the queue write index to the same value indicates that the queue is
empty.

B.1.2 Allocating the Event queue

The MMU‑600 uses the Event queue to signal events. Software must allocate memory for the Event
queue and configure the appropriate registers in the MMU.

To allocate the Event queue, ensure that your software performs the following steps:

B Software initialization examples
B.1 Initializing the SMMU

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-131

Non-Confidential

Procedure
1. Allocate memory for the Event queue.
2. Configure the Event queue size and base address by writing to the SMMU_EVENTQ_BASE register.

 Note

The queue size can affect how many bits of the SMMU_EVENTQ_CONS and
SMMU_EVENTQ_PROD indices are writeable. It is therefore important that you perform this step
before writing to SMMU_EVENTQ_CONS and SMMU_EVENTQ_PROD.

3. Set the queue read index in SMMU_EVENTQ_CONS and the queue write index in
SMMU_EVENTQ_PROD to 0.

 Note

Setting the queue read index and the queue write index to the same value indicates that the queue is
empty.

B.1.3 Configuring the Stream table

The Stream table is a configuration structure in memory that uses a Context Descriptor (CD) to locate
translation data for a transaction. Software must allocate memory for the Stream table, configure the
table format, and populate the table with Stream Table Entries (STEs).

To configure the Stream table, ensure that your software performs the following steps:

Procedure
1. Allocate memory for the Stream table.
2. Configure the format and size of the Stream table by writing to SMMU_STRTAB_BASE_CFG.
3. Configure the base address for the Stream table by writing to SMMU_STRTAB_BASE.
4. Prevent uninitialized memory being interpreted as a valid configuration by setting STE.V = 0 for

each STE to mark it as invalid.
5. Ensure that written data is observable to the SMMU by performing a Data Synchronization Barrier

(DSB) operation.
If SMMU_IDR0.COHACC = 0, the system does not support coherent access to memory for the TCU.
In such cases, you might require extra steps to ensure that the SMMU can observe the written data.

B.1.4 Initializing the Command queue

Software must initialize the Command queue by enabling it and checking that the enable operation is
complete.

To initialize the Command queue, ensure that your software performs the following steps:

Procedure
1. Enable the Command queue by setting the SMMU_CR0.CMDQEN bit to 1.
2. Check that the enable operation is complete by polling SMMU_CR0ACK until CMDQEN reads as 1.

B.1.5 Initializing the Event queue

Software must initialize the Event queue by enabling it and checking that the enable operation is
complete.

To initialize the Event queue, ensure that your software performs the following steps:

Procedure
1. Enable the Event queue by setting the SMMU_CR0.EVENTQEN bit to 1.

B Software initialization examples
B.1 Initializing the SMMU

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-132

Non-Confidential

2. Check that the enable operation is complete by polling SMMU_CR0ACK until EVENTQEN reads as
1.

B.1.6 Invalidating TLBs and configuration caches

Before use, the MMU‑600 TLBs and configuration cache structures must be invalidated by issuing
commands to the Command queue. Alternatively, Secure software can invalidate all TLBs and caches
with a single write.

To invalidate TLB entries, ensure that your software issues the appropriate command for the translation
context. To invalidate TLB entries for:

Non‑secure EL1 contexts Issue CMD_TLBI_NSNH_ALL
EL2 contexts Issue CMD_TLBI_EL2_ALL
EL3 contexts Issue CMD_TLBI_EL3_ALL
Secure EL1 contexts Issue CMD_TLBI_NH_ALL

 Note

Commands to invalidate Secure TLB entries can only be issued through the Secure Command queue. For
a system that implements two security states, Secure software must issue the appropriate command to the
Secure Command queue for the first TLB invalidation. If your system does not use Secure software, you
can permit Non‑secure software to access SMMU_S_INIT by using sec_override. See A.11 TCU tie-off
signals on page Appx-A-109 and A.20 TBU tie-off signals on page Appx-A-122.

To invalidate both the TCU configuration cache and the TBU combined configuration cache and TLB,
issue the CMD_CFGI_ALL command.

To force all previous commands to complete, issue CMD_SYNC.

To invalidate all configuration caches and TLB entries for all translation regimes and security states,
ensure that Secure software:
1. Sets SMMU_S_INIT.INV_ALL to 1. The SMMU sets SMMU_S_INIT.INV_ALL to 0 after the

invalidation completes.
2. Polls SMMU_S_INIT.INV_ALL to check it is set to 0 before continuing the SMMU configuration.

See the Arm® System Memory Management Unit Architecture Specification, SMMU architecture version
3.0 for more information about issuing commands to the Command queue.

B.1.7 Creating a basic Context Descriptor

A Context Descriptor (CD) is a data structure in system memory. A CD defines how Stage 1 translation
is performed. The SubstreamID is used to select the CD.

To create a CD, ensure that your software performs the following steps:
1. Allocate 64 bytes of memory for the CD.
2. Configure the CD fields according to the information in the following table.

Table B-1 Configuring the CD

Field Description

AA64 Translation table format:

0 AArch32.
1 AArch64.

EPD0 Enable translations for TTB0 by setting EPD0 to 0.

TTB0 Base address of translation table 0.

B Software initialization examples
B.1 Initializing the SMMU

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-133

Non-Confidential

Table B-1 Configuring the CD (continued)

Field Description

TG0 Translation granule size for TTB0 when CD.AA64 = 1.

IR0

OR0

Cacheability attribute to use for translation table walks to TTB0:

00 Non-cacheable.
01 Write-Back Cacheable, Read-Allocate Write-Allocate.
10 Write-through Cacheable, Read-Allocate.

SH0 Shareability of translation table walks to TTB0:

00 Non-shareable.
01 Outer Shareable.
10 Inner Shareable.

EPD1 If the StreamWorld supports split address spaces, enable table walks for TTB1.

ENDI The endianness for the translation tables.

IPS The IPA size when CD.AA64 = 1.

ASET Defines whether the ASID values are shared with the ASID values of an Arm processor.
 Note

If you expect this context to receive broadcast TLB invalidation commands from a PE, set ASET to 0.

V Valid CD. This field must be set to 1.

B.1.8 Creating a Stream Table Entry

Each Stream Table Entry (STE) configures how Stage 2 translation is performed, and how the Context
Descriptor (CD) table can be found. The StreamID is used to select an STE.

To create an STE, ensure that your software performs the following steps:
1. Allocate 64 bytes of memory for the STE.
2. Set the STE.Config field as required for Stage 1 translation, Stage 2 translation, or translation bypass:

0b000 No traffic can pass through the MMU. An abort is returned.
0b100 Stage 1 and Stage 2 bypass.
0b101 Stage 1 translation Stage 2 bypass.
0b110 Stage 1 bypass Stage 2 translation.
0b111 Stage 1 and Stage 2 translation.

3. If Stage 1 translation is enabled, you can set the following fields:

STE.S1CDMax Controls whether STE.S1ContextPtr points to a single CD or a CD table.
STE.S1Fmt If STE.S1CDMax > 0, configures the format of the CD table.
STE. S1ContextPtr Contains a pointer to either a CD or a CD table. If Stage 2 translation is

enabled, this pointer is an intermediate physical address (IPA), otherwise it is
an untranslated physical address PA.

4. If Stage 2 translation is enabled, you can set the following fields:

STE.S2TTB Points to the Stage 2 translation table base address.
STE.S2PS Contains the PA size of the stage 2 PA range.
STE.S2AA64 Indicates whether the Stage 2 tables are AArch32 or AArch64 format.

B Software initialization examples
B.1 Initializing the SMMU

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-134

Non-Confidential

STE.S3ENDI Set this field to the required endianness for the stage 2 translation tables.
STE.S2AFFD Disable Access Flag faults for Stage 2 translation.
STE.S2TG 0b00: 4KB.

0b01: 64KB.
0b10: 16KB.

STE.S2IR0 and
STE.S2OR0

0b00: Non-cacheable.
0b01: Write-Back Cacheable, Read-Allocate Write-Allocate.
0b10: Write-through Cacheable, Read-Allocate.

STE.S2SH0 0b00: Non-shareable.
0b01: Outer Shareable.
0b10: Inner Shareable.

STE.S2VMID Contains the VMID associated with these translations.

B Software initialization examples
B.1 Initializing the SMMU

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-135

Non-Confidential

B.2 Enabling the SMMU
Software can enable the SMMU by writing to SMMU_CR0 after the Stream table is populated.

To enable the SMMU, carry out the following procedure.

Procedure
1. Ensure that all Stream table entries are populated in memory.
2. Set the SMMU_CR0.SMMUEN bit to 1.
3. Check that the enable operation is complete by polling SMMU_CR0ACK until SMMUEN reads as 1.

B Software initialization examples
B.2 Enabling the SMMU

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-136

Non-Confidential

Appendix C
Revisions

This appendix describes the technical changes between released issues of this book.

It contains the following section:
• C.1 Revisions on page Appx-C-138.

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-137

Non-Confidential

C.1 Revisions
This appendix describes the technical changes between released issues of this book.

Table C-1 Issue 0000-00

Change Location Affects

First release - -

Table C-2 Differences between issue 0000-00 and issue 0000-01

Change Location Affects

Clarified feature list. 1.3 Features on page 1-14. All revisions.

Added revised information about TCU,
TBU, and DTI interconnect.

2.1 About the functions on page 2-22. All revisions.

Added various clarifications. 2.2 Interfaces on page 2-28. All revisions.

Added various clarifications. 2.3.2 Performance Monitoring Unit on page 2-37. All revisions.

Added new section. SMMUv3 PMU register architectural options on page 2-42. All revisions.

Added information about DTI. 2.3.1 DTI overview on page 2-36. All revisions.

Added various clarifications. 2.3.5 Quality of Service on page 2-44. All revisions.

Added new section. 2.3.10 Conversion between ACE-Lite and Arm®v8 attributes on page 2-47. All revisions.

Added various clarifications. 2.4 Constraints and limitations of use on page 2-51. All revisions.

Amended address ranges. 3.3 MMU‑600 memory map on page 3-66. All revisions.

New subsection TCU and TBU PMU
identification register summary.

3.4 Register summary on page 3-68. All revisions.

Added new section. 3.6 TCU PMU component and peripheral ID registers on page 3-72. All revisions.

Modified bits[2:0]. 3.7.1 TCU_CTRL on page 3-73. All revisions.

Amended section. 3.7.7 TCU_NODE_STATUSn on page 3-80. All revisions.

Added new sections. 3.8.4 TCU_ERRGEN on page 3-85. All revisions.

3.10 TBU PMU component and peripheral ID registers on page 3-88.

3.12.4 TBU_ERRGEN on page 3-93.

Amended sections. A.9 TCU interrupt signals on page Appx-A-106.

A.13 TBU TBS interface signals on page Appx-A-111.

A.14 TBU TBM interface signals on page Appx-A-114.

A.19 TBU interrupt signals on page Appx-A-121.

A.20 TBU tie-off signals on page Appx-A-122.

All revisions.

C Revisions
C.1 Revisions

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-138

Non-Confidential

Table C-2 Differences between issue 0000-00 and issue 0000-01 (continued)

Change Location Affects

Added new sections. A.21 DTI interconnect switch signals on page Appx-A-124. All revisions.

A.22 DTI interconnect sizer signals on page Appx-A-126.

A.23 DTI interconnect register slice signals on page Appx-A-128.

B.1.7 Creating a basic Context Descriptor on page Appx-B-133.

B.1.8 Creating a Stream Table Entry on page Appx-B-134.

Table C-3 Differences between issue 0000-01 and issue 0001-00

Change Location Affects

Added new section. 1.2.5 AMBA APB protocol on page 1-13. All revisions.

Modified description of Main TLB. 2.1.1 Translation Buffer Unit on page 2-23. All revisions.

Added information about sup_btm signal. 2.3.6 Distributed Virtual Memory (DVM) messages
on page 2-44.

All revisions.

Added a note about the configurability of the ID register
values.

2.4.1 SMMUv3 support on page 2-51. All revisions.

Modified description of SMMU_IIDR.Revision. 2.4.1 SMMUv3 support on page 2-51. r0p1.

Clarified description of CleanShared, CleanInvalid,
MakeInvalid, and CleanSharedPersist transaction
handling.

Transactions that can result in a translation fault
on page 2-54.

All revisions.

Added SMMU_PMCG_IRQ_STATUS to list of
unimplemented PMCG registers.

3.1 About the programmer's model on page 3-59. All revisions.

Modified the value and description of
SMMU_PIDR2[7:4] and SMMU_PIDR3[7:4].

3.5 TCU component and peripheral ID registers
on page 3-71.

3.6 TCU PMU component and peripheral ID registers
on page 3-72.

r0p1.

Modified register description.

Modified register bits [31:16] and [7:0].

3.7.1 TCU_CTRL on page 3-73. r0p1.

Added information about calculating the offset of a
specific register.

3.7.6 TCU_NODE_CTRLn on page 3-79.

3.7.7 TCU_NODE_STATUSn on page 3-80.

All revisions.

Added a note to DCC and DWC bit descriptions about
conditions that apply when setting the bits.

3.8.4 TCU_ERRGEN on page 3-85. All revisions.

Modified the value and description of
SMMU_PIDR2[7:4] and SMMU_PIDR3[7:4].

3.9 TBU component and peripheral ID registers
on page 3-87.

3.10 TBU PMU component and peripheral ID registers
on page 3-88.

r0p1.

C Revisions
C.1 Revisions

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-139

Non-Confidential

Table C-3 Differences between issue 0000-01 and issue 0001-00 (continued)

Change Location Affects

Modified register description.

Modified register bits.

3.11.1 TBU_CTRL on page 3-89. r0p1.

Added a note to DMTLB bit description about conditions
that apply when setting the bit.

3.12.4 TBU_ERRGEN on page 3-93. All revisions.

Table C-4 Differences between issue 0001-00 and issue 0001-01

Change Location Affects

Clarified description of translation manager. 2.1.1 Translation Buffer Unit on page 2-23. All revisions.

Clarified note about DTI translation requests. 2.3.2 Performance Monitoring Unit on page 2-37. All revisions.

Clarified note about configurable values.

Added note to SMMU_IIDR table entry.

2.4.1 SMMUv3 support on page 2-51. All revisions.

Added note to clarify reset values of architectural
registers.

Modified incorrect entries for SMMU_S_GBPA in
SMMUv3 architectural registers table.

3.2 SMMU architectural registers on page 3-61. All revisions.

Modified introductory description of TCU_CTRL. 3.7.1 TCU_CTRL on page 3-73. r0p1.

Modified register name. 3.8.2 TCU_ERRCTLR on page 3-82.

3.12.2 TBU_ERRCTLR on page 3-91.

r0p1.

Modified section title.

Removed dftclkenable signal.

Added mbistresetn and mbistreq signals.

A.12 TCU and TBU test and debug signals
on page Appx-A-110.

All revisions.

Table C-5 Differences between issue 0001-01 and issue 0002-00

Change Location Affects

Modified description of configuration inputs. 1.6.2 Design flow on page 1-18. All revisions.

Modified AXI5 extensions list.

Removed two notes.

TBU TBS interface on page 2-31.

TBU TBM interface on page 2-31.

All revisions.

Removed information about sec_override.

Removed note.

2.3.2 Performance Monitoring Unit on page 2-37. All revisions.

Clarified information about SMMU_PMCG_SMR0
event filtering.

SMMUv3 architectural performance events on page 2-37.

MMU‑600 TCU events on page 2-38.

MMU‑600 TBU events on page 2-40.

All revisions.

C Revisions
C.1 Revisions

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-140

Non-Confidential

Table C-5 Differences between issue 0001-01 and issue 0002-00 (continued)

Change Location Affects

Changed Low_Power_Signals to Wakeup_Signals
in the table.

AXI5 support on page 2-56. All revisions.

Modified reset value of NS_INIT. 3.7.5 TCU_SCR on page 3-78. All revisions.

Modified register names in table. 3.10 TBU PMU component and peripheral ID registers
on page 3-88.

All revisions.

Modified the value of SMMU_PMCG_CIDR1. 3.10 TBU PMU component and peripheral ID registers
on page 3-88.

All revisions.

Modified description of TCU tie-off signals. A.11 TCU tie-off signals on page Appx-A-109. All revisions.

Modified description of TBU tie-off signals. A.20 TBU tie-off signals on page Appx-A-122. All revisions.

Modified value and description of
SMMU_PIDR3[7:4].

3.5 TCU component and peripheral ID registers on page 3-71.

3.9 TBU component and peripheral ID registers on page 3-87.

r0p2.

Modified value and description of
SMMU_PMCG_PIDR3[7:4].

3.6 TCU PMU component and peripheral ID registers
on page 3-72.

3.10 TBU PMU component and peripheral ID registers
on page 3-88.

r0p2.

Table C-6 Differences between issue 0002-00 and issue 0100-00

Change Location Affects

Clarified description of AMBA ACE5 compliance. 1.2.4 AMBA ACE5-Lite and AMBA® AXI5 protocol
on page 1-13.

r1p0.

Added new features. 1.3 Features on page 1-14. r1p0.

Added TBU direct indexing and MTLB partitioning
information to Main TLB description.

2.1.1 Translation Buffer Unit on page 2-23. r1p0.

Added information about ACE configuration. TBU TBS interface on page 2-31.

TBU TBM interface on page 2-31.

r1p0.

Modified address width. TBU TBM interface on page 2-31. All revisions.

Added new event, CC miss. MMU‑600 TCU events on page 2-38. r1p0.

Added new sections. ACE protection support.

Stalling faults.

2.3.3 TBU direct indexing and MTLB partitioning
on page 2-43.

2.3.8 TCU prefetch on page 2-46.

r1p0.

Added new section. 2.3.7 TCU transaction handling on page 2-45. All revisions.

C Revisions
C.1 Revisions

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-141

Non-Confidential

Table C-6 Differences between issue 0002-00 and issue 0100-00 (continued)

Change Location Affects

Fixed incorrect references to aruser_s and awuser_s. Sentence
now correctly refers to aruser_m and awuser_m.

Other clarifications.

2.3.11 AXI USER bits defined by the MMU‑600 TBU
on page 2-49.

All revisions.

Added information about S1HWATTR[3:0] and
S2HWATTR[3:0].

2.3.11 AXI USER bits defined by the MMU‑600 TBU
on page 2-49.

r1p0.

Added PRI field to SMMU_IDR0.

Modified value of PRIQS field in SMMU_IDR1.

Added PPS field to SMMU_IDR3.

Removed statement that said PRIQ_ABT_ERR global error
cannot occur.

2.4.1 SMMUv3 support on page 2-51. r1p0.

Added new sections. Upstream ACE master restrictions.

Avoiding deadlock when using fully coherent ACE
masters.

r1p0.

Modified value and description of SMMU_PIDR2[7:4] and
SMMU_PIDR3[7:4].

3.5 TCU component and peripheral ID registers
on page 3-71.

3.9 TBU component and peripheral ID registers
on page 3-87.

r1p0.

Removed SMMU_PRIQ_* from list of non-implemented
registers.

3.1 About the programmer's model on page 3-59. r1p0.

Added new registers:
• SMMU_PRIQ_BASE.
• SMMU_PRIQ_PROD.
• SMMU_PRIQ_CONS.
• SMMU_PRIQ_IRQ_CFG0.
• SMMU_PRIQ_IRQ_CFG1.
• SMMU_PRIQ_IRQ_CFG2.

3.2 SMMU architectural registers on page 3-61. r1p0.

Added new registers:
• SMMU_PMCG_PMAUTHSTATUS.
• SMMU_PMCG_PMDEVARCH.
• SMMU_PMCG_PMDEVTYPE.

3.2 SMMU architectural registers on page 3-61. All revisions.

Modified value and description of SMMU_PMCG_PIDR2[7:4]
and SMMU_PMCG_PIDR3[7:4].

3.6 TCU PMU component and peripheral ID
registers on page 3-72.

3.10 TBU PMU component and peripheral ID
registers on page 3-88.

r1p0.

Added new signal pri_q_irpt_ns. A.9 TCU interrupt signals on page Appx-A-106. r1p0.

C Revisions
C.1 Revisions

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-142

Non-Confidential

Table C-6 Differences between issue 0002-00 and issue 0100-00 (continued)

Change Location Affects

Added new signals for ACE TBU configurations. A.13 TBU TBS interface signals
on page Appx-A-111.

A.14 TBU TBM interface signals
on page Appx-A-114.

r1p0.

Added new signal cmo_disable. A.20 TBU tie-off signals on page Appx-A-122. r1p0.

Table C-7 Differences between issue 0100-00 and issue 0200-00

Change Location Affects

Removed sentence about ACE TBU configuration. 1.2.4 AMBA ACE5-Lite and AMBA® AXI5 protocol
on page 1-13.

r2p0.

Added new features.

Removed sentence about ACE protection.

1.3 Features on page 1-14. r2p0.

Added sentence for clarification at beginning of section. 2.2.1 TCU interfaces on page 2-28.

2.2.2 TBU interfaces on page 2-30.

All revisions.

Removed sentence about ACE TBU configuration. TBU TBS interface on page 2-31.

TBU TBM interface on page 2-31.

r2p0.

Removed section about ACE protection support. 2.3 Operation on page 2-36. r2p0.

Modified value and description of Revision and Variant
fields in SMMU_IIDR.

2.4.1 SMMUv3 support on page 2-51. r2p0.

Removed section about upstream ACE master
restrictions.

2.4.2 AMBA support on page 2-54. r2p0.

Modified value and description of SMMU_PIDR2[7:4]. 3.5 TCU component and peripheral ID registers
on page 3-71.

3.9 TBU component and peripheral ID registers
on page 3-87.

r2p0.

Modified value and description of
SMMU_PMCG_PIDR2[7:4].

3.6 TCU PMU component and peripheral ID registers
on page 3-72.

3.10 TBU PMU component and peripheral ID registers
on page 3-88.

r2p0.

Added new signals for ACE5‑Lite atomics.

Removed signals that applied to ACE TBU
configurations only.

A.13 TBU TBS interface signals on page Appx-A-111.

A.14 TBU TBM interface signals on page Appx-A-114.

r2p0.

C Revisions
C.1 Revisions

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-143

Non-Confidential

Table C-8 Differences between issue 0200-00 and issue 0201-00

Change Location Affects

Changed the description of the functionality if the sup_btm signal is
tied LOW.

TCU SYSCO interface on page 2-30. r2p1.

Changed the description of the atomic assesses functionality. • 1.3 Features on page 1-14.
• 1.7 Product revisions on page 1-20.

r2p1.

Changed the names of some of the following signals:
• aruser_m.
• awuser_m.
• aruser_s.
• awuser_s.

2.3.3 TBU direct indexing and MTLB partitioning
on page 2-43.

r2p1.

Changed the 'Atomic_Transactions' 'AXI5 extension' support to be
'Yes' for 'TBU TBS' and 'TBU TBM'.

AXI5 support on page 2-56. r2p1.

Added the following note for both signals in each section:
 Note

Connect to the debug infrastructure of your SoC.

• A.5 TCU PMU snapshot interface signals
on page Appx-A-102.

• A.15 TBU PMU snapshot interface signals
on page Appx-A-117.

r2p1.

Table C-9 Differences between issue 0201-00 and issue 0202-00

Change Location Affects

Corrections to the minor revision,
MAX[0x1, ecorevnum]

• 2.4.1 SMMUv3 support on page 2-51.
• 3.5 TCU component and peripheral ID registers on page 3-71.
• 3.6 TCU PMU component and peripheral ID registers on page 3-72.
• 3.9 TBU component and peripheral ID registers on page 3-87.
• 3.10 TBU PMU component and peripheral ID registers

on page 3-88.

r2p2.

Correction to TCU_ERRFR reset value. 3.8.1 TCU_ERRFR on page 3-82. All revisions.

Correction to TCU ERRCTRL.FI
description.

3.8.2 TCU_ERRCTLR on page 3-82. All revisions.

Correction to TBU_ERRFR reset value. 3.12.1 TBU_ERRFR on page 3-91. All revisions.

Correction to TBU ERRCTRL.FI
description.

3.12.2 TBU_ERRCTLR on page 3-91. All revisions.

Updated the description, category, and
location of the evento signal.

A.10 TCU event interface signal on page Appx-A-107. All revisions.

Updated the description of the 'Distributed
Virtual Memory (DVM) messages' section.

2.3.6 Distributed Virtual Memory (DVM) messages on page 2-44. All revisions.

Updated the description of the cmo_disable
TBU tie‑off signal.

A.20 TBU tie-off signals on page Appx-A-122. All revisions.

Updated the description of the TCU
memory map.

3.3 MMU‑600 memory map on page 3-66. All revisions.

Improved content descriptions. Throughout the document All revisions.

C Revisions
C.1 Revisions

100310_0202_00_en Copyright © 2016–2018, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-144

Non-Confidential

	Arm® CoreLink™ MMU‑600 System Memory Management Unit Technical Reference Manual
	Table of Contents
	Preface
	About this book
	Product revision status
	Intended audience
	Using this book
	Glossary
	Typographic conventions
	Timing diagrams
	Signals

	Additional reading

	Feedback
	Feedback on this product
	Feedback on content

	1 : Introduction
	1.1 : About the MMU‑600
	1.2 : Compliance
	1.2.1 : Arm architecture
	1.2.2 : SMMU architecture
	1.2.3 : AMBA Distributed Translation Interface protocol
	1.2.4 : AMBA ACE5-Lite and AMBA® AXI5 protocol
	1.2.5 : AMBA APB protocol

	1.3 : Features
	1.4 : Interfaces
	1.5 : Configurable options
	1.6 : Product documentation and design flow
	1.6.1 : Documentation
	1.6.2 : Design flow

	1.7 : Product revisions

	2 : Functional description
	2.1 : About the functions
	2.1.1 : Translation Buffer Unit
	2.1.2 : Translation Control Unit
	2.1.3 : DTI interconnect

	2.2 : Interfaces
	2.2.1 : TCU interfaces
	TCU Queue and Table Walk/Distributed Virtual Memory interface
	TCU PROG interface
	TCU LPI_PD interface
	TCU LPI_CG interface
	TCU DTI interface
	TCU interrupt interfaces
	TCU SYSCO interface
	TCU tie-off signals

	2.2.2 : TBU interfaces
	TBU TBS interface
	TBU TBM interface
	TBU LPI_PD interface
	TBU LPI_CG interface
	TBU DTI interface
	TBU interrupt interfaces
	TBU tie-off signals

	2.2.3 : DTI interconnect interfaces
	DTI interconnect switch interfaces
	DTI interconnect sizer interfaces
	DTI interconnect register slice interfaces

	2.3 : Operation
	2.3.1 : DTI overview
	2.3.2 : Performance Monitoring Unit
	SMMUv3 architectural performance events
	MMU‑600 TCU events
	MMU‑600 TBU events
	SMMUv3 PMU register architectural options
	PMU snapshot interface

	2.3.3 : TBU direct indexing and MTLB partitioning
	2.3.4 : Reliability, Availability, and Serviceability
	2.3.5 : Quality of Service
	2.3.6 : Distributed Virtual Memory (DVM) messages
	2.3.7 : TCU transaction handling
	2.3.8 : TCU prefetch
	2.3.9 : Error responses
	2.3.10 : Conversion between ACE-Lite and Arm®v8 attributes
	Slave interface memory type attribute handling
	Master interface memory type attribute handling

	2.3.11 : AXI USER bits defined by the MMU‑600 TBU

	2.4 : Constraints and limitations of use
	2.4.1 : SMMUv3 support
	2.4.2 : AMBA support
	TBU support for ACE-Lite transactions
	Transactions that can result in a translation fault
	Transactions that cannot result in a translation fault
	AXI5 support

	3 : Programmer's model
	3.1 : About the programmer's model
	3.2 : SMMU architectural registers
	3.3 : MMU‑600 memory map
	3.4 : Register summary
	3.5 : TCU component and peripheral ID registers
	3.6 : TCU PMU component and peripheral ID registers
	3.7 : TCU microarchitectural registers
	3.7.1 : TCU_CTRL
	3.7.2 : TCU_QOS
	3.7.3 : TCU_CFG
	3.7.4 : TCU_STATUS
	3.7.5 : TCU_SCR
	3.7.6 : TCU_NODE_CTRLn
	3.7.7 : TCU_NODE_STATUSn

	3.8 : TCU RAS registers
	3.8.1 : TCU_ERRFR
	3.8.2 : TCU_ERRCTLR
	3.8.3 : TCU_ERRSTATUS
	3.8.4 : TCU_ERRGEN

	3.9 : TBU component and peripheral ID registers
	3.10 : TBU PMU component and peripheral ID registers
	3.11 : TBU microarchitectural registers
	3.11.1 : TBU_CTRL
	3.11.2 : TBU_SCR

	3.12 : TBU RAS registers
	3.12.1 : TBU_ERRFR
	3.12.2 : TBU_ERRCTLR
	3.12.3 : TBU_ERRSTATUS
	3.12.4 : TBU_ERRGEN

	A : Signal descriptions
	A.1 : Clock and reset signals
	A.2 : TCU QTW/DVM interface signals
	A.3 : TCU programming interface signals
	A.4 : TCU SYSCO interface signals
	A.5 : TCU PMU snapshot interface signals
	A.6 : TCU LPI_PD interface signals
	A.7 : TCU LPI_CG interface signals
	A.8 : TCU DTI interface signals
	A.9 : TCU interrupt signals
	A.10 : TCU event interface signal
	A.11 : TCU tie-off signals
	A.12 : TCU and TBU test and debug signals
	A.13 : TBU TBS interface signals
	A.14 : TBU TBM interface signals
	A.15 : TBU PMU snapshot interface signals
	A.16 : TBU LPI_PD interface signals
	A.17 : TBU LPI_CG interface signals
	A.18 : TBU DTI interface signals
	A.19 : TBU interrupt signals
	A.20 : TBU tie-off signals
	A.21 : DTI interconnect switch signals
	A.22 : DTI interconnect sizer signals
	A.23 : DTI interconnect register slice signals

	B : Software initialization examples
	B.1 : Initializing the SMMU
	B.1.1 : Allocating the Command queue
	B.1.2 : Allocating the Event queue
	B.1.3 : Configuring the Stream table
	B.1.4 : Initializing the Command queue
	B.1.5 : Initializing the Event queue
	B.1.6 : Invalidating TLBs and configuration caches
	B.1.7 : Creating a basic Context Descriptor
	B.1.8 : Creating a Stream Table Entry

	B.2 : Enabling the SMMU

	C : Revisions
	C.1 : Revisions

