
ARM ® Compiler
Version 6.00

Migration and Compatibility Guide

Copyright © 2014 ARM. All rights reserved.
ARM DUI0742A

ARM ® Compiler
Migration and Compatibility Guide
Copyright © 2014 ARM. All rights reserved.

Release information

Document History

Issue Date Confidentiality Change

A 14 March 2014 Non-Confidential ARM Compiler v6.0 Release

Proprietary notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM ® in the EU and other countries, except as
otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the trademarks of their
respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be adapted or
reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the product and
its use contained in this document are given by ARM in good faith. However, all warranties implied or expressed, including but not
limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for any loss or damage arising
from the use of any information in this document, or any error or omission in such information, or any incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Unrestricted Access is an ARM internal classification.

Product status

The information in this document is Final, that is for a developed product.

Web address

http://www.arm.com

 ARM ® Compiler

ARM DUI0742A Copyright © 2014 ARM. All rights reserved. 2
Non-Confidential

http://www.arm.com

Contents
ARM ® Compiler Migration and Compatibility Guide

Preface
About this book 7
Feedback .. 8

Chapter 1 Compiler Configuration Information
1.1 Compiler configuration information .. 1-10

Chapter 2 Command-line Options Comparison
2.1 Comparison of ARM ® Compiler 6 compiler command-line options and older versions of

ARM ® Compiler 2-12
2.2 Command-line options for preprocessing assembly source code 2-14

Chapter 3 Compiler Source Code Compatibility
3.1 Language extension compatibility 3-16
3.2 C and C++ implementation compatibility 3-18

Chapter 4 Compiler Migration Support Tools
4.1 ARM Compiler Source Compatibility Checker command-line syntax 4-21
4.2 Compatibility checks performed by ARM Compiler Source Compatibility Checker

.. 4-23
4.3 Specifying compiler options for the ARM Compiler Source Compatibility Checker with a

JSON compilation database .. 4-24
4.4 JSON compilation database format for the ARM Compiler Source Compatibility

Checker 4-25

ARM DUI0742A Copyright © 2014 ARM. All rights reserved. 3
Non-Confidential

4.5 Running the command-line translation wrapper .. 4-26
4.6 Customizing the command-line translation wrapper .. 4-27

ARM DUI0742A Copyright © 2014 ARM. All rights reserved. 4
Non-Confidential

List of Tables
ARM ® Compiler Migration and Compatibility Guide

Table 1-1 FlexNet versions .. 1-10
Table 2-1 Comparison of ARM Compiler 6 compiler command-line options and older versions of ARM

Compiler .. 2-12
Table 3-1 Language extensions that must be replaced ... 3-16
Table 3-2 C and C++ implementation detail differences .. 3-18

ARM DUI0742A Copyright © 2014 ARM. All rights reserved. 5
Non-Confidential

Preface

This preface introduces the ARM ® Compiler Migration and Compatibility Guide.

This section contains the following subsections:

• About this book on page 7.
• Feedback on page 8.

ARM DUI0742A Copyright © 2014 ARM. All rights reserved. 6
Non-Confidential

About this book
The ARM Compiler Migration and Compatibility Guide provides migration and compatibility
information for users moving from older versions of ARM Compiler to ARM Compiler 6.

Using this book

This book is organized into the following chapters:

Chapter 1 Compiler Configuration Information

Summarizes the locales and FlexNet versions supported by the ARM compilation tools.

Chapter 2 Command-line Options Comparison

Compares ARM Compiler 6 command-line options to older versions of ARM Compiler.

Chapter 3 Compiler Source Code Compatibility

Provides details of source code compatibility between ARM Compiler 6 and older compiler versions.

Chapter 4 Compiler Migration Support Tools

Describes the set of tools provided by ARM to help with migrating from older compiler versions to
ARM Compiler 6.

Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
ARM glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Preface
 About this book

ARM DUI0742A Copyright © 2014 ARM. All rights reserved. 7
Non-Confidential

Feedback

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title.
• The number ARM DUI0742A.
• The page number(s) to which your comments refer.
• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

 Note

ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Preface
 Feedback

ARM DUI0742A Copyright © 2014 ARM. All rights reserved. 8
Non-Confidential

mailto:errata@arm.com

Chapter 1
Compiler Configuration Information

Summarizes the locales and FlexNet versions supported by the ARM compilation tools.

It contains the following sections:

• 1.1 Compiler configuration information on page 1-10.

ARM DUI0742A Copyright © 2014 ARM. All rights reserved. 1-9
Non-Confidential

1.1 Compiler configuration information
Summarizes the locales and FlexNet versions supported by the ARM compilation tools.

FlexNet versions in the compilation tools

Different versions of ARM ® Compiler support different versions of FlexNet.

The FlexNet versions in the compilation tools are:

Table 1-1 FlexNet versions

Compilation tools version Windows Linux

ARM Compiler toolchain 6.0 11.10.1.0 11.10.1.0

Locale support in the compilation tools

ARM Compiler only supports the English locale.

Related information
ARM DS-5 License Management Guide.

1 Compiler Configuration Information
1.1 Compiler configuration information

ARM DUI0742A Copyright © 2014 ARM. All rights reserved. 1-10
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0577-/index.html

Chapter 2
Command-line Options Comparison

Compares ARM Compiler 6 command-line options to older versions of ARM Compiler.

It contains the following sections:

• 2.1 Comparison of ARM ® Compiler 6 compiler command-line options and older versions of ARM ®

Compiler on page 2-12.
• 2.2 Command-line options for preprocessing assembly source code on page 2-14.

ARM DUI0742A Copyright © 2014 ARM. All rights reserved. 2-11
Non-Confidential

2.1 Comparison of ARM ® Compiler 6 compiler command-line options and older
versions of ARM ® Compiler

Describes the most common ARM Compiler command-line options.

ARM Compiler provides many command-line options, including most Clang command-line options as
well as a number of ARM-specific options. Additional information about command-line options is
available:

• The armclang Reference Guide provides more detail about a number of command-line options.
• For a full list of Clang command-line options, consult the Clang and LLVM documentation.

Table 2-1 Comparison of ARM Compiler 6 compiler command-line options and older versions of
ARM Compiler

Older ARM Compiler
option

ARM Compiler 6 option Description

-c -c Performs the compilation step, but not the link step.

--c90 -xc -std=c90 Enables the compilation of C90 source code.

These are positional arguments and only affect subsequent
input files on the command line

--c99 -xc -std=c99 Enables the compilation of C99 source code.

These are positional arguments and only affect subsequent
input files on the command line

--cpp -xc++ -std=c++98 Enables the compilation of C++ source code.

These are positional arguments and only affect subsequent
input files on the command line

--cpu 8-A.32 --target=armv8a-arm-
none-eabi

Targets ARMv8, AArch32 state.

--cpu 8-A.64 --target=aarch64-arm-
none-eabi

Targets ARMv8, AArch64 state.

-D -D Defines a preprocessing macro.

-E -E Executes only the preprocessor step.

-I -I Adds the specified directories to the list of places that are
searched to find included files.

--inline -finline-functions Enables inlining of functions.

-L -Xlinker Specifies command-line options to pass to the linker when a
link step is being performed after compilation.

-M -M Instructs the compiler to produce a list of makefile dependency
lines suitable for use by a make utility.

-o -o Specifies the name of the output file.

-Onum -Onum Specifies the level of optimization to be used when compiling
source files.

The default for older compiler versions is -O2. The default for
ARM Compiler 6 is -O0.

2 Command-line Options Comparison
2.1 Comparison of ARM ® Compiler 6 compiler command-line options and older versions of ARM ® Compiler

ARM DUI0742A Copyright © 2014 ARM. All rights reserved. 2-12
Non-Confidential

Table 2-1 Comparison of ARM Compiler 6 compiler command-line options and older versions of ARM
Compiler (continued)

Older ARM Compiler
option

ARM Compiler 6 option Description

-Ospace -Oz / -Os Performs optimizations to reduce image size at the expense of a
possible increase in execution time.

-Otime (default) Performs optimizations to reduce execution time at the expense
of a possible increase in image size.

-S -S Outputs the disassembly of the machine code generated by the
compiler.

The output from this option differs between releases. Older
ARM Compiler versions produce output with armasm syntax
while ARM Compiler 6 produces output with GNU syntax.

--show_cmdline -v Shows how the compiler processes the command line. The
commands are shown normalized, and the contents of any via
files are expanded.

--vectorize -fvectorize Enables the generation of Advanced SIMD vector instructions
directly from C or C++ code.

--vsn --version Displays version information and license details.

Related information
The LLVM Compiler Infrastructure Project.

2 Command-line Options Comparison
2.1 Comparison of ARM ® Compiler 6 compiler command-line options and older versions of ARM ® Compiler

ARM DUI0742A Copyright © 2014 ARM. All rights reserved. 2-13
Non-Confidential

http://llvm.org/

2.2 Command-line options for preprocessing assembly source code
The version of armasm supplied with ARM Compiler 6 does not support the --cpreproc and --
cpreproc_opts command-line options that were used in earlier versions of armasm to preprocess
assembly source code.

If you are using armasm to assemble source code that requires the use of the preprocessor, you must first
preprocess the code using armclang, then pipe it into armasm.

The following example shows the options required to preprocess and assemble the file example.s:

armclang --target=armv8-arm-eabi-none -E -x assembler-with-cpp example.s | armasm --cpu=8-A.32
-o example.o -

Selected command-line options used in this example are:

-E
Specifies that armclang only performs preprocessing on the file.

-x assembler-with-cpp
Specifies that armclang handles the supplied source file as an assembly source file that requires
preprocessing.

-
Specifies that armasm reads the assembly source from stdin rather than from a file.

 Note

Ensure that you specify compatible architectures in the armclang --target option and the armasm --
cpu option.

2 Command-line Options Comparison
2.2 Command-line options for preprocessing assembly source code

ARM DUI0742A Copyright © 2014 ARM. All rights reserved. 2-14
Non-Confidential

Chapter 3
Compiler Source Code Compatibility

Provides details of source code compatibility between ARM Compiler 6 and older compiler versions.

It contains the following sections:

• 3.1 Language extension compatibility on page 3-16.
• 3.2 C and C++ implementation compatibility on page 3-18.

ARM DUI0742A Copyright © 2014 ARM. All rights reserved. 3-15
Non-Confidential

3.1 Language extension compatibility
ARM Compiler 6 provides support for some language extensions that were supported in older compiler
versions. Other language extensions are not supported, or must be replaced with alternatives.

The following table lists some of the commonly used language extensions that are supported by older
versions of the compiler but are not supported by ARM Compiler 6. Replace any instances of these
language extensions in your code with the recommended alternative.

 Note

This is not an exhaustive list of all unsupported language extensions.

Table 3-1 Language extensions that must be replaced

Language extension supported by older
compiler versions

Recommended ARM Compiler 6 alternative

#pragma import (symbol) asm(" .global symbol\n")

__align(x) __attribute__((aligned(x)))

__clz Use an inline CLZ assembly instruction or equivalent routine.

__const __attribute__((const))

__dmb Use an inline DMB assembly instruction or equivalent CP15 instruction.

__dsb Use an inline DSB assembly instruction or equivalent CP15 instruction.

__forceinline __attribute__((always_inline))

__inline __inline__

__isb Use an inline ISB assembly instruction or equivalent CP15 instruction.

__ldrex Use an inline LDREX assembly instruction.

__packed __attribute__((packed, aligned(1)))

__pure __attribute__((pure))

__rev Use an inline REV assembly instruction.

__sev Use an inline SEV assembly instruction.

__softfp __attribute__((__pcs__("aapcs")))

__strex Use an inline STREX assembly instruction.

__weak __attribute__((weak))

__wfe Use an inline WFE assembly instruction.

The following language extensions are supported by older compiler versions and ARM Compiler 6.
These language extensions do not require modification in your code:

• __attribute__((aligned(x)))

• __attribute__((always_inline))

• __attribute__((const))

• __attribute__((deprecated))

• __attribute__((nonnull))

• __attribute__((noreturn))

• __declspec(noreturn)

3 Compiler Source Code Compatibility
3.1 Language extension compatibility

ARM DUI0742A Copyright © 2014 ARM. All rights reserved. 3-16
Non-Confidential

• __declspec(nothrow)

• __attribute__((pcs("calling convention")))

• __attribute__((pure))

• __attribute__((section("name")))

• __attribute__((unused))

• __attribute__((used))

• __attribute__((visibility))

• __attribute__((weak))

• __attribute__((weakref))

The following pragmas are the only pragmas supported both by older compiler versions and ARM
Compiler 6:

• #pragma GCC system_header

• #pragma once

• #pragma pack

• #pragma weak

Related concepts
4.2 Compatibility checks performed by ARM Compiler Source Compatibility Checker on page 4-23.

Related references
3.2 C and C++ implementation compatibility on page 3-18.

3 Compiler Source Code Compatibility
3.1 Language extension compatibility

ARM DUI0742A Copyright © 2014 ARM. All rights reserved. 3-17
Non-Confidential

3.2 C and C++ implementation compatibility
ARM Compiler 6 C and C++ implementation details differ from previous compiler versions.

The following table describes the C and C++ implementation detail differences.

Table 3-2 C and C++ implementation detail differences

Feature Older versions of ARM Compiler ARM Compiler 6

Integer operations

Shifts int shifts > 0 && < 127

int left shifts > 31 == 0

int right shifts > 31 == 0 (for unsigned or +ve),
-1 (for -ve)

long long shifts > 0 && < 63

Warns when shift amount > width of type.

You can use the -Wshift-count-overflow
option to suppress this warning.

Integer division Checks that the sign of the remainder matches
the sign of the numerator

The sign of the remainder is not necessarily
the same as the sign of the numerator.

Floating-point operations

Default standard IEEE 754 standard, rounding to nearest
representable value, exceptions disabled by
default.

All facilities, operations, and representations
guaranteed by the IEEE standard are available
in single and double-precision. Modes of
operation can be selected dynamically at
runtime.

This is equivalent to the
--fpmode=ieee_full option in older versions
of ARM Compiler.

Unions, enums and structs

Enum packing Enums are implemented in the smallest integral
type of the correct sign to hold the range of the
enum values, unless --enum_is_int is
specified in C++ mode.

By default enums are implemented as int,
with long long used when required.

Signedness of plain bit-
fields

Unsigned.

Plain bit-fields declared without either the
signed or unsigned qualifiers default to
unsigned. The --signed_bitfields option
treats plain bit-fields as signed.

Signed.

Plain bit-fields declared without either the
signed or unsigned qualifiers default to
signed. There is no equivalent to either the
--signed_bitfields or
--no_signed_bitfields options.

Misc C

sizeof(wchar_t) 2 bytes 4 bytes

Misc C++

Implicit inclusion If compilation requires a template definition
from a template declared in a header file
xyz.h, the compiler implicitly includes the file
xyz.cc or xyz.CC.

Not supported.

3 Compiler Source Code Compatibility
3.2 C and C++ implementation compatibility

ARM DUI0742A Copyright © 2014 ARM. All rights reserved. 3-18
Non-Confidential

Table 3-2 C and C++ implementation detail differences (continued)

Feature Older versions of ARM Compiler ARM Compiler 6

Alternative template
lookup algorithms

When performing referencing context lookups,
name lookup matches against names from the
instantiation context as well as from the
template definition context.

Not supported.

Exceptions Off by default, function unwinding on with --
exceptions by default.

On by default when in C++ mode, but not
supported in this release.

Related concepts
4.2 Compatibility checks performed by ARM Compiler Source Compatibility Checker on page 4-23.

Related references
3.1 Language extension compatibility on page 3-16.

3 Compiler Source Code Compatibility
3.2 C and C++ implementation compatibility

ARM DUI0742A Copyright © 2014 ARM. All rights reserved. 3-19
Non-Confidential

Chapter 4
Compiler Migration Support Tools

Describes the set of tools provided by ARM to help with migrating from older compiler versions to
ARM Compiler 6.

These tools are as follows:

• The ARM Compiler Source Compatibility Checker.
• The command-line translation wrapper.

It contains the following sections:

• 4.1 ARM Compiler Source Compatibility Checker command-line syntax on page 4-21.
• 4.2 Compatibility checks performed by ARM Compiler Source Compatibility Checker on page 4-23.
• 4.3 Specifying compiler options for the ARM Compiler Source Compatibility Checker with a JSON

compilation database on page 4-24.
• 4.4 JSON compilation database format for the ARM Compiler Source Compatibility Checker

on page 4-25.
• 4.5 Running the command-line translation wrapper on page 4-26.
• 4.6 Customizing the command-line translation wrapper on page 4-27.

ARM DUI0742A Copyright © 2014 ARM. All rights reserved. 4-20
Non-Confidential

4.1 ARM Compiler Source Compatibility Checker command-line syntax
The ARM Compiler Source Compatibility Checker examines C or C++ source code and highlights
language extensions that were supported by previous versions of ARM Compilers but are no longer
supported by ARM Compiler 6.

The ARM Compiler Source Compatibility Checker is based on Clang and available as a standalone tool,
separate from ARM Compiler.

The command for invoking the ARM Compiler Source Compatibility Checker is:

compatibility-checker [--version]

compatibility-checker [--no-error] sources [-- compiler-options]

where:

sources
Provides the filenames of one or more text files containing C or C++ source code. By default,
the compiler looks for source files in the current directory, but you can also use relative and
absolute paths to specify file locations.

compiler-options
Specifies the armclang command-line options used to compile the sources.

The ARM Compiler Source Compatibility Checker needs to know these compiler options so
that it has the same information about your source files as the compiler. For example, if you use
the -I option with armclang to add a directory to the search path, you must provide the same
option to the ARM Compiler Source Compatibility Checker so that it searches the same
locations for included files.

 Note

You can only use armclang options with the ARM Compiler Source Compatibility Checker.
You cannot use armcc options.

Use the -- separator between the source filenames and these options.

You can also use a compilation database to specify the compiler options. If you omit --
compiler-options, the ARM Compiler Source Compatibility Checker looks for a file named
compile_commands.json in the directory containing the source files or higher in the directory
tree. The compile_commands.json file uses the standard Clang JSON compilation database
format.

--version
Displays information about the ARM Compiler Source Compatibility Checker, as follows:

ARM Compiler Source Compatibility Checker
Software supplied by: ARM Limited

--no-error
Specifies that the ARM Compiler Source Compatibility Checker always returns a zero exit code,
even if there were errors. Use this option when running the ARM Compiler Source
Compatibility Checker from build scripts, where nonzero exit codes can cause problems.

By default, the ARM Compiler Source Compatibility Checker exits with a nonzero return code
if there were any errors, or with zero otherwise.

The ARM Compiler Source Compatibility Checker reports all usage of C or C++ language extensions
supported by previous versions of the ARM Compiler in the specified source files. For example:

> compatibility-checker /test/myfile.c -- -O2
/test/myfile.c:4:12: warning: armcc extension '__ldrt'
 return __ldrt((const volatile int *)loc);

4 Compiler Migration Support Tools
4.1 ARM Compiler Source Compatibility Checker command-line syntax

ARM DUI0742A Copyright © 2014 ARM. All rights reserved. 4-21
Non-Confidential

 ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1 warning generated.

Related concepts
4.2 Compatibility checks performed by ARM Compiler Source Compatibility Checker on page 4-23.

Related tasks
4.3 Specifying compiler options for the ARM Compiler Source Compatibility Checker with a JSON
compilation database on page 4-24.

Related references
4.4 JSON compilation database format for the ARM Compiler Source Compatibility Checker
on page 4-25.

4 Compiler Migration Support Tools
4.1 ARM Compiler Source Compatibility Checker command-line syntax

ARM DUI0742A Copyright © 2014 ARM. All rights reserved. 4-22
Non-Confidential

4.2 Compatibility checks performed by ARM Compiler Source Compatibility
Checker

ARM Compiler Source Compatibility Checker checks that your legacy source code does not contain
language features that were supported by previous versions of the ARM compiler but are not supported
by ARM Compiler 6.

ARM Compiler Source Compatibility Checker checks whether your source code contains a variety of
ARM-specific language features, including the following:

• Intrinsics such as __svc, __schedule_barrier, and __enable_irq.
• Attributes such as __packed, __pure, and __forceinline.
• Inline and embedded assembly code.
• Named register variables.
• Macros such as __OPTIMISE_LEVEL, __BIG_ENDIAN, and __TARGET_ARCH_ARM.
• Types such as __int64, long long, and __fp16.
• The __alignof__ operator.
• Pragmas such as #pragma diag_suppress, #pragma arm, and #pragma thumb.
• GNU builtins such as __builtin_gamma, __builtin_isblank, and __builtin__exit.

Related tasks
4.3 Specifying compiler options for the ARM Compiler Source Compatibility Checker with a JSON
compilation database on page 4-24.

Related references
4.4 JSON compilation database format for the ARM Compiler Source Compatibility Checker
on page 4-25.
4.1 ARM Compiler Source Compatibility Checker command-line syntax on page 4-21.
3.1 Language extension compatibility on page 3-16.
3.2 C and C++ implementation compatibility on page 3-18.

Related information
The LLVM Compiler Infrastructure Project.

4 Compiler Migration Support Tools
4.2 Compatibility checks performed by ARM Compiler Source Compatibility Checker

ARM DUI0742A Copyright © 2014 ARM. All rights reserved. 4-23
Non-Confidential

http://llvm.org/

4.3 Specifying compiler options for the ARM Compiler Source Compatibility
Checker with a JSON compilation database

The ARM Compiler Source Compatibility Checker needs to know the armclang options used to compile
the source files. You can use a JSON compilation database to specify these options in a file, rather than
the command line, if you prefer.

The ARM Compiler Source Compatibility Checker needs to know these options so that it has the same
information about your source files as the compiler. For example, if you use the -I option with armclang
to add a directory to the search path, you must provide the same option to the ARM Compiler Source
Compatibility Checker so that it searches the same locations for included files.

Procedure

1. Create a file with the name compile_commands.json to contain the compilation database.
Create this file in the directory containing the source files or higher in the directory tree. The usual
location for this file is at the top of the build directory.

2. Create the content of the compilation database to specify the files, directories, and associated
compiler commands used by your build system.
The Clang documentation contains additional information about how to create a compilation
database. Search for "JSON Compilation Database Format Specification" on the LLVM Compiler
Infrastructure Project web site, llvm.org.

3. Run the ARM Compiler Source Compatibility Checker without specifying compiler options on the
command line:
compatibility-checker hello_world.c

Because you did not specify any compiler options, the ARM Compiler Source Compatibility Checker
looks for the compilation database compile_commands.json, starting in the directory containing the
source files (in this example, the current directory) and searching each parent directory in turn until it
finds the compilation database.

 Note

If the ARM Compiler Source Compatibility Checker does not find a compilation database, it exits
with an error.

 Note

You do not have to use a JSON compilation database to specify compiler options. You can specify
compiler options on the command line using compatibility-checker hello_world.c --
compiler-options.

ARM Compiler Source Compatibility Checker uses the compiler options specified in the compilation
database for each source file when checking compatibility.

Related concepts
4.2 Compatibility checks performed by ARM Compiler Source Compatibility Checker on page 4-23.

Related references
4.4 JSON compilation database format for the ARM Compiler Source Compatibility Checker
on page 4-25.
4.1 ARM Compiler Source Compatibility Checker command-line syntax on page 4-21.

Related information
The LLVM Compiler Infrastructure Project.

4 Compiler Migration Support Tools
4.3 Specifying compiler options for the ARM Compiler Source Compatibility Checker with a JSON compilation database

ARM DUI0742A Copyright © 2014 ARM. All rights reserved. 4-24
Non-Confidential

http://llvm.org/

4.4 JSON compilation database format for the ARM Compiler Source
Compatibility Checker

A JSON compilation database lets you specify ARM Compiler Source Compatibility Checker options in
a file, rather than on the command line.

The Clang documentation contains additional information about how to create a compilation database.
Search for "JSON Compilation Database Format Specification" on the LLVM Compiler Infrastructure
Project web site, llvm.org.

A compilation database specifies an array of command objects, where each command object specifies
how a particular source file is compiled. Each command object contains the filename, the working
directory of the compile run and the compile command.

For example:

[
 { "directory": "/home/user1/build",
 "command": "armclang -O3 hello_world.c",
 "file": "hello_world.c" },
 ...
]

Related concepts
4.2 Compatibility checks performed by ARM Compiler Source Compatibility Checker on page 4-23.

Related tasks
4.3 Specifying compiler options for the ARM Compiler Source Compatibility Checker with a JSON
compilation database on page 4-24.

Related references
4.1 ARM Compiler Source Compatibility Checker command-line syntax on page 4-21.

4 Compiler Migration Support Tools
4.4 JSON compilation database format for the ARM Compiler Source Compatibility Checker

ARM DUI0742A Copyright © 2014 ARM. All rights reserved. 4-25
Non-Confidential

4.5 Running the command-line translation wrapper
The command-line translation wrapper lets you run ARM Compiler 6 using older compiler version
command-line options.

The command-line translation wrapper is included in the ARM Compiler product installation at
install_dir/sw/migration/scripts/. It provides a migration path from older versions to ARM
Compiler 6.

 Note

Add this directory to the $PATH (for Linux users) or PATH system variable (for Windows users).

The command-line translation wrapper converts the specified command-line options into ARM Compiler
6 command-line options, then runs ARM Compiler 6 using these converted command-line options.

The command-line translation wrapper supports only a subset of the older compiler version command-
line options, but is customizable so that you can add new conversion mappings for any other command-
line options you require. The wrapper is implemented as a Python script and is delivered in source form.

• Run the command-line translation wrapper as follows:

armcc opts files

The compatibility wrapper converts the legacy compiler options you specify, then runs ARM Compiler 6
using these converted command-line options.

For example:

armcc --cpu=8-A.32 -Ospace hello_world.c

The compatibility wrapper converts this command line to:

armclang --target=armv8a-arm-none-eabi -Os hello_world.c

Related concepts
4.6 Customizing the command-line translation wrapper on page 4-27.

4 Compiler Migration Support Tools
4.5 Running the command-line translation wrapper

ARM DUI0742A Copyright © 2014 ARM. All rights reserved. 4-26
Non-Confidential

4.6 Customizing the command-line translation wrapper
The command-line translation wrapper is included in your ARM Compiler product installation at
install_dir/sw/migration/scripts.

The wrapper is implemented as a Python script and is delivered in source form. It maps a subset of older
compiler version command-line options to ARM Compiler 6 command-line options. You can customize
the command-line translation wrapper by adding code to perform additional mappings.

The interface is identical to that of the Python argparse module. For more information, refer to the
argparse documentation on the Python programming language web site, www.python.org

To convert a single boolean command-line option, use the add_argument function. For example, to
convert --foo to --bar, make the following changes in the code:

set up parser with arguments
parser = AC5Parser(prog="armcc")
parser.add_argument('--foo', action='store_true', default=None)
...
if ac5options.foo is not None:
 output_command.append('--bar')

To convert a pair of negatable boolean command-line options, that is a pair of complementary options of
the form --option and --no_option, use the add_negatable_option function. For example, to convert
--foo to --bar and --no_foo to --pling, make the following changes in the code:

set up parser with arguments
parser = AC5Parser(prog="armcc")
parser.add_negatable_option('--foo')
...
if ac5options.foo is not None:
 if ac5options.foo:
 output_command.append('--bar')
 else:
 output_command.append('--pling')

To convert a pair of complementary boolean command-line options with names that do not follow the
format --option and --no_option, use the add_complementary_option function. For example, to
convert --foo to --bar and --the_opposite_of_foo to --pling, make the following changes in the
code:

set up parser with arguments
parser = AC5Parser(prog="armcc")
parser.add_complementary_option('--foo', '--the_opposite_of_foo')
...
if ac5options.foo is not None:
 if ac5options.foo:
 output_command.append('--bar')
 else:
 output_command.append('--pling')

The wrapper is documented with comments in the Python script. For full information about how to
customize the wrapper, refer to those comments.

Related concepts
4.5 Running the command-line translation wrapper on page 4-26.

Related information
The Python Programming Language web site.

4 Compiler Migration Support Tools
4.6 Customizing the command-line translation wrapper

ARM DUI0742A Copyright © 2014 ARM. All rights reserved. 4-27
Non-Confidential

http://www.python.org/

	ARM ® Compiler Migration and Compatibility Guide
	Contents
	Preface
	About this book
	Using this book
	Typographic conventions

	Feedback
	Feedback on this product
	Feedback on content

	1 : Compiler Configuration Information
	1.1 : Compiler configuration information

	2 : Command-line Options Comparison
	2.1 : Comparison of ARM ® Compiler 6 compiler command-line options and older versions of ARM ® Compiler
	2.2 : Command-line options for preprocessing assembly source code

	3 : Compiler Source Code Compatibility
	3.1 : Language extension compatibility
	3.2 : C and C++ implementation compatibility

	4 : Compiler Migration Support Tools
	4.1 : ARM Compiler Source Compatibility Checker command-line syntax
	4.2 : Compatibility checks performed by ARM Compiler Source Compatibility Checker
	4.3 : Specifying compiler options for the ARM Compiler Source Compatibility Checker with a JSON compilation database
	4.4 : JSON compilation database format for the ARM Compiler Source Compatibility Checker
	4.5 : Running the command-line translation wrapper
	4.6 : Customizing the command-line translation wrapper

