
ARM® DS-5™

 Version 5.19

Debugger Command Reference
Copyright © 2010-2014 ARM. All rights reserved.
ARM DUI 0452S (ID070914)

ARM DS-5
Debugger Command Reference

Copyright © 2010-2014 ARM. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM in the EU and other countries,
except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the
trademarks of their respective owners.

Except as provided herein, neither the whole nor any part of the information contained in, or the product described in,
this document may be adapted or reproduced in any material form except with the prior written permission of the
copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith. However, all warranties implied or
expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for any loss or
damage arising from the use of any information in this document, or any error or omission in such information, or any
incorrect use of the product.

Where the term ARM is used it means "ARM or any of its subsidiaries as appropriate".

Change History

Date Issue Confidentiality Change

June 2010 A Non-Confidential First release for DS-5

September 2010 B Non-Confidential Update for DS-5 version 5.2

November 2010 C Non-Confidential Update for DS-5 version 5.3

January 2011 D Non-Confidential Update for DS-5 version 5.4

May 2011 E Non-Confidential Update for DS-5 version 5.5

July 2011 F Non-Confidential Update for DS-5 version 5.6

September 2011 G Non-Confidential Update for DS-5 version 5.7

November 2011 H Non-Confidential Update for DS-5 version 5.8

February 2012 I Non-Confidential Update for DS-5 version 5.9

May 2012 J Non-Confidential Update for DS-5 version 5.10

July 2012 K Non-Confidential Update for DS-5 version 5.11

October 2012 L Non-Confidential Update for DS-5 version 5.12

December 2012 M Non-Confidential Update for DS-5 version 5.13

March 2013 N Non-Confidential Update for DS-5 version 5.14

June 2013 O Non-Confidential Update for DS-5 version 5.15

September 2013 P Non-Confidential Update for DS-5 version 5.16

December 2013 Q Non-Confidential Update for DS-5 version 5.17

March 2014 R Non-Confidential Update for DS-5 version 5.18

June 2014 S Non-Confidential Update for DS-5 version 5.19
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. ii
ID070914 Non-Confidential

Copyright © 2009 ARM. Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section
entitled "GNU Free Documentation License".

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. iii
ID070914 Non-Confidential

ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. iv
ID070914 Non-Confidential

Contents
ARM DS-5 Debugger Command Reference

Chapter 1 Conventions and feedback

Chapter 2 DS-5 Debugger Commands
2.1 General syntax and usage of DS-5 Debugger commands 2-2
2.2 DS-5 Debugger commands listed in groups .. 2-11
2.3 DS-5 Debugger commands listed in alphabetical order .. 2-29

Chapter 3 CMM-Style Commands Supported by the Debugger
3.1 General syntax and usage of CMM-style commands .. 3-2
3.2 CMM-style commands listed in groups .. 3-3
3.3 CMM-style commands listed in alphabetical order .. 3-6

Appendix A GNU Free Documentation License
A.1 ADDENDUM: How to use this License for your documents A-7

Chapter 1
Conventions and feedback

The following describes the typographical conventions and how to give feedback:

Typographical conventions
The following typographical conventions are used:
monospace Denotes text that can be entered at the keyboard, such as commands,

file and program names, and source code.
monospace Denotes a permitted abbreviation for a command or option. The

underlined text can be entered instead of the full command or option
name.

monospace italic
Denotes arguments to commands and functions where the argument is
to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Also used for
emphasis in descriptive lists, where appropriate, and for ARM®
processor signal names.

Feedback on this product
If you have any comments and suggestions about this product, contact your
supplier and give:
• your name and company
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 1-1
ID070914 Non-Confidential

Conventions and feedback
• the serial number of the product
• details of the release you are using
• details of the platform you are using, such as the hardware platform,

operating system type and version
• a small standalone sample of code that reproduces the problem
• a clear explanation of what you expected to happen, and what actually

happened
• the commands you used, including any command-line options
• sample output illustrating the problem
• the version string of the tools, including the version number and build

numbers.

Feedback on content
If you have comments on content then send an e-mail to errata@arm.com. Give:
• the title
• the number, ARM DUI 0452S
• if viewing online, the topic names to which your comments apply
• if viewing a PDF version of a document, the page numbers to which your

comments apply
• a concise explanation of your comments.
ARM also welcomes general suggestions for additions and improvements.

ARM periodically provides updates and corrections to its documentation on the ARM
Information Center, together with knowledge articles and Frequently Asked Questions (FAQs).

Other information
• ARM Information Center, http://infocenter.arm.com/help/index.jsp
• ARM Technical Support Knowledge Articles,

http://infocenter.arm.com/help/topic/com.arm.doc.faqs

• Support and Maintenance,
http://www.arm.com/support/services/support-maintenance.php

• ARM Glossary,
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 1-2
ID070914 Non-Confidential

Chapter 2
DS-5 Debugger Commands

The following topics describe the DS-5 Debugger commands:
• General syntax and usage of DS-5 Debugger commands on page 2-2
• DS-5 Debugger commands listed in groups on page 2-11
• DS-5 Debugger commands listed in alphabetical order on page 2-29.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-1
ID070914 Non-Confidential

DS-5 Debugger Commands
2.1 General syntax and usage of DS-5 Debugger commands
DS-5 Debugger commands are a comprehensive set of commands to debug embedded
applications.

Syntax of DS-5 Debugger commands
Many commands accept arguments and flags using the following syntax:
command [argument] [/flag]…

A flag acts as an optional switch and is introduced with a forward slash character.
Where a command supports flags, the flags are described as part of the command
syntax.

Note
 Commands are not case sensitive. Abbreviations are underlined.

Usage of DS-5 Debugger commands
The commands you submit to the debugger must conform to the following rules:
• Each command line can contain only one debugger command.
• When referring to symbols, you must use the same case as the source code.
You can execute the commands by entering them in the debugger command-line
console or by running debugger script files. Alternatively in Eclipse, you can
open the DS-5 Debug perspective where you can use the menus, icons, and
toolbars provided or you can enter DS-5 Debugger commands in the Commands
view.
You can enter many debugger commands in an abbreviated form. The debugger
requires enough letters to uniquely identify the command you enter. Many
commands have alternative names, or aliases, that you might find easier to
remember. For example, back and where are aliases for the info stack command.
Command names and aliases can be abbreviated. For example, info stack can be
abbreviated to i s. The syntax definition for each command shows how it can be
abbreviated by underlining it for example, info stack.
In the syntax definition of each command:
• square brackets [...] enclose optional parameters
• braces {...} enclose required parameters
• a vertical pipe | indicates alternatives from which you must choose one
• parameters that can be repeated are followed by an ellipsis (...).
Do not type square brackets, braces, or the vertical pipe. Replace parameters in
italics with the value you want. When you supply more than one parameter, use
the separator as shown in the syntax definition for each command. If a parameter
is a name that includes spaces, enclose it in double quotation marks.
Descriptive comments can be placed either at the end of a command or on a
separate line. You can use the # character to identify a descriptive comment.

2.1.1 Using special characters and environment variables in paths

When specifying paths, you can use any of the following:

• a tilde character (~) at the start of a path to refer to your home directory

• an environment variable, for example:
— %LOG_DIRECTORY%

— ${LOG_DIRECTORY}
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-2
ID070914 Non-Confidential

DS-5 Debugger Commands
— $LOG_DIRECTORY

• a backslash (\) or forward slash (/) as a directory separator.

See also
• set escapes-in-filenames on page 2-172.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-3
ID070914 Non-Confidential

DS-5 Debugger Commands
2.1.2 Using expressions

Some commands accept expressions. There are many types of expressions accepted by the
debugger that enable you to extend the operation of a command. For example, binary
mathematical expressions, references to module names, or calls to functions.

Using the $ character to access the content of registers and debugger variables

In an expression you can access the content of registers by using the $ character and the register
name, for example:

print 4+$R0 # add 4 to the content of R0 register and print result

Results from the print commands are recorded in debugger variables. Other commands, such
as breakpoint or watchpoint creating commands, the start command, and the memory command,
also use debugger variables to record the ID of the new resource. Each of these debugger
variables is assigned a number and can be used subsequently in expressions by using the $
character.

You can access print results or resource IDs using the debugger variables:
$ print result or ID in the last assigned debugger variable
$$ print result or ID in the second-to-last debugger variable
$n print result or ID in the debugger variable with number n.

You can also use the following debugger variables:
$cwd current working directory
$cdir current compilation directory
$entrypoint entry point of the current image
$idir current image directory
$sdir current script directory
$datetime current date and time in string format
$timems number of milliseconds since 1st Jan 1970.
$pid current operating system process ID.
$thread current thread ID for a multi-threaded application
$core current processor ID for a Symmetric MultiProcessing (SMP) systems.
$vmid current Virtual Machine ID (VMID) for systems that support hypervisor / virtual

machine debugging.

Note
 • $thread is uniquely assigned by the debugger for the current context reported by the OS

awareness plugin. If no OS awareness plugin is loaded, $thread tracks the current core,
$core.

• $pid is assigned for the debugger for the current context by the OS awareness plugin. If
no OS awareness plugin is loaded, $pid tracks the current core, $core.

Using built-in functions within expressions

In an expression you can use built-in functions to provide more functionality. The debugger
supports the following:

int strcmp(const char *str1, const char *str2);

Compares two strings and returns an integer.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-4
ID070914 Non-Confidential

DS-5 Debugger Commands
Return values are:
<0 Indicates that the second argument string value comes after the

first argument string value in the machine collating sequences,
str1 < str2.

0 Indicates that the two strings are identical in content.
>0 Indicates that the first argument string value comes after the

second argument string value in the machine collating
sequences, str2 < str1.

int strncmp(const char *str1, const char *str2, size_t n);

Compares at most n characters of two strings and returns an integer.
Return values are:
<0 Indicates that the second argument string value comes after the

first argument string value in the machine collating sequences,
str1 < str2.

0 Indicates that the two strings are identical in content.
>0 Indicates that the first argument string value comes after the

second argument string value in the machine collating
sequences, str2 < str1.

char *strcpy(char *str1, const char *str2);

Copies str2 to str1 including "\0" and returns str1.

char *strncpy(char *str1, const char *str2, size_t n);

Copies at most n characters of str2 to str1 including "\0" and returns str1.
If str2 has fewer than n characters then fill with "\0".

void *memcpy(void *s, const void *cs, size_t n);

Copies at most n characters from cs to s and returns s.

Example 2-1 Using a built-in strcmp() function with the break command

break main.c:45 if strcmp(myVar, "10") == 0 # Set conditional breakpoint that stops
when strings are identical

See also
• break on page 2-40
• memory on page 2-121
• print, inspect on page 2-141
• set print on page 2-176
• show print on page 2-208
• start on page 2-222
• watch on page 2-250.

2.1.3 Using wildcards

You can use wildcards to enhance your pattern matching. The following types of wildcard
pattern matching can be used:
• Globs. This is the default.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-5
ID070914 Non-Confidential

DS-5 Debugger Commands
• Regular expressions.

You can use the DS-5 Debugger command set wildcard-style to change the default setting.

Globs

Globs are a mechanism for examining the contents of strings, and can be used to search variables
for strings matching specific patterns. Commands that support wildcards can use globs with the
following syntax:
* Specifies zero or more characters
? Specifies only one character
\ Specifies an escape character to match on strings containing either * or ?
[character] Specifies a range of characters. You can use !character to match characters that

are not listed in the range.

Example 2-2 Globs where a wildcard is expected

info functions m* # List all functions starting with m

Regular expressions

Commands that support wildcards can use regular expressions. The exact regular expression
syntax supported is described in a book called Mastering Regular Expressions.

Example 2-3 Regular expressions where a wildcard is expected

info functions m.* # List all functions starting with m

See also
• set wildcard-style on page 2-188
• show wildcard-style on page 2-219
• Jeffrey E. F. Friedl, Mastering Regular Expressions. ISBN 0-596-52812-4,

http://oreilly.com.

2.1.4 Using regular expressions in the C expression parser

The C expression parser in the debugger supports regular expressions. Regular expressions are
a mechanism for examining the contents of strings, and can be used to search variables for
strings matching specific patterns.

The debugger extends C expression syntax to support regular expressions using the =~ and !~
operators in the style of Perl, as shown in the following examples:

Example 2-4 Regular expressions using the =~ and !~ operators

This example evaluates to 1 if the regular expression matches anywhere in the string and 0 if it
does not match:

expression =~ regular_expression
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-6
ID070914 Non-Confidential

DS-5 Debugger Commands
This example evaluates to 0 if the regular expression matches anywhere in the string and 1 if it
does not match:

expression !~ regular_expression

where:

expression is any expression of type char * or char[]. For example, a variable name.

regular_expression is a regular expression in the form /regex/modifiers or m/regex/modifiers.
For example, if str is a variable of type char*, the following are valid
expressions:
str =~ /abc/

((char *) void_pointer) !~ m/abc/i

The exact regular expression syntax supported is described by the Mastering Regular
Expressions book in the chapter discussing Java regex support. An exception to this is the
parsing of the handling of modifiers. The following modifiers are supported by the debugger:
i enable case insensitive matching
m multiline mode (^ and $ match embedded newline)
s dotall mode (. matches line terminators)
x comments mode (permit whitespace and comments).

See also

• Jeffrey E. F. Friedl, Mastering Regular Expressions. ISBN 0-596-52812-4,
http://oreilly.com.

2.1.5 Using the C++ scoping resolution operator

In C++, the :: (scope resolution) operator is a global identifier for variable or function names
that are out of scope.

The expression evaluator supports scoping operations using the scope resolution, member and
member pointer operators. This can be used to reference variables and functions within files,
namespaces or classes.

For example:

Example 2-5 demo.cpp

static int FILE_STATIC_VARIABLE = 20;
class OuterClass
{
public:
OuterClass(int i)
{
value = i;

}

class InnerClass
{
public:
int demoFunction()
{
return 25;

}

ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-7
ID070914 Non-Confidential

DS-5 Debugger Commands
};

void increment()
{
value++;

}
int value;

};

namespace NAME_SPACE_OUTER
{
const int TEST_VAR= 20;
namespace NAME_SPACE_INNER
{
const int TEST_VAR= 19;
int nameSpaceFoo ()
{
return 60;

}
};

};

int main()
{
OuterClass oc(14);
OuterClass *ptr_oc = &oc;

ptr_oc->increment();
}

You can query this example by using any of the following expressions:

OuterClass::InnerClass::demoFunction
"demo.c"::FILE_STATIC_VARIABLE
NAME_SPACE_OUTER::TEST_VAR
NAME_SPACE_OUTER::NAME_SPACE_INNER::TEST_VAR

If you set a a breakpoint at ptr_oc->increment() and run to it, then the following expressions can
also be used to query the instances of the outer class:

oc.value
ptr_oc->value
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-8
ID070914 Non-Confidential

DS-5 Debugger Commands
2.1.6 printf() style format string

Certain commands use printf() style format strings to specify how to format values. For
example the set print double-format and set print float-format commands specify how to
format floating-point values. It works in a similar way to the ANSI C standard library function
printf().

Format string syntax

The commands specify the format using a string. If there are no % characters in the string, the
message is written out and any arguments are ignored. The % symbol is used to indicate the start
of an argument conversion specification.

The syntax of the format string is:

%[flag...][fieldwidth][precision]format

where:

flag An optional conversion modification flag.
"-" result is left-justified
"#" result uses a conversion-dependent alternate form
"+" result includes a sign
" " result includes a leading space for positive values
"0" result is zero-padded
"," result includes locale-specific grouping separator
"(" result encloses negative numbers in parentheses.

fieldwidth An optional minimum field width specified in decimal.

precision An optional precision specified in decimal, with a preceding . (period character)
to identify it.

format The possible conversion specifier characters are:
% A literal % character.
a, A, e, E, f, g or G

Results in a decimal number formatted using scientific notation or
floating point notation. The capital letter forms use a capital E in
scientific notation rather than an e.

d or u Results in a decimal integer. d indicates a signed integer. u indicates an
unsigned integer.

h or H Results in a Hexadecimal character in lower or upper case.
x or X Results in an unsigned Hexadecimal character in lower or upper case.
o Results in an octal integer.
c or C Results in a Unicode character in lower or upper case.
s Results in a string.
b or B Results in a string containing either "true" or "false" in lower or upper

case.
n Results in a platform-specific line separator.
t or T Prefix for date and time conversion specifier characters. For example:

"%ta %tb %td %tT" results in "Sun Jul 20 16:17:00"
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-9
ID070914 Non-Confidential

DS-5 Debugger Commands
See also
• echo on page 2-67
• output on page 2-138
• print, inspect on page 2-141
• set print on page 2-176
• show print on page 2-208.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-10
ID070914 Non-Confidential

DS-5 Debugger Commands
2.2 DS-5 Debugger commands listed in groups
The DS-5 Debugger commands grouped according to specific tasks are:
• Breakpoints and watchpoints
• Execution control on page 2-13
• Tracing on page 2-15
• Scripts on page 2-15
• Call stack on page 2-16
• Operating System (OS) on page 2-16
• Files on page 2-18
• Data on page 2-19
• Memory on page 2-20
• Cache on page 2-21
• Registers on page 2-21
• MMU on page 2-21
• Display on page 2-22
• Information on page 2-22
• Log commands on page 2-24
• Set commands on page 2-24
• Show commands on page 2-26
• Flash commands on page 2-27
• Supporting commands on page 2-27.

2.2.1 Breakpoints and watchpoints

List of commands:

break on page 2-40
Sets a software breakpoint.

hbreak on page 2-77
Sets a hardware breakpoint.

tbreak on page 2-229
Sets a temporary software breakpoint that is deleted when it is hit.

thbreak on page 2-231
Sets a temporary hardware breakpoint that is deleted when it is hit.

awatch on page 2-37
Sets a read/write watchpoint for a global/static data symbol.

rwatch on page 2-155
Sets a read watchpoint for a global/static data symbol.

watch on page 2-250
Sets a write watchpoint for a global/static data symbol.

condition on page 2-52
Sets a break condition for a specific breakpoint or watchpoint.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-11
ID070914 Non-Confidential

DS-5 Debugger Commands
ignore on page 2-81
Sets the ignore counter for a breakpoint or watchpoint condition.

break-script on page 2-42
Assigns a script file to a specific breakpoint for execution when the
breakpoint is triggered.

break-stop-on-threads, break-stop-on-cores on page 2-45
Applies an existing breakpoint to one or more threads or processors.

break-stop-on-vmid on page 2-46
Applies an existing hardware breakpoint to a virtual machine.

enable breakpoints on page 2-68
Enables one or more breakpoints or watchpoints by number.

disable breakpoints on page 2-59
Disables one or more breakpoints or watchpoints by number.

delete breakpoints on page 2-56
Deletes one or more breakpoints or watchpoints by number.

resolve on page 2-146
Resolves one or more breakpoints or watchpoints.

clear on page 2-50
Deletes a breakpoint at a specific location.

clearwatch on page 2-51
Deletes a watchpoint at a specific location.

info breakpoints, info watchpoints on page 2-84
Displays information about the status of all breakpoints and watchpoints.

info breakpoints capabilities, info watchpoints capabilities on page 2-85
Displays a list of parameters that you can use with breakpoint and
watchpoint commands for the current connection.

set breakpoint on page 2-164
Controls the automatic behavior of breakpoints and watchpoints.

silence on page 2-220
Disables the printing of stop messages for a specific breakpoint.

unsilence on page 2-246
Enables the printing of stop messages for a specific breakpoint.

Type help followed by a command name for more information on a specific command.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-12
ID070914 Non-Confidential

DS-5 Debugger Commands
2.2.2 Execution control

List of commands:

start on page 2-222
Sets a temporary breakpoint and starts running the image until it hits the
breakpoint. When the debugger stops, the breakpoint is deleted. By
default, the breakpoint is set at the address of the global function main().

set blocking-run-control on page 2-163
Controls whether run control operations such as stepping and running are
blocked until the target stops or released immediately.

show blocking-run-control on page 2-196
Displays the current setting for blocking run control operations.

set debug-from on page 2-167
Specifies the address of the temporary breakpoint for subsequent use by
the start command.

show debug-from on page 2-200
Displays the current setting for the expression that is used by the start
command to set a temporary breakpoint.

run on page 2-154
Starts running the target.

continue on page 2-53
Continues running the target.

advance on page 2-35
Sets a temporary breakpoint and continues running the image until it hits
the breakpoint. When the debugger stops, the breakpoint is deleted.

finish on page 2-73
Continues running the device to the next instruction after the selected
stack frame finishes.

interrupt, stop on page 2-114
Interrupts the target and stops the current application if it is running.

wait on page 2-249
Instructs the debugger to wait until either the application completes or a
breakpoint is hit.

reset on page 2-145
Performs a reset on the target.

reverse-continue on page 2-148
Runs the target backwards.

reverse-next on page 2-149
Rewinds execution to the preceding source line in the current function.

reverse-nexti on page 2-150
Rewinds execution at the instruction level, stepping over all function calls.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-13
ID070914 Non-Confidential

DS-5 Debugger Commands
reverse-step on page 2-151
Steps backward out of the current source line.

reverse-stepi on page 2-152
Steps backward one instruction.

reverse-step-out on page 2-153
Rewinds execution through the specified number of stack frames.

step on page 2-224
Source level stepping including stepping into all function calls where there
is debug information.

stepi on page 2-225
Instruction level stepping including stepping into all function calls.

steps on page 2-226
Source level stepping through statements including stepping into all
function calls where there is debug information.

next on page 2-134
Source level stepping over all function calls.

nexti on page 2-135
Instruction level stepping over all function calls.

nexts on page 2-136
Source level stepping through statements but stepping over all function
calls.

thread, core on page 2-233
Displays information about the current thread or processor.

thread apply, core apply on page 2-234
Temporarily switches control to a thread or processor to execute a DS-5
Debugger command and then switches back to the original state.

set step-mode on page 2-182
Specifies whether to step into or step over a function with no debug
information.

show step-mode on page 2-213
Displays the current step setting for functions without debug information.

handle on page 2-76
Controls the handler settings for one or more signals or exceptions.

info signals, info handle on page 2-105
Displays information about the handling of signals.

Type help followed by a command name for more information on a specific command.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-14
ID070914 Non-Confidential

DS-5 Debugger Commands
2.2.3 Tracing

List of commands:

trace start on page 2-243
Starts the trace capture on the specified trace capture device.

trace stop on page 2-244
Stops the trace capture on the specified trace capture device.

trace clear on page 2-235
Clears the trace capture on the specified trace capture device.

trace list on page 2-239
Lists the connected trace capture devices and trace sources.

trace info on page 2-238
Displays details about trace capture devices and trace sources.

trace dump on page 2-236
Produces a dump of raw trace data.

trace report on page 2-240
Produces a trace report.

2.2.4 Scripts

List of commands:

define on page 2-55 Enables you to derive a new user-defined command from existing
commands.

document on page 2-63
Enables you to add integrated help for a new user-defined command.

newvar on page 2-133
Declares and initializes a new debugger convenience variable.

if on page 2-80 Enables you to write scripts that conditionally execute debugger
commands.

while on page 2-254
Enables you to write looping scripts that conditionally execute debugger
commands.

end on page 2-70 Enables you to terminate conditional scripts.

source on page 2-221
Loads and runs a script file containing debugger commands to control and
debug your target.

Type help followed by a command name for more information on a specific command.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-15
ID070914 Non-Confidential

DS-5 Debugger Commands
2.2.5 Call stack

List of commands:

up on page 2-247
Controls and displays the current position in the call stack.

up-silently on page 2-248
Controls the current position in the call stack.

down on page 2-64
Controls and displays the current position in the call stack.

down-silently on page 2-65
Controls the current position in the call stack.

frame on page 2-75
Displays stack frame information at the selected position.

select-frame on page 2-157
Controls the current position in the call stack.

info frame on page 2-91
Displays stack frame information at the selected position.

info stack, backtrace, where on page 2-107
Displays information about the call stack.

set backtrace on page 2-162
Controls the default behavior when using the info stack command.

show backtrace on page 2-195
Displays current behavior settings for use with the info stack command.

Type help followed by a command name for more information on a specific command.

2.2.6 Operating System (OS)

List of commands:

sharedlibrary on page 2-189
Loads shared library symbols.

nosharedlibrary on page 2-137
Discards all loaded shared library symbols except for the symbols that are
loaded explicitly using the sharedlibrary command.

info sharedlibrary on page 2-104
Displays the names of the loaded shared libraries.

set os on page 2-174
Controls the OS settings in the debugger.

show os on page 2-207
Displays the current OS settings in the debugger.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-16
ID070914 Non-Confidential

DS-5 Debugger Commands
set sysroot, set solib-absolute-prefix on page 2-185
Specifies the system root for prefixing shared library paths.

show sysroot, show solib-absolute-prefix on page 2-216
Displays the system root directory in use by the debugger when searching
for shared library symbols.

set auto-solib-add on page 2-161
Controls the automatic loading of shared library symbols.

show auto-solib-add on page 2-194
Displays the current automatic setting for use when loading shared library
symbols.

set solib-search-path on page 2-181
Specifies additional directories to search for shared library symbols.

show solib-search-path on page 2-212
Displays the current search paths in use by the debugger when searching
for shared libraries.

set stop-on-solib-events on page 2-183
Specifies whether the debugger stops execution when it is notified of an
event by the dynamic linker.

show stop-on-solib-events on page 2-214
Displays the current debugger setting that controls whether execution
stops when shared library events occur.

thread, core on page 2-233
Sets the current thread and displays thread state and stack frame.

thread apply, core apply on page 2-234
Temporarily switches control to a thread or processor to execute a DS-5
Debugger command and then switches back to the original state.

info threads on page 2-110
Displays a list of threads showing ID, current state and related stack frame
information.

info processes on page 2-101
Displays a list of processes showing ID, current state and related stack
frame information.

info os-log on page 2-98
Displays the contents of the Operating System (OS) log buffer for
connections that supports this feature.

info os-modules on page 2-99
Displays a list of the Operating System (OS) modules for connections that
supports this feature.

info os-version on page 2-100
Displays the version of the Operating System (OS) for connections that
supports this feature.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-17
ID070914 Non-Confidential

DS-5 Debugger Commands
Type help followed by a command name for more information on a specific command.

2.2.7 Files

List of commands:

load on page 2-117
Loads an image on to the target and records the entry point address for
future use by the run and start commands.

loadfile on page 2-118
Loads debug information into the debugger, an image on to the target and
records the entry point address for future use by the run and start
commands.

file, symbol-file on page 2-72
Loads debug information from an image into the debugger.

reload-symbol-file on page 2-144
Reloads debug information from an already loaded image into the
debugger using the same settings as the original load operation.

add-symbol-file on page 2-34
Loads additional debug information into the debugger.

discard-symbol-file on page 2-62
Discards debug information relating to a specific file.

dump on page 2-66
Reads data from memory or an expression and writes to a file.

append on page 2-36
Reads data from memory or an expression and appends to an existing file.

restore on page 2-147
Reads data from a file and writes it to memory.

info files, info target on page 2-89
Displays information about the loaded image and symbols.

info sources on page 2-106
Displays the names of the source files.

cd on page 2-49
Sets the working directory.

pwd on page 2-142
Displays the working directory.

directory on page 2-58
Defines additional directories to search for source files.

show directories on page 2-201
Displays the list of directories to search for source files.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-18
ID070914 Non-Confidential

DS-5 Debugger Commands
set substitute-path on page 2-184
Modifies the search paths used when displaying source code.

show substitute-path on page 2-215
Displays the current search path substitution rules in use by the debugger
when searching for source files.

Type help followed by a command name for more information on a specific command.

2.2.8 Data

List of commands:

list on page 2-115
Displays lines of source code.

set listsize on page 2-173
Modifies the default number of source lines that the list command
displays.

show listsize on page 2-206
Displays the number of source lines that the list command displays.

set variable on page 2-187
Specifies an expression and assigns the result to a variable.

whatis on page 2-252
Displays the data type of an expression.

x on page 2-255
Displays the content of memory at a specific address.

disassemble on page 2-61
Displays disassembly for a specific section of memory.

info address on page 2-82
Displays the location of a symbol.

info symbol on page 2-108
Displays the symbol name at a specific address.

info locals on page 2-95
Displays all local variables.

info functions on page 2-92
Displays the name and data types for all functions.

info variables on page 2-111
Displays the name and data types of global and static variables.

info classes on page 2-87
Displays C++ class names.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-19
ID070914 Non-Confidential

DS-5 Debugger Commands
info members on page 2-96
Displays the name and data types for all class member variables that are
accessible in the function corresponding to the selected stack frame.

Type help followed by a command name for more information on a specific command.

2.2.9 Memory

List of commands:

memory on page 2-121
Specifies the attributes and size for a memory region.

memory auto on page 2-123
Resets the memory regions to the default target settings.

memory debug-cache on page 2-124
Controls the caching by the debugger for all memory regions.

enable memory on page 2-69
Enables one or more user-defined memory regions.

disable memory on page 2-60
Disables one or more user-defined memory regions.

delete memory on page 2-57
Deletes one or more user-defined memory regions.

info memory on page 2-97
Displays the attributes for all memory regions.

memory fill on page 2-125
Writes a specific pattern of bytes to memory.

memory set on page 2-126
Writes to memory.

memory set_typed on page 2-128
Writes a list of values to memory.

dump on page 2-66
Reads data from memory or an expression and writes to a file.

append on page 2-36
Reads data from memory or an expression and appends to an existing file.

restore on page 2-147
Reads data from a file and writes it to memory.

x on page 2-255
Displays the content of memory at a specific address.

disassemble on page 2-61
Displays disassembly for a specific section of memory.

Type help followed by a command name for more information on a specific command.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-20
ID070914 Non-Confidential

DS-5 Debugger Commands
2.2.10 Cache

List of commands:

cache list on page 2-47
Lists the caches and related information available for the current core.

cache print on page 2-48
Provides a structured view of the cache data in the current core.

Type help followed by a command name for more information on a specific command.

2.2.11 Registers

List of commands:

info registers on page 2-102
Displays the name and content of registers for the current stack frame.

info all-registers on page 2-83
Displays the name and content of grouped registers for the current stack
frame.

Type help followed by a command name for more information on a specific command.

2.2.12 MMU

List of commands:

mmu list tables on page 2-129
Lists the available translation tables and their associated parameters.

mmu list translations on page 2-130
Lists the available translations and their associated parameters.

mmu print on page 2-130
Prints the contents of a translation table.

mmu translate on page 2-131
Performs translations between virtual and physical addresses.

Type help followed by a command name for more information on a specific command.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-21
ID070914 Non-Confidential

DS-5 Debugger Commands
2.2.13 MMU list

List of commands:

mmu list tables on page 2-129
Lists the available translation tables and their associated parameters.

mmu list translations on page 2-130
Lists the available translations and their associated parameters.

Type help followed by a command name for more information on a specific command.

2.2.14 Display

List of commands:

echo on page 2-67
Displays only textual strings.

output on page 2-138
Displays only the output of an expression.

print, inspect on page 2-141
Displays the output of an expression and records the result in a debugger
variable.

set print on page 2-176
Controls the current debugger print settings.

show print on page 2-208
Displays the current debugger print settings.

Type help followed by a command name for more information on a specific command.

2.2.15 Information

List of commands:

info address on page 2-82
Displays the location of a symbol.

info all-registers on page 2-83
Displays the name and content of all registers.

info breakpoints, info watchpoints on page 2-84
Displays information about the status of all breakpoints and watchpoints.

info capabilities on page 2-86
Displays a list of capabilities for the target device that is currently connected to
the debugger.

info classes on page 2-87
Displays C++ class names.

info cores on page 2-88
Displays information about the running processors.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-22
ID070914 Non-Confidential

DS-5 Debugger Commands
info files, info target on page 2-89
Displays information about the loaded image and symbols.

info frame on page 2-91
Displays stack frame information at the selected position.

info functions on page 2-92
Displays the name and data types for all functions.

info inst-sets on page 2-94
Displays the available instruction sets.

info locals on page 2-95
Displays all local variables for the current stack frame.

info members on page 2-96 Displays the name and data types for class member variables.

info memory on page 2-97
Displays the attributes for all memory regions.

info os-log on page 2-98
Displays the contents of the Operating System (OS) log buffer for connections
that support this feature.

info os-modules on page 2-99
Displays a list of loadable kernel modules for connections that support this
feature.

info os-version on page 2-100
Displays the version of the Operating System (OS) for connections that support
this feature.

info processes on page 2-101
Displays information about the user space processes.

info registers on page 2-102
Displays the name and content of all application level registers.

info semihosting on page 2-103
Displays semihosting information for the server, client, or all.

info sharedlibrary on page 2-104
Displays the names of the loaded shared libraries.

info signals, info handle on page 2-105
Displays information about the handling of signals or exceptions.

info sources on page 2-106
Displays the names of the source files.

info stack, backtrace, where on page 2-107
Displays information about the call stack.

info symbol on page 2-108
Displays the symbol name at a specific address.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-23
ID070914 Non-Confidential

DS-5 Debugger Commands
info threads on page 2-110
Displays information about the available threads.

info variables on page 2-111
Displays the name and data types for all global and static variables.

Type help followed by a command name for more information on a specific command.

2.2.16 Log commands

List of commands:

log config on page 2-119
Specifies the type of logging configuration to output runtime messages from the
debugger.

log file on page 2-120
Specifies an output file to receive runtime messages from the debugger.

Type help followed by a command name for more information on a specific command.

2.2.17 Set commands

List of commands:

set set is an alias for set variable.

set arm on page 2-159
Controls the behavior of the debugger when selecting the instruction set
for disassembly and setting breakpoints.

set auto-solib-add on page 2-161
Controls the automatic loading of shared library symbols.

set backtrace on page 2-162
Controls the default behavior when using the info stack command.

set blocking-run-control on page 2-163
Controls whether run control operations such as stepping and running are
blocked until the target stops or released immediately.

set breakpoint on page 2-164
Controls the automatic behavior of breakpoints and watchpoints.

set case-insensitive-source-matching on page 2-165
Controls the case sensitivity when the debugger performs source file
matching operations.

set debug-agent on page 2-166
Sets a parameter in the launch configuration for DSTREAM/RVI
connections.

set debug-from on page 2-167
Specifies the address of the temporary breakpoint for subsequent use by
the start command.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-24
ID070914 Non-Confidential

DS-5 Debugger Commands
set directories on page 2-168
Specifies additional directories to search for source files.

set dtsl-options on page 2-169
Sets a parameter in the connection DTSL configuration.

set endian on page 2-170
Specifies the byte order for use by the debugger.

set escape-strings on page 2-171
Controls how special characters in strings are printed on the debugger
command-line.

set escapes-in-filenames on page 2-172
Controls the use of special characters in paths.

set listsize on page 2-173
Modifies the default number of source lines that the list command
displays.

set os on page 2-174
Controls the Operating System (OS) settings in the debugger.

set print on page 2-176
Controls the current debugger print settings.

set semihosting on page 2-178
Controls the semihosting operations in the debugger.

set solib-search-path on page 2-181
Specifies additional directories to search for shared library symbols.

set step-mode on page 2-182
Specifies whether to step into or step over a function with no debug
information.

set stop-on-solib-events on page 2-183
Specifies whether the debugger stops execution when it is notified of an
event by the dynamic linker.

set substitute-path on page 2-184
Modifies the search paths used when displaying source code.

set sysroot, set solib-absolute-prefix on page 2-185
Specifies the system root for prefixing shared library paths.

set variable on page 2-187
Specifies an expression and assigns the result to a variable.

set wildcard-style on page 2-188
Specifies the wildcard style to use for pattern matching in strings.

Type help followed by a command name for more information on a specific command.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-25
ID070914 Non-Confidential

DS-5 Debugger Commands
2.2.18 Show commands

List of commands:

show on page 2-191
Displays the current debugger settings.

show architecture on page 2-192
Displays the current target architecture.

show arm on page 2-193
Displays the current instruction set settings in use by the debugger for
disassembly and setting breakpoints.

show auto-solib-add on page 2-194
Displays the current automatic setting for use when loading shared library
symbols.

show backtrace on page 2-195
Displays the current behavior settings for use with the info stack
command.

show blocking-run-control on page 2-196
Displays the current setting for blocking run control operations.

show breakpoint on page 2-197
Displays the current breakpoint and watchpoint behavior settings.

show case-insensitive-source-matching on page 2-198
Displays the current breakpoint and watchpoint behavior settings.

show debug-agent on page 2-199
Displays the current value of a parameter in the launch configuration for
DSTREAM/RVI connections.

show debug-from on page 2-200
Displays the current setting for the address of the temporary breakpoint
used by the start command.

show directories on page 2-201
Displays the list of search directories.

show dtsl-options on page 2-202
Displays the current value of a parameter in the connection DTSL
configuration.

show endian on page 2-203
Displays the current byte order setting.

show escape-strings on page 2-204
Displays the current setting for controlling how special characters in
strings are printed on the debugger command-line.

show escapes-in-filenames on page 2-205
Displays the current setting for controlling the use of special characters in
paths.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-26
ID070914 Non-Confidential

DS-5 Debugger Commands
show listsize on page 2-206
Displays the listing size for the list command.

show os on page 2-207 Displays the current Operating System (OS) settings in the debugger.

show print on page 2-208
Displays the current debugger print settings.

show semihosting on page 2-209
Displays the current setting for semihosting operations.

show solib-search-path on page 2-212
Displays the current search path for shared libraries.

show step-mode on page 2-213
Displays the current step setting for functions without debug information.

show stop-on-solib-events on page 2-214
Displays the current debugger setting that controls whether execution
stops when shared library events occur.

show substitute-path on page 2-215
Displays all the substitution rules.

show sysroot, show solib-absolute-prefix on page 2-216
Displays the system root prefix for shared library paths.

show version on page 2-218
Displays the current version number of the debugger.

show wildcard-style on page 2-219
Displays the current wildcard style in use for pattern matching.

Type help followed by a command name for more information on a specific command.

2.2.19 Flash commands

List of commands:

flash load on page 2-74
Loads sections from an image into one or more flash devices.

info flash on page 2-90
Displays information about the flash devices on the current target.

Type help followed by a command name for more information on a specific command.

2.2.20 Supporting commands

List of commands:

preprocess on page 2-140
Displays a preprocessed value.

help on page 2-79 Displays help information for a specific command or a group of
commands listed according to specific debugging tasks.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-27
ID070914 Non-Confidential

DS-5 Debugger Commands
pause on page 2-139
Pauses the execution of a script for a specified period of time.

shell on page 2-190
Runs a shell command within the current debug session.

quit, exit on page 2-143
Quits the debugger session.

show version on page 2-218
Displays the current version number of the debugger.

show architecture on page 2-192
Displays the architecture of the current target.

set arm on page 2-159
Controls the behavior of the debugger when selecting the instruction set
for disassembly and setting breakpoints.

show arm on page 2-193
Displays the current instruction set settings in use by the debugger for
disassembly and setting breakpoints.

info inst-sets on page 2-94
Displays the available instruction sets.

set endian on page 2-170
Specifies the byte order for use by the debugger.

show endian on page 2-203
Displays the current byte order setting in use by the debugger.

info capabilities on page 2-86
Displays a list of capabilities for the target device that is currently
connected to the debugger.

set semihosting on page 2-178
Controls the semihosting options in the debugger.

show semihosting on page 2-209
Displays the current semihosting settings.

stdin on page 2-223
Specifies semihosting input requested by application code. For use only in
a command-line console with interactive mode.

unset on page 2-245
Modifies the current debugger settings.

Type help followed by a command name for more information on a specific command.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-28
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3 DS-5 Debugger commands listed in alphabetical order
The DS-5 Debugger commands in alphabetical order are:
• add-symbol-file on page 2-34
• advance on page 2-35
• append on page 2-36
• awatch on page 2-37
• break on page 2-40
• break-script on page 2-42
• break-stop-on-threads, break-stop-on-cores on page 2-45
• break-stop-on-vmid on page 2-46
• cache list on page 2-47
• cache print on page 2-48
• cd on page 2-49
• clear on page 2-50
• clearwatch on page 2-51
• condition on page 2-52
• continue on page 2-53
• define on page 2-55
• delete breakpoints on page 2-56
• delete memory on page 2-57
• directory on page 2-58
• disable breakpoints on page 2-59
• disable memory on page 2-60
• disassemble on page 2-61
• discard-symbol-file on page 2-62
• document on page 2-63
• down on page 2-64
• down-silently on page 2-65
• dump on page 2-66
• echo on page 2-67
• enable breakpoints on page 2-68
• enable memory on page 2-69
• end on page 2-70
• file, symbol-file on page 2-72
• finish on page 2-73
• flash load on page 2-74
• frame on page 2-75
• handle on page 2-76
• hbreak on page 2-77
• help on page 2-79
• if on page 2-80
• ignore on page 2-81
• info address on page 2-82
• info all-registers on page 2-83
• info breakpoints, info watchpoints on page 2-84
• info breakpoints capabilities, info watchpoints capabilities on page 2-85
• info capabilities on page 2-86
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-29
ID070914 Non-Confidential

DS-5 Debugger Commands
• info classes on page 2-87
• info cores on page 2-88
• info files, info target on page 2-89
• info flash on page 2-90
• info frame on page 2-91
• info functions on page 2-92
• info inst-sets on page 2-94
• info locals on page 2-95
• info memory on page 2-97
• info members on page 2-96
• info os-log on page 2-98
• info os-modules on page 2-99
• info os-version on page 2-100
• info processes on page 2-101
• info registers on page 2-102
• info semihosting on page 2-103
• info sharedlibrary on page 2-104
• info signals, info handle on page 2-105
• info sources on page 2-106
• info stack, backtrace, where on page 2-107
• info symbol on page 2-108
• info target on page 2-109
• info threads on page 2-110
• info variables on page 2-111
• interrupt, stop on page 2-114
• list on page 2-115
• load on page 2-117
• loadfile on page 2-118
• log config on page 2-119
• log file on page 2-120
• memory on page 2-121
• memory auto on page 2-123
• memory debug-cache on page 2-124
• memory fill on page 2-125
• memory set on page 2-126
• memory set_typed on page 2-128
• mmu list tables on page 2-129
• mmu list translations on page 2-130
• mmu print on page 2-130
• mmu translate on page 2-131
• newvar on page 2-133
• next on page 2-134
• nexti on page 2-135
• nexts on page 2-136
• nosharedlibrary on page 2-137
• output on page 2-138
• pause on page 2-139
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-30
ID070914 Non-Confidential

DS-5 Debugger Commands
• preprocess on page 2-140
• print, inspect on page 2-141
• pwd on page 2-142
• quit, exit on page 2-143
• reload-symbol-file on page 2-144
• reset on page 2-145
• resolve on page 2-146
• restore on page 2-147
• reverse-continue on page 2-148
• reverse-next on page 2-149
• reverse-nexti on page 2-150
• reverse-step on page 2-151
• reverse-stepi on page 2-152
• reverse-step-out on page 2-153
• run on page 2-154
• rwatch on page 2-155
• select-frame on page 2-157
• set arm on page 2-159
• set auto-solib-add on page 2-161
• set backtrace on page 2-162
• set blocking-run-control on page 2-163
• set breakpoint on page 2-164
• set case-insensitive-source-matching on page 2-165
• set debug-agent on page 2-166
• set debug-from on page 2-167
• set directories on page 2-168
• set dtsl-options on page 2-169
• set endian on page 2-170
• set escape-strings on page 2-171
• set escapes-in-filenames on page 2-172
• set listsize on page 2-173
• set os on page 2-174
• set print on page 2-176
• set semihosting on page 2-178
• set solib-search-path on page 2-181
• set step-mode on page 2-182
• set stop-on-solib-events on page 2-183
• set substitute-path on page 2-184
• set sysroot, set solib-absolute-prefix on page 2-185
• set trust-ro-sections-for-opcodes on page 2-186
• set variable on page 2-187
• set wildcard-style on page 2-188
• sharedlibrary on page 2-189
• shell on page 2-190
• show on page 2-191
• show architecture on page 2-192
• show arm on page 2-193
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-31
ID070914 Non-Confidential

DS-5 Debugger Commands
• show auto-solib-add on page 2-194
• show backtrace on page 2-195
• show blocking-run-control on page 2-196
• show breakpoint on page 2-197
• show case-insensitive-source-matching on page 2-198
• show debug-agent on page 2-199
• show debug-from on page 2-200
• show directories on page 2-201
• show dtsl-options on page 2-202
• show endian on page 2-203
• show escape-strings on page 2-204
• show escapes-in-filenames on page 2-205
• show listsize on page 2-206
• show os on page 2-207
• show print on page 2-208
• show semihosting on page 2-209
• show solib-search-path on page 2-212
• show step-mode on page 2-213
• show stop-on-solib-events on page 2-214
• show substitute-path on page 2-215
• show sysroot, show solib-absolute-prefix on page 2-216
• show trust-ro-sections-for-opcodes on page 2-217
• show version on page 2-218
• show wildcard-style on page 2-219
• silence on page 2-220
• source on page 2-221
• start on page 2-222
• stdin on page 2-223
• step on page 2-224
• stepi on page 2-225
• steps on page 2-226
• tbreak on page 2-229
• thbreak on page 2-231
• thread, core on page 2-233
• thread apply, core apply on page 2-234
• trace clear on page 2-235
• trace dump on page 2-236
• trace info on page 2-238
• trace list on page 2-239
• trace report on page 2-240
• trace start on page 2-243
• trace stop on page 2-244
• unset on page 2-245
• unsilence on page 2-246
• up on page 2-247
• up-silently on page 2-248
• wait on page 2-249
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-32
ID070914 Non-Confidential

DS-5 Debugger Commands
• watch on page 2-250
• whatis on page 2-252
• while on page 2-254
• x on page 2-255.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-33
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.1 add-symbol-file

This command loads additional debug information into the debugger.

Syntax

add-symbol-file filename [offset] [-option] [-s section address]…

Where:

filename Specifies the image, shared library, or Operating System (OS) module.

Note
 Shared library and OS modules depend on connections that support loading these

types of files. This option pends the file until the library or OS module is loaded.

offset Specifies the offset that is added to all addresses within the image. If offset is not
specified then the default for:
• An image is zero.
• A shared library is the load address of the library. If the application has not

currently loaded the specified library then the request is pended until the
library is loaded and the offset can be determined.

s Specifies the relocation of symbols being loaded from a relocatable object file.

section Specifies the name of a section in a relocatable file.

address Specifies the address of the section. This can be either an address or an expression
that evaluates to an address.

You can use the info files command to display information about the loaded files.

Example

Example 2-6 add-symbol-file

add-symbol-file myFile.axf # Load symbols at entry point+0x0000
add-symbol-file myLib.so # Pends symbol file for shared library
add-symbol-file myModule.ko # Pends symbol file for OS module
add-symbol-file myFile.axf 0x2000 # Load symbols at entry point+0x2000
add-symbol-file relocate.o -s .text 0x1000 -s .data 0x2000

Load symbols from relocate.o and relocate
symbols defined in .text or .data sections

See also
• cd on page 2-49
• discard-symbol-file on page 2-62
• file, symbol-file on page 2-72
• load on page 2-117
• info files, info target on page 2-89
• info os-modules on page 2-99
• loadfile on page 2-118
• reload-symbol-file on page 2-144.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-34
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.2 advance

This command sets a temporary breakpoint and calls the debugger continue command. The
temporary breakpoint is subsequently deleted when it is hit.

Note
 Control is returned as soon as the target is running. You can use the wait command to block the
debugger from returning control until either the application completes or a breakpoint is hit.

Syntax

advance [-p] [filename:]location|*address

Where:

p Specifies whether or not the resolution of an unrecognized breakpoint location
results in a pending breakpoint being created.

filename Specifies the file.

location Specifies the location:
line_num is a line number
function is a function name.
label is a label name.
+offset|-offset Specifies the line offset from the current location.

address Specifies the address. This can be either an address or an expression that evaluates
to an address.

Example

Example 2-7 advance

advance func1 # Sets a temporary breakpoint at func1 and continues
running the target

advance -p lib.c:20 # Sets a pendable temporary breakpoint at line 20 in lib.c
and continues running the target

See also
• continue on page 2-53
• tbreak on page 2-229.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-35
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.3 append

This command reads data from memory or the result of an expression and appends it to an
existing file.

Syntax

append [format] memory filename start_address {end_address|+size}

append [format] value filename expression

Where:

format Specifies the output format:
binary Binary. This is the default.
ihex Intel Hex-32.
srec Motorola 32-bit (S-records).
vhx Byte oriented hexadecimal (Verilog Memory

Model).

filename Specifies the file.

start_address Specifies the start address for the memory.

end_address Specifies the inclusive end address for the memory.

size Specifies the size of the region.

expression Specifies an expression that is evaluated and the result is returned.

Example

Example 2-8 append

append memory myFile.bin 0x8000 0x8FFF # Append content of memory 0x8000-0x8FFF
to binary file myFile.bin

append srec value myFile.m32 myArray # Append content of myArray to
Motorola 32-bit file myFile.m32

See also
• Using expressions on page 2-4
• dump on page 2-66
• restore on page 2-147.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-36
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.4 awatch

This command sets a watchpoint for a data symbol. The debugger stops the target when the
memory at the specified address is read or written.

This command records the ID of the watchpoint in a new debugger variable, $n, where n is a
number. You can use this variable, in a script, to delete or modify the watchpoint behavior. If $n
is the last or second-to-last debugger variable, then you can also access the ID using $ or $$,
respectively.

Note
 Watchpoints are only supported on scalar values.

Some targets do not support watchpoints. Currently you can only set a watchpoint on:
• a hardware target using a debug hardware agent
• Linux applications using gdbserver or undodb-server.

The availability of watchpoints depends on the hardware target. In the case of Linux application
debug, the availability of watchpoints also depends on the Linux kernel version and
configuration.

The address of the instruction that triggers the watchpoint might not be the address shown in the
PC register. This is because of pipelining effects.

Syntax

awatch [-d] [-p] {[filename:]symbol|*address} [vmid vmid]

Where:

d Disables the watchpoint immediately after creation.

p Specifies whether or not the resolution of an unrecognized watchpoint
location results in a pending watchpoint being created.

filename Specifies the file.

symbol Specifies a global/static data symbol. For arrays or structs you must
specify the element or member.

address Specifies the address. This can be either an address or an expression that
evaluates to an address.

vmid Specifies the Virtual Machine ID (VMID) to apply the breakpoint to. This
can be either an integer or an expression that evaluates to an integer.

Example

Example 2-9 awatch

awatch myVar1 # Set read/write watchpoint on myVar1
awatch *0x80D4 # Set read/write watchpoint on address 0x80D4

See also
• Using expressions on page 2-4
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-37
ID070914 Non-Confidential

DS-5 Debugger Commands
• break-stop-on-threads, break-stop-on-cores on page 2-45
• break-stop-on-vmid on page 2-46
• clearwatch on page 2-51
• info breakpoints, info watchpoints on page 2-84
• info breakpoints capabilities, info watchpoints capabilities on page 2-85
• rwatch on page 2-155
• watch on page 2-250.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-38
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.5 backtrace

backtrace is an alias for info stack.

See info stack, backtrace, where on page 2-107.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-39
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.6 break

This command sets an execution breakpoint at a specific location. You can also specify a
conditional breakpoint by using an if statement that stops only when the conditional expression
evaluates to true.

This command records the ID of the breakpoint in a new debugger variable, $n, where n is a
number. You can use this variable, in a script, to delete or modify the breakpoint behavior. If $n
is the last or second-to-last debugger variable, then you can also access the ID using $ or $$,
respectively.

Note
 Breakpoints that are set within a shared object or kernel module become pending when the
shared object or kernel module is unloaded.

Use set breakpoint to control the automatic breakpoint behavior when using this command.

Syntax

break [-d] [-p] [[filename:]location|*address] [thread|core number…] [if expression]

Where:

d Disables the breakpoint immediately after creation.

p Specifies whether or not the resolution of an unrecognized breakpoint
location results in a pending breakpoint being created.

filename Specifies the file.

location Specifies the location:
line_num is a line number
function is a function name.
label is a label name.
+offset|-offset Specifies the line offset from the current location.

address Specifies the address. This can be either an address or an expression that
evaluates to an address.

number Specifies one or more threads or processors to apply the breakpoint to. You
can use $thread to refer to the current thread. If number is not specified then
all threads are affected.

expression Specifies an expression that is evaluated when the breakpoint is hit.

If no arguments are specified then a breakpoint is set at the current PC.

You can use info breakpoints to display the number and status of all breakpoints and
watchpoints.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-40
ID070914 Non-Confidential

DS-5 Debugger Commands
Example

Example 2-10 break

break *0x8000 # Set breakpoint at address 0x8000
break *0x8000 thread $thread # Set breakpoint at address 0x8000 on

current thread
break *0x8000 thread 1 3 # Set breakpoint at address 0x8000 on

threads 1 and 3
break main # Set breakpoint at address of main()
break SVC_Handler # Set breakpoint at address of label SVC_Handler
break +1 # Set breakpoint at address of next source line
break my_File.c:main # Set breakpoint at address of main() in my_File.c
break my_File.c:10 # Set breakpoint at address of line 10 in my_File.c
break function1 if x>0 # Set conditional breakpoint that stops when x>0

See also
• Using expressions on page 2-4
• break-script on page 2-42
• break-stop-on-threads, break-stop-on-cores on page 2-45
• break-stop-on-vmid on page 2-46
• clear on page 2-50
• condition on page 2-52
• delete breakpoints on page 2-56
• disable breakpoints on page 2-59
• enable breakpoints on page 2-68
• hbreak on page 2-77
• ignore on page 2-81
• info breakpoints, info watchpoints on page 2-84
• info breakpoints capabilities, info watchpoints capabilities on page 2-85
• resolve on page 2-146
• set arm on page 2-159
• set breakpoint on page 2-164
• tbreak on page 2-229
• thbreak on page 2-231.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-41
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.7 break-script

This command assigns a script file to a specific breakpoint. When the breakpoint is triggered
then the script is executed.

Syntax

break-script number [filename]

Where:

number Specifies the breakpoint number. This is the number assigned by the debugger
when it is set. You can use info breakpoints to display the number and status of
all breakpoints and watchpoints.

filename Specifies the script file that you want to execute when the specified breakpoint is
triggered. If filename is not specified then the currently assigned filename is
removed from the breakpoint.

Usage

Be aware of the following when using scripts with breakpoints:

• You must not assign a script to a breakpoint that has sub-breakpoints. If you do, the
debugger attempts to execute the script for each sub-breakpoint. If this happens, an error
message is displayed.

• Take care with the commands you use in a script that is attached to a breakpoint. For
example, if you use the quit command in a script, the debugger disconnects from the
target when the breakpoint is hit.

• If you put the continue command at the end of a script, this has the same effect as setting
the Continue Execution checkbox on the Breakpoint Properties dialog box.

Example

Example 2-11 break-script

break-script 1 myScript.ds # Run myScript.ds when breakpoint 1 is triggered

See also
• Using expressions on page 2-4
• break on page 2-40
• break-stop-on-threads, break-stop-on-cores on page 2-45
• break-stop-on-vmid on page 2-46
• clear on page 2-50
• condition on page 2-52
• delete breakpoints on page 2-56
• disable breakpoints on page 2-59
• enable breakpoints on page 2-68
• hbreak on page 2-77
• ignore on page 2-81
• info breakpoints, info watchpoints on page 2-84
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-42
ID070914 Non-Confidential

DS-5 Debugger Commands
• info breakpoints capabilities, info watchpoints capabilities on page 2-85
• resolve on page 2-146
• set arm on page 2-159
• set breakpoint on page 2-164
• tbreak on page 2-229
• thbreak on page 2-231.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-43
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.8 break-stop-on-cores

break-stop-on-cores is an alias for break-stop-on-threads.

See break-stop-on-threads, break-stop-on-cores on page 2-45.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-44
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.9 break-stop-on-threads, break-stop-on-cores

This command applies an existing breakpoint to one or more threads or processors.

Syntax

break-stop-on-threads number [id]…

break-stop-on-cores number [id]…

Where:

number Specifies the breakpoint number. This is a unique breakpoint number assigned by
the debugger when it is set. You can use info breakpoints to display the
breakpoint numbers and status.

id Specifies one or more threads or processors to apply the breakpoint to. You can
use $thread or $core to refer to the current thread or processor. If id is not
specified then apply the breakpoint to all threads or processors. You can use info
cores, or info threads to display the id numbers.

Example

Example 2-12 break-stop-on-threads, break-stop-on-cores

break-stop-on-threads 1 2 # Apply breakpoint 1 to thread 2
break-stop-on-threads 4 9 11 # Apply breakpoint 4 to threads 9 and 11
break-stop-on-cores 4 # Apply breakpoint 4 to all processors

See also
• Using expressions on page 2-4
• break on page 2-40
• break-script on page 2-42
• break-stop-on-vmid on page 2-46
• clear on page 2-50
• condition on page 2-52
• delete breakpoints on page 2-56
• disable breakpoints on page 2-59
• enable breakpoints on page 2-68
• hbreak on page 2-77
• ignore on page 2-81
• info breakpoints, info watchpoints on page 2-84
• info breakpoints capabilities, info watchpoints capabilities on page 2-85
• info cores on page 2-88
• info threads on page 2-110
• resolve on page 2-146
• set arm on page 2-159
• set breakpoint on page 2-164
• tbreak on page 2-229
• thbreak on page 2-231
• thread, core on page 2-233.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-45
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.10 break-stop-on-vmid

This command applies an existing hardware breakpoint to a Virtual Machine (VM).

Syntax

break-stop-on-vmid number [vmid]

Where:

number Specifies the hardware breakpoint number. This is a unique breakpoint number
assigned by the debugger when it is set. You can use info breakpoints to display
the breakpoint numbers and status.

vmid Specifies the Virtual Machine ID (VMID) to apply the breakpoint to. This can be
either an integer or an expression that evaluates to an integer. If vmid is not
specified then the VM effect is removed from the breakpoint.

Example

Example 2-13 break-stop-on-vmid

break-stop-on-vmid 1 2 # Apply hardware breakpoint 1 to vmid 2

See also
• Using expressions on page 2-4
• break on page 2-40
• break-script on page 2-42
• clear on page 2-50
• condition on page 2-52
• delete breakpoints on page 2-56
• disable breakpoints on page 2-59
• enable breakpoints on page 2-68
• hbreak on page 2-77
• ignore on page 2-81
• info breakpoints, info watchpoints on page 2-84
• info breakpoints capabilities, info watchpoints capabilities on page 2-85
• info cores on page 2-88
• info threads on page 2-110
• resolve on page 2-146
• set arm on page 2-159
• set breakpoint on page 2-164
• tbreak on page 2-229
• thbreak on page 2-231
• thread, core on page 2-233.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-46
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.11 cache list

This command lists the caches and related information available for the current core. The output
is implementation defined.

Syntax

cache list

Note
 The availability of the command and the available caches are dependent on the specific device
that the debugger is connected to.

Example

Example 2-14 cache list

cache list # Lists the available caches and views. An example output is:
L1D:
L1 data cache, size=32k, views: [tags, tlb]
...

L1I:
L1 instruction cache, size=2k, views: [tags, tlb]
...

See also
• cache print on page 2-48.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-47
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.12 cache print

This command provides a structured view of the cache data in the current core. The output is
implementation defined.

Syntax

cache print cache [view]…

Where:

cache Specifies the cache name.

view Specifies the view name for the selected cache. For each cache, views provide
access to different sets of data, or data presented in different formats.

Note
 The availability of the command and the available caches are dependent on the specific device
that the debugger is connected to.

Example

Example 2-15 cache print

cache print L1D # Prints L1 data cache. An example output is:
tags:
...

tlb:
...

cache print L1D tags # Prints L1 data cache. An example output is:
tags:
...

See also
• cache list on page 2-47.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-48
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.13 cd

This command changes the current working directory.

Syntax

cd dir

Where:

dir Specifies the directory.

Example

Example 2-16 cd

cd "\usr\source" # Change the current working directory

See also
• add-symbol-file on page 2-34
• file, symbol-file on page 2-72
• load on page 2-117
• loadfile on page 2-118
• pwd on page 2-142.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-49
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.14 clear

This command deletes a breakpoint at a specific location.

Syntax

clear [[filename:]location|*address]

Where:

filename Specifies the file.

location Specifies the location:
line_num is a line number.
function is a function name.
label is a label name.
+offset|-offset Specifies the line offset from the current location.

address Specifies the address. This can be either an address or an expression that
evaluates to an address.

If no arguments are specified then the breakpoint at the current PC is deleted.

Example

Example 2-17 clear

clear *0x8000 # Clear breakpoint at address 0x8000
clear main # Clear breakpoint at address of main()
clear SVC_Handler # Clear breakpoint at address of label SVC_Handler
clear +1 # Clear breakpoint at address of next source line
clear my_File.c:main # Clear breakpoint at address of main() in my_File.c
clear my_File.c:10 # Clear breakpoint at address of line 10 in my_File.c

See also
• Using expressions on page 2-4
• clearwatch on page 2-51
• condition on page 2-52
• break on page 2-40
• break-script on page 2-42
• break-stop-on-threads, break-stop-on-cores on page 2-45
• break-stop-on-vmid on page 2-46
• delete breakpoints on page 2-56
• disable breakpoints on page 2-59
• enable breakpoints on page 2-68
• hbreak on page 2-77
• info breakpoints, info watchpoints on page 2-84
• info breakpoints capabilities, info watchpoints capabilities on page 2-85
• tbreak on page 2-229
• thbreak on page 2-231.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-50
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.15 clearwatch

This command deletes a watchpoint at a specific location.

Syntax

clearwatch [filename:]symbol|*address

Where:

filename Specifies the file.

symbol Specifies a global/static data symbol. For arrays or structs you must
specify the element or member.

address Specifies the address. This can be either an address or an expression that
evaluates to an address.

Example

Example 2-18 clearwatch

clearwatch *0x8000 # Clear watchpoint at address 0x8000
clearwatch my_File.c:myVar # Clear watchpoint at address of myVar in my_File.c

See also
• Using expressions on page 2-4
• awatch on page 2-37
• delete breakpoints on page 2-56
• disable breakpoints on page 2-59
• enable breakpoints on page 2-68
• info breakpoints, info watchpoints on page 2-84
• info breakpoints capabilities, info watchpoints capabilities on page 2-85.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-51
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.16 condition

This command sets a break condition for a specific breakpoint or watchpoint. If the value of a
specific expression evaluates to true then the debugger stops the target otherwise execution
resumes.

Syntax

condition number [expression]

Where:

number Specifies the breakpoint or watchpoint number. This is the number assigned by
the debugger when it is set. You can use info breakpoints to display the number
and status of all breakpoints and watchpoints.

expression Specifies an expression that is evaluated when the breakpoint or watchpoint is hit.
If no expression is specified then the breakpoint or watchpoint condition is
deleted.

Example

Example 2-19 condition

condition 1 myVar<5 # Set break condition myVar<5 for breakpoint number 1

See also
• Using expressions on page 2-4
• break on page 2-40
• break-script on page 2-42
• break-stop-on-threads, break-stop-on-cores on page 2-45
• break-stop-on-vmid on page 2-46
• clear on page 2-50
• delete breakpoints on page 2-56
• disable breakpoints on page 2-59
• enable breakpoints on page 2-68
• hbreak on page 2-77
• ignore on page 2-81
• info breakpoints, info watchpoints on page 2-84
• tbreak on page 2-229
• thbreak on page 2-231.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-52
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.17 continue

This command continues running the target.

Note
 Control is returned as soon as the target is running. You can use the wait command to block the
debugger from returning control until either the application completes or a breakpoint is hit.

Syntax

continue [count]

Where:

count Specifies the number of times to ignore the breakpoint or watchpoint at the
current location.

Example

Example 2-20 continue

continue # Continue running target
continue 5 # Continue running target, ignoring current breakpoint 5 times

See also
• reverse-continue on page 2-148
• advance on page 2-35
• run on page 2-154
• start on page 2-222
• wait on page 2-249.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-53
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.18 core

core is an alias for threads.

See thread, core on page 2-233.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-54
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.19 define

This command enables you to a derive new user-defined command from existing commands.
User-defined commands accept arguments separated by whitespace. You can use the arguments
in expressions by using $arg0...$argn, to refer to specific arguments or $argv to refer to all the
supplied arguments. For example:

print 4+$arg0 # add 4 to the first argument and print result
echo $argv # echo all arguments

Syntax

define cmd
...

end

Where:

cmd Specifies the command name followed by one or more debugger commands.
Enter each debugger command on a new line and terminate the define command
by using the end command.

Note
 Existing built in commands cannot be redefined.

Example

Example 2-21 define

Define add-args command to print sum of first 3 arguments
define add-args

print $arg0+$arg1+$arg2
end

See also
• document on page 2-63
• end on page 2-70
• if on page 2-80
• while on page 2-254
• Using expressions on page 2-4.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-55
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.20 delete breakpoints

This command deletes one or more breakpoints or watchpoints.

Syntax

delete [breakpoints] number…

Where:

number Specifies the breakpoint or watchpoint number. This is the number assigned by
the debugger when it is set. You can use info breakpoints to display the number
and status of all breakpoints and watchpoints.

Note
 Multiple-statements on a single line of source code are assigned sub-numbers, for

example n.n. You can specify all multiple-statement breakpoints by specifying
n.0 or individually by specifying n.n.

If no number is specified then all breakpoints and watchpoints are deleted.

Example

Example 2-22 delete breakpoints

delete breakpoints 1 # Delete breakpoint number 1
delete breakpoints 1 2 # Delete breakpoints number 1 and 2
delete breakpoints # Delete all breakpoints and watchpoints
delete breakpoint $ # Delete breakpoint whose number is in the

most recently created debugger variable

See also
• break on page 2-40
• break-script on page 2-42
• break-stop-on-threads, break-stop-on-cores on page 2-45
• break-stop-on-vmid on page 2-46
• clear on page 2-50
• clearwatch on page 2-51
• condition on page 2-52
• disable breakpoints on page 2-59
• enable breakpoints on page 2-68
• hbreak on page 2-77
• info breakpoints, info watchpoints on page 2-84
• info breakpoints capabilities, info watchpoints capabilities on page 2-85
• tbreak on page 2-229
• thbreak on page 2-231.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-56
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.21 delete memory

This command deletes one or more user-defined memory regions.

Syntax

delete memory number…

Where:

number Specifies the region number. This is the number assigned by the debugger when
the region is set. You can use info mem to display the number and status of all
regions.

Example

Example 2-23 delete memory

delete memory 1 # Delete region number 1
delete memory 1 2 # Delete regions number 1 and 2
delete memory $ # Delete memory region whose number is in

the most recently created debugger variable

See also
• disable memory on page 2-60
• enable memory on page 2-69
• info memory on page 2-97
• memory on page 2-121.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-57
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.22 directory

This command specifies additional directories to search for source files. If you use this
command without an argument then the search directories are reset to the default settings. You
can use the show command to display the current settings.

Syntax

directory [path]…

Where:

path Specifies an additional directory to search for source files. This is appended to the
beginning of the list.

Note
 Multiple directories can be specified but must be separated with either:

• a space
• a colon (Unix)
• a semi-colon (Windows).

Default

The default directories for searching are:
• compilation directory, $cdir
• current working directory, $cwd
• current image directory, $idir.

Example

Example 2-24 directory

directory "\usr\source" # Add directory to search list
directory "\usr" "\My Src" # Add two directories to search list,

first takes precedence
directory # Reset to the default directories

See also
• set substitute-path on page 2-184
• show directories on page 2-201
• show substitute-path on page 2-215.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-58
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.23 disable breakpoints

This command disables one or more breakpoints or watchpoints.

Syntax

disable [breakpoints] number…

Where:

number Specifies the breakpoint or watchpoint number. This is the number assigned by
the debugger when it is set. You can use info breakpoints to display the number
and status of all breakpoints and watchpoints.

Note
 Multiple-statements on a single line of source code are assigned sub-numbers, for

example n.n. You can specify all multiple-statement breakpoints by specifying
n.0 or individually by specifying n.n.

If no number is specified then all breakpoints and watchpoints are disabled.

Note
 The breakpoints sub-command is optional.

Example

Example 2-25 disable

disable breakpoints 1 # Disable breakpoint number 1
disable breakpoints 1 2 # Disable breakpoints number 1 and 2
disable breakpoints # Disable all breakpoints and watchpoints
disable breakpoints $ # Disable the breakpoint whose number is in

the most recently created debugger variable

See also
• break on page 2-40
• break-script on page 2-42
• break-stop-on-threads, break-stop-on-cores on page 2-45
• break-stop-on-vmid on page 2-46
• clear on page 2-50
• condition on page 2-52
• delete breakpoints on page 2-56
• enable breakpoints on page 2-68
• hbreak on page 2-77
• info breakpoints, info watchpoints on page 2-84
• info breakpoints capabilities, info watchpoints capabilities on page 2-85
• tbreak on page 2-229
• thbreak on page 2-231.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-59
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.24 disable memory

This command disables one or more user-defined memory regions.

Syntax

disable memory number…

Where:

number Specifies the region number. This is the number assigned by the debugger when
the region is set. You can use info mem to display the number and status of all
regions.

Example

Example 2-26 disable memory

disable memory 1 # Disable region number 1
disable memory 1 2 # Disable regions number 1 and 2
disable memory $ # Disable memory region whose number is in

the most recently created debugger variable

See also
• delete memory on page 2-57
• enable memory on page 2-69
• info memory on page 2-97
• memory on page 2-121.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-60
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.25 disassemble

This command displays the disassembly for the function surrounding a specific address or the
disassembly for a specific address range.

Syntax

disassemble [address [address|+size]]

Where:

address Specifies an expression that evaluates to an address. Two address
arguments specify an inclusive address range. If no address argument is
specified then the debugger displays the disassembly for the function
surrounding the program counter for the current frame.

size Specifies the size of the region.

Example

Example 2-27 disassemble

disassemble # Display disassembly for current function
disassemble 0x8140 0x8157 # Display disassembly for address range 0x8140-0x8157
disassemble 0x8140 +0x18 # Display disassembly for address range 0x8140-0x8157
disassemble 0xC0040AC0 # Display disassembly for address range 0xC0040AC0-0xC0040ADC

See also
• set arm on page 2-159
• x on page 2-255.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-61
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.26 discard-symbol-file

This command discards debug information relating to a specific file.

Syntax

discard-symbol-file filename

Where:

filename Specifies the image, shared library, or Operating System (OS) module.

Note
 Shared library and OS modules depend on connections that support loading these

types of files.

You can use the info files command to display information about the loaded files.

Example

Example 2-28 discard-symbol-file

discard-symbol-file myFile.axf # Discard symbols relating to myFile.axf
discard-symbol-file myLib.so # Discard symbols relating to shared library
discard-symbol-file myModule.ko # Discard symbols relating to OS module

See also
• add-symbol-file on page 2-34
• cd on page 2-49
• file, symbol-file on page 2-72
• load on page 2-117
• info files, info target on page 2-89
• info os-modules on page 2-99
• loadfile on page 2-118
• reload-symbol-file on page 2-144.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-62
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.27 document

This command enables you to add integrated help for a new user-defined command.

Syntax

document cmd
...

end

Where:

cmd Specifies the user-defined command name.
Enter the description on one of more lines of text and terminate the document
command by using the end command.

Note
 Documentation for existing built in commands cannot be redefined.

Example

Example 2-29 document

Documentation for the new user-defined add-args command
document add-args

This user-defined command prints the sum of the first 3 arguments
end

See also
• define on page 2-55
• end on page 2-70
• if on page 2-80
• while on page 2-254
• Using expressions on page 2-4.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-63
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.28 down

This command moves the current frame pointer down the call stack towards the bottom frame.
It also displays the function name and source line number for the specified frame.

Note
 Each frame is assigned a number that increases from the bottom frame (zero) through the call
stack to the top frame that is the start of the application.

Syntax

down [offset]

Where:

offset Specifies a frame offset from the current frame pointer in the call stack. If no
offset is specified then the default is one.

Example

Example 2-30 down

down # Move and display information 1 frame down from current frame pointer
down 2 # Move and display information 2 frames down from current frame pointer

See also
• down-silently on page 2-65
• finish on page 2-73
• frame on page 2-75
• info frame on page 2-91
• info all-registers on page 2-83
• info registers on page 2-102
• info stack, backtrace, where on page 2-107
• select-frame on page 2-157
• up on page 2-247
• up-silently on page 2-248.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-64
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.29 down-silently

This command moves the current frame pointer down the call stack towards the bottom frame.

Note
 Each frame is assigned a number that increases from the bottom frame (zero) through the call
stack to the top frame that is the start of the application.

Syntax

down-silently [offset]

Where:

offset Specifies a frame offset from the current frame pointer in the call stack. If no
offset is specified then the default is one.

Example

Example 2-31 down-silently

down-silently # Move 1 frame down from current frame pointer
down-silently 2 # Move 2 frames down from current frame pointer

See also
• down on page 2-64
• finish on page 2-73
• frame on page 2-75
• info frame on page 2-91
• info all-registers on page 2-83
• info registers on page 2-102
• info stack, backtrace, where on page 2-107
• select-frame on page 2-157
• up on page 2-247
• up-silently on page 2-248.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-65
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.30 dump

This command reads data from memory or the result of an expression and writes it to a file.

Syntax

dump [format] memory filename start_address {end_address|+size}

dump [format] value filename expression

Where:

format Specifies the output format:
binary Binary. This is the default.
elf 32-bit ARM ELF.
elf64 64-bit ARM ELF.
ihex Intel Hex-32.
srec Motorola 32-bit (S-records).
vhx Byte oriented hexadecimal (Verilog Memory

Model).

filename Specifies the file.

start_address Specifies the start address for the memory.

end_address Specifies the inclusive end address for the memory.

size Specifies the size of the region.

expression Specifies an expression that is evaluated to an address and the data from
that address is written to the file.

Example

Example 2-32 dump

dump memory myFile.bin 0x8000 0x8FFF # Write content of memory 0x8000-0x8FFF
to binary file myFile.bin

dump srec value myFile.m32 &myArray # Write contents of myArray to
Motorola 32-bit file myFile.m32

See also
• Using expressions on page 2-4
• append on page 2-36
• restore on page 2-147.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-66
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.31 echo

This command displays textual strings only.

Backslashes can be used as follows:
• C escape sequences, for example, "\n" can be used to print a new line
• Leading and trailing spaces are not displayed unless escaped with a backslash
• Quoted strings are printed literally including the quote marks.

Syntax

echo string

Where:

string Specifies a string of characters.

Example

Example 2-33 echo

echo " initializing..." # Display: " initializing..." (includes quotes)
echo Stage 1\n # Display: Stage 1 (followed by a new line)
echo \ Init # Display: Init (includes leading spaces)
echo 4+4 # Display: 4+4

See also
• output on page 2-138
• print, inspect on page 2-141
• printf() style format string on page 2-9.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-67
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.32 enable breakpoints

This command enables one or more breakpoints or watchpoints.

Syntax

enable [breakpoints] number…

Where:

number Specifies the breakpoint or watchpoint number. This is the number assigned by
the debugger when it is set. You can use info breakpoints to display the number
and status of all breakpoints and watchpoints.

Note
 Multiple-statements on a single line of source code are assigned sub-numbers, for

example n.n. You can specify all multiple-statement breakpoints by specifying
n.0 or individually by specifying n.n.

If no number is specified then all breakpoints and watchpoints are enabled.

Note
 The breakpoints sub-command is optional.

Example

Example 2-34 enable

enable breakpoints 1 # Enable breakpoint number 1
enable breakpoints 1 2 # Enable breakpoints number 1 and 2
enable breakpoints # Enable all breakpoints and watchpoints
enable breakpoints $ # Enable the breakpoint whose number is in the

most recently created debugger variable

See also
• break on page 2-40
• break-script on page 2-42
• break-stop-on-threads, break-stop-on-cores on page 2-45
• break-stop-on-vmid on page 2-46
• clear on page 2-50
• condition on page 2-52
• delete breakpoints on page 2-56
• disable breakpoints on page 2-59
• hbreak on page 2-77
• info breakpoints, info watchpoints on page 2-84
• info breakpoints capabilities, info watchpoints capabilities on page 2-85
• tbreak on page 2-229
• thbreak on page 2-231.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-68
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.33 enable memory

This command enables one or more user-defined memory regions.

Syntax

enable memory number…

Where:

number Specifies the region number. This is the number assigned by the debugger when
the region is set. You can use info mem to display the number and status of all
regions.

Example

Example 2-35 enable memory

enable memory 1 # Enable region number 1
enable memory 1 2 # Enable regions number 1 and 2
enable memory $ # Enable memory region whose number is in

the most recently created debugger variable

See also
• delete memory on page 2-57
• disable memory on page 2-60
• info memory on page 2-97
• memory on page 2-121.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-69
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.34 end

This command enables you to terminate conditional blocks when using the define, if, and while
commands.

Example

Example 2-36 end

Define a while loop containing commands to conditionally execute
myVar is a variable in the application code
while myVar<10

step
wait
x
set myVar++

end

See also
• define on page 2-55
• document on page 2-63
• if on page 2-80
• while on page 2-254
• Using expressions on page 2-4.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-70
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.35 exit

exit is an alias for quit.

See quit, exit on page 2-143.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-71
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.36 file, symbol-file

This command loads debug information from an image into the debugger and records the entry
point address for future use by the run and start commands. Subsequent use of the file
command discards existing information before loading the new debug information. The debug
information is loaded when required by the debugger.

If you want to append debug information instead of replacing it, you can use the
add-symbol-file command.

Note
 The PC register is not set with this command.

Syntax

file [filename] [offset] [-option]

symbol-file [filename] [offset] [-option]

Where:

filename Specifies the image. If no filename is specified then the current debug information
is discarded.

offset Specifies the offset that is added to all addresses within the image. If offset is not
specified then the default for:
• An image is zero.
• A shared library is the load address of the library. If the application has not

currently loaded the specified library then the request is pended until the
library is loaded and the offset can be determined.

Example

Example 2-37 file, symbol-file

file "myFile.axf" # Load debug information on demand
file "images\myFile.axf" # Load debug information on demand
file # Discard all current debug information

See also
• add-symbol-file on page 2-34
• cd on page 2-49
• discard-symbol-file on page 2-62
• load on page 2-117
• info files, info target on page 2-89
• loadfile on page 2-118
• reload-symbol-file on page 2-144
• run on page 2-154
• start on page 2-222.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-72
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.37 finish

This command continues running the target to the next instruction after the selected number of
stack frames finish.

Syntax

finish [n]

Where:

n Specifies the number of stack frames to finish executing. The default is one.

Example

Example 2-38 finish

finish # Continues running until the current stack frame finishes
finish 5 # Continues running until 5 stack frames finish

See also
• reverse-step-out on page 2-153
• down on page 2-64
• down-silently on page 2-65
• frame on page 2-75
• next on page 2-134
• nexts on page 2-136
• step on page 2-224
• steps on page 2-226
• select-frame on page 2-157
• up on page 2-247
• up-silently on page 2-248.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-73
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.38 flash load

This command loads sections from an image into one or more flash devices.

Syntax

flash load filename [device[:parameter=value]…]…

Where:

filename Specifies the image.

device Specifies the flash device name. Use this option to restrict the load to the specified
device only.

parameter Specifies a parameter or comma separated list of parameters to override.

If no device is specified then all devices can be loaded. This is dependent on the sections in the
image that correspond to the flash device regions.

You can use info flash to display information about the flash devices on the current target.

Example

Example 2-39 flash load

flash load "foo.axf" # loads the file to flash
flash load "foo.axf" MainFlash:ramAddress=0x20000100,ramSize=0xFF00

Loads the file to a flash device and overrides the parameters

See also
• info flash on page 2-90
• load on page 2-117
• loadfile on page 2-118.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-74
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.39 frame

This command sets the current frame pointer in the call stack and also displays the function
name and source line number for the specified frame.

Note
 Each frame is assigned a number that increases from the bottom frame (zero) through the call
stack to the top frame that is the start of the application.

Syntax

frame [number]

Where:

number Specifies the frame number. The default is the current frame.

Example

Example 2-40 frame

frame 1 # Move to and display information for stack frame 1
frame # Display stack frame information at current frame pointer

See also
• down on page 2-64
• down-silently on page 2-65
• finish on page 2-73
• info frame on page 2-91
• info all-registers on page 2-83
• info registers on page 2-102
• info stack, backtrace, where on page 2-107
• select-frame on page 2-157
• up on page 2-247
• up-silently on page 2-248.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-75
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.40 handle

This command controls the handler settings for one or more signals or processor exceptions.
The default handler settings are dependant on the type of debug activity.

For example, on a Linux kernel connection, by default, all signals are handled by Linux on the
target. You can use info signals to display the current settings.

When connected to an application running on a remote target using gdbserver, the debugger
handles Unix signals, but on bare-metal, it handles processor exceptions.

Syntax

handle [name]… keyword…

Where:

name Specifies the signal or processor exception name.

keyword Specifies the following keywords:
print Enables the print property. The debugger prints a message

and continues execution when the event occurs.
noprint Disables the print property so the occurrence of an event is

not indicated at all. Using the noprint keyword implies the
properties of the nostop keyword as well.

stop Enables the stop property. The debugger stops execution
and prints a message when the event occurs. Using the stop
keyword implies the properties of the print keyword as
well.

nostop Disables the stop property so the occurrence of an event
does not stop execution.

If no name is specified then all handler settings are modified.

Example

Example 2-41 handle

handle SVC stop # When an SVC exception occurs, stop execution and print a message.
handle IRQ print # When an IRQ exception occurs, print a message, but continue
execution.
handle IRQ noprint # When an IRQ exception occurs, do not print a message.
handle noprint nostop # Ignore all events and do not print a message.

See also
• info signals, info handle on page 2-105.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-76
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.41 hbreak

This command sets a hardware execution breakpoint at a specific location. You can also specify
a conditional breakpoint by using an if statement that stops only when the conditional
expression evaluates to true.

This command records the ID of the breakpoint in a new debugger variable, $n, where n is a
number. You can use this variable, in a script, to delete or modify the breakpoint behavior. If $n
is the last or second-to-last debugger variable, then you can also access the ID using $ or $$,
respectively.

Note
 The number of hardware breakpoints are usually limited. If you run out of hardware breakpoints
then delete or disable one that you are no longer using.

Breakpoints that are set within a shared object or kernel module become pending when the
shared object or kernel module is unloaded.

Syntax

hbreak [-d] [-p] [[filename:]location|*address] [thread|core number…] [vmid vmid] [if
expression]

Where:

d Disables the breakpoint immediately after creation.

p Specifies whether or not the resolution of an unrecognized breakpoint
location results in a pending breakpoint being created.

filename Specifies the file.

location Specifies the location:
line_num is a line number.
function is a function name.
label is a label name.
+offset|-offset Specifies the line offset from the current location.

address Specifies the address. This can be either an address or an expression that
evaluates to an address.

number Specifies one or more threads or processors to apply the breakpoint to. You
can use $thread to refer to the current thread. If number is not specified then
all threads are affected.

vmid Specifies the Virtual Machine ID (VMID) to apply the breakpoint to. This
can be either an integer or an expression that evaluates to an integer.

expression Specifies an expression that is evaluated when the breakpoint is hit.

If no arguments are specified then a hardware breakpoint is set at the current PC.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-77
ID070914 Non-Confidential

DS-5 Debugger Commands
Example

Example 2-42 hbreak

hbreak *0x8000 # Set breakpoint at address 0x8000
hbreak *0x8000 thread $thread # Set breakpoint at address 0x8000 on current thread
hbreak *0x8000 thread 1 3 # Set breakpoint at address 0x8000 on threads 1 and 3
hbreak main # Set breakpoint at address of main()
hbreak SVC_Handler # Set breakpoint at address of label SVC_Handler
hbreak +1 # Set breakpoint at address of next source line
hbreak my_File.c:main # Set breakpoint at address of main() in my_File.c
hbreak my_File.c:8 # Set breakpoint at address of line 8 in my_File.c
hbreak function1 if x>0 # Set conditional breakpoint that stops when x>0

See also
• Using expressions on page 2-4
• break on page 2-40
• break-script on page 2-42
• break-stop-on-threads, break-stop-on-cores on page 2-45
• break-stop-on-vmid on page 2-46
• clear on page 2-50
• condition on page 2-52
• delete breakpoints on page 2-56
• disable breakpoints on page 2-59
• enable breakpoints on page 2-68
• ignore on page 2-81
• info breakpoints, info watchpoints on page 2-84
• info breakpoints capabilities, info watchpoints capabilities on page 2-85
• resolve on page 2-146
• tbreak on page 2-229
• thbreak on page 2-231.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-78
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.42 help

This command displays help information for a specific command or a group of commands listed
according to specific debugging tasks.

Syntax

help [command|group]

Where:

command Specifies an individual command.

group Specifies a group name for specific debugging tasks:
group_all Displays all the commands by group.
group_cache Displays the cache commands.
group_breakpoints Displays the breakpoint and watchpoint commands.
group_data Displays the commands that displays source data.
group_display Displays the output and print settings commands.
group_files Displays the commands that interact with files.
group_info Displays the program information commands.
group_log Displays the message logging commands.
group_flash Displays the flash commands.
group_memory Displays the commands that interact with memory.
group_os Displays the operating system commands.
group_registers Displays the register commands.
group_running Displays the target execution and stepping group.
group_show Displays the show commands for debugger settings.
group_set Displays the set commands for debugger settings.
group_scripts Displays the commands for use in script files.
group_stack Displays the call stack commands.
group_support Displays the supporting commands.

Example

Example 2-43 help

help load # Display help information for load command
help print # Display help information for print command
help group_breakpoints # Display group of breakpoint and watchpoint commands
help group_files # Display group of file commands
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-79
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.43 if

This command enables you to write scripts that conditionally execute debugger commands.

Syntax

if condition
...

else
...

end

Where:

condition Specifies a conditional expression. Follow the if statement with one or more
debugger commands that execute when the expression evaluates to true.

Note
 The else statement is optional and the debugger commands that follow it only

execute when condition evaluates to false.

Enter each debugger command on a new line and terminate the if command by using the end
command.

Example

Example 2-44 if

Define an if statement containing commands to conditionally execute
if $pc==0x80000

break
info stack full

end

See also
• define on page 2-55
• document on page 2-63
• end on page 2-70
• while on page 2-254
• Using expressions on page 2-4.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-80
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.44 ignore

This command sets the ignore counter for a breakpoint or watchpoint condition.

Syntax

ignore number count

Where:

number Specifies the breakpoint or watchpoint number. This is the number assigned by
the debugger when it is set.

count Specifies the number of times to ignore the specified breakpoint or watchpoint.
The ignore counter is incremented only when the condition evaluates to true.

You can use info breakpoints to display the number and status of all breakpoints and
watchpoints.

Example

Example 2-45 ignore

ignore 2 3 # Ignore breakpoint 2 for 3 hits
ignore $ 3 # Ignore breakpoint, whose number is in the

most recently created debugger variable, for 3 hits

See also
• break on page 2-40
• break-script on page 2-42
• break-stop-on-threads, break-stop-on-cores on page 2-45
• break-stop-on-vmid on page 2-46
• clear on page 2-50
• condition on page 2-52
• delete breakpoints on page 2-56
• disable breakpoints on page 2-59
• enable breakpoints on page 2-68
• hbreak on page 2-77
• info breakpoints, info watchpoints on page 2-84
• info breakpoints capabilities, info watchpoints capabilities on page 2-85
• tbreak on page 2-229.
• thbreak on page 2-231.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-81
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.45 info address

This command displays the location of a symbol.

Syntax

info address symbol

Where:

symbol Specifies the symbol.

Example

Example 2-46 info address

info address mySymbol # Display location of symbol
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-82
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.46 info all-registers

This command displays the name and content of registers for the current stack frame.

Unless you specify otherwise, the registers listed by this command are the full set made
available by the target, including co-processor and floating-point registers where available. You
can use the info registers command to display a subset of registers that are most useful when
debugging C/C++ applications.

When application code calls a function it is common for any existing register values to be saved,
so that the registers can be used by the calling function for other purposes. The original register
values are then restored when the function returns. When displaying register values the
debugger tries to show the value of the actual registers prior to each function call, according to
the currently selected stack frame. A consequence of this is that some registers might be shown
with undefined values because the debugger is unable to determine the actual value.

Syntax

info all-registers [group]

Where:

group Specifies a group name for a specific registers. If no group is specified then all
registers and groups are displayed.

Example

Example 2-47 info all-registers

info all-registers # Display info for all registers
info all-registers USR # Display info for all user mode registers

See also
• down on page 2-64
• down-silently on page 2-65
• frame on page 2-75
• info registers on page 2-102
• select-frame on page 2-157
• up on page 2-247
• up-silently on page 2-248.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-83
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.47 info breakpoints, info watchpoints

This command displays information about the status of all breakpoints and watchpoints.

Note
 This command sets a default address variable to the location of the last breakpoint or watchpoint
listed. Some commands, such as x, use this default value if no address is specified.

Syntax

info breakpoints

info watchpoints

Example

Example 2-48 info breakpoints, info watchpoints

info breakpoints # Display status for all breakpoints and watchpoints

See also
• awatch on page 2-37
• break on page 2-40
• break-script on page 2-42
• break-stop-on-threads, break-stop-on-cores on page 2-45
• break-stop-on-vmid on page 2-46
• clear on page 2-50
• clearwatch on page 2-51
• condition on page 2-52
• delete breakpoints on page 2-56
• disable breakpoints on page 2-59
• enable breakpoints on page 2-68
• hbreak on page 2-77
• ignore on page 2-81
• info breakpoints capabilities, info watchpoints capabilities on page 2-85
• rwatch on page 2-155
• tbreak on page 2-229
• thbreak on page 2-231
• watch on page 2-250
• x on page 2-255.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-84
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.48 info breakpoints capabilities, info watchpoints capabilities

This command displays a list of parameters that you can use with breakpoint and watchpoint
commands for the current connection.

Syntax

info breakpoints capabilities

info watchpoints capabilities

Example

Example 2-49 info breakpoints capabilities, info watchpoints capabilities

info breakpoints capabilities # Display list of parameters for current connection

See also
• awatch on page 2-37
• break on page 2-40
• break-script on page 2-42
• break-stop-on-threads, break-stop-on-cores on page 2-45
• break-stop-on-vmid on page 2-46
• clear on page 2-50
• clearwatch on page 2-51
• condition on page 2-52
• delete breakpoints on page 2-56
• disable breakpoints on page 2-59
• enable breakpoints on page 2-68
• hbreak on page 2-77
• ignore on page 2-81
• info breakpoints, info watchpoints on page 2-84
• rwatch on page 2-155
• tbreak on page 2-229
• thbreak on page 2-231
• watch on page 2-250
• x on page 2-255.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-85
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.49 info capabilities

This command displays a list of capabilities for the target device that is currently connected to
the debugger. For more information, see the documentation for your target.

Syntax

info capabilities

Example

Example 2-50 info capabilities

info capabilities # Display target device capabilities

See also
• reset on page 2-145.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-86
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.50 info classes

This command displays C++ class names.

Syntax

info classes [expression]

Where:

expression Specifies a class name or a wildcard expression. You can use wildcard
expressions to enhance your pattern matching.
If no expression is specified then all classes are displayed.

Example

Example 2-51 info classes

info classes # Display info for all classes
info classes m* # Display info for names starting with m

(use when set wildcard-style=glob)
info classes my_class[0-9]+ # Display info for names with my_class followed

by a number (use when set wildcard-style=regex)

See also
• Using wildcards on page 2-5
• set wildcard-style on page 2-188.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-87
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.51 info cores

This command displays a list of processors. It shows the number (a unique number assigned by
the debugger), name, current state, and related stack frame including the function names and
source line number.

Syntax

info cores

Example

Example 2-52 info cores

info cores # Display all processors

See also
• break on page 2-40
• break-script on page 2-42
• break-stop-on-threads, break-stop-on-cores on page 2-45
• thread, core on page 2-233.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-88
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.52 info files, info target

This command displays information about the loaded image and symbols.

Syntax

info files

info target

Example

Example 2-53 info files, info target

info files # Display information for loaded image and symbols

See also
• add-symbol-file on page 2-34
• discard-symbol-file on page 2-62
• file, symbol-file on page 2-72
• load on page 2-117
• loadfile on page 2-118
• reload-symbol-file on page 2-144.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-89
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.53 info flash

This command displays information about the flash devices on the current target.

Syntax

info flash

Example

Example 2-54 info flash

info flash # Display information about the current flash devices.

See also
• flash load on page 2-74.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-90
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.54 info frame

This command gives the following information about the selected frame:
• stack frame address
• current PC address
• saved PC address
• calling frame address
• source language
• frame arguments and associated addresses
• address of the local variables
• stack pointer address for the previous frame
• saved registers and associated location.

Note
 Each frame is assigned a number that increases from the bottom frame (zero) through the call
stack to the top frame that is the start of the application.

Syntax

info frame [number]

Where:

number Specifies the frame number.

If no arguments are specified then the stack frame information for the current frame pointer is
displayed.

Example

Example 2-55 info frame

info frame 1 # Display information for stack frame 1
info frame # Display information for stack frame at current location

See also
• down on page 2-64
• down-silently on page 2-65
• frame on page 2-75
• info stack, backtrace, where on page 2-107
• select-frame on page 2-157
• up on page 2-247
• up-silently on page 2-248.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-91
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.55 info functions

This command displays the name and data types for all functions.

Syntax

info functions [expression]

Where:

expression Specifies a function name or a wildcard expression. You can use wildcard
expressions to enhance your pattern matching
If no expression is specified then all functions are displayed.

Example

Example 2-56 info functions

info functions # Display info for all functions
info functions m* # Display info for names starting with m

(use when set wildcard-style=glob)
info functions my_func[0-9]+ # Display info for names with my_func followed

by a number (use when set wildcard-style=regex)

See also
• Using wildcards on page 2-5
• set wildcard-style on page 2-188.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-92
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.56 info handle

info handle is an alias for info signals.

See info signals, info handle on page 2-105.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-93
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.57 info inst-sets

This command displays the available instruction sets.

Syntax

info inst-sets

Example

Example 2-57 info inst-sets

info inst-sets # Display available instruction sets

See also
• set arm on page 2-159
• show arm on page 2-193.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-94
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.58 info locals

This command displays all local variables that are accessible in the function corresponding to
the current stack frame.

Syntax

info locals

Example

Example 2-58 info locals

info locals # Display all local variables for the current stack frame
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-95
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.59 info members

This command displays the name and data types for all class member variables that are
accessible in the function corresponding to the selected stack frame.

Syntax

info members [expression]

Where:

expression Specifies the name of a class member or a C expression that evaluates to a struct,
union or class variable. If no expression is specified then all members of the
current function identified by this pointer are displayed.

Note
 Using high compiler optimization levels such as -O2 with --debug can produce a

less than satisfactory debug view because the mapping of object code to source
code is not always clear. If the compiler optimizes away the this pointer then
using the info members command without an expression produces an error.

Example

Example 2-59 info members

info members # Display members for the current function
info members my_Struct[0-9]+ # Display members for matching struct variables

See also

• Using expressions on page 2-4.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-96
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.60 info memory

This command displays the attributes for all memory regions.

Syntax

info memory

Example

Example 2-60 info memory

info memory # Display attributes for all memory regions

See also
• delete memory on page 2-57
• disable memory on page 2-60
• enable memory on page 2-69
• memory on page 2-121
• memory debug-cache on page 2-124.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-97
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.61 info os-log

This command displays the contents of the Operating System (OS) log buffer for connections
that support this feature. On Linux this is the contents of the kernel dmesg log.

Note
 A Linux kernel connection must be established and the target is stopped before you can use this
command.

Syntax

info os-log

Example

Example 2-61 info os-log

info os-log # Displays the OS log buffer

See also
• info os-modules on page 2-99
• info os-version on page 2-100
• info processes on page 2-101
• set os on page 2-174
• show os on page 2-207.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-98
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.62 info os-modules

This command displays a list of loadable kernel modules for connections that support this
feature.

Note
 A connection must be established and operating system support must be enabled within the
debugger before a loadable module can be detected. You can use the set os command to control
operating system support in the debugger.

Syntax

info os-modules [-s]

Where:

s Displays the section information of the modules.

Example

Example 2-62 info os-modules

info os-modules # Displays info for loaded OS modules

See also
• info os-log on page 2-98
• info os-version on page 2-100
• info processes on page 2-101
• set os on page 2-174
• show os on page 2-207.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-99
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.63 info os-version

This command displays the version of the Operating System (OS) for connections that support
this feature.

Syntax

info os-version

Example

Example 2-63 info os-version

info os-version # Displays the version of the OS

See also
• info os-log on page 2-98
• info os-modules on page 2-99
• info processes on page 2-101
• set os on page 2-174
• show os on page 2-207.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-100
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.64 info processes

This command displays a list of all user space processes. It shows the number (a unique number
assigned by the debugger), OS ID (pid), OS Parent ID, kind, OS state, current state, and related
stack frame including the function names and source line number.

Syntax

info processes

Example

Example 2-64 info processes

info processes # Display all user space processes

See also
• info os-log on page 2-98
• info os-modules on page 2-99
• info os-version on page 2-100
• info threads on page 2-110
• set os on page 2-174
• show os on page 2-207
• thread, core on page 2-233.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-101
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.65 info registers

This command displays the name and content of registers for the current stack frame. The
registers listed by this command are a subset that are most useful when debugging C/C++
applications. You can use the info all-registers command to list the full set of registers.

When application code calls a function it is common for any existing register values to be saved,
so that the registers can be used by the calling function for other purposes. The original register
values are then restored when the function returns. When displaying register values the
debugger tries to show the value of the actual registers prior to each function call, according to
the currently selected stack frame. A consequence of this is that some registers might be shown
with undefined values because the debugger is unable to determine the actual value.

Syntax

info registers [register]

Where:

register Specifies the register name. If no register is specified then all application level
registers are displayed.

Example

Example 2-65 info registers

info registers # Display info for all application level registers
info registers pc # Display info for PC register

See also
• down on page 2-64
• down-silently on page 2-65
• frame on page 2-75
• info all-registers on page 2-83
• select-frame on page 2-157
• up on page 2-247
• up-silently on page 2-248.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-102
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.66 info semihosting

This command displays semihosting information.

Syntax

info semihosting [server|clients|all]

Where:

all Displays information on the semihosting server listener port, a list of the
connected clients, and the heap and stack. This is the default.

server Displays information on the semihosting server listener port.

clients Displays information on each of the semihosting streams stdin, stdout, stderr.
This includes a list of the connected clients.

heap Displays the heap information that the debugger used to initialize the heap.

Note
 This information is only displayed if the debugger performs the initialization.

stack Displays the stack information that the debugger used to initialize the stack.

Note
 This information is only displayed if the debugger performs the initialization.

Example

Example 2-66 info semihosting

info semihosting # Displays all semihosting information
info semihosting clients # Display clients info for semihosting streams
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-103
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.67 info sharedlibrary

This command displays the names of the loaded shared libraries, the base address, and whether
the debug symbols of the shared libraries are loaded or not.

Note
 You must launch the debugger with --target_os command-line option before you can use this
feature. In Eclipse this option is automatically selected when you connect to a target using
gdbserver.

Syntax

info sharedlibrary [/order] [/sort_by] [/group]

Where:

order Specifies the sorting order:
a Ascending order. This is the default.
d Descending order.

sort_by Specifies the sorting order of the shared objects:
b Sort by base addresses. This is the default.
n Sort by library names.

group Specifies whether to group the debug symbols:
s Group loaded symbols followed by unloaded symbols.
sn Group unloaded symbols followed by loaded symbols.

Example

Example 2-67 info sharedlibrary

info sharedlibrary # Display shared libraries by base address, asc
info sharedlibrary /n # Display shared libraries by library name, asc
info sharedlibrary /d # Display shared libraries by base address, desc
info sharedlibrary /n /a /s # Display shared libraries grouped loaded->unloaded

and by library name, asc

See also
• nosharedlibrary on page 2-137
• sharedlibrary on page 2-189.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-104
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.68 info signals, info handle

This command displays information about the handling of signals or processor exceptions.

When connected to an application running on a remote target using gdbserver, the debugger
handles Unix signals but on bare-metal it handles processor exceptions.

Syntax

info signals [name]

info handle [name]

Where:

name Specifies the signal name. If no name is specified then all handler settings
are displayed.

Example

Example 2-68 info signals, info handle

info signals # Display info for all signals
info signals IRQ # Display info for IRQ signal

See also
• handle on page 2-76.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-105
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.69 info sources

This command displays the names of the source files used in the current image being debugged.
Where possible the names are resolved to the location on the host system.

Syntax

info sources

Example

Example 2-69 info sources

info sources # Display the names of source files

See also
• add-symbol-file on page 2-34
• file, symbol-file on page 2-72
• load on page 2-117
• loadfile on page 2-118.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-106
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.70 info stack, backtrace, where

This command displays a numbered list of the calling stack frames including the function names
and source line numbers. You can use set backtrace to control the default call stack display
settings.

Note
 Each frame is assigned a number that increases from the bottom frame (zero) through the call
stack to the top frame that is the start of the application.

Syntax

info stack [n|-n] [full]

backtrace [n|-n] [full]

where [n|-n] [full]

Where:

n Specifies n frames from the bottom of the call stack.

-n Specifies n frames from the top of the call stack.

full Specifies the additional display of local variables.

Example

Example 2-70 info stack, backtrace, where

info stack # Display call stack
backtrace -5 # Display top 5 frames of the call stack
backtrace full # Display call stack including local variables
where # Display call stack

See also
• down on page 2-64
• down-silently on page 2-65
• frame on page 2-75
• info frame on page 2-91
• select-frame on page 2-157
• set backtrace on page 2-162
• show backtrace on page 2-195
• thread, core on page 2-233
• up on page 2-247
• up-silently on page 2-248.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-107
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.71 info symbol

This command displays the symbol name at a specific address.

Syntax

info symbol address

Where:

address Specifies the address.

Example

Example 2-71 info symbol

info symbol 0x8000 # Display symbol name at address 0x8000
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-108
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.72 info target

info target is an alias for info files.

See info files, info target on page 2-89.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-109
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.73 info threads

This command displays a list of all threads. It shows the number (a unique number assigned by
the debugger), OS ID (pid), OS Parent ID, kind, OS state, current state, and related stack frame
including the function names and source line number.

Note
 When kernel debugging this command displays kernel threads only. For user space processes
you can use the info processes command.

Syntax

info threads

Example

Example 2-72 info threads

info threads # Display all threads

See also
• break on page 2-40
• break-script on page 2-42
• break-stop-on-threads, break-stop-on-cores on page 2-45
• info processes on page 2-101
• thread, core on page 2-233.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-110
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.74 info variables

This command displays the name and data types of global and static variables.

Syntax

info variables [expression]

Where:

expression Specifies a symbol name or a wildcard expression. You can use wildcard
expressions to enhance your pattern matching.
If no expression is specified then all global and static variables are
displayed.

Example

Example 2-73 info variables

info variables # Display info for all variables
info variables num # Display info for num variable
info variables m* # Display info for names starting with m

(use when set wildcard-style=glob)
info variables my_var[0-9]+ # Display info for names with my_var followed

by a number (use when set wildcard-style=regex)

See also
• Using wildcards on page 2-5
• set wildcard-style on page 2-188
• set variable on page 2-187.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-111
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.75 info watchpoints

info watchpoints is an alias for info breakpoints.

See info breakpoints, info watchpoints on page 2-84.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-112
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.76 inspect

inspect is an alias for print.

See print, inspect on page 2-141.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-113
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.77 interrupt, stop

This command interrupts the target and stops the current application if it is running.

Syntax

interrupt

stop

Example

Example 2-74 interrupt

interrupt # interrupt current application

See also
• continue on page 2-53
• run on page 2-154
• start on page 2-222.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-114
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.78 list

This command displays lines of source code surrounding the current or specified location. The
default listing is 10 lines of source code unless you specify start and finish line numbers. You
can use the set listsize command to modify the default settings.

Repeated commands display successive source lines in the same direction through the source
file.

Syntax

list [[filename:]location|+|-|+offset|-offset]|[*address]

Where:

filename Specifies the file.

location Specifies the location:
line_num is a line number
first,last are start and finish line numbers
function is a function.

+ Displays the source lines after the current location.

- Displays the source lines before the current location.

offset Specifies the line offset from the current location.

address Specifies the address. This can be either an address or an expression that
evaluates to an address.

Default

The default directories for searching are:
• compilation directory, $cdir
• current working directory, $cwd
• current image directory, $idir.

You can use the directory command to define additional search directories.

Example

Example 2-75 list

list main # Set current location to main() and display source
list +3 # Increment current location then display source
list - # Decrement current location then display source
list *0x8120 # Set current location to address 0x8120 and display source
list 35 # Set current location to line 35 and display source
list dhry_1.c:10,23 # Display source lines 10 to 23 in dhry_1.c
list *main # Set current location to address of main and display source

See also
• Using expressions on page 2-4
• directory on page 2-58
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-115
ID070914 Non-Confidential

DS-5 Debugger Commands
• set listsize on page 2-173
• show listsize on page 2-206.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-116
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.79 load

This command loads an image on to the target and records the entry point address for future use
by the run and start commands.

Note
 The PC register is not set with this command.

Debug information is not loaded with this command. You can use either the add-symbol-file,
file, or loadfile command to load debug information.

Syntax

load [filename] [offset]

Where:
filename Specifies the image. If no filename is specified then the executable image

specified by the previous command is loaded. You can use info files to display
information about the current image and symbols.

offset Specifies the offset that is added to all addresses within the image.

Example

Example 2-76 load

load "myFile.axf" # Load image
load "images\myFile.axf" # Load image
load myFile.axf 0x2000 # Load image with offset 0x2000

See also
• add-symbol-file on page 2-34
• cd on page 2-49
• discard-symbol-file on page 2-62
• file, symbol-file on page 2-72
• flash load on page 2-74
• info files, info target on page 2-89
• loadfile on page 2-118
• run on page 2-154
• start on page 2-222.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-117
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.80 loadfile

This command loads debug information into the debugger, an image on to the target and records
the entry point address for future use by the run and start commands. Subsequent use of the
loadfile command discards existing information before loading the new debug information.
The debug information is loaded when required by the debugger.

Note
 The PC register is not set with this command.

Syntax

loadfile [filename] [offset]

Where:
filename Specifies the image. If no filename is specified then the executable image

specified by a previous command is loaded. You can use info files to display
information about the current image and symbols.

offset Specifies the offset that is added to all addresses within the image.

Example

Example 2-77 loadfile

loadfile "myFile.axf" # Load image and debug information when required
loadfile "images\myFile.axf" # Load image and debug information when required
loadfile myFile.axf 0x2000 # Load image with offset 0x2000 and load debug

information when required

See also
• add-symbol-file on page 2-34
• cd on page 2-49
• discard-symbol-file on page 2-62
• file, symbol-file on page 2-72
• flash load on page 2-74
• info files, info target on page 2-89
• load on page 2-117
• reload-symbol-file on page 2-144
• run on page 2-154
• start on page 2-222.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-118
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.81 log config

This command specifies the type of logging configuration to output runtime messages from the
debugger.

Syntax

log config option

Where:
option Specifies a predefined logging configuration or a user-defined logging

configuration file:
info Output messages using the predefined INFO level configuration. This

is the default.
debug Output messages using the predefined DEBUG level configuration.
filename Specifies a user-defined logging configuration file to customize the

output of messages. The debugger supports log4j configuration files.

You can use this command with the log file command to output messages to a file in addition
to the console.

Example

Example 2-78 log config

log config debug # Display all debug messages

See also
• log file on page 2-120
• Log4j in Apache Logging Services, http://logging.apache.org
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-119
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.82 log file

This command outputs messages to a file in addition to the console.

Syntax

log file [filename]

Where:
filename Specifies the output file. If no filename is specified then output messages are sent

only to the console.

Example

Example 2-79 log file

log file myOutput.log # Output debugger messages to myOutput.log and console

See also
• cd on page 2-49
• log config on page 2-119.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-120
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.83 memory

This command defines a memory region. It records the ID of the memory region in a new
debugger variable, $n, where n is a number. You can use this variable, in a script, to delete or
modify the status of the memory region. If $n is the last or second-to-last debugger variable, then
you can also access the ID using $ or $$, respectively.

Syntax

memory start_address {end_address|+size} [attributes]…

Where:

start_address Specifies the start address for the region.

end_address Specifies the inclusive end address for the region. You can use 0x0 as a
shortcut to represent the end of the address space.

size Specifies the size of the region.

attributes Specifies additional attributes:
access_mode Specifies the access mode for the region:

na no access
ro read-only
wo write-only
rw read/write. This is the default.

width Specifies the access width:
8 8-bit
16 16-bit
32 32-bit
64 64-bit.
It is only necessary to specify a specific access width
where the memory region is sensitive to this, for
example, when accessing some peripherals.
If no width is specified then the debugger uses any
available access width and generally provides the
highest performance.

bp|nobp Controls whether or not software breakpoints can be
set in the region. bp is the default.

hbp|nohbp Controls whether or not hardware breakpoints can be
set in the region. hbp is the default.

cache|nocache Controls whether the debugger can cache data read
from the memory region. Enabling the caching of
memory can improve debugger performance.
Memory regions that can be modified by external
sources should not be cached by the debugger. For
example volatile peripherals.
nocache is the default.

verify|noverify Controls whether or not a write operation must
verify the value written by reading the value back
and comparing it to the value written. The verify
option also requires the rw attribute to be specified so
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-121
ID070914 Non-Confidential

DS-5 Debugger Commands
that the verify operation to be performed. ARM
recommends that you mark areas of memory
containing peripherals as noverify, because some
peripheral registers are volatile such that reading
their value changes their contents as a side-effect.
verify is the default.

Example

Example 2-80 memory

memory 0x1000 0x2FFF cache # specify RW region 0x1000-0x2FFF (cache)
memory 0x3000 0x7FFF ro 8 # specify 8-bit RO region 0x3000-0x7FFF (nocache)
memory 0x8000 0x0 # specify RW region 0x8000-0xFFFF (nocache)

See also
• delete memory on page 2-57
• disable memory on page 2-60
• enable memory on page 2-69
• info memory on page 2-97
• memory auto on page 2-123
• memory debug-cache on page 2-124.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-122
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.84 memory auto

This command resets the memory regions to the default target settings and discards all
user-defined regions.

Syntax

memory auto

Example

Example 2-81 memory auto

memory auto # reset default memory regions

See also
• delete memory on page 2-57
• disable memory on page 2-60
• enable memory on page 2-69
• info memory on page 2-97
• memory on page 2-121.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-123
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.85 memory debug-cache

This command globally controls the caching of memory regions by the debugger. You can use
info mem to display the caching attributes.

Syntax

memory debug-cache option

Where:

option Specifies additional options:
off Globally disables debugger caching of memory regions. All

memory accesses are performed directly on the target.
on Globally enables debugger caching of memory regions. When

caching is globally enabled the debugger might cache the
results of read operations from memory regions that allow
caching. This is the default.

invalidate

Invalidates all the caches, so that the next subsequent read from
memory is performed on the target and not the cache.

Example

Example 2-82 memory debug-cache

memory debug-cache off # Disable caching
memory debug-cache invalidate # Invalidates all caches

See also
• info memory on page 2-97
• memory on page 2-121.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-124
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.86 memory fill

This command writes a specific pattern of bytes to memory.

Syntax

memory fill start_address {end_address|+offset} fill_size pattern

Where:

start_address Specifies the start address for the region. This can be either an address or
an expression that evaluates to an address.

end_address Specifies the inclusive end address for the region. This can be either an
address or an expression that evaluates to an address.

offset Specifies the length of the region in bytes.

fill_size Specifies the size of the fill pattern in bytes.

pattern Specifies an expression that defines the fill pattern. If the pattern does not
fit exactly into the specified region, then the remaining bytes are filled
with partial bytes from the pattern.

Example

Example 2-83 memory fill

memory fill 0x0 0xFFFFFFFF 4 0x12345678 # Fill 0x0 to 0xFFFFFFFF inclusive with int
value 0x12345678 using default access width

memory fill main (main+15) 1 (char)0x0 # Fill 16 bytes from symbol main with byte
value 0x0

See also
• info memory on page 2-97
• memory set on page 2-126
• memory set_typed on page 2-128.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-125
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.87 memory set

This command writes to memory.

Syntax

memory set address width expression

Where:

address Specifies an address at which to write the first value. The address must be
correctly aligned for the type of the specified expression.
You can also qualify addresses with a flag to define whether the operation
should perform a verify action or not.
For example:
memory set EL1N<verify=0>:0x8000 32 0x1234

If there is only one (anonymous) address space, then use:
memory set <verify=0>:0x8000 32 0x1234

width Specifies the access width (bits) to use when writing to memory. If the
width is narrower than the value being written then more than one access
is used to write the value. For example:
0 enables the debugger to determine the access width
8 8-bit
16 16-bit
32 32-bit
64 64-bit.
Widths are dependent on the target, address region and address alignment.
Some access sizes might not be supported.

expression Specifies either a single expression or an aggregate of expressions with the
same size enclosed in curly braces. If there is more than one expression,
then the values are written to memory sequentially with the addresses
determined by the width of the type of the values.

Note
 This command sets a default address variable to the value of the memory address. Some
commands, such as x, use this default value if no address is specified.

Example

Example 2-84 memory set

memory set 0x8000 0 "Hello" # Writes a string to memory
memory set 0x1000 0 {(char)0x10,(char)0xFF,(char)1,(char)2,(char)3,(char)42}

Is equivalent to the following commands:
set variable *(char*)0x1000 = (char)0x10
set variable *(char*)0x1001 = (char)0xFF
set variable *(char*)0x1002 = (char)1
set variable *(char*)0x1003 = (char)2
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-126
ID070914 Non-Confidential

DS-5 Debugger Commands
set variable *(char*)0x1004 = (char)3
memory set 0x1008 0 0x1234 # Equivalent to set variable *(int*)0x1008 = 0x1234
memory set 0x1008 8 0x1234 # Same effect but forces use of 4 writes of one byte each

See also
• info memory on page 2-97
• memory fill on page 2-125
• memory set_typed on page 2-128
• x on page 2-255.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-127
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.88 memory set_typed

This command writes a list of values to memory.

Syntax

memory set_typed address type expressions

Where:

address Specifies an address at which to write the first value. The address must be
correctly aligned for the specified type.

type Specifies the data type to which each of the series of expressions is
converted and the width of each value in memory. For example, long.

expressions Specifies a space separated list of expressions. If an expression contains
spaces it must be enclosed in parentheses. The expressions are evaluated,
converted to the specified type, and then written to memory sequentially.

Note
 This command sets a default address variable to the value of the memory address. Some
commands, such as x, use this default value if no address is specified.

Example

Example 2-85 memory set_typed

memory set_typed 0x8000 (long long) 0x100 0x200
Is equivalent to the following commands:
set variable *((long long*)0x8000) = (long long)0x100
set variable *((long long*)0x8008) = (long long)0x200

See also
• info memory on page 2-97
• memory fill on page 2-125
• memory set on page 2-126
• x on page 2-255.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-128
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.89 mmu list tables

This command lists the available translation tables and their associated parameters.

Syntax

mmu list tables

Example

Example 2-86 mmu list tables

mmu list tables
Available translation tables:
PL1S_S1_TTBR0
parameters: S_TTBCR, S_TTBR0, S_SCTLR

PL1S_S1_TTBR1
parameters: S_TTBCR, S_TTBR1, S_SCTLR

PL1N_S1_TTBR0
parameters: N_TTBCR, N_TTBR0, N_SCTLR

PL1N_S1_TTBR1
parameters: N_TTBCR, N_TTBR1, N_SCTLR

See also
• mmu list translations on page 2-130
• mmu print on page 2-130
• mmu translate on page 2-131.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-129
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.90 mmu list translations

This command lists the available translations and their associated parameters.

Syntax

mmu list translations

Example

Example 2-87 mmu list translations

mmu list translations
Available address translations:
PL1S_S1
parameters: S_SCTLR, S_TTBCR, S_TTBR0, S_TTBR1

PL1N_S1
parameters: N_TTBR1, N_TTBCR, N_SCTLR, N_TTBR0

See also
• mmu list tables on page 2-129
• mmu print
• mmu translate on page 2-131.

2.3.91 mmu print

This command prints the contents of a translation table. Printing translation tables might be slow
on some targets because it might involve a full traversal of the translation tables on the target.

Syntax

mmu print [table] [param1=value1]…

where:

table Specifies the translation table to print. If you do not specify a table, the command
prints all tables for the current translation regime.

param1= value1
Specifies a parameter and its value to govern the interpretation of the table. If you
do not specify a required parameter, then it is determined from the current target
state.

Example

Example 2-88 mmu print

mmu print PL1S_S1_TTBR0

Input Address | Type | Next Level | Output Address | Properties
--
+ 0x00000000 | TTBR0 | SP:0x0080500000 | |
- 0x00000000 | Fault (x704) | | |
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-130
ID070914 Non-Confidential

DS-5 Debugger Commands
- 0x2C000000 | Section | | SP:0x002C000000 | NS=0, nG=0, S=0
- 0x2C100000 | Fault (x1343) | | |
- 0x80000000 | Section | | SP:0x0080000000 | NS=0, nG=0, S=1
- 0x80100000 | Fault (x2047) | | |
+ 0xFFFFFFFF | TTBR1 | SP:0x009082C300 | |

See also
• mmu list tables on page 2-129
• mmu list translations on page 2-130
• mmu translate.

2.3.92 mmu translate

This command performs translations between virtual and physical addresses. It translates either:
• from a virtual address to a physical address
• from a physical address to one or more virtual addresses.

Physical to virtual address translation might be slow on some targets because it might involve a
full traversal of the translation tables on the target.

Syntax

mmu translate address [translation] [param1=value1]…

where:

address Specifies the address to translate. If this is a virtual address then a virtual to
physical address translation is performed. If this is a physical address then a
physical to virtual address translation is performed.

translation Specifies the translation to perform.

param1= value1
Specifies a parameter and its value to govern the interpretation of the table. If you
do not specify a required parameter, then it is determined from the current target
state.

Example

Example 2-89 mmu translate

mmu translate 0x00008000 PL1S_S1 S_TTBR1=0x80000404A
SP:0x80F15000

mmu translate SP:0x80F15000
Address SP:0x80F15000 maps to
0x00008000
0x80F15000

See also
• mmu list tables on page 2-129
• mmu list translations on page 2-130
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-131
ID070914 Non-Confidential

DS-5 Debugger Commands
• mmu print on page 2-130.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-132
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.93 newvar

This command declares and initializes a new debugger convenience variable. Convenience
variables have a dynamic type, which means that they take the value and type of anything
assigned to them. They can be used in debugger scripts to store information for later use.

Syntax

newvar [global] $name [=initial_value]

Where:

global Specifies that the variable has global scope. If global is not specified, then
the variable is only accessible within its enclosing lexical scope.

name Specifies the name of the new variable. The name must be a valid C
identifier but prefixed with $.

intial_value Specifies the initial value of the variable. If an initial value is not specified,
then by default, the variable is of integer type with value 0.

Note
 • Debugger scripts and the top-level interactive interpreter are considered separate lexical

scopes where non-global convenience variables are not visible to any child or parent
debugger script.

• A user-defined command created with define is considered a separate lexical scope and
cannot reference non-global convenience variables in surrounding scripts or from the
top-level interpreter.

• The if, else, and while commands define new lexical scopes that inherit parent lexical
scopes up to the level of a script, top-level interpreter, or user-defined command.

• Any non-global convenience variables, declared within a lexical scope, are destroyed at
the end of the lexical scope.

Example

Example 2-90 newvar

define advance_hw # This defines a new command that runs
to an address using a hardware breakpoint.

hbreak $arg0 # Set a hardware breakpoint at the value of the first parameter.
newvar $bp_num = $ # Save the number of the breakpoint in a new variable.
continue
wait
delete $bp_num # Delete the hardware breakpoint.

end
advance_hw 0x00008000

See also
• Memory on page 2-20
• break on page 2-40
• watch on page 2-250.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-133
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.94 next

This command steps through an application at the source level stopping at the first instruction
of each source line but stepping over all function calls. You must compile your code with debug
information to use this command successfully.

Syntax

next [count]

Where:

count Specifies the number of source lines to execute.

Note
 Execution stops immediately if a breakpoint is reached, even if fewer than count

source lines are executed.

Example

Example 2-91 next

next # Execute one source line
next 5 # Execute five source lines

See also
• reverse-next on page 2-149
• finish on page 2-73
• nexti on page 2-135
• nexts on page 2-136
• step on page 2-224
• stepi on page 2-225
• steps on page 2-226.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-134
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.95 nexti

This command steps through an application at the instruction level but stepping over all function
calls.

Syntax

nexti [count]

Where:

count Specifies the number of instructions to execute.

Note
 Execution stops immediately if a breakpoint is reached, even if fewer than count

instructions are executed.

Example

Example 2-92 nexti

nexti # Execute one instruction
nexti 5 # Execute five instructions

See also
• reverse-nexti on page 2-150
• next on page 2-134
• nexts on page 2-136
• step on page 2-224
• stepi on page 2-225
• steps on page 2-226.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-135
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.96 nexts

This command steps through an application at the source level stopping at the first instruction
of each source statement but stepping over all function calls. You must compile your code with
debug information to use this command successfully.

Syntax

nexts [count]

Where:

count Specifies the number of source statements to execute.

Note
 Execution stops immediately if a breakpoint is reached, even if fewer than count

source statements are executed.

Example

Example 2-93 nexts

nexts # Execute one source statement
nexts 5 # Execute five source statements

See also
• finish on page 2-73
• next on page 2-134
• nexti on page 2-135
• step on page 2-224
• stepi on page 2-225
• steps on page 2-226.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-136
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.97 nosharedlibrary

This command discards all loaded shared library symbols.

Note
 You must launch the debugger with --target_os command-line option before you can use this
feature. In Eclipse this option is automatically selected when you connect to a target using
gdbserver.

Syntax

nosharedlibrary

Example

Example 2-94 nosharedlibrary

nosharedlibrary # Discards loaded shared library symbols

See also
• info sharedlibrary on page 2-104
• sharedlibrary on page 2-189.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-137
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.98 output

This command displays only the result of an expression. This is similar to the print command
but it does not record the results in a debugger variable.

Syntax

output [/flag] expression

Where:

flag Specifies the output format:
x Hexadecimal (casts the value to an unsigned integer prior to

printing in hexadecimal)
d Signed decimal. This is the default.
u Unsigned decimal
o Octal
t Binary
a Absolute hexadecimal address
c Character
f Floating-point
s Default format from the expression.

expression Specifies an expression that is evaluated and the result is returned.

Note
 If your expression accesses memory then a default address variable is set

to the location after the last accessed address. Some commands, such as x,
use this default value if no address is specified.

Example

Example 2-95 output

output (int*)8 # Cast a number as a pointer
output 4+4 # Display result of expression in decimal
output "initializing..." # Display progress information
output $PC /x # Display address in PC register (hexadecimal)

See also
• Using expressions on page 2-4
• echo on page 2-67
• print, inspect on page 2-141
• x on page 2-255
• printf() style format string on page 2-9.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-138
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.99 pause

This command pauses the execution of a script for a specified period of time.

Syntax

pause number[ms | s]

Where:

number Specifies the period of time.

ms Specifies the time in milliseconds. This is the default.

s Specifies the time in seconds.

Example

Example 2-96 pause

pause 1000 # Pause for 1 second
pause 0.5s # Pause for half a second
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-139
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.100 preprocess

This command displays the preprocessed expression, not the evaluated expression.

Syntax

preprocess [expression]

Note
 This functionality is dependent on the compiler generating accurate macro debug information.

Example

Example 2-97 preprocess

If your application contained the following code:

#define BASE_ADDRESS (0x1000)
#define REG_ADDRESS (BASE_ADDRESS + 0x10)

int main () {
return REG_ADDRESS;

}

During a debug session, you can display the REG_ADDRESS by using:

>preprocess REG_ADDRESS
((0x1000) + 0x10)

This compares with the expression value as output by the print command:

>print/x REG_ADDRESS
0x1010

See also
• print, inspect on page 2-141
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-140
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.101 print, inspect

This command displays the output of an expression (128 character limit) and also records the
result in a new debugger variable, $n, where n is a number. Results from the print command can
be used successively in expressions using the $ character. If you do not want the results recorded
in a debugger variable, use the output command instead.

Syntax

print [/flag] [expression]

inspect [/flag] [expression]

Where:

flag Specifies the output format:
x Hexadecimal (casts the value to an unsigned integer prior to

printing in hexadecimal)
d Signed decimal. This is the default.
u Unsigned decimal
o Octal
t Binary
a Absolute hexadecimal address
c Character
f Floating-point
s Default format from the expression.

expression Specifies an expression that is evaluated and the result is returned. If no
expression is specified then the last expression is repeated.

Note
 If your expression accesses memory then a default address variable is set

to the location after the last accessed address. Some commands, such as x,
use this default value if no address is specified.

Example

Example 2-98 print, inspect

print (int*)8 # Cast a number as a pointer
print 4+4 # Display result of expression in decimal
print "initializing..." # Display progress information
print /x $PC # Display address in PC register (hexadecimal)

See also
• Using expressions on page 2-4
• echo on page 2-67
• output on page 2-138
• x on page 2-255
• printf() style format string on page 2-9.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-141
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.102 pwd

This command displays the current working directory.

Syntax

pwd

Example

Example 2-99 pwd

pwd # Display current working directory

See also
• cd on page 2-49.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-142
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.103 quit, exit

This command quits the debugger session.

Syntax

quit

exit

Example

Example 2-100 quit, exit

quit # Quit debugger session
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-143
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.104 reload-symbol-file

This command reloads debug information from an already loaded image into the debugger using
the same settings as the original load operation. For example, you can use this command to
reload debug information into the debugger after you have rebuilt your image.

Note
 The PC register is not set with this command.

Syntax

reload-symbol-file [filename]

Where:

filename Specifies the image to reload. If is not already loaded then an error is generated.

Example

Example 2-101 reload-symbol-file

reload-symbol-file "myFile.axf" # Reload debug information

See also
• add-symbol-file on page 2-34
• cd on page 2-49
• discard-symbol-file on page 2-62
• file, symbol-file on page 2-72
• info files, info target on page 2-89
• load on page 2-117
• loadfile on page 2-118
• run on page 2-154
• start on page 2-222.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-144
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.105 reset

This command performs a reset on the target. The exact behavior of the reset command is
dependent on the debug agent and the target.

For example:
• a debug agent can be configured to reset the target in different ways
• the position of the switches on the target.
• a gdbserver connection can be configured to restart gdbserver and run scripts.

For more information, see the documentation for your target or debug agent.

Note
 Reset does not affect the symbols loaded in the debugger. Registers and memory might contain
different values after a reset.

Syntax

reset [key]

Where:

key Specifies the reset key. The reset capabilities are target dependent and might not
all be enabled. You can use info capabilities to display a list of capability
settings for the target device that is currently connected to the debugger.
Possible options for the reset key are:
app Application restart.
system General hardware reset that is not specific to a bus or

processor.

If no key is specified then the first enabled reset capability is performed.

Example

Example 2-102 reset

reset # Performs the first enabled reset capability
reset app # Performs an application restart
reset system # Performs a general hardware reset

See also
• info capabilities on page 2-86.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-145
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.106 resolve

This command re-evaluates the specified breakpoints or watchpoints and those with addresses
that can be resolve are set. Unresolved addresses remain pending.

Syntax

resolve [number]…

Where:

number Specifies the breakpoint or watchpoint number. This is the number assigned by
the debugger when it is set. You can use info breakpoints to display the number
and status of all breakpoints and watchpoints.

If no number is specified then all breakpoints and watchpoints are re-evaluated.

Example

Example 2-103 resolve

resolve 1 # Resolve breakpoint/watchpoint number 1
resolve 1 2 # Resolve breakpoints/watchpoint number 1 and 2
resolve # Resolve all breakpoints/watchpoints
resolve $ # Resolve the breakpoint/watchpoint whose number is in

the most recently created debugger variable

See also
• break on page 2-40
• break-stop-on-threads, break-stop-on-cores on page 2-45
• break-stop-on-vmid on page 2-46
• clear on page 2-50
• condition on page 2-52
• delete breakpoints on page 2-56
• disable breakpoints on page 2-59
• hbreak on page 2-77
• ignore on page 2-81
• info breakpoints, info watchpoints on page 2-84
• tbreak on page 2-229
• thbreak on page 2-231.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-146
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.107 restore

This command reads data from a file and writes it to memory.

Syntax

restore filename [binary] [offset [start_address [end_address|+size]]]

Where:

filename Specifies the file.

binary Specifies binary format. The file format is only required for binary files.
All other files are automatically recognized by the debugger. See the
append command for a list of the file formats supported by the debugger.

offset Specifies an offset that is added to all addresses in the image prior to
writing to memory. Some image formats do not contain embedded
addresses and in this case the offset is the absolute address where the
image is restored.

start_address Specifies the minimum address that can be written to. Any data prior to
this address is not written. If no start_address is given then the default is
address zero.

end_address Specifies the maximum address that can be written to. Any data after this
address is not written. If no end_address is given then the default is the end
of the address space.

size Specifies the size of the region.

Example

Example 2-104 restore

restore myFile.bin binary 0x200 # Restore content of binary file
myFile.bin starting at 0x200

restore myFile.m32 0x100 0x8000 0x8FFF # Add 0x100 to addresses in Motorola
32-bit (S-records) file and restore
content between 0x8000-0x8FFF

See also
• append on page 2-36
• dump on page 2-66.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-147
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.108 reverse-continue

This command continues running the target backwards until a breakpoint or watchpoint is hit.

Note
 Control is returned as soon as the target starts running backwards. You can use the wait
command to block the debugger from returning control until the application stops, for example
at a breakpoint or watchpoint.

Syntax

reverse-continue [count]

Where:

count Specifies the number of times to ignore any breakpoints or watchpoints that are
hit.

Example

Example 2-105 reverse-continue

reverse-continue # Continue running the target backwards
reverse-continue 5 # Continue running the target backwards,

ignoring five breakpoint hits

See also
• continue on page 2-53.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-148
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.109 reverse-next

This command rewinds execution to the preceding source line in the current function. It steps
back through an application at the source level, stopping at the preceding source line in the
current function.

Note
 You must compile your code with debug information to use this command successfully.

Syntax

reverse-next [count]

Where:

count Specifies the number of source lines to rewind. The default is one line.

Note
 Execution stops immediately if a breakpoint is reached, even if fewer than count

source lines are executed.

Note
 Reverse stepping is unaware of inline functions and might not operate correctly in highly
optimized code. Use unoptimized code for the best debug experience.

Example

Example 2-106 reverse-next

reverse-next # Reverse step one source line
reverse-next 5 # Reverse step five source lines

See also
• next on page 2-134.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-149
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.110 reverse-nexti

This command rewinds execution at the instruction level, stepping over all function calls.

Syntax

reverse-nexti [count]

Where:

count Specifies the number of instructions to rewind. The default is one instruction.

Note
 Execution stops immediately if a breakpoint is reached, even if fewer than count

instructions are executed.

Note
 Reverse stepping is unaware of inline functions and might not operate correctly in highly
optimized code. Use unoptimized code for the best debug experience.

Example

Example 2-107 reverse-nexti

reverse-nexti # Reverse step one instruction
reverse-nexti 5 # Reverse step five instructions

See also
• nexti on page 2-135.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-150
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.111 reverse-step

This command steps back through an application a specified number of source lines at a time,
stepping into all function calls.

Note
 You must compile your code with debug information to use this command successfully.

Syntax

reverse-step [count]

Where:

count Specifies the number of source lines to rewind. The default is one line.

Note
 Execution stops immediately if a breakpoint is reached, even if fewer than count

source lines are executed.

Note
 Reverse stepping is unaware of inline functions and might not operate correctly in highly
optimized code. Use unoptimized code for the best debug experience.

Example

Example 2-108 reverse-step

reverse-step # Reverse step one source line
reverse-step 5 # Reverse step five source lines

See also
• step on page 2-224.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-151
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.112 reverse-stepi

This command steps back through an application a specified number of instructions at a time.

Syntax

reverse-stepi [count]

Where:

count Specifies the number of instructions to rewind. The default is one instruction.

Note
 Execution stops immediately if a breakpoint is reached, even if fewer than count

instructions are executed.

Example

Example 2-109 reverse-stepi

reverse-stepi # Reverse step one instruction
reverse-stepi 5 # Reverse step five instructions

See also
• stepi on page 2-225.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-152
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.113 reverse-step-out

This command rewinds execution through the specified number of stack frames.

Syntax

reverse-step-out [count]

Where:

count Specifies the number of stack frames to rewind. The default is one stack frame.

Note
 Reverse stepping is unaware of inline functions and might not operate correctly in highly
optimized code. Use unoptimized code for the best debug experience.

Example

Example 2-110 reverse-step-out

reverse-step-out # Rewinds until the current stack frame finishes
reverse-step-out 5 # Rewinds until five stack frames finish

See also
• finish on page 2-73.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-153
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.114 run

The operation of this command depends on what the target is:

Bare-metal This command sets the PC register to the entry point address previously recorded
by the load, loadfile, or file command and starts running the target. Subsequent
run commands also reload the executable image if it follows a previous load
operation.

Linux application
This command sends a request to the server to restart the application and then start
running it.

Note
 Control is returned as soon as the target is running. You can use the wait command to block the
debugger from returning control until either the application completes or a breakpoint is hit.

Syntax

run [args]

Where:

args Specifies the command-line arguments that are passed to the main() function in
the application using the argv parameter. The name of the image is always
implicitly passed in argv[0] and it is not necessary to pass this as an argument to
the run command.

Example

Example 2-111 run

run # Start running the device

See also
• continue on page 2-53
• file, symbol-file on page 2-72
• load on page 2-117
• loadfile on page 2-118
• set semihosting on page 2-178
• show semihosting on page 2-209
• start on page 2-222
• wait on page 2-249.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-154
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.115 rwatch

This command sets a watchpoint for a data symbol. The debugger stops the target when the
memory at the specified address is read.

This command records the ID of the watchpoint in a new debugger variable, $n, where n is a
number. You can use this variable, in a script, to delete or modify the watchpoint behavior. If $n
is the last or second-to-last debugger variable, then you can also access the ID using $ or $$,
respectively.

Note
 Watchpoints are only supported on scalar values.

Some targets do not support watchpoints. Currently you can only set a watchpoint on:
• a hardware target using a debug hardware agent
• Linux applications using gdbserver or undodb-server.

The availability of watchpoints depends on the hardware target. In the case of Linux application
debug, the availability of watchpoints also depends on the Linux kernel version and
configuration.

The address of the instruction that triggers the watchpoint might not be the address shown in the
PC register. This is because of pipelining effects.

Syntax

rwatch [-d] [-p] {[filename:]symbol|*address} [vmid vmid]

Where:

d Disables the watchpoint immediately after creation.

p Specifies whether or not the resolution of an unrecognized watchpoint
location results in a pending watchpoint being created.

filename Specifies the file.

symbol Specifies a global/static data symbol. For arrays or structs you must
specify the element or member.

address Specifies the address. This can be either an address or an expression that
evaluates to an address.

vmid Specifies the Virtual Machine ID (VMID) to apply the breakpoint to. This
can be either an integer or an expression that evaluates to an integer.

Example

Example 2-112 rwatch

rwatch myVar1 # Set read watchpoint on myVar1
rwatch *0x80D4 # Set read watchpoint on address 0x80D4

See also
• Using expressions on page 2-4
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-155
ID070914 Non-Confidential

DS-5 Debugger Commands
• awatch on page 2-37
• break-stop-on-threads, break-stop-on-cores on page 2-45
• clearwatch on page 2-51
• info breakpoints, info watchpoints on page 2-84
• info breakpoints capabilities, info watchpoints capabilities on page 2-85
• watch on page 2-250.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-156
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.116 select-frame

This command moves the current frame pointer in the call stack.

Note
 Each frame is assigned a number that increases from the bottom frame (zero) through the call
stack to the top frame that is the start of the application.

Syntax

select-frame number

Where:

number Specifies the frame number.

Example

Example 2-113 select-frame

select-frame 1 # Move to stack frame 1

See also
• down on page 2-64
• down-silently on page 2-65
• finish on page 2-73
• frame on page 2-75
• info frame on page 2-91
• info all-registers on page 2-83
• info registers on page 2-102
• info stack, backtrace, where on page 2-107
• up on page 2-247
• up-silently on page 2-248.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-157
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.117 set

set is an alias for set variable.

See set variable on page 2-187.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-158
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.118 set arm

This command controls the behavior of the debugger when selecting the instruction set for
disassembly and setting breakpoints.

Note
 Available instruction sets depend on the target that the debugger is connected to.

Syntax

set arm option

Where:

option Specifies additional options:
force-mode Controls the default debugger behavior overriding the

fallback-mode setting.
a32|arm Forces the debugger to use the A32

instruction set.
a64 Forces the debugger to use the A64

instruction set.
t32|thumb Forces the debugger to use the T32

instruction set.
auto Forces the debugger to use debug

information when available or the
fallback-mode if this is not available.
This is the default.

fallback-mode Controls the default debugger behavior when force-mode is
set to auto and debug information is not available.
a32|arm Forces the debugger to use the A32

instruction set when debug
information is not available.

a64 Forces the debugger to use the A64
instruction set when debug
information is not available.

t32|thumb Forces the debugger to use the T32
instruction set when debug
information is not available.

auto Forces the debugger to use the current
instruction set of the target. This is the
default.

Example

Example 2-114 set arm

set arm force-mode thumb # Force the use of Thumb
set arm fallback-mode arm # When force-mode is auto, use ARM

if no debug information is available
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-159
ID070914 Non-Confidential

DS-5 Debugger Commands
See also
• break on page 2-40
• disassemble on page 2-61
• info inst-sets on page 2-94
• show arm on page 2-193
• start on page 2-222
• tbreak on page 2-229
• x on page 2-255.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-160
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.119 set auto-solib-add

This command controls the automatic loading of shared library symbols.

Note
 You must launch the debugger with --target_os command-line option before you can use this
feature. In Eclipse this option is automatically selected when you connect to a target using
gdbserver.

Syntax

set auto-solib-add {off|on}

Where:

off No automatic loading. When automatic loading is off you must explicitly load
shared library symbols using the sharedlibrary command.

on Loads shared library symbols automatically. This is the default.

Example

Example 2-115 set auto-solib-add

set auto-solib-add off # No automatic loading of shared library symbols

See also
• show auto-solib-add on page 2-194.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-161
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.120 set backtrace

This command controls the default behavior when using the info stack command.

Syntax

set backtrace option

Where:

option Specifies additional options:
limit n Specifies the maximum limit when displaying the call stack. You can

specify zero as the maximum limit to display the entire call stack.
The default call stack limit is 100.

Example

Example 2-116 set backtrace

set backtrace limit 10 # Limit the call stack display to 10 frames
set backtrace limit 0 # No limit, display the entire call stack

See also
• info stack, backtrace, where on page 2-107
• show backtrace on page 2-195.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-162
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.121 set blocking-run-control

This command controls whether run control operations such as stepping and running are
blocked until the target stops or released immediately.

Syntax

set blocking-run-control {off|on|script-only}

Where:

off Specifies asynchronous, control is returned before the target stops.

on Specifies synchronous, run control operations are blocked until the target stops.
This has the same effect as issuing a wait command after each run control
operation.

script-only Specifies that run control operations block only when executed as commands
from within a script.
This is the default.

Example

Example 2-117 set blocking-run-control

set blocking-run-control on # Block run control operations until target stops

See also
• show blocking-run-control on page 2-196.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-163
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.122 set breakpoint

This command controls the automatic behavior of breakpoints and watchpoints.

Syntax

set breakpoint [option]

Where:

option Specifies additional options:
auto-hw Controls the automatic breakpoint selection when using the break

command:
off Disables automatic breakpoint selection.
on Uses the memory map attributes to decide if hardware or

software breakpoints must be used. This is the default.
auto-remove

Controls the automatic removal of breakpoints and watchpoints when
disconnecting from the target:
off Disables automatic removal.
on Enables automatic removal. This is the default.

Note
 If the target is running, the debugger temporarily stops the

target before removing breakpoints and watchpoints.

skipmode Controls whether to skip all breakpoints and watchpoints:
off Disables skip mode. This is the default.
on Enables skip mode.

Example

Example 2-118 set breakpoint

set breakpoint auto-hw off # No automatic breakpoint selection
set breakpoint skipmode on # Skip all breakpoints and watchpoints
set breakpoint auto-remove off # No automatic removal of breakpoints and watchpoints

See also
• break on page 2-40
• show breakpoint on page 2-197.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-164
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.123 set case-insensitive-source-matching

This command controls the case sensitivity of debugger file matching operations.

Syntax

set case-insensitive-source-matching [off|on]

Where:

off Specifies case sensitive file matching. This is the default.

on Specifies case insensitive file matching. This is useful if the file paths or
filenames in the debug data have a different case to those in the filesystem.

Example

Example 2-119 set case-insensitive-source-matching

By default the debugger performs case sensitive file matching.
Assume that the debug data contains the filename main.c.
break -p "C:/example/Main.c":2 # This fails because Main.c does not match main.c.
WARNING(CMD452-COR167):
! Breakpoint 8 has been pended
! No compilation unit matching "C:/example/Main.c" was found.

set case-insensitive-source-matching on # case insensitive matching.
break -p "C:/EXAmple/Main.c" # This file matching operation succeeds.
Breakpoint 9 at S:0x000080A8

on file main.c, line 2

See also
• show case-insensitive-source-matching on page 2-198
• set escapes-in-filenames on page 2-172
• set wildcard-style on page 2-188.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-165
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.124 set debug-agent

This command sets an internal configuration parameter for the debug agent. The available
parameters depend on the debug agent, such as DSTREAM or gdbserver.

Syntax

set debug-agent name value

Where:

name Specifies the name of the parameter to set.

value Specifies the value of the parameter. Values are dependent on the parameter being
set. An error is reported if the value is not valid.

Example

Example 2-120 set debug-agent

set debug-agent UserOut_P1 1
Set value of USER OUT pin1 to 1.
This parameter is available for DSTREAM/RVI connections.

See also
• show debug-agent on page 2-199.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-166
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.125 set debug-from

This command specifies the address of the temporary breakpoint for subsequent use by the start
command. If you do not specify this command then the default value used by the start
command is the address of the global function main().

Syntax

set debug-from expression

Where:

expression Specifies an expression that evaluates to an address. The expression is only
evaluated when the start command is processed, therefore, you can refer to
symbols that might not exist yet but might be made available in the future. You
can use the debugger variable $entrypoint to refer to the entry point for the
currently loaded image.

Example

Example 2-121 set debug-from

set debug-from *0x8000 # Set start-at setting to address 0x8000
set debug-from *$entrypoint # Set start-at setting to address of $entrypoint
set debug-from main+8 # Set start-at setting to address of main+8
set debug-from function1 # Set start-at setting to address of function1

See also
• Using expressions on page 2-4
• show debug-from on page 2-200
• start on page 2-222.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-167
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.126 set directories

set directories is an alias for directory.

See directory on page 2-58.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-168
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.127 set dtsl-options

This command sets a parameter in the connection DTSL configuration.

Syntax

set dtsl-options name value

Where:

name Specifies a name of the parameter to set.

value Specifies the value of the parameter. Values are dependent on the parameter being
set. An error is reported if the value is not valid.

Example

Example 2-122 set dtsl-options

set dtsl-options options.cortexA9.coreTrace.cycleAccurate False
Set DTSL configuration cycleAccurate parameter to false

See also
• show dtsl-options on page 2-202.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-169
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.128 set endian

This command specifies the byte order for use by the debugger. The endianness of the target is
not modified by this command.

Syntax

set endian {auto|be8|big|little}

Where:

auto Uses the same byte order as the image where possible, otherwise it uses the
current endianness of the target. This is the default.

be8 Specifies Byte Invariant Addressing big-endian mode introduced in architecture
ARMv6 (data is big endian and code is little endian).

big Specifies big endian mode.

little Specifies little endian mode.

Example

Example 2-123 set endian

set endian little # Debug using little endian

See also
• show endian on page 2-203.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-170
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.129 set escape-strings

This command controls how special characters in strings are printed on the debugger
command-line.

Syntax

set escape-strings off|on

Where:

off Specifies that any backslash characters in strings are treated as escape sequences.
For example, if the string contains "\t" then this is printed as a tab character.
This is the default.

on Specifies that any backslashes in strings are not treated as escape sequences and
are instead output literally. For example, if the string contains "\t" then this is
printed as a "\" character followed by a "t" character.

Example

Example 2-124 set escape-strings

set escape-strings on

output "Say \"hello\""

“Say \“hello\””

set escape-strings off

output "Say \"hello\""

"Say ”hello"”

See also
• show escape-strings on page 2-204.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-171
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.130 set escapes-in-filenames

This command controls the use of special characters in paths.

Syntax

set escapes-in-filenames off|on

Where:

off Specifies that a backslash in a path is treated as a directory separator (with the
exception that it can be used to escape spaces). For example:
C:\test\ file.c

The first backslash is treated as a separator followed by a t, not an escape
sequence representing the tab character. The second backslash escapes the space.
This is the default.

on Specifies that a backslash is to be treated as part of an escape sequence to indicate
that the character following is a special character. For example:
C:\\test\\file.c

The backslash in this example is a directory separator and must be identified as a
special character.

Example

Example 2-125 set escapes-in-filenames

set escapes-in-filenames on # Use backslash as an escape character in paths

See also
• show escapes-in-filenames on page 2-205.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-172
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.131 set listsize

This command modifies the default number of source lines that the list command displays.

Syntax

set listsize n

Where:

n Specifies the number of source lines.

Example

Example 2-126 set listsize

set listsize 20 # Set listing size for list command

See also
• list on page 2-115
• show listsize on page 2-206.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-173
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.132 set os

This command controls Operating System (OS) settings in the debugger.

Note
 An OS aware connection must be established before you can use this command.

Syntax

set os option

Where:

option Specifies additional options:
log-capture off Disables OS log capture and printing of Linux

kernel dmesg logs to console. This is the default.
on Enables OS log capture and printing to console.

Note
 This option automatically checks the connection state and,

if required, stops the target before changing this setting.

enabled auto Automatically stops the target and enables OS
support when an OS image is loaded into the
debugger. For example, Linux kernel images are
detected by reading the members for the structure
returned by the expression
init_nsproxy.uts_ns->name. Unloading the
image disables OS support.
This is the default for Linux kernel connections.

deferred Automatically enables OS support when an OS
image is loaded into the debugger but only when
the target next stops. Unloading the image
disables OS support.
This is the default for Real-Time Operating
System (RTOS) aware connections.

off Disables OS support.
on Enables OS support. Use this option when the OS

image is already loaded into the debugger and the
target is stopped.

Example

Example 2-127 set os

set os log-capture on # Enable OS log capture and printing to console
set os enabled off # Disable OS support in debugger

See also
• info os-log on page 2-98
• info os-modules on page 2-99
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-174
ID070914 Non-Confidential

DS-5 Debugger Commands
• info os-version on page 2-100
• info processes on page 2-101
• show os on page 2-207.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-175
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.133 set print

This command controls the current debugger print settings.

Syntax

set print option

Where:

option Specifies additional options:
library-not-found-warnings

Controls the printing of "unable to find library..." messages.
off Disables these messages. This is the default.
on Enables these messages.

full-source-path Controls the printing of source file names in messages.
off Disables printing the full path. This is the default.
on Enables printing the full path.

stop-info Controls the printing of event messages when the target
stops.
off Disables printing of event messages. This setting

takes precedence over the silence and unsilence
commands.

on Enables printing of event messages. This is the
default.

current-vmid Controls the printing of current VMID messages when the
target stops.
off Disables printing of VMID messages. This is the

default.
on Enables printing of VMID messages.

double-format format

Controls the formatting of double precision floating-point
values. format is a printf() style format string. The default
is "%,.16g".

float-format format

Controls the formatting of single precision floating-point
values. format is a printf() style format string. The default
is "%,.6g".

Example

Example 2-128 set print

set print library-not-found-warnings off # Disable unfound library messages
set print full-source-path on # Display full source path in messages
set print double-format %+g # Print decimal scientific notation with sign
set print float-format %08.4e # Print decimal scientific notation, zero-pad

min 8 characters, 4 digit precision
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-176
ID070914 Non-Confidential

DS-5 Debugger Commands
See also
• show print on page 2-208
• silence on page 2-220
• unsilence on page 2-246
• printf() style format string on page 2-9.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-177
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.134 set semihosting

This command controls the semihosting settings in the debugger. Semihosting is used to
communicate input/output requests from application code to the host workstation running the
debugger.

Note
 These settings only apply if the target supports semihosting and they cannot be changed while
the target is running.

Syntax

set semihosting option

Where:

option Specifies additional options:
args arguments Specifies the command-line arguments that are passed to

the main() function in the application using the argv
parameter. The name of the image is always implicitly
passed in argv[0] and it is not necessary to pass this as an
argument.

file-base directory

Specifies the base directory where the files that the
application opens are relative to.

stderr "stderr"|filename

Specifies either console streams or a file to write stderr for
semihosting operations.

stdin "stdin"|filename

Specifies either console streams or a file to read stdin for
semihosting operations.

stdout "stdout"|filename

Specifies either console streams or a file to write stdout for
semihosting operations.

top-of-memory address

Specifies the top of memory.
stack_heap_options Specifies finer controls to manually configure the base

address and limits for the stack and heap. If you use
stack_heap_options, then these settings take precedence
over the top-of-memory and all of the following options
must be specified:
stack-base address

The base address of the stack.
stack-limit address

The end address of the stack.
heap-base address

The base address of the heap.
heap-limit address

The end address of the heap.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-178
ID070914 Non-Confidential

DS-5 Debugger Commands
enabled auto Automatically enables semihosting operations if
appropriate when an image is loaded. This is the
default.

off Disables all semihosting operations.
on Enables all semihosting operations.

Note
 You must configure semihosting addresses

before you enable semihosting.
For example:
set semihosting top-of-memory address
set semihosting enabled on

vector address Specifies a breakpoint address for semihosting support. If it
is not set, the debugger uses vector catch (if supported) or
0x8.

Example

Example 2-129 set semihosting

set semihosting args 500 # Set 500 as command-line argument
set semihosting stdout output.log # Write stdout to output.log
set semihosting enabled on # Enable semihosting operations

See also
• show semihosting on page 2-209
• unset on page 2-245.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-179
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.135 set solib-absolute-prefix

set solib-absolute-prefix is an alias for set sysroot.

See set sysroot, set solib-absolute-prefix on page 2-185.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-180
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.136 set solib-search-path

This command specifies additional directories to search for shared library symbols. If you use
this command without an argument then any additional search directories, previously added
using this command, are removed. You can use show solib-search-path to display the current
settings.

Note
 You must launch the debugger with --target_os command-line option before you can use this
feature. In Eclipse this option is automatically selected when you connect to a target using
gdbserver.

Syntax

set solib-search-path [path]…

Where:

path Specifies an additional directory to search for shared libraries. The debugger uses
the system root directory first, then it searches the additional directories specified
with this command. You can use set sysroot to specify the system root directory.

Note
 Multiple directories can be specified but must be separated with either:

• a colon (Unix)
• a semi-colon (Windows).

Example

Example 2-130 set solib-search-path

set solib-search-path "\usr\lib" # Specify search directory
set solib-search-path "/lib":"/My Lib" # Specify two search directories(Unix)

See also
• set sysroot, set solib-absolute-prefix on page 2-185
• show solib-search-path on page 2-212
• show sysroot, show solib-absolute-prefix on page 2-216.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-181
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.137 set step-mode

This command controls the default behavior of the step and steps commands.

Syntax

set step-mode {step-over|stop|step-until-source}

Where:

step-over If the instruction is a function call then the debugger performs a step-over.
Otherwise, it stops. This is the default.

stop The debugger stops when execution reaches an address with no source.

step-until-source

The debugger performs steps until it reaches source. To speed up the execution,
the debugger might use abstract interpretation and break or run until the line of
source is reached.

Example

Example 2-131 set step-mode

set step-mode step-over # Step over a function call and stop.
Otherwise stop

See also
• show step-mode on page 2-213
• step on page 2-224
• steps on page 2-226.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-182
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.138 set stop-on-solib-events

This command controls whether the debugger stops execution when a shared object is loaded or
unloaded.

Note
 You must launch the debugger with --target_os command-line option before you can use this
feature. In Eclipse this option is automatically selected when you connect to a target using
gdbserver.

Syntax

set stop-on-solib-events {off|on}

Where:

off Ignore event. This is the default.

on Stop execution. Use this option only when you want the debugger to stop
execution. For example, you might want to set a breakpoint in a shared library
prior to use or perhaps you might want to check the initialization of global
variables.

Example

Example 2-132 set stop-on-solib-events

set stop-on-solib-events on # Stop execution when event occurs

See also
• show stop-on-solib-events on page 2-214.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-183
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.139 set substitute-path

This command modifies the search paths used by the debugger when it executes any of the
commands that look up and display source code. This command is useful when the source files
have moved from the original location used during compilation.

Subsequent use of the set substitute-path command appends rules to the current list.

Syntax

set substitute-path path1 path2

Where:

path1 Specifies the existing search path.

path2 Specifies the replacement search path.

Example

Example 2-133 set substitute-path

set substitute-path "\src" "\My Src" # Substitute "\src" with "\My Src"

See also
• directory on page 2-58
• show substitute-path on page 2-215
• unset on page 2-245.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-184
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.140 set sysroot, set solib-absolute-prefix

This command specifies the system root directory to search for shared library symbols.

The debugger uses this directory to search for a copy of the debug versions of target shared
libraries. The system root on the host workstation must contain an exact representation of the
libraries on the target root filesystem.

Note
 You must launch the debugger with --target_os command-line option before you can use this
feature. In Eclipse this option is automatically selected when you connect to a target using
gdbserver.

Syntax

set sysroot path

set solib-absolute-prefix path

Where:

path Specifies the system root directory.

Example

Example 2-134 set sysroot, set solib-absolute-prefix

set sysroot "\mySystem" # Set system root directory "\mySystem"

See also
• set solib-search-path on page 2-181
• show solib-search-path on page 2-212
• show sysroot, show solib-absolute-prefix on page 2-216.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-185
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.141 set trust-ro-sections-for-opcodes

This command controls whether the debugger can read opcodes from read-only sections of
images on the host workstation rather than from the target itself.

Syntax

set trust-ro-sections-for-opcodes {off|on}

Where:

off Disables this behavior. Use this option to trace self-modifying code or when the
code on the target is modified before being loaded to the target. This is the default.

on Enables reading opcodes from read-only sections of images on the host machine.
Reading opcodes from the host workstation is usually faster than reading them
from the target.

Example

Example 2-135 set trust-ro-sections-for-opcodes

set trust-ro-sections-for-opcodes on # Enable reading opcodes from host

See also
• show trust-ro-sections-for-opcodes on page 2-217.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-186
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.142 set variable

This command evaluates an expression and assigns the result to a variable, register or memory.

Syntax

set [variable] expression

Where:

expression Specifies an expression and assigns the result to a variable, register or memory
address.

Example

Example 2-136 set variable

set variable myVar=10 # Assign 10 to variable myVar
set variable $PC=0x8000 # Assign address 0x8000 to

PC register
set variable $CPSR.N=0 # Clear N bit
set variable (*(int*)0x8000)=1 # Assign 1 to address 0x8000
set variable *0x8000=1 # Assign 1 to address 0x8000
set variable strcpy((char*)0x8000,"My String") # Assign string to address 0x8000
set variable memcpy(void*)0x8000,{10,20,30,40},4) # Assign array to address 0x8000

See also
• Using expressions on page 2-4
• info variables on page 2-111
• ARM Architecture Reference Manual,

http://infocenter.arm.com/help/topic/com.arm.doc.set.architecture/index.html.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-187
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.143 set wildcard-style

This command specifies the type of wildcard pattern matching you can use for examining the
contents of strings.

Syntax

set wildcard-style glob|regex

Where:
glob Specifies a simpler style of pattern matching using glob expressions to refine your

search. For example, you can use m* to search for strings starting with m.
This is the default.

regex Specifies a more complex style of pattern matching using regular expressions to
refine your search. For example, you can use my_lib[0-9]+ to search for strings
starting with my_lib followed by an integer.

Example

Example 2-137 set wildcard-style

set wildcard-style regex # Use regular expression pattern matching

See also
• Using wildcards on page 2-5
• show wildcard-style on page 2-219
• info classes on page 2-87
• info functions on page 2-92
• info variables on page 2-111
• sharedlibrary on page 2-189.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-188
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.144 sharedlibrary

This command loads symbols from shared libraries. Be aware that it can only load symbols for
shared libraries that are already loaded by the application.

Note
 You must launch the debugger with --target_os command-line option before you can use this
feature. In Eclipse this option is automatically selected when you connect to a target using
gdbserver.

Syntax

sharedlibrary [expression]

Where:

expression Specifies a library path or a wildcard expression. You can use wildcard
expressions to enhance your pattern matching.
If no expression is specified then the symbols from all shared libraries are
loaded.

Example

Example 2-138 sharedlibrary

sharedlibrary # Load symbols from all shared libraries
sharedlibrary m* # Load symbols matching path starting with m

(use when set wildcard-style=glob)
sharedlibrary .*my_lib[0-9]+ # Load symbols matching path that ends with my_lib

 # followed by a number(use when set wildcard-style=regex)

See also
• Using wildcards on page 2-5
• info sharedlibrary on page 2-104
• nosharedlibrary on page 2-137
• set wildcard-style on page 2-188.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-189
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.145 shell

This command runs a shell command within the current debug session. The command is
launched in the current working directory. You can use pwd to display the current working
directory.

Syntax

shell cmd

Where:

cmd Specifies the command and associated arguments.

Example

Example 2-139 shell

shell dir # On Windows, list of files in current directory
shell cat my_script.ds # On Linux, list contents of my_script.ds file

See also
• cd on page 2-49
• pwd on page 2-142.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-190
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.146 show

This command displays the current debugger settings.

Syntax

show

Example

Example 2-140 show

show # Display current debugger settings
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-191
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.147 show architecture

This command displays the architecture of the current target.

Syntax

show architecture

Example

Example 2-141 show architecture

show architecture # Display current target architecture
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-192
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.148 show arm

This command displays the current instruction set settings in use by the debugger for
disassembly and setting breakpoints.

Syntax

show arm option

Where:

option Specifies additional options:
force-mode Display the current force-mode behavior.
fallback-mode Display the current fallback-mode behavior.

Example

Example 2-142 show arm

show arm # Display the current instruction set settings
show arm force-mode # Display the current force-mode setting

See also
• info inst-sets on page 2-94
• set arm on page 2-159.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-193
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.149 show auto-solib-add

This command displays the current automatic setting for use when loading shared library
symbols. You can use the set auto-solib-add command to modify this setting.

Note
 You must launch the debugger with --target_os command-line option before you can use this
feature. In Eclipse this option is automatically selected when you connect to a target using
gdbserver.

Syntax

show auto-solib-add

Example

Example 2-143 show auto-solib-add

show auto-solib-add # display current automatic setting for loading
shared library symbols

See also
• set auto-solib-add on page 2-161.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-194
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.150 show backtrace

This command displays current behavior settings for use with the info stack command. You can
use the set backtrace commands to modify these settings.

Syntax

show backtrace option

Where:

option Specifies additional options:
limit Displays the current limit when listing the call stack.

Example

Example 2-144 show backtrace

show backtrace limit # Display current call stack limit

See also
• info stack, backtrace, where on page 2-107
• set backtrace on page 2-162.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-195
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.151 show blocking-run-control

This command displays the current run control setting that defines whether run control
operations such as stepping and running are blocked until the target stops or released
immediately. You can use the set blocking-run-control command to modify this setting.

Syntax

show blocking-run-control

Example

Example 2-145 show blocking-run-control

show blocking-run-control # Display current run control setting

See also
• set blocking-run-control on page 2-163.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-196
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.152 show breakpoint

This command displays current breakpoint and watchpoint behavior settings. You can use the
set breakpoint commands to modify these settings.

Syntax

show breakpoint option

Where:

option Specifies additional options:
auto-hw Displays the automatic breakpoint selection setting. The debugger uses

this option to decide what type of breakpoint it must use automatically
when using the break command.

skipmode Displays the breakpoint and watchpoint skipmode setting.

Example

Example 2-146 show breakpoint

show breakpoint auto-hw # Display automatic breakpoint selection setting
show breakpoint skipmode # Display breakpoint and watchpoint skipmode setting

See also
• set breakpoint on page 2-164.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-197
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.153 show case-insensitive-source-matching

This command displays the current case sensitivity setting for the debugger file matching
operations. You can use the set case-insensitive-source-matching command to modify this
setting.

Syntax

show case-insensitive-source-matching

Example

Example 2-147 show case-insensitive-source-matching

show case-insensitive-source-matching # Display current case sensitivity setting

See also
• set case-insensitive-source-matching on page 2-165
• show escapes-in-filenames on page 2-205
• show wildcard-style on page 2-219.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-198
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.154 show debug-agent

This command displays the current value of an internal configuration parameter for the debug
agent. You can use the set debug-agent command to modify this setting. The available
parameters depend on the debug agent, such as DSTREAM or gdbserver.

Syntax

show debug-agent [name]

Where:

name Specifies the parameter to display.

Example

Example 2-148 show debug-agent

show debug-agent # Display all current debug agent configuration parameters

See also
• set debug-agent on page 2-166.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-199
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.155 show debug-from

This command displays the current setting for the expression that is used by the start command
to set a temporary breakpoint. You can use the set debug-from command to modify this setting.

Syntax

show debug-from

Example

Example 2-149 show debug-from

show debug-from # Display current expression used by start command

See also
• Using expressions on page 2-4
• start on page 2-222
• set debug-from on page 2-167.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-200
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.156 show directories

This command displays the list of directories to search for source files. You can use the
directory command to modify this list.

Syntax

show directories

Example

Example 2-150 show directories

show directories # Display list of search paths

See also
• directory on page 2-58.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-201
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.157 show dtsl-options

This command displays the current value of a parameter in the connection DTSL configuration.
You can use the set dtsl-options command to modify this setting.

Syntax

show dtsl-options [name]

Where:

name Specifies the parameter to display.

Example

Example 2-151 show dtsl-options

show dtsl-options # Display all DTSL configuration parameters

See also
• set dtsl-options on page 2-169.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-202
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.158 show endian

This command displays the current byte order setting in use by the debugger. You can use the
set endian command to modify this setting.

Syntax

show endian

Example

Example 2-152 show endian

show endian # Display current byte order setting

See also
• set endian on page 2-170.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-203
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.159 show escape-strings

This command displays the current setting for controlling how special characters in strings are
printed on the debugger command-line. You can use the set escape-strings command to
modify this setting.

Syntax

show escape-strings

Example

Example 2-153 show escape-strings

show escape-strings # Display current setting for controlling
how special characters in strings are printed

See also
• set escape-strings on page 2-171.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-204
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.160 show escapes-in-filenames

This command displays the current setting for controlling the use of special characters in paths.
You can use the set escapes-in-filenames command to modify this setting.

Syntax

show escapes-in-filenames

Example

Example 2-154 show escapes-in-filenames

show escapes-in-filenames # Display current setting for controlling
the use of special characters in paths

See also
• set escapes-in-filenames on page 2-172.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-205
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.161 show listsize

This command displays the number of source lines that the list command displays. You can use
the set listsize command to modify the display size.

Syntax

show listsize

Example

Example 2-155 show listsize

show listsize # Display listing size for list command

See also
• list on page 2-115
• set listsize on page 2-173.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-206
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.162 show os

This command displays the current setting for controlling the Operating System (OS) settings.
You can use the set os command to modify these settings.

Note
 An OS aware connection must be established before you can use this command.

Syntax

show os option

Where:

option Specifies additional options:
log-capture Displays the current setting for controlling the capturing

and printing of OS logging messages.
enabled Displays the current setting for controlling OS support.

Example

Example 2-156 show os

show os log-capture # Display setting for controlling os log capture
show os enabled # Display OS enabled setting

See also
• info os-log on page 2-98
• info os-modules on page 2-99
• info os-version on page 2-100
• info processes on page 2-101
• set os on page 2-174.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-207
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.163 show print

This command displays the current debugger print settings. You can use the set print
commands to modify these settings.

Syntax

show print option

Where:

option Specifies additional options:
library-not-found-warnings

Displays the print settings for "unable to find library..." messages.
full-source-path

Displays the print settings for source paths in messages.
stop-info Displays the print settings for event messages when the target stops.
current-vmid

Displays the print settings for VMID messages when the target stops.
double-format

Displays the print settings that controls the printf() style formatting
of double values.

float-format

Displays the print settings that controls the printf() style formatting
of floating-point values.

Example

Example 2-157 show print

show print library-not-found-warnings # Display print settings for unfound
library messages

show print full-source-path # Display print settings for
source paths in messages

See also
• set print on page 2-176
• printf() style format string on page 2-9.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-208
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.164 show semihosting

This command displays the current semihosting settings in the debugger. You can use the set
semihosting commands to modify these settings.

Syntax

show semihosting option

Where:

option Specifies additional options:
args Displays the command-line arguments that are passed to the

main() function in the application.
enabled

Displays the semihosting enabled setting.
file-base

Displays the setting for the file-base directory.
stdin

Displays the stdin settings.
stdout

Displays the stdout settings.
stderr

Displays the stderr settings.
top-of-memory

Displays the address for the top of memory.
stack-base

Displays the address for the stack base.
stack-limit

Displays the address for the stack limit.
heap-base

Displays the address for the heap base.
heap-limit

Displays the address for the heap limit.
vector

When using a semihosting breakpoint, the address is
displayed otherwise a message is displayed indicating that a
vector is in use.

Example

Example 2-158 show semihosting

show semihosting args # Display command-line arguments
show semihosting enabled # Display semihosting enabled setting
show semihosting top-of-memory # Display the top of memory address
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-209
ID070914 Non-Confidential

DS-5 Debugger Commands
See also
• set semihosting on page 2-178.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-210
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.165 show solib-absolute-prefix

show solib-absolute-prefix is an alias for show sysroot.

See show sysroot, show solib-absolute-prefix on page 2-216.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-211
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.166 show solib-search-path

This command displays the current search paths in use by the debugger when searching for
shared libraries. You can use the set sysroot command to specify a system root directory on the
host workstation and you can also use the set solib-search-path command to specify additional
directories.

Note
 You must launch the debugger with --target_os command-line option before you can use this
feature. In Eclipse this option is automatically selected when you connect to a target using
gdbserver.

Syntax

show solib-search-path

Example

Example 2-159 show solib-search-path

show solib-search-path # Display search path for shared libraries

See also
• set solib-search-path on page 2-181
• set sysroot, set solib-absolute-prefix on page 2-185
• show sysroot, show solib-absolute-prefix on page 2-216.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-212
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.167 show step-mode

This command displays the current step setting for functions without debug information. You
can use the set step-mode command to modify this setting.

Syntax

show step-mode

Example

Example 2-160 show step-mode

show step-mode # Display current step setting (function without debug)

See also
• set step-mode on page 2-182
• step on page 2-224
• steps on page 2-226.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-213
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.168 show stop-on-solib-events

This command displays the current debugger setting that controls whether execution stops when
shared library events occur. You can use the set stop-on-solib-events command to modify this
setting.

Note
 You must launch the debugger with --target_os command-line option before you can use this
feature. In Eclipse this option is automatically selected when you connect to a target using
gdbserver.

Syntax

show stop-on-solib-events

Example

Example 2-161 show stop-on-solib-events

show stop-on-solib-events # Display stop setting for shared library events

See also
• set stop-on-solib-events on page 2-183.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-214
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.169 show substitute-path

This command displays the current search path substitution rules in use by the debugger when
searching for source files. You can use the set substitute-path command to modify these
substitution rules.

Syntax

show substitute-path

Example

Example 2-162 show substitute-path

show substitute-path # Display all substitution rules

See also
• directory on page 2-58
• set substitute-path on page 2-184.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-215
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.170 show sysroot, show solib-absolute-prefix

This command displays the system root directory in use by the debugger when searching for
shared library symbols. You can use the set sysroot command to specify a system root directory
on the host workstation.

The debugger uses this directory to search for a copy of the debug versions of target shared
libraries. The system root on the host workstation must contain an exact representation of the
libraries on the target root filesystem.

Note
 You must launch the debugger with --target_os command-line option before you can use this
feature. In Eclipse this option is automatically selected when you connect to a target using
gdbserver.

Syntax

show sysroot

show solib-absolute-prefix

Example

Example 2-163 show sysroot, show solib-absolute-prefix

show sysroot # Display system root directory

See also
• set solib-search-path on page 2-181
• set sysroot, set solib-absolute-prefix on page 2-185
• show solib-search-path on page 2-212.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-216
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.171 show trust-ro-sections-for-opcodes

This command displays the current debugger setting that controls whether the debugger can
read opcodes from read-only sections of images on the host workstation rather than from the
target itself.

Syntax

show trust-ro-sections-for-opcodes

Example

Example 2-164 show trust-ro-sections-for-opcodes

show trust-ro-sections-for-opcodes # Display trust-ro-sections-for-opcodes setting

See also
• set trust-ro-sections-for-opcodes on page 2-186.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-217
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.172 show version

This command displays the current version number of the debugger.

Syntax

show version

Example

Example 2-165 show version

show version # Display debugger version number
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-218
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.173 show wildcard-style

This command displays the current wildcard style in use for pattern matching. You can use the
set wildcard-style command to modify this setting.

Syntax

show wildcard-style

Example

Example 2-166 show wildcard-style

show wildcard-style # Display current wildcard style

See also
• Using wildcards on page 2-5
• set wildcard-style on page 2-188
• info classes on page 2-87
• info functions on page 2-92
• info variables on page 2-111
• sharedlibrary on page 2-189.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-219
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.174 silence

This command disables the printing of stop messages for a specific breakpoint.

Syntax

silence [number]

Where:

number Specifies the breakpoint number. This is the number assigned by the debugger
when it is set. You can use info breakpoints to display the number and status of
all breakpoints and watchpoints.

If no number is specified then all stop messages are disabled.

Example

Example 2-167 silence

silence 2 # Disable printing of stop messages for breakpoint 2
silence $ # This applies to the breakpoint whose number is in

the most recently created debugger variable

See also
• set print on page 2-176
• unsilence on page 2-246.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-220
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.175 source

This command loads and runs a script file to control and debug your target.

The following types of scripts are available:

DS-5 DS-5 Debugger commands.

CMM CMM is a scripting language supported by some third-party debuggers. DS-5
supports a small subset of CMM-style commands, sufficient for running small
target initialization scripts.

Jython Jython is a Java implementation of the Python scripting language. It provides
extensive support for data types, conditional execution, loops and organization of
code into functions, classes and modules, as well as access to the standard Jython
libraries. Jython is an ideal choice for larger or more complex scripts.

Syntax

source [/v] filename [args]

Where:

v Specifies verbose output. Script commands are interleaved with the debugger
output.

filename Specifies the script file. The following file extensions must be used to identify the
script type:
.ds for DS-5 scripts
.cmm, .t32 for CMM scripts
.py for Jython scripts.

args Zero or more arguments to pass to the script (only supported for Jython scripts).

Example

Example 2-168 source

source myScripts\myFile.ds # Run DS-5 Debugger commands from myFile.ds
source myScripts\myFile.cmm # Run CMM-style commands from myFile.cmm
source myScripts\myFile.t32 # Run CMM-style commands from myFile.t232
source /v myFile.ds # Run DS-5 Debugger commands from myFile.ds and

display commands interleaved with debugger output
source myScripts\myFile.py # Run a Jython script from file myFile.py
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-221
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.176 start

This command sets a temporary breakpoint, calls the debugger run command and then deletes
the temporary breakpoint. By default, the temporary breakpoint is set at the address of the global
function main(). You can use the set debug-from command to change the breakpoint location. If
the breakpoint location cannot be found then the breakpoint is set at the image entry point.

This command records the ID of the breakpoint in a new debugger variable, $n, where n is a
number. If $n is the last or second-to-last debugger variable, then you can also access the ID
using $ or $$, respectively.

Note
 Control is returned as soon as the target is running. You can use the wait command to block the
debugger from returning control until either the application completes or a breakpoint is hit.

Syntax

start [args]

Where:

args Specifies the command-line arguments that are passed to the main() function in
the application using the argv parameter. The name of the image is always
implicitly passed in argv[0] and it is not necessary to pass this as an argument.

Example

Example 2-169 start

start # Start running the target to the
temporary breakpoint

See also
• continue on page 2-53
• file, symbol-file on page 2-72
• load on page 2-117
• loadfile on page 2-118
• run on page 2-154
• set arm on page 2-159
• set debug-from on page 2-167
• set semihosting on page 2-178
• show debug-from on page 2-200
• show semihosting on page 2-209
• wait on page 2-249.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-222
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.177 stdin

This command is only for use with semihosted applications when using the debugger
interactively in the command-line console.

Note
 This command is not required if you launch the debugger within Eclipse or if you use a telnet
session to interact directly with the application.

Syntax

stdin [input]

Where:

input Specifies semihosting input requested by application code. This must be
terminated by \n to tell the debugger that the input is complete.

You can use this command before the input is required by the application code. All input is
buffered by the debugger until requested and then discarded when the semihosting operation
finishes.

Example

Example 2-170 stdin

stdin 10000\n # Pass the number 10000 to the application
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-223
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.178 step

This command steps through an application at the source level stopping on the first instruction
of each source line including stepping into all function calls. You must compile your code with
debug information to use this command successfully.

You can modify the behavior of this command with the set step-mode command.

Syntax

step [count]

Where:

count Specifies the number of source lines to execute.

Note
 Execution stops immediately if a breakpoint is reached, even if fewer than count

source lines are executed.

Example

Example 2-171 step

step # Execute one source line
step 5 # Execute five source lines

See also
• reverse-step on page 2-151
• finish on page 2-73
• next on page 2-134
• nexti on page 2-135
• nexts on page 2-136
• set step-mode on page 2-182
• show step-mode on page 2-213
• stepi on page 2-225
• steps on page 2-226.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-224
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.179 stepi

This command steps through an application at the instruction level including stepping into all
function calls.

Syntax

stepi [count]

Where:

count Specifies the number of instructions to execute.

Note
 Execution stops immediately if a breakpoint is reached, even if fewer than count

instructions are executed.

Example

Example 2-172 stepi

stepi # Execute one instruction
stepi 5 # Execute five instructions

See also
• reverse-stepi on page 2-152
• next on page 2-134
• nexti on page 2-135
• nexts on page 2-136
• step on page 2-224
• steps on page 2-226.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-225
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.180 steps

This command steps through an application at the source level stopping on the first instruction
of each source statement (for example, statements in a for() loop) including stepping into all
function calls. You must compile your code with debug information to use this command
successfully.

You can modify the behavior of this command with the set step-mode command.

Syntax

steps [count]

Where:

count Specifies the number of source statements to execute.

Note
 Execution stops immediately if a breakpoint is reached, even if fewer than count

source statements are executed.

Example

Example 2-173 steps

steps # Execute one source statement
steps 5 # Execute five source statements

See also
• finish on page 2-73
• next on page 2-134
• nexti on page 2-135
• nexts on page 2-136
• set step-mode on page 2-182
• show step-mode on page 2-213
• step on page 2-224
• stepi on page 2-225.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-226
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.181 stop

stop is an alias for interrupt.

See interrupt, stop on page 2-114.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-227
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.182 symbol-file

symbol-file is an alias for file.

See file, symbol-file on page 2-72.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-228
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.183 tbreak

This command sets an execution breakpoint at a specific location and subsequently deletes it
when the breakpoint is hit. You can also specify a conditional breakpoint by using an if
statement that stops only when the conditional expression evaluates to true.

This command records the ID of the breakpoint in a new debugger variable, $n, where n is a
number. You can use this variable, in a script, to delete or modify the breakpoint behavior. If $n
is the last or second-to-last debugger variable, then you can also access the ID using $ or $$,
respectively.

Note
 Breakpoints that are set within a shared object or kernel module become pending when the
shared object or kernel module is unloaded.

Use set breakpoint to control the automatic breakpoint behavior when using this command.

Syntax

tbreak [-d] [-p] [[filename:]location|*address] [thread|core number…] [if expression]

Where:

d Disables the breakpoint immediately after creation.

p Specifies whether or not the resolution of an unrecognized breakpoint
location results in a pending breakpoint being created.

filename Specifies the file.

location Specifies the location:
line_num is a line number
function is a function name.
label is a label name.
+offset|-offset Specifies the line offset from the current location.

address Specifies the address. This can be either an address or an expression that
evaluates to an address.

number Specifies one or more threads or processors to apply the breakpoint to. You
can use $thread to refer to the current thread. If number is not specified then
all threads are affected.

expression Specifies an expression that is evaluated when the breakpoint is hit.

If no arguments are specified then a breakpoint is set at the current PC.

Example

Example 2-174 tbreak

tbreak *0x8000 # Set breakpoint at address 0x8000
tbreak *0x8000 thread $thread # Set breakpoint at address 0x8000 on

current thread
tbreak *0x8000 thread 1 3 # Set breakpoint at address 0x8000 on

threads 1 and 3
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-229
ID070914 Non-Confidential

DS-5 Debugger Commands
tbreak main # Set breakpoint at address of main()
tbreak SVC_Handler # Set breakpoint at address of label SVC_Handler
tbreak +1 # Set breakpoint at address of next source line
tbreak my_File.c:main # Set breakpoint at address of main() in my_File.c
tbreak my_File.c:8 # Set breakpoint at address of line 8 in my_File.c
tbreak function1 if x>0 # Set conditional breakpoint that stops when x>0

See also
• Using expressions on page 2-4
• advance on page 2-35
• break on page 2-40
• break-script on page 2-42
• break-stop-on-threads, break-stop-on-cores on page 2-45
• break-stop-on-vmid on page 2-46
• clear on page 2-50
• condition on page 2-52
• delete breakpoints on page 2-56
• disable breakpoints on page 2-59
• enable breakpoints on page 2-68
• hbreak on page 2-77
• ignore on page 2-81
• info breakpoints, info watchpoints on page 2-84
• info breakpoints capabilities, info watchpoints capabilities on page 2-85
• resolve on page 2-146
• set arm on page 2-159
• thbreak on page 2-231.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-230
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.184 thbreak

This command sets a hardware execution breakpoint at a specific location and subsequently
deletes it when the breakpoint is hit. You can also specify a conditional breakpoint by using an
if statement that stops only when the conditional expression evaluates to true.

This command records the ID of the breakpoint in a new debugger variable, $n, where n is a
number. You can use this variable, in a script, to delete or modify the breakpoint behavior. If $n
is the last or second-to-last debugger variable, then you can also access the ID using $ or $$,
respectively.

Note
 The number of hardware breakpoints are usually limited. If you run out of hardware breakpoints
then delete or disable one that you are no longer using.

Breakpoints that are set within a shared object or kernel module become pending when the
shared object or kernel module is unloaded.

Syntax

thbreak [-d] [-p] [[filename:]location|*address] [thread|core number…] [vmid vmid] [if
expression]

Where:

d Disables the breakpoint immediately after creation.

p Specifies whether or not the resolution of an unrecognized breakpoint
location results in a pending breakpoint being created.

filename Specifies the file.

location Specifies the location:
line_num is a line number.
function is a function name.
label is a label name.
+offset|-offset Specifies the line offset from the current location.

number Specifies one or more threads or processors to apply the breakpoint to. You
can use $thread to refer to the current thread. If number is not specified then
all threads are affected.

address Specifies the address. This can be either an address or an expression that
evaluates to an address.

vmid Specifies the Virtual Machine ID (VMID) to apply the breakpoint to. This
can be either an integer or an expression that evaluates to an integer.

expression Specifies an expression that is evaluated when the breakpoint is hit.

If no arguments are specified then a hardware breakpoint is set at the next instruction.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-231
ID070914 Non-Confidential

DS-5 Debugger Commands
Example

Example 2-175 thbreak

thbreak *0x8000 # Set breakpoint at address 0x8000
thbreak *0x8000 thread $thread # Set breakpoint at address 0x8000 on

current thread
thbreak *0x8000 thread 1 3 # Set breakpoint at address 0x8000 on

threads 1 and 3
thbreak main # Set breakpoint at address of main()
thbreak SVC_Handler # Set breakpoint at address of label SVC_Handler
thbreak +1 # Set breakpoint at address of next source line
thbreak my_File.c:main # Set breakpoint at address of main(), my_File.c
thbreak my_File.c:8 # Set breakpoint at address of line 8, my_File.c
thbreak function1 if x>0 # Set conditional breakpoint that stops when x>0

See also
• Using expressions on page 2-4
• break on page 2-40
• break-script on page 2-42
• break-stop-on-threads, break-stop-on-cores on page 2-45
• break-stop-on-vmid on page 2-46
• clear on page 2-50
• condition on page 2-52
• delete breakpoints on page 2-56
• disable breakpoints on page 2-59
• enable breakpoints on page 2-68
• hbreak on page 2-77
• ignore on page 2-81
• info breakpoints, info watchpoints on page 2-84
• info breakpoints capabilities, info watchpoints capabilities on page 2-85
• resolve on page 2-146
• tbreak on page 2-229.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-232
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.185 thread, core

This command displays the following information:
• Unique id number assigned by the debugger.
• Thread or processor state. For example, stopped or running.
• Current stack frame including function names and source line numbers.

Syntax

thread [id]

core [id]

Where:

id Specifies the unique thread or processor number. If id is not specified then the
current thread or processor is displayed. You can use info cores, info processes,
or info threads to display the id numbers.

If id is specified then the debugger switches control to that thread or processor before displaying
the information. Registers and call stacks are associated with a particular thread or processor.
This means that switching context also switches the registers and call stack to those belonging
to the current thread or processor.

Example

Example 2-176 thread, core

thread 699 # Set current thread to number 699
core 2 # Set current processor to number 2

See also
• break on page 2-40
• break-stop-on-threads, break-stop-on-cores on page 2-45
• info cores on page 2-88
• info processes on page 2-101
• info threads on page 2-110
• thread apply, core apply on page 2-234.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-233
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.186 thread apply, core apply

This command temporarily switches control to a specific thread or processor to execute a DS-5
Debugger command and then switches back to the original state.

If an error occurs then the debugger stops processing the command and switches back to the
original state.

Syntax

thread apply {all|id} command

core apply {all|id} command

Where:

all Specifies all threads or all processors.

id Specifies the unique thread or processor number. You can use info cores, info
processes, or info threads to display the id numbers.

command Specifies the DS-5 Debugger command that you want to execute.

If all is specified then the command is executed on each thread or processor successively before
switching back.

Example

Example 2-177 thread apply, core apply

thread apply all print /x $pc # Cycle through all threads and print address
in PC register (hexadecimal)

See also
• break on page 2-40
• break-stop-on-threads, break-stop-on-cores on page 2-45
• info cores on page 2-88
• info processes on page 2-101
• info threads on page 2-110
• thread, core on page 2-233.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-234
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.187 trace clear

This command clears the trace on the specified trace capture device. If no device is specified,
clears the trace on all connected trace capture devices.

Note
 Trace capture devices do not support clearing while capture is active.

Syntax

trace clear [trace_capture_device]

Where:

trace_capture_device

Specifies the trace capture device.
If no trace_capture_device is specified, then all trace capture devices are cleared.

Example

Example 2-178 trace clear

trace clear # stops all connected trace capture devices
trace clear ETB # stops trace capture device named ETB

See also
• trace start on page 2-243
• trace stop on page 2-244.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-235
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.188 trace dump

This command dumps trace data to a directory along with metadata that describes the target
trace configuration.

Syntax

trace dump output_path [-option] [trace_capture_device|trace_source]…

Where:

output_path

Specifies the destination of the trace dump. It creates a directory named
output_path. It creates the metadata and trace data within this directory. It
generates an error if this directory already exists.

option

raw
Dumps raw data. Raw data is the captured trace data with trace device
specific formatting. The raw option only applies to trace capture
devices.

no_metadata
Suppresses the metadata.

no_tracedata
Suppresses the trace data.

trace_capture_device

Specifies the trace capture device.

trace_source

Specifies a trace source.

Note
 • If no trace_capture_device or trace_source is specified then all trace capture device

buffers are dumped.

• If a trace capture device is specified and a trace source from that device is also specified
then the trace data for that source will be dumped twice. Once within the complete buffer
for the device and again as a dump of just the specified trace source.

Example

Example 2-179 trace dump

trace dump TraceDump
Creates a directory named TraceDump.
Dumps the buffers of all active trace capture devices into TraceDump
along with the metadata describing them.

trace dump TraceDump ETB
ETB is the name of a trace capture device.
Dumps the contents of the ETB buffer to TraceDump.

trace dump TraceDump DSTREAM -raw
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-236
ID070914 Non-Confidential

DS-5 Debugger Commands
DSTREAM is the name of a trace capture device.
Dumps the contents of the DSTREAM buffer to TraceDump in raw format.

trace dump TraceDump PTM_1
PTM_1 is the name of a trace source.
Extracts the trace data for PTM_1 from the trace device buffer
and dumps it to TraceDump.

trace dump TraceDump ETB -no_metadata
Dumps the contents of the ETB buffer to TraceDump, but does not write the metadata

trace dump TraceDump ETB -no_tracedata
Writes the metadata for ETB in TraceDump, but does not write the trace data.

trace dump TraceDump ETB -no_tracedata -no_metadata
Creates an empty directory named TraceDump.

See also
• trace info on page 2-238
• trace list on page 2-239
• trace report on page 2-240.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-237
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.189 trace info

This command displays detailed information about trace capture devices and trace sources.

Syntax

trace info [-option] [trace_capture_device | trace_source]

Where:

trace_capture_device

Specifies the trace capture device.

trace_source

Specifies the trace capture source.
If no trace_capture_device or trace_source is specified, then all trace capture
devices and sources are displayed.

option

Specifies how information is displayed:
showdisabled displays disabled devices and sources.

Example

Example 2-180 trace info

trace info
Display all the enabled trace capture devices and trace sources.

trace info -showdisabled
Display all trace capture devices and trace sources including disabled ones.

trace info ETB
Display the trace capture device or trace source named ETB.

See also
• trace list on page 2-239
• trace dump on page 2-236
• trace report on page 2-240.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-238
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.190 trace list

This command lists all of the trace capture devices and trace sources.

Syntax

trace list

Example

Example 2-181 trace list

trace list # List all of the trace capture devices and trace sources

See also
• trace info on page 2-238
• trace dump on page 2-236
• trace report on page 2-240.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-239
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.191 trace report

This command creates a trace report for the currently selected core.

Syntax

trace report [option = value]…

Where:

option Specifies the name of a trace report option to set.

value Specifies the new value of the option.

The option names are not case sensitive. The options are:

OUTPUT_PATH
Specifies the directory to save the trace report files in. The default value is the
current working directory.

FILE
Specifies the base file name of the trace report. If trace report generates multiple
files, then each file will have a zero-padded number inserted before the file name
extension. The default value is Trace_Report.txt.

SPLIT_FILE_SIZE
Specifies the maximum file size, in bytes, that trace report generates. If the file
size is larger than SPLIT_FILE_SIZE, trace report generates a new report file.
Specifying -1 indicates that there is no maximum file size, so the trace report is
not split into separate files. The default value is 1073741824.

START
Specifies the position in the trace buffer to start decoding trace from. The default
value is 0, which starts the decoding from the beginning of the buffer.

END
Specifies the position in the trace buffer to stop decoding trace. Specifying -1
indicates that the trace report should decode to the end of the buffer. The default
value is -1.

FORMAT
Specifies the format of the report. Valid values are Comma Separated Values
(CSV) and Tab Separated Values (TSV). The default value is TSV. Format values
are not case sensitive.

SOURCE
Specifies the trace source to report. Execute the trace list command to view the
list of available trace sources. The default is to dump the trace source associated
with the current core.

CORE
Specifies the core to report. Execute the info cores command to view the list of
cores available. This option is analogous to the SOURCE option, except that the
source for the given core will be discovered automatically. You can specify either
a SOURCE or CORE but not both.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-240
ID070914 Non-Confidential

DS-5 Debugger Commands
CONFIG
Specifies a configuration file. This is used to specify decoding details for STM
and ITM trace sources. The default configuration is to decode all Ports, Masters,
and Channels as binary data. This file is created by exporting it from the Event
Viewer Settings dialog.

COLUMNS
Specifies a comma separated list of columns to include in the report. The column
names are not case sensitive.
Valid values for instruction trace sources are:
RECORD_TYPE

The type of the record.
INDEX

The index of the instruction. Canceled instructions do not have an
index.

ADDRESS
The address of the instruction.

OPCODE
The opcode of the instruction, in hexadecimal, with no prefix.

OPCODE_WITH_PREFIX
The opcode of the instruction, in hexadecimal, with a 0x prefix.

CYCLES
The cycle count of the instruction.

DETAIL
For instruction records, this gives the disassembly of the instruction.
For other record types, this gives various information.

FUNCTION
The function of the instruction.

BRANCH
This is true if the instruction is a branch. Otherwise, this is false.

For instruction trace sources, the default is ADDRESS, OPCODE, DETAIL.
Valid values for STM trace sources are:
MASTER

The master number can be 0 to 128.
CHANNEL

The channel number can be 0 to 65535.
TIMESTAMP

An approximate timestamp for each record, if available.
SIZE

Size of the row in bytes.
DATA

The row data.
For STM trace sources, the default is MASTER, CHANNEL, DATA.
Valid values for ITM trace sources are:
PORT

The port number can be 0 to 255.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-241
ID070914 Non-Confidential

DS-5 Debugger Commands
TIMESTAMP
An approximate timestamp for each record, if available.

SIZE
Size of the row in bytes.

DATA
The row data.

For ITM trace sources, the default is PORT, DATA.

HEADERS
Specifies whether to include the column headers in the report. The default value
is false. To include headers, specify true.

Example

Example 2-182 trace report

trace report
Produces a default trace report named "Trace_Report.txt" in the current working
directory.
Instruction trace for the current core is reported.

trace report FILE=MyReport.csv OUTPUT_PATH=C:/files/trace_reports FORMAT=CSV
Produces a comma separated value trace report named "MyReport.csv"
in C:/files/trace_reports.

trace report COLUMNS=RECORD_TYPE,INDEX,ADDRESS,OPCODE_WITH_PREFIX,DETAIL HEADERS=true
Produces a trace report with alternate columns.
The first line of the report will contain the column names.

trace report SOURCE=ITM COLUMNS=PORT,SIZE,DATA HEADERS=true
Produces an ITM trace report with alternate columns.
The first line of the report will contain the column names.

See also
• trace list on page 2-239
• trace info on page 2-238
• trace dump on page 2-236.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-242
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.192 trace start

This command starts the trace capture on the specified trace capture device. If no device is
specified, starts trace capture on all connected trace capture devices.

Syntax

trace start [trace_capture_device]

Where:

trace_capture_device

Specifies the trace capture device.
If no trace_capture_device is specified, then all trace capture devices are started.

Example

Example 2-183 trace start

trace start # starts all connected trace capture devices
trace start ETB # starts trace capture device named ETB

See also
• trace stop on page 2-244
• trace clear on page 2-235.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-243
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.193 trace stop

This command stops the trace capture on the specified trace capture device. If no device is
specified, stops trace capture on all connected trace capture devices.

Syntax

trace stop [trace_capture_device]

Where:

trace_capture_device

Specifies the trace capture device.
If no trace_capture_device is specified, then all trace capture devices are stopped.

Example

Example 2-184 trace stop

trace stop # stops all connected trace capture devices
trace stop ETB # stops trace capture device named ETB

See also
• trace start on page 2-243
• trace clear on page 2-235.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-244
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.194 unset

This command modifies the current debugger settings.

Syntax

unset option

Where:

option Specifies additional options:
substitute-path [path]

Deletes all the substituted source paths. If path is specified
then only the substitution for path is deleted.

semihosting heap-base

Deletes the base address of the heap.
semihosting heap-limit

Deletes the end address of the heap.
semihosting stack-base

Deletes the base address of the stack.
semihosting stack-limit

Deletes the end address of the stack.
semihosting top-of-memory

Deletes the top of memory.

Example

Example 2-185 unset

unset substitute-path # Delete all substitution paths

See also
• set semihosting on page 2-178
• set substitute-path on page 2-184.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-245
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.195 unsilence

This command enables the printing of stop messages for a specific breakpoint.

Syntax

unsilence [number]

Where:

number Specifies the breakpoint number. This is the number assigned by the debugger
when it is set. You can use info breakpoints to display the number and status of
all breakpoints and watchpoints.

If no number is specified then all stop messages are enabled.

Example

Example 2-186 unsilence

unsilence 2 # Enable printing of stop messages for breakpoint 2
unsilence $ # This applies to the breakpoint whose number is in

the most recently created debugger variable

See also
• set print on page 2-176
• silence on page 2-220.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-246
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.196 up

This command moves the current frame pointer up the call stack towards the top frame. It also
displays the function name and source line number for the specified frame.

Note
 Each frame is assigned a number that increases from the bottom frame (zero) through the call
stack to the top frame that is the start of the application.

Syntax

up [offset]

Where:

offset Specifies a frame offset from the current frame pointer in the call stack. If no
offset is specified then the default is one.

Example

Example 2-187 up

up # Move and display information 1 frame up from current frame pointer
up 2 # Move and display information 2 frames up from current frame pointer

See also
• down on page 2-64
• down-silently on page 2-65
• info frame on page 2-91
• info all-registers on page 2-83
• info registers on page 2-102
• info stack, backtrace, where on page 2-107
• finish on page 2-73
• frame on page 2-75
• select-frame on page 2-157
• up-silently on page 2-248.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-247
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.197 up-silently

This command moves the current frame pointer up the call stack towards the top frame.

Note
 Each frame is assigned a number that increases from the bottom frame (zero) through the call
stack to the top frame that is the start of the application.

Syntax

up-silently [offset]

Where:

offset Specifies a frame offset from the current frame pointer in the call stack. If no
offset is specified then the default is one.

Example

Example 2-188 up-silently

up-silently # Move 1 frame up from current frame pointer
up-silently 2 # Move 2 frames up from current frame pointer

See also
• down on page 2-64
• down-silently on page 2-65
• info frame on page 2-91
• info all-registers on page 2-83
• info registers on page 2-102
• info stack, backtrace, where on page 2-107
• finish on page 2-73
• frame on page 2-75
• select-frame on page 2-157
• up on page 2-247.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-248
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.198 wait

This command instructs the debugger to wait until the target stops. For example, when the
application completes or a breakpoint is hit. ARM recommends that you specify a time-out
parameter to generate an error if the time-out value is reached.

Syntax

wait time-out[ms | s]

Where:

time-out Specifies the period of time.

ms Specifies the time in milliseconds. This is the default.

s Specifies the time in seconds.

Example

Example 2-189 wait

wait 1000 # Wait or time-out after 1 second
wait 0.5s # Wait or time-out after half a second

See also
• continue on page 2-53
• run on page 2-154
• start on page 2-222.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-249
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.199 watch

This command sets a watchpoint for a data symbol. The debugger stops the target when the
memory at the specified address is written.

This command records the ID of the watchpoint in a new debugger variable, $n, where n is a
number. You can use this variable, in a script, to delete or modify the watchpoint behavior. If $n
is the last or second-to-last debugger variable, then you can also access the ID using $ or $$,
respectively.

Note
 Watchpoints are only supported on scalar values.

Some targets do not support watchpoints. Currently you can only set a watchpoint on:
• a hardware target using a debug hardware agent
• Linux applications using gdbserver or undodb-server.

The availability of watchpoints depends on the hardware target. In the case of Linux application
debug, the availability of watchpoints also depends on the Linux kernel version and
configuration.

The address of the instruction that triggers the watchpoint might not be the address shown in the
PC register. This is because of pipelining effects.

Syntax

watch [-d] [-p] {[filename:]symbol|*address} [vmid vmid]

Where:

d Disables the watchpoint immediately after creation.

p Specifies whether or not the resolution of an unrecognized watchpoint
location results in a pending watchpoint being created.

filename Specifies the file.

symbol Specifies a global/static data symbol. For arrays or structs you must
specify the element or member.

address Specifies the address. This can be either an address or an expression that
evaluates to an address.

vmid Specifies the Virtual Machine ID (VMID) to apply the breakpoint to. This
can be either an integer or an expression that evaluates to an integer.

Example

Example 2-190 watch

watch myVar1 # Set write watchpoint on myVar1
watch *0x80D4 # Set write watchpoint on address 0x80D4

See also
• Using expressions on page 2-4
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-250
ID070914 Non-Confidential

DS-5 Debugger Commands
• awatch on page 2-37
• break-stop-on-threads, break-stop-on-cores on page 2-45
• break-stop-on-vmid on page 2-46
• clearwatch on page 2-51
• info breakpoints, info watchpoints on page 2-84
• info breakpoints capabilities, info watchpoints capabilities on page 2-85
• rwatch on page 2-155.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-251
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.200 whatis

This command displays the data type of an expression.

Syntax

whatis [expression]

Where:

expression Specifies an expression. If no expression is specified then the last
expression is repeated.

Note
 This command does not execute the expression.

Example

Example 2-191 whatis

whatis 4+4 # Display data type of expression result
whatis myVar # Display data type of variable (myVar)

See also

• Using expressions on page 2-4.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-252
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.201 where

where is an alias for info stack.

See info stack, backtrace, where on page 2-107.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-253
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.202 while

This command enables you to write scripts with conditional loops that execute debugger
commands.

Syntax

while condition
...
optional_commands
...

end

Where:

condition Specifies a conditional expression. Follow the while statement with one or more
debugger commands that execute repeatedly while condition evaluates to true.

optional_commands

Specifies optional commands that can also be used inside the while statement to
change the loop behavior:
loop_break Exit the loop.
loop_continue Skip the remaining commands and return to the start of the

loop.

Enter each debugger command on a new line and terminate the while command by using the end
command.

Example

Example 2-192 while

Define a while loop containing commands to conditionally execute
myVar is a variable in the application code
while myVar<10

step
wait
x
set myVar++

end

See also
• define on page 2-55
• document on page 2-63
• end on page 2-70
• if on page 2-80
• Using expressions on page 2-4.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-254
ID070914 Non-Confidential

DS-5 Debugger Commands
2.3.203 x

This command displays the content of memory at a specific address.

Syntax

x [/flag]… [address]

Where:

flag Specifies additional flags:
count Specifies the number of values to display. If none specified then

the default is 1.
Size of memory:
b 1 byte
h 2 bytes
w 4 bytes (default)
g 8 bytes.
Output format:
x hexadecimal (casts the value to an unsigned integer prior to

printing in hexadecimal)
d signed decimal
u unsigned decimal
o octal
t binary
a absolute hexadecimal address
c character
f floating-point
i assembler instruction.

Note
 If no output format is specified then the initial default is x, unless preceded

by another command using output format options in which case the same
format is retained.

address Specifies the address. This can be either an address, a symbol name, or an
expression that evaluates to an address. If no address is specified then the
default value is used. Some commands that access memory can set this
default value. For example, x, print, output and info breakpoints.

Note
 This command sets a default address variable to the location after the last

accessed address.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-255
ID070914 Non-Confidential

DS-5 Debugger Commands
Example

Example 2-193 x

x 0x8000 # Display memory at address 0x8000
x/3wx 0x8000 # Display 3 words of memory from address 0x8000 (hexadecimal)
x/4b $SP # Display 4 bytes of memory from address in SP register
x/4i $PC # Display 4 instructions from address in PC register
x /h 0x8000 # Read a half-word from address 0x8000

See also
• Using expressions on page 2-4
• cache list on page 2-47
• disassemble on page 2-61
• info breakpoints, info watchpoints on page 2-84
• memory set on page 2-126
• memory set_typed on page 2-128
• output on page 2-138
• print, inspect on page 2-141
• set arm on page 2-159.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 2-256
ID070914 Non-Confidential

Chapter 3
CMM-Style Commands Supported by the Debugger

The following topics describe the CMM-style commands:
• General syntax and usage of CMM-style commands on page 3-2
• CMM-style commands listed in groups on page 3-3
• CMM-style commands listed in alphabetical order on page 3-6.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 3-1
ID070914 Non-Confidential

CMM-Style Commands Supported by the Debugger
3.1 General syntax and usage of CMM-style commands
CMM-style commands are a small subset of commands, sufficient for running target
initialization scripts. CMM is a scripting language supported by some third-party debuggers.

Note
 For full debug support ARM recommends that you use the DS-5 Debugger commands. See
Chapter 2 DS-5 Debugger Commands for more information.

Syntax of CMM-style commands
Many commands accept arguments and flags using the following syntax:
command [argument] [/flag]…

A flag acts as an optional switch and is introduced with a forward slash character.
Where a command supports flags, the flags are described as part of the command
syntax.

Note
 Commands are not case sensitive. Abbreviations are underlined.

Usage of CMM-style commands
The commands you submit to the debugger must conform to the following rules:
• Each command line can contain only one debugger command.
• When referring to symbols, you must use the same case as the source code.
To execute CMM-style commands you must create a debugger script file
containing the CMM-style commands and then use the DS-5 Debugger source
command to run the script.
Many commands can be abbreviated. For example, break.set can be abbreviated
to b.s. The syntax definition for each command shows how it can be abbreviated
by underlining it for example, break.set.
In the syntax definition of each command:
• square brackets [...] enclose optional parameters
• braces {...} enclose required parameters
• a vertical pipe | indicates alternatives from which you must choose one
• parameters that can be repeated are followed by an ellipsis (...).
Do not type square brackets, braces, or the vertical pipe. Replace parameters in
italics with the value you want. When you supply more than one parameter, use
the separator as shown in the syntax definition for each command. If a parameter
is a name that includes spaces, enclose it in double quotation marks.
Descriptive comments can be placed either at the end of a command or on a
separate line. You can use either // or ; to identify a descriptive comment.

3.1.1 Using expressions

Some commands accept expressions. In an expression you can access the content of registers
and variables by using a function-like notation, for example:

print "The result of my expression is: " v.value(myVar)+4+r(R0)

where v.value() can be used to access the content of a variable and r() can be used to access
the content of a register.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 3-2
ID070914 Non-Confidential

CMM-Style Commands Supported by the Debugger
3.2 CMM-style commands listed in groups
The supported CMM-style commands grouped according to specific tasks are:
• Controlling breakpoints
• Controlling data and display settings
• Controlling images, symbols, and libraries on page 3-4
• Controlling target execution and connections on page 3-4
• Displaying the call stack and associated variables on page 3-4
• Controlling the debugger and program information on page 3-4
• Supporting commands on page 3-5.

3.2.1 Controlling breakpoints

List of commands:

break.delete on page 3-8
Deletes a specific breakpoint.

break.disable on page 3-9
Disables a specific breakpoint.

break.enable on page 3-10
Enables a specific breakpoint.

break.set on page 3-11
Sets a breakpoint at a specific address.

Type help followed by a command name for more information on a specific command.

3.2.2 Controlling data and display settings

List of commands:

data.dump on page 3-12
Displays data at a specific address or address range.

data.set on page 3-15
Writes data to memory.

print on page 3-18
Displays the output of an expression.

register.set on page 3-19
Sets the value of a register.

var.global on page 3-23
Displays all global variables.

var.local on page 3-24
Displays all local variables.

var.print on page 3-26
Displays the output of an expression.

Type help followed by a command name for more information on a specific command.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 3-3
ID070914 Non-Confidential

CMM-Style Commands Supported by the Debugger
3.2.3 Controlling images, symbols, and libraries

List of commands:

data.load.binary on page 3-13
Loads a binary image file.

data.load.elf on page 3-14
Loads an ELF image file.

Type help followed by a command name for more information on a specific command.

3.2.4 Controlling target execution and connections

List of commands:

break on page 3-7
Stops running the target.

go on page 3-16
Starts running the target.

system.down on page 3-20
Disconnects the debugger from the target.

system.up on page 3-21
Connects to the specified target.

Type help followed by a command name for more information on a specific command.

3.2.5 Displaying the call stack and associated variables

List of commands:

var.frame on page 3-22
Displays the stack frame.

Type help followed by a command name for more information on a specific command.

3.2.6 Controlling the debugger and program information

List of commands:

var.new on page 3-25
Creates a new script variable and zero-initializes it.

var.set on page 3-27
Sets and displays the value of an existing script variable.

Type help followed by a command name for more information on a specific command.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 3-4
ID070914 Non-Confidential

CMM-Style Commands Supported by the Debugger
3.2.7 Supporting commands

List of commands:

help on page 3-17
Displays help information for a specific command or a group of
commands listed according to specific debugging tasks.

wait on page 3-28
Pauses the execution of a script for a specified period of time.

Type help followed by a command name for more information on a specific command.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 3-5
ID070914 Non-Confidential

CMM-Style Commands Supported by the Debugger
3.3 CMM-style commands listed in alphabetical order
The CMM-style commands in alphabetical order are:
• break on page 3-7
• break.delete on page 3-8
• break.disable on page 3-9
• break.enable on page 3-10
• break.set on page 3-11
• data.dump on page 3-12
• data.load.binary on page 3-13
• data.load.elf on page 3-14
• data.set on page 3-15
• go on page 3-16
• help on page 3-17
• print on page 3-18
• register.set on page 3-19
• system.down on page 3-20
• system.up on page 3-21
• var.frame on page 3-22
• var.global on page 3-23
• var.local on page 3-24
• var.new on page 3-25
• var.print on page 3-26
• var.set on page 3-27
• wait on page 3-28.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 3-6
ID070914 Non-Confidential

CMM-Style Commands Supported by the Debugger
3.3.1 break

This command stops running the target.

Syntax

break

Example

Example 3-1 break

break ; Stop running the target

See also
• go on page 3-16
• system.down on page 3-20
• system.up on page 3-21.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 3-7
ID070914 Non-Confidential

CMM-Style Commands Supported by the Debugger
3.3.2 break.delete

This command deletes a breakpoint at the specified address.

Syntax

break.delete expression

Where:
expression Specifies the breakpoint address. This can be either an address, a symbol name,

or an expression that evaluates to an address. You can use the syntax symbol\line
to refer to a specific source line offset from a symbol.

Example

Example 3-2 break.delete

break.delete 0x8000 ; Delete breakpoint at address 0x8000
break.delete main ; Delete breakpoint at address of main()
break.delete main+4 ; Delete breakpoint 4 bytes after address of main()
break.delete main\2 ; Delete breakpoint 2 source lines after address of main()

See also
• break.disable on page 3-9
• break.enable on page 3-10
• break.set on page 3-11.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 3-8
ID070914 Non-Confidential

CMM-Style Commands Supported by the Debugger
3.3.3 break.disable

This command disables a breakpoint at the specified address.

Syntax

break.disable expression

Where:

expression Specifies the breakpoint address. This can be either an address, a symbol name,
or an expression that evaluates to an address. You can use the syntax symbol\line
to refer to a specific source line offset from a symbol.

Example

Example 3-3 break.disable

break.disable 0x8000 ; Disable breakpoint at address 0x8000
break.disable main ; Disable breakpoint at address of main()
break.disable main+4 ; Disable breakpoint 4 bytes after address of main()
break.disable main\2 ; Disable breakpoint 2 source lines after address of main()

See also
• break.delete on page 3-8
• break.enable on page 3-10
• break.set on page 3-11.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 3-9
ID070914 Non-Confidential

CMM-Style Commands Supported by the Debugger
3.3.4 break.enable

This command enables a breakpoint at the specified address.

Syntax

break.enable expression

Where:

expression Specifies the breakpoint address. This can be either an address, a symbol name,
or an expression that evaluates to an address. You can use the syntax symbol\line
to refer to a specific source line offset from a symbol.

Example

Example 3-4 break.enable

break.enable 0x8000 ; Enable breakpoint at address 0x8000
break.enable main ; Enable breakpoint at address of main()
break.enable main+4 ; Enable breakpoint 4 bytes after address of main()
break.enable main\2 ; Enable breakpoint 2 source lines after address of main()

See also
• break.delete on page 3-8
• break.disable on page 3-9
• break.set on page 3-11.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 3-10
ID070914 Non-Confidential

CMM-Style Commands Supported by the Debugger
3.3.5 break.set

This command sets a software breakpoint at the specified address.

Syntax

break.set expression [/flag]

Where:

expression Specifies the breakpoint address. This can be either an address, a symbol name,
or an expression that evaluates to an address. You can use the syntax symbol\line
to refer to a specific source line offset from a symbol.

flag Specifies an additional flag:
disable Disables the breakpoint immediately after setting it.

Example

Example 3-5 break.set

break.set 0x8000 ; Set breakpoint at address 0x8000
break.set main ; Set breakpoint at address of main()
break.set main+4 ; Set breakpoint 4 bytes after address of main()
break.set main\2 ; Set breakpoint 2 source lines after address of main()

See also
• break.delete on page 3-8
• break.disable on page 3-9
• break.enable on page 3-10.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 3-11
ID070914 Non-Confidential

CMM-Style Commands Supported by the Debugger
3.3.6 data.dump

This command displays data at a specific address or address range. By default, the display size
is 0x20 bytes of data unless an address range is specified.

Syntax

data.dump expression [/flag]…

Where:

expression Specifies the address or address range. This can be either an address, an address
range, or an expression that evaluates to an address. You can use -- to specify an
address range and ++ to specify an offset from an address.

flag Specifies additional flags:
byte Formats the data as 1 byte
word Formats the data as 2 bytes
long Formats the data as 4 bytes
quad Formats the data as 8 bytes
width Specifies the number of columns
nohex Suppresses the hexadecimal output
noascii Suppresses the ASCII output
le Formats the data as little endian
be Formats the data big endian.
If no endianness is specified then the debugger looks for information at the start
address of the loaded image otherwise little endian is used.

Example

Example 3-6 data.dump

data.dump 0x8000 ; Display 0x20 bytes (default) from address 0x8000
data.dump 0x8000--0x8170 ; Display data in address range 0x8000--0x8170
data.dump r(PC)++0x100 ; Display 0x100 bytes from address in PC register
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 3-12
ID070914 Non-Confidential

CMM-Style Commands Supported by the Debugger
3.3.7 data.load.binary

This command loads a binary image file.

Note
 Loading a binary image does not change the program counter or any symbols that are currently
loaded.

Syntax

data.load.binary filename expression

Where:

filename Specifies the image file.

expression Specifies the load address. This can be either an address, a symbol name, or an
expression that evaluates to an address. If none specified then the default is 0x0.

Example

Example 3-7 data.load.binary

data.load.binary "myFile.bin" ; Load image at address 0x0
data.load.binary "../my directory/myFile.bin" ; Load image at address 0x0
data.load.binary "myFile.bin" 0x8000 ; Load image at address 0x8000

See also
• data.load.elf on page 3-14.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 3-13
ID070914 Non-Confidential

CMM-Style Commands Supported by the Debugger
3.3.8 data.load.elf

This command loads an ARM Executable and Linking Format (ELF) file. This format is
described in the ARM ELF specification and uses the .axf file extension.

Note
 Loading an ELF image sets the program counter to the entry point of the image, if present.

Syntax

data.load.elf filename [/flag]…

Where:

filename Specifies the image file.

flag Specifies additional flags:
nocode Do not load code and data to the target.
nosymbol Do not load symbols.
noclear Symbol table is not cleared before loading the image.
noreg Do not set register values, for example, PC and status registers.

Default

By default, this command loads code and data to the target, clears the existing symbol table
before loading the new symbols into the symbol table, and sets the registers.

You must use additional flags if you want to modify the default options. For example, you must
use /noclear if you want to load the symbols from multiple images.

Example

Example 3-8 data.load.elf

data.load.elf "myFile.axf" ; Load image and symbols
data.load.elf "../my directory/myFile.axf" ; Load image and symbols
data.load.elf "myFile.axf" /nosymbol ; Load image without symbols

See also
• data.load.binary on page 3-13.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 3-14
ID070914 Non-Confidential

CMM-Style Commands Supported by the Debugger
3.3.9 data.set

This command writes data to memory.

Syntax

data.set address [%format] expression [/flag]…

Where:

address Specifies the address or address range. This can be either an address, an address
range, or an expression that evaluates to an address. You can use -- to specify an
address range.

format Specifies additional formatting:
byte Formats the data as 1 byte
word Formats the data as 2 bytes
long Formats the data as 4 bytes
quad Formats the data as 8 bytes
float.ieee Formats the data as a 4 byte floating-point.
float.ieeedbl Formats the data as an 8 byte floating-point.
le Formats the data as little endian
be Formats the data big endian.
If no endianness is specified then the debugger searches for this information in
the loaded image otherwise little endian is used.

expression Specifies the data.

flag Specifies additional flags:
verify Verifies the write operation.
compare Compares the data in memory but does not write to memory.

Example

Example 3-9 data.set

data.set r(PC) 0x10 ; Write 0x10 to address in PC register
data.set 0x100--0x3ff 0x0 ; Zero initialize memory
data.set 0x8000--0x100 %w 0x2000 /compare ; Compare data in memory with 0x2000
data.set 0x100--0x3ff 0x0 /verify ; Zero initialize memory and verify
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 3-15
ID070914 Non-Confidential

CMM-Style Commands Supported by the Debugger
3.3.10 go

This command starts running the device.

Syntax

go

Example

Example 3-10 go

go ; Start running the device

See also
• break on page 3-7
• system.down on page 3-20
• system.up on page 3-21.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 3-16
ID070914 Non-Confidential

CMM-Style Commands Supported by the Debugger
3.3.11 help

This command displays help information for a specific command or a group of commands listed
according to specific debugging tasks.

Syntax

help [command|group]

Where:

command Specifies an individual command.

group Specifies a group name for specific debugging tasks:
all Displays all the commands.
breakpoints Controlling breakpoints.
data Controlling data and display settings.
files Controlling images, symbols and libraries.
running Controlling target execution and stepping.
stack Displaying the call stack and associated variables.
status Controlling the default settings and program status

information.
support Additional supporting commands.

Example

Example 3-11 help

help var.frame # Display help information for var.frame command
help print # Display help information for print command
help breakpoints # Display group of breakpoint commands
help status # Display group of status commands
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 3-17
ID070914 Non-Confidential

CMM-Style Commands Supported by the Debugger
3.3.12 print

This command concatenates the results of one or more expressions.

Syntax

print [%printing_format] expression…

Where:

printing_format Specifies either [ascii | binary | decimal | hex]. If none specified then the
default is decimal format.

expression Specifies an expression that is evaluated and the result is returned.

Example

Example 3-12 print

print %h r(R0) ; Display R0 register in hexadecimal
print %d r(PC) ; Display PC register in decimal
print 4+4 ; Display result of expression in decimal
print "Result is " 4+4 ; Display string and result of expression
print "Value is: " myVar ; Display string and variable value
print v.value(myVar) ; Display variable value
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 3-18
ID070914 Non-Confidential

CMM-Style Commands Supported by the Debugger
3.3.13 register.set

This command sets the value of a register.

Syntax

register.set name expression

Where:

name Specifies the name of a register.

expression Specifies an expression that is evaluated and the result assigned to a register.

Example

Example 3-13 register.set

register.set R0 15 ; Set value of R0 register to 15
register.set R0 (10*10) ; Set value of R0 register to result of expression
register.set R0 r(R0)+1 ; Increment the value of R0 register
register.set PC main ; Set value of PC register to address of main()
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 3-19
ID070914 Non-Confidential

CMM-Style Commands Supported by the Debugger
3.3.14 system.down

This command disconnects the debugger from the target.

Syntax

system.down

Example

Example 3-14 system.down

system.down ; Disconnect from target

See also
• break on page 3-7
• go on page 3-16
• system.up on page 3-21.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 3-20
ID070914 Non-Confidential

CMM-Style Commands Supported by the Debugger
3.3.15 system.up

This command connects to the specified target.

Syntax

system.up

Example

Example 3-15 system.up

system.up ; Connect to target

See also
• break on page 3-7
• go on page 3-16
• system.down on page 3-20.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 3-21
ID070914 Non-Confidential

CMM-Style Commands Supported by the Debugger
3.3.16 var.frame

This command displays the stack frame.

Syntax

var.frame [%printing_format] [/flag]…

Where:

printing_format Specifies either [ascii | binary | decimal | hex]. If none specified then the
default is decimal format.

flag Specifies additional flags:
novar Disables the display of variables.
nocaller Disables the display of function callers. This is the default.
args Displays arguments. This is the default.
locals Displays local variables.
caller Displays function callers.
json Specifies an output option to display messages in JSON format.

Example

Example 3-16 var.frame

var.frame /locals /caller ; Display variables and function callers
var.frame %hex /locals /caller ; Display variables and callers in hexadecimal
var.frame /novar ; Do not display any variables
var.frame /json ; Display stack frame in JSON format
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 3-22
ID070914 Non-Confidential

CMM-Style Commands Supported by the Debugger
3.3.17 var.global

This command displays all global variables.

Syntax

var.global [%printing_format] [/flag]

Where:

printing_format Specifies either [ascii | binary | decimal | hex]. If none specified then the
default is decimal format.

flag Specifies an additional flag:
json Specifies an output option to display messages in JSON format.

Example

Example 3-17 var.global

var.global ; Display all global variables
var.global %h ; Display all global variables in hexadecimal

See also
• var.local on page 3-24
• var.print on page 3-26.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 3-23
ID070914 Non-Confidential

CMM-Style Commands Supported by the Debugger
3.3.18 var.local

This command displays all local variables in a function.

Syntax

var.local [%printing_format] [/flag]

Where:

printing_format Specifies either [ascii | binary | decimal | hex]. If none specified then the
default is decimal format.

flag Specifies an additional flag:
json Specifies an output option to display messages in JSON format.

Example

Example 3-18 var.local

var.local ; Display all local variables
var.local %h ; Display all local variables in hexadecimal

See also
• var.global on page 3-23
• var.print on page 3-26.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 3-24
ID070914 Non-Confidential

CMM-Style Commands Supported by the Debugger
3.3.19 var.new

This command creates a new script variable and zero-initializes it. Script variables are for use
at runtime only.

Syntax

var.new \name

Where:

name Specifies the name of a script variable.

Example

Example 3-19 var.new

var.new \myVar ; Create new script variable

See also
• var.set on page 3-27.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 3-25
ID070914 Non-Confidential

CMM-Style Commands Supported by the Debugger
3.3.20 var.print

This command concatenates the results of one or more expressions.

Syntax

var.print [%printing_format] expression… [/flag]

Where:

printing_format Specifies either [ascii | binary | decimal | hex]. If none specified then the
default is decimal format.

expression Specifies an expression that is evaluated and the result is returned. You can
use script variables in an expression by preceding the name with a
backslash. Script variables are for use at runtime only.

flag Specifies an additional flag:
json Specifies an output option to display messages in JSON format.

Example

Example 3-20 var.print

var.print "Value is: " myVar1 ; Display string and myVar1
var.print myVar1 " and " myVar2 ; Display concatenated string/variables
var.print %h myVar1 ; Display myVar1 in hexadecimal
var.print \myVar ; Display value of script variable
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 3-26
ID070914 Non-Confidential

CMM-Style Commands Supported by the Debugger
3.3.21 var.set

This command sets and displays the value of an existing script variable. It can also display the
result of an expression. Script variables are for use at runtime only.

Syntax

var.set [\name=]expression

Where:

name Specifies the name of an existing script variable.

Note
 If you specify the name of an existing script variable then you must use this

command after the var.new command.

expression Specifies an expression that is evaluated and the result is returned. If you specify
an expression with the name option then the value of that script variable is also
updated with the result of the expression.

Example

Example 3-21 var.set

var.set \myVar ; Display value of script variable
var.set \myVar=3+3 ; Set value of script variable and display result
var.set 3+3 ; Display result

See also
• var.new on page 3-25
• var.print on page 3-26.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 3-27
ID070914 Non-Confidential

CMM-Style Commands Supported by the Debugger
3.3.22 wait

This command pauses the execution of a script for a specified period of time.

Syntax

wait number{m|s}

Where:

number Specifies the period of time.

m Specifies the time in milliseconds.

s Specifies the time in seconds.

Example

Example 3-22 wait

wait 1s ; Wait one second
wait 0.5s ; Wait half a second
wait 1000m ; Wait one thousand milliseconds
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. 3-28
ID070914 Non-Confidential

Appendix A
GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document “free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it can
be used for any textual work, regardless of subject matter or whether it is published as a printed
book. We recommend this License principally for works whose purpose is instruction or
reference.

1. APPLICABILITY AND DEFINITIONS
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. A-1
ID070914 Non-Confidential

GNU Free Documentation License
This License applies to any manual or other work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a notice
grants a world-wide, royalty-free license, unlimited in duration, to use that work under the
conditions stated herein. The "Document", below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as "you". You accept the license if you copy,
modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document's
overall subject (or to related matters) and contains nothing that could fall directly within that
overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of text. A
copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or PDF designed for human modification.
Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word processors for output
purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, "Title Page" means the text near the most
prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is
precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another
language. (Here XYZ stands for a specific section name mentioned below, such as
"Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of
such a section when you modify the Document means that it remains a section "Entitled XYZ"
according to this definition.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. A-2
ID070914 Non-Confidential

GNU Free Documentation License
The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included by
reference in this License, but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures to
obstruct or control the reading or further copying of the copies you make or distribute. However,
you may accept compensation in exchange for copies. If you distribute a large enough number
of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document's license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers
must also clearly and legibly identify you as the publisher of these copies. The front cover must
present the full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as long as they
preserve the title of the Document and satisfy these conditions, can be treated as verbatim
copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or
with each Opaque copy a computer-network location from which the general network-using
public has access to download using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the latter option, you must take
reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated location until at least one year
after the last time you distribute an Opaque copy (directly or through your agents or retailers)
of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. A-3
ID070914 Non-Confidential

GNU Free Documentation License
You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

• Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the
History section of the Document). You may use the same title as a previous version if the
original publisher of that version gives permission.

• List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of the
principal authors of the Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

• State on the Title page the name of the publisher of the Modified Version, as the publisher.

• Preserve all the copyright notices of the Document.

• Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

• Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form shown
in the Addendum below.

• Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document's license notice.

• Include an unaltered copy of this License.

• Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled "History" in the Document, create one stating the
title, year, authors, and publisher of the Document as given on its Title Page, then add an
item describing the Modified Version as stated in the previous sentence.

• Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the "History"
section. You may omit a network location for a work that was published at least four years
before the Document itself, or if the original publisher of the version it refers to gives
permission.

• For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

• Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

• Delete any section Entitled "Endorsements". Such a section may not be included in the
Modified Version.

• Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with
any Invariant Section.

• Preserve any Warranty Disclaimers.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. A-4
ID070914 Non-Confidential

GNU Free Documentation License
If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version's license notice. These titles must be distinct from
any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements
of your Modified Version by various parties—for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the
terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and list
them all as Invariant Sections of your combined work in its license notice, and that you preserve
all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the
end of it, in parentheses, the name of the original author or publisher of that section if known,
or else a unique number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original
documents, forming one section Entitled "History"; likewise combine any sections Entitled
"Acknowledgements", and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single
copy that is included in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
"aggregate" if the copyright resulting from the compilation is not used to limit the legal rights
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. A-5
ID070914 Non-Confidential

GNU Free Documentation License
of the compilation's users beyond what the individual works permit. When the Document is
included in an aggregate, this License does not apply to the other works in the aggregate which
are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one half of the entire aggregate, the Document's Cover Texts may
be placed on covers that bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must appear on printed covers
that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant Sections. You may
include a translation of this License, and all the license notices in the Document, and any
Warranty Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a disagreement
between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
for under this License. Any other attempt otherwise to copy, modify, sublicense, or distribute
the Document is void, and will automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License "or any later version" applies to it, you have
the option of following the terms and conditions either of that specified version or of any later
version that has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose any version ever
published (not as a draft) by the Free Software Foundation.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. A-6
ID070914 Non-Confidential

GNU Free Documentation License
A.1 ADDENDUM: How to use this License for your documents
To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License, Version
1.2 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
"with...Texts." line with this:

with the Invariant Sections being list their titles, with the Front-Cover Texts
being list, and with the Back-Cover Texts being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.
ARM DUI 0452S Copyright © 2010-2014 ARM. All rights reserved. A-7
ID070914 Non-Confidential

	ARM DS-5 Debugger Command Reference
	Contents
	1: Conventions and feedback
	2: DS-5 Debugger Commands
	2.1 General syntax and usage of DS-5 Debugger commands
	2.1.1 Using special characters and environment variables in paths
	2.1.2 Using expressions
	2.1.3 Using wildcards
	2.1.4 Using regular expressions in the C expression parser
	2.1.5 Using the C++ scoping resolution operator
	2.1.6 printf() style format string

	2.2 DS-5 Debugger commands listed in groups
	2.2.1 Breakpoints and watchpoints
	2.2.2 Execution control
	2.2.3 Tracing
	2.2.4 Scripts
	2.2.5 Call stack
	2.2.6 Operating System (OS)
	2.2.7 Files
	2.2.8 Data
	2.2.9 Memory
	2.2.10 Cache
	2.2.11 Registers
	2.2.12 MMU
	2.2.13 MMU list
	2.2.14 Display
	2.2.15 Information
	2.2.16 Log commands
	2.2.17 Set commands
	2.2.18 Show commands
	2.2.19 Flash commands
	2.2.20 Supporting commands

	2.3 DS-5 Debugger commands listed in alphabetical order
	2.3.1 add-symbol-file
	2.3.2 advance
	2.3.3 append
	2.3.4 awatch
	2.3.5 backtrace
	2.3.6 break
	2.3.7 break-script
	2.3.8 break-stop-on-cores
	2.3.9 break-stop-on-threads, break-stop-on-cores
	2.3.10 break-stop-on-vmid
	2.3.11 cache list
	2.3.12 cache print
	2.3.13 cd
	2.3.14 clear
	2.3.15 clearwatch
	2.3.16 condition
	2.3.17 continue
	2.3.18 core
	2.3.19 define
	2.3.20 delete breakpoints
	2.3.21 delete memory
	2.3.22 directory
	2.3.23 disable breakpoints
	2.3.24 disable memory
	2.3.25 disassemble
	2.3.26 discard-symbol-file
	2.3.27 document
	2.3.28 down
	2.3.29 down-silently
	2.3.30 dump
	2.3.31 echo
	2.3.32 enable breakpoints
	2.3.33 enable memory
	2.3.34 end
	2.3.35 exit
	2.3.36 file, symbol-file
	2.3.37 finish
	2.3.38 flash load
	2.3.39 frame
	2.3.40 handle
	2.3.41 hbreak
	2.3.42 help
	2.3.43 if
	2.3.44 ignore
	2.3.45 info address
	2.3.46 info all-registers
	2.3.47 info breakpoints, info watchpoints
	2.3.48 info breakpoints capabilities, info watchpoints capabilities
	2.3.49 info capabilities
	2.3.50 info classes
	2.3.51 info cores
	2.3.52 info files, info target
	2.3.53 info flash
	2.3.54 info frame
	2.3.55 info functions
	2.3.56 info handle
	2.3.57 info inst-sets
	2.3.58 info locals
	2.3.59 info members
	2.3.60 info memory
	2.3.61 info os-log
	2.3.62 info os-modules
	2.3.63 info os-version
	2.3.64 info processes
	2.3.65 info registers
	2.3.66 info semihosting
	2.3.67 info sharedlibrary
	2.3.68 info signals, info handle
	2.3.69 info sources
	2.3.70 info stack, backtrace, where
	2.3.71 info symbol
	2.3.72 info target
	2.3.73 info threads
	2.3.74 info variables
	2.3.75 info watchpoints
	2.3.76 inspect
	2.3.77 interrupt, stop
	2.3.78 list
	2.3.79 load
	2.3.80 loadfile
	2.3.81 log config
	2.3.82 log file
	2.3.83 memory
	2.3.84 memory auto
	2.3.85 memory debug-cache
	2.3.86 memory fill
	2.3.87 memory set
	2.3.88 memory set_typed
	2.3.89 mmu list tables
	2.3.90 mmu list translations
	2.3.91 mmu print
	2.3.92 mmu translate
	2.3.93 newvar
	2.3.94 next
	2.3.95 nexti
	2.3.96 nexts
	2.3.97 nosharedlibrary
	2.3.98 output
	2.3.99 pause
	2.3.100 preprocess
	2.3.101 print, inspect
	2.3.102 pwd
	2.3.103 quit, exit
	2.3.104 reload-symbol-file
	2.3.105 reset
	2.3.106 resolve
	2.3.107 restore
	2.3.108 reverse-continue
	2.3.109 reverse-next
	2.3.110 reverse-nexti
	2.3.111 reverse-step
	2.3.112 reverse-stepi
	2.3.113 reverse-step-out
	2.3.114 run
	2.3.115 rwatch
	2.3.116 select-frame
	2.3.117 set
	2.3.118 set arm
	2.3.119 set auto-solib-add
	2.3.120 set backtrace
	2.3.121 set blocking-run-control
	2.3.122 set breakpoint
	2.3.123 set case-insensitive-source-matching
	2.3.124 set debug-agent
	2.3.125 set debug-from
	2.3.126 set directories
	2.3.127 set dtsl-options
	2.3.128 set endian
	2.3.129 set escape-strings
	2.3.130 set escapes-in-filenames
	2.3.131 set listsize
	2.3.132 set os
	2.3.133 set print
	2.3.134 set semihosting
	2.3.135 set solib-absolute-prefix
	2.3.136 set solib-search-path
	2.3.137 set step-mode
	2.3.138 set stop-on-solib-events
	2.3.139 set substitute-path
	2.3.140 set sysroot, set solib-absolute-prefix
	2.3.141 set trust-ro-sections-for-opcodes
	2.3.142 set variable
	2.3.143 set wildcard-style
	2.3.144 sharedlibrary
	2.3.145 shell
	2.3.146 show
	2.3.147 show architecture
	2.3.148 show arm
	2.3.149 show auto-solib-add
	2.3.150 show backtrace
	2.3.151 show blocking-run-control
	2.3.152 show breakpoint
	2.3.153 show case-insensitive-source-matching
	2.3.154 show debug-agent
	2.3.155 show debug-from
	2.3.156 show directories
	2.3.157 show dtsl-options
	2.3.158 show endian
	2.3.159 show escape-strings
	2.3.160 show escapes-in-filenames
	2.3.161 show listsize
	2.3.162 show os
	2.3.163 show print
	2.3.164 show semihosting
	2.3.165 show solib-absolute-prefix
	2.3.166 show solib-search-path
	2.3.167 show step-mode
	2.3.168 show stop-on-solib-events
	2.3.169 show substitute-path
	2.3.170 show sysroot, show solib-absolute-prefix
	2.3.171 show trust-ro-sections-for-opcodes
	2.3.172 show version
	2.3.173 show wildcard-style
	2.3.174 silence
	2.3.175 source
	2.3.176 start
	2.3.177 stdin
	2.3.178 step
	2.3.179 stepi
	2.3.180 steps
	2.3.181 stop
	2.3.182 symbol-file
	2.3.183 tbreak
	2.3.184 thbreak
	2.3.185 thread, core
	2.3.186 thread apply, core apply
	2.3.187 trace clear
	2.3.188 trace dump
	2.3.189 trace info
	2.3.190 trace list
	2.3.191 trace report
	2.3.192 trace start
	2.3.193 trace stop
	2.3.194 unset
	2.3.195 unsilence
	2.3.196 up
	2.3.197 up-silently
	2.3.198 wait
	2.3.199 watch
	2.3.200 whatis
	2.3.201 where
	2.3.202 while
	2.3.203 x

	3: CMM-Style Commands Supported by the Debugger
	3.1 General syntax and usage of CMM-style commands
	3.1.1 Using expressions

	3.2 CMM-style commands listed in groups
	3.2.1 Controlling breakpoints
	3.2.2 Controlling data and display settings
	3.2.3 Controlling images, symbols, and libraries
	3.2.4 Controlling target execution and connections
	3.2.5 Displaying the call stack and associated variables
	3.2.6 Controlling the debugger and program information
	3.2.7 Supporting commands

	3.3 CMM-style commands listed in alphabetical order
	3.3.1 break
	3.3.2 break.delete
	3.3.3 break.disable
	3.3.4 break.enable
	3.3.5 break.set
	3.3.6 data.dump
	3.3.7 data.load.binary
	3.3.8 data.load.elf
	3.3.9 data.set
	3.3.10 go
	3.3.11 help
	3.3.12 print
	3.3.13 register.set
	3.3.14 system.down
	3.3.15 system.up
	3.3.16 var.frame
	3.3.17 var.global
	3.3.18 var.local
	3.3.19 var.new
	3.3.20 var.print
	3.3.21 var.set
	3.3.22 wait

	A: GNU Free Documentation License
	A.1 ADDENDUM: How to use this License for your documents

