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Preface

This preface introduces CoreSight Technology System Design Guide. It contains the following 
sections:
• About this guide on page ix
• Feedback on page xiii.
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Preface 
About this guide
This is the System Design Guide for CoreSight Technology.

Product revision status

The rnpn identifier indicates the revision status of the product described in this guide, where:

rn Identifies the major revision of the product.

pn Identifies the minor revision or modification status of the product.

Intended audience

This guide is written for system designers, and others who make design decisions about 
System-on-Chip (SoC) designs that can use CoreSight Technology.

Using this guide

This guide is organized into the following chapters:

Chapter 1 Introduction 
Read this chapter for an introduction to CoreSight Technology.

Chapter 2 CoreSight Components and Systems 
Read this chapter for a description of the CoreSight components available and for 
information of how to combine components in typical systems for use in your 
CoreSight SoC designs.

Chapter 3 Features of CoreSight Technology and ETM Architectures 
Read this chapter for a description of the features of CoreSight components, 
ETM, and ETM architecture versions that you can use in your CoreSight SoC 
designs.

Chapter 4 Debug Access 
Read this chapter for a description of debug access in CoreSight systems.

Chapter 5 Trace Capture 
Read this chapter for a comparison of the performance of different trace methods 
and how to make choices about trace capture.

Chapter 6 Implementation 
Read this chapter for a description of the implementation issues you must 
consider when designing a CoreSight system.

Appendix A Revisions 
Read this for a description of the technical changes between released issues of this 
book.

Glossary Read the Glossary for definitions of terms used in this guide.

Conventions

This section describes the conventions that this guide uses:
• Typographical on page x
• Timing diagrams on page x
ARM DGI 0012D Copyright © 2004, 2007, 2010 ARM Limited. All rights reserved. ix
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Preface 
• Signals on page xi

Typographical

The typographical conventions are:

italic  Highlights important notes, introduces special terminology, denotes 
internal cross-references, and citations.

bold  Highlights interface elements, such as menu names. Denotes signal 
names. Also used for terms in descriptive lists, where appropriate.

monospace Denotes text that you can enter at the keyboard, such as commands, file 
and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. You can enter 
the underlined text instead of the full command or option name.

monospace italic Denotes arguments to monospace text where the argument is to be 
replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

 < and > Angle brackets enclose replaceable terms for assembler syntax where they 
appear in code or code fragments. They appear in normal font in running 
text. For example:
• MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

• The Opcode_2 value selects which register is accessed.

Timing diagrams

This guide contains one or more timing diagrams. The figure named Key to timing diagram 
conventions explains the components used in these diagrams. When variations occur they have 
clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the 
shaded area at that time. The actual level is unimportant and does not affect normal operation.

Key to timing diagram conventions

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus

Clock
ARM DGI 0012D Copyright © 2004, 2007, 2010 ARM Limited. All rights reserved. x
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Preface 
Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is 
active-HIGH or active-LOW. Asserted means HIGH for active-HIGH 
signals and LOW for active-LOW signals.

Lower-case n Denotes an active-LOW signal.

Prefix A Denotes global Advanced eXtensible Interface (AXI) signals:

Prefix AR Denotes AXI read address channel signals.

Prefix AW Denotes AXI write address channel signals.

Prefix B Denotes AXI write response channel signals.

Prefix C Denotes AXI low-power interface signals.

Prefix H Denotes Advanced High-performance Bus (AHB) signals.

Prefix P Denotes Advanced Peripheral Bus (APB) signals.

Prefix R Denotes AXI read data channel signals.

Prefix W Denotes AXI write data channel signals.

Additional reading

This section lists publications by ARM and by third parties.

ARM provides updates and corrections to its documentation. See http://www.arm.com for current 
errata sheets, addenda, and the Frequently Asked Questions list.

ARM publications

This guide contains information that is specific to CoreSight Technology systems. See to the 
following documents for other relevant information:

• AMBA™ Specification (Rev 2.0) (ARM IHI 0011)

• AMBA AXI Protocol Specification (ARM IHI 0022)

• AMBA 3 APB Protocol Specification (ARM IHI 0024)

• AMBA 3 ATB Protocol Specification (ARM IHI 0032A)

• CoreSight Architecture Specification (ARM IHI 0029)

• Embedded Trace Macrocell Architecture Specification (ARM IHI 0014)

• AHB Trace Macrocell Technical Reference Manual (ARM DDI 0328)

• CoreSight Components Implementation Guide (ARM DII 0143)

• CoreSight Components Technical Reference Manual (ARM DDI 0314)

• CoreSight DK9 Integration Manual (ARM DII 0131)

• CoreSight DK11 Integration Manual (ARM DII 0092)

• CoreSight DK-A8 Integration Manual (ARM DII 0135)
ARM DGI 0012D Copyright © 2004, 2007, 2010 ARM Limited. All rights reserved. xi
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• CoreSight ETM11 Technical Reference Manual (ARM DDI 0318)

• CoreSight ETM11 Implementation Guide (ARM DII 0097)

• CoreSight ETM11 Integration Manual (ARM DII 0098)

• CoreSight ETM9 Technical Reference Manual (ARM DDI 0315)

• CoreSight ETM9 Implementation Guide (ARM DII 0093)

• CoreSight ETM9 Integration Manual (ARM DII 0094)

• Intelligent Energy Controller r0p0 Technical Overview (ARM DTO 0005)

• ARM Debug Interface v5 Architecture Specification (ARM IHI 0031A)

• AMBA Network Interconnect (NIC-301) Technical Reference Manual (ARM DDI 0397F)

• ARM Debug Interface v5.1 Supplement (DSA09-PRDC-008772)

• System Trace Macrocell Programmers’ Model Architecture Specification Version 1.0 
(ARM IHI 0054)

• CoreSight System Trace Macrocell Technical Reference Manual (ARM DDI 0444A)

• CoreSight System Trace Macrocell (STM) Integration and Implementation Manual 
(PR430-PRDC-011726)

• CoreSight Trace Memory Controller Technical Reference Manual (ARM DDI 0461A)

• CoreSight Trace Memory Controller (TMC) Integration and Implementation Manual 
(PR430-PRDC-011743).
ARM DGI 0012D Copyright © 2004, 2007, 2010 ARM Limited. All rights reserved. xii
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Feedback
ARM welcomes feedback on this product and its documentation.

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

• The product name.

• The product revision or version.

• An explanation with as much information as you can provide. Include symptoms and 
diagnostic procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:
• the title
• the number, ARM DGI 0012D
• the page numbers to which your comments apply
• a concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.
ARM DGI 0012D Copyright © 2004, 2007, 2010 ARM Limited. All rights reserved. xiii
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Chapter 1 
Introduction

This chapter describes CoreSight Technology. It contains the following sections:
• About CoreSight systems on page 1-2
• CoreSight features on page 1-4.
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Introduction 
1.1 About CoreSight systems
CoreSight systems provide all the infrastructure you require to debug, monitor, and optimize the 
performance of a complete System on Chip (SoC) design.

Historically, the following methods of debugging an ARM processor based SoC exist:

• Conventional JTAG debug. This is invasive debug with the core halted using:
— breakpoints and watchpoints to halt the core on specific activity
— a debug connection to examine and modify registers and memory and provide 

single-step execution.

• Conventional monitor debug. This is invasive debug with the core running using a debug 
monitor that resides in memory.

• Trace. This is non-invasive debug with the core running at full speed using:
— a collection of information on instruction execution and data transfers
— delivery off-chip in real-time
— tools to merge data with source code on a development workstation for future 

analysis.

CoreSight Technology addresses the requirement for a multi-core debug and trace solution with 
high bandwidth for whole systems beyond the core, including trace and monitor of the system 
bus.

CoreSight Technology provides:
• debug and trace visibility of whole systems
• cross triggering support between SoC subsystems
• higher data compression than previous solutions
• multi-source trace in a single stream
• standard Programmer’s Models for standard tool support
• open interfaces for third party cores
• low pin count
• low silicon overhead.

CoreSight Technology addresses a number of trends in SoC design that increase the debug 
challenge:

Frequency increases and trace generation 
Systems are tracing more information per second and must transfer this out of the 
SoC. Pin interface frequencies are not rising as fast as on-chip frequencies.

Design Complexity 
The interactions between cores in SoCs are crucial to understanding system 
behavior. System logic is sufficiently decoupled from core execution to require 
direct visibility. For example, a system cannot determine from inside a processor 
with cache, the amount of time a peripheral takes to respond to a memory request.
Clock and power domain implementations are complicated. The clock 
frequencies can change and any part of the system can enter a low-power mode 
at any time. Conventional JTAG-based systems must disable all power saving 
features to provide debug, but in many situations this is not acceptable.

Pin count Pin count is crucial. Chip package restrictions do not permit a separate trace port 
for each core in a chip and static switching between trace ports prevents debug of 
complex interactions.
ARM DGI 0012D Copyright © 2004, 2007, 2010 ARM Limited. All rights reserved. 1-2
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Introduction 
SoC designs must be flexible to provide the correct number of pins to achieve the 
required trace capture capabilities. It is not acceptable to double the number of 
pins because the frequency is 10% too high, or because the data bandwidth is 5% 
too high.

Performance optimization 
Products must reach their performance targets. To make the most of high 
performance cores in SoC designs, it is essential to profile processor and bus 
activity to optimize performance.
ARM DGI 0012D Copyright © 2004, 2007, 2010 ARM Limited. All rights reserved. 1-3
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Introduction 
1.2 CoreSight features
This section describes some of the fundamental features of CoreSight Technology that enable 
you to address the issues and challenges of debugging complex SoCs. It contains the following 
sections:
• Debug access
• Cross Triggering on page 1-5
• Trace on page 1-6.

For more information on CoreSight components, see Chapter 2 CoreSight Components and 
Systems and the appropriate Technical Reference Manuals for the components.

1.2.1 Debug access

You gain debug access in CoreSight systems using the Debug Access Port (DAP) that provides:

• real-time access to physical memory without halting the core, and without any target 
resident code

• debug control and access to all status registers.

The same mechanism provides fast access for downloading code at the start of the debug 
session. This is faster than the traditional JTAG mechanism that uses the ARM core to write data 
to memory. You can still use the ARM core to write data to virtual memory and to ease migration 
when the debugger does not support this approach.

Figure 1-1 shows an example system with debug components and a DAP in a SoC design.

Figure 1-1 DAP connections inside a SoC

The DAP provides the following advantages for multi-core SoC designs:

• There is no requirement to run at the lowest common speed. A slow or powered-down 
component has no effect on access to other components. This means that power 
management has minimal impact on debug.

• The speed of access is not affected by the number of devices in the system. You have 
direct access to individual devices.

Debug APB

Bus matrix

Cross-trigger matrix  

SWJ 
port

ARM 
core

Crosstrigger
interface

ARM 
core

Crosstrigger
interface

Bridge

Shared 
peripherals

DAP
ETM

Debug components

ETM
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Introduction 
• You can add third party debug components using the Advanced Microcontroller Bus 
Architecture (AMBA) debug bus interface, AMBA 3 Advanced Peripheral Bus (APB), 
that provides internal and external access to the component.

• More than one core can control debug functionality, rather than restricting this to the core 
being debugged. One core can debug another. In particular, this enables a multi-core SoC 
when used as a single core platform to have complex on-chip debug and analysis features. 
You could use this, for example, during application development.

The DAP eases the physical implementation:

• You have a choice of physical debug interfaces. JTAG is no longer the single choice for a 
system, because other lower-cost interfaces are possible.

• The system does not have to support a fully asynchronous clock, TCK, because the DAP 
manages the clock. Debug clock synchronization is a problem for synthesized cores 
because the you must either keep the frequency of TCK well below the processor clock, 
or use a handshaking clock signal, RTCK.

• You do not require a return TCK, RTCK, off-chip because synchronization is performed 
inside the DAP.

• You can make significant savings in gate area by not having to implement a TAP 
controller and associated clock domain synchronization circuitry for each new debug 
element in the SoC.

The DAP supports increased security to prevent unwanted debug activity:

• you can add extra control over software access to the debug register file between the core 
and the debug bus

• you have a single access mechanism for hardware and software because the DAP 
arbitrates between accesses.

For 100% backward compatibility with existing tools, you can serially daisy-chain JTAG scan 
chains with the DAP to provide access to them. 

If you do this, you lose some of the advantages of the CoreSight Technology.

For more information on the DAP, see Debug Access Port on page 2-5.

1.2.2 Cross Triggering

The Embedded Cross Trigger (ECT), comprising of the Cross Trigger Interface (CTI) and Cross 
Trigger Matrix (CTM), provides a standard interconnect mechanism to pass debug or profiling 
events around the SoC.

Figure 1-2 Cross triggering

The ECT provides you with a standard mechanism to connect different signal types. A set of 
standard triggers for cores and Embedded Trace Macrocells (ETMs) are predefined, and you can 
add triggers for third party cores.

Core enters debug state

Trace trigger event

Software generation event

Breakpoint

Embedded Trace Buffer full

Debug request for other cores

Trace trigger event

Generate interrupt
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The ECT enables tool developers to supply a standard control dialog so that software 
programmers can connect trigger events.

1.2.3 Trace

CoreSight Technology provides components that support a standard infrastructure for the 
capture and transmission of trace data, a combination of multiple data streams by funneling 
together, and then output of data to a trace port, or storage in an on-chip buffer. Figure 1-3 shows 
some CoreSight components.

Figure 1-3 Example system with trace components

CoreSight Technology enables:
• simultaneous trace of asynchronous cores, busses and intelligent peripherals
• debug and trace of an AMBA 2 AHB bus
• tracing of instrumented bus masters
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Introduction 
• output of trace data to:
— the Trace Port that can run at an independent frequency to on-chip busses
— an embedded trace buffer for on-chip storage of trace data in dedicated RAM or 

system RAM
— the DAP (Debug Access Port) for low-demand trace solutions in pin count limited 

targets.
• support for third party cores to enable debug control and trace capture through a 

standardized Programmer’s Model and infrastructure.

For more information on trace components, see CoreSight components on page 2-4.
ARM DGI 0012D Copyright © 2004, 2007, 2010 ARM Limited. All rights reserved. 1-7
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Chapter 2 
CoreSight Components and Systems

This chapter describes the CoreSight components available and how you can connect them to form 
complete systems. It contains the following sections:
• About CoreSight systems and components on page 2-2
• CoreSight components on page 2-4
• CoreSight system examples on page 2-13
• Illegal structures on page 2-16.
ARM DGI 0012D Copyright © 2004, 2007, 2010 ARM Limited. All rights reserved. 2-1
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2.1 About CoreSight systems and components
This chapter describes the individual components that make up CoreSight systems and provides 
some simple examples of CoreSight systems.

The following sections describe the main components of a CoreSight system:
• Buses on page 2-4
• Control and access components on page 2-5
• Trace sources on page 2-7
• Trace links on page 2-9
• Trace sinks on page 2-10
• External debug hardware and software on page 2-12.

Figure 2-1 on page 2-3 shows a system containing CoreSight components.
ARM DGI 0012D Copyright © 2004, 2007, 2010 ARM Limited. All rights reserved. 2-2
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CoreSight Components and Systems 
Figure 2-1 CoreSight system components
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CoreSight Components and Systems 
2.2 CoreSight components
This section describes the CoreSight components. For more information on CoreSight 
Technology, see the CoreSight Design Kit Technical Reference Manual.

2.2.1 Buses

The CoreSight systems use the following bus protocols to connect components together, and to 
enable integration in a SoC:
• AMBA Trace Bus (ATB)
• AMBA 3 Advanced Peripheral Bus (AMBA 3 APB)
• Advanced High-performance Bus (AHB)
• AMBA Advanced eXtensible Interface (AXI).

AMBA Trace Bus (ATB)

The ATB transfers trace data through the CoreSight infrastructure in a SoC. Trace sources are 
ATB masters, and sinks are ATB slaves. Link components provide both master and slave 
interfaces.

The ATB protocol supports:

• Stalling of trace sources to enable the CoreSight components to funnel and combine 
sources into a single trace stream.

• Association of trace data with the generating source using trace source IDs. A CoreSight 
system can trace up to 111 different items at any one time.

• Capture and transfer of multiple byte bus widths, currently to 32-bits.

• A flushing mechanism to force historic trace to drain from any sources, links, or sinks up 
to the point that the request was initiated.

For more information about ATB, see the AMBA ATB Protocol Specification.

AMBA 3 APB

CoreSight supports the AMBA 3 APB protocol to enable transfer extension using wait states.

The Debug APB bus uses the AMBA 3 APB protocol within a CoreSight system. The Debug 
APB is a bus dedicated to the connection of debug and trace components in a CoreSight- 
compliant SoC. All CoreSight components are configured and accessed over this bus through 
the APB-Mux in the DAP.

For more information about AMBA 3 APB, see the AMBA 3 APB Protocol Specification.

Advanced High-performance Bus (AHB)

CoreSight supports access to a system bus infrastructure using the AHB Access Port (AHB-AP) 
in the DAP. The AHB-AP provides an AHB master port for direct access to system memory. 

CoreSight also supports AHB bus tracing using an AHB Trace Macrocell (HTM) that provides 
non-invasive debug visibility to any bus transactions on AHB connections.

For more information on AHB, see the AMBA Specification. 
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AMBA Advanced eXtensible Interface (AXI)

CoreSight supports the use of AXI in the system interconnect. Direct access to the AXI system 
can be provided through a Cortex core as an AXI bus master, or through the use of an AHB to 
AXI bridge on the AHB Access Port in the DAP.

CoreSight also supports trace generation from bus masters on the AXI through the use of the 
STM that converts stimulus writes to the device into a trace data stream.

For more information on AXI, see the AMBA Specification.

2.2.2 Control and access components

Control and access components configure, provide access to, and control debug logic and the 
generation of trace. They do not generate trace, or process the trace data. The CoreSight control 
and access components are:

• the Debug Access Port (DAP)

• the Embedded Cross Trigger (ECT) that includes the Cross Trigger Matrix (CTM) and the 
Cross Trigger Interface (CTI).

Debug Access Port

The DAP enables debug access to the complete SoC through system master ports. Figure 2-2 on 
page 2-6 shows the structure of the DAP.
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Figure 2-2 Structure of the CoreSight DAP component

Access to the CoreSight Debug APB is enabled through the APB Access Port (APB-AP) and 
APB Multiplexer (APB-Mux), and system access is provided through the AHB-AP and JTAG 
Access Port (JTAG-AP). The DAP has the following interface blocks:
• External Serial Wire or JTAG access using the Serial Wire/JTAG Debug Port (SWJ-DP).
• Internal system access using:

— AHB-AP
— APB-AP
— JTAG-AP
— AHB-AP for Cortex-M3, if present.

• An APB-Mux enables system access to CoreSight components connected to the Debug 
APB.

• The ROM table provides a list of memory locations of CoreSight components connected 
to the Debug APB. This is visible from both tools and system access and you must 
configure it during system implementation.

External read/write access to the internal interface is provided by the SWJ-DP. The SWJ-DP 
provides both a standard interface and an ARM Serial Wire Debug interface for debug access to 
an SoC through the DAP. It interfaces to the DAP internal bus. 
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Internal access to on-chip busses and other interfaces is provided by the Access Ports (APs). The 
APs are as follows:
• the AHB-AP that provides an AHB-Lite master for access to a system AHB bus
• the APB-AP that provides an AMBA 3 APB master for access to the Debug APB that 

configures all CoreSight components
• the JTAG-AP that provides JTAG access to on-chip components and operates as a JTAG 

master port to drive JTAG chains throughout the SoC.

For more information, see the CoreSight Design Kit Technical Reference Manual.

Embedded Cross Trigger

The ECT is a modular component that supports the interaction and synchronization of multiple 
triggering events within a SoC.

The ECT consists of the following types of module:

• A CTI. The CTI provides the interface between a component or subsystem and the Cross 
Trigger Matrix (CTM). The system requires a CTI for each subsystem that supports cross 
triggering. 

• A CTM. The CTM combines the trigger requests generated from CTIs and broadcasts 
them to all CTIs as channel triggers. This enables subsystems to interact, cross trigger, 
with one another. You can connect CTMs together to increase the number of CTIs.

For more information, see the CoreSight Design Kit Technical Reference Manual.

2.2.3 Trace sources

Sources generate trace data and provide master ports to the AMBA Trace Bus. Depending on 
the licensed CoreSight components, the following trace sources can be provided:
• the AHB Trace Macrocell (HTM)
• CoreSight ETMs and PTMs for CPU trace:

— ETM9 for CoreSight (ETM9CS)
— ETM11 for CoreSight (ETM11CS)
— ETM for Cortex-A8 (ETM-A8)
— ETM for Cortex-R4 (ETM-R4)
— ETM for Cortex-M3 (ETM-M3)
— ETM for Cortex-A5 (ETM-A5)
— PTM for Cortex-A9 (PTM-A9).

• the Instrumentation Trace Macrocell (ITM)
• the System Trace Macrocell (STM).

CoreSight Technology also enables you to add third party devices, for example a DSP trace 
component.

AHB Trace Macrocell (HTM)

The HTM makes bus information visible that you can not infer from core trace using an ETM:
• An understanding of multi-layer bus utilization.
• Software debug. For example, visibility of access to memory areas and data accesses.
• Bus event detection for trace trigger or filters, and for bus profiling.

Figure 2-3 on page 2-8 shows the HTM connected to an AHB bus. For more information on 
HTM see the AMBA Trace Macrocell Technical Reference Manual.
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Figure 2-3 HTM connected to a multi-layer AHB system

Instrumentation Trace Macrocell and System Trace Macrocell

The Instrumentation Trace Macrocell (ITM) and System Trace Macrocell (STM) are 
application-driven trace sources that generate trace based on software written to the program 
interface. The ITM presents 32 APB registers, and the STM provides a set of 64K AXI registers 
that, on a write transaction, generate corresponding trace that indicates the register and value 
written. 

Embedded Trace Macrocells (ETMs) and Program Trace Macrocells (PTMs)

The ETMs provide processor-driven trace through an ATB-compliant trace port. You can 
configure the ETM through the CoreSight APB programming interface. ETM9CS and 
ETM11CS both provide an asynchronous ATB master port that transfers trace data onto the 
CoreSight infrastructure.
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ETM9CS implements the ETMv3.2 protocol. ETM11CS implements the ETMv3.2 protocol 
with TrustZone™ and Thumb®-2 trace support.

ETM for Cortex-A8 and ETM for Cortex-R4 implement the ETMv3.3 protocol. However, the 
ETM for A8 is instruction and data address trace only.

ETM for Cortex-M3 implements the ETMv3.4 protocol. It only implements instruction trace.

PTM for Cortex-A9 implements the PTMv1 protocol to provide instruction flow trace.

For more information, see the following manuals:
• appropriate CoreSight ETM Technical Reference Manual
• Embedded Trace Macrocell Architecture Specification
• CoreSight PTM-A9 Technical Reference Manual 
• Program Flow Trace Macrocell Architecture Specification.

2.2.4 Trace links

Links provide connection, triggering, and flow of traced data. The following sections describe 
the links:
• Trace funnel
• Replicator
• Synchronous 1:1 ATB Bridge
• Embedded Trace FIFO (ETF).

Trace funnel

The Trace funnel combines up to eight trace sources on a single funnel. A static arbitration 
scheme selects the input trace stream to pass at any instant. The static arbitration permits 
reorganization of the slave port priorities between trace sessions. You can chain funnels 
together, with the ATB output from one funnel connected to an ATB input port of another. This 
enables you to both increase the number of inputs, and to connect independent systems together.

Replicator

The Replicator enables you to wire two trace sinks together and operate them on the same 
incoming trace stream. The input trace stream is output on two ATB ports that can then operate 
independently.

Synchronous 1:1 ATB Bridge

The Synchronous ATB Bridge provides a register slice that enables timing closure through the 
addition of a pipeline stage. It also provides a unidirectional link between two synchronous ATB 
domains. The bridge is 1:1 because both the input and output interfaces exist in the same clock 
domain. Because the bridge is a single register slice over the ATB interface, it temporarily holds 
one cycle of trace data within the register bank.

Embedded Trace FIFO (ETF)

The Embedded Trace FIFO is a trace buffer that uses a dedicated SRAM as either a circular 
capture buffer, or as a FIFO. The trace stream is captured by an ATB input that can then be 
output over an ATB output or the Debug APB interface.

The ETF is a configuration option of the Trace Memory Controller (TMC). 
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2.2.5 Trace sinks

Sinks are the endpoints for trace data on the SoC. CoreSight provides sinks that the following 
sections describe:

• Trace Port Interface Unit (TPIU) for output of trace data off-chip

• Embedded Trace Buffer (ETB) on page 2-11 for on-chip storage of trace data in RAM

• Serial Wire Output on page 2-11 for output of trace data over a single pin

• Trace Port Interface Unit Lite on page 2-12

• Embedded Trace Router (ETR) on page 2-12 for on-chip storage of trace data across an 
AXI interconnect

• Enhanced ETB on page 2-12 for on-chip storage of trace as a configuration option of the 
TMC.

Trace Port Interface Unit (TPIU)

The TPIU is an ATB slave that drains trace data off the chip. It acts as a bridge between the 
on-chip trace data and a data stream that is captured by a Trace Port Analyzer (TPA). The 
formatter within the TPIU combines the source data and IDs into a single data stream, to enable 
serialization of data, inserting trigger packets on trigger detection. You can bypass formatting if 
your system only traces a single source, and in this situation, no IDs are embedded. The TPIU 
supports off-chip port sizes from 2 to 34 pins. The off-chip trace port can operate 
asynchronously to the incoming trace data. Figure 2-4 shows a block diagram of the TPIU.

Figure 2-4 TPIU block diagram

The TPIU has the following ports:
• a Debug APB programming interface
• an ATB slave port for receiving trace data from a source or link
• an asynchronous Trace Port (TP) at the pins of the device for connection to a TPA
• trigger ports for connection to a CTI.

For more information, see the CoreSight Technical Reference Manual.
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Embedded Trace Buffer (ETB)

The Embedded Trace Buffer (ETB) is an ATB slave and provides on-chip storage of trace data 
using a configurable sized RAM. The ETB stores data as follows:

• The ATB bus receives Trace Data.

• The Formatter in the ETB combines the source data and IDs into a single data stream. The 
Formatter operates in an identical manner to the Formatter in the TPIU.

• The ETB stores the data in RAM.

You can bypass formatting if your system only traces a single source, and so reduce the amount 
of data stored in RAM. The ETB accesses RAM using read and write pointers to permit memory 
access through the APB interface. Figure 2-5 shows a block diagram of the ETB.

Figure 2-5 ETB block diagram

The ETB has the following ports:
• a Debug APB programming interface
• an ATB slave port for trace data for a source or link
• trigger ports for connection to a CTI
• a memory Built In Self Test (BIST) interface.

Serial Wire Output

Serial Wire Output (SWO) is a trace sink similar to the TPIU. It can only trace one source, the 
ITM. It outputs the data stream off-chip through a single-pin interface. You can select between 
the following operating modes for the single pin output:
• Manchester encoded stream
• NRZ-based UART byte structure, start bit, data bits, stop bit.

The SWO has an 8-bit ATB slave interface that you can connect to the CoreSight ITM. The 
SWO and the ATB interface are collectively called the Serial Wire Viewer (SWV).
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Trace Port Interface Unit Lite

The Trace Port Interface Unit Lite (TPIU-Lite) is a reduced feature, low gate count version of 
the TPIU. The following differences apply:
• A synchronous trace port that operates at ATCLK speed.
• Single trace source only. There is no formatter.
• 2-bit, 4-bit, 8-bit, 16-bit, and 32-bit trace port widths.
• No pattern generator.

Embedded Trace Router (ETR)

The ETR is a trace sink that redirects the trace stream onto AXI. It can utilize a single contiguous 
region or a scattered allocation of blocks for a circular buffer. Reading of the AXI based trace 
buffer can either be done directly over AXI from a normal bus master, or through the ETR as if 
it were an ETB. You can also program it to stream trace data to a single address location for use 
with high-speed links.

The ETR is a configuration option of the TMC. 

Enhanced ETB

An enhanced ETB is available as a configuration option of the TMC. This configuration is 
similar to the Classic ETB with extra features such as being able to FIFO trace data to the Debug 
APB interface and more memory size options.

2.2.6 External debug hardware and software

Under the RealView and Keil brands are provides a range of development tools that support 
CoreSight debug and trace components. For more information on these tools, see, www.keil.com 
and, www.arm.com. 
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2.3 CoreSight system examples
You can design a range of systems using CoreSight Technology. Some representative systems 
are described here and others are possible. The example systems are for:
• Single core debug
• Single source trace
• Multi source trace in an single CPU system on page 2-14
• Multi source trace in a multi-core system on page 2-14.

2.3.1 Single core debug

Figure 2-6 shows CoreSight debug on a single core system. This configuration provides no trace 
capabilities. You can use either the AHB-AP, APB-AP, or the JTAG AP to access system 
components. In this configuration, the JTAG-AP accesses the core, and the APB-AP is bridged 
to configure the CTI. The CTI supports triggering of the core from a designated resource, and 
enables connection to additional triggering resources if this sample is integrated into a larger 
system.

Figure 2-6 Single CPU trace and Debug APB debug access

2.3.2 Single source trace

Figure 2-7 shows single core trace using the CoreSight infrastructure. The CoreSight-compliant 
ETM outputs directly to a TPIU for direct output of core trace off-chip. The tracing of only a 
single trace source enables you to configure the TPIU in bypass mode because source IDs do 
not have to be embedded in the trace data. You can add a CoreSight ETB and replicator to 
provide on-chip storage of trace data.

Figure 2-7 Single source trace with the TPIU formatting bypass
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2.3.3 Multi source trace in an single CPU system

Figure 2-8 shows full trace capabilities in a single core system. The ETM provides core 
instruction and data tracing, and the HTM provides bus tracing. The trace funnel combines trace 
from all sources into a single trace stream, that is then replicated to provide on chip storage using 
the CoreSight ETB or output off chip using the TPIU. You can configure components using the 
DAP and operate cross triggering using the CTM and CTIs. 

Figure 2-8 Full CoreSight trace with single core

2.3.4 Multi source trace in a multi-core system

Figure 2-9 on page 2-15 shows a system with a core and a third party DSP. A third smaller 
subsystem supports merging of multiple CoreSight ATB busses into a single trace stream. 
Figure 2-9 on page 2-15 also shows tracing of instrumented code using the STM.
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Figure 2-9 Full system trace with ARM core and CoreSight compliant DSP

This system requires bridges to support access through the DAP to the separate core and DSP 
subsystems.

Note
 There are many alternative configurations possible with this set of components. The 
configuration Figure 2-9 shows does not necessarily correspond with the best configuration to 
meet your specific requirements.
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2.4 Illegal structures
There are a number of structures that you must avoid even though it is possible to create them 
with the CoreSight Technology. The following sections describe these illegal structures:
• Stacked DAPs
• Duplicated IDs
• Feedback of source ID and data duplication.

2.4.1 Stacked DAPs

You must not connect a JTAG-AP to a JTAG-DP or SWJ-DP on another DAP. Figure 2-10 
shows this illegal structure.

Figure 2-10 Unsupported DAP connection

2.4.2 Duplicated IDs

Two sources must never have the same source ID at any one time, and to the same component. 
You must not connect replicated source IDs at any point within a system. Figure 2-11shows this 
illegal structure.

Figure 2-11 Unsupported replicator and funnel connection

2.4.3 Feedback of source ID and data duplication

You must not create feedback loops in the system that cause source ID duplication. Figure 2-12 
shows this illegal structure. 

Figure 2-12 Unsupported feedback loop
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Chapter 3 
Features of CoreSight Technology and ETM 
Architectures

This chapter lists the features of CoreSight Technology components and ETM architectures. It 
contains the following sections:
• About CoreSight Technology and ETM architectures features on page 3-2
• CoreSight component data on page 3-3
• Architectural features of ARM trace sources on page 3-15.
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3.1 About CoreSight Technology and ETM architectures features
CoreSight Technology provides a range of components with varying features that enable you to 
build trace and debug solutions to suit your SoC design. To aid comparison, this chapter lists the 
features of CoreSight Technology components:
• AHB-AP
• AHB-AP for Cortex-M3
• APB-AP
• APB-Mux
• ATB Bridge 1:1
• ATB Replicator
• CTI
• CTM
• DAP ROM
• ETB
• ETM9CS
• ETM11CS
• ETM-A8
• ETM-R4
• ETM-M3
• HTM
• ITM
• ITM-M3
• JTAG-AP
• JTAG-DP
• STM
• SW-DP
• SWJ-DP
• SWO
• TPIU
• TPIU-Lite
• Trace funnel.

It also describes the ETM, and PTM architecture versions, and lists the features of the trace 
macrocells:
• ETM9, medium plus
• ETM9CS
• ETM11RV
• ETM11CS
• ETM-A5
• ETM-A8
• ETM-R4
• ETM-M3
• PTM-A9.
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3.2 CoreSight component data
The following sections list the component features:
• DAP features on page 3-4
• Source features on page 3-6
• Link features on page 3-8
• Sink features on page 3-10
• Debug features on page 3-13.

Table 3-1 on page 3-4 lists the DAP features:
• description
• type
• identification register
• input interface
• output interface
• authentication support
• power control support
• abort mechanism.

Table 3-3 on page 3-6 to Table 3-9 on page 3-13 list these features of the other components:
• description
• features
• primary non-programming inputs
• primary non-programming outputs
• programmer’s model
• memory space
• part number
• device type identifier
• device ID.
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3.2.1 DAP features

The DAP is the bridge for access to the Debug APB and system busses. Table 3-1 shows the 
DAP component features for Debug Ports.

Table 3-2 shows the CoreSight components for Access Ports.

Table 3-1 DAP component features for Debug Ports

Component name JTAG-DP SW-DP SWJ-DP

ADIv5 Architecture 
Compliance

JTAG-DP SW-DP JTAG-DP and SW-DP

Description Externally visible TAP that 
links to various on chip master 
interfaces

Low pin count, clock plus 
bidirectional data, alternative 
to a conventional JTAG 
interface

Combined TAP and Serial 
Wire interface, effectively 
JTAG-DP and SW-DP, with a 
switching sequence to translate 
between pin modes

Identification Register, 
excludes revision value

0xBA00477 0xBA01477 0xBA02477 Serial Wire
0xBA00477 JTAG

Manufacturer/designer ARM (0x43B) ARM (0x43B) ARM (0x43B)

Part Number/AP 
Identification

0xBA00 0xBA01 0xBA01 Serial Wire

0xBA02 Serial Wire with 
Multidrop support
0xBA00 JTAG

Input interface JTAG Serial Wire Shared JTAG and Serial Wire

Output interface DAP internal bus DAP internal bus DAP internal bus

Authentication support No No No

Power control support Yes Yes Yes

Abort mechanism Initiator Initiator Initiator

Table 3-2 DAP component features for Access Ports

Component name AHB-AP APB-AP JTAG-AP AHB-AP for CM3

ADIv5 Architecture 
Compliance

Mem-AP Mem-AP JTAG-AP Mem-AP

Description DAP interface to an 
AHB system

DAP interface to the 
Debug APB

DAP interface to 
on-chip TAP controllers

DAP Interface to 
Cortex-M3 system 
including debug 
components

Identification Register, 
excludes revision value

0x4770001 0x4770002 0x4770010 0x4770011

Manufacturer/designer ARM (0x43B) ARM (0x43B) ARM (0x43B) ARM (0x43B)

Part Number/AP 
Identification

0x01, AHB Bus 0x02, APB Bus 0x10, JTAG connection 0x11, AHB Bus

Input interface DAP internal bus DAP internal bus DAP internal bus DAP internal bus
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Output interface AHB-Lite APB Multiple JTAG Cortex-M3 internal 
AHB

Authentication support Yes Yes Yes Yes

Power control support Yes No Yes Asynchronous check 
only

Abort mechanism System transfer 
maintained. DAP 
internal bus released.

System transfer 
maintained. DAP 
internal bus released.

Aborts any JTAG 
transactions in progress. 
DAP internal bus 
released. JTAG-AP is 
returned to its reset 
condition. FIFOs are 
cleared and all registers 
are returned to their 
reset values.

System transfer 
cancelled through 
functional reset of the 
bus matrix, permitting 
access to NVIC and 
debug components.

Table 3-2 DAP component features for Access Ports (continued)

Component name AHB-AP APB-AP JTAG-AP AHB-AP for CM3
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3.2.2 Source features

Table 3-3 shows the trace source ETM component features.

Table 3-4 on page 3-7 shows the trace source HTM and ITM features.

Table 3-3 Trace source component features

Component 
name ETM9CS ETM11CS ETM-A8 ETM-R4 ETM-M3

CoreSight 
compliant

Yes Yes Yes Yes Yes

Description Trace source for 
instruction and 
data trace of the 
synthesizable 
ARM9 family of 
processors

Trace source for 
instruction and 
data trace of the 
ARM11 family of 
processors

Trace source for 
instruction and 
data address trace 
of the Cortex-A8 
processor

Trace source for 
instruction and 
data trace of the 
Cortex-R4 and 
R4F processors

Trace source for 
instruction only 
trace of the 
Cortex-M3 
processor

Features Instruction only 
trace, data only 
trace, instruction 
and data trace, data 
suppression

Instruction only 
trace, data only 
trace, instruction 
and data trace, data 
suppression

Instruction only 
trace, data address 
only trace, 
instruction and 
data address trace, 
data suppression

Instruction only 
trace, data only 
trace, instruction 
and data trace, data 
suppression

Instruction only 
trace

ATB output 32 bit 32 bit 32 bit 32 bit 8 bit

Architecture 
reference

ETMv3.2 ETMv3.2 ETMv3.3 ETMv3.3 ETMv3.4

Stimulus input ARM9 ARM11 Cortex-A8 Cortex-R4 Cortex-M3

Memory footprint 4KB 4KB 4KB 4KB 4KB

Designer ID ARM (0x43B) ARM (0x43B) ARM (0x43B) ARM (0x43B) ARM (0x43B)

Part number 0x910 0x920 0x921 0x930 0x924

Device ID 0x0 0x0 0x0 0x0 0x0

Device type 0x13 0x13 0x13 0x13 0x13

Lock Access 
Register

Bypassable Bypassable Bypassable Bypassable Yes

Claim tags eight bits eight bits eight bits eight bits eight bits

Topology 
detection

Yes Yes Yes Yes Yes

Integration 
registers

Yes Yes Yes Yes No
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Table 3-4 Trace source HTM and ITM features

Component name HTM ITM CM3-ITM STM

CoreSight compliant Yes Yes No Yes

Description Trace source for AHB 
based activity. Behaves 
as a passive bus 
watcher.

Software generated 
trace source designed 
for printf style 
debugging requiring 
memory accesses to 
generate stimulus.

Software generated trace 
source for within the 
Cortex-M3 platform. 
Also includes the ability 
to trace data values 
through the Debug Watch 
Trace unit.

Software generated trace 
source designed for printf 
style debugging requiring 
memory accesses to 
generate stimulus. It can 
also generate trace based 
on activity of a set of 
hardware stimulus ports. 

Features Address trace, data 
trace, address and data 
trace, data suppression.

32 virtual stimulus 
registers, trigger 
generation on stimulus 
writes, maskable trace 
generation based on 
authentication level.

32 virtual stimulus 
registers, maskable trace 
generation based on 
transaction type.

64K virtual stimulus 
registers, trigger 
generation on stimulus 
writes, global 
time-stamping on stimulus 
writes, both lossy and 
guaranteed channels on 
stimulus generation, 
maskable trace generation 
based on Authentication 
level, 32 hardware based 
stimulus events.

ATB output 32-bit 8-bit 8-bit 32-bit

Architecture 
reference

None None None STPv2, protocol

Stimulus input 32-bit or 64-bit AHB APB AHB AXI

Memory footprint 4KB 4KB 4KB excluding DWT 
control

4KB excluding AXI 
stimulus ports

Designer ID ARM (0x43B) ARM (0x43B) ARM (0x43B) ARM (0x43B)

Part number 0x917 0x913 0x001 0x962

Device ID 0x0 0x020 Non-applicable 0x10000

Device type 0x43 0x43 Non-applicable 0x43

Lock Access 
Register

Bypassable Bypassable Yes Bypassable

Claim tags 4-bit 8-bit None 4-bit

Topology detection Yes Yes Yes Yes

Integration registers Yes Yes No Yes
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3.2.3 Link features

Table 3-5 and Table 3-6 on page 3-9 shows the link component features.

Table 3-5 Link component features, part 1

Component name ATB 1:1 Synchronous 
Bridge Trace Funnel  Replicator

CoreSight Compliant Yes Yes Yes

Description ATB link to enable timing 
closure when intra-chip 
propagation delays might 
affect timing

Trace link that enable 
multiplexing of up to eight trace 
streams into a single stream

Component to enable dual 
sampling of trace data on 
two independent ATB slave 
components

Features Fully registered interfaces Static priority arbitration, 
minimum hold time

-

ATB input 1 x 32-bit 8 x 32-bit 1 x 32-bit

ATB Output 1 x 32-bit 1 x 32-bit 2 x 32-bit

ATB Clocking 
requirements

Input and output the same Input and output the same Input and output the same

Memory Footprint None 4KB None

Designer ID - ARM (0x43B) -

Part number - 0x908 -

Device ID - 0x0A0 -

Device type 0x11

Lock Access Register Bypassable

Claim tags - 4 bits -

Topology detection Compatible Yes Compatible

Integration registers Compatible Yes Compatible
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Table 3-6 Link component features, part 2

Component name Asynchronous 
bridge Upsizer Embedded Trace 

FIFO (ETF)a

CoreSight Compliant Yes Yes Yes

Description ATB link to enable 
crossing of independent 
clock and/or power 
domains.

Component to adapt 
8-bit ATB outputs of 
narrow trace sources to 
32-bit ATB as used in 
the majority of 
CoreSight components.

Large ATB FIFO using a 
private SDRAM for 
buffering of trace data.

Features Buffer to cross clock 
domains efficiently.

- Buffer large quantities of 
trace data to allow 
averaging of bandwidth 
over larger windows of 
time. Can also operate as 
a traditional ETB, 
circular buffer based 
trace sink.

ATB input 1x [8 to 128-bit] 1x 8 bit 1x [32-bit to 128-bit]

ATB Output 1x (same width as input) 1 x 32 bit 1x (same width as input)

ATB Clocking 
requirements

Input and output fully 
asynchronous

Input and output the 
same

Input and output the 
same

Memory Footprint None None 4KB

Designer ID - - ARM (0x43B)

Part number - - 0x961

Device ID - - Configurable

Device type - - 0x32

Lock Access Register - - Bypassable

Claim tags - - 4-bits

Topology detection Compatible Compatible Yes

Integration registers Compatible No Yes

a. The ETF is a configuration option of the Trace Memory Controller (TMC)
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3.2.4 Sink features

Table 3-7 and Table 3-8 on page 3-11 shows the sink component features.

Table 3-7 Sink component features, part 1

Component name ETB11 TPIU CS ETB ETBa

CoreSight compliant No Yes Yes Yes

Description Onchip trace capture 
device for capture of 
non-CoreSight legacy 
ETMs.

Parallel trace port for 
interfacing on-chip trace 
to off-chip capture 
devices.

Provides on-chip 
storage of trace data

Provides on-chip 
storage of trace data in a 
local SRAM.

Features - Includes pattern 
generation for thorough 
analysis of pin timing.

- Includes programmable 
mode to use the SRAM 
as a FIFO when taking 
data over the Debug 
APB interface.

ATB input Non-applicable 32 bit 32 bit 32-bits to 128-bits

Parallel Trace Port No 1-32 data pins
1 clock pin
1 optional control pin

No No

Serial Wire Output No No No No

Data Storage 1KB to 1MB None 1 KB to 1 MB 1KB to 4GB

Formatter Non-applicable Yes Yes Yes

Memory Footprint 4KB + Memory size 4KB 4KB 4KB

Designer ID Non-applicable ARM (0x43B) ARM (0x43B) ARM (0x43B)

Part number Non-applicable 0x912 0x907 0x961

Device ID Non-applicable 0x0A0 0x000 Configurable

Dev Type Non-applicable 0x11 0x21 0x21

Lock Access Register No Bypassable Bypassable Bypassable

Claim Tags None 4 bits 4 bits 4-bits

Topology detection No Yes Yes Yes

Integration registers No Yes Yes Yes

a. The ETB is a configuration option of the Trace Memory Controller (TMC).
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Table 3-8 Sink component features, part 2

Component 
name TPIU-Lite SWO CM3 TPIU Embedded Trace Router 

(ETR)a

CoreSight 
compliant

Yes Yes Yes Yes

Description Low gate count 
parallel trace interface 
between on-chip trace 
and off-chip capture 
devices.

Serial Wire output for 
Instrumentation Trace 
Macrocell trace to 
off-chip capture 
devices.

Cortex-M3 specific, 
parallel and serial trace 
interface to off-chip 
trace capture devices.

Provides on-chip storage of 
trace data in the system through 
an AXI interface.

Features - - Includes trace funnel Contains the following modes 
of using the system memory:
• basic circular buffer, 

single contiguous block 
of memory

• circular buffer using 
scatter-gather, list of 
arbitrary blocks of 
memory

• single location for 
streaming trace data to a 
peripheral device 
location.

ATB input 32-bits 8-bits 2 x 8 bit 32-bits, 128 bits

Parallel Trace Port 2, 4, 8, 16, or 32 data 
pins
1 clock pin
1 control pin

No 1, 2, or 4 data pins
1 clock pin

No. Data is output over AXI at 
the same width as ATB input.

Serial Wire 
Output

No Manchester or NRZ 
encoded

Manchester or NRZ 
encoded

No

Data Storage None None None None

Formatter No No Yes Yes

Memory 
Footprint

4KB 4KB 4KB 4KB

Designer ID ARM (0x43B) ARM (0x43B) ARM (0x43B) ARM (0x43B)

Part number 0x941 0x914 0x923 0x961

Device ID 0x000 0xEA0 0xCA0 or 0xCA1 Configurable

Dev Type 0x11 0x11 0x11 0x21

Lock Access 
Register

Bypassable Bypassable No Bypassable

Claim Tags 4-bits 4-bits 4-bits 4-bits

Topology 
detection

Yes Yes Yes Yes

Integration 
registers

Yes Yes No Yes
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a. The ETR is a configuration option of the Trace Memory Controller (TMC).
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3.2.5 Debug features

Table 3-9 and Table 3-10 on page 3-14 shows the debug component features.

Table 3-9 Debug component features, part 1

Component name DAP-ROMa CTI CTM

CoreSight compliant Yes Yes Yes

Description Table for pointers to various 
debug and trace components 
present on the same memory 
structure.

Interface to enable the cross 
connection of any attached 
debuggers to and from other 
trigger stimulus ports.

Channel link to enable more than 
two CTIs to link together and 
share trigger information.

Features Begins in a blank format and 
must be updated by the system 
creator to reflect the system 
implementation with allocation 
for 32 components.

Eight trigger inputs and eight 
outputs with extra levels of 
multiplexing possible, selectable 
handshaking and synchronizers.

Four-way interconnect, connects 
to CTIs or other CTMs to link up 
larger numbers of CTIs. 
Selectable handshaking and 
synchronizers on channel 
interfaces.

Non-programming 
interfaces

None 8x Trigger inputs
8x Trigger Outputs
1x Channel Interface

4x Channel Interface

Memory Footprint 4KB 4KB None

Designer ID Implementation defined ARM (0x43B) -

Part number Implementation defined 0x906 -

Device ID Non-applicable 0x40800 -

Dev Type Non-applicable 0x14 -

Lock Access Register No Bypassable -

Claim Tags None 8-bits -

Topology detection Non-applicable Yes Compatible

Integration registers Non-applicable Yes Compatible

a. The DAP-ROM is supplied as part of the DAP and DAP-Lite.
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Table 3-10 Debug component features, part 2

Component 
name CTI-A8 Cortex-A9 Cortex-A8 Cortex-A5 Cortex-R4

CoreSight 
compliant

Yes Yes Yes Yes Yes

Description Interface to 
enable the debug 
logic, ETM and 
PMU to interact 
with each other 
and with other 
CoreSight 
components.

Debug Interface to 
the Cortex-A9 
processor.

Debug Interface to 
the Cortex-A8 
processor.

Debug Interface to 
the Cortex-A5 
processor.

Debug Interface 
to the Cortex-R4 
processor.

Features Implements a 
configured set of 
seven trigger 
inputs and nine 
trigger outputs of 
which some are 
externally 
defined.

The processor debug 
unit provides a set of 
control registers to 
enable stopping of 
program
execution, 
examining and 
altering processor 
state and restarting 
the processor core.

The processor debug 
unit provides a set of 
control registers to 
enable stopping of 
program execution, 
examining and 
altering processor 
state and restarting 
the processor core.

The processor 
debug unit 
provides a set of 
control registers to 
enable stopping of 
program
execution, 
examining and 
altering processor 
state and restarting 
the processor core.

The processor 
debug unit 
provides a set of 
control registers 
to enable stopping 
of program 
execution, 
examining and 
altering processor 
state and 
restarting the 
processor core.

Non-programming 
interfaces

9x Trigger inputs
9x Trigger 
Outputs
1x Channel 
Interface

- - - -

Memory Footprint 4KB 4KB 4KB 4KB 4KB

Designer ID ARM (0x43B) ARM (0x43B) ARM (0x43B) ARM (0x43B) ARM (0x43B)

Part number 0x922 0xC09 0xC08 0xC05 0xC14

Device ID 0x40906 0x0 0x0 0x0 0x0

Dev Type 0x14 0x15 0x15 0x15 0x15

Lock Access 
Register

Bypassable Bypassable Bypassable Bypassable Bypassable

Claim Tags None 8-bits 8-bits 8-bits 8-bits

Topology 
detection

Yes Yes Yes Yes Yes

Integration 
registers

Yes Yes Yes Yes Yes
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3.3 Architectural features of ARM trace sources
The ETM and PTM are trace sources that monitor ARM processors. Each ETM and PTM are 
associated with certain processor lines, and each ETM and PTM version conforms to certain 
ETM and PTM architectures. The architecture consists of a generic programmers model and a 
trace protocol. The ETM programmers model is consistent for the main revisions of the 
architecture but the protocol has developed.

ETMv1 The first ETM Architecture. Used on ETM9 and ETM7 devices. Pipeline 
execution of instructions is represented within a 3-bit bus on a cycle-by-cycle 
basis of the activity of the core, PIPESTAT, and data trace appears on a separate, 
independent bus, TRACEPKT.

ETMv2 An extension of ETMv1 with more structured information appearing on the 
secondary information pipeline, TRACEPKT, with the introduction of 
P-Headers, packet header, and an increase of the PIPESTAT bus to 4-bits to 
provide more optimal indication of processor execution.

ETMv3 Major revision to previous ETM protocols. All information, data transfers, and 
instruction execution, is based on byte-size packets with no pipeline status. Data 
suppression enhances FIFO usage and reduces overflow regularity. The byte 
protocol and the removal of PIPESTAT make it possible to implement 
asynchronous trace outputs and support CoreSight.

PFTv1 A new protocol designed to only offer program flow trace, where only branches 
and exceptions are traced using minimal trace bandwidth. The protocol is byte- 
based, similar to ETMv3. The PFT architecture is fully CoreSight-complaint. 

For more information about the ETM and the various architectural differences, see the ETM 
Architecture Specification.

For more information on the PTM architecture, see the PTM Architecture Specification.

Table 3-11 and Table 3-12 on page 3-16 list the features of the ETMs.

Table 3-11 ARM trace source component features, part 1

Feature ETM9, medium plus ETM11RV CoreSight ETM9 CoreSight ETM11

Architecture version ETMv1.0-v1.3 ETMv3.1 ETMv3.2 ETMv3.2

Address comparator pairs 4 4 4 4

Data comparators 2 2 2 2

Context ID comparators - 1 1 1

MMDs 8 0 0 0

Counters 2 2 2 2

Sequencer Yesa Yes Yes Yes

Start/stop block Yes Yes Yes Yes

EmbeddedICE comparators 2 0 2 0

External inputs 4 4 4 4

External outputs 1 2 2 2

Extended external inputs - 20 0 20
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Extended external input 
selectors

0 2 0 2

ASIC Control Register bits 8 8 8 8

Data suppression - Yes Yes Yes

Software access to registers - Coprocessor Memory Memory

Readable registers - Yes Yes Yes

Fifo size 45 69 60 72

CoreSight-compliant No No Yes Yes

Fetch comparisons Yes No No No

a. Yes = supported.

Table 3-12 ARM trace source component features, part 2

Feature CS PTM-A9 CS ETM-A8 CS ETM-A5 CS ETM-R4 CS ETM-M3

Architecture version PFTv1.0 ETMv3.3 ETMv3.5 ETMv3.3 ETMv3.4

Address comparator pairs 4 4 4 4 0

Data comparators 0 2 2 2 0

Context ID comparators 1 1 1 1 0

MMDs 0 0 0 0 0

Counters 2 2 2 2 0

Sequencer Yes Yes Yes Yes No

Start/stop block Yes Yes Yes Yes Yes

EmbeddedICE comparator inputs 0 0 0 0 4

External inputs 4 4 4 4 2

External outputs 2 2 2 2 0

Extended external inputs 52 49 30 47 0

Extended external input selectors 2 2 2 2 0

ASIC Control Register bits 8 8 8 8 0

Data suppression N/A Yes Yes Yes No

Software access to registers Memory Memory Memory Memory Memory

Readable registers Yes Yes Yes Yes Yes

Table 3-11 ARM trace source component features, part 1 (continued)

Feature ETM9, medium plus ETM11RV CoreSight ETM9 CoreSight ETM11
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Chapter 4 
Debug Access

This chapter describes debug-related features in a system using the DAP and ECT, and methods of 
connecting components together for interoperability. It contains the following sections:
• About debug access on page 4-2
• Access to the system on page 4-3
• Access to debug components on page 4-5
• Mixed legacy and DAP debug on page 4-9
• Debug activity across the chip on page 4-11
• Typical trigger signals on page 4-14.
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4.1 About debug access
This chapter describes:
• debug related features in a system
• methods of connecting components together for interoperability

This chapter focusses on the DAP and ECT structure. 
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4.2 Access to the system
Most methods of debugging on a SoC begin with access to the SoC through a JTAG connection. 
This section describes:
• JTAG direct to core access
• DAP access.

4.2.1 JTAG direct to core access

Maintaining the existing access mechanism of a SoC has the following advantages:
• it does not require tool modifications
• it reuses existing methodologies for connection and testing.

Because this method of access goes through the core, it provides any native memory address 
translations from virtual to physical. It has the disadvantages that it requires an understanding 
of how the core accesses memory, and might also take several cycles depending on the 
instruction set.

Figure 4-1 shows an external JTAG connection connected to some memory through a processor.

Figure 4-1 JTAG connection

External tools connected through the JTAG link can access the system memory by instructing 
the processor, in Halted-Debug Mode, to fetch and save values from the memory directly. This 
method permits the automatic translation of the Virtual Modified Address (VMA) that the core 
sees, to the physical memory addressing of the system.

4.2.2 DAP access

The purpose of the DAP is to create a bridge between different bus structures and external tools. 
At a basic level, it has one input controlling interface, the Debug Port (DP), and several output 
masters, the APs. 

The DAP can provide a bridge to: 

• JTAG through the JTAG-AP, that permits the separation of off-chip and on-chip links 
without one affecting the other.

• AHB through the AHB-AP, for connection to the bus matrix. This permits access to all 
on-chip peripherals that the core uses, such as RAM. The DAP can support other bus 
protocols with an AHB bridge, for example AHB to AXI.

• APB through the APB-AP. This is wired in conjunction with an APB Multiplexor in the 
DAP that arbitrates between accesses from the APB-AP and the primary system bus. This 
bus is connected to all CoreSight-compliant debug and trace components.

The structure of the DAP provides a single flexible and scalable platform for access to locations 
throughout an entire SoC. The internal design of the DAP gives each AP independence from the 
controlling DP permitting connections across different clock and power domains.

System bus

Core Memory
JTAG
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The DAP supplied with the Design Kit permits an independent AHB power domain and can 
manage transactions from the System APB in a different power domain. However, the main 
DAP and the Debug APB must use the same clock.

Individual Access and Debug Ports within the DAP provide different features that might not be 
present in existing solutions:

AHB-AP This AP gives direct access to an AHB bus, or AXI bus through a bridge, and does 
not require a processor to stop or scan instructions though the processor. The 
AHB-AP only performs single transactions over AHB so that invasiveness is kept 
low. To decrease invasiveness more, it is recommended that the bus arbiter selects 
the AHB-AP as a low priority master.
The AHB-AP connects directly to the bus, therefore there is no overhead for 
transfers because there is no requirement to translate reads and writes into Op 
Codes for the processor.

Note
 The AHB-AP bypasses the processor to access the memory subsystem and views 

the physical bus addresses. This is not the same for the processor that views the 
virtual addresses.

JTAG-AP This component maintains the existing JTAG based debugging of cores. With 
independent JTAG chains, it is possible to have a JTAG chain attached to a core 
that might power-down, for example as part of an IEM domain, without affecting 
the JTAG access to other chains.

APB-AP The DAP permits the APB-AP to be a dedicated channel for control of and access 
to debug and trace components. This use of an AP for debug components ensures 
that there is no invasiveness onto the system bus.
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4.3 Access to debug components 
Both externally hosted debug agents and on-chip debug agents require access to debug 
components. For example, a debug monitor. Within CoreSight, these debug components are 
provided on a dedicated bus, the Debug APB that ensures a clear separation between system 
memory space and debug memory space. External tools can directly access debug components 
through the APB-AP within the DAP, on-chip agents must navigate the system memory bus first 
before being multiplexed with external debug access in the APB-MUX. Both of the memory 
mapped regions that is debug space within system memory and direct access to debug memory 
have the same offsets. However, system memory typically places this debug region at non-zero 
offset. This section describes:
• Debug memory overview
• System interface
• Debug memory decoding and the ROM table on page 4-6
• Example memory system on page 4-6
• Example memory map on page 4-7.

4.3.1 Debug memory overview

The DAP is setup with a ROM table located at address offsets 0x0000_0000 and 0x8000_0000 for 
system and APB-AP accesses respectively. Although the full address range is available for 
debug components, it is split into the following regions:
• 0x0000_0000 to 0x7FFF_FFFF 
• 0x8000_0000 to 0xFFFF_FFFF

The upper half with PADDRDBG[31] equal to 1’b1 can only be reached by external debug tools 
accessing through the APB-AP. The ROM table is located at the bottom of this region as the 
BASE register within the APB-AP indicates.

The lower half, PADDRDBG[31] equal to 1’b0, can only be accessed from the system interface 
that is enforced through the restriction of the APB system input to the APB-MUX only 
accepting PADDRSYS[30:2]. This division of memory enables bypassing of lock-access 
mechanisms that can be used by debug components to prevent accidental damage to debug 
control registers. For more information on the use of PADDRDBG[31], see the CoreSight 
Architecture. 

4.3.2 System interface

To connect the Debug APB into the system memory, an APB multiplexer is provided within the 
DAP. The bus type of the system must be converted to APB, for example through an AXI to 
APB bridge or an AHB to APB bridge. The address bits used to decode the region within the 
system memory must not be passed into the interface, only the address bits for that region, these 
are then decoded to individual components within the Debug APB address decoder. Because 
only a reduced address range is used for the Debug APB, this must exist on an aligned boundary. 
It is possible to translate system memory space into an aligned region, but this must be done 
prior to connection to the system interface on the DAP to ensure that the ROM table and its 
contents are still correct. Any high address bit that was used to decode the debug address region 
within the system memory, must be tied LOW on the system input to the DAP. For example, if 
debug region exists within the range 0x3F50_0000 to 0x3F50_FFFC,only PADDRSYS[15:2] must 
be connected with PADDRSYS[30:16] = 0x0000.
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4.3.3 Debug memory decoding and the ROM table 

It is advisable to place a ROM table for the debug system at the bottom of the debug address 
range for the CoreSight DK DAP, and one is already supplied at this fixed location. From this 
base address, offsets can be generated at 4KB intervals for allocation to CoreSight components 
present on the Debug APB. The address decoder for the bus must then correspondingly decode 
those offsets specified within the ROM table. Where features such as the bypassing of lock 
access, are implemented on PADDRDBG[31] being HIGH, the ROM table must be present at 
this offset location, that is 0x8000_0000 rather than 0x0000_0000 such as the APB-AP in the DAP. 

To ensure that the address decoder for the Debug APB behaves in the same way for both types 
of accesses, the decoder must ignore PADDRDBG[31] but still decode all the remaining 
address bits, that is, PADDRDBG[30:12] even though the system accesses only have a limited 
range from 0x0000_0000.

4.3.4 Example memory system 

The example system shows the address bus breakdown for the system with: 
• A bus master. For example, an ARM processor.
• Three system slaves. For example, memory and peripherals.
• A fourth slave that is the bridge to the debug memory.

Accesses from the bus master are multiplexed with those from the APB-AP inside the DAP and 
decoded to a ROM table and four debug components. When a slave is not selected, the decoder 
selects the default slave that is a dummy slave that typically returns an error to the master.

An example memory map shows how the memory map can be broken down. The left memory 
breakdown shows the entire range available to the bus master in the example system with the 
presence of the three slave devices and the debug region added into the address range 
0x3F50_0000 to 0x3F50_FFFF. When an unspecified region is accessed, the decoder selects the 
Default Slave for the system bus. The right memory map shows the breakdown of the debug 
memory region which, although limited on system accesses, extends from 0x0000_0000 to 
0xFFFF_FFFF. The system accesses are only able to address in the region of 0x0000_0000 to 
0x0000_0FFF because of the addressing restriction in the system memory bus that is limited to 
0x3F50_0000 to 0x3F50_FFFF, and the unavailable address bits. The address[30:16] in the Example 
memory system for access to debug components on page 4-7 being tied to zero. External debug 
agents can also access this resultant region. However, because the ROM table is indicated as 
being located at 0x8000_0000, external tools access the debug components through the 
lock-bypass alias PADDRDBG[31] equal to 1’b1 as all offsets point tools to components within 
this region. With reference to the example memory map, in the example system, the system 
address decoder decodes the following select lines for the system bus slaves: 

Select_Slave_1         = (Address[31:29] == 3’b000)
Select_Slave_2         = (Address[31:30] == 2’b01)
Select_Slave_3         = ((Address[31:28] == 4’b1000)|
                          (Address[31:28] == 4’b1110))
Select_Debug_Interface = (Address[31:16] == 16’h3F50)
Select_Default_Slave   = !(Select_Slave_1        | 
                           Select_Slave_2        | 
                           Select_Slave_3        | 
                           Select_Debug_Interface)

The debug address decoder decodes accordingly: 

Select_ROM_Table     = (Debug_Address[30:16] == 15’h0000)
Select_Debug_Comp_1  = (Debug_Address[30:16] == 15’h0001)
Select_Debug_Comp_2  = (Debug_Address[30:16] == 15’h0002)
Select_Debug_Comp_3  = (Debug_Address[30:16] == 15’h0003)
Select_Debug_Comp_4  = (Debug_Address[30:16] == 15’h0004)
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Select_Default_Slave = !(Select_ROM_Table    |
                         Select_Debug_Comp_1 |
                         Select_Debug_Comp_2 |
                         Select_Debug_Comp_3 |
                         Select_Debug_Comp_4 )

Figure 4-2 shows an example memory system for the access to debug components. 

Figure 4-2 Example memory system for access to debug components

4.3.5 Example memory map 

Figure 4-3 on page 4-8 shows an example memory map for the access to debug components.
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b  The address decoding for the ROM table and the ROM table itself, is provided as part of the DAP. Decoding for 
any user-specified debug components must be performed in a separate address decoder and those used 
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Figure 4-3 Example memory map for access to debug components
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4.4 Mixed legacy and DAP debug
It is possible to have some of the advantages of CoreSight Technology with the ability to directly 
access system busses, but without having to alter tool requirements for JTAG access to existing 
cores. This section describes:
• Mixing JTAG devices with JTAG-DP
• Mixing JTAG devices with SWJ-DP.

4.4.1 Mixing JTAG devices with JTAG-DP

Existing tools expect JTAG controllers to appear on the main JTAG chain. This method reduces 
the requirement to modify existing tools, but has the disadvantage that it loses the ability to 
independently remove power to TAP controllers without stopping the operation of any other 
TAP controller on the main chain, in this case the DAP. This method of linking devices in series 
is not recommended for TAP controllers implemented within IEM boundaries that might power- 
down.

Figure 4-4 shows a core and DAP connected in parallel with JTAG.

Figure 4-4 JTAG core connected in parallel with DAP

4.4.2 Mixing JTAG devices with SWJ-DP

It is possible to enable direct access to existing TAPs and gain the pin-count advantage of SWD 
when only debug access is required by disabling access to the TAPs when switching to SWD. 
The SWJ-DP component of the DAP provides additional outputs that indicate the mode of 
operation that is in force, JTAG or SWD, to enable a debugger to change between them without 
causing the TAPs to enter into UNPREDICTABLE states.

Figure 4-5 on page 4-10 shows an example JTAG connection that supports multiple TAP 
controllers that describes how to connect an additional TAP with the DAP enabling either serial 
access when using JTAG, or access to the DAP when using the reduced pin-count mode of SWD.
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Figure 4-5 An example JTAG connection

Note
 You must fit an external tri-state buffer on TMS to enable output of data when operating in SWD 
mode and a multiplexor on TDO for re-use with SWO. In Figure 4-5, when in SWD mode, the 
other JTAG TAP state machine is held in reset through the assertion of nTRST and clamping of 
TMS HIGH. In some devices, this can cause unexpected consequences so it is strongly 
recommended that you read the documentation for the TAP as to a safe method of disabling the 
device.
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4.5 Debug activity across the chip
This section describes: 
• Direct links on page 4-12
• Linking with an ECT on page 4-12.

When you debug a single device, such as a processor in isolation, all the influences on that 
device are self-contained. In more complex systems, interactions occur between several devices, 
either several processors or single processors with several peripherals. These more complex 
systems require the ability to alter debug behavior depending on the nature of the interactions.

For example, when two processors interact with each other, it might be useful to maintain 
synchronization with both processors, and stop them together or halt one when the other reaches 
a predetermined point.

For activity in separate devices to link together, there must be some form of interconnection. 
Figure 4-6 shows an example interaction between processors.

Figure 4-6 Processor interaction

The following definitions provide terms that describe system interactions:

Event An event is the expression that the system waits for to be true. When the event 
occurs, it generates a trigger each time that the expression is true. For example, in 
a simple event, the system waits for a signal to be HIGH. A complex event can 
result from a series of simple events, for example a primary event when an 
instruction executes and a secondary event that waits for the primary event to 
occur ten times.

Triggers A trigger is an activity event that originates in one device but is used by other 
devices, or the same device. Triggers can range from an output pin toggling, for 
example to indicate that a buffer is full, to the result of an operation on complex 
counters and comparisons configured within a device, for example pulse on 
execution of code line 1000. It is possible to cascade trigger events and combine 
triggers within some devices to generate complex events that result in a single 
trigger.

Signals of interest 
For any system, only certain signals are useful for debug. These are known as 
signals of interest. Any one device can have a large number of inputs and outputs, 
but not all of them require trigger connections. Signals of interest might indicate 
the state of a control program flow. For example:
• interrupt inputs might make suitable inputs for triggers, and the stimulus 

attached to interrupts might be useful triggers to other devices
• the results of internal comparators or performance counters presented on 

top-level outputs can be trigger events on other connected devices, or used 
as a feedback loop to the same device.
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Figure 4-7 shows possible signals of interest for a core and interrupt unit.

Figure 4-7 Signals of interest

Because of the variety and complexity of devices possible within a single SoC it 
is impossible to give an exhaustive list of trigger connections.

4.5.1 Direct links

A solution to linking together activity from the sections of a SoC, is to wire device inputs and 
outputs together directly. The primary advantage is that this requires minimal extra logic. You 
must take care when you link up arbitrary ports.

Consider the following when you use direct links to coordinate activity across a chip:

• ensure that connections cross clock domains safely and that no meta-stability occurs

• choose the correct connections at system design time because you cannot alter 
connections after implementation, that is, the wires are inflexible and require careful 
selection

• perform enough integration testing to ensure that the connections between devices are 
correct 

• where necessary, include shaping logic on triggers, for example to convert edge-based 
output events into logic-level stimulus ports.

Note
 Because of the variety of options for direct links, tools might not support the direct links you 
choose.

4.5.2 Linking with an ECT

The ECT is the structure that enables the correlation of triggers from the various parts of the 
SoC. It is composed of one or more CTIs that act as the primary matrix between the trigger 
inputs and outputs and the channel structure that propagates activity to other areas of the SoC.

When you require more than two CTIs, you can link them with CTMs that permit safe linking 
of channels to and from CTIs.

The CTI and CTM enable you to:

• produce a scalable system

• build a subsystem and provide connections for communication with other subsystems that 
you intend to design and implement at a later time.

Exporting a channel interface out of your subsystem provides a standard interface for more 
system-wide communication of debug events.

Interrupt 
unit Core
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Tools can identify the programmable interfaces of the CTIs and then flexibly alter the 
connections of trigger sources and destinations over the various channels to adapt the 
propagated activity for the required purpose. You can isolate individual CTIs to stop the 
transmission of activity over the CTM to other CTIs.

Each CTI provides a set number of trigger inputs and outputs on the following styles of 
sampling:
• handshaking for asynchronous trigger signals
• edge-based events for synchronous triggers.

You can use these sampling schemes to convert to and from other styles of trigger signals, for 
example:

Conditioned Keeps the output active for one clock cycle after an acknowledgement is received.

Level/pulse Used when the trigger destination is level sensitive, the signal is active for only 
one clock cycle.

Sticky Keeps the output active until a corresponding clear register clears it.

NoAck Used when the output follows the input trigger and does not require an 
acknowledgement.

Software programmable 
Used by the application to trigger events under software control. This enables a 
debugger to force an event using the configuration registers.

Note
 Because the ECT safely crosses asynchronous clock domains, it is possible for multi-shot events 
that occur close to each other to be masked within the cross-trigger structure and only result in 
a single pulse on a trigger output. You must only use the ECT with single shot events, or 
multi-shot where safe, where time delay characteristics are not important.
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4.6 Typical trigger signals
This section lists components that have inputs and outputs suitable for use as triggers across a 
chip during debug. For specific CTI connection information, see the appropriate CoreSight 
Design Kit Integration Manual. This section describes:
• CPU connections
• ETM connections
• Other trace source connections on page 4-15
• TPIU and ETB connections on page 4-15.

4.6.1 CPU connections

Table 4-1 lists the inputs and outputs for CPUs.

4.6.2 ETM connections

Table 4-2 lists the inputs and outputs for ETMs.

Table 4-1 CPU connections

Trigger connection ARM10 / ARM11 ARM7 / ARM9

Outputs DBGACK
!nPMUIRQ,

DBGACK
DBGRQI
RANGEOUT[0] / DBGRNG[0]
RANGEOUT[1] / DBGRNG[1]

Output acknowledgements - -

Inputs EDBGRQ
!nIRQ

(E)DBGRQ
!nIRQ
DBGEXT[0] / EXTERN0
DBGEXT[1] / EXTERN1

Input acknowledgements - -

Table 4-2 ETM connections

Trigger connection CoreSight ETM Pre-CoreSight ETM / ETM Single

Outputs EXTOUT[1:0]
TRIGOUT

EXTOUT[1:0]

Output acknowledgements EXTOUTACK[1:0]
TRIGOUTACK

EXTOUTACK[1:0]

Inputs EXTIN[3:0] EXTIN[3:0]

Input acknowledgements EXTINACK[3:0] EXTINACK[3:0]
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4.6.3 Other trace source connections

Table 4-3 lists the inputs and outputs for HTM, ITM, and STM.

4.6.4 TPIU and ETB connections

Table 4-4 lists the inputs and outputs for the TPIU, ETB, and TMC.

Table 4-3 HTM, ITM, and STM connections

Trigger connection HTM connection ITM connection STM connection

Outputs HTMEXTOUT[1:0]
HTMTRIGGER

TRIGOUT TRIGOUTSPTE 
TRIGOUTSW
TRIGOUTHETE
ASYNCOUT

Output acknowledgements HTMTRIGGERACK TRIGOUTACK -

Inputs HTMEXTIN[1:0]
HTMTRACEDISABLE

- 2x HWEVENTS 
2x ~HWEVENTS

Input acknowledgements - - -

Table 4-4 TPIU, ETB, and TMC connections

Trigger connection ETB connection TPIU connection TPIU Lite TMC connection

Outputs FULL
ACQCOMP

- - FULL
ACQCOMP

Output acknowledgements - - - -

Inputs FLUSHIN
TRIGIN

FLUSHIN
TRIGIN

-
TRIGIN

TRIGIN
FLUSHIN

Input acknowledgements FLUSHINACK
TRIGINACK

FLUSHINACK
TRIGINACK

TRIGINACK -
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Chapter 5 
Trace Capture

This chapter describes the performance requirements, bandwidth implications and trace generation 
capabilities for your SoC. It contains the following sections:
• About trace capture on page 5-2
• Designing your trace system on page 5-4
• Using your system on page 5-11.
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5.1 About trace capture
The trace that CoreSight trace sources generate must be captured by one or more Trace Capture 
Devices (TCDs). The following common forms of TCD exist:
• on-chip trace buffer
• off-chip Logic Analyzer
• off-chip low-cost TPA.

Logic Analyzers are expensive and are less well supported by development tools, but can often 
capture trace at higher speeds than is possible with a TPA. Most developers capture trace using 
a TPA or on-chip trace buffer.

The CoreSight ETB and ETR is an ATB slaves and connects to the CoreSight system directly 
to enable capture of trace data on-chip. A TPA or Logic Analyzer must connect to the pins of a 
trace port, that is driven by a TPIU.

Most systems implement either one ETB or one TPIU. However, it is possible to implement 
multiple trace sink components using a CoreSight Replicator. See Systems with an ETB and a 
TPIU on page 5-5.

Figure 5-1 shows a system that implements an ETB and a TPIU connected to a TPA.

Figure 5-1 Example system with ETB and TPIU

5.1.1 Operation of a TCD

A TCD has at its centre a large circular buffer. Trace is written into this buffer as it is generated. 
Trace capture does not stop when the buffer becomes full, but instead overwrites old trace.

A TCD is sensitive to two special signals, that the ETB or TPIU generate:
• trigger
• trace disabled.

A TPIU indicates these signals to a TPA as follows:

• Using the optional TRACECTL pin. This is the easiest way for a TPA to detect this 
information.

• Using the CoreSight Formatter Protocol. This requires a TPA that can extract this 
information from the formatter protocol, and results in a trace port that is one pin smaller. 
For more information on the formatter protocol, see Overhead of formatter protocol on 
page 5-7 and the CoreSight Architecture Specification.

Trigger

The trigger is an input to the trace sink, connected to a CTI. If there is more than one trace sink, 
each can receive a different condition as its trigger. Most trace sources, for example an ETM or 
HTM, can output a trigger signal. Usually, the CTIs are configured to send a trigger to all trace 
sinks when any trace source outputs its trigger signal.
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When a trigger is detected, the TCD counts a programmable number of trace records before it 
stops trace capture. After this point, it ignores any more trace. By setting the appropriate number 
of programmable trace records, you can select a window of trace to capture around the trigger 
condition. Figure 5-2 shows this context.

Figure 5-2 Use of the trigger to set a trace window

You can configure the trigger to output when the system detects a bug. The window of trace 
indicates the behavior of the system before and after the bug occurred.

You can use the trigger count in a number of ways:

• Set the trigger count to a small value. This gives a window of trace mostly before the 
trigger occurred, capturing the software bug under investigation.

• Set the trigger count to a value slightly smaller than the size of the buffer. This gives a 
window of trace mostly after the trigger occurred.

• Set the trigger count to roughly half the size of the buffer. This gives a window of trace 
before and after the trigger occurred.

When trace capture has stopped, the development tools download the trace from the TCD.

Trace disabled

Trace disabled indicates to the TCD that there is no trace to capture. It ensures that the values 
of the trace port pins are only captured when trace data is available.

Usually the ETB, ETR or TPIU waits until there is sufficient trace to use all the pins of the trace 
port before any trace is captured in the on-chip memory or output over the Trace Port. For 
example, if only one byte of trace is available in a system that implements a 16-bit Trace Port, 
no trace is output until a second byte of trace is available.
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5.2 Designing your trace system
This section describes issues to consider when you design a trace system:
• Differences between on-chip and off-chip storage
• Calculating the number of trace port pins on page 5-5
• Calculating the size of on-chip RAM required on page 5-8
• ATB bandwidth on page 5-8
• Using additional buffers in trace systems on page 5-9.

5.2.1 Differences between on-chip and off-chip storage

To decide when to implement an ETB or ETR for on-chip storage, or a TPIU for off-chip storage 
in a TPA, you must consider the following:

• You can capture much more trace in a TPA than in an ETB or ETR. This has the following 
advantages:
— You require fewer trace runs to identify the cause of a bug. The cause of the bug is 

less likely to have been overwritten.
— The trace requires less filtering. You can increase the effective size of the buffer 

considerably by using filtering resources to trace only important events, for 
example when the processor executes a particular function. This can lead to the loss 
of important trace because the system accidentally filters it out. Filtering resources 
also take time to set up, slowing down the development process.

— You can perform more accurate profiling. Code profiling requires trace over a long 
time to be accurate.

• An ETB and ETR can capture trace at a much higher speed. This enables the system to 
capture far more detailed trace over short periods. For example, a very high speed system 
might not be able to dedicate enough pins to capture full data trace from a processor 
off-chip, but might be able to capture the same trace on-chip in an ETB or ETR.

• An ETB or ETR do not require any trace pins. Your system might require a large number 
of pins if:
— It must trace a large amount of data simultaneously. For example, if you want to 

provide full data trace of several cores at the same time, your system requires a large 
number of pins.

— The trace port speed is much less than the speed of the components being traced. 
For example, in a system with a 250MHz trace port clock, four times as many pins 
are required to trace a processor running at 1GHz than are required to trace the same 
processor running at 250MHz.

• On-chip trace storage requires considerable silicon area. The size of the on-chip RAM can 
be substantial, depending on the maximum size of trace window that you have to support 
You can offset this with the reduction in I/O pads that also use silicon area or by reusing 
the memory for run-time usage when trace is not required.
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Systems with an ETB and a TPIU

Sometimes it is advantageous to implement a TPIU with its Trace Port, and an on-chip buffer 
such as an ETB, in the same chip. See Figure 5-1 on page 5-2. Usually the Trace Port in such 
devices is only capable of a small amount of trace, for example, it might only have sufficient 
bandwidth for instruction trace. This permits you to use the trace in different ways:

• Use the on-chip buffer when you require full trace over a short period. This is most useful 
when debugging the behavior of a well-defined section of software, when you can use 
filtering and the time between an error in the code and the detection of the bug by the 
trigger condition is small.

• Use the TPIU and TPA when you require trace over a long period. For example, when you 
cannot use filtering, or the time between an error in the code and the detection of the bug 
by the trigger condition is large.

• Use the TPIU and TPA when you derive profiling information from the trace. This 
requires a large amount of information and is usually concerned only with instruction 
trace.

In systems where the same ATB feeds both the on-chip trace sink and TPIU, it is not 
recommended that you enable both devices at the same time. If you do this, the device with the 
higher potential bandwidth receives trace at the same rate as the slower one. For example, a 
32-bit ETB can only have a quarter of its maximum bandwidth as a similarly clocked TPIU if 
the TPIU is configured to only use 8-bits of the Trace Port and is operating on the same trace 
data stream. This is because a replicator stalls its input if either output stalls.

5.2.2 Calculating the number of trace port pins

The number of trace port pins that your system requires depends on:

• The number of trace sources that trace at the same time.

• The number of bits of trace per cycle that each trace source generates, averaged over the 
size of the FIFO of that trace source. Figure 5-3 on page 5-6 shows how a larger FIFO can 
reduce the trace bandwidth by smoothing over bursts of trace. In this example, a FIFO of 
at least 21 bytes requires only a 4-bit trace port to output the trace without overflow, but 
a FIFO of only 13 bytes requires an 8-bit trace port.
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Figure 5-3 Effect of FIFO size on required trace bandwidth

• The ratio between the clock speed of the trace generation of each trace source and the 
speed of the trace port pins. A 250MHz trace port requires half as many trace port data 
pins as a 125MHz trace port to achieve the same trace bandwidth.

• The acceptable number of overflows. When you exceed the trace bandwidth, the trace 
source FIFOs can overflow. If you do not require to trace reliably through bursts of trace, 
then you can choose a lower trace port bandwidth.

• When several trace sources trace at the same time, if these sources are likely to produce 
simultaneous trace bursts. Normally, you must add up the bandwidth requirements for 
each trace source to determine the total bandwidth requirement. However, if each source 
only occasionally requires high bandwidth to trace a burst, then it is unlikely that the 
sources require this high bandwidth at the same time. The total bandwidth is therefore less 
than the sum of the individual bandwidths.
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• If there is any additional buffering in the trace system permitting peaks in trace activity to 
be more averaged over time. See Using additional buffers in trace systems on page 5-9.

Bandwidth required by ETMs

The bandwidth that ETMs require depends on the clock speed of the processor and the average 
number of instructions that your application executes per cycle. It is recommended that, to 
estimate your requirements, you trace the software that you intend to trace in your SoC in a 
development environment. Contact ARM for more information about the bandwidth that ETMs 
require to trace popular benchmarks.

The bandwidth the ETM trace requires is greatly affected by enabling:
• cycle-accurate tracing
• data address tracing
• data value tracing.

Table 5-1 shows the typical difference in trace bandwidth between these levels of trace. You 
must calculate the average number of instructions per data transfer and the number of 
instructions per processor cycle for your application to determine the trace bandwidth you 
require.

You can support one level of tracing when an ETM is the only trace source using the trace port, 
and a lower level of tracing when other trace sources share the trace port. For example, you can 
provide sufficient trace bandwidth so that:

• an ETM can perform full data tracing when it is the only trace source enabled

• the same ETM can only reliably perform instruction tracing when combined with other 
trace sources.

Overhead of formatter protocol

The TPIU, ETB, ETR and ETF implement a formatter protocol to enable multiple trace 
protocols to share the same trace port. The formatter protocol wraps the trace protocols from the 
trace sources in the system, and adds Trigger and Trace Disabled information. For a description 
of this, see Operation of a TCD on page 5-2. The trigger information indicates when the TPIU 
or ETB received a trigger, and is sometimes useful when analyzing the trace.

You can configure the ETB to bypass the formatter if both the following conditions apply:
• only one trace source is enabled
• you do not have to record when in the trace the ETB received a trigger.

You can configure the TPIU to bypass the formatter if all of the following conditions apply:
• only one trace source is enabled
• you do not have to record when in the trace the TPIU received a trigger

Table 5-1 Effect of different tracing levels on ETM bandwidth requirements

Data trace level Cycle-accurate mode Average bits per instruction Average bits per data 
transfer

Instruction plus data No 4 40

Instruction only No 1.2 N/A

Instruction plus data Yes 8 40

Instruction only Yes 6 N/A
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Trace Capture 
• your system implements the TRACECTL trace port pin
• the TPA is able to understand the information on TRACECTL.

You can program the ETB, ETR and ETF configurations of the TMC to bypass the formatter if 
the following conditions apply: 
• only one trace source is enabled
• you do not have to record when a trigger is received
• circular buffer mode is selected
• in ETF configuration only, the buffer drain mode is not enabled.

The formatter adds:

• A fixed overhead of 6% to the trace bandwidth. 

• An overhead of one byte every time the trace bus switches between trace sources. To 
minimize the switching cost configure the trace funnels appropriately. For more 
information on this, see Arbitration on page 5-13.

5.2.3 Calculating the size of on-chip RAM required

Consider the following factors when you decide how much memory to use for an ETB or ETR:

• The length of time the trace history must cover.

• The trace bandwidth of the trace capture. For information on factors that affect trace 
bandwidth, see Calculating the number of trace port pins on page 5-5.

• The complexity and novelty of the system in question, including software.

• If it is practical to perform filtering, that increases the effective length of time the history 
covers.

• The trade-off of system cost to design time.

• If your system is a low volume development chip or a high volume production part.

Some of these factors are highly system-dependent. Most designs use between 4KB and 16KB 
of RAM, but in some circumstances, smaller or larger sizes might be appropriate. For example, 
larger sizes might be appropriate for a development chip with a large number of trace sources.

5.2.4 ATB bandwidth

The bandwidth of an ATB bus is usually sufficient to support full tracing of trace sources to a 
high-bandwidth trace sink without overflows. However, you can exceed the bandwidth of an 
ATB bus if:

• Many trace sources generate trace at the same time.

• The ATB clock speed is much lower than the clock speed of the device being traced. For 
example, with a CPU running at 1GHz but the ATB operating at 250MHz, the trace source 
only has a quarter of the bandwidth available to output date from its internal buffer.

To determine whether this is an issue, follow the guidelines in Calculating the number of trace 
port pins on page 5-5. The ATB bus is equivalent to a 32 bit trace port.

You can prevent you system exceeding the ATB bandwidth by:

• Increasing the clock speed of the ATB bus.
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• Implementing more than one local trace sink so that the same ATB bus does not have to 
carry the trace from all trace sources. Figure 5-4 shows an example system that provides 
a dedicated ETB for each of two high-performance processors.

Figure 5-4 System with two ETBs

5.2.5 Using additional buffers in trace systems

Adding supplemental FIFOs within a trace system can help to alleviate narrowing of 
bandwidths across a system and reducing the risk of losing trace data. Although trace sources 
are designed with FIFOs to mitigate the large burst nature, there are still situations when the 
ATB bandwidth can limit the amount of information that can be traced.

• periods of heavy trace data generation from a trace source

• sustained coincident periods of trace data generation from multiple trace sources

• constrained size Trace Ports

• trace sinks with inconsistent bandwidths such as those interacting with a memory system 
for storage.

You can use a trace link component that has a large FIFO, such as the ETF that uses an SRAM 
for data storage, to compensate for differing bandwidth specification of devices on the inputs 
and output of the link. The FIFO enables for averaging of the ATB activity over larger periods 
of time than would be practical within a trace source, either by sharing the resources of a large 
buffer or because the conditions for it are not applicable in all ASICs where the trace source is 
implemented.

The following areas exist where an ETF can be fitted to reduce the effects that can cause loss of 
data:

• after a high-bandwidth trace source, such as an ETM, to reduce the effects of arbitration 
with other trace data streams

• after a low-bandwidth trace source that is being used more frequently to avoid the risk of 
FIFO overflow during peak periods of activity

• additionally, after devices such as the STM that can cause back-pressure on the memory 
system during periods of high sustained use

• before a trace sink with a guaranteed average bandwidth that is lower than the peak 
bandwidth of the ATB, such as a TPIU with a Trace Port less than the size of the ATB 
interconnect or operating at a frequency of the ATB

• before a trace sink that stores trace data in bursts of data, such as an ETR when it is 
arbitrating with other bus systems on a high-bandwidth interconnect.

Figure 5-5 on page 5-10 shows four potential locations for fitting an ETF in a trace system. In 
such a system, not all the ETFs have to be fitted depending on the constraints of the ATB 
interfaces for the trace sinks and trace sources.

ETMHigh-speed 
processor

ETMHigh-speed 
processor

ETB
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Figure 5-5 Using additional buffers for trace system

Note
 An ETF with a large amount of SRAM are not going to solve all situations where FIFO 
overflows occur. Restrictions in bandwidth when crossing asynchronous boundaries and widths 
of ATB can alter the characteristics of the ATB before and after the change in bandwidth. For 
example, if an ETF is fitted after an ETM, to absorb large quantities of trace data produced 
during data-value trace, if the ATB interface is running significantly slower that the of the core, 
then the trace source is still liable to overflow as the bandwidth from the output of the ETM's 
internal FIFO is restricted between the ETM and ETF to enable the trace data to drain from the 
FIFO before more data is internally created.
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5.3 Using your system
This section describes what you must consider when you configure your trace system for trace 
capture:
• Synchronization frequency
• Using the ETB for profiling on page 5-12
• Arbitration on page 5-13.

For other design issues, see Designing your trace system on page 5-4. 

5.3.1 Synchronization frequency

Most trace sources output synchronization information periodically during tracing, and often 
each time tracing restarts after a gap. If older trace has been overwritten, the system cannot 
decompress any trace before the first synchronization point that remains in the buffer.

A TPA captures a large amount of trace and many synchronization points, so only a small 
proportion of the trace is lost in this way. An ETB captures fewer synchronization points, so a 
larger proportion of the trace might be lost. Figure 5-6 shows this effect.

Figure 5-6 Effect of frequency compared with infrequent synchronization points

When you use an ETB, you must ensure that the synchronization frequency of trace sources is 
set to provide sufficient synchronization points. There must be enough points to make the 
amount of undecompressible trace small compared to the size of the ETB RAM. When you use 
a TPA, the size of the TPA buffer is usually large enough that the synchronization frequency is 
not significant.

Note
 ETM9CS, ETM11CS, and HTM all have software-programmable synchronization periods.
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Tracing more than one source

When they trace multiple sources, some trace sources can generate synchronization points much 
more frequently than others. If a trace source only uses a small portion of the bandwidth, then 
there might not be enough synchronization points for that trace source. You can program such 
trace sources to increase their synchronization frequencies to compensate for this.

5.3.2 Using the ETB for profiling

The ETB RAM cannot store enough trace to produce reliable profiling information. However, 
you can perform profiling with an ETB if the following apply:

• it is acceptable to periodically interrupt the execution of the software that you are 
profiling, increasing the time taken for it to run

• it is acceptable to install an additional interrupt handler

• it is acceptable for sections of trace to be missing periodically.

This method takes advantage of the FULL output from the ETB, that you must connect to a CTI 
for cross-triggering. You must also connect an interrupt request signal to one of the CTI outputs. 
Both signals might be on the same CTI, or they might be on different CTIs connected by a CTM.

Configure the system as follows:

1. Arrange an off-chip store to store the trace in.

2. Configure the CTI to cause the generation of an interrupt when the FULL signal occurs. 
This indicates that the ETB is full of trace.

3. Install an interrupt handler that is invoked when the CTI requests an interrupt. This 
handler must:
• disable ETB trace capture
• transfer the ETB RAM contents to an off-chip store
• initialize and re-enable the ETB as before.

4. Configure the ETB to accept trace data and the trace sources to produce trace.

This drains the contents of the ETB whenever the ETB becomes full. Some trace is lost, because 
of latency between the output of the FULL signal and the invocation of the interrupt handler. To 
prevent the loss of any trace, you can configure the ETB to cause an interrupt early by causing 
the ETB to wrap around before it is full. To do this, configure the system as follows:

1. Arrange an off-chip store.

2. Configure the CTI to cause the generation of an interrupt when the FULL signal occurs.

3. Configure the CTI to output a trigger to the ETB when the FULL signal occurs.

4. Decide how many ETB entries (n) before the end of the buffer to reserve until after the 
generation of the FULL signal:
• set the ETB write pointer to n
• set the ETB trigger counter to slightly less than n.

5. Install an interrupt handler that reinitializes the ETB in this new way. The handler must 
place the first n entries in the ETB RAM after the remaining entries in the trace store.
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5.3.3 Arbitration

The CoreSight Trace Funnel supports the following arbitration options, that you can configure 
using development tools:

• You can set the relative priority of each trace source. You are recommended to set the 
priorities of trace sources as follows:
— give priority to low-bandwidth trace sources over high-bandwidth trace sources
— give priority to trace sources with small FIFOs or no FIFO, because stalling these 

trace sources is more likely to lead to the loss of trace data.

• You can set the maximum switching frequency. This ensures that, when multiple trace 
inputs output trace at the same time, the funnel does not switch priority between sources 
too quickly. This is important because the CoreSight Formatting Protocol adds one byte 
of overhead every time the funnel switches between trace sources. You are recommended 
to set this to a non-zero value.
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Chapter 6 
Implementation

This chapter describes implementation in CoreSight systems. It contains the following sections:
• About implementation on page 6-2
• Power control on page 6-3
• Power domains and system design on page 6-5
• Power control enabled components on page 6-7
• Debug and system power up on page 6-11
• Clock domains on page 6-13
• Resets on page 6-15
• Tools controlled debug reset on page 6-19
• Interface timing on page 6-20
• Timing, synthesis, and placement on page 6-22.
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6.1 About implementation 
To successfully implement a CoreSight system you must consider:
• interface timing
• power control and the provision of appropriate power and voltage domains
• components with low power modes
• clocks and clock domains, and resets
• control during debug.

For more information on implementation and integration of CoreSight Technology, see the 
CoreSight Components Implementation Guide and the applicable Integration Manual.
ARM DGI 0012D Copyright © 2004, 2007, 2010 ARM Limited. All rights reserved. 6-2
ID062610 Non-Confidential



Implementation 
6.2 Power control
CoreSight Technology enables improvements to energy efficiency through:

• more than one power domain in the SoC and support for a unique debug power domain to 
enable shutdown of CoreSight components using signal clamps

• support for Intelligent Energy Management (IEM)

• tool control of power up and down.

Implementation of these power control features is optional. During implementation, you can 
either turn off or improve the energy efficiency of debug logic in a system with CoreSight 
Technology. Your system might only support IEM in the ARM processor. You must decide 
during implementation whether it is necessary provide a separate power domain for the debug 
and trace logic in the SoC under development.

It is recommended that you implement CoreSight systems with a separate debug power and 
voltage domain:

• that is used by all CoreSight components and trace source ATB interfaces

• that can be powered-down so that debug and trace infrastructure is not active in in-service 
ASICs

• that can be powered-up through the DAP to enable tools access.

You must also provide:

• a common clock for all debug infrastructure access, so that all CoreSight Debug APB 
interfaces run on this common clock, synchronous to ATB

• a common reset for all debug and trace infrastructure, so that at power-on, all debug and 
trace infrastructure resets at the same time.

Power domain 
Power domains refer to those areas of the SoC that can be completely powered- 
down independently of one another. A separate debug power domain is necessary 
to power-down the debug infrastructure, or power it up independently of the 
system or CPU. The SoC requires wire clamps between signals that join two 
independently-powered domains. These clamps hold signals at known static 
values between powered and unpowered domains. For production embedded 
systems, when the debugger does not require access to the system, the system can 
power-down the debug logic within the core and SoC to avoid unnecessary 
leakage associated with this logic.

Voltage domain 
Voltage domains define the areas of an SoC running at a common voltage. You 
can implement Dynamic Voltage Scaling (DVS) throughout a voltage domain to 
permit the voltage to drop and still meet the stated performance requirement, 
therefore reducing power consumption. Communication between voltage 
domains requires level-shifting the voltage level signal clamping, Level Shift and 
Clamp (LSC). This guide assumes that only the CPU supports DVS, with debug 
and SoC domains supporting power-down only. In these scenarios, debug and 
SoC power domain interactions require clamps on the outputs from any block that 
can be powered-down, rather than LSCs.

It is normal that power and voltage domains are identical, because this significantly eases layout 
and placement of power grids within an SoC.
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This section describes:
• Multiple power domains
• Intelligent Energy Management (IEM).

6.2.1 Multiple power domains

CoreSight components that cross a power domain boundary include placeholders for clamping 
signals from a powered-down domain.

CoreSight Technology supports the implementation of a separate power domain for debug and 
trace logic, referred to as the debug power domain.

6.2.2 Intelligent Energy Management (IEM)

The purpose of IEM technology is to provide a dynamic optimization between performance and 
power consumption.

To use IEM, you must implement your system with appropriate register slices and include it in 
a SoC that contains an Intelligent Energy Controller (IEC™). For more information, see the 
Intelligent Energy Controller Technical Overview.

CoreSight components that cross a boundary between an IEM-enabled system include:
• separate clock signals for each IEM domain
• asynchronous interfaces across IEM-enabled boundaries
• placeholders for level shifters and clamps on signals that cross an IEM-enabled boundary.

The same placeholders are used for signal clamps and level-shifters. For more information on 
IEM implementation, see Power control enabled components on page 6-7.
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6.3 Power domains and system design 
You can implement common or several distinct power domains depending on the power 
requirements of the SoC. CoreSight technology supports the implementation of a separate 
debug power domain if you determine that it is necessary to shut down, or alternatively, 
IEM-enable, the debug and trace logic in the SoC.

Figure 6-1 shows a system that implements the following power domains:
Pcore The core domain.
PSoC The SoC domain.
Pon The always on domain.

In this example, the core is IEM enabled, the SoC infrastructure is not. LSCs exist between the 
core and SoC domains. There is a clamp between the SoC domain and the always on domain for 
the external SWJ interface to the DAP. The SWJ power must always be on.

Figure 6-1 CoreSight system with no separate debug domains

Figure 6-2 on page 6-6 shows the same system enhanced to support a separate debug power 
domain, indicated by Pdbg. In this example, the core is IEM-enabled, and the separate debug 
power domain enables power-down of the entire debug and trace infrastructure independently 
of the rest of the system. This system must have clamps at component interfaces that cross 
between the debug and SoC power domains.

In Figure 6-2 on page 6-6, the core is IEM-enabled and the SoC infrastructure is not. The 
external SWJ interface to the DAP must be always powered-on.
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Figure 6-2 CoreSight system with a separate debug power domain
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6.4 Power control enabled components 
The following CoreSight components provide support for multiple power domains:
• DAP
• HTM
• ETM11CS and ETM9CS.

This section describes:
• Debug Access Port (DAP)
• Power for Trace Sources, ETM11CS, ETM9CS, and HTM.

For more information on IEM support for ETMs, see the CoreSight ETM11 Technical Reference 
Manual and the CoreSight ETM9 Technical Reference Manual.

6.4.1 Debug Access Port (DAP)

The DAP supports implementation over the following different power domains with 
asynchronous interfaces between:

• The external Debug Port interface and the DAP internal bus. There is an asynchronous 
interface between TCK (JTAG-DP), SWCLK (SW-DP), or SWCLKTCK (SWJ-DP), 
driven by tools, and DAPCLK, the DAP internal bus.

• The AHB-AP DAP internal bus and the AHB master port. There is an asynchronous 
interface between DAPCLK, the DAP internal bus, and HCLK, the AHB master port.

• The APB-Mux system slave interface and the APB-Mux master port. There is an 
asynchronous interface between HCLK, the system slave interface, and DAPCLK, the 
APB master port.

Each of these interfaces provides placeholders in the source code to enable the addition of signal 
clamps during implementation. You can enable the placeholders with Verilog ̀ ifdef pragmas to 
use the clamping placeholders. The following Verilog `define must be present during 
compilation:

`define IEMSupport.

This `define instantiates a dummy Verilog module that describes the functionality of the clamp 
logic. This has the benefit that the component behaves appropriately for simulation and the 
implementation can include the correct library model with minimum overhead.

The same placeholders are used for signal clamps, for power-down, and level-shifters, if IEM 
support is implemented.

6.4.2 Power for Trace Sources, ETM11CS, ETM9CS, and HTM

A number of implementation options are possible for trace sources. The most power efficient 
solution for the organization of power domains, is also the most complex to implement for the 
trace sources. Therefore, this implementation is only likely in systems when a reduction in 
power consumption is critical.

The trace sources do not fit cleanly into a common power and voltage domain. Ideally, the 
CoreSight ETM and HTM exist within the debug power domain. This permits independent 
power-down of the trace components when there is no debug or trace in progress. However, both 
the ETM and HTM must be in the voltage domain of the component being traced. This is 
especially critical for the ETM because it must operate synchronously with its associated core 
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and at the same speed. It is not possible to have an IEM enabled boundary between the CPU and 
ETM because there must be no asynchronous boundary. Figure 6-3 shows a configuration for 
the ETM, and Figure 6-5 on page 6-9 shows a configuration for the HTM.

The following sections describes how to simplify the system design to address these complex 
implementation steps and remove the requirement for a separate voltage island:
• ETM11CS, ETM9CS power
• HTM power on page 6-9.

ETM11CS, ETM9CS power

Figure 6-3 shows an ETM connected with separate power and voltage domains.

Figure 6-3 ETM power and voltage domains

To simplify system design, it is recommended that you put the ETM in the core power domain, 
so that it is powered-down when the core is powered-down. Figure 6-4 shows how the power 
and voltage boundaries are then unified, and the clamp between the core and ETM is not 
required.

Figure 6-4 Unified power and voltage domains for ETM

For more information on the implementation of clamps in the ETM11CS, see the CoreSight 
ETM 11 Technical Reference Manual and for the ETM9CS the CoreSight ETM 9 Technical 
Reference Manual.
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HTM power

The HTM supports implementation over the following different power domains with 
asynchronous interfaces between:

• The debug APB interface and the AHB clocked trace generation logic. There is an 
asynchronous interface between PCLKDBG and HCLK.

• The AHB clocked trace generation logic and the ATB trace output. There is an 
asynchronous interface between HCLK and ATCLK.

PCLKDBG and ATCLK driven logic is synchronous, and both are common to the debug 
power domain. Signal clamps are implemented in the source code to enable the addition of 
signal clamps between the debug power domain and SoC power domain providing HCLK, 
during implementation.

To enable use of the clamping placeholders, the following Verilog `define must be present 
during compilation:

`define CSHTM_CLAMP_LOGIC.

This instantiates a dummy Verilog module that describes the functionality of the clamp logic. 
This has the benefit that the component behaves appropriately for simulation, and the 
implementation can include the correct library model with minimum overhead.

Figure 6-5 shows an HTM connected with separate power and voltage domains.

Figure 6-5 HTM power and voltage domains

To simplify system design, it is recommended that you put the HTM in the SoC power domain, 
if SoC and Debug are independent, so it is powered-down when the SoC domain is 
powered-down. Figure 6-6 on page 6-10 shows how the power and voltage boundaries are then 
unified.
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Figure 6-6 Unified power and voltage domains for HTM
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6.5 Debug and system power up
The Debug Port in the DAP provides two pairs of power-on request signals to enable power-up 
of either the debug domain, or the complete system.

The Debug Port registers must be in an always powered-on domain to enable the system to make 
power-up requests to a system power controller:

• CTRL/STAT[29:28] provide CDBGPWRUPACK and CDBGPWRUPREQ. 
CDBGPWRUPREQ generates a debug domain power-up request to a power controller. 
The power controller must acknowledge the request with CDBGPWRUPACK.

• CRTL/STAT[31:30] provide CSYSPWRUPACK and CSYSPWRUPREQ. 
CSYSPWRUPREQ generates a complete system power-up request to a power controller. 
The power controller acknowledges the request with CSYSPWRUPACK. In this case, if 
multiple power domains exist, then they must all be powered-up.

In the majority of cases, it is expected that debuggers power on the complete SoC. If the issue 
for the debugger relates to energy management, the debugger might require power-up for only 
the debug domain. In this situation, you can design a system so that the power controller maps 
onto a bus segment that the DAP can access when only the debug domain is powered-on.

Note
 The following apply to both system power-up and debug power-up requests and 
acknowledgements:

• CxxxPWRUPREQ must be asserted HIGH in the DP to initiate power-on.

• The power controller must power-up the corresponding power domains on receiving 
CxxxPWRUPREQ HIGH, and when it has done so CxxxPWRUPACK must be returned 
HIGH.

• Tools can only initiate a DAP internal transfer when both CxxxPWRUPREQ and 
CxxxPWRUPACK are HIGH for either pair of power control signals.

• When both CxxxPWRUPREQ and CxxxPWRUPACK are HIGH, the corresponding 
power domains are powered-on.

• The removal of a power-on request is initiated by CxxxPWRUPREQ being deasserted. 
The power controller returns CxxxPWRUPACK LOW when the power removal request 
is accepted.

The return of CxxxPWRUPACK LOW does not indicate that power has been removed. It 
indicates the request for power-down has been accepted.

Note
 • It is strongly recommended that the debug power domain is powered-down on deassertion 

of the power-on request.

• All other power domains must gracefully power-down unless the system is operating in 
such a way that removal of power would affect its operation, that is, the system must stay 
powered-up if the power controller has other requests to maintain power.

• Before tools can make a new request for power on, ACK must be LOW indicating that a 
previous request for power-down has been accepted. This ensures that the handshaking 
mechanism is not violated.
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Figure 6-7 shows the timing of the power signals. The DP only permits initiation of DAP 
transfers to an Access Port between time T2 and T3.

Figure 6-7 Power-up request and acknowledgement timing

Table 6-1 shows how the power-up request signals must be connected depending on the power 
configuration of your system.

CxxxPWRUPREQ

CxxxPWRUPACK

T1 T3 T4

Normal operation
Powered-up

T2

Power state undefined
Debug recommended off

Power state undefined
Debug recommended off

Table 6-1 Power-up request and acknowledge signal connections

Power configuration CDBGPWRUPACK/ 
CDBGPWRUPREQ CSYSPWRUPACK/ CSYSPWRUPREQ 

No power management Core, 
SoC, and debug are always on.

Connect CDBGPWRUPACK to 
CDBGPWRUPREQ. 

Connect CSYSPWRUPACK to 
CSYSPWRUPREQ.

Core is IEM enabled, or can be 
shutdown.
No SoC or debug power 
management.

Connect CDBGPWRUPACK and 
CDBGPWRUPREQ to system 
power controller.
If CDBGPWRUPREQ is HIGH, 
ensure that all debug logic is 
powered up.

Connect CSYSPWRUPACK to 
CSYSPWRUPREQ.

Core is IEM enabled, or can be 
shutdown.
SoC can be powered-off.
No separate debug domain. All 
CoreSight infrastructure 
powered by SoC domain.

Connect CDBGPWRUPACK and 
CDBGPWRUPREQ to system 
power controller.
If CDBGPWRUPREQ is HIGH, 
ensure that all debug logic is 
active.

Connect CSYSPWRUPACK and 
CSYSPWRUPREQ to system power controller.
If CSYSPWRUPREQ is HIGH, ensure that SoC 
domain is powered-on.

Separate Core, SoC, and debug 
power domains. All can be 
powered-on or off 
independently.

Connect CDBGPWRUPACK and 
CDBGPWRUPREQ to system 
power controller.
If CDBGPWRUPREQ is HIGH, 
ensure that SoC domain is powered 
on so that all debug logic is active.

Connect CSYSPWRUPACK and 
CSYSPWRUPREQ to system power controller.
If CSYSPWRUPREQ is HIGH, ensure that the 
entire system, Core, SoC, and debug domain is 
powered-on.
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6.6 Clock domains
This section describes:
• CoreSight system clock design
• Clocking in an power control enabled system on page 6-14
• CoreSight clocks and their inter-relationships on page 6-14.

Table 6-2 lists the CoreSight Technology clocks 

Note
 CoreClk is external to CoreSight clocks, driving one or more ARM microprocessors, and is 
used by the ETM to correctly synchronize to the processor activity.

6.6.1 CoreSight system clock design 

Requirements of the clock implementation are:

• PCLKDBG and DAPCLK must be equivalent

• PCLKDBG and ATCLK must be synchronous

• PCLKDBG must run synchronously at the same frequency, or run synchronously at a 
lower frequency to ATCLK.

PCLKDBG greater than ATCLK is unsupported.

It is expected that system-level access through the AHB-AP, running from HCLK and software 
access to the Debug APB through the DAP, running from PCLKSYS, are the same AMBA 
interconnect clock. If this is the case, HCLK and PCLKSYS are equivalent.

In summary:

PCLKDBG is equivalent to DAPCLK.

Table 6-2 CSDK clocks

Clock Description 

ATCLK This is the AMBA Trace Bus (ATB) clock.

CSRTCK Return Test Clock, target pacing signal.

CSTCK This is the clock signal generated by the DAP (JTAG-AP) to drive JTAG interfaces other components.

CTICLK This is the cross trigger interface clock. It can be synchronous or asynchronous to CTMCLK.

DAPCLK This is the Debug Access Port (DAP) internal clock. It must be equivalent to PCLKDBG.

CTMCLK This is the cross trigger matrix clock. It can be synchronous or asynchronous to CTICLK.

HCLK This is the system-facing AHB clock used by the DAP (AHB-AP). It is asynchronous to DAPCLK.

PCLKDBG This is the Debug APB clock. It must be synchronous, that is, equivalent to slower than ATCLK.

PCLKSYS This is the system slave facing APB clock used by the DAP (APB-Mux). It can be asynchronous to 
DAPCLK.

SWCLKTCK This is the SWJ-DP clock driven from the external debugger. It is asynchronous to DAPCLK.

TRACECLKIN This is the Trace Port Interface Unit external trace clock input. It is asynchronous to ATCLK.
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PCLKDBG, DAPCLK, and ATCLK must be synchronous.

PCLKDBG is less than or equal to ATCLK.

HCLK and PCLKSYS, in a typical system are equivalent.

For system implementations where PCLKDBG is less than ATCLK, it is recommended that 
CoreSight components requiring both ATCLK and PCLKDBG:
• connect ATCLK to both ATCLK and PCLKDBG clock inputs on a component
• generate a clock enable term, derived from ATCLK, and connect this to PCLKENDBG.

For any clock domain where a clock enable is not required, connect the corresponding clock 
enable port HIGH.

6.6.2 Clocking in an power control enabled system

All boundaries between power domains and IEM boundaries are provided with an asynchronous 
boundary. Clocks must be connected as CoreSight system clock design on page 6-13 describes.

6.6.3 CoreSight clocks and their inter-relationships

Figure 6-8 shows the CoreSight clocks.

Figure 6-8 Clock domain interactions

CoreCLK
HCLK

CSTCK

CTMCLKCTICLK

ATCLK TRACECLKIN

DAPCLK

Asynchronous 
supported

Synchronous

Equivalent Clk2Clk1

Clk1 is less than or equal to Clk2

Multiple instantiations

PCLKDBG

(SWJ-DP I/F)

(JTAG-AP I/F)

PCLKSYS

SWCLKTCK
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6.7 Resets
This section describes:
• Connection of CSDK resets
• Example CoreSight configurations on page 6-16.

Table 6-3 lists the CoreSight Technology reset signals.

6.7.1 Connection of CSDK resets

This section describes the CoreSight Technology resets:

ATRESETn, PRESETDBGn, and DAPRESETn 
You can connect all these signals to the same reset signal.
The system requires an external reset synchronizer that enables the resets to be 
asynchronously asserted, then synchronously deasserted.

TRESETn Can be asserted at the same time as ATRESETn, and so it can come from the 
same reset signal.
If TRACECLKIN equals ATCLK, then you can use the output of the same 
synchronizer to deassert TRESETn.
If TRACECLKIN is not equal to ATCLK, then the system requires an 
additional reset synchronizer that asynchronously asserts the reset, but deasserts 
the reset synchronously to TRACECLKIN.

Table 6-3 CSDK reset signals

Reset Description 

ATRESETn This is the ATB reset. It resets all registers in the ATCLK domain. It is active LOW.

nCTIRESET This is the CTI reset signal. It resets all registers clocked by CTICLK. It is active LOW.

DAPRESETn This is the DAP internal reset. It must be equivalent to PCLKDBG. It is active LOW.

HRESETn This is a SoC provided reset signal that resets all of the AMBA on-chip interconnect. You must use 
this signal to reset the DAP, AHB-AP, and AHB master port.

HTMHRESETn This is the HTM reset signal. It is for resetting logic in the AHB domain of the HTM and must not be 
the same as HRESETn to enable the HTM to trace AHB resets.

nCSTRST This is an internally-generated reset signal, controlled and generated by the JTAG-AP to reset TAP 
controllers on connected components.

nSRSTOUT This is an internally-generated reset signal, controlled and generated by the JTAG-AP intended to reset 
sub-systems associated with the TAP controllers on that scan-chain.

nCTMRESET This is the CTM reset signal. It resets all registers clocked by CTMCLK. It is active LOW.

nPOTRST This is a true power-on reset signal to the DAP SWJ-DP. It must only reset at power-on. It is active 
LOW.

nTRST This is the SWJ-DP TAP state machine clock. It is asynchronous to DAPCLK.

PRESETDBGn This is the Debug APB reset. It resets all registers clocked by PCLKDBG. It is active LOW.

PRESETSYSn This is the DAP APB-Mux reset signal that resets the APB slave input. In a typical system where 
HCLK and PCLKSYS are equivalent, this is the same reset signal as HRESETn. It is active LOW.

TRESETn This is the TPIU trace input reset signal. It is active LOW.
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nPOTRST  This is a true power-on reset signal for the SWJ-DP. It resets all the registers 
within the Debug Port clocked by TCK, but not part of the TAP state machine, 
reset by nTRST. It must only be driven LOW at power-on of the platform. To 
ensure that this signal is internally synchronized to TCK, you must fit an external 
reset synchronizer on nPOTRST. 

6.7.2 Example CoreSight configurations

Figure 6-9 on page 6-17 shows a sample clock configuration for a typical CoreSight-enabled 
system.

In this configuration, ATCLK and the system interconnect AHB clock, HCLK, are equivalent. 

ATCLK = HCLK = PSYSCLK.

PCLKDBG = DAPCLK. These are also synchronous to ATCLK:
• CTI 1: CTICLK = CoreClk
• CTI 2: CTICLK = ATCLK
• CTI 3: CTICLK = ATCLK.

You can make CTMCLK equal to ATCLK.

ATCLK, HCLK, PSYSCLK, PCLKDBG, DAPCLK, CoreCLK, CTI2:CTICLK, 
CTI3:CTICLK and CTMCLK are all synchronous.

Asynchronous clocks are:
• CoreClk
• TCK
• TRACECLKIN.
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Figure 6-9 Synchronous example clock configuration

Figure 6-10 on page 6-18 shows a sample clock configuration for a CoreSight-enabled system 
with multiple asynchronous clock domains.

In this configuration, ATCLK and the system interconnect AHB clock, HCLK, are 
asynchronous. In the following list one point is asynchronous to other points, with the exception 
of PCLKDBG and DAPCLK that must be synchronous to ATCLK:
• ATCLK = CTI3 CTICLK
• HCLK = PSYSCLK = CTI2 CTICLK are synchronous
• PCLKDBG = DAPCLK and also synchronous to ATCLK
• CoreClk = CTI1 CTICLK
• TCK
• TRACECLKIN.
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Figure 6-10 Asynchronous example clock configuration
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6.8 Tools controlled debug reset
The control and status register provides two bits for reset control of the debug domain, 
DAPRESETn, PRESETDBGn, ATRESETn. The SWJ-DP registers are in the always 
powered-on external interface side of the SWJ-DP, and therefore, the system can drive them to 
make reset requests to a system reset controller. Figure 6-9 on page 6-17 shows the request and 
acknowledgement timing.

At time T1, a reset request is initiated. At time T2, the reset controller acknowledges that reset 
of the debug domain has completed. At time T3, the SWJ-DP deasserts the reset request to 
indicate that it is aware of the reset completion forcing the reset controller to deassert the reset 
acknowledgement at time T4:

• CTRL/STAT[27:26] provide CDBGRSTREQ and CDBGRSTACK. The request 
generates a reset request to a reset controller. When the reset completes and the debug 
domain has come out of reset, the controller returns CDBGRSTACK HIGH.

Figure 6-11 Reset handshaking mechanism

• If you require this functionality within the system, then the system reset controller must 
receive CDBGRSTREQ, and generate CDBGRSTACK when the reset cycle has 
completed.

• If you do not require this functionality, you must connect CDBGRSTACK LOW.

CDBGRSTREQ

CDBGRSTACK

T1 T2 T3 T4
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6.9 Interface timing
Because most CoreSight infrastructure components are relatively small, it is expected that 
synthesis flows would flatten individual components along with additional SoC logic. The 
timing guidelines help developed components to integrate together successfully. This section 
describes:
• Recommended ATB master interface timing parameters
• Recommended ATB slave interface timing parameters on page 6-21.

6.9.1 Recommended ATB master interface timing parameters

Figure 6-12 shows the interface timing for the ATB master in a CoreSight system.

Figure 6-12 ATB master interface timing

Table 6-4 lists the timing constraints that apply for the ATB master interface.

Cycle percentages are with respect to the CoreSight component:

• input setup times refer to the minimum percentage of the cycle that must be available to 
the component

• output valid times refer to the maximum percentage of the cycle until outputs are 
guaranteed to be valid.

Tovatdatam

Tovatinfm

Tisatconm

Tisatresetn

ATCLK

ATRESETn

ATDATAM

ATIDM
ATBYTESM

ATREADYM
AFVALIDM

ATCLKEN

Tisatcenm

ATVALIDM
AFREADYM

Tovatconm

Table 6-4 ATB master interface parameters, input to register, register to output

Parameter Description Maximum Minimum 

Tisatcenm ATCLKEN input setup to rising ATCLK - 30% 

Tovatdatam Rising ATCLK to ATDATAM valid 40% -

Tovatinfm Rising ATCLK to ATBYTESM and ATID and ID outputs valid 40% -

Tovatconm Rising ATCLK to ATB control outputs valid 40% -

Tisatconm ATB control inputs setup to rising ATCLK - 30% 

Tisatresetn ATRESETn input setup to rising ATCLK - 30% 
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6.9.2 Recommended ATB slave interface timing parameters

Figure 6-13 shows the interface timing for the ATB slaves in a CoreSight system.

Figure 6-13 ATB slave interface timing

Table 6-5 lists the timing constraints that apply for the ATB slave interface.

Cycle percentages are with respect to the CoreSight component:

• input setup times refer to the minimum percentage of the cycle that must be available to 
the component

• output valid times refer to the maximum percentage of the cycle until outputs are 
guaranteed to be valid.

Tovatcons

Tisatdatas

Tisatresetn

ATRESETn

ATDATAS

ATVALIDS
AFREADYS

ATREADYS
AFVALIDS

Tisatinfs

ATCLKEN

Tisatcens

ATBYTESS
ATIDS

Tisatcons

ATCLK

Table 6-5 ATB slave interface parameters, input to register, register to output

Parameter Description Maximum Minimum

Tisatcens ATCLKEN input setup to rising ATCLK - 30%

Tisatdatas ATDATAS input setup to rising ATCLK - 30%

Tisatinfs ATBYTESM and ATID inputs to rising ATCLK - 30%

Tisatcons ATB control inputs setup to rising ATCLK - 30%

Tovatcons Rising ATCLK to ATB control outputs valid 40% -

Tisatresetn ATRESETn input setup to rising ATCLK - 30%
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6.10 Timing, synthesis, and placement
This section describes:
• DAP placement
• ATB 1:1 bridge synthesis
• TPIU TRACECLK generation.

6.10.1 DAP placement

It is recommended that you place the DAP near the edge of the SoC because there are external 
pins for connection to the SWJ interface.

It is strongly recommended that all the debug and trace infrastructure on a SoC is accessible 
from the DAP. This includes:
• Debug APB
• JTAG interfaces.

There must be no dependencies between debug systems that are accessible from a single DAP. 
This enables full support for topology detection.

If several, completely independent debug and trace systems are present on completely 
independent systems, then each can be accessed by an individual DAP.

Debug and trace systems are not independent if there are any of the following:
• shared Debug APB buses
• connected ATB busses between the two systems
• connected JTAG chains
• ROM table references to components in other systems.

This ensures that you can build independent systems instantiated on the same ASIC while 
maintaining full CoreSight compliance.

6.10.2 ATB 1:1 bridge synthesis

You must use the ATB 1:1 bridge to achieve timing closure when the CoreSight components are 
spread out across an ASIC. This might happen if, for example, layout constraints require that a 
trace source is placed close to the processor or bus that it is tracing.

The ATB 1:1 bridge consists of a set of registers across the data interface and the control signals 
that are emitted from trace sources. This bridge has two ATB interfaces, an input and an output. 
Both interfaces exist in the same clock domain.

6.10.3 TPIU TRACECLK generation

TRACECLK is a divided by two, exported version of TRACECLKIN. The reason for creating 
a half clock is that the limiting factor for both the Trace Out Port is the slew rate from a 
zero-to-one and one-to-zero. If it is possible to detect logic 1 and logic 0 on the exported clock 
within one cycle, then it is also possible to detect two different values on the exported data pins.

TRACECLK can be derived from the negative edge of TRACECLKIN to create a sample 
point within the centre of the stable data, TRACEDATA, TRACECTL, on each changing edge 
of TRACECLK irrespective of the operating frequency. This method does create a issues 
during clock-tree synthesis, layout and static timing analysis because of the placement of a 
negative-edge flop and the requirement for even mark to ratio clock source.
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An alternative approach that reduces clock management issues is by fixing up the clock edges 
with respect to the clock by adding delays as appropriate to the signal paths after generation. 
The register that creates the divided by two clock is a standard positive-edge register that 
operates synchronously to the TRACEDATA and TRACECTL registers. This method 
simplifies synthesis in the early stages, and ensures when clock-tree synthesis is performed, all 
the registers are operating at the same time. To create the sample point at a stable point within 
the exported data, a you must add a delay to the path of TRACECLK between the register and 
the pad.

Figure 6-14 shows TRACECLK at different points within the design and its relationship to the 
data and control signals, TRACEDATA and TRACECTL. At the moment of creation from the 
final registers of the Trace Out port signals, all data edges are aligned as point A in Figure 6-14 
shows.

All the signal paths to the pads are subject to delays as a result of the path lengths, at point B, 
from wire delay. These delays must be minimized where possible by placing the registers as 
close to the pads as possible. Each path must be re-balanced to remove the relative skew 
between signals by adding in equivalent delays. An extra delay must be incorporated on the 
TRACECLK path to ensure the waveform at point C is achieved and that the rising and falling 
edges of TRACECLK correspond to the centre of stable data on TRACECTL and 
TRACEDATA as Figure 6-15 on page 6-24 shows.

Figure 6-14 Balancing TRACECLK

Figure 6-15 on page 6-24 shows how the rising and falling edges of TRACECLK correspond 
to the centre of stable data on TRACECTL and TRACEDATA at point C.
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Figure 6-15 Timing balance
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Appendix A 
Revisions

This appendix describes the technical changes between released issues of this book.

Table A-1 Differences between issue B and issue C

Change Location Affects

Replaced ‘The CoreSight Design Kit’ with ‘CoreSight Technology’ Throughout book All revisions

Replaced JTAG-Port with SWJ-Port in Figure 1-1 on page 1-4 Figure 1-1 on page 1-4 All revisions

Updated the Cross Triggering section Cross Triggering on page 1-5 All revisions

Added AMBA Advanced eXtensible Interface (AXI) description to 
CoreSight components section

CoreSight components on page 2-4 All revisions

Updated Trace sources section Trace sources on page 2-7 All revisions

Updated Trace links section Trace links on page 2-9 All revisions

Updated Trace sinks section Trace sinks on page 2-10 All revisions

Updated External debug hardware and software section External debug hardware and software on 
page 2-12

All revisions

Updated About CoreSight technology and ETM architectures 
features section for CoreSight technology components

About CoreSight Technology and ETM 
architectures features on page 3-2

All revisions

Updated Identification Register value for SW-DP, and SWJ-DP Table 3-1 on page 3-4 All revisions

Added STM to the Trace source HTM and ITM features table Table 3-4 on page 3-7 All revisions

Added Embedded Trace FIFO (ETF) to Link component features Table 3-6 on page 3-9 All revisions
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Revisions 
Added ETB to Sink component features, part 1 Table 3-7 on page 3-10 All revisions

Added ETR to Sink component features, part 2 Table 3-8 on page 3-11 All revisions

Added Cortex - A9 and Cortex - A5 to Debug components, part 2 Table 3-10 on page 3-14 All revisions

Added PFTv1 description to Architectural Features of ARM trace 
sources section

Architectural features of ARM trace sources on 
page 3-15

All revisions

Added CS PTM-A9 and CS ETM-A5 to ARM trace source 
component features, part 2

Table 3-12 on page 3-16 All revisions

Added new section for access to debug components Access to debug components on page 4-5 All revisions

Added STM connection information in Table 4-3 on page 4-15 Table 4-3 on page 4-15 All revisions

Added TMC connection information in Table 4-4 on page 4-15 Table 4-4 on page 4-15 All revisions

Added new section for Mixing JTAG devices with SWJ-DP Mixing JTAG devices with SWJ-DP on 
page 4-9

All revisions

Updated the Designing your trace system section, also added a new 
section, Using additional buffers in trace systems

Designing your trace system on page 5-4 All revisions

Replaced JTAG power and JTAG interface with SWJ power and 
SWJ interface respectively

Power domains and system design on page 6-5 All revisions

Updated DAP section Debug Access Port (DAP) on page 6-7 All revisions

Updated Power up request and acknowledge signal connections 
table

Table 6-1 on page 6-12 All revisions

Added CSRTCK, return test clock to the CoreSight Technology 
clocks table

Table 6-2 on page 6-13 All revisions

Updated CoreSight system clock design section for description CoreSight system clock design on page 6-13 All revisions

Added HTMHRESETn and nSRSTOUT, reset signals to 
CoreSight Technology reset signals table

Table 6-3 on page 6-15 All revisions

Updated the nPOTRST description in Connection of CSDK resets 
section

Table 6-3 on page 6-15 All revisions

Replaced JTAG-DP with SWJ-DP Tools controlled debug reset on page 6-19 All revisions

Replaced JTAG interface with SWJ interface DAP placement on page 6-22 All revisions

Updated the description in TPIU TRACECLK generation section TPIU TRACECLK generation on page 6-22 All revisions

Table A-2 Differences between issue C and issue D

Change Location Affects

Updated the Figure 6-8 on page 6-14 for Clk1 and Clk2 key statement Figure 6-8 on page 6-14 All revisions

Table A-1 Differences between issue B and issue C (continued)

Change Location Affects
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Glossary

This glossary describes some of the terms used in technical documents from ARM.

Abort An exception caused by an illegal memory access. Aborts can be caused by the external memory 
system or by the memory-management hardware, that might include a Memory Management Unit 
(MMU) or a Memory Protection Unit (MPU).

See also Data abort, External abort and Prefetch abort.

Advanced eXtensible Interface (AXI)
A bus protocol that supports separate phases for address or control and data, unaligned data 
transfers using byte strobes, burst-based transactions with only start address issued, separate read 
and write data channels, issuing multiple outstanding addresses, out-of-order transaction 
completion, and easy addition of register stages to provide timing closure.

The AXI protocol includes optional extensions for signaling for low-power operation.

Advanced High-performance Bus (AHB)
A bus protocol with a fixed pipeline between the address or control and data phases. It supports a 
subset of the functionality of the AMBA AXI protocol. The full AMBA AHB protocol 
specification includes a number of features that are not commonly required for master and slave 
implementations and ARM recommends using the AMBA AHB-Lite subset of the protocol.

See also Advanced Microcontroller Bus Architecture and AHB-Lite.

Advanced Microcontroller Bus Architecture (AMBA)
The AMBA family of protocol specifications is the ARM open standard for on-chip buses. AMBA 
provides a strategy for the interconnection and management of the functional blocks that make up 
a System-on-Chip (SoC). Applications include the development of embedded systems with one or 
more processors or signal processors and multiple peripherals. AMBA defines a common backbone 
for SoC modules, and therefore complements a reusable design methodology.
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Advanced Peripheral Bus (APB)
A bus protocol that is designed for use with ancillary or general-purpose peripherals such as 
timers, interrupt controllers, UARTs, and I/O ports. It connects to the main system bus through 
a system-to-peripheral bus bridge that helps reduce system power consumption.

Advanced Trace Bus (ATB)
A bus used by trace devices to share CoreSight capture resources.

AHB See Advanced High-performance Bus.

AHB Access Port (AHB-AP)
An optional component of the DAP that provides an AHB interface to a SoC.

AHB-AP See AHB Access Port.

AHB-Lite A subset of the full AMBA AHB protocol specification. It provides all of the basic functions 
required by the majority of AMBA AHB slave and master designs, particularly when used with 
a multi-layer AMBA interconnect. In most cases, the extra facilities provided by a full AMBA 
AHB interface are implemented more efficiently using an AMBA AXI protocol interface.

Aligned A data item stored at an address that is divisible by the number of bytes that defines its data size 
is said to be aligned. Aligned doublewords, words, and halfwords have addresses that are 
divisible by eight, four, and two respectively. The terms doubleword-aligned, word-aligned, and 
halfword-aligned therefore stipulate addresses that are divisible by eight, four, and two 
respectively. An aligned access is one where the address of the access is aligned to the size of 
an element of the access.

AMBA See Advanced Microcontroller Bus Architecture.

APB See Advanced Peripheral Bus.

APB Access Port (APB-AP)
An optional component of the DAP that provides an APB interface to a SoC, usually to its main 
functional buses.

APB-AP See APB Access Port.

ATB See Advanced Trace Bus.

ATB bridge A synchronous ATB bridge provides a register slice that helps timing closure by adding a 
pipeline stage. It also provides a unidirectional link between two synchronous ATB domains.

An asynchronous ATB bridge provides a unidirectional link between two ATB domains with 
asynchronous clocks. It supports connection of components with ATB ports in different clock 
domains.

AXI See Advanced eXtensible Interface.

Base register A register specified by a load or store instruction that is used as the base value for the address 
calculation for the instruction. Depending on the instruction and its addressing mode, an offset 
can be added to or subtracted from the base register value to form the virtual address that is sent 
to memory.

Beat Alternative word for an individual transfer within a burst. For example, an INCR4 burst 
comprises four beats.

See also Burst.

Breakpoint A breakpoint is a debug event triggered by the execution of a particular instruction. It is 
specified in terms of one or both of the address of the instruction and the state of the processor 
when the instruction is executed.

See also Watchpoint.
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Burst A group of transfers to consecutive addresses. Because the addresses are consecutive, the device 
transmitting the data does not have to supply an address for any transfer after the first one. This 
increases the speed at which the burst occurs. If using an AMBA interface, the transmitting 
device controls the burst using signals that indicate the length of the burst and how the addresses 
are incremented.

See also Beat.

Coprocessor A processor that supplements the main processor to carry out additional functions that the main 
processor cannot perform. The ARM architecture defines an interface to up to 16 coprocessors, 
CP0-CP15 for use by ARM:

• CP15 insturctions access the System Control processor

• CP14 instructions access control registers for debug, trace, and execution environment 
features

• CP10 an CP11 instruction space is for floating-point and Advanced SIMD instructions if 
supported.

CoreSight ARM on-chip debug and trace components, that provide the infrastructure for monitoring, 
tracing, and debugging a complete system on chip.

See also CoreSight ECT, CoreSight ETB, CoreSight ETM, Trace Funnel, and Trace Port 
Interface Unit (TPIU).

CoreSight ETB CoreSight ETB is a trace sink that provides on-chip storage of trace data using a configurable 
sized RAM.

See also CoreSight, CoreSight ETB, Embedded Trace Buffer, and Embedded Trace Macrocell.

Cross Trigger Interface (CTI)
Part of an Embedded Cross Trigger (ECT) device. In an ECT, the CTI provides the interface 
between a processor or ETM and the CTM.

Cross Trigger Matrix (CTM)
In an ECT device, the CTM combines the trigger requests generated by CTIs and broadcasts 
them to all CTIs as channel triggers.

CTI See Cross Trigger Interface.

CTM See Cross Trigger Matrix.

DAP See Debug Access Port.

DBGTAP See Debug Test Access Port.

Debug Access Port (DAP)
A block that acts as a master on a system bus and provides access to the bus from an external 
debugger.

Debug Test Access Port (DBGTAP)
A debug control and data interface based on the IEEE 1149.1 JTAG Test Access Port (TAP). The 
interface has four or five signals.

Debugger A debugging system that includes a program, used to detect, locate, and correct software faults, 
together with custom hardware that supports software debugging.

Device Validation Suite (DVS)
A set of tests to check the functionality of a device against the functionality defined in the 
Technical Reference Manual. For example these tests stress the Bus Interface Unit (BIU), 
low-level memory sub-system, pipeline, cache and Tightly Coupled Memory (TCM) behavior.
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Digital Signal Processing (DSP)
A variety of algorithms to process signals that have been sampled and converted to digital form. 
Saturated arithmetic is often used in such algorithms.

DSM See Design Simulation Model.

DSP See Digital Signal Processing.

DVS See Device Validation Suite.

ECT See Embedded Cross Trigger.

Embedded Cross Trigger (ECT)
A modular system that supports the interaction and synchronization of multiple triggering 
events with an SoC.

Embedded Trace Buffer (ETB)
Provides on-chip storage of trace data using a configurable sized RAM.

Embedded Trace Macrocell (ETM)
A hardware macrocell that, when connected to a processor, outputs trace information on a trace 
port. The ETM provides processor driven trace through a trace port compliant to the ATB 
protocol. An ETM always supports instruction trace, and might support data trace.

EmbeddedICE logic An on-chip logic block that provides TAP-based debug support for an ARM processor. It is 
accessed through the DAP on the ARM processor.

EmbeddedICE-RT Hardware provided by an ARM processor to aid debugging in real-time.

Endianness The scheme that determines the order of successive bytes of a data word when it is stored in 
memory.

ETB See Embedded Trace Buffer.

ETM See Embedded Trace Macrocell.

Event In an ARM trace macrocell, event has a particular meaning and these events can be simple or 
complex:

Simple An observable condition that a trace macrocell can use to control aspects of a 
trace.

Complex A boolean combination of simple events that a trace macrocell can use to control 
aspects of a trace.

Exception A mechanism to handle a fault or error event. For example, exceptions handle external interrupts 
and undefined instructions.

Formatter In an ETB or TPIU, an internal input block that embeds the trace source ID in the data to create 
a single trace stream.

Half-rate clocking
In an ARM trace macrocell, dividing the trace clock by two so that the TPA can sample trace 
data signals on both the rising and falling edges of the trace clock. The primary purpose of 
half-rate clocking is to reduce the signal transition rate on the trace clock of an ASIC for very 
high-speed systems.

Host A computer that provides data and other services to another computer. Especially, a computer 
providing debugging services to a target being debugged.

IEM See Intelligent Energy Management.
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Implementation-defined
Behavior that is not defined by the architecture, but is defined and documented by the 
implementation.

Implementation-specific
See Implementation-defined

Imprecise tracing In an ARM trace macrocell, a filtering configuration where instruction or data tracing can start 
or finish earlier or later than expected. Most imprecise cases cause tracing to start or finish later 
than expected.

For example, if TraceEnable is configured to use a counter so that tracing begins after the 
fourth write to a location in memory, the instruction that caused the fourth write is not traced, 
although subsequent instructions are. This is because the use of a counter in the TraceEnable 
configuration always results in imprecise tracing.

Instrumentation trace
A component for debugging real-time systems through a simple memory-mapped trace 
interface, providing printf style debugging.

Intelligent Energy Management (IEM)
An ARM technology that reduces device power consumption by dynamic voltage scaling and 
clock frequency variation.

Interrupt handler See Exception handler.

Invalidate Marking a cache line as being not valid, by clearing the valid bit to 0. This must be done 
whenever the line does not contain a valid cache entry. For example, after a cache flush all lines 
are invalid.

Jazelle state In Jazelle state the processor executes Java bytecodes as part of a Java Virtual Machine (JVM).

See also ARM state, Thumb state, and ThumbEE state.

JTAG Access Port (JTAG-AP)
An optional component of the DAP that provides debugger access to on-chip scan chains.

Macrocell A complex logic block with a defined interface and behavior. A typical VLSI system comprises 
several macrocells, such as a processor, an ETM, and a memory block integrated with 
application-specific logic.

MPU See Memory Protection Unit.

Multi-ICE A JTAG-based tool for debugging embedded systems.

Multi-master AHB Typically a shared, not multi-layer, AHB interconnect scheme. More than one master connects 
to a single AMBA AHB link. In this case, the bus is implemented with a set of full AMBA AHB 
master interfaces. Masters that use the AMBA AHB-Lite protocol must connect through a 
wrapper to supply full AMBA AHB master signals to support multi-master operation.

Power-on reset See Cold reset.

Prefetch abort An indication from a memory system to the processor that an instruction has been fetched from 
an illegal memory location. An exception must be taken if the processor attempts to execute the 
instruction. A Prefetch abort can be caused by the external or internal memory system as a result 
of attempting to access invalid instruction memory.

See also Data abort, External abort and Abort.

Read Memory operations that have the semantics of a load. See the ARM Architecture Reference 
Manual for more information.
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RealView ICE ARM JTAG interface unit for debugging embedded processor cores that uses a DBGTAP or 
Serial Wire interface.

Remapping Changing the address of physical memory or devices after the application has started executing. 
This might be done to permit RAM to replace ROM when the initialization has completed.

Replicator In an ARM trace macrocell, a replicator enables two trace sinks to be wired together and to 
operate independently on the same incoming trace stream. The input trace stream is output onto 
two independent ATB ports.

Reserved Registers and instructions that are reserved are Unpredictable unless otherwise stated. Bit 
positions described as Reserved are UNK/SBZP.

SBO See Should Be One.

SBOP See Should Be One or Preserved.

SBZ See Should Be Zero.

SBZP See Should Be Zero or Preserved.

SDF See Standard Delay Format.

Security hole A mechanism that bypasses system protection.

Serial Wire Debug (SWD)
A debug implementation that uses a serial connection between the SoC and a debugger.

This connection normally requires a bi-directional data signal and a separate clock signal, rather 
than the four to six signals required for a JTAG connection.

Serial Wire Debug Port (SWDP)
The interface for Serial Wire Debug.

Set See Cache set.

Should Be One (SBO)
Software must write as 1, or all 1s for bit fields. Writing any other value produces Unpredictable 
results.

Should Be One or Preserved (SBOP)
Software must write as 1, or all 1s for bit fields, if the value is being written without having 
previously been read, or if the register has not been initialized. If the register has previously been 
read, software must preserve the field value by writing back the value that was read from the 
same field on the same processor.

If software writes a value that does not meet this requirement, the result is Unpredictable.

Hardware ignores writes to these fields.

Should Be Zero (SBZ)
Software must write as 0, or all 0s for bit fields. Writing any other value produces Unpredictable 
results.

Should Be Zero or Preserved (SBZP)
Software must write as 0, or all 0s for a bit field, if the value is being written without having 
previously been read, or if the register has not been initialized. If the register has previously been 
read, software must preserve the field value by writing back the value that was read from the 
same field on the same processor.
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Subnormal value In floating-point operation, a value in the range (-2Emin < x < 2Emin), except for plus or minus 0. 
In the IEEE 754 standard format for single-precision and double-precision operands, a 
subnormal value has a zero exponent and a nonzero fraction field. The IEEE 754 standard 
requires that the generation and manipulation of subnormal operands be performed with the 
same precision as normal operands.

Support code In a floating-point implementation, system software that complements the hardware VFP 
implementation to provide compatibility with the IEEE 754 standard. The support code has a 
library of routines that perform supported functions, such as divide with unsupported inputs or 
inputs that might generate an exception, in addition to operations beyond the scope of the 
hardware. The support code has a set of exception handlers to process exceptional conditions in 
compliance with the IEEE 754 standard.

SVC See Supervisor Call.

SWD See Serial Wire Debug.

SWDP See Serial Wire Debug Port.

SWI See Supervisor Call.

Tag bits In a cache implementation, bits [31:(L+S)] of a virtual address, where L = log2 (cache line 
length) and S = log2 (number of cache sets). A cache hit occurs if the tag bits of the virtual 
address supplied by the processor match the tag bits associated with a valid line in the selected 
cache set.

See also Cache terminology diagram on the last page of this glossary.

TCD See Trace Capture Device.

TPA See Trace Port Analyzer.

TPIU See Trace Port Interface Unit.

Trace Capture Device (TCD)
A generic term to describe Trace Port Analyzers, logic analyzers, and on-chip trace buffers.

Trace funnel In an ARM trace macrocell, a device that combines multiple trace sources onto a single bus.

See also AHB Trace Macrocell, CoreSight, CoreSight ETM, and Embedded Trace Macrocell.

Trace hardware A term for a device that contains an ARM trace macrocell.

Trace port A port on a device, such as a processor or ASIC, used to output trace information.

Trace Port Analyzer (TPA)
A hardware device that captures trace information output on a trace port. This can be a low-cost 
product designed specifically for trace acquisition, or a logic analyzer.

Trace Port Interface Unit (TPIU)
Drains trace data and acts as a bridge between the on-chip trace data and the data stream 
captured by a TPA.

Unaligned An unaligned access is an access where the address of the access is not aligned to the size of an 
element of the access.

Undefined Indicates an instruction that generates an Undefined Instruction exception. See the ARM 
Architecture Reference Manual for more information.

UNK See Unknown.

UNK/SBOP A field that is Unknown on reads and Should Be One or Preserved on writes.

UNK/SBZP A field that is Unknown on reads and Should Be Zero or Preserved on writes.
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Unknown An Unknown value does not contain valid data, and can vary from moment to moment, 
instruction to instruction, and implementation to implementation. An Unknown value must not 
be a security hole.

UNP See Unpredictable.

Unpredictable For a processor means the behavior cannot be relied on. Unpredictable behavior must not 
represent security holes. Unpredictable behavior must not halt or hang the processor, or any 
parts of the system.

Unpredictable For an ARM trace macrocell, means that the behavior of the macrocell cannot be relied on. Such 
conditions have not been validated. When applied to the programming of an event resource, 
only the output of that event resource is Unpredictable. Unpredictable behavior can affect the 
behavior of the entire system, because the trace macrocell can cause the processor to enter debug 
state, and external outputs can be used for other purposes.

WA See Write-Allocate cache.

Way See Cache way.

WB See Write-Back cache.

Word A 32-bit data item. Words are normally word-aligned in ARM systems.

Write Operations that have the semantics of a store. See the ARM Architecture Reference Manual for 
more information.
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