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About CoreSight 
CoreSight technology from ARM provides solutions for Debug and Trace of complex SoC designs. This 

document introduces the concepts which will help you to work with CoreSight. CoreSight licensees should 

refer to the CoreSight System Designers Guide for more in-depth information. 

Debug : This refers to features to observe or modify the state of parts of the design. Features used for 

debug include the ability to read and modify register values of processors and peripherals. Debug also 

includes the use of complex triggering and monitoring resources. Debug frequently involves halting 

execution once a failure has been observed, and collecting state information retrospectively to investigate 

the problem. 

Trace: CoreSight provides features which allow for continuous collection of system information for later 

off-line analysis. Execution trace generation macrocells exist for use with processors, software can be 

instrumented with dedicated trace generation, and some peripherals can generate performance 

monitoring trace streams. 

Trace and Debug are used together at all stages in the design flow from initial platform bringup, through 

software development and optimization, and even to in-field debug or failure analysis. 

Historically, the following methods of debugging an ARM processor based SoC exist: 

Conventional JTAG debug (‘external’ debug) 

This is invasive debug with the processor halted using: 

•  Breakpoints and watchpoints to halt the processor on specific activity. 

•  A debug connection to examine and modify registers and memory, and provide single-

step execution. 

Conventional monitor debug (‘self-hosted’ debug) 

This is invasive debug with the processor running using a debug monitor that resides in 

memory. 

Trace  

This is non-invasive debug with the processor running at full speed using: 

•  A collection of information on instruction execution and data transfers. 

•  Delivery off-chip in real-time, or capture in on-chip memory. 

•  Tools to merge data with source code on a development workstation for future analysis. 

CoreSight technology addresses the requirement for a multi-processor debug and trace solution with high 

bandwidth for entire systems beyond the processor, despite ever increasing SoC complexity and clock 

speeds. Efficient use of pins made available for debug is crucial. 

CoreSight provides: 

 A library of modular components and interconnects. 

 Architected discovery and identification methods to allow for flexible system design and easy 

inclusion of differentiated debug/trace functions. 

 A standard implementation of the ARM Debug Interface for debug tools to work with. 
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Elements of a CoreSight design 
The CoreSight architecture introduces a number of key concepts which together enable complex systems 
to be designed. Standardized programming models and feature discovery registers allow debug tools to 
be largely generic with minimal dependence on the feature set of an individual SoC. 

Debug Access Port 
The Debug Access Port (DAP) is present on any SoC which presents a physical port to be connected to 
external debug tools. The DAP is an implementation of the standardized ARM Debug Interface, and 
provides a bridge between a reliable low pin count interface and on-chip memory mapped peripherals. 
See page 7 for more details of the DAP. Transactions generated by the DAP are referred to as External 
Debugger Accesses.  
The DAP provides (amongst other things) architected top level control for debug domain power control, 
and fast code download direct to system memory. 
CoreSight components implement memory mapped interfaces, but the DAP can also act as a bridge to an 
on-chip JTAG scan chain where necessary for legacy components. This gives increased flexibility and 
power savings when working with multiple clock and power domains on the SoC. 

Self Hosted Debug 
Most processors have direct access to their own debug resources by using dedicated instructions. In 
addition, it is common for most processors on a SoC to have access to some or all of the remaining 
debug components. Exact details vary, but there is typically a region in the system memory map which is 
multiplexed with external accesses to the debug components. Self hosted debug is typically managed by 
debug monitor software running on either the target processor or a second processor in the SoC. 
Access control mechanisms are provided to permit interworking between an external debugger and self-
hosted debug such that the external debugger does not need to be aware of the actions of the debug 
monitor. 
Save and Restore sequences can be used by on-chip software to maintain the debug state across power-
down cycles, and provide the illusion to the external debugger that the SoC remains powered on. This is 
particularly important for debug of battery powered devices where infrequent events are being monitored. 

Discovery using ROM Tables 
All CoreSight systems will include at least one ROM table. This serves the purpose of both uniquely 
identifying the SoC to an external debugger, and allowing discovery of all of the debug components in a 
system. Discovery relies on the use of identification registers at architected positions in the memory map 
of every debug component. All CoreSight components use this standard. This permits discovery 
sequences of identify at least a sub-set of the feature-set without detailed knowledge of every component. 
For both external debug, and self-hosted debug, there is a pointer to the address of the top-level ROM 
table from that debug agent. The ROM table provides a list of address offsets which can be used to locate 
the next level of component. Components can be ROM tables again, or individual components. Provided 
the system complies with the rule that each component is only referenced once in the ROM tables and 
there are no loops, it is possible to identify all the debug components which are accessible to each debug 
agent.  
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Processor debug and monitoring features 
The exact features vary between processor design, and can also vary from one implementation of a 
processor to another. Processors typically provide a halting debug mode (where architectural state can 
be observed) and single step execution. Also common are breakpoint units and Performance Monitoring 
Units (PMU). CoreSight provides an Embedded Cross Trigger mechanism to synchronize or distribute 
debug requests and profiling information across the SoC. 

Cross Triggering 
CoreSight Embedded Cross Trigger (ECT) functionality provides modules for connecting and routing 
arbitrary signals for use by debug tools. Wherever there are signals to sample or drive, a Cross Trigger 
Interface (CTI) is used to control the selection of which signals are of interest. Most systems will 
implement a CTI per processor, and at least one CTI for system level components. The CTIs in the 
system are interconnected using a Cross Trigger Matrix (CTM) which distributes any selected input 
events across the SoC to every CTI. Each CTI is programmed to use these distributed events to drive 
local control signals. 
For processors and ETM trace units, the event connections to the CTI are standardized (although this 
does vary from processor to processor, as described in the processor documentation). Typical 
connections are listed below. 

Source Destination Example use case 

Trace logic External Outputs  
(4 bits) 

CTI Trigger inputs Trace logic resources to trigger 
trace capture or debug 

Trace logic External Outputs  
(2 bits) 

PMU inputs PMU counters to extend trace 
logic counters 

PMU Events (~30 bits) Trace logic External inputs Filter trace based on processor 
events such as cache miss 

PMU overflow CTI Trigger inputs Forward PMU counter overflow to 
interrupt controller or other 
clusters 

Processor Debug Restart CTI Trigger input Synchronized debug restart 
across clusters (supporting halt 
and restart) 

Trace Buffer Full CTI Trigger input Halt processor on trace buffer full 

CTI Trigger Output Processor interrupt input Cause interrupt based on input to 
CTI or other CTI in system 

CTI Trigger Output Processor Debug Halt Request Enter debug state based on input 
to CTI or other CTI in system 

CTI Trigger Output Trace Port Trigger request Indicate trace trigger to trace 
capture device 

Table 1 - Cross Trigger Connections 
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Trace Sources 
CoreSight technology provides a standard infrastructure for the transmission and capture of trace data 
(presented as arbitrary streams of bytes). This allows for optimum sharing of common resources. Various 
trace sources are available: 

Processor Trace Units 

Processor debug is implemented by Embedded Trace Macrocells (ETM trace unit) or Program Trace 
Macrocells (PTM trace unit) depending on the target processor. Each ETM trace unit or PTM trace unit is 
specific to the processor it is designed for. 
The feature set varies depending on the use cases anticipated for the different processors, but all 
CoreSight ETM and PTM trace units which use an AMBA Trace Bus (ATB) output can be combined in a 
system. Trace units might support the following: 

 Processor execution trace in varying degrees of detail 

 Resource logic, often useful as an extension to processor performance monitoring resources 

 Filtering logic to reduce the amount of non-interesting data which is captured 

A common feature of trace units is efficient compression and encoding, relying on a copy of the executed 
code for decompression. Using halting debug, it is possible to extract the code image from program 
memory. 

Instrumentation Trace Units 

The instrumentation trace and system trace units provide the ability for running software to be 
instrumented with messaging (either by the programmer, or through a tool flow). This is more intrusive 
than using processor trace, but provides information at a higher level. The instrumentation trace 
macrocells are typically mapped into system memory. Tightly coupled Instrumentation Trace Macrocells 
(ITM) exist for some processors, the System Trace Macrocell (STM) is a more generic version which can 
be used in any system. 

Trace (ATB) interconnect 

One advantage of using a standard trace bus protocol is that a small set of modular components can be 
used to generate sophisticated trace infrastructure. These components include bridges for timing closure, 
clock and power domain crossing, replicators and funnels which can be used to combine data streams, 
and buffer components. Upsizers and downsizers are used to convert busses of varying data width. A key 
feature of the AMBA Trace Bus (ATB) is that the trace source identification is passed with the data, 
permitting cycle by cycle interleaving of trace data from different sources. 
CoreSight trace interconnects provide the following features: 

 Backpressure to stall a trace source based on the ability of downstream infrastructure to collect 

data 

 Flushing of any data stored in intermediate buffer components through the interconnect 

 Transfer of byte orientated data, agnostic to the underlying data protocol 

 Synchronisation request distribution 

Trace Sinks 

A trace sink is the final CoreSight component in a trace interconnect. A system can have more than one 
trace sink, configured to collect overlapping or distinct sets of trace data. Trace sinks can stream data off 
chip, provide a dedicated buffer, or route trace data into shared system memory. These different solutions 
cover a wide range of latency and bandwidth capabilities. 
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Processor Trace Architectures 
The ETM and PTM trace units are trace sources that monitor ARM processors. Each ETM trace unit and 

PTM trace unit is associated with certain processor lines, and each ETM and PTM implementation 

conforms to certain ETM and PTM architectures. The architecture consists of a generic programmers 

model and a trace protocol. 

ETMv1, ETMv2 

The earliest ETM architectures, representing internal processor pipeline status in a cycle by cycle 

basis. No longer in common use. 

ETMv3 

Major revision to earlier protocols, implementing a byte-based packet protocol and the first ETM 

protocol to support CoreSight. Supports instruction by instruction execution and data transfer 

trace, depending on the processor. 

PFTv1 

Derived from ETMv3, providing only trace of branch execution and exceptions. Supported by 

Cortex-A9, Cortex-A12 and Cortex-A15 

ETMv4 

A major revision of the earlier protocols, supporting advanced processor architectures. Includes 

the instruction execution trace style of PFTv1, and optionally ETMv3 style data trace capabilities. 

Supported by Cortex-R7, Cortex-A53 and Cortex-A57. 
 
Within a CoreSight system, any processor trace units supporting ETMv3, PFTv1 or ETMv4 architectures 
can operate in combination. 
Most processor trace units provide a single ATB output bus (either 8 bit for the Cortex-M variants, or 32 
bit). This carries both instruction trace, and data trace if supported. Some R-class processor trace units 
are unusual in providing a 32 bit ATB interface for instruction trace and a 64 bit ATB interface for data 
trace. This reflects the high cost of implementing data trace for a high performance processor, and also 
the need within some real-time application segments to support high-quality data trace capture. 

Debug access and DAP topology 
Traditional SoC debug used a JTAG interface to connect to a TAP controller in the processor. Where 
multiple processors are present, the JTAG scan chain would cascade the TAP controller of each 
processor, possibly through multiple clock and power domains. 
Access to system memory would be achieved by halting the processor and downloading instructions 
while halted to cause the processor to perform the necessary memory accesses. 
The DAP introduced by the CoreSight architecture moves the primary point of connection away from the 
individual processor, and implements a bridge between the external protocol and various different on-chip 
protocols. This provides a flexible and scalable solution where this bridge point can remain powered and 
responsive irrespective of the activity of individual processors. 
 
Figure 1 shows a view of the components which are visible in the debug memory mapped space with 
their discovery registers. Registers provide identification and address offset details. Remember that the 
DAP will be multiplexed with accesses from the main system interconnect too. 
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Figure 1 – Debug address map discoverability 

Debug Port 
Every DAP requires a Debug Port (DP). This is the master device, and implements the external interface. 
Debug ports supporting both JTAG and optimized 2-pin Serial Wire interface can be licensed from ARM. 
The debug port provides: 

 always-on connection for the debugger 

 debug fault and status reporting 

 power and reset request interface 

Debug port accesses from the external debugger are performed as 32 bit (word) read or write 
transactions, targeting either DP registers, or Access Port (AP) registers. 
Multiple Debug ports (usually in multiple packages) can be addressed from a single external debug agent 
using: 

 daisy chained JTAG scan chain 

 star topology JTAG scan chain 

 multi-drop serial wire 

Access Port 
Each DAP contains between 1 and 256 Access Ports (APs). The APs are controlled by the DP in 
response to external commands. Most APs implement a master port which interfaces to an on-chip 
standard bus interface. Memory APs exist for memory-mapped interfaces such as APB, AHB and AXI 
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interconnects. A JTAG-AP can be used to interface the DAP to a traditional JTAG TAP controller. 
Customized access ports can also provide a simple interface to dedicated chip-level debug logic. 
 
Memory APs provide the following features: 

 Target address register 

 Read or write to target address 

 Bus error reporting 

 Transaction in progress status 

 Address incrementor (to accelerate block read/write operations) 

 Access control mechanisms 

 Information about connected debug components 

 Perform access appearing as system master, or external debug agent. 

DAP address space 
Any individual memory mapped address in system memory might require several accesses to enable the 
correct path, and requires more than simply the target address in the on-chip memory map: 
- DP Identifier: The debug agent might support concurrent access to more than one DAP. 
- AP Select: The target AP must be selected by writing to a register in the DP. 
- TAR Select: The target address must be set by writing to a register in the AP. Each AP can have a 

unique view of some or all of the memory mapped components in the target system. 
- Data Access: Once all the addresses necessary for a DAP access to the system are set, a request 

to the AP can initiate the on-chip access as either a read or a write. 
- Read Data retrieval: Although the on-chip access will now proceed, the debugger must perform 

another access to the DAP in order to retrieve the data value. This need not result in a second on-
chip access. 

When an access fails for some reason, the debugger is able to identify the failure. Usually the debugger 
can re-try the access and recover from simple errors on the interface. 

Debug memory map views 

Both externally hosted debug agents and on-chip debug agents (for example a debug monitor) require 
access to debug components. Within CoreSight, these debug components are provided on a dedicated 
bus, the debug APB. This ensures a clear separation between system memory space and debug memory 
space. An exception is the Cortex-M processors where a shared AHB interconnect supports both system 
memory and debug access as an area-reduction trade-off.  
An on-chip agent must first navigate the system memory bus before being multiplexed with the DAP 
initiated transactions on the Debug APB. This provides two memory mapped views, one from the external 
debugger and one from the on-chip agent. Both views share access to the debug components using the 
same address offsets within the mapped regions. The system view of the debug APB will typically have a 
non-zero base address whilst the external debugger view uses a base address of zero. 
The upper address bit (PADDRDBG31) is only accessible from the external debugger and serves as an 
access control mechanism.  

Debug memory discovery and ROM table entries 

Every CoreSight component with an APB memory map occupies one or more 4kB blocks of memory. 
Within this block, CoreSight defines the content of some discovery registers. See the TRM for each 
individual component for specific details. The discovery pointer structure is shown in Figure 1 on page 8, 
some examples of the individual registers are shown in Table 2 on page 10. 
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Name/Offset Example Values Description 

DEVTYPE 
0xFCC 

0x00000016: Processor Performance 
monitor 

0x00000013: Processor Trace unit 

Only used by CoreSight debug 
components. Can classify unknown 
„new‟ components 

PID4 
0xFD0 

0x04 : 4kB component, ARM Size of address block, and part of 
designer ID 

PID3,PID2,PID1,PID0 
0xFE0-0xFEC 

0x004BB906 : ARM CTI rev4 
0x003BB912 : ARM TPIU rev 3 

Unique part identifier consisting of 
Designer (via JEP106 code) 
3 digit part allocated by designer 
Part revision 
Part ECO identifier 
Part modified 

CID3,CID2,CID1,CID0 
0xFF0-0xFFC 

0xB105900D : CoreSight Debug 
0xB105100D : CoreSight ROM Table 
 

Component identifier, indicates if the 
CoreSight layout is used. Other values 
might be used by ARM PrimeCells and 
other components. 

Table 2 – Example CoreSight discovery registers 

 
At least one ROM table component must be present as a slave to any AP which contains debug 
components. This will be the APB-AP, or AHB-AP in the case of a Cortex-M system. Each ROM table 
contains a list of address offsets which can be used to locate component base addresses. These 
components can themselves be ROM tables, but each physical component or ROM table must appear 
only once in the expanded list of pointers. 
The AP contains a base address register which must point to the master ROM table for that bus. 
Typically, this will occupy the lowest 4k block of the address space. The ROM table is a CoreSight 
component, and contains standardized identification registers. It also contains an identifier for the SoC as 
a whole which can be used by debug agents to look-up against a database of known devices. This lookup 
can provide information about SoC specific features. 
 

Typically the ROM table hierarchy will match the design hierarchy of modules containing debug APB. In 
this way, larger systems can be constructed from sub-systems and clusters. As a result, the debug APB is 
often sparsely populated. 
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Typical CoreSight systems 
The systems shown here demonstrate the most basic configurations of a CoreSight system. More 
complex systems might involve clusters of processors, multiple clock domains, etc. 

Single processor debug 

Figure 2 shows CoreSight debug in a single processor system. 
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System Interconnect (AXI)
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DAP

Debug APB Interconnect (APBIC)
 

Figure 2 Single processor with Debug APB access  

 

This configuration provides no trace capabilities. The DAP shown here is configured with a combined 

Serial Wire and JTAG external interface, and APB internal debug access. The Debug APB connects 

using an APB-Interconnect to configure the CTI and access the processor. The CTI supports triggering of 

the processor from a designated resource, and enables connection to additional triggering resources if 

this example is integrated into a larger system. 
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Single source trace 

Figure 3 shows a single processor trace using the CoreSight infrastructure. 
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Figure 3 - Single source trace with the TPIU  

The CoreSight-compliant ETM trace unit outputs trace directly to a TPIU for direct output of trace off-chip. 

You can extend this system to add a CoreSight ETB and replicator to provide on-chip storage of trace 

data. 

 

Multi source trace in a single processor system 

Figure 4 shows full trace capabilities in a single processor system. 
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Figure 4 - Full CoreSight trace with single processor 
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The ETM trace unit provides processor instruction and data tracing, and the STM provides 

instrumentation trace. The trace funnel combines trace from all sources into a single trace stream. This is 

then either: 

•  Replicated to provide on-chip storage using the CoreSight ETB (limited capacity) 

•  Output off chip using the TPIU (limited bandwidth) 

You can program components using the DAP and operate cross-triggering using the CTM and CTIs. 
 
When multiple trace sources are active in the system, each source must be configured with a unique 
trace source ID, and every trace sink must have trace formatting enabled. One function of the trace 
formatter is to embed the trace IDs in the final data stream. When only one trace source is active, the 
trace sink can be used in bypass mode which can be more efficient in some scenarios. 

System topology restrictions 
The CoreSight architecture includes some rules which restrict the system topology. These rules allow for 
system-agnostic debug tool design and topology detection. Violating the topology rules might also result 
in deadlock or livelock conditions. 
Some rules relate to the debug memory map, which is limited to any path from external interface to 
peripheral only crossing 3 levels of protocol addressing (external interface, subset of debug interconnect, 
address within interconnect) and this addressing not having any replication or aliasing. Restrictions on the 
trace bus require no duplication or re-use of any trace ID which reaches any other trace component, or 
feed any trace source back in a feedback loop. 

Trace capture 
The trace that CoreSight trace sources generate must be captured by one or more Trace Capture 

Devices (TCDs). The following common forms of TCD exist: 

•  On-chip trace buffer. 

•  Off-chip logic analyzer. 

•  Off-chip dedicated Trace Port Analyzer 

Logic analyzers are expensive and are less well supported by development tools, but can often capture 

trace at higher speeds than is possible with a Trace Port Analyzer (TPA). Most developers capture trace 

using a TPA or on-chip trace buffer. 

The CoreSight ETB and Embedded Trace Router (ETR) are ATB slaves and connect to the CoreSight 

system directly to enable capture of trace data on-chip. A TPA, or logic analyzer, must connect to the pins 

of a trace port that a TPIU drives. 

Many systems implement either one ETB or one TPIU. However, it is possible to implement multiple trace 

sink components using a CoreSight Replicator. 

Figure 5 on page 14 shows a system that implements an ETB and a TPIU connected to a TPA. 
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Figure 5 - Example system with ETB and TPIU 

5.1.1 Operation of a TCD 

A TCD has a large circular buffer at its center. Trace is written into this buffer as it is generated. Trace 

capture does not stop when the buffer becomes full, but instead overwrites old trace. 

A TCD is sensitive to two special signals, that the ETB or TPIU generate: 

•  Trigger. 

•  Trace disabled. 

A TPIU indicates these signals to a TCD as follows: 

•  Using the optional TRACECTL top level pin. This is the easiest way for a TCD to detect this 

information, but requires a dedicated pin when trace is in use. 

•  Using the CoreSight formatter protocol. This requires a TCD that can extract this information from 

the formatter protocol, and results in a trace port that is one pin smaller. There is a protocol 

overhead cost (at least 6%), but this is offset by freeing up one more pin. The formatting protocol 

also permits the use of more than one enabled trace source at a time. 

Trigger 

The trigger is an input to the trace sink, and an output from a CTI. If there is more than one trace sink, 

each can receive a different condition as its trigger. Most trace sources, for example an ETM trace unit or 

AHB Trace Macrocell (HTM), can output a signal to use as a trigger. Usually, the CTIs are configured to 

send a trigger to all trace sinks when any trace source signals its trigger condition. 

When a trigger is detected, the TCD counts a programmable number of trace records before it stops trace 

capture. After this point, it ignores any more trace. By setting the appropriate number of programmable 

trace records, you can select a window of trace to capture around the trigger condition. Figure 6 shows 

this context. 
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Figure 6 - Use of the trigger to set a trace window 

You can configure the trigger to output when the system detects a bug. The window of trace indicates the 

behavior of the system before and after the bug occurred. 

You can use the trigger count in the following ways: 

•  Set the trigger count to a small value. This gives a window of trace mostly before the trigger 

occurred, capturing the software bug under investigation. 

•  Set the trigger count to a value slightly smaller than the size of the buffer. This gives a window of 

trace mostly after the trigger occurred. 

•  Set the trigger count to roughly half the size of the buffer. This gives a window of trace before and 

after the trigger occurred. 

When trace capture has stopped, the development tools download the trace from the TCD. 

Trace disabled 

Trace disabled indicates to the TCD that there is no trace to capture. It ensures that the values of the 

trace port pins are only captured when trace data is available. The formatting protocol can also indicate 

that there is no data to be captured by using a specific sequence, but again this requires on the TCD 

being able to perform some analysis of the stream before it is captured. 

Streaming trace capture 

Usually, the ETB, ETR, or TPIU wait until there is sufficient trace to use all the pins of the trace port 

before any trace is captured in the on-chip memory or output over the trace port. For example, if only one 

byte of trace is available in a system that implements a 16-bit trace port, no trace is output until a second 

byte of trace is available. In addition, when the formatting protocol is in use, a full block of 16 bytes must 

be captured before the data can be fully decompressed. This complicates the task of designing a trace 

capture system where data must be continuously streamed and analyzed in near real time. Different 

approaches to this problem can be used depending on the system requirements, and are unlikely to 

detract from the user experience when streaming trace is expected. 
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Trace Capture capacity 
A trace capture system is likely to be one of the limiting factors determining how much trace can be 
generated. The resources dedicated to trace capture are likely to be limited, and it is important to ensure 
that the typical use-cases can be supported with a low enough level of data loss. Although CoreSight is 
designed with graceful degradation in the case that more trace is generated than can be captured, this 
should not be relied on. Careful use of filtering will result in more useful trace being captured than relying 
too much on the overflow/recovery behavior. 
The demands of a trace source can vary greatly, an ETM trace unit might produce between 1 bit per 
instruction for instruction only trace, or over 30 bits per instruction when tracing instructions and data. 
Even if the data to be traced can be filtered, this might not help much for short-term bursts of data so an 
on chip trace FIFO can help. For more complex trace systems, this becomes more of a cost-effective 
solution as the resource added is shared between more of the trace logic. The user can select which 
trace source needs most bandwidth, but still enable a smaller amount of trace from several other sources, 
or use the other sources as triggering resources. 

Trace Synchronization 
Most trace sources use complex protocols which rely not only on identifying the correct packet 
boundaries in the protocol, but also initializing the various decompression schemes. When the trace 
capture formatter protocol is in use (as is necessary for simultaneous capture from more than one 
source), the formatter protocol requires synchronization too. 
A TPA will typically capture trace into a circular buffer. This means that if capture is stopped once the 
buffer has wrapped round, some early trace will have been lost. In order to decompress the trace stream, 
the tools must search the buffer until a synchronization point can be detected. Any trace which was 
captured but is before the synchronization point must be discarded (usually the synchronization cannot be 
extended backwards). Since it is inefficient to synchronize each trace stream too frequently, most trace 
sources allow for software programming of the synchronization points. 
Depending on the quantity of trace being captured, it might be necessary to change the synchronization 
period. When capturing into a small buffer, more frequent synchronization results in a higher proportion of 
the captured trace being usable (but more use of the buffer for non-useful trace) 
In systems where several trace sources are active together, the synchronization of each source is 
independent. Some trace sources support the use of a distributed synchronization request to be 
generated from the TCD. This ensures that all trace sources initiate their synchronization sequences at 
the same time. 

Timestamps 
Many trace sources can embed global (SoC level) timestamps in their trace stream. These can be used to 
correlate activity between different traces sources, particularly when the trace data might be captured in 
different TPAs, or subject to delays as a result of protocol or buffering. 
Timestamps are typically a 64 bit count, derived from an always on domain with a frequency of at least 10 
MHz. The timestamp distribution mechanism uses a narrow bus to distribute this count value, and an 
interpolation mechanism to generate corresponding count values at higher resolutions where the count 
needs to be used. This provides a trade-off where the ordering between events in a well designed system 
can be determined, at least to the accuracy of any communication between the CPUs originating the 
events. Timestamps can also be used for performance measurement, as an alternative to the more 
precise but more bandwidth intensive cycle counts which some trace sources can insert. 
  
 
 


