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Preface

This preface introduces the ARM AMBA University Kit (AUK) and its reference 
documentation. It contains the following sections:

• About this document on page xii

• Further reading on page xv

• Feedback on page xvi.
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Preface 
About this document

This document is the technical reference manual for the AUK. It gives detailed 
information about:

• the function of the whole system

• each module in the system

• how to design a new system module.

Intended audience

This document has been written for System-on-Chip (SoC) designers and system 
architects, and provides a description of components within the AUK architecture.

Using this manual

This book is organized into the following chapters:

Chapter 1 Introduction 

Read this chapter for an overview of the AUK.

Chapter 2 The AUK Microcontroller 

Read this chapter for a description of the modules of the AHB EASY 
microcontroller.

Chapter 3 ARM7TDMI AHB Wrapper 

Read this chapter for a description of the ARM7TDMI AHB wrapper 
module.

Chapter 4 AHB Modules 

Read this chapter for details of the AHB modules that are used in the 
AUK.

Chapter 5 APB Modules 

Read this chapter for details of the APB modules that are used in the 
AUK.

Chapter 6 Behavioral Modules 

Read this chapter for details of how to use the behavioral modules, 
including memory modules and the external AMBA Test Interface Driver 
module (the TICBOX). This chapter contains a description of the TICTalk 
command language.
xii Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0226A



Preface 
Chapter 7 Designer’s Guide 

Read this chapter for details of how to add new bus master, slave and 
peripheral modules to the AHB EASY microcontroller.

Product revision status

The rnpnvn identifier indicates the revision status of the product described in this 
document, where:

rn Identifies the major revision of the product.

pn Identifies the minor revision or modification status of the product.

vn Identifies a version that does not affect the external functionality of the 
product.

Typographical conventions

The following typographical conventions are used in this book:

italic  Highlights important notes, introduces special terminology, 
denotes internal cross-references, and citations.

bold  Highlights interface elements, such as menu names. Denotes 
ARM processor signal names. Also used for terms in descriptive 
lists, where appropriate.

monospace Denotes text that can be entered at the keyboard, such as 
commands, file and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. The 
underlined text can be entered instead of the full command or 
option name.

monospace italic Denotes arguments to commands and functions where the 
argument is to be replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

Timing diagram conventions

This manual contains one or more timing diagrams. The following key explains the 
components used in these diagrams. Any variations are clearly labeled when they occur. 
Therefore, no additional meaning must be attached unless specifically stated.
ARM DDI 0226A Copyright © 2001 ARM Limited. All rights reserved. xiii



Preface 
Key to timing diagram conventions

Shaded bus and signal areas are undefined, so the bus or signal can assume any value 
within the shaded area at that time. The actual level is unimportant and does not affect 
normal operation.

Clock

Bus stable

HIGH to LOW

Transient

Bus to high impedance

Bus change

HIGH/LOW to HIGH

High impedance to stable bus
xiv Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0226A



Preface 
Further reading

This section lists publications from both ARM Limited and third parties that provide 
additional information on developing code for the ARM family of processors.

ARM periodically provides updates and corrections to its documentation. See 
http://www.arm.com for current errata sheets, addenda, and the ARM Frequently Asked 
Questions list.

ARM publications

This document contains information that is specific to the AUK. Refer to the following 
documents for other relevant information:

• AMBA Specification (Rev 2.0) (ARM IHI 0011)

• ARM Architecture Reference Manual (ARM DUI 0100)

• ARM7TDMI data Sheet (ARM DDI 0029)

• AUK User Guide (ARM DUI 0167)

• Micropack AHB CPU Wrappers Technical Reference Manual (ARM DUI 0169).

Other publications

• IEEE 1149.1 JTAG standard.
ARM DDI 0226A Copyright © 2001 ARM Limited. All rights reserved. xv



Preface 
Feedback

ARM Limited welcomes feedback on both the AUK, and its documentation.

Feedback on the AUK

If you have any comments or suggestions about this product, contact your supplier 
giving:

• the product name

• a concise explanation of your comments.

Feedback on this book

If you have any comments on this book, please send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments apply

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.
xvi Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0226A



Chapter 1 
Introduction

This chapter introduces the ARM AMBA University Kit (AUK). It contains the 
following section:

• Overview of the AUK on page 1-2.
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Introduction 
1.1 Overview of the AUK

The AUK comprises the building blocks needed to create an example system based on 
the low-power, generic design methodology of the Advanced Microcontroller Bus 
Architecture (AMBA).

The AUK:

• enables custom devices to be developed in very short design cycles

• enables the resulting subcomponents to be easily reused in future designs. 

1.1.1 AUK system blocks

The example design provides all the system modules needed to manage an AMBA 
system: 

• reset controller

• arbiter

• decoder.

These system modules control various aspects of the Advanced High Performance Bus 
(AHB). 

1.1.2 AUK components

The example design comprises:

• Two buses:

— the AHB

— the Advanced Peripheral Bus (APB).

• The ARM processor AHB wrapper, to enable execution of ARM code in an AHB 
system.

• The Test Interface Controller (TIC), to enable external control of the AHB during 
system test. 

• A minimum set of basic microcontroller peripherals. These are supported, and are 
implemented as low-power designs on the APB. They include: 

— an interrupt controller

— a remap and pause controller

— a 16-bit timer module.

• The example Static Memory Interface (SMI). This demonstrates the minimum 
requirements for an External Bus Interface (EBI).
1-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0226A



Introduction 
• A 1KB block of internal memory.

The AUK consists of a microcontroller with some external memory as shown in 
Figure 1-1.

Figure 1-1 AUK system diagram
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ResCntlDecoder
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Chapter 2 
The AUK Microcontroller

This chapter describes the microcontroller which is the main unit of the ARM AMBA 
University Kit (AUK). It contains the following sections:

• Functional overview on page 2-2

• The AMBA system components on page 2-3

• Reference peripherals on page 2-5

• Example components on page 2-8

• System test methodology on page 2-9.
ARM DDI 0226A Copyright © 2001 ARM Limited. All rights reserved. 2-1



The AUK Microcontroller 
2.1 Functional overview

The modules of the EASY microcontroller are grouped in five classes:

AMBA system components 

Used to control the general operation of the system.

Peripherals Low-power peripherals, which are connected to the peripheral bus.

Example components 

Demonstration modules that are only simulation models.

System test methodology 

Modules used for testing the system.

Processor core 

The ARM processor core that is built into the EASY microcontroller. 

With the exception of the processor core the above modules are fully described in this 
chapter. For details of the processor core see Chapter 3 ARM7TDMI AHB Wrapper.
2-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0226A



The AUK Microcontroller 
2.2 The AMBA system components

The Advanced Microcontroller Bus Architecture (AMBA) system comprises:

• Reset controller

• Arbiter

• Decoder

• AHB to APB bridge. 

2.2.1 Reset controller

The reset controller consists of a state machine which generates the HRESETn signal. 
This signal indicates the current reset state of the AMBA bus and is used by all the other 
elements in the EASY microcontroller, primarily for power-on initialization. 

Note
 All other reset modes, such as standby or warm reset, must be implemented separately. 

2.2.2 Arbiter

The arbiter provides arbitration between bus masters competing for access to the AHB. 
Although there are only two bus masters in the EASY microcontroller, the ARM and 
the TIC, the arbiter has provision for up to four masters. To extend the number of 
masters, see Chapter 7 Designer’s Guide. The arbitration is currently assigned with a 
simple priority system, with the TIC as the highest priority, and the processor as the 
lowest (also the reset default). The arbitration scheme is not defined in the AMBA 
Specification and can be dependent on implementation. 

2.2.3 Decoder

The decoder consists of a simple address decoding logic, which is used to select the 
system bus slaves based on the address of the current transfer. This module controls the 
configurable memory map for the system.

2.2.4 AHB to APB bridge

The AHB to APB bridge interface is an AHB slave. When accessed (in normal 
operation or system test) it initiates an access to the APB. APB accesses are of different 
duration (three HCLK cycles in the EASY for a read, and two cycles for a write). They 
also have their width fixed to one word, which means it is not possible to write only an 
8-bit section of a 32-bit APB register. APB peripherals do not require a PCLK input, 
ARM DDI 0226A Copyright © 2001 ARM Limited. All rights reserved. 2-3



The AUK Microcontroller 
because the APB access is timed with an enable signal generated by the AHB to APB 
bridge interface. This makes APB peripherals low power consumption parts, because 
they are only strobed when accessed. 

For more information on the APB bus, see the AMBA Specification.
2-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0226A



The AUK Microcontroller 
2.3 Reference peripherals

Figure 2-1 shows how the reference peripherals are interconnected within the Reference 
Peripherals Specification (RPS) block, and how they are connected to the bridge. 

Figure 2-1 Block diagram of the RPS block and bridge

The base addresses of each of the peripherals (timer, interrupt controller, and remap and 
pause controller) are defined in the AHB to APB bridge interface, which selects the 
peripheral according to its base address. The whole APB address range is also defined 
in the bridge.

These base addresses can be implementation-specific. The peripherals standard 
specifies only the register offsets (from an unspecified base address), register bit 
meaning, and minimum supported function. 

Table 2-1 shows the three bases and their current addresses in the EASY 
microcontroller. 

Remap and
pause

controller

AHB to
APB

bridge

Advanced Peripheral Bus (APB)

AHB

Remap and
pause control

Processor
interrupts

Interrupt
sources

RPS
block

Peripheral
select
lines

Interrupt
controller

Timer

Table 2-1 Peripherals base addresses

Peripheral EASY base

address

Interrupt controller 0x8000 0000

Timer 0x8400 0000

Remap and pause controller 0x8800 0000
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The AUK Microcontroller 
Note
 When writing software or test patterns to run on the system, the absolute hex addresses 
must not be used within the code. Instead, define the base addresses in a header and then 
use the offset to this base address.

The APB data bus is split into two separate directions:

• read (PRDATA), where data travels from the peripherals to the bridge

• write (PWDATA), where data travels from the bridge to the peripherals.

This simplifies driving the buses because turnaround time between the peripherals and 
bridge is avoided.

In the default system, because the bridge is the only master on the bus, PWDATA is 
driven continuously. PRDATA is a multiplexed connection of all peripheral PRDATA 
outputs on the bus, and is only driven when the slaves are selected by the bridge during 
APB read transfers.

It is possible to combine these two buses into a single bidirectional bus, but precautions 
must be taken to ensure that there is no bus clash between the bridge and the peripherals.

2.3.1 Timer

The timer comprises:

• two 16-bit periodic/free running down counters

• a clock prescaler (divide by 1, 16, or 256)

• a test veneer. 

When the counters underflow (passing zero value and reloading) they can generate 
interrupt requests which are passed to the interrupt controller. Both counter values can 
be loaded, read, and controlled through addressable registers.

2.3.2 Interrupt controller

The interrupt controller contains a set of registers for controlling eight interrupt request 
(IRQ) sources and one fast interrupt request (FIQ) source. These have the following 
functions:

• enable or disable specific interrupt sources from triggering the ARM nIRQ or 
nFIQ interrupt lines

• read the status of all interrupt sources at the inputs of the interrupt controller

• read the status of the interrupt sources enabled to trigger the ARM interrupt lines

• generate a software-triggered nIRQ signal to the ARM processor

• isolate the interrupt controller for test.
2-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0226A



The AUK Microcontroller 
The number of IRQ sources can easily be extended by increasing the number of IRQ 
registers.

2.3.3 Remap and pause controller

The remap and pause controller has three functions:

Reset status This enables software to determine whether the last reset was a 
Power-On Reset (POR) or a soft reset. The latter function is 
redundant in the EASY microcontroller, since it does not have a 
soft reset. It is implemented only as an example for systems that 
might provide a soft reset state.

Remap memory On reset the internal RAM is mapped out and bank 4 of the 
external memory is mapped into location 0x0000 0000 which is the 
boot location for the ARM processor. The reset memory map is 
cancelled by writing to a register in this peripheral.

Pause mode The EASY microcontroller only supports one simple 
power-saving mode, called Pause. This halts all bus activity (but 
not the system clock) and waits for an interrupt signal from the 
interrupt controller before restarting the system.

The remap and pause controller also contains an ID register which is currently only a 
single bit. This block can be extended in many ways including support for 
software-generated resets, more sophisticated power-saving modes and more detailed 
ID information.
ARM DDI 0226A Copyright © 2001 ARM Limited. All rights reserved. 2-7



The AUK Microcontroller 
2.4 Example components

The example components include:

• Internal memory

• Static memory interface

• Retry slave

• Default slave.

Typically these blocks must be re-implemented according to the specific system 
requirements of the microcontroller being developed.

2.4.1 Internal memory

The internal memory is a very basic behavioral model of 1KB of zero wait state static 
memory, which is not synthesizable. The size of the memory can be extended by 
altering a setting in the HDL file.

2.4.2 Static memory interface

The SMI is a 32-bit External Bus Interface (EBI) that can connect up to four 256MB 
banks of zero to four wait state memory to the EASY microcontroller. However, the 
number of wait states is set as a constant in the HDL (before synthesis), and is set for 
all four banks. The example SMI also supports test signals from the TIC. These override 
the normal operation of the SMI during system test, and directly control the tristate 
drivers on the XD bus.

2.4.3 Retry slave

The retry slave is an example of how to implement an AHB slave that generates retry 
responses and wait states for read or write accesses. It is used as a template for building 
slaves that require the use of a retry response.

2.4.4 Default slave

The default slave is used to fill holes in the memory map, so that the system still 
functions if an invalid area of memory is accessed. This must be modified to suit the 
memory map of the system, so that all areas of memory access a system slave.
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2.5 System test methodology

Each AHB slave, AHB master, and APB peripheral must be tested in complete 
isolation. This means that components must be designed with test veneers that enable 
non-bus signals to be controlled and observed. 

When a component is tested, a special test bit is set. This test bit switches these 
multiplexed signals to test registers (accessible through the AHB or APB), which 
effectively isolates each component from the rest of the system. 

Test vectors must be written to test the component in isolation, making as few 
assumptions about the rest of the system as possible. 

Figure 2-2 Simple test veneer example

A good example of this approach is provided by the test veneer for the ARM processor, 
which is described in the AMBA ARM7TDMI Interface Data Sheet. This approach is 
also used to test the peripherals on the APB bus. 

Under normal conditions, when the TIC is not in use, the current bus master performs 
transfers to and from any one of the following slaves: 

• internal memory 

• AHB to APB bridge interface (to access the peripherals) 

• example retry slave

• EBI.

On-chip
output

Off-chip connections
do not require mux

Component
under test

Test Register

Test mux
(optional)

Test mux

On-chip input

Output value
during test

APB or AHB

Test Register
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However, when test mode is entered, and the TIC is the current master, the following 
slaves can be accessed: 

• internal memory 

• AHB to APB bridge interface (to access the peripherals)

• example retry slave

• ARM bus master (test veneer).

Note
 Bus masters can become slaves during test mode. The EBI cannot be tested using the 
TIC because of the way test access is provided to the AHB bus. The TIC is a state 
machine driven by the test request inputs (TESTREQA and TESTREQB). It also 
contains a register that enables it to read address information from the test bus 
(TESTBUS) and drive it onto the AHB address bus (HADDR). However, it cannot 
drive the test bus. Instead, it overrides the normal function of the EBI, forcing it to 
provide a 32-bit channel between HRDATA and TESTBUS, passing out read data 
during a read test vector. Therefore, in test mode, the EBI cannot function as a slave.

TESTBUS must be a 32-bit channel. In a system which only supports a 16-bit or 8-bit 
external data bus, additional external pins such as address lines must be forced into a 
special test mode to supply the full 32-bit bidirectional channel required. 

For more information about: 

• the test interface, see the AMBA Specification

• applying test vectors to an EASY-based microcontroller, see the AUK User Guide. 

Note
 The TESTREQA, TESTREQB and TESTBUS signals are the same as the TREQA, 
TREQB, and TBUS signals described in the AMBA Specification (Rev 2.0).
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Chapter 3 
ARM7TDMI AHB Wrapper

This chapter describes the ARM7TDMI processor core wrapper that you can use with 
an AHB-based EASY system. It contains the following sections:

• About the ARM7TDMI AHB wrapper on page 3-2

• Signal interface on page 3-4

• Description of the ARM7TDMI wrapper blocks on page 3-11

• Non-standard design practices on page 3-22.
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3.1 About the ARM7TDMI AHB wrapper

The ARM7TDMI AHB wrapper interfaces between the ARM7TDMI core and the AHB 
bus. The modules that translate access from the core to AHB accesses when the core is 
the current master are common to both cores. The wrapper itself sits alongside the core, 
intercepting the memory bus. An example higher-level module is also included for each 
core. This shows how the core and wrapper can be connected, and is used by the 
synthesis scripts provided to enable the wrapper to be synthesized alongside a timing 
file for the core.

The wrapper also enables testing of the ARM7TDMI core when the Test Interface 
Controller (TIC) is the current AHB master, allowing the TIF-format production test 
vectors supplied by ARM to be used with AHB-based designs. Figure 3-1 on page 3-3 
shows a top-level block diagram of the ARM7TDMI AHB wrapper.
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Figure 3-1 ARM7TDMI AHB wrapper block diagram
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3.2 Signal interface

This section describes the signal interface of A7TWrap. It does not describe the 
ARM7TDMI. Only those signals from the ARM7TDMI core that are used by the AHB 
wrapper are described. All other core signals must be connected to the external system 
in the same way as for a native core design. See the ARM7TDMI Datasheet for the 
relevant information.

Note
 The exception is DOUT[31:0], which must be connected directly to the 
HWDATA[31:0] AHB bus and the DOUT[31:0] input on A7TWrap.

Table 3-1 describes the signals used by the ARM7TDMI AHB wrapper.

Table 3-1 ARM7TDMI AHB signal descriptions

Signal Direction Description

System inputs

HCLK Input Bus clock. This clock times all bus transfers. All signal timings are related to the 
rising edge of HCLK.

HRESETn Input Reset. The bus reset signal is active LOW and is used to reset the system and the 
bus. This is the only active LOW AHB signal.

Master inputs

HRDATAM[31:0] Input Read data bus. Used to transfer data to the ARM7TDMI in master mode.

HREADYM Input Transfer done. When HIGH, the HREADYM signal indicates that a transfer has 
finished on the bus. This signal can be driven LOW to extend a transfer. 

HRESPM[1:0] Input Transfer response. Indicates an OKAY, ERROR, RETRY, or SPLIT response.

HGRANTM Input Bus grant. Indicates that the ARM7TDMI is currently the highest priority master. 
Ownership of the address/control signals changes at the end of a transfer when 
HREADYM is HIGH, so a master gains access to the bus when both HREADYM 
and HGRANTM are HIGH.

Master outputs

HADDRM[31:0] Output This is the 32-bit system address bus.

HTRANSM[1:0] Output Transfer type. Indicates the type of the current transfer, that can be 
NONSEQUENTIAL, SEQUENTIAL, or IDLE.
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Table 3-2 on page 3-6 describes the signals to the ARM7TDMI core.

HWRITEM Output Transfer direction. When HIGH, this signal indicates a write transfer and when 
LOW a read transfer.

HSIZEM[2:0] Output Transfer size. Indicates the size of the transfer, that can be byte (8-bit), halfword 
(16-bit), or word (32-bit).

HBURSTM[2:0] Output Burst type. This signal indicates if the transfer forms part of a burst. The 
ARM7TDMI performs incrementing bursts of type INCR.

HPROTM[3:0] Output Protection control. These signals indicate if the transfer is an opcode fetch or data 
access, and if the transfer is a Supervisor mode access or User mode access.

HBUSREQM Output Bus request. A signal from the wrapper to the bus arbiter that indicates that it 
requires the bus. 

HLOCKM Output Locked transfer. When HIGH, this signal indicates that the master requires locked 
access to the bus and no other master must be granted the bus until this signal is 
LOW.

Slave inputs

HTRANS1S Input Transfer type. This is attached to bit 1 of the AHB HTRANS[1:0] bus. It indicates 
an active (NONSEQ or SEQ) or inactive (IDLE or BUSY) transfer.

HWRITES Input Transfer direction. When HIGH, this signal indicates a write transfer and when 
LOW a read transfer.

HWDATAS[31:0] Input Write data bus. Used to transfer data to the ARM7TDMI in slave mode.

HSELS Input Slave select. Selects the ARM7TDMI as slave.

HREADYS Input Transfer done. When HIGH, this signal indicates that a transfer has finished on the 
bus. This signal can be driven LOW to extend a transfer. 

Slave outputs

HRDATAS[31:0] Output Read data bus. Used to transfer data from the ARM7TDMI in slave mode.

HREADYOUTS Output Transfer done. When HIGH, this signal indicates that a transfer to the 
ARM7TDMI has finished. This signal can be driven LOW to extend a transfer. 

HRESPS[1:0] Output Transfer response. Indicates an OKAY, ERROR, RETRY, or SPLIT response. The 
ARM7TDMI always responds with OKAY.

Table 3-1 ARM7TDMI AHB signal descriptions (continued)

Signal Direction Description
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Table 3-2 Signals to ARM7TDMI core

Signal Direction Description

Shared master/slave signals

nRESET Output Active LOW reset to core.

MCLK Output Core clock for ARM7TDMI.

DIN[31:0] Output Data bus. For master mode this is connected to HRDATAM, for test mode it is 
connected to HWDATAS.

DOUT[31:0] Input Data bus. For master mode this is connected to HWDATAM, for test mode it is 
connected to HRDATAS.

Master inputs

A[31:0] Input Address bus

LOCK Input Indicates a locked transfer (such as SWP).

MAS[1:0] Input Transfer size. Indicates the size of the transfer, which is typically byte (8-bit), 
halfword (16-bit) or word (32-bit).

nMREQ Input Not memory access.

nOPC Input Not opcode access.

nRW Input Not read/write.

nTRANS Input Not memory translate. When LOW, this signal indicates that the processor is in 
user mode.

SEQ Input Sequential access.

Master outputs

ABORT Output Indicates that an access has aborted (that is, received an ERROR response on the 
AHB).

nFIQ Output Fast interrupt request.

nIRQ Output Standard interrupt request.

nWAIT Output Indicates that current access is waited.

Test inputs

BUSDIS Input Bus disable. When INTEST is selected on scan chain 0, 4, or 8 this is HIGH. It can 
be used to disable external logic driving onto the bidirectional data bus during scan 
testing. This signal changes after the falling edge of TCK.
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COMMRX Input When the communications channel receive buffer is full this is HIGH. This signal 
changes after the rising edge of MCLK.

COMMTX Input When the communications channel transmit buffer is empty this is HIGH. This 
signal changes after the rising edge of MCLK.

DBGACK Input Debug acknowledge. When the processor is in a debug state this is HIGH.

DBRQI Input Internal debug request. This is the logical OR of DBGRQ and bit 1 of the debug 
control register.

HIGHZ Input When the HIGHZ instruction has been loaded into the TAP controller this signal 
is HIGH.

RANGEOUT0 Input EmbeddedICE macrocell. When the EmbeddedICE watchpoint unit 0 has matched 
the conditions currently present on the address, data, and control buses, this is 
HIGH.

This signal is independent of the state of the watchpoint enable control bit.

RANGEOUT1 Input EmbeddedICE macrocell. The same as RANGEOUT0 but corresponds to the 
EmbeddedICE watchpoint unit 1.

nCPI Input Not coprocessor instruction. LOW when a coprocessor instruction is processed. 
The processor then waits for a response from the coprocessor on the CPA and CPB 
lines.

If CPA is HIGH when MCLK rises after a request has been initiated by the 
processor, the coprocessor handshake is aborted, and the processor enters the 
undefined instruction trap.

If CPA is LOW at this time, the processor enters a busy-wait period until CPB 
goes LOW before completing the coprocessor handshake.

nENOUT Input Not enable output. During a write cycle, this signal is driven LOW before the rising 
edge of MCLK, and remains LOW for the entire cycle. This can be used to aid 
arbitration in shared bus applications.

nENOUTI Input Not enable output. During a write cycle, this signal is driven LOW before the rising 
edge of MCLK, and remains LOW for the entire cycle. This can be used to aid 
arbitration in shared bus applications.

nEXEC Input Not executed. This is HIGH when the instruction in the execution unit is not being 
executed because, for example, it has failed its condition code check.

nM[4:0] Input Not processor mode. These are the inverse of the internal status bits indicating the 
current processor mode.

Table 3-2 Signals to ARM7TDMI core (continued)

Signal Direction Description
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nTDOEN Input Not TDO enable. When serial data is being driven out on TDO this is LOW. 
Usually used as an output enable for a TDO pin in a packaged part.

SCREG[3:0] Input Scan chain register. These reflect the ID number of the scan chain currently 
selected by the TAP controller. These change on the falling edge of TCK when the 
TAP state machine is in the UPDATE-DR state.

TBIT Input Thumb state. When the processor is executing the THUMB instruction set, this is 
HIGH. It is LOW when executing the ARM instruction set. This signal changes in 
phase two in the first execute cycle of a BX instruction.

xnTRST Input JTAG reset input from external tester.

xTCK Input JTAG clock input from external tester.

xTDI Input JTAG data input from external tester.

xTMS Input JTAG mode select input from external tester.

xTDO Input JTAG data input from core.

Slave outputs

ABE Output Address bus enable. The address bus drivers are disabled when this is LOW, 
putting the address bus into a high impedance state. This also controls the LOCK, 
MAS[1:0], nRW, nOPC, and nTRANS signals in the same way. ABE must be 
tied HIGH if there is no system requirement to disable the address drivers.

ALE Output Address latch enable. This signal is provided for backwards compatibility with 
older ARM processors. For new designs, if address retiming is required, ARM 
Limited recommends the use of APE, and for ALE to be connected HIGH. The 
address bus, LOCK, MAS[1:0], nRW, nOPC, and nTRANS signals are latched 
when this is held LOW. This enables these address signals to be held valid for the 
complete duration of a memory access cycle. For example, when interfacing to 
ROM, the address must be valid until after the data has been read.

APE Output Address pipeline enable. Selects whether the address bus, LOCK, MAS[1:0], 
nRW, nTRANS, and nOPC signals operate in pipelined (APE is HIGH) or 
depipelined mode (APE is LOW). Pipelined mode is particularly useful for 
DRAM systems, where it is desirable to provide the address to the memory as early 
as possible, to enable longer periods for address decoding and the generation of 
DRAM control signals. In this mode, the address bus does not remain valid to the 
end of the memory cycle. Depipelined mode can be useful for SRAM and ROM 
access. Here the address bus, LOCK, MAS[1:0], nRW, nTRANS, and nOPC 
signals must be kept stable throughout the complete memory cycle. However, this 
does not provide optimum performance.

Table 3-2 Signals to ARM7TDMI core (continued)

Signal Direction Description
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BIGEND Output Big-endian configuration. Selects how the processor treats bytes in memory:

• HIGH for big-endian format

• LOW for little-endian format.

BL[3:0] Output Byte latch control. The values on the data bus are latched on the falling edge of 
MCLK when these signals are HIGH. For most designs these signals must be tied 
HIGH.

BREAKPT Output Breakpoint. A conditional request for the processor to enter debug state is made by 
placing this signal HIGH.

If the memory access at that time is an instruction fetch, the processor enters debug 
state only if the instruction reaches the execution stage of the pipeline.

If the memory access is for data, the processor enters debug state after the current 
instruction completes execution. This allows extension of the internal breakpoints 
provided by the EmbeddedICE Logic.

BUSEN Output Bus enable. A static configuration signal that selects whether the bidirectional data 
bus (D[31:0]) or the unidirectional data buses (DIN[31:0] and DOUT[31:0]) are 
used for transfer of data between the processor and memory. When BUSEN is 
LOW, D[31:0] is used. DOUT[31:0] is driven to a value of zero, and DIN[31:0] 
is ignored, and must be tied LOW. When BUSEN is HIGH, DIN[31:0] and 
DOUT[31:0] are used. D[31:0] is ignored and must be left unconnected.

CPA Output Coprocessor absent. Placed LOW by the coprocessor if it is capable of performing 
the operation requested by the processor.

CPB Output Coprocessor busy. Placed LOW by the coprocessor when it is ready to start the 
operation requested by the processor. It is sampled by the processor when MCLK 
goes HIGH in each cycle in which nCPI is LOW.

DBE Output Data bus enable. Must be HIGH for data to appear on either the bidirectional or 
unidirectional data output bus. When LOW the bidirectional data bus is placed into 
a high impedance state and data output is prevented on the unidirectional data 
output bus. It can be used for test purposes or in shared bus systems.

DBGEN Output Debug enable. A static configuration signal that disables the debug features of the 
processor when held LOW. This signal must be HIGH to allow the EmbeddedICE 
Logic to function.

DBGRQ Output Debug request. This is a level-sensitive input, that when HIGH causes 
ARM7TDMI core to enter debug state after executing the current instruction. This 
enables external hardware to force the ARM7TDMI core into debug state, in 
addition to the debugging features provided by the EmbeddedICE Logic.

Table 3-2 Signals to ARM7TDMI core (continued)

Signal Direction Description
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EXTERN0 Output External input 0. This is connected to the EmbeddedICE Logic and allows 
breakpoints and watchpoints to be dependent on an external condition.

EXTERN1 Output External input 1. This is connected to the EmbeddedICE Logic and allows 
breakpoints and watchpoints to be dependent on an external condition.

ISYNC Output Synchronous interrupts. Set this HIGH if nIRQ and nFIQ are synchronous to the 
processor clock, LOW for asynchronous interrupts.

nENIN Output Not enable input. This must be LOW for the data bus to be driven during write 
cycles. Can be used in conjunction with nENOUT to control the data bus during 
write cycles.

nTRST Output Not test reset. Reset signal for the boundary-scan logic. This pin must be pulsed or 
driven LOW to achieve normal device operation, in addition to the normal device 
reset, nRESET.

SDOUTBS Output Boundary scan serial output data. Accepts serial data from an external 
boundary-scan chain output, synchronized to the rising edge of TCK. This must 
be tied LOW, if an external boundary-scan chain is not connected.

TBE Output Test bus enable. When LOW, D[31:0], A[31:0], LOCK, MAS[1:0], nRW, 
nTRANS, and nOPC are set to high impedance. Similar in effect as if both ABE 
and DBE had been driven LOW. However, TBE does not have an associated scan 
cell and so enables external signals to be driven high impedance during scan 
testing. Under normal operating conditions TBE must be HIGH.

TCK Output Test clock. Clock signal for all test circuitry. When in debug state, this is used to 
generate DCLK, TCK1, and TCK2.

TDI Output Test data in. Serial data for the scan chains.

TMS Output Test mode select. Mode select for scan chains.

Table 3-2 Signals to ARM7TDMI core (continued)

Signal Direction Description
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3.3 Description of the ARM7TDMI wrapper blocks

This section contains descriptions of the following blocks:

• A7TDMI

• A7TWrap

• A7WrapSM

• A7WrapMaster on page 3-14

• A7TWrapTest on page 3-15

• A7TWrapCtrl on page 3-21.

3.3.1 A7TDMI

This is an example top level containing instantiations of both the ARM7TDMI core and 
the AHB wrapper. It is used by the provided synthesis scripts to enable synthesis of the 
wrapper alongside a characterized timing file of the core. All core signals not connected 
to the AHB wrapper are shown with example connections only. You can change these, 
or use a completely new top-level in the design.

3.3.2 A7TWrap

This instantiates the master and slave components of the ARM7TDMI AHB wrapper. 
It includes:

• multiplexor on DIN
• combinational creation of TRANS from nMREQ and SEQ
• creation of MCLK from inverted HCLK
• delayed CLKEN.

3.3.3 A7WrapSM

In master mode, this block converts the memory accesses from the core into 
pseudo-AHB accesses. The following sections of the code are explained:

• Main state machine on page 3-12

• Address generation on page 3-13

• Wait states on page 3-14

• Error support on page 3-14

• Control signaling (HTRANS, HSIZE, HBURST, HPROT) on page 3-14.
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Main state machine

The main state machine uses the state variable AddrState (which is registered to create 
LastAddrState). This can take the following enumerated values:

IDLE Default state. Indicates that no transfer is taking place on the AHB.

IS Indicates that the current IDLE cycle can be part of a merged I-S access.

NON Indicates that the current access is a non-sequential transfer.

SEQ Indicates that the current access is a sequential transfer.

LOKI Pause state to enable HLOCK to be asserted on the AHB for one cycle 
prior to the read access of a SWP instruction.

LOKR Read access of a SWP instruction.

LOKW Read access of a SWP instruction.

Figure 3-2 on page 3-13 shows the possible state transitions. State transitions occur on 
the rising edge of HCLK. Transitions back to the same state can occur either when the 
access on the pseudo-AHB is waited, or during sequential accesses in a burst (SEQ 
only). 
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Figure 3-2 ARM7 AHB wrapper main state machine

Address generation

There are two internal sources of address:

• a registered version of the core address

• a locally incremented address created within A7WrapSM.

Normally the registered version of the address is used, but the registered version is 
required when performing sequential accesses to prevent a combinational path from the 
core to HADDR.

NON SEQ LOKW

LOKI

IDLEIS

LOKR
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Wait states

Wait states on the AHB (indicated by HREADY being LOW) are propagated to the 
ARM7 only when the core is attempting to access the bus. A string of IDLE cycles are 
not waited. Additional wait states (where one wait state equates to a single cycle of 
HCLK) are added as follows:

• +1 wait state for each NONSEQ access from the core (except SWP accesses). 
These are masked by wait states from the previous access, if any are received. 
Instruction fetches from the ARM7 cores are always initiated as merged I-S 
cycles, and so do not see this extra wait state.

• +2 wait states on the read at the start of a SWP instruction. This enables HLOCK 
to be asserted for a cycle before the AHB access commences.

Error support

The ARM7 AHB wrappers include support for the ERROR response on HRESP.

Control signaling (HTRANS, HSIZE, HBURST, HPROT)

Table 3-3 shows the control signal values used by the ARM7 AHB wrapper.

3.3.4 A7WrapMaster

In master mode, this block converts the pseudo-AHB accesses from A7WrapSM into 
true AHB by adding support for split and retry responses, and also for HGRANT. A 
SPLIT or RETRY response, or loss of HGRANT, causes the affected access to be 
placed into a holding register for reconstruction when the access can recommence on 
the AHB. During this time, the pseudo-AHB access is simply waited using MREADY.

Table 3-3 Control signal values

Signal Value

HTRANS 00: IDLE 10: NONSEQUENTIAL 11: SEQUENTIAL

HSIZE 00: BYTE 01: HALFWORD 10: WORD

HBURST 001: INCR

HPROT bit 3: (cacheable) 0 for all accesses bit 2: (bufferable) 0 for all accesses bit 1: 
1 = privileged access, 0 = user access bit 0: 1 = data access, 0 = opcode fetch
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The holding registers store the current transfer on the pseudo-AHB on each valid cycle 
(qualified by MREADY). The AHB outputs are multiplexed based on the signal 
HoldSel. This is a registered signal, which is synchronously set and cleared by HoldSet 
and HoldClr respectively:

• HoldSet is activated when a SPLIT or RETRY response is received during the 
data phase of an access to the core, or when ownership of the AHB bus is lost 
whilst attempting an active transfer (that is, NONSEQ or SEQ).

• HoldClr is activated when HoldSel is active, the AHB wrapper has ownership of 
the bus and any SPLIT or RETRY response has completed.

3.3.5 A7TWrapTest

The test interface block is used to enable the wrapper module to act as an AHB slave 
during TIC testing of the core. The main parts of this block are:

• the test state machine, that controls the application of the test vectors

• the 28-bit test register, that stores the value of the control inputs during test

The test state machine uses the state variable NextTest (which is registered to create 
CurrentTest). This can take the following enumerated values:

ST_INACTIVE 

Default state. This state is used when the wrapper is not in test mode, and 
all test outputs are driven to their default levels. The core is clocked as 
normal in this state.

ST_CTRL_IN 

This state is used to load the test register with the control data that is 
currently on the write data bus. This then determines the values of the 
control signals that is applied to the core when it is clocked. The core is 
not clocked during this state.

ST_DATA_IN 

In this state write data is being applied to the core (the core is performing 
a read transfer). The core is clocked in this state.

ST_DATA_OUT 

In this state read data is being loaded from the core (the core is 
performing a write transfer). The core is clocked in this state.

ST_STAT_OUT 

This state is used to read the output status signals from the core. The core 
is not clocked in this state.
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ST_ADDR_OUT 

This state is used to read the address output from the core. The core is not 
clocked in this state.

ST_TURNAROUND 

This state is used to enable the external data bus time to turnaround 
between the address read cycle and the control vector write cycle. The 
core is not clocked in this state.

The state diagram for the test state machine is shown in Figure 3-3.

Figure 3-3 ARM7 AHB wrapper test state machine
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The TestEn signal is used to control when test vectors are applied to the core, and 
controls the transitions through the test state machine. TestEn is set HIGH when the 
core is addressed during a valid transfer, when the HTRANS input indicates a 
NONSEQUENTIAL or a SEQUENTIAL transfer.

The 28-bit test register that is loaded during the ST_CTRL_IN state determines the 
control inputs to the core when it is clocked during the ST_DATA_IN or 
ST_DATA_OUT states. Table 3-4 shows the control input bit positions.

Table 3-4 ARM7TDMI control input bit position

Signal Description
Bit 
position

Comments

SDOUTBS Boundary scan serial 
output data

27 -

TBE Test bus enable 26 -

APE Address pipeline 
enable

25 -

BL[3:0] Byte latch control 24:21 ANDed with TestClk, and must only be 
valid during data access cycle.

TMS Test mode select 20 -

TDI Test data in 19 -

TCK Test clock 18 ANDed with TestClk.

nTRST Not test reset 17 -

EXTERN1 External input 1 16 -

EXTERN0 External input 0 15 -

DBGRQ Debug request 14 -

BREAKPT Breakpoint 13 -

DBGEN Debug enable 12 -

ISYNC Synchronous 
interrupts

11 -

BIGEND Big-endian 
configuration

10 -

CPA Coprocessor absent 9 -
ARM DDI 0226A Copyright © 2001 ARM Limited. All rights reserved. 3-17



ARM7TDMI AHB Wrapper 
The test data output multiplexor is found in the A7TWrapCtrl block, but is controlled 
by the test outputs of this block. It is used to select between:

• core data output during ST_DATA_OUT

• core address output during ST_ADDR_OUT

• core status outputs during ST_STAT_OUT.

The selected output is driven onto the HRDATAS output data bus. 

CPB Coprocessor busy 8 -

ABE Address bus enable 7 This must normally be set HIGH, 
because if the address bus is tristated 
(ABE LOW), it is not possible to read 
address values.

ALE Address latch enable 6 -

DBE Data bus enable 5

nFIQ Not fast interrupt 
request

4 -

nIRQ Not interrupt request 3 -

ABORT Memory abort 2 This must normally be driven when 
HRESP indicates ERROR, and the 
wrapper has control of the AHB data 
bus.

nWAIT Not wait 1 ANDed with TestClk, so that the core 
state can only change during the data 
access cycle.

nRESET Not reset 0 -

Table 3-4 ARM7TDMI control input bit position (continued)

Signal Description
Bit 
position

Comments
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Table 3-5 shows the bit positions of the status output signals when driven on the data 
bus.

Table 3-5 ARM7TDMI status bit positions

Signal Description
Bit 
position

Comment

BUSDIS Bus disable 31 -

SCREG[3:0] Scan chain register 30:27 These signals are not important 
to the normal functioning of the 
core, but are included in this test 
vector to give a slight 
improvement in fault coverage 
during scan and debug testing.

HIGHZ HIGHZ instruction in 
TAP controller

26 -

nTDOEN Not TDO enable 25 -

DBGRQ1 Internal debug request 24 -

RANGEOUT0 ICEbreaker Rangeout0 23 -

RANGEOUT1 ICEbreaker Rangeout1 22 -

COMMRX Communications 
channel receive

21 -

COMMTX Communications 
channel transmit

20 -

DBGACK Debug acknowledge 19 -

TDO Test data out 18 This value is often tristate (as 
indicated by nTDOEN), so is 
usually masked out.

nENOUT Not enable output 17 nENOUT is only valid during 
the data access cycle, so 
TestClk is used to clock a 
register that captures the correct 
state.
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This test interface block can be removed if not required, by removing the A7TWrapTest 
block from the A7TWrap top level wrapper HDL file. It is then necessary to tie the 
outputs that were originally generated from this block to fixed values, and these are 
described in the A7TWrap HDL code.

Removing this block means that the test inputs to the A7TWrapCtrl block is static, 
allowing the test multiplexors to be removed during synthesis, or manually removed 
from the HDL code.

The AHB slave outputs are only used during TIC testing mode. HREADYOUTS is 
always driven HIGH, because the wrapper never generates wait states. HRESPS is 
always driven to OKAY, because the wrapper never asserts split, retry or error 
responses.

nENOUTI Not enable output 16 nENOUTI is only valid during 
the data access cycle, so 
TestClk is used to clock a 
register that captures the correct 
state.

TBIT Thumb state 15 -

nCPI Not coprocessor 
instruction

14 -

nM[4:0] Not processor mode 13:9 -

nTRANS Not memory translate 8 -

nEXEC Not executed 7 -

LOCK Locked operation 6 -

MAS[1:0] Memory access size 5:4 -

nOPC Not opcode fetch 3 -

nRW Not read/write 2 -

nMREQ Not memory request 1 -

SEQ Sequential address 0 -

Table 3-5 ARM7TDMI status bit positions (continued)

Signal Description
Bit 
position

Comment
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HRDATAS is generated according to the current test control signal outputs, and is 
driven to either DOUT from the core, TestData from the test block (which is comprised 
of the core control outputs), or LOW. 

3.3.6 A7TWrapCtrl

This block contains the test wrapper control multiplexor used during TIC testing of the 
core. A simplified diagram of the A7TWrapCtrl block is shown in Figure 3-4.

Figure 3-4 A7TWrapCtrl block system diagram

This block is only used during test mode when the wrapper is acting as an AHB slave, 
and drives the control inputs of the core with the TIC test data. It is separated from the 
main test block (A7TWrapTest) to enable easier removal of the test wrapper.

When not in test mode the control inputs are driven to their default values (either HIGH 
or LOW), or are driven with wrapper inputs, such as the two interrupt lines and the 
JTAG pins. The AbortInt signal is generated in the A7WrapMaster block.

If the test wrapper is removed, this multiplexor is optimized out during synthesis, and 
the outputs driven with their default values. It is also possible to remove this block if the 
test wrapper is not used. The default connections that the outputs must be tied to are 
shown in the A7TWrap HDL file. 

BUSEN, DBE, and nENIN are all set to constant values, because they do not have to 
be controlled during normal system use, or during core TIC testing.

Default core

control values

TestCtrl

Core control

inputs

TestMode
ARM DDI 0226A Copyright © 2001 ARM Limited. All rights reserved. 3-21



ARM7TDMI AHB Wrapper 
3.4 Non-standard design practices

The following non-standard design practices are described:

• Clock gating

• Transparent latches.

3.4.1 Clock gating

A clock inverter is instantiated within A7TWrap (instance name nHCLKgen) to provide 
nHCLK (inverted HCLK). This signal is used in the following places:

A7TWrap Creation of dCLKEN, one of the enable terms for MCLK.

A7TWrapTest Creation of TestModeF, the other enable term for MCLK.

An inverted version of the clock is used so that all HDL code describes only rising-edge 
sequential logic. This is done because some cell libraries do not contain falling-edge 
registers, and also to avoid possible insertion of unwanted clock gating during synthesis.

A clock NAND gate is used within A7TWrap (instance name MCLKgen) to create 
MCLK, the clock for the memory interface of the ARM7TDMI.

The clock gates are described in the design block ClockInv and ClockNand. The 
methodology chosen within the supplied synthesis scripts synthesizes these blocks first, 
sets them as dont_touch, and then links them in when synthesizing the wrapper. This 
ensures that the clock gate instances have known references, and also prevents the 
optimization routines during later synthesis from altering the gates.

3.4.2 Transparent latches

A transparent latch is instantiated within A7TWrap (instance name DelCLKEN). This 
is use to create dCLKEN, one of the enable terms for MCLK. The latch operation is 
described in the design block LATS (transparent latch with asynchronous set). The 
synthesis methodology for this block is the same as for the clock gates described above.
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Chapter 4 
AHB Modules

This chapter describes the data sheets for the modules that are connected to the 
Advanced High Performance Bus (AHB). It contains the following sections:

• APB bridge on page 4-2

• Arbiter on page 4-14

• Decoder on page 4-23

• Default slave on page 4-27

• Master to slave multiplexor on page 4-30

• Slave to master multiplexor on page 4-34

• Reset controller on page 4-38

• Retry slave on page 4-44

• Static memory interface on page 4-51

• Test interface controller on page 4-62.
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4.1 APB bridge

The AHB to APB bridge is an AHB slave, providing an interface between the high- 
speed AHB and the low-power APB. Read and write transfers on the AHB are converted 
into equivalent transfers on the APB. Because the APB is not pipelined, wait states are 
added during transfers to and from the APB when the AHB is required to wait for the 
APB. Figure 4-1 shows the block diagram of the APB bridge module.

Figure 4-1 Block diagram of bridge module

The main sections of this module are:

• AHB slave bus interface

• APB transfer state machine, which is independent of the device memory map

• APB output signal generation.

To add new APB peripherals, or alter the system memory map, only the address decode 
sections have to be modified.
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4.1.1 Signal descriptions

The APB bridge module signals are described in Table 4-1 on page 4-2.

Table 4-1 Signal descriptions for bridge module

Signal Type Direction Description

HCLK Bus clock Input This clock times all bus transfers.

HRESETn Reset Input The bus reset signal is active LOW, and is used to reset the 
system and the bus. 

HADDR[31:0] Address bus Input The 32-bit system address bus.

HTRANS[1:0] Transfer type Input This indicates the type of the current transfer, which can be 
NONSEQUENTIAL, SEQUENTIAL, IDLE or BUSY.

HWRITE Transfer direction Input When HIGH this signal indicates a write transfer, and when 
LOW, a read transfer.

HWDATA[31:0] Write data bus Input The write data bus is used to transfer data from the master to the 
bus slaves during write operations. A minimum data bus width 
of 32 bits is recommended. However, this can easily be extended 
to allow for higher bandwidth operation.

HSELAPBif Slave select Input Each APB slave has its own slave select signal, and this signal 
indicates that the current transfer is intended for the selected 
slave. This signal is a combinatorial decode of the address bus.

HRDATA[31:0] Read data bus Output The read data bus is used to transfer data from bus slaves to the 
bus master during read operations. A minimum data bus width 
of 32 bits is recommended. However, this can easily be extended 
to allow for higher bandwidth operation.

HREADYin
HREADYout

Transfer done Input/ 
output

When HIGH the HREADY signal indicates that a transfer has 
finished on the bus. This signal can be driven LOW to extend a 
transfer.

HRESP[1:0] Transfer response Output The transfer response provides additional information on the 
status of a transfer. This module always generates the OKAY 
response. 

PRDATA[31:0] Peripheral read 
data bus

Input The peripheral read data bus is driven by the selected peripheral 
bus slave during read cycles (when PWRITE is LOW).

PWDATA[31:0] Peripheral write 
data bus

Output The peripheral write data bus is continuously driven by this 
module, changing during write cycles (when PWRITE is 
HIGH).
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Timing diagrams showing the relationship between AHB and APB transfers can be 
found in the APB Specification.

4.1.2 Peripheral memory map

The APB bridge controls the memory map for the peripherals, and generates a select 
signal for each peripheral. The default system memory map is shown in Figure 4-2 on 
page 4-5.

PENABLE Peripheral enable Output This enable signal is used to time all accesses on the peripheral 
bus. PENABLE goes HIGH on the second clock rising edge of 
the transfer, and LOW on the third (last) rising clock edge of the 
transfer.

PSELx Peripheral slave 
select

Output There is one of these signals for each APB peripheral present in 
the system. The signal indicates that the slave device is selected, 
and that a data transfer is required. It has the same timing as the 
peripheral address bus. It becomes HIGH at the same time as 
PADDR, but is set LOW at the end of the transfer.

PADDR[31:0] Peripheral 
address bus

Output This is the APB address bus, which can be up to 32 bits wide and 
is used by individual peripherals for decoding register accesses 
to that peripheral. The address becomes valid after the first 
rising edge of the clock at the start of the transfer. If there is a 
following APB transfer, the address changes to the new value, 
otherwise it holds its current value until the start of the next APB 
transfer.

PWRITE Peripheral 
transfer direction

Output This signal indicates a write to a peripheral when HIGH, and a 
read from a peripheral when LOW.

It has the same timing as the peripheral address bus. 

Table 4-1 Signal descriptions for bridge module (continued)

Signal Type Direction Description
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Figure 4-2 Peripheral memory map

4.1.3 Function and operation of module

The APB bridge responds to transaction requests from the currently granted AHB 
master. The AHB transactions are then converted into APB transactions. The state 
machine, shown in Figure 4-3 on page 4-6, controls:

• the AHB transactions with the HREADYout signal

• the generation of all APB output signals.

The individual PSELx signals are decoded from HADDR, using the state machine to 
enable the outputs while the APB transaction is being performed.

If an undefined location is accessed, operation of the system continues as normal, but 
no peripherals are selected.

Peripheral memory map

Undefined

Interrupt controller

Counter timers

Remap & pause

0x8000 0000

0x8400 0000

0x8800 0000

0x8C00 0000

0xBFFF FFFF

Address
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Figure 4-3 State machine for AHB to APB interface

The individual states of the state machine operation are described in the following 
sections:

• ST_IDLE

• ST_READ on page 4-7

• ST_WWAIT on page 4-7

• ST_WRITE on page 4-7

• ST_WRITEP on page 4-8

• ST_RENABLE on page 4-8

• ST_WENABLE on page 4-8

• ST_WENABLEP on page 4-9.

ST_IDLE 

During this state the APB buses and PWRITE are driven with the last values they had, 
and PSEL and PENABLE lines are driven LOW.

The ST_IDLE state is entered from:

• reset, when the system is initialized
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• ST_RENABLE, ST_WENABLE, or ST_IDLE, when there are no peripheral 
transfers to perform.

The next state is:

• ST_READ, for a read transfer, when the AHB contains a valid APB read transfer

• ST_WWAIT, for a write transfer, when the AHB contains a valid APB write 
transfer.

ST_READ

During this state the address is decoded and driven onto PADDR, the relevant PSEL 
line is driven HIGH, and PWRITE is driven LOW. A wait state is always inserted to 
ensure that the data phase of the current AHB transfer does not complete until the APB 
read data has been driven onto HRDATA.

The ST_READ state is entered from ST_IDLE, ST_RENABLE, ST_WENABLE, or 
ST_WENABLEP during a valid read transfer.

The next state is always ST_RENABLE.

ST_WWAIT

This state is needed because of the pipelined structure of AHB transfers, to allow the 
AHB side of the write transfer to complete so that the write data becomes available on 
HWDATA. The APB write transfer is then started in the next clock cycle.

The ST_WWAIT state is entered from ST_IDLE, ST_RENABLE, or ST_WENABLE, 
during a valid write transfer. 

The next state is always ST_WRITE.

ST_WRITE

During this state the address is decoded and driven onto PADDR, the relevant PSEL 
line is driven HIGH, and PWRITE is driven HIGH.

A wait state is not inserted, because a single write transfer can complete without 
affecting the AHB.

The ST_WRITE state is entered from:

• ST_WWAIT, when there are no more peripheral transfers to perform

• ST_WENABLEP, when the currently pending peripheral transfer is a write, and 
there are no more transfers to perform.
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The next state is:

• ST_WENABLE, when there are no more peripheral transfers to perform

• ST_WENABLEP, when there is one more peripheral write transfer to perform.

ST_WRITEP

During this state the address is decoded and driven onto PADDR, the relevant PSEL 
line is driven HIGH, and PWRITE is driven HIGH. A wait state is always inserted, 
because there must only ever be one pending transfer between the currently performed 
APB transfer and the currently driven AHB transfer. See the write transfer timing 
diagrams in the AMBA Specification (Rev 2.0) for more details.

The ST_WRITEP state is entered from:

• ST_WWAIT, when there is a further peripheral transfer to perform.

• ST_WENABLEP, when the currently pending peripheral transfer is a write, and 
there is a further transfer to perform.

The next state is always ST_WENABLEP.

ST_RENABLE

During this state the PENABLE output is driven HIGH, enabling the current APB 
transfer. All other APB outputs remain the same as the previous cycle.

The ST_RENABLE state is always entered from ST_READ.

The next state is: 

• ST_READ, when there is a further peripheral read transfer to perform

• ST_WWAIT, when there is a further peripheral write transfer to perform

• ST_IDLE, when there are no more peripheral transfers to perform.

ST_WENABLE

During this state the PENABLE output is driven HIGH, enabling the current APB 
transfer. All other APB outputs remain the same as the previous cycle.

The ST_WENABLE state is always entered from ST_WRITE.

The next state is: 

• ST_READ, when there is a further peripheral read transfer to perform

• ST_WWAIT, when there is a further peripheral write transfer to perform

• ST_IDLE, when there are no more peripheral transfers to perform.
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ST_WENABLEP

A wait state is inserted if the pending transfer is a read because, when a read follows a 
write, an extra wait state must be inserted to allow the write transfer to complete on the 
APB before the read is started.

The ST_WENABLEP state is entered from:

• ST_WRITE, when the currently driven AHB transfer is a peripheral transfer

• ST_WRITEP, when there is a pending peripheral transfer following the current 
write.

The next state is: 

• ST_READ, when the pending transfer is a read

• ST_WRITE, when the pending transfer is a write, and there are no more transfers 
to perform

• ST_WRITEP, when the pending transfer is a write, and there is a further transfer 
to perform.

4.1.4 System description

This section describes how the HDL code for the APB bridge is set out. A simple system 
block diagram, with information about the main parts of the HDL code, is followed by 
details of the registers, inputs, and outputs used in the module. This should be read in 
conjunction with the HDL code.

Figure 4-4 on page 4-10 shows the APB bridge module block diagram.
ARM DDI 0226A Copyright © 2001 ARM Limited. All rights reserved. 4-9



AHB Modules 
Figure 4-4 APB bridge module block diagram

The AHB to APB bridge comprises a state machine, which is used to control the 
generation of the APB and AHB output signals, and the address decoding logic which 
is used to generate the APB peripheral select lines.

All registers used in the system are clocked from the rising edge of the system clock 
HCLK, and use the asynchronous reset HRESETn.

Figure 4-5 on page 4-11 shows the APB bridge HDL file.
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4-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0226A



AHB Modules 
Figure 4-5 APB bridge module system diagram

The main sections in this module are explained in the following paragraphs: 

• Constant definitions on page 4-12

• AHB slave bus interface on page 4-12
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• APB transfer state machine

• APB output signal generation

• AHB output signal generation on page 4-13.

Constant definitions

The constant PADDRWIDTH sets the width of the peripheral address bus that is used, 
up to a maximum of 32 bits. This size depends on the size of address that is needed by 
the peripherals in the system. The default value is a 16-bit address bus.

The next two constants define the state machine states, and the top four address bits that 
are used to decode the peripheral select outputs. If the peripheral address map is 
changed from the default, these constants must be modified to match the changes.

AHB slave bus interface

This module uses the standard AHB slave bus interface, which comprises:

• the valid transfer detection logic which is used to determine when a valid transfer 
is accessing the slave

• the address and control registers, which are used to store the information from the 
address phase of the transfer for use in the data phase.

Because of the different AHB to APB timing of read and write transfers, either the 
current or the previous address input value is needed to correctly generate the APB 
transfer. A multiplexor is therefore used to select between the current address input or 
the registered address, for read and write transfers respectively. 

APB transfer state machine

The transfer state machine is used to control the application of APB transfers based on 
the AHB inputs. The state diagram in Figure 4-3 on page 4-6 shows the operation of the 
state machine, which is controlled by its current state and the AHB slave interface 
signals.

APB output signal generation

The generation of all APB output signals is based on the status of the transfer state 
machine:

• PWDATA is a registered version of the HWDATA input, which is only enabled 
during a write transfer. Because the bridge is the only bus master on the APB, it 
can drive PWDATA continuously.
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• PENABLE is only set HIGH during one of three enable states, in the last cycle 
of an APB transfer. A register is used to generate this output from the next state 
of the transfer state machine.

• The PSELx outputs are decoded from the current transfer address. They are only 
valid during the read, write and enable states, and are all driven LOW at all other 
times so that no peripherals are selected when no transfers are being performed.

• PADDR is a registered version of the currently selected address input (HADDR 
or the address register) and only changes when the read and write states are 
entered at the start of the APB transfer.

• PWRITE is set HIGH during a write transfer, and only changes when a new APB 
transfer is started. A register is used to generate this output from the next state of 
the transfer state machine.

• The APBen signal is used as an enable on the PSEL, PWRITE and PADDR 
output registers, ensuring that these signals only change when a new APB transfer 
is started, when the next state is ST_READ, ST_WRITE, or ST_WRITEP.

AHB output signal generation

A standard AHB slave interface consists of the following three outputs:

• HRDATA is directly driven with the current value of PRDATA. APB slaves only 
drive read data during the enable phase of the APB transfer, with PRDATA set 
LOW at all other times, so bus clash is avoided on HRDATA (assuming OR bus 
connections for both the AHB and APB read data buses).

• HREADYout is driven with a registered signal to improve the output timing. Wait 
states are inserted by the APB bridge during the ST_READ and ST_WRITEP 
states, and during the ST_WENABLEP state when the next transfer to be 
performed is a read.

• HRESP is continuously held LOW, because the APB bridge does not generate 
SPLIT, RETRY or ERROR responses.
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4.2 Arbiter

The AHB arbiter is responsible for determining which master is given access to the bus. 
At any time, only one master can perform transfers on the bus. The arbiter ensures this 
by sampling the request signals from the various masters in the system and then, using 
an arbitration priority scheme, determines which master is currently the highest priority.

4.2.1 Description

The arbiter is described in the following sections:

• Arbitration process

• Burst operation on page 4-15

• Locked operation on page 4-15

• Split responses on page 4-15

• Default bus master on page 4-15

• Dummy bus master on page 4-16

• Locked operation and split responses on page 4-16

• Additional information on page 4-16.

Arbitration process

The arbitration process consists of four stages, as shown in Figure 4-6:

1. The master requests access to the bus using HBUSREQx.

2. The HGRANTx signal is asserted, showing that the master is granted the bus 
when the current transfer completes.

3. The master owns the address/control signals.

4. The master owns the data bus.

Figure 4-6 Arbitration process

Request Grant
Granted

Address
n Cycles HREADY = '1' HREADY = '1'

Granted

Data
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Burst operation

When a master is performing a fixed length burst (WRAP4, INCR4, WRAP8, INCR8, 
WRAP16, or INCR16), the master can lower its request signal when the burst has 
started. Therefore, the arbiter must include a counter which counts the transfer in the 
burst, enabling it to efficiently hand over ownership of the bus when the burst 
completes.

Locked operation

A master can assert the HLOCK signal so that the next transfers it performs on the bus 
is considered as a part of a locked sequence of transfers. This means that no other bus 
master is given access to the bus until the locked sequence has completed.

The master must deassert the HLOCK signal when the address phase of the last transfer 
in the locked sequence has started.

The arbiter asserts the HMASTLOCK signal during the address phase of all the 
transfers in the locked sequence. It is important that any slave which can issue either a 
SPLIT or RETRY response deals with a locked transfer as soon as possible, because no 
other master is given access to the bus until the locked transfer has completed.

At the end of a locked sequence of transfers the arbiter keeps the master granted on the 
bus until the data phase of the final locked transfer has completed. The arbiter can assert 
the HGRANT signal to another master when the final data phase is in progress. 
However, if the arbiter detects that the final data phase is going to complete with either 
a SPLIT or RETRY response, it must change HGRANT back to ensure that either the 
dummy master (in the case of a SPLIT) or the locked master (in the case of a RETRY) 
remains granted the bus.

Split responses

The arbiter has a special function that it must perform for transfers which receive a 
SPLIT response. The arbiter must ensure that the master which received the SPLIT 
response is not granted again until the slave has indicated that it is ready to complete the 
transfer (using the HSPLITx signals). 

Default bus master

When no masters are requesting the bus, it can be granted to a default bus master. The 
default master has the advantage that, when it is granted the bus by default, it does not 
have to go through the Request/Grant stages before it can access the bus. It is 
recommended that the master which is most likely to use the bus is made the default 
master.
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Dummy bus master

The dummy bus master is a concept which enables the bus to remain synchronized when 
no real masters are granted the bus. The dummy master, when granted, simply drives 
the transfer type to IDLE, ensuring that the bus continues to operate. By convention, the 
dummy master is master number 0.

Locked operation and split responses

The desired operation of the arbiter when a locked bus master receives a SPLIT 
response is to grant the dummy bus master (which only performs IDLE transfers) until 
the master is unsplit and can return to the bus to complete the locked transfer. A 
dedicated section of the arbiter is used to detect a SPLIT response on a locked bus 
master. This forces the HGRANT and HMASTER outputs to grant the dummy bus 
master until the master is unsplit.

Additional information

The following is applicable during the arbitration process:

• It is possible to be granted the bus without requesting it. This occurs if the master 
is the default master, which is granted the bus when no other master is requesting. 

• The above point also means that it is possible to be granted the bus in the same 
cycle that it is requested. This can occur if the master is coincidentally granted the 
bus in the same cycle that it asserts its request signal.

• It is possible that the Grant signal is asserted and then removed before the current 
transfer completes. This can happen during a transfer with a large number of wait 
states, where only a low priority master is requesting the bus during the early 
stages of the transfer, but a higher priority master then asserts its request before 
the current transfer has completed. This process is acceptable because the Grant 
signal is only sampled by masters when HREADY is HIGH.

• At the end of an undefined length burst, the master can drop its request signal 
when it has been granted the bus to start the last transfer in the burst. If the 
penultimate transfer in the burst is zero wait state, the master remains granted the 
bus for an additional transfer at the end of the sequence.

4.2.2 Arbiter signal interface

Figure 4-7 on page 4-17 shows the signal interface of the arbiter.
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Figure 4-7 Signal interface

Table 4-2 describes the signals used in the arbiter.

AHB

Arbiter

HBUSREQ0

HLOCK0

HBUSREQ1

HLOCK1

HBUSREQ2

HLOCK2

HBUSREQ3

HLOCK3

HSPLIT[3:0]

HRESP[1:0]

HREADY

HRESETn

HCLK

HGRANT0

HMASTER[3:0]

HMASTLOCK

HGRANT1

HGRANT2

HGRANT3

HBURST[2:0]

HTRANS[1:0]

Table 4-2 Signal descriptions for arbiter

Signal Direction Description

HCLK Input Bus clock.

HRESETn Input Bus reset.

HREADY Input Transfer done. When HIGH, indicates that the current transfer on the bus is complete.

HRESP[1:0] Input The transfer response provides additional information on the status of a transfer. Four 
different responses are available, OKAY, ERROR, RETRY, and SPLIT.

HSPLIT[3:0] Input The split bus is used by a slave to indicate to the arbiter which bus masters are allowed 
to reattempt a split transaction. Each bit of this split bus corresponds to a single bus 
master.

HBURST[2:0] Input Indicates if the transfer forms part of a burst. Four, eight, and sixteen beat bursts are 
supported. The burst can be either incrementing or wrapping.

HTRANS[1:0] Input Indicates the type of the current transfer, which can be NONSEQUENTIAL, 
SEQUENTIAL, IDLE, or BUSY.
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4.2.3 Operation

The basic operation of the arbiter is to sample the HBUSREQ inputs from each of the 
masters in the system and determine which is currently the highest priority master 
requesting the bus. The output of the priority logic is a 4-bit encoding, which represents 
the master number of the highest priority master requesting the bus. 

If no other master is actively using the bus, the output of the priority logic is decoded 
and used to generate the HGRANT outputs. The HGRANT outputs indicate which 
master drives the address and control signals after the current transfer has completed, as 
indicated by HREADY being HIGH.

The usual process for determining which master is granted is to use the output from the 
priority logic. However, under the following circumstances the arbiter keeps the current 
bus master granted irrespective of the HBUSREQ inputs:

• when the current master is in the middle of a fixed length burst.

• when the current master is performing a locked transfer.

Figure 4-8 on page 4-19 shows the generation of the HGRANT and HMASTER 
signals.

HBUSREQx Input Request from bus master x to the arbiter which indicates that the bus master requires 
the bus masters.

HLOCKx Input When HIGH, this signal indicates that a master requires locked access to the bus and 
no other master must be granted the bus until this signal is LOW.

HGRANTx Output This signal indicates that bus master x is currently the highest priority master. 
Ownership of the address/control signals changes at the end of a transfer when 
HREADY is HIGH, so a master gets access to the bus when both HREADY and 
HGRANTx are HIGH.

HMASTER[3:0] Output These signals from the arbiter indicate which bus master is currently performing a 
transfer and is used by slaves which support split transfers to determine which master 
is attempting an access. The timing of HMASTER is aligned with the timing of the 
address and control signals.

HMASTLOCK Output Indicates that the current master is performing a locked sequence of transfers. This 
signal has the same timing as the HMASTER signals.

Table 4-2 Signal descriptions for arbiter (continued)

Signal Direction Description
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Figure 4-8 HGRANT and HMASTER generation

The following signals are used in the arbiter:

GrantMaster Indicates the number of the master whose HGRANT signal is 
currently asserted.

AddrMaster Gives the number of the master that is currently driving the 
address/control signals. This is the same as the HMASTER 
output.

DataMaster Gives the number of the master that currently owns the data bus 
and is either driving the write data bus or is reading from the read 
data bus.

The relationship between these signals is shown in Figure 4-9. This diagram represents 
the pipelined nature of the bus, and shows how the pipeline is advanced when the 
HREADY signal is HIGH.

Figure 4-9 Signal relationships
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• HBUSREQ(0) is the second highest priority. This must only be connected to a 
Pause input.

• HBUSREQ(2) is the middle priority.

• HBUSREQ(1) is the lowest priority and default bus master. This is usually used 
for an uncached ARM core.

Bus master 0 is reserved for the dummy bus master, which never performs real transfers. 
This master is granted either when the Pause input is asserted, or when the current 
master is performing a locked transfer which has received a split response.

If required, this priority scheme can be updated by changing the logic which takes the 
masked version of the HBUSREQ signals, called Request, and generates the 4-bit 
encoded master number, called TopRequest.

Locked operation

The arbiter also has to deal with locked operations. A bus master is considered to have 
locked access to the bus if the master has its HLOCK signal asserted to the arbiter at 
the point when it is granted access. The master must then remain the only granted 
master until its HLOCK signal is deasserted.

The logic required to implement locked operation is added to Figure 4-10 on page 4-21. 
A single output, called HMASTLOCK, is used to indicate when a master has locked 
access to the bus. This output is generated by selecting the appropriate HLOCK input, 
depending on which master is granted the bus in the next cycle.
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Figure 4-10 Locked transfers

The HMASTLOCK output is then used within the arbiter to force the next granted 
master to be the same as the currently granted master, effectively locking the master on 
the bus. The master then remains granted until it deasserts the lock.

Split responses

The arbiter performs a special function for transfers which receive a SPLIT response. 
The arbiter must ensure that the master which received the SPLIT response is not 
granted again until the slave has indicated that it is ready to complete the transfer (using 
the HSPLITx signals). To implement the split response function, the arbiter requires a 
mask register with one bit in the register for each bus master in the system.

Whenever a master receives a SPLIT response, the appropriate bit in the SplitMask 
register is set and, when the slave indicates that the particular master is able to complete, 
the appropriate bit in the SplitMask register is cleared. Figure 4-11 on page 4-22 shows 
the split logic.

HREADY

HGRANT

HMASTER

Priority

Logic
HBUSREQy

One-hot

Decode

4

This indicates which bus master

will be granted the bus when the

current transfer completes.

This indicates which

master is granted

the address bus.

HREADY

HMASTLOCK

HBUSREQx

HBUSREQz

HLOCKy

HLOCKx

HLOCKz

0

1

This mux keeps the current master

granted when HMASTLOCK is high.

This mux selects the HLOCK

input from the master which

is about to become granted.
ARM DDI 0226A Copyright © 2001 ARM Limited. All rights reserved. 4-21



AHB Modules 
Figure 4-11 Split logic

On the input to the arbiter, the SplitMask register is used to mask out any incoming 
request signals from masters which have received a SPLIT response.

The required operation of the arbiter when a locked bus master receives a SPLIT 
response is to grant a dummy bus master (which only performs IDLE transfers) until the 
master is unsplit and can return to the bus to complete the locked transfer. A dedicated 
section of the arbiter is used to detect a SPLIT response on a locked bus master. This 
forces the HGRANT and HMASTER outputs to grant the dummy bus master until the 
master is unsplit.
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4.3 Decoder

The system decoder is used to decode the address bus and generate select lines to each 
of the system bus slaves, indicating that a read or write access to that slave is required. 
Figure 4-12 shows the decoder module interface block diagram.

Figure 4-12 Decoder module interface diagram

This module only contains a combinatorial decode of the system address bus, using the 
Remap input to control the selection of the internal and external memory.

4.3.1 Signal description

Table 4-3 shows the signal descriptions for the decoder module

4.3.2 System memory map

The decoder controls the memory map of the system, and generates a slave select signal 
for each memory region.

Decoder

HRESETn

HADDR HSELx

Remap

Table 4-3 Decoder module signal descriptions

Signal Type Direction Description

HRESETn Reset Input The bus reset signal is active LOW, and is used to reset the 
system and the bus.

HADDR[31:0] Address bus Input The 32-bit system address bus.

Remap Reset memory map Input When LOW, the internal memory is not part of the system 
memory map, and external memory is mapped from address 
0x00000000 which normally contains the system startup code. 
In normal operation this signal is HIGH, allowing use of the 
internal memory.

HSELx Slave select Output Slave select to each system bus slave.
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The Remap signal is used to provide a different memory map at reset, when ROM is 
required at address 0x00000000, and during normal operation, when internal RAM can 
be used at address 0x00000000.

The Remap signal is typically provided by a remap and pause peripheral, which drives 
Remap LOW at reset. The signal is driven HIGH only after a particular address in the 
remap and pause peripheral is accessed.

Figure 4-13 shows both the normal and reset memory maps.

Figure 4-13 System memory map
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4.3.3 Function and operation of the decoder module

The decoder continuously performs a combinatorial decode of the system address bus, 
updating the slave select outputs whenever the address or system Remap inputs change 
value. The default slave is used to control the operation of the system when a transfer is 
made to an undefined area of memory, and is selected when an invalid address is 
generated.

4.3.4 System description

The following paragraphs give a description of how the HDL code for the decoder is set 
out. A simple system block diagram, with information about the main parts of the HDL 
code, is followed by details of the inputs, and outputs used in the module. This part 
should be read together with the HDL code. Figure 4-14 shows the decoder module 
block diagram.

Figure 4-14 Decoder module block diagram

The decoder comprises a simple block of combinational logic, which is used to decode 
the address and system remap inputs to directly generate the slave select outputs. 
Figure 4-15 shows the decoder HDL file.

Figure 4-15 Decoder module system diagram

The whole of the decode logic is contained in one if statement. During reset, the default 
slave is selected, and at all other times, the HADDR and Remap inputs are decoded and 
used to generate the HSELx outputs.

The minimum number of address bits needed to select a slave are used, keeping the 
combinational logic as small as possible.
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This section of code is used to define the memory map for the whole system. If modules 
are added, removed, or moved to new locations, the code must be modified to match 
these system changes, ensuring that the correct slave is selected for each address used.
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4.4 Default slave

The default slave is used to respond to transfers that are made to undefined regions of 
memory, where no AHB system slaves are mapped. A zero wait OKAY response is 
made to IDLE or BUSY transfers, with an ERROR response being generated if a 
NONSEQUENTIAL or SEQUENTIAL transfer is performed. Figure 4-16 shows the 
default slave module interface diagram.

Figure 4-16 Default slave module interface diagram

This module contains a standard AHB slave response interface, using the HREADY 
and HRESP outputs to respond to transfers.

4.4.1 Signal descriptions

Table 4-4 shows the signal descriptions for the default slave module

Default
slave

HRESETn

HTRANS

HREADY

HSELDefault

HCLK

HRESP

Table 4-4 Default slave module signal descriptions

Signal Type Direction Description

HCLK Bus clock Input This clock times all bus transfers.

HRESETn Reset Input The bus reset signal is active LOW, and is used to reset the system 
and the bus.

HTRANS[1:0] Transfer type Input Indicated the type of the current transfer, which can be 
NONSEQUENTIAL, SEQUENTIAL, IDLE or BUSY.

HSEL Default slave 
select

Input Each AHB slave has its own slave select signal and this signal 
indicates that the current transfer is intended for the selected slave. 
This signal is simply a combinatorial decode of the address bus.

HREADYout Transfer done Output When HIGH the HREADY signal indicates that a transfer has 
finished on the bus. This signal is only driven LOW to generate a 
two cycle error response.

HRESP[1:0] Transfer response Output The transfer response provides additional information on the status 
of a transfer. This module only generates the OKAY and ERROR 
responses.
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4.4.2 Function and operation of module

The default slave only responds to transfers when it is selected by the decoder with the 
HSEL input when an undefined region of memory is accessed. The response generated 
depends on the type of transfer that is performed.

If an IDLE or BUSY transfer is performed, the default slave must provide a zero wait 
OKAY response because the master does not expect to receive any data back from these 
transfers.

If a NONSEQUENTIAL or SEQUENTIAL transfer is performed, an ERROR response 
is generated, because there is nothing at the current location that can be written to or 
read from. The standard two-cycle ERROR response is provided with one wait state.

4.4.3 System description

This section describes how the HDL code for the default slave is set out. A simple 
system block diagram, with information about the main parts of the HDL code, is 
followed by details of the registers, inputs, and outputs used in the module. This should 
be read together with the HDL code.

Figure 4-17 shows the default slave module block diagram.

Figure 4-17 Default slave module block diagram

The default slave comprises the invalid transfer detection logic and two simple sets of 
combinational logic and registers, which are used to generate the HREADY and 
HRESP outputs.

Figure 4-18 on page 4-29 shows the decoder HDL file.
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Figure 4-18 Default slave module system diagram

The internal signal Invalid is set HIGH during the final cycle of the address phase of an 
invalid transfer (when HREADYin is set HIGH, a NONSEQUENTIAL or 
SEQUENTIAL transfer is performed, and the default slave is selected), and is set LOW 
at all other times.

This signal is then passed to the response generation logic, which is split into two 
sections for the HREADYout and HRESP outputs. This logic generates the response 
values for the output registers. HREADYout is set LOW during the first cycle of the 
data phase, as is required for the two cycle ERROR response, and HRESP is set to 
ERROR for the two-cycles of the data phase.

At all other times, the default slave generates a zero wait OKAY response.
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4.5 Master to slave multiplexor

The master to slave multiplexor is used to connect all of the system bus masters to the 
bus slaves, using the current HMASTER number to select the bus master outputs to 
use. It is also used to generate the default master outputs when no other masters are 
selected. Figure 4-19 shows an interface diagram of the master to slave multiplexor 
module.

Figure 4-19 Master to slave multiplexor module interface diagram

The module has the address, control and data outputs of all system bus masters as its 
inputs, and has a single set of these signals as its outputs, which are connected to the 
inputs of all system slaves. When masters are added to, or removed from the system, the 
input connections to this module must be altered to account for the changes.
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4.5.1 Signal descriptions

Table 4-5 lists signal descriptions for the master to slave multiplexor module

Table 4-5 Master to slave multiplexor signal descriptions

Signal Type Direction Description

HCLK Bus clock Input This clock times all bus transfers.

HRESETn Reset Input The bus reset signal is active LOW, and is used to reset the 
system and the bus.

HMASTER[3:0] Master number Input These signals from the arbiter indicate which bus master is 
currently performing a transfer, and is used by slaves which 
support split transfers to determine which master is attempting 
an access.

HREADY Transfer done Input When HIGH the HREADY signal indicates that a transfer has 
finished on the bus. This signal can be driven LOW to extend 
a transfer.

HADDRx[31:0]

HADDR[31:0]

Address bus Input/ 
output 

The 32-bit system address bus.

HTRANSx[1:0]
HTRANS[1:0]

Transfer type Input/ 
output

These signals indicate the type of the current transfer, which 
can be NONSEQUENTIAL, SEQUENTIAL, IDLE or BUSY.

HWRITEx

HWRITE

Transfer direction Input/ 
output

When HIGH this signal indicates a write transfer, and when 
LOW, a read transfer.

HSIZEx[2:0]

HSIZE[2:0]

Transfer size Input/ 
output

These signals indicate the size of the transfer, which is 
typically byte (8-bit), halfword (16-bit) or word (32-bit). The 
protocol allows for larger transfer sizes up to a maximum of 
1024 bits.

HBURSTx[2:0]

HBURST[2:0]

Burst type Input/ 
output

These signals indicate if the transfer forms part of a burst. Both 
four beat and eight beat bursts are supported and the burst can 
be either incrementing or wrapping.

HPROTx[3:0]

HPROT[3:0]

Protection control Input/ 
output

The protection control signals provide additional information 
about a bus access and are primarily intended for use by any 
module that wishes to implement some level of protection.

HWDATAx[31:0]

HWDATA[31:0]

Write data bus Input/ 
output

The write data bus is used to transfer data from the master to 
the bus slaves during write operations. A minimum data bus 
width of 32 bits is recommended, however this can easily be 
extended to allow for higher bandwidth operation.
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4.5.2 Function and operation of module

The master to slave multiplexor controls the routing of address, control and data signals 
from the system bus masters to the bus slaves. The arbiter determines which master 
currently has control of the bus, and the multiplexor is used to connect the outputs of 
the selected master to the inputs of the bus slaves.

The address and control signals are switched during the address phase of a transfer 
using the HMASTER arbiter output.

The write data signals are switched during the data phase of a transfer using a registered 
version of HMASTER.

When no masters are selected, the default master signals are selected and the module 
drives all outputs LOW, performing IDLE transfers until another master is granted 
control of the bus.

4.5.3 System description

This section describes how the HDL code for the master to slave multiplexor is set out. 
A simple system block diagram, with information about the main parts of the HDL 
code, is followed by details of the registers, inputs, and outputs used in the module. This 
should be read together with the HDL code.

Figure 4-20 shows the master to slave module block diagram.

Figure 4-20 Master to slave multiplexor module block diagram

The master to slave multiplexor module comprises a set of multiplexors for each 
address, control and data output from the system bus masters. A set of registers is also 
used to hold the previous value of the HMASTER input.

Figure 4-21 on page 4-33 shows the master to slave multiplexor HDL file.
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Figure 4-21 Master to slave multiplexor module system diagram

The multiplexor for each master signal has an input for each system bus master, and a 
ground connection for the default master signal values. The master number is decoded, 
and used to select the correct input signal.

The multiplexors are constructed using case statements, ensuring that there is no 
priority to the master selection logic.

An HREADY enabled register is used to hold the previous value of HMASTER, 
because the HWDATA master outputs are always running one cycle behind the other 
address and control signals, because of the pipelined bus. The enable is used to ensure 
that the value is only updated when the previous transfer has completed.
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4.6 Slave to master multiplexor

The slave to master multiplexor is used to connect the read data and response signals of 
the system bus slaves to the bus masters, using the current decoder HSELx outputs to 
select the bus slave outputs to use. Figure 4-22 shows the slave to master multiplexor 
module.

Figure 4-22 Slave to master multiplexor module interface diagram

This module has the read data and response outputs of all system bus slaves as its inputs, 
and has a single set of these signals as its outputs, which are connected to the inputs of 
all system masters. When slaves are added to the system or removed, the input 
connections to this module must be altered to account for the changes.

4.6.1 Signal descriptions

Table 4-6 shows the signal descriptions for the slave to master multiplexor module.

MuxS2M

HRESETn

HREADY
HSELx

HCLK

HRDATA

HRESP
HREADYx

HRDATAx

HRESPx

Table 4-6 Slave to master multiplexor signal descriptions

Signal Type Direction Description

HCLK Bus clock Input This clock times all bus transfers.

HRESETn Reset Input The bus reset signal is active LOW, and is used to reset the system and 
the bus.

HSELx Slave select Input Each AHB slave has its own slave select signal and this signal indicates 
that the current transfer is intended for the selected slave.
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4.6.2 Function and operation of module

The slave to master multiplexor controls the routing of read data and response signals 
from the system bus slaves to the bus masters. The decoder determines which is the 
currently selected slave, and the multiplexor is used to connect the outputs of the 
selected slave to the inputs of the bus masters.

The read data and response signals are switched during the data phase of a transfer, so 
a registered version of the slave select signals is used.

The default slave inputs are used when no other slaves are selected.

4.6.3 System description

This section describes how the HDL code for the slave to master multiplexor is set out. 
A simple system block diagram, with information about the main parts of the HDL 
code, is followed by details of the registers, inputs, and outputs used in the module. This 
part should be read together with the HDL code.

Figure 4-23 on page 4-36 shows the slave to master module block diagram.

HRDATAx[31:0]
HRDATA[31:0]

Read data bus Input/ 
output

The read data bus is used to transfer data from bus slaves to the bus 
master during read operations.

HREADYx

HREADY

Transfer done Input/ 
output

When HIGH the HREADY signal indicates that a transfer has finished 
on the bus. This signal can be driven LOW to extend a transfer.

HRESPx[1:0]

HRESP[1:0]

Transfer 
response

Input/ 
output

The transfer response provides additional information on the status of 
a transfer.

Table 4-6 Slave to master multiplexor signal descriptions (continued)

Signal Type Direction Description
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Figure 4-23 Slave to master multiplexor module block diagram

The slave to master multiplexor module comprises a set of registers to store the previous 
slave select values, and a set of multiplexors for the read data and slave response signals.

Figure 4-24 shows the slave to master multiplexor HDL file.

Figure 4-24 Slave to master multiplexor module system diagram

To allow the use of case statements for the multiplexors, the HSEL slave select inputs 
are combined to create a multi-bit bus signal. This bus is then registered, and used as the 
select control on the three multiplexors, one each for the read data and two response 
signals. The select register is enabled with the internal HREADY signal, ensuring that 
the outputs only change when the previous transfer has finished.
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Because the default slave does not generate any read data, one input to the HRDATA 
multiplexor is tied LOW, so that when the default slave is selected, no read data appears 
on HRDATA.
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4.7 Reset controller

The reset controller is used to generate the system reset signal from an external reset 
input as shown in Figure 4-25.

Figure 4-25 Reset controller module interface diagram

This module is based around a state machine, which is used to detect the external reset 
being asserted, and is used to generate the system reset output.

4.7.1 Signal descriptions

Table 4-7 shows the signal descriptions for the reset controller.

The source of the POReset signal is implementation-dependent.

4.7.2 Function and operation of module

HRESETn is asserted LOW, and is used to indicate a reset condition where all bus and 
system states must be initialized. This signal is suitable as an asynchronous clear into 
state machine flip-flops, and for resetting any peripheral registers that require 
initialization.

During reset, the arbiter grants the bus to the default reset bus master, and the decoder 
selects the default slave.

Assertion (the falling edge) of HRESETn is asynchronous to HCLK. De-assertion (the 
rising edge) of HRESETn is synchronous to the rising edge of HCLK. HRESETn is 
only asserted during a power-on reset condition, caused by the assertion of the POReset 
signal. The POReset input is an asynchronous input, so a synchronizing register is 

Reset
controller

HCLK

POReset
HRESETn

Table 4-7 Reset controller signal descriptions

Signal Type Direction Description

HCLK Bus clock Input This clock times all bus transfers. 

POReset Power-on reset Input Power-on reset input. This active LOW signal causes a cold reset 
when LOW. Can be asserted asynchronously to HCLK.

HRESETn Reset Output The bus reset signal is active LOW, and is used to reset the system 
and the bus.
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required to eliminate propagation of metastable values. Figure 4-26 shows the operation 
of the HRESETn signal with respect to an example POReset input signal and the 
system clock.

Figure 4-26 Reset signal timing

The reset controller contains a state machine running from the rising edge of HCLK. 
The HRESETn signal directly reflects a single bit of the current state, minimizing the 
combinational logic applied to the reset output.

Figure 4-27 on page 4-40 shows the state machine for the reset controller.

HRESETn

POReset

HCLK
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Figure 4-27 State machine for reset controller

The four states are described in:

• ST_POR

• ST_INI1 on page 4-41

• ST_INI2 on page 4-41

• ST_RUN on page 4-41.

ST_POR

During this state, the system is initialized when the reset line is asserted. This state must 
be preserved by a power on reset cell or controller, until the system bus clock is running 
and stable, and the system power supply has reached its correct operating voltage 
(within its allowed limits).

The ST_POR state is entered from:

• reset, when the external reset input is first asserted LOW

• ST_POR when the external reset input is still asserted and the system clock is 
running.

ST_INI1

ST_INI2

ST_RUN

HRESETn = 1

ST_POR

POReset = 0

POReset = 1
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The next state is:

• ST_INI1 when the external reset input is deasserted

• ST_POR when the external reset input is still asserted and the system clock is 
running.

If there is a clock valid signal in the system, this must be used to prevent the ST_POR 
state from being exited until the clock is valid.

ST_INI1

This state is used to hold the HRESETn output LOW for an extra cycle after the 
external reset is deasserted.

This state is always entered from ST_POR on the first rising edge of the clock that the 
external reset is HIGH.

The next state is always ST_INI2.

ST_INI2

This state is used in the same way as ST_INI1. 

This state is always entered from ST_INI1.

The next state is always ST_RUN.

ST_RUN

This state is used during normal system operation when the HRESETn output is set 
HIGH.

This state is held until the external reset is re-asserted.

The default reset controller implementation asserts HRESETn for two cycles after the 
external reset is deasserted, but this can be altered by adding extra ST_INI states to the 
state machine, so that it takes more cycles to reach the final ST_RUN state.

4.7.3 System description

The following paragraphs give a description of how the HDL code for the reset 
controller is set out. A simple system block diagram, with information about the main 
parts of the HDL code, is followed by details of the registers, inputs, and outputs used 
in the module. This part should be read together with the HDL code.

Figure 4-28 on page 4-42 shows the reset controller module block diagram.
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Figure 4-28 Reset controller module block diagram

The reset controller is comprised of a register used to synchronize the external reset 
input, and a state machine used to control the generation of the system reset output. 

All registers used in the system are clocked from the rising edge of the system clock 
HCLK. 

Figure 4-29 shows the reset controller HDL file.

Figure 4-29 Reset controller module system diagram

The main sections in this module are explained in the following paragraphs:

• Asynchronous reset input synchronization

• Reset state machine on page 4-43

• Reset output generation on page 4-43.

Asynchronous reset input synchronization

The asynchronous external reset is first passed through a rising-edge-triggered register. 
This is to avoid metastability, because of the arrival time of the input relative to the 
system clock when used in the state machine.

Reset controller
module

State machine
HRESETn

output driver

External reset
synchronisation

POReset

HRESETn

Next
state

Sync
POR

Current
state

Current
state (0)
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Reset state machine

The state machine shown in Figure 4-27 on page 4-40 is used to control the generation 
of the system reset output, based on the status of the synchronized external reset input 
and the system clock.

The number of cycles the module holds HRESETn asserted after the de-assertion of 
the external reset can be changed by altering the number of initialization states between 
the first and last states.

Reset output generation

The reset output is generated directly from bit 0 of the state machine registers, gated 
with the external reset input. This allows asynchronous assertion of the reset output 
when the external reset input is set LOW and the system clock is not running, but 
ensures that de-assertion is synchronous to the rising edge of the clock.
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4.8 Retry slave

The retry slave is a rudimentary module that is used to demonstrate how to build an 
AHB slave. The example contains very little functionality and consists of four 32-bit 
wide registers. The slave generates various logic functions of these registers, which can 
be read from different locations.

One of the most important features of the slave is that the response that it gives can be 
varied according to the high order address lines. Figure 4-30 shows the retry slave block 
diagram.

Figure 4-30 Retry slave block diagram

The main sections of this module are:

• the AHB slave bus interface

• the internal read/write registers

• the wait state and retry cycle generation logic

• the read data value generation.

4.8.1 Signal descriptions

Table 4-8 contains a list of signals used by the retry slave.

Retry
slave

HCLK

HRESETn

HWRITE

HADDR

HTRANS

HSIZE

HWDATA

HREADYin

HRDATA

HREADYout

HRESP

HSELRetry

Table 4-8 Signal descriptions

Signal Type Direction Description

HCLK Bus clock Input This clock times all bus transfers.

HRESETn Reset Input The bus reset signal is active LOW, and is used to reset the 
system and the bus. 

HADDR[31:0] Address bus Input The 32-bit system address bus.
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HTRANS[1:0] Transfer type Input Indicated the type of the current transfer, which can be 
NONSEQUENTIAL, SEQUENTIAL, IDLE or BUSY.

HWRITE Transfer direction Input When HIGH this signal indicates a write transfer, and when 
LOW, a read transfer.

HWDATA[31:0] Write data bus Input The write data bus is used to transfer data from the master to 
the bus slaves during write operations. A minimum data bus 
width of 32 bits is recommended. However, this can easily be 
extended to allow for higher bandwidth operation.

HSELRetry Slave select Input Each AHB slave has its own slave select signal, and this 
signal indicates that the current transfer is intended for the 
selected slave. This signal is a combinatorial decode of the 
address bus.

HRDATA[31:0] Read data bus Output The read data bus is used to transfer data from bus slaves to 
the bus master during read operations. A minimum data bus 
width of 32 bits is recommended. However this can easily be 
extended to allow for higher bandwidth operation.

HREADYin
HREADYout

Transfer done Input/output When HIGH the HREADY signal indicates that a transfer 
has finished on the bus. This signal can be driven LOW to 
extend a transfer.

HRESP[1:0] Transfer response Output The transfer response provides additional information on the 
status of a transfer. This module only generates OKAY and 
RETRY responses. 

Table 4-8 Signal descriptions (continued)

Signal Type Direction Description
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4.8.2 Function and operation of module

This example module contains four 32-bit wide registers, which can be accessed using 
byte, halfword or word, read or write transfers. Extra read only locations are provided 
that generate logical combinations of these four registers. The module memory map in 
Table 4-9 shows the logical functions that the slave can provide, and the addresses at 
which the functions and four read/write registers are accessed.

All addresses shown in the memory map are offsets from the module base address. In 
the default system the retry slave module occupies memory locations 0x40000000 to 
0x5FFFFFFF.

When any of the memory locations are accessed, the high order address lines are used 
to determine the response that the slave provides, inserting wait states or retry cycles.

The address lines that are used are:

• HADDR[11:8], number of wait states to be inserted

• HADDR[13:12], number of times a retry response is generated.

Table 4-9  Memory map of the example AHB retry slave

Address Read location
Write 
location

0x00 R0 R0

0x04 R1 R1

0x08 R2 R2

0x0C R3 R3

0x10 Not R0 -

0x14 R0 and R1 -

0x18 R1 or R2 -

0x1C R2 xor R3 -

0x20 R0 and R1

and R2 and R3

-

0x24 R0 or R1

or R2 or R3

-

0x28 R0 xor R1

xor R2 xor R3

-

4-46 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0226A



AHB Modules 
The number of wait states inserted for each read or write module access can be varied 
from 0 to 15, and the number of times the slave provides a retry response can be varied 
from 0 to 3.

When the slave is programmed to provide a retry response, the number of wait states to 
insert must be set to a value greater than zero, because all retry responses require two 
cycles, with a wait state inserted during the first cycle.

4.8.3 System description

The following paragraphs give a description of how the HDL code for the example retry 
slave is set out. A basic block diagram, with information about the main parts of the 
HDL code, is followed by details of the registers, inputs and outputs used in the system. 
This part should be read together with the HDL code.

Figure 4-31 shows a basic block diagram of the retry slave module system.

Figure 4-31 Retry slave module block diagram

The retry slave comprises a set of read/write registers, and programmable wait/retry 
generation logic.

All registers used in the system are clocked from the rising edge of the system clock 
HCLK, and use the asynchronous reset HRESETn.

Figure 4-32 on page 4-48 shows the retry slave HDL file.
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Figure 4-32 Retry slave module system diagram

The main sections in this module are explained in the following paragraphs:

• AHB slave bus interface on page 4-49

HADDR

HWRITE

HTRANS

Current
wait

Current
retry

Hready
next

Hresp
next

R0-R3

HWDATA

Combin-
ational read

data

HRDATA

HADDR[11:8]

HADDR[13:12]

HSIZE

Mask

Htrans
reg

Haddr
reg

Hwrite
reg

Hsize
reg

NextWait

NextRetr

HREADYout

HRESP

iHREADY
out

iHRESP

HSELRetry

Hsel
reg

Masked
write data

Write
enables

HREADYin
4-48 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0226A



AHB Modules 
• Write data mask

• Read/write registers

• Response generation logic

• Read data generation on page 4-50.

AHB slave bus interface

This module uses the standard AHB slave bus interface, which comprises the valid 
transfer detection logic, and the address and control registers, which are used to store 
the information from the address phase of the transfer for use in the data phase.

Write data mask

The amount of data written to the four internal registers depends on the transfer size 
setting. The mask is used to control which bytes of data are written to the 32-bit 
registers, and which bytes are left unchanged. A single mask value is used to allow one 
set of size decoding logic to be used for all registers in the module, rather than having 
a set of decoding logic for each register.

The bytes of data that change are set LOW in the mask, and all other bits are set HIGH.

Read/write registers

Four 32-bit registers are used to store user data, all initializing to zero. They are only 
enabled when addressed during a write transfer, and when any wait states or retry cycles 
have ended. The data mask is used to control writes of byte, halfword and word, by 
masking out the bits of the current write data that are not needed, and ORing it with a 
masked version of the current register data. This ensures that only the required bytes of 
the read data are used, and the unchanged register bytes are reloaded with the previous 
register value.

Response generation logic

This logic is used to control the generation of wait states and retry cycles.

Wait states are inserted when the address of the current transfer has a nonzero value in 
bits [11:8]. This value, from zero to fifteen, is loaded into the CurrentWait register, and 
then decremented each clock cycle until zero is reached. This counter value is used to 
hold the HREADYout output LOW until zero is reached, when HREADYout is set 
HIGH and the transfer can complete.

Retry cycles are inserted when the address of the current transfer has a nonzero value in 
bits [13:12] and [11:8], because all retry cycles require at least one wait state. This value 
is loaded into the CurrentRetry register, and is decremented each time the transfer is 
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retried until zero is reached. The input to the iHRESP register is set according to the 
state of the retry logic and the wait logic, so that if more than one wait state is inserted, 
the HRESP output only changes during the last HREADY LOW cycle. Retry responses 
are generated until the counter reaches zero, when the HRESP output indicates that the 
transfer can complete normally.

Read data generation

Different read data values must be generated according to the address of the current 
transfer, selecting output data from one of the four registers or one of the seven 
combinational outputs. This section of the code selects a data source during the data 
phase of a valid transfer, and then directly drives the output data bus HRDATA with this 
selected data value.

This combinational output path allows a zero wait state response to be possible, because 
data written to a register can be read the following cycle with a zero wait state transfer. 
If a registered output data path is used, reads from registers that were written to in the 
previous cycle must have at least one wait state inserted, to allow for the internal data 
register to sample the write data, and then for the data register output to be sampled by 
the output read data register, before being driven onto the output read data bus. 
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4.9 Static memory interface

The AMBA Static Memory Interface (SMI) is an example design which shows the basic 
requirements of an External Bus Interface (EBI) in an AMBA system. It is not intended 
to be a ready-made EBI for a real system. Such an EBI design would have to take 
process, package, and varying external delays into account.

The SMI connects the AMBA AHB to the external memory bus of an AMBA 
microcontroller. This allows the connection of up to three 256MB banks of 32-bit wide 
static memory (for example, SRAM and ROM) and also provides 32-bit test access to 
the AMBA system in conjunction with the TIC. Figure 4-33 shows the block diagram 
of the SMI.

Figure 4-33 Static memory interface block diagram

The main sections of this module are:

• the AHB slave bus interface

• the data and address bus registers and drivers

• the external memory access control logic.
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4.9.1 Signal descriptions

Table 4-7 describes the signals used by the SMI.

Table 4-10 Signal descriptions

Signal Type Direction Description

HCLK Bus clock Input This clock times all bus transfers.

HRESETn Reset Input The bus reset signal is active LOW, and is used to reset the 
system and the bus. 

HADDR[31:0] Address bus Input The 32-bit system address bus.

HTRANS[1:0] Transfer type Input This indicates the type of the current transfer, which can be 
NONSEQUENTIAL, SEQUENTIAL, IDLE or BUSY.

HWRITE Transfer direction Input When HIGH this signal indicates a write transfer, and 
when LOW, a read transfer.

HSIZE[2:0] Transfer size Input Indicates the size of the transfer, which is typically byte 
(8-bit), halfword (16-bit) or word (32-bit). The protocol 
allows for larger transfer sizes up to a maximum of 1024 
bits.

HWDATAin[31:0 Write data bus Input The write data bus is used to transfer data from the master 
to the bus slaves during write operations. A minimum data 
bus width of 32 bits is recommended, however, this can 
easily be extended to allow for higher bandwidth 
operation.

HSELExtMem Slave select Input Each AHB slave has its own slave select signal and this 
signal indicates that the current transfer is intended for the 
selected slave. This signal is a combinatorial decode of the 
address bus.

HRDATAin[31:0] 
HRDATAout[31:0]

Read data bus Input/output The read data bus is used to transfer data from bus slaves 
to the bus master during read operations. A minimum data 
bus width of 32 bits is recommended, however this can 
easily be extended to allow for higher bandwidth 
operation.

HREADYin

HREADYout

Transfer done Input/output When HIGH the HREADY signal indicates that a transfer 
has finished on the bus. This signal can be driven LOW to 
extend a transfer.

HRESP[1:0] Transfer response Output The transfer response provides additional information on 
the status of a transfer. This module always generates the 
OKAY response. 
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4.9.2 Functional description of the SMI

The SMI has five functions in the example system described in the following 
paragraphs:

• External bus control on page 4-54

• Memory bank select on page 4-55

• Memory write control on page 4-56

Remap Reset memory 
map

Input When LOW, the internal memory is not part of the system 
memory map, and external memory is mapped from 
address 0x00000000, which normally contains the system 
startup code. In normal operation this signal is HIGH, 
allowing use of the internal memory.

TicRead Drive out read data Input This signal controls the SMI to drive the current read data 
from HRDATA to XD.

XD[31:0] External data bus Input/output This is the bidirectional external data bus. In normal 
operation it is driven by the external bus when XOEN is 
LOW, and by this module when XOEN is HIGH. During 
system test this becomes the test bus TESTBUS and its 
direction is controlled by the TIC control signals.

XA[30:0] External address 
bus

Output The external address bus becomes valid during the HCLK 
LOW phase of the transfer and remains valid throughout 
the rest of the transfer.

XCSN[3:0] External chip 
select

Output These signals are active LOW chip enables for each of the 
three banks (0-1, 3) of static memory. XCSN[3] must be 
connected to the memory containing the startup program 
(boot ROM/BIOS) for the system.

XOEN External output 
enable

Output This is the output enable for devices on the external bus. 
This is LOW during reads from external memory, during 
which time the selected bank must drive the XD bus.

XWEN[3:0] External write 
enable

Output This is the active LOW memory write enable. For 
little-endian systems, XWEN[0] controls writes to the 
least significant byte and XWEN[3], the most significant. 
The example system is configured to be little-endian. The 
SMI is configured to have a minimum of two wait states 
when writing to memory. XWEN is only valid during the 
second cycle of the write transfer.

Table 4-10 Signal descriptions (continued)

Signal Type Direction Description
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• Configurable memory access wait states on page 4-57

• System test access on page 4-57.

External bus control

To perform a read from external memory, XOEN must be LOW and the XD output is 
tristated, allowing it to be driven with read data by the external memory. 

Figure 4-34 shows the timing of a read from memory with zero wait states.

Figure 4-34 Zero wait memory read

Note
 The data must be valid on the XD bus in time for the signal to propagate on-chip so that 
the HRDATA bus becomes valid before the next rising edge of HCLK. If this setup 
time cannot be achieved, the access requires wait states.

To perform a write to the external memory, XOEN must be HIGH, to allow XD to be 
driven by the SMI with a registered version of HWDATA. 

The SMI requires at least two wait states to be added for a write to memory, to allow for 
the timing of the XWEN write enable signal relative to the XA and XD buses. When 
XWEN is LOW XA must be stable and, on the rising edge of XWEN, XD must be 
valid.
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Figure 4-35 shows the timing of a write to memory with two wait states.

Figure 4-35 Memory write with two wait states

Memory bank select

The XCSN chip select lines are controlled by the address of a valid transfer, and the 
system memory map mode. Before the system memory is remapped, the boot ROM at 
0x30000000 is also mapped to the base address of 0x00000000.

Table 4-11shows the relationship between the inputs and the generated value of XCSN.

HADDR

XA

D(A)

A

A

HREADY

HWRITE

XCSN

XWEN

XD

HCLK

D(A)

HWDATA

Table 4-11 XCSN coding

Input 
HSELExtMem

Input Remap
Input 
HADDR[29:28]

Output 
XCSN[3:0]

0 X XX 1111

1 0 00 0111

1 0 01 1101

1 0 10 1011
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XCSN is also held in the 1111 state asynchronously during reset.

Memory write control

The 4-bit XWEN write enable signal allows the four bytes in the 32-bit wide word to 
be written independently. The byte assignments are:

• XWEN[0] controls XD[7:0]
• XWEN[1] controls XD[15:8]
• XWEN[2] controls XD[23:16]
• XWEN[3] controls XD[31:24].

The SMI controls XWEN for writes in word (32-bit), halfword (16-bit) and byte (8-bit) 
quantities. The SMI uses HSIZE[1:0] and HADDR[1:0] to select the width and order 
of each write to memory. This information must be valid before XWEN is asserted.

Table 4-12 shows the bytes selected according to the HSIZE and HADDR[1:0] inputs.

1 0 11 0111

1 1 00 1110

1 1 01 1101

1 1 10 1011

1 1 11 0111

Table 4-12 XWEN coding

HSIZE[1:0] HADDR[1:0] XWEN[3:0]

10 (word) XX 0000

01 (half word) 0X 1100

01 (half word) 1X 0011

00 (byte) 00 1110

Table 4-11 XCSN coding (continued)

Input 
HSELExtMem

Input Remap
Input 
HADDR[29:28]

Output 
XCSN[3:0]
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Configurable memory access wait states

The SMI only supports global (the same for every bank) wait states for read and write 
accesses. This is configurable (in the HDL model, not in synthesized hardware) between 
zero and three waits for reads, and between two and three for writes. Figure 4-35 on 
page 4-55 shows a memory transfer with two wait states. A transfer with more wait 
states causes more wait cycles to be added. The external address and data information 
remains valid until the memory access cycle is completed. For writes, the XWEN signal 
is extended, going LOW during the first wait, and not going HIGH until the final cycle 
of the transfer. Before synthesis, the wait states can be configured by altering the 2-bit 
wide constants READWAIT and WRITEWAIT. WRITEWAIT must be value 2 or 
greater. 

System test access

During system TIC testing, the external bus output of the SMI is controlled by the active 
HIGH TicRead signal from the TIC. This is used to pass read data from the HRDATAin 
bus onto the external test bus XD. During normal operation this signal is held LOW.

4.9.3 System description

The following paragraphs give a description of how the HDL code for the module is set 
out. A basic system block diagram, with information about the main parts of the HDL 
code, is followed by details of the registers, inputs and outputs used in the module. This 
part should be read together with the HDL code.

A basic block diagram of the static memory interface system is shown in Figure 4-36 
on page 4-58.

00 (byte) 01 1101

00 (byte) 10 1011

00 (byte) 11 0111

Table 4-12 XWEN coding (continued)

HSIZE[1:0] HADDR[1:0] XWEN[3:0]
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Figure 4-36 Static memory interface module block diagram

The static memory interface module comprises the input bus registers, the wait state 
counter used to insert wait states, and the external memory control signal generation.

All registers used in the system are clocked from the rising edge of the system clock 
HCLK, and use the asynchronous reset HRESETn.

Figure 4-36 shows the static memory interface HDL file.
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Figure 4-37 Static memory interface module system diagram

The main sections in the SMI module are explained in more detail in the following 
paragraphs:

• Constant definitions on page 4-60

• AHB slave bus interface on page 4-60

• Wait state generation on page 4-60

• AHB output data bus generation on page 4-60

• External bus output generation on page 4-61.
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Constant definitions

The constants READWAIT and WRITEWAIT are used to set the number of wait states 
that are inserted when a read and write transfer is performed. The value of zero to three 
for reads, and two to three for writes, is set for all transfers to all memory banks, and 
although configurable in the HDL code, it is permanently set when synthesized.

AHB slave bus interface

This module uses the standard AHB slave bus interface, which comprises:

• the valid transfer detection logic

• the address and control registers, which are used to store the information from the 
address phase of the transfer for use in the data phase.

The default address setting of the module is external RAM from 0x00000000 to 
0x1FFFFFFF, and external boot ROM from 0x30000000 to 0x3FFFFFFF. When the Remap 
signal is HIGH, indicating that remapped memory is in use, external RAM is mapped 
from 0x00000400 to 0x1FFFFFFF, with internal memory being mapped in the first 0x000 
to 0x400 region.

Wait state generation

The counter register is used to insert wait states according to the values set in the 
READWAIT and WRITEWAIT constants. The counter is loaded with the relevant value 
when a read or write transfer begins, and decrements the value until no more wait states 
have to be added. The counter value is used to generate the input to the HREADYout 
register, which is set LOW while the counter is not zero. 

AHB output data bus generation

The HRDATAout output is driven to XD during a normal external memory read 
transfer, to propagate the read data value from the external bus onto the AHB. 
HRDATAout is driven LOW at all other times.

The registered HREADYout output is driven LOW while the current value of the wait 
state counter is not zero.

The HRESP output is held LOW, because the SMI always generates an OKAY response 
to all transfers.
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External bus output generation

This section contains the signals that are driven onto the external bus:

• XD is generated from either the AHB read or write data buses, depending on the 
current system mode of operation. HWDATAin is used during a normal external 
memory write transfer, and HRDATAin is used during a TIC testing read cycle. 
Because XD is a tristate bus, it is only driven by the SMI when the current transfer 
is a standard write or a TIC testing read, allowing XD to be driven by any external 
modules at all other times.

• XA is driven with a registered version of bits [30:0] of HADDR, because the full 
system address range is not required on the external bus.

• XCSN is generated from the input address during a valid read or write transfer. 
Bits [29:28] of the address are decoded as shown in Table 4-8 on page -54. When 
Remap is LOW, the boot ROM is mapped at the base address, in addition to its 
standard address. External RAM access is not dependant on the Remap input. 
During reset, or when the memory is not addressed, all XCSN output bits are set 
HIGH to deselect all banks of external memory.

• XOEN is set LOW during a valid read transfer, and is set HIGH at all other times.

• XWEN is generated from the size and address settings for a write transfer, 
selecting the transfer size and byte lane to use, as shown in Table 4-9 on page -55. 
A registered output is used to avoid the generation of glitches, which can cause 
incorrect values to be written to the external ROM.
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4.10 Test interface controller

The Test Interface Controller (TIC) is a state machine that provides an AMBA AHB bus 
master for system test. It reads test write and address data from the external data bus 
TESTBUS (XD), and uses the External Bus Interface (EBI) to drive the external bus 
with test read data, allowing the use of only one set of output tristate buffers onto 
TESTBUS.

The TIC is used to convert externally applied test vectors into internal transfers on the 
AHB bus. A three-wire external handshake protocol is used, with two inputs controlling 
the type of vector that is applied and a single output that indicates when the next vector 
can be applied.

Typically the TIC is the highest priority AMBA bus master, which ensures test access 
under all conditions.

The TIC model supports address incrementing and control vectors. This means that the 
address for burst transfers can automatically be generated by the TIC.

Figure 4-38 shows the TIC module interface diagram.

Figure 4-38 TIC module interface diagram
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Figure 4-38 on page 4-62 represents a TIC module in a system where the external data 
bus becomes the test bus when performing test mode accesses. 16-bit and 8-bit data bus 
systems require, for example, 16 or 24 address lines to be reconfigured as bidirectional 
test port signals for the test mode access.

4.10.1 Signal descriptions

The TIC has three primary interfaces:

• the AHB bus master interface, to control the operation of the system during test

• the external test interface, to read the type of vector being applied and control the 
application of new vectors

• the datapath interface, to control the operation of the EBI to drive the external data 
bus.

Table 4-13 shows the TIC module signal descriptions for an AHB-based system.

Table 4-13 TIC signal descriptions for AHB

ignal Type Direction Description

CLK Bus clock Input This clock times all bus transfers. All signal timings are related to the 
rising edge of HCLK.

RESETn Reset Input The bus reset signal is active LOW and is used to reset the system and 
the bus. This is the only active LOW signal.

ADDR[31:0] Address bus Output The 32-bit system address bus.

TRANS[1:0] Transfer type Output Indicates the type of the current transfer, which can be 
NONSEQUENTIAL, SEQUENTIAL or IDLE. The TIC does not 
use the BUSY transfer type.

WRITE Transfer direction Output When HIGH this signal indicates a write transfer and when LOW a 
read transfer.

SIZE[2:0] Transfer size Output Indicates the size of the transfer, which is typically byte (8-bit), 
halfword (16-bit) or word (32-bit). The TIC does not support larger 
transfer sizes.

BURST[2:0] Burst type Output Indicates if the transfer forms part of a burst. The TIC always 
performs incrementing bursts of unspecified length.

PROT[3:0] Protection control Output The protection control signals indicate if the transfer is an opcode 
fetch or data access, as well as if the transfer is a supervisor mode 
access or user mode access. These signals can also indicate whether 
the current access is cacheable or bufferable.
ARM DDI 0226A Copyright © 2001 ARM Limited. All rights reserved. 4-63



AHB Modules 

H

H

H

H

H

H

T

T

S

WDATA[31:0] Write data bus Output The write data bus is used to transfer data from the master to bus 
slaves during write operations. A minimum data bus width of 32 bits 
is recommended, however this can easily be extended to allow for 
higher bandwidth operation.

READY Transfer done Input When HIGH the HREADY signal indicates that a transfer has 
finished on the bus. This signal can be driven LOW to extend a 
transfer.

RESP[1:0] Transfer response Input The transfer response provides additional information on the status 
of a transfer. Four different responses are provided, OKAY, ERROR, 
RETRY and SPLIT.

BUSREQtic Bus request Output A signal from the TIC to the bus arbiter which indicates that it 
requires the bus.

LOCKtic Locked transfers Output When HIGH this signal indicates that the master requires locked 
access to the bus and no other master must be granted the bus until 
this signal is LOW.

GRANTtic Bus grant Input This signal indicates that the TIC is currently the highest priority 
master. Ownership of the address and control signals changes at the 
end of a transfer when HREADY is HIGH, so a master gains access 
to the bus when both HREADY and HGRANTx are HIGH.

ESTBUS Test data bus Input This is the bidirectional external data bus. In normal operation it is 
driven by the external bus interface. During system test it becomes 
the test data bus and its direction is controlled by the test bus request 
A and B signals.

ESTREQA Test bus request A Input This is the test bus request A input signal and is required as a 
dedicated device pin. During normal system operation the 
TESTREQA signal is used to request entry into the test mode. 
During test TESTREQA is used, in combination with TESTREQB, 
to indicate the type of test vector that is to be applied in the following 
cycle.

Table 4-13 TIC signal descriptions for AHB (continued)

ignal Type Direction Description
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4.10.2 Function and operation of module

The TIC operates as a standard AHB bus master during system test when the external 
test pins show that the system is required to enter test mode. In this mode, the TIC 
requests control of the AHB, and when granted uses the AHB to perform system tests.

Table 4-14 shows the operation of the external test pins to change the TIC mode from 
normal operation into test mode.

ESTREQB Test bus request B Input During test this signal is used, in combination with TESTREQA, to 
indicate the type of test vector that is to be applied in the following 
cycle.

ESTACK Test acknowledge Output The test bus acknowledge signal gives external indication that the test 
bus has been granted and also indicates when a test access has 
completed. When TESTACK is LOW the current test vector must be 
extended until TESTACK becomes HIGH.

icRead Drive out read 
data

Output This signal controls the EBI to drive the current read data from 
HRDATA to TESTBUS.

Table 4-13 TIC signal descriptions for AHB (continued)

ignal Type Direction Description

Table 4-14 Test control signals during normal operation

TESTREQA TESTREQB TESTACK Description

0 - 0 Normal operation

1 - 0 Enter test mode request

- - 1 Test mode entered
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During system test the external test pins are used to control the operation of the TIC. 
The operation of these pins is shown in Table 4-15.

In test mode, the internal HCLK is driven from the external TESTCLK source. This 
pin can be the normal clock oscillator source input or a port replacement signal. The 
system bus clock must not glitch when switching between normal and test mode.

On entry into test mode the TIC indicates that it has switched to the test clock input by 
asserting the TESTACK signal.

Test vector types

There are five types of test vector associated with the test interface:

Address vector The address for all subsequent read and write transfers is sampled 
by the TIC.

Write vector The TIC performs an AHB write cycle, using the write data 
currently driven onto the external data bus.

Read vector The TIC performs an AHB read cycle, driving the read data onto 
the external data bus when it becomes valid.

Control vector Internal TIC registers are set, which control the types of read and 
write transfers that are performed.

Turnaround vector Used between a read cycle and a write cycle to avoid clashes on 
the external data bus.

Table 4-15 Test control signals during test mode

TESTREQA TESTREQB TESTACK Description

- - 0 Current access incomplete

1 1 1 Address vector or

control vector or

turnaround vector

1 0 1 Write vector

0 1 1 Read vector

0 0 1 Exit test mode
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The address, control and turnaround vectors are all indicated by the same value on the 
TESTREQA and TESTREQB signals. The following rules can be used to determine 
which type of vector is being applied:

• a read vector, or burst of read vectors, is followed by two turnaround vectors

• when a single address or control vector is applied it is an address vector

• when multiple address and control vectors are applied they are all address vectors, 
apart from the last which is a control vector.

Control vectors

The control vector is used to determine the types of transfer the TIC can perform, by 
setting the values of the HSIZE, HPROT and HLOCK AHB master outputs.

The default TIC bus master transfer type is:

• 32-bit transfer width, HSIZE[2:0] signifies word transfer

• privileged system access, HPROT[3:0] signifies supervisor data access, 
uncacheable and unbufferable.

Bit 0 of the control vector is used to indicate if the control vector is valid. Therefore, if 
a control vector is applied with bit 0 LOW, the vector is ignored and does not update the 
control information. This mechanism allows address vectors which have bit 0 LOW to 
be applied for many cycles without updating the control information.

Although the default settings are sufficient for testing many embedded system designs, 
the control vector can be used to change the control signals of the transfer, and can also 
be used to determine whether the TIC must generate fixed addresses or incrementing 
addresses.

Table 4-16 defines the bit positions of the control vector. The control vector bit 
definitions are designed to be backwards compatible with earlier versions of the TIC 
and therefore not all of the control bits are in obvious positions.

Table 4-16 Control vector bit definitions

Bit position Description

0 Control vector valid

1 Reserved

2 HSIZE[0]

3 HSIZE[1]
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There is no mechanism to control the types of burst that the TIC can perform and only 
incrementing bursts of an undefined length are supported. The TIC only supports 8-bit, 
16-bit and 32-bit transfers and therefore HSIZE[2] cannot be altered and is always 
LOW.

To support burst accesses using the test interface, the TIC can support incrementing of 
the bus address. The TIC increments eight address bits and the address range that can 
be covered by this incrementer is dependent on the size of the transfers being performed.

The control vector provides a mechanism to enable and disable the address incrementer 
within the TIC. This allows burst accesses to incremental addresses, as would be used 
for testing internal RAM. Alternatively the address increment can be disabled, such that 
successive accesses of a burst occur to the same address, as would be required to 
continually read from a single peripheral register.

The address incrementer is disabled by default and must be enabled using a control 
vector prior to use.

Note
 The control vector is primarily used to change signals which have the same timing as 
the address bus. However the control vector also allows the lock signal to be changed, 
which is actually required before the locked transfer commences. If the HLOCK signal 
is used during testing it must be set a transfer before it is required. This difference in 
timing on the HLOCK signal can in some cases cause an additional transfer to be 
locked both before and after the sequence intended to be locked.

4 HLOCK

5 HPROT[0]

6 HPROT[1]

7 Address increment enable

8 Reserved

9 HPROT[2]

10 HPROT[3]

Table 4-16 Control vector bit definitions (continued)

Bit position Description
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4.10.3 Test vector sequences

The following test vector sequences are described:

• Entering test mode

• Write vectors on page 4-70

• Read vectors on page 4-71

• Control vector on page 4-72

• Burst vector on page 4-73

• Read-to-write and write-to-read transfers on page 4-74

• Exiting test mode on page 4-75.

Entering test mode

In normal operating mode TESTREQA is LOW, indicating that test access is not 
required and the test bus is used as required for normal operation, which is usually part 
of the external bus interface. Entering test mode allows test vectors to be applied 
externally that causes transfers on the internal bus.

The following sequence, required to enter test mode, is illustrated in Figure 4-39 on 
page 4-70:

1. TESTREQA is asserted to request test bus access.

2. Test mode is entered when the TIC has been granted the internal bus and this is 
indicated by the assertion of the TESTACK signal.

3. At this point TESTCLK becomes the source of the internal HCLK signal.

4. When test mode has been entered TESTREQB is asserted to initiate an address 
vector.

5. The TIC does not perform any internal transfers until a valid address vector has 
been applied.

A synchronous tester would not be expected to poll TESTACK for the bus. Normally 
the TESTREQA signal would be asserted for a minimum number of cycles guaranteed 
to gain access to the bus (completion of the longest wait-state peripheral access or the 
maximum number of cycles for all bus masters to have completed their current 
instruction).
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Figure 4-39 Test start sequence

Write vectors

Figure 4-40 shows the sequence of events when applying a set of write test vectors. 
Initially an address vector is applied and this is followed by a write test vector.

Figure 4-40 Write test vectors

The TESTREQA and TESTREQB signals are pipelined and are used to indicate what 
type of vector is applied in the following cycle.

Figure 4-40 shows an example of a number of write transfers being performed. 
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The TIC samples the address, TESTREQA, and TESTREQB signals at time T3, and 
following this it can initiate the appropriate transfer on the AHB. In the following cycle 
the write data is driven onto TESTBUS and it is then sampled on the following clock 
edge, T4, and driven onto the internal bus.

If the internal transfer is not able to complete, the TESTACK signal is driven LOW and 
this indicates that the external test vector must be applied for another cycle.

Read vectors

Read transfers are more complex because they require TESTBUS to be driven in the 
opposite direction, and therefore additional cycles are required to prevent bus clash 
when changing between different drivers of TESTBUS. Figure 4-41 shows a typical 
test sequence for reads.

Figure 4-41 Read test vectors

The TESTREQA and TESTREQB signals are used in the same way as for write 
transfer. Initially TESTREQA and TESTREQB are used to apply an address vector 
and then in the following cycle they are used to indicate that a read transfer is required. 
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For the first cycle of a read TESTBUS must be tristated, which ensures that the external 
equipment driving TESTBUS has an entire cycle to tristate its buffers before the TIC 
enables the on-chip buffers to drive out the read data.

At the end of a burst of reads it is also necessary to allow time for bus turnaround. In 
this case the TIC must turn off the internal buffers and an entire cycle is allowed before 
the external test equipment starts to drive TESTBUS.

The end of a burst of reads is indicated by both TESTREQA and TESTREQB being 
HIGH, as for an address vector. In fact they must indicate an address vector for two 
cycles, which allows for the turnaround cycle at the start of the burst and also the 
turnaround cycle at the end of the burst.

Control vector

The operation of the TIC can be modified by the use of a control vector. Whenever more 
than one address vector is applied in succession, the last vector is considered to be a 
control vector and is not latched as the address. Bit 0 of the control vector is used to 
determine whether or not the control vector must be considered valid, which allows 
multiple address vectors to be applied without changing the control information.

Figure 4-42 on page 4-73 shows the process of inserting a control vector. 
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Figure 4-42 Control vector

At time T4 the TIC can determine that TESTBUS contains a control vector. This is 
because the previous cycle was an address vector, and TESTREQA and TESTREQB 
are indicating that the following cycle is either a read or a write and therefore the current 
cycle must be a control vector.

Burst vector

The examples of read and write transfers shown in Figure 4-42 also show how 
additional transfers can be used to form burst transfers on the bus. The TIC has limited 
capabilities for burst transfers and can only perform undefined length incrementing 
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The TIC contains an 8-bit incrementer and, if an attempt is made to perform a burst 
which crosses the incrementer boundary, the address simply wraps and the TIC signals 
the transfer as NONSEQUENTIAL. The exact boundary at which this occurs is 
dependent on the size of the transfer. For word transfers the incrementer overflows at 
1KB boundaries, for halfword transfers it overflows at 512-byte boundaries, and for 
byte transfers the overflow occurs at 256-byte boundaries.
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Read-to-write and write-to-read transfers

It is possible to switch between read transfers and write transfers without applying a 
new address vector. Usually this is done with the address incrementer disabled, so that 
both the read transfers and the write transfers are to the same address. It is also possible 
to do this with the incrementer enabled if the test circumstances require it.

When moving from a read transfer to a write transfer it is also necessary to allow two 
cycles for bus handover and therefore TESTREQA and TESTREQB must signal an 
address vector for two cycles after the read. This does not cause the address to be 
changed unless it is followed by a third address vector.

Figure 4-43 illustrates the sequence of events.

Figure 4-43 Read vector followed by write vector
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Exiting test mode

Test mode is exited using the following sequence:

1. Apply a single cycle of address vector, which causes an IDLE cycle internally. 
This ensures any internal transfers have been completed and an 
ADDRESS-ONLY transfer is performed on the internal bus.

2. TESTREQA and TESTREQB are both driven LOW to indicate that test mode 
is to be exited.

3. When the test interface has been configured for normal system operation, 
TESTACK goes LOW to indicate that test mode has been exited.

It is important that test mode can be entered and exited cleanly so that the TIC can be 
used for diagnostic test during system operation, as well as during production testing.

4.10.4 System description

This describes how the HDL code for the TIC is set out. A simple system block diagram, 
with information about the main parts of the HDL code, is followed by details of the 
registers, inputs, and outputs used in the module. This should be read together with the 
HDL code.

Figure 4-44 shows the TIC module block diagram.

Figure 4-44 TIC module block diagram
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A diagram of the TIC HDL file is shown in Figure 4-45.

Figure 4-45 TIC module system diagram

The main sections of the code are explained in the following paragraphs:

• Granted state machine on page 4-77

• TIC vector state machine on page 4-77

• AHB address generation on page 4-80

• Control vector detection on page 4-81

• Read data control on page 4-81

• Split or retry detection on page 4-81

• AHB bus master output signal generation on page 4-82.
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Granted state machine

This is part of the standard AHB bus master interface, and is used to determine when 
the TIC is granted the bus, and when it can drive the address, control and data outputs.

The state machine is shown in Figure 4-46, and only advances when the HREADY 
input is set HIGH.

Figure 4-46 TIC module granted state machine
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This section of the code is used to control the application of test vectors from the 
external tester onto the AHB.
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Figure 4-47 TIC vector state machine
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The TESTACK signal controls all transactions around the state machine, except for the 
transition from IDLE to START. In all other cases the state machine remains in the same 
state if the TESTACK signal is low.

The TESTREQA signal moves from the IDLE state to the START state. The state of 
TESTREQB is not checked when moving from normal operation to test mode.

In some system implementations it is necessary to switch from an internal clock source 
to an external clock TESTCLK which is used during test mode. When TESTREQA 
first goes HIGH this can be used as an indication that the clock source must be changed. 
A return signal that indicates when the clock switch has occurred successfully can be 
used to prevent the move into the START state until the test clock is in use.

If clock switching is being used, it is possible that TESTREQA is asynchronous to the 
on-chip clock before test mode is entered. Therefore a synchronizer is used to generate 
a synchronized version of TESTREQA to control the movement from the IDLE state 
to the START state.

The START state ensures that the first vector applied is an address vector to prevent read 
and write vectors occurring before the address has been initialized. The START state is 
only exited when TESTREQA and TESTREQB indicate an address vector and the 
following state is ADDRVEC.

In the ADDRVEC state the TIC registers the address on the TESTBUS. The 
ADDRVEC state is used for both address and control vectors, so additional logic is 
required to determine whether the value on TESTBUS must be considered as an 
address or as a control vector. If the previous cycle was an address vector and the 
following cycle (as indicated by TESTREQA and TESTREQB) is not an address 
vector, the current cycle is a control vector.

It is possible to stay in the ADDRVEC state for a number of cycles, but usually an 
address vector is followed by either read or write transfers.

If a write transfer is being performed, the TIC moves into the WRITEVEC state at the 
same time that it initiates the transfer on the bus. Multiple write transfers can be 
performed by remaining in the WRITEVEC state. Usually the WRITEVEC is followed 
by an address vector. However, it is also possible to move directly to a read transfer by 
moving to the READVEC state.

When a read, or a burst of reads is performed, the TIC enters the READVEC state. This 
state indicates that the TIC is starting a read transfer on the bus and it is not until the 
following cycle that the read data appears. When the READVEC state is first entered 
the TESTBUS is tristated, but becomes driven during additional cycles in the 
READVEC state.
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All read vectors must be followed by two turnaround vectors. For the first of these 
cycles the TIC moves into the LASTREAD state, during which the last read of the 
transfer completes and is driven out on to the external TESTBUS. During the 
LASTREAD state no internal transfers are started and the TIC performs IDLE transfers 
on the bus.

Following the LASTREAD state the TIC moves into the TURNAROUND state, during 
which time the external TESTBUS is tristated. The TURNAROUND state is usually 
followed by an address vector, but it is also possible to go immediately to a write vector 
or another read.

The usual method to exit from test is to return to the ADDRVEC state and then set both 
TESTREQA and TESTREQB LOW to return to IDLE and effectively exit from test. 
In fact, at any point the test mode can be exited by setting both TESTREQA and 
TESTREQB LOW, and eventually this causes the TIC to exit from test.

Note
 When applying TIC vectors it is theoretically possible to assert the HLOCK output and 
then exit from the test. If this happens and then the TIC is granted the bus under normal 
operation, it effectively locks up the bus. No protection is provided within the TIC to 
prevent this occurrence.

AHB address generation

There are four main sources of the HADDR output in the TIC:

• current address registers

• previous address registers

• external data bus

• incrementer.

The current address is held during a standard read or write cycle, because the address 
loaded during the previous address vector is used for all subsequent read and write 
transfers.

The previous address is only used when a split or retry response has been generated by 
the currently selected slave, and the TIC is set in incrementing mode. When the transfer 
is regenerated, the incremented address has moved on for the next transfer, so the 
previous address must be stored for use.

When an address vector is applied, the TIC must read in the new address from the 
external data bus TESTBUS. This new value is stored in the iHADDR registers, and 
used for the following read and write transfers.
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If address incrementing is enabled, sequential read and write vectors increments the 
address according to the transfer size that has been set. The first read or write transfer 
after an address vector is to that address, subsequent transfers have their address 
incremented. This continues until a control vector is used to disable address 
incrementing.

Sequential incrementing read and write vectors are signalled as SEQUENTIAL 
transfers on the AHB, but a NONSEQUENTIAL transfer is added when the address 
incrementer crosses an 8-bit boundary, set by the current transfer size.

Control vector detection

This part is used to detect a control vector, and contains the control registers. A control 
vector is the last address vector in a burst of addresses, so is only detected when 
TESTREQA and TESTREQB indicate that the next transfer is a read or write vector, 
and there have been two or more address vectors. The TIC vector state machine is used 
to detect this, when LastVect and CurrentVect are set to address vector, and NextVect is 
either a read or a write vector. Also, bit 0 of the control vector (on TESTBUS) must be 
set HIGH for it to be valid, allowing for bursts of addresses.

When it has been detected, the control vector is written to the registers used to hold the 
transfer settings for HSIZE, HLOCK, HPROT, and if address incrementing is 
enabled. These values are then held until the next control vector is detected and stored.

Read data control

TicRead is used to enable the EBI to drive the current read data value from HRDATA 
onto TESTBUS. It is set HIGH when the last vector was a read, allowing time for the 
read data to be driven onto the AHB. This output is disabled when the TIC is not granted 
control of the bus, allowing the EBI to function normally.

Split or retry detection

The TIC must know when the currently selected slave has generated a split or retry, and 
this section is used to detect that response. If the TIC loses grant before the transfer has 
been regenerated, the value of the SplitRetry signal is held until the TIC has gained 
control of the bus again.

SR1 and SR2 are also used to indicate the first and second cycles of a SPLIT/RETRY 
response. SR2 is registered to remove a combinational path from HRESP to HTRANS.
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AHB bus master output signal generation

Because the TIC is an AHB bus master, it must drive all of the output signals needed to 
control the operation of AHB slaves on the bus, and also the bus grant request output. 
This section generates these outputs, and controls when they can be driven out.

HTRANS is generated according to the granted state machine, the TIC vector state 
machine, the split or retry status, and the incrementer boundary condition.

NONSEQUENTIAL transfers are generated:

• during a read or write following an address

• during a read or write when the TIC has just gained control of the bus

• during a regenerated read or write that has been split or retried

• when the address incrementer has crossed an 8-bit boundary during a sequential 
read or write.

SEQUENTIAL transfers are generated in incrementing mode:

• when a read follows a read or a write

• when a write follows a write.

IDLE transfers are generated at all other times, because no bus transfers have to be 
performed.

HWRITE is set HIGH when the current transfer is a write, and is set LOW at all other 
times. During a regenerated split/retry transfer, the last vector is used.

HBUSREQtic is set LOW when the TIC vector state machine is in the IDLE state, and 
is set HIGH at all other times, because the bus is only requested when test mode has 
been entered.
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Chapter 5 
APB Modules

This chapter describes the modules that comprise the Advanced Peripheral Bus (APB). 
It contains the following sections:

• Interrupt controller on page 5-2

• Remap and pause controller on page 5-12

• Timers on page 5-20

• Peripheral to bridge multiplexor on page 5-35.
ARM DDI 0226A Copyright © 2001 ARM Limited. All rights reserved. 5-1



APB Modules 
5.1 Interrupt controller

The interrupt controller is an APB slave, providing a simple software interface to the 
interrupt system. It consists of:

• source status and interrupt request status

• separate enable set and enable clear registers to allow independent bit enable 
control of interrupt sources

• level-sensitive interrupts

• programmable interrupt source.

Figure 5-1 shows the interrupt controller module block diagram.

Figure 5-1 Interrupt controller module block diagram
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5.1.1 Hardware interface and signal description

The interrupt controller module is connected to the APB bus. Table 5-1 shows the signal 
descriptions for the interrupt controller.

Table 5-1 APB signal descriptions for interrupt controller

Signal Type Direction Description

PCLK Peripheral clock Input This clock times all bus transfers. Both the LOW phase and 
HIGH phase of PCLK are used to control transfers.

PRESETn Peripheral reset Input The bus reset signal is active LOW and is used to reset the 
system. 

PENABLE Peripheral enable Input This enable signal is used to time all accesses on the 
peripheral bus. 

PSELIC Peripheral slave 
select

Input When HIGH, this signal indicates that this module has been 
selected by the APB bridge. This selection is a decode of the 
system address bus.

PADDR[8:2] Peripheral address Input This is the peripheral address bus, which is used for decoding 
register accesses. The addresses become valid before 
PENABLE goes HIGH and remains valid after PENABLE 
goes LOW.

PWRITE Peripheral transfer 
direction

Input This signal indicates a write when HIGH and a read when 
LOW. It has the same timing as the peripheral address bus. 

PWDATA[5:0] Peripheral write 
data bus

Input The write peripheral data bus is driven by the bridge at all 
times.

PRDATA[7:0] Peripheral read 
data bus

Output The read peripheral data bus is driven by this block during 
read cycles (when PWRITE is LOW and PSELIC is HIGH).

FIQESource FIQ interrupt 
source

Input FIQ interrupt signal into the interrupt module. This active 
HIGH signal indicates that a fast interrupt request has been 
generated.

IRQESource[0]

IRQESource[7:2]

IRQ interrupt 
sources

Input IRQ interrupt signals into the interrupt module. These active 
HIGH signals indicate that interrupt requests have been 
generated. (IRQESource[1] is internally generated in the 
interrupt controller module and is used to provide a software 
triggered IRQ.) 

nFIQ FIQ output Output Active LOW fast interrupt request input to the ARM core.

nIRQ IRQ output Output Active LOW interrupt request input to the ARM core.
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5.1.2 Function and operation of the interrupt controller module

The interrupt controller provides a simple software interface to the interrupt system. 
Certain interrupt bits are defined for the basic functionality required in any system. The 
remaining bits are available for use by other devices in any particular implementation. 
In an ARM system, two levels of interrupt are available:

• fast interrupt request (FIQ) for fast, low latency interrupt handling

• interrupt request (IRQ) for more general interrupts.

Ideally, in an ARM system, only a single FIQ source is in use at any particular time. 
This provides a true low-latency interrupt, because a single source ensures that the 
interrupt service routine can be executed directly without the requirement to determine 
the source of the interrupt. It also reduces the interrupt latency because the extra banked 
registers, which are available for FIQ interrupts, can be used to maximum efficiency by 
preventing the requirement for a context save.

Separate interrupt controllers are used for FIQ and IRQ. Only a single bit position is 
defined for FIQ, which is intended for use by a single interrupt source, while up to 32 
bits are available in the IRQ controller. The standard configuration only makes eight 
interrupt request lines available. This can be extended to up to 32 sources by altering the 
IRQSize constant setting and increasing the width of the PWDATA and PRDATA lines 
to the interrupt controller.

The IRQ interrupt controller uses a bit position for each different interrupt source. Bit 
positions are defined for a software-programmed interrupt, a communications channel, 
and counter-timers. Bit 0 is unassigned in the IRQ controller so that it can share the 
same interrupt source as the FIQ controller.

All interrupt source inputs must be active HIGH and level-sensitive. Any inversion or 
latching required to provide edge sensitivity must be provided at the generating source 
of the interrupt.

No hardware priority scheme nor any form of interrupt vectoring is provided, because 
these functions can be provided in software.

A programmed interrupt register is also provided to generate an interrupt under software 
control. Typically this can be used to downgrade an FIQ interrupt to an IRQ interrupt.

Interrupt control

The interrupt controller provides:

• interrupt status

• raw interrupt status

• an enable register. 
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The enable register is used to determine whether or not an active interrupt source must 
generate an interrupt request to the processor.

The raw interrupt status indicates whether or not the appropriate interrupt source is 
active prior to masking and the interrupt status indicates whether or not the interrupt 
source is causing a processor interrupt.

The enable register has a dual mechanism for setting and clearing the enable bits. This 
allows enable bits to be set or cleared independently, with no knowledge of the other 
bits in the enable register.

When writing to the enable set location, each data bit that is HIGH sets the 
corresponding bit in the enable register. All other bits of the enable register are 
unaffected. Conversely, the enable clear location is used to clear bits in the enable 
register while leaving other bits unaffected.

Figure 5-2 shows the structure for a single segment of the interrupt controller.

Figure 5-2 Single bit slice of the interrupt controller

The IRQ controller usually has a larger number of bit slices, where the exact size is 
dependent on the system implementation.

The FIQ interrupt controller consists of a single bit slice, located on bit 0.
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5.1.3 Register memory map

The base address of the interrupt controller is not fixed and can be different for any 
particular system implementation. However, the offset of any particular register from 
the base address is fixed. Table 5-2 shows the register memory map.

5.1.4 Register descriptions

The following registers are provided for both FIQ and IRQ interrupt controllers:

Enable Read-only. The enable register is used to mask the interrupt input sources 
and defines which active sources generate an interrupt request to the 
processor. This register is read-only, and its value can only be changed by 
the enable set and enable clear locations. If certain bits within the 
interrupt controller are not implemented, the corresponding bits in the 
enable register must be read as undefined.

Table 5-2 Register memory map of the interrupt controller APB peripheral

Address Read location Write location

IntBase + 0x000 IRQStatus -

IntBase + 0x004 IRQRawStatus -

IntBase + 0x008 IRQEnable IRQEnableSet

IntBase + 0x00C - IRQEnableClear

IntBase + 0x010 - IRQSoft

IntBase + 0x100 FIQStatus -

IntBase + 0x104 FIQRawStatus -

IntBase + 0x108 FIQEnable FIQEnableSet

IntBase + 0x10C - FIQEnableClear

IntBase + 0x014 IRQTestSource IRQTestSource

IntBase + 0x018 IRQSourceSel IRQSourceSel

IntBase + 0x114 FIQTestSource FIQTestSource

IntBase + 0x118 FIQSourceSel FIQSourceSel
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An enable bit value of 1 indicates that the interrupt is enabled and allows 
an interrupt request to reach the processor. An enable bit value of 0 
indicates that the interrupt is disabled. On reset, all interrupts are 
disabled.

EnableSet Write-only. This location is used to set bits in the interrupt enable register. 
When writing to this location, each data bit that is HIGH causes the 
corresponding bit in the enable register to be set. Data bits that are LOW 
have no effect on the corresponding bit in the enable register.

EnableClear Write-only. This location is used to clear bits in the interrupt enable 
register. When writing to this register, each data bit that is HIGH causes 
the corresponding bit in the enable register to be cleared. Data bits that 
are LOW have no effect on the corresponding bit in the interrupt enable 
register.

RawStatus Read-only. This location provides the status of the interrupt sources to the 
interrupt controller. A HIGH bit indicates that the appropriate interrupt 
request is active prior to masking.

Status Read-only. This location provides the status of the interrupt sources after 
masking. A HIGH bit indicates that the interrupt is active and generates 
an interrupt to the processor.

Soft Write only. A write to bit 1 of this register sets or clears a programmed 
interrupt. Writing to this register with bit 1 set HIGH generates a 
programmed interrupt, while writing to it with bit 1 set LOW clears the 
programmed interrupt. The value of this register can be determined by 
reading bit 1 of the source Status register. Bit 0 of this register is not used.

Two extra read/write registers are defined for both FIQ and IRQ to allow testing of the 
interrupt controller module using the AMBA test methodology. They must not be 
accessed during normal operation.

TestSource Same size as RawStatus, and used to load RawStatus with test data.

SourceSel 1-bit wide (bit 0). When set, the value in TestSource is multiplexed into 
RawStatus.

5.1.5 Standard configuration of registers

The FIQ interrupt controller is one bit wide and is located on bit 0. The source of this 
interrupt is implementation-dependent.
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The interrupt controller is customized to fit into each application. The following is an 
example minimum set of interrupt bits assigned in a system:

• Bits 1 to 5 in the IRQ interrupt controller are defined in the standard EASY world. 

• Bit 0 and Bits 6 up to 31 are available for use as required. Bit 0 is left available so 
that the FIQ source can also be routed to the IRQ controller in an identical bit 
position. 

Table 5-3 gives a typical example allocation of IRQ sources.

5.1.6 System description

This section describes how the HDL code for the interrupt controller is set out. A simple 
system block diagram, with information about the main parts of the HDL code, is 
followed by details of all the registers, inputs and outputs used in the system. This 
section should be read together with the HDL code.

Figure 5-3 on page 5-9 shows the interrupt controller module block diagram.

Table 5-3 Example of IRQ sources

Bit Interrupt source

0 Undefined

1 Programmed Interrupt

2 Comms Rx

3 Comms Tx

4 Timer 1

5 Timer 2
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Figure 5-3 Interrupt controller module block diagram

The interrupt controller comprises sets of interrupt registers and test registers that are 
used to control the generation of the two interrupt outputs to the ARM core, based on 
the interrupt inputs.

All registers used in the system are clocked from the rising edge of the system clock 
PCLK, and use the asynchronous reset PRESETn.

Two diagrams are used to show the interrupt controller HDL file. Figure 5-4 shows the 
layout of the bit slices that are used for bit 0 of the FIQ and bits 0 and [5:2] of the IRQ.

Figure 5-4 Interrupt controller slice system diagram

Figure 5-5 on page 5-10 shows the layout of the whole system.
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Figure 5-5 Interrupt controller module system diagram

The main sections in this module are explained in more detail in the following 
paragraphs:

• Constant definitions on page 5-11

• IRQ generation on page 5-11 

• FIQ generation on page 5-11

• Output data generation on page 5-11.
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Constant definitions

The first two constants that are specified (IRQSIZE and FIQSIZE), are used to set the 
number of IRQ and FIQ lines that are used in the system. The defaults are for eight IRQ 
lines and one FIQ line. These constants must only be changed when the number of 
interrupt input sources are changed.

The other constants are used to set the relative addresses of the interrupt controller 
registers from the base address.

IRQ generation

Figure 5-4 on page 5-9 shows the structure of the IRQ generation logic from the 
external interrupt sources.

The read/write TestSource register is used to hold the test value. This is passed through 
a multiplexor, and then used to switch between the external and internal test interrupt 
sources. This is the read-only RawStatus value, which is gated with the output of the 
enable register, and used to generate the Status output.

All of the IRQ sources are then combined to generate the active LOW nIRQ output, 
which is set LOW when any of the IRQ lines are set HIGH.

FIQ generation

The FIQ logic is similar to the IRQ logic, but in the default system is only one bit wide, 
and does not have a software programmable source. The nFIQ output is directly 
generated from the single interrupt source bit, using an inverter.

Output data generation

This section is used to decode the current address during a read, and generate the correct 
data to be driven onto the APB data bus. The address is compared with all of the register 
addresses, and the value of PRDATANext is set accordingly. This is then stored in the 
iPRDATA register to help decrease the output propagation time by using a registered 
output, rather than an output with the combinational delay of the large multiplexor. This 
register also synchronizes the reading of all raw interrupt inputs to the rising edge of the 
clock. The PRDATA output is then driven by the register.
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5.2 Remap and pause controller

The remap and pause controller is an APB slave, providing control of the system boot 
behavior and low-power wait for interrupt mode.

The main sections of this module are:

• defined boot behavior with power-on reset detection

• a wait for interrupt pause mode

• an identification register.

A block diagram of the remap and pause module is shown in Figure 5-6.

Figure 5-6 Remap and pause module block diagram

5.2.1 Signal descriptions

 on page 5-9Table 5-4 describes the APB signals used and produced by the remap and 
pause controller.
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Table 5-4 APB signal descriptions for remap and pause controller

Signal Type Direction Description

PCLK Peripheral clock Input This clock times all bus transfers. Both the LOW phase and HIGH 
phase of PCLK are used to control transfers.

PRESETn Peripheral reset Input The bus reset signal is active LOW and is used to reset the system.

PENABLE Peripheral enable Input This enable signal is used to time all accesses on the peripheral 
bus. 

PSELRPC Peripheral slave 
select

Input When HIGH, this signal indicates that this module has been 
selected by the APB bridge. This selection is a decode of the 
system address bus.
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5.2.2 Functions and operations of the remap and pause module

The remap and pause control is the combination of four separate functions:

Pause Defines a method of allowing the processor system to enter a 
low-power, wait for interrupt state, when the system does not 
require the processor to be active.

Identification Provides an indication of the system configuration.

Reset memory map Provides a method of overlaying the system base memory at reset.

Reset status Provides an indication of the cause of the most recent reset 
condition. A minimum implementation is defined.

PADDR[5:2] Peripheral address 
bus

Input This is the peripheral address bus, which is used for decoding 
register accesses. The addresses become valid before PENABLE 
goes HIGH and remains valid after PENABLE goes LOW.

PWRITE Peripheral 
transfer direction

Input This signal indicates a write when HIGH and a read when LOW.

It has the same timing as the peripheral address bus. 

PWDATA[7:0] Peripheral write 
data bus

Input The write peripheral data bus is driven by the bridge at all times.

PRDATA[7:0] Peripheral read 
data bus

Output The read peripheral data bus is driven by this block during read 
cycles (when PWRITE is LOW and PSELRPC is HIGH).

nFIQ FIQ output Input FIQ interrupt input from the interrupt controller.

nIRQ IRQ output Input IRQ interrupt input from the interrupt controller.

Pause Pause mode Output HIGH when in the wait for interrupt pause mode, and LOW at all 
other times.

Remap Reset memory 
map

Output LOW when the reset memory map is in use, and HIGH when the 
normal memory map is in use.

Table 5-4 APB signal descriptions for remap and pause controller (continued)

Signal Type Direction Description
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5.2.3 Register memory map

The base address of the remap and pause controller memory is not fixed and can be 
different for any particular system implementation. However, the offset of any particular 
register from the base address is fixed. Table 5-5 shows the remap and pause controller 
memory map.

5.2.4 Remap and pause register descriptions

Pause Write-only. Writing to the pause location causes the system to 
enter a wait for interrupt state, by setting the Pause output HIGH. 

The exact effect of writing to this location is not defined, but 
typically this would prevent the processor from fetching more 
instructions until the receipt of an interrupt or a power-on reset. 
More registers can be added to provide more sophisticated 
power-saving modes.

Identification Read-only. The identification location provides identification 
information about the system. Only a single-bit implementation 
(bit 0) is required, which is used to indicate if there is more ID 
information:

0 = no more ID information 1 = more ID information is available.

If bit zero of the identification register is set, more bits are 
required to provide more detailed system identification 
information.

ClearResetMap Write-only. Writing to the clear reset memory map location 
changes the system memory map. It changes from that required 
during boot-up to that required during normal operation. This is 
done by setting the Remap output to HIGH. When the reset 
memory map has been cleared and the normal memory map is in 

Table 5-5 Memory map of the remap and pause controller APB peripheral

Address Read location Write location

RemapBase + 0x00 - Pause

RemapBase + 0x10 Identification -

RemapBase + 0x20 - ClearResetMap

RemapBase + 0x30 ResetStatus ResetStatusSet

RemapBase + 0x34 - ResetStatusClear
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use, there is no method of resuming the reset memory map, other 
than undergoing a power-on reset condition. A typical system 
implementation is to map the system ROM to location 0x00000000 
at reset, but to change the memory map after reset, such that RAM 
is located at location 0x00000000 for normal operation. In a system 
where such remapping does not occur, writing to this register has 
no effect.

ResetStatus Read-only. The reset status location provides the reset status. Only 
one bit of this register is defined in this specification and this is bit 
0, which provides the power-on reset status. Further bits in the 
ResetStatus register can be implemented to provide more detailed 
reset information. The ResetStatus register has a dual mechanism 
for setting and clearing bits, allowing independent bits to be 
altered with no knowledge of the other bits in the register. This is 
done by using the ResetStatusClear and the ResetStatusSet 
registers.

The single bit defined in this specification is the power-on reset 
bit, which can be used to determine if the most recent reset was 
caused by initial power-on, or if a warm reset has occurred:

0 = no POR since flag was last cleared 1 = POR.

ResetStatusClear Write-only. This location is used to clear reset status flags. When 
writing to this register each data bit that is HIGH causes the 
corresponding bit in the ResetStatus register to be cleared. Data 
bits that are LOW have no effect on the corresponding bit in the 
ResetStatus register.

ResetStatusSet Write-only. This location is used to set reset status flags. When 
writing to this register each data bit that is HIGH causes the 
corresponding bit in the ResetStatus register to be set. Data bits 
that are LOW have no effect on the corresponding bit in the 
ResetStatus register. The power-on reset status bit (bit 0) cannot 
be set by software, because it can only be set during a system reset. 
The extra bits of the register are included in the specification to 
ensure the reset status functionality can easily be expanded.

5.2.5 System description

The following paragraphs describe how the HDL code for the remap and pause 
controller module is set out. A simple system block diagram, with information about the 
main parts of the HDL code, is followed by details of all the registers, inputs and outputs 
used in the system. This section should be read together with the HDL code.
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A basic block diagram of the remap and pause controller module is shown in Figure 5-7.

Figure 5-7 Remap and pause module block diagram

The remap and pause controller comprises registers to generate the Remap and Pause 
outputs, and logic to allow the reading of the identification and reset status values.

All registers used in the system are clocked from the rising edge of the system clock 
PCLK, and use the asynchronous reset PRESETn. The Pause register also uses the two 
interrupt inputs as asynchronous resets, allowing the value to be cleared while the 
system is not clocked.

A diagram of the remap and pause HDL file is shown in Figure 5-8 on page 5-17.
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Figure 5-8 Remap and pause module system diagram

The main sections in this module are explained in more detail in the following sections:

• Constant definitions

• ResetStatus value generation on page 5-18

• Pause output generation on page 5-18

• Remap output generation on page 5-19

• Output data generation on page 5-19.

Constant definitions

The constant IDENTIFICATION holds the identification information about the system. 
The default setting for this value is all zero. The maximum size for this value is the 
width of the read and write data buses of the module.
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ResetStatus value generation

This register is modified through the ResetStatusSet and ResetStatusClear addresses. 
When writing to the set location, each data bit that is HIGH sets the corresponding bit 
in the ResetStatus register. All other bits of the register are unaffected. Each data bit that 
is set HIGH when writing to the clear location clears the corresponding bit in the 
ResetStatus register, leaving all other bits unaffected.

The power-on-reset bit (bit 0) cannot be set by writing to the set location, because it is 
only set HIGH during system reset. It can be cleared in the same way as the other 
register bits.

Pause output generation

A register is used to hold the wait for interrupt state value. The Pause output is 
synchronously set HIGH (on the rising edge of PCLK) when the Pause location is 
written to, with any value, and is asynchronously set LOW by PRESETn, nFIQ or 
nIRQ. When set HIGH, it can only be set LOW with a reset or an interrupt.

Figure 5-9 shows the operation of setting and clearing the Pause registered output.

Figure 5-9 Pause signal timing
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Remap output generation

This register is used to hold the system memory map state value. The Remap output is 
set LOW on reset, indicating that the reset memory map is in use. It is set HIGH when 
the ClearResetMap location is written to with any value, indicating that the normal 
system memory map is in use. When set HIGH, it can only be set LOW by a system 
reset.

Output data generation

This section is used to decode the current address during a read, and generate the correct 
data to be driven onto the APB read data bus. The address is compared with all of the 
register addresses, and the value of PRDATANext is set accordingly. This is then stored 
in the iPRDATA register to help decrease the output propagation time by using a 
registered output, rather than an output with the combinational delay of the large 
multiplexor. The PRDATA output is then driven by the register.
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5.3 Timers

The timers module is an APB slave, providing access to two interrupt generating 
programmable 16-bit Free-Running decrementing Counters (FRCs).

The main sections of the timers module are:

• two identical instantiations of a programmable 16-bit free-running counter

• prescale for each counter clock

• interrupt generation based on counter value.

The timers module is shown in Figure 5-10.

Figure 5-10 Timer module block diagram

5.3.1 Signal descriptions

The two sets of signals associated with the timers module are: 

• the external connections to the rest of the EASY world

• the internal connections between the timers module and the two FRC modules.
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The signal descriptions for the timers module are listed in Table 5-6.

5.3.2 Function and operation of module

Two counters are defined as the minimum provided within a system, although this can 
easily be expanded. The same principle of simple expansion has been applied to the 
register configuration, allowing more complex counters to be used. 

Table 5-6 APB signal descriptions for timer

Signal Type Direction Description

PCLK Peripheral clock Input This clock times all bus transfers. Both the LOW phase and 
HIGH phase of PCLK are used to control transfers.

PRESETn Peripheral reset Input The bus reset signal is active LOW and is used to reset the 
system.

PENABLE Peripheral 
enable

Input This enable signal is used to time all accesses on the peripheral 
bus. 

PSELCT Peripheral slave 
select

Input When HIGH, this signal indicates that this module has been 
selected by the APB bridge. This selection is a decode of the 
system address bus.

PADDR[5:2] Peripheral 
address bus

Input This is the peripheral address bus, which is used for decoding 
register accesses. The addresses become valid before 
PENABLE goes HIGH and remains valid after PENABLE 
goes LOW.

PWRITE Peripheral 
transfer direction

Input This signal indicates a write when HIGH and a read when LOW. 
It has the same timing as the peripheral address bus. 

PWDATA[15:0] Peripheral write 
data bus

Input The write peripheral data bus is driven by the bridge at all times.

PRDATA[15:0] Peripheral read 
data bus

Output The read peripheral data bus is driven by this block during read 
cycles (when PWRITE is LOW and PSELCT is HIGH).

INTCT Counter 1 
interrupt

Output Active HIGH interrupt signal to the interrupt controller module. 
This signal indicates an interrupt has been generated by counter 
1 having been decremented to zero.

INTCT2 Counter 2 
interrupt

Output Active HIGH interrupt signal to the interrupt controller module. 
This signal indicates an interrupt has been generated by counter 
2 having been decremented to zero.
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Two modes of operation are available:

Free-running mode The counter wraps after reaching its zero value, and continues to 
count down from the maximum value. This is the default mode.

Periodic timer mode The counter generates an interrupt at a constant interval, 
reloading the original value after wrapping past zero.

5.3.3 Timer operation

The timer is loaded by writing to the Load register and, if enabled, counts down to zero. 
When zero is reached, an interrupt is generated. The interrupt can be cleared by writing 
to the Clear register.

After reaching a zero count, if the timer is operating in free-running mode it continues 
to decrement from its maximum value. If periodic timer mode is selected, the timer 
reloads the count value from the Load register and continues to decrement. In this mode 
the counter effectively generates a periodic interrupt. The mode is selected by a bit in 
the Control register.

At any point, the current counter value can be read from the Value register.

The counter is enabled by a bit in the Control register. At reset, the counter is disabled, 
the interrupt is cleared, and the Load register is set to zero. The mode and prescale 
values are set to free-running, and clock divide of one respectively. 

Figure 5-11 is a block diagram showing timer operation.

Figure 5-11 Timer operation

The timer clock enable is generated by a prescale unit. The enable is then used by the 
counter to create a clock with a timing of one of the following:

• the system clock
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• the system clock divided by 16, generated by 4 bits of prescale

• the system clock divided by 256, generated by a total of 8 bits of prescale.

Figure 5-12 shows how the timer clock frequency is selected in the prescale unit.

Figure 5-12 Prescale clock enable generation

5.3.4 Register memory map

The base address of the timers module is not fixed and can be different for any particular 
system implementation. However, the offset of any particular register from the base 
address is fixed.

Divide
by 16

Control
Prescale select

System
clock

Timer
clock

Divide
by 16

Table 5-7 Memory map of the time APB peripheral

Address Read location Write location

TimerBase + 0x00 Timer1Load Timer1Load

TimerBase + 0x04 Timer1Value -

TimerBase + 0x08 Timer1Control Timer1Control

TimerBase + 0x0C - Timer1Clear

TimerBase + 0x20 Timer2Load Timer2Load

TimerBase + 0x24 Timer2Value -

TimerBase + 0x28 Timer2Control Timer2Control

TimerBase + 0x2C - Timer2Clear

TimerBase + 0x10 Timer1Test Timer1Test

TimerBase + 0x30 Timer2Test Timer2Test
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5.3.5 Timer register descriptions

TimerXLoad Read/write. This register contains the initial value to be loaded 
into the counter and is also used as the reload value in periodic 
mode. This register is the same width as the counter (default is 16 
bits).

TimerXValue Read-only. This location gives the current value of the counter. 

TimerXClear Write-only. Writing to this location clears an interrupt generated 
by the counter.

TimerXControl Read/write. This register provides enable/disable, mode and 
prescale configurations for the counter.

Figure 5-13 shows the control register.

Figure 5-13 The control register

TimerXTest Two special registers are provided for validation purposes, 
Timer1Test and Timer2Test. These locations must not be accessed 
during normal system operation.
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Both registers are read/write and are 2 bits wide, as shown in 
Table 5-8.

The counter test mode bit is stored in a register in both FRCs. The test clock select bit 
is stored in a single register in the top-level timers module, but can be accessed from 
either test address.

When the counter test mode bit is set, the selected 16-bit counter is divided into four 
separate 4-bit counters that continually loop round from 15 to 0. This reduces the testing 
time needed to ensure that the correct counting sequence is performed. Clearing this bit 
(default) brings the selected timer back to normal operation.

When the test clock select bit is set in either of the two test registers, a special test clock 
(NOT PENABLE ANDed with PSELCT) is fed into the prescale unit instead of the 
system clock (therefore both counters have to be using the same clock source, either 
normal or test). Clearing this bit (default) selects the system clock as the prescale clock 
input (normal operation).

5.3.6 System description

This section describes how the HDL code for the timers module is set out. A basic 
system block diagram, with information about the main parts of the HDL code, is 
followed by details of all the registers, inputs and outputs used in this module. This 
should be read together with the HDL code.

A basic block diagram of the timers module is shown in Figure 5-14 on page 5-26. 

Table 5-8 Test register bit functions

Bit Name Function

0 Test Counter test mode

1 TestClkSel Test clock select
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Figure 5-14 Timers module block diagram

The timers module comprises two 16-bit programmable free-running counters, and 
clock prescale enable generation logic. The free-running counters comprise four linked 
4-bit counters, interrupt generation logic and counter control registers.

All registers used in the system are clocked from the rising edge of the system clock 
PCLK and use the asynchronous reset PRESETN.

5.3.7 Timer system description

A diagram of the timers module HDL file is shown in Figure 5-15 on page 5-27.
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Figure 5-15 Timers module system diagram

The main sections in this module are explained in the following paragraphs:

• Address decoder

• Test clock select generation

• Clock prescaler on page 5-28

• Output clock enable generation on page 5-28

• Output data generation on page 5-28.

Address decoder

This section is used to generate the TestSel signal, which is used to indicate an access 
to either of the test registers, and the Frcsel select lines to the FRCs based on the current 
address. Because there are two instantiations (in the default system) of an identical FRC 
module, part of the address decoding must be done at the previous system level.

Test clock select generation

This register is used to store the current value of bit 1 of all counter test registers. A read 
or write to any of the test register addresses access this single register.
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Clock prescaler

The 8-bit prescale registers are used to generate the two prescale signals of divide by 16 
and divide by 256, by decrementing the current value of the registers. The enable signal 
PreScaleEn is used to control the operation of the registers, which by default is always 
set, but in test clock mode is a combination of PENABLE and PSELCT, allowing an 
output clock pulse to be generated for each read or write access to the timers module.

Output clock enable generation

The three different clock enable signals (equivalent to the system clock, the system 
clock divided by 16, and the system clock divided by 256) enable the timer clocks in the 
two FRC modules, based on the amount of prescale that is required.

Figure 5-16 and Figure 5-17 show the timing of these enable signals.

Figure 5-16 Timer module counter enable timing - system clock selected

Figure 5-17 Timer module counter enable timing - test clock selected

Output data generation

This section is used to decode the current address during a read, and generate the correct 
data to be driven onto the APB read data bus. The address is compared with all of the 
register addresses, and the value of PRDATANext is set accordingly. This is then stored 
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in the iPRDATA register to help decrease the output propagation time by using a 
registered output, rather than an output with the combinational delay of the large 
multiplexor. The PRDATA output is then driven by the register.

The read data is based on the FRC data outputs, with the local Test Clock Select register 
output also used when reading from a test location.

5.3.8 FRC system description

Two identical instances of the free-running counter block are included in the timers 
module. 

The basic block diagram of the free-running counter block is shown in Figure 5-18.

Figure 5-18 FRC module block diagram

5.3.9 FRC signal descriptions

Table 5-9 shows descriptions for the FRC signals.

Free-
running
counter
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PCLK
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PWDATA[15:0] Dataout[15:0]

Enable2

Table 5-9 Signal descriptions for FRC

Signal Type Direction Description

PCLK Peripheral clock Input Direct connection from timers module.

PRESETn Peripheral reset Input Direct connection from timers module.

PENABLE Peripheral enable Input Direct connection from timers module.

PADDR[4:2] Peripheral address Input Direct connection from timers module.
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Figure 5-19 on page 5-31 shows the FRC HDL file. 

PWRITE Peripheral transfer

direction

Input Direct connection from timers module.

PWDATA[15:0] Peripheral write

data bus

Input Direct connection from timers module.

Frcsel FRC register select Input FRC register select, driven HIGH when a register in this 
FRC is addressed. There is a select line for each counter in 
the timers module.

Enable0 Enable prescale 0 Input Counter clock enable, divide by 1.

Enable1 Enable prescale 4 Input Counter clock enable, divide by 16.

Enable2 Enable prescale 8 Output Counter clock enable, divide by 256.

Intfrc Interrupt output Output Interrupt output from the counter, generated when 16-bit 
counter reaches zero. There is an interrupt output for each 
counter in the timers module.

Dataout Read data output Output Read data output used to generate PRDATA for register 
reads. There is a read data output for each counter in the 
timers module.

Table 5-9 Signal descriptions for FRC (continued)

Signal Type Direction Description
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Figure 5-19 FRC module system diagram

The main sections in this module are described in:

• Control, Test and Load registers

• Counter enable selection on page 5-32

• 16-bit counter on page 5-32

• Interrupt generation on page 5-33

• Output data generation on page 5-34.

Control, Test and Load registers

The Control, Test (bit zero only) and Load registers only change when written to, and 
hold their values at all other times.
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Counter enable selection

The enable input to use is selected according to the prescale mode setting in the control 
registers. The selected input is then used to generate an internal enable, which is also 
gated with the enable bit of the control registers. An additional signal ensures that the 
load data value is clocked into the counters when a load operation is performed.

16-bit counter

The counter is split up into four 4-bit parts (nibbles) to allow efficient testing. Each 
nibble is used to generate a carry signal (when the 4-bit counter overflows), which is 
passed to the next nibble as an enable. When Counter Test Mode is selected, all carry 
enable signals are set HIGH, forcing all four nibbles to count at the same time.

The 16-bit counter value is stored in registers, which are enabled using the externally 
generated counter enable. The input to the registers is normally the output from the four 
4-bit decrementers, but when a new value is written to the Load registers, or when the 
counter reaches zero and periodic mode is set, the current value of the Load registers is 
stored in the counter registers.

The operation of the counter is shown in Figure 5-20 on page 5-33.
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Figure 5-20 FRC module count down diagram

Interrupt generation

An interrupt is generated when the full 16-bit counter reaches zero, and is only cleared 
when the TimerClear location is written to. A register is used to hold the value until the 
interrupt is cleared. The most significant carry bit of the counter is used to detect the 
counter reaching zero. 
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Output data generation

The current address is used to generate the internal read data value for the Test, Load, 
Value and Control locations. Because the Test and Control registers are not 16-bits, the 
read values are padded out with the Load register value, minimizing the number of 
output changes when different registers are read.

This read data value is then passed to the timers module, and then driven onto the APB 
read data bus.
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5.4 Peripheral to bridge multiplexor

The peripheral to bridge multiplexor module is used to connect the read data outputs of 
the peripheral bus slaves to the peripheral bus bridge module, using the PSELx select 
signals to select the bus slave outputs to use. Figure 5-21 shows an interface diagram for 
the peripheral to bridge multiplexor module.

Figure 5-21 Peripheral to bridge multiplexor module interface diagram

This module is a simple multiplexor, with the read data buses from all peripheral bus 
slaves as the inputs, using the slave select bridge outputs as the select inputs, with a 
single read data bus as the output to the bridge module. When slaves are added to the 
system or removed, the input connections to this module must be altered to account for 
the changes.

5.4.1 Signal descriptions

Table 5-10 shows the signal descriptions for the peripheral to bridge multiplexor 
module.

5.4.2 Function and operation of module

The peripheral to bridge multiplexor controls the routing of read data from the 
peripheral bus slaves to the bridge. The bridge determines which is the currently 
selected slave, and the multiplexor is used to connect the output of the selected slave to 
the input of the bridge.

The read data is switched for the duration of an APB transfer, when the PSELx signal 
is valid.

MuxP2B

PSELx

PRDATA

PRDATAx

Table 5-10 Signal descriptions for peripheral to bridge multiplexor module

Signal Type Direction Description

PSELx Slave select Input Each APB slave has its own slave select signal, and this signal 
indicates that the current transfer is intended for the selected slave.

PRDATAx[31:0]

PRDATA[31:0]

Read data bus Input/ 
output

The read data bus is used to transfer data from bus slaves to the 
bridge during read operations.
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A default value of zero is used when no slaves are selected.

5.4.3 System description

The following paragraphs give a description of how the HDL code for the peripheral to 
bridge multiplexor is set out. A simple system block diagram, with information about 
the main parts of the HDL code, is followed by details of the registers, inputs, and 
outputs used in the module. This part should be read together with the HDL code.

Figure 5-22 shows the peripheral to bridge module block diagram.

Figure 5-22 Peripheral to bridge multiplexor module block diagram

The peripheral to bridge multiplexor module is comprised of a set of multiplexors for 
the slave read data.

A diagram of the peripheral to bridge multiplexor HDL file is shown in Figure 5-23.

Figure 5-23 Peripheral to bridge multiplexor module system diagram

To allow the use of case statements for the multiplexors, the PSEL slave select inputs 
are combined to create a multi-bit bus signal. This bus is then used as the select control 
on the read data multiplexor.

One input to the PRDATA multiplexor is tied LOW, so that when no peripheral slaves 
are selected, no read data appears on PRDATA.
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Chapter 6 
Behavioral Modules

This chapter describes the behavioral modules found in the AMBA University Kit 
(AUK). The behavioral modules are only available for use during system simulation, 
because they all read in or generate locally stored data files. This chapter contains the 
following sections:

• External RAM on page 6-2

• External ROM on page 6-5

• Internal RAM on page 6-8

• Test interface driver on page 6-12

• Tube on page 6-23.
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6.1 External RAM

The external RAM module is a simple model of a 32K x 8 off-chip SRAM, which can 
be initialized with data from a local file.

Figure 6-1 shows the external RAM module interface.

Figure 6-1 External RAM module interface diagram

The main sections of this module are:

• memory initialization from local data file

• memory read and write from external bus.

6.1.1 Signal descriptions

Table 6-1 shows the signal descriptions for the external RAM module.

ExtRAM

A[14:0]

CSn

WEn

OEn

DQ[7:0]

Table 6-1 Signal descriptions for the external RAM module

Signal Type Direction Description

A[14:0] External address Input The external address input.

DQ[7:0] External data I/O Input/ 
output

The external data bus, sampled during write transfers and driven 
during read transfers.

CSn Chip enable Input When LOW this signal indicates that the chip has been selected 
and must respond to the current transfer.

WEn Write enable Input When LOW this signal indicates a write transfer. 

OEn Output enable Input When LOW this signal indicates a read transfer, and enables the 
module to drive data onto DQ.
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6.1.2 User-defined settings

Table 6-2 shows the user-defined settings for the external RAM module.

6.1.3 Function and operation of module

Operations described are:

• Memory initialization from local data file

• Memory read and write from external bus.

Memory initialization from local data file

On simulation initialization, the external RAM module loads in data from the file 
specified in the instantiating top-level memory module. This must be stored as a 
two-hex character per line data file, which cannot contain more data than the model 
supports. An example file ram.dat is shown in Example 6-1.

Example 6-1

00
01
0F
F7

The default configuration for the external RAM modules is in groups of four, which are 
used to allow memory accesses of full 32-bit words, with a byte stored in each memory 
module.

Memory read and write from external bus

The external RAM is accessed by transfers through the static memory interface module, 
allowing both reads from memory and writes to memory. These are performed as 32-bit 
word transfers, with each byte connected to one of the four memory models. 

Table 6-2 User-defined settings for the external RAM module

Signal Type
Default
setting

Description

RAMDEPTH Memory depth 32 This sets the memory depth in KB. If the value is increased from the 
default setting, the address input bus A must also be increased to allow 
all memory to be addressed.
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See Static memory interface on page 4-51 for timing diagrams showing read and write 
transfers to external memory.
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6.2 External ROM

The external ROM module is a simple model of a 16K x 8 off-chip EPROM, which can 
be initialized with data from a local file.

Figure 6-2 shows the external ROM module interface.

Figure 6-2 External ROM module interface diagram

The main sections of this module are:

• memory initialization from local data file

• memory read from external bus.

6.2.1 Signal descriptions

 on page 6-8Table 6-3 shows signal descriptions for the external ROM module.

ExtROM

A[13:0]

CEn

OEn

Q[7:0]

Table 6-3 Signal descriptions for the external ROM module

Signal Type Direction Description

A[13:0] External address Input The external address input.

Q[7:0] External data out Output The external data bus, driven during read transfers.

CEn Chip enable Input When LOW this signal indicates that the chip has been selected 
and must respond to the current transfer.

OEn Output enable Input When LOW this signal indicates a read transfer, and enables the 
module to drive data onto Q.
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6.2.2 User-defined settings

Table 6-4 shows user-defined settings for the external ROM module

6.2.3 Function and operation of module

Operations described are:

• Memory initialization from local data file

• Memory read from external bus.

Memory initialization from local data file

On simulation initialization, the external ROM module loads in data from the file 
specified in the instantiating top-level memory module. This must be stored as a 
two-hex character per line data file, which cannot contain more data than the model 
supports. An example file rom.dat is shown in Example 6-2.

Example 6-2

00
01
0F
F7

The default configuration for the external ROM modules is in groups of four, which are 
used to allow memory accesses of full 32-bit words, with a byte stored in each memory 
module.

Memory read from external bus

The external ROM is accessed by transfers through the static memory interface module, 
allowing reads from memory. These are performed as 32-bit word transfers, with each 
byte connected to one of the four memory models.

Table 6-4 User-defined settings for the external ROM module

Signal Type
Default
setting

Description

ROMDEPTH Memory depth 16 This sets the memory depth in KB. If the value is increased from the 
default setting, the address input bus A must also be increased to allow 
all memory to be addressed.
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See Static memory interface on page 4-51 in AHB Modules, for timing diagrams 
showing read and write transfers from external memory.
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6.3 Internal RAM

The internal RAM is a simple little-endian model of a 1KB x 32 on-chip SRAM, which 
can be initialized with data from a local file. The AHB internal RAM is shown in 
Figure 6-3.

Figure 6-3 AHB internal RAM module interface diagram

The main sections of this module are:

• memory initialization from local data file

• memory read and write from system bus.

6.3.1 AHB signal descriptions

Table 6-5 shows signal descriptions for the AHB internal RAM module

IntMem

HRDATA

HREADYout

HRESP

HCLK

HRESETn

HADDR

HTRANS

HWRITE

HSIZE

HWDATA

HSELIntMem

HREADYin

Table 6-5 Signal descriptions for the AHB internal RAM module

Signal Type Direction Description

HCLK Bus clock Input This clock times all bus transfers.

HRESETn Reset Input The bus reset signal is active LOW, and is used to reset the 
system and the bus.

HADDR[31:0] Address bus Input The 32-bit system address bus.

HTRANS[1:0] Transfer type Input Indicated the type of the current transfer, which can be 
NONSEQUENTIAL, SEQUENTIAL, IDLE or BUSY.

HWRITE Transfer direction Input When HIGH this signal indicates a write transfer, and when 
LOW, a read transfer.
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6.3.2 User-defined settings

Table 6-6 shows user-defined settings for the external RAM module

HSIZE[2:0] Transfer size Input Indicates the size of the transfer, which is typically byte (8-bit), 
halfword (16-bit) or word (32-bit). The protocol allows for 
larger transfer sizes up to a maximum of 1024 bits.

HWDATA[31:0] Write data bus Input The write data bus is used to transfer data from the master to 
the bus slaves during write operations. A minimum data bus 
width of 32 bits is recommended. However, this can easily be 
extended to allow for higher bandwidth operation.

HSELIntMem Slave select Input Each AHB slave has its own slave select signal and this signal 
indicates that the current transfer is intended for the selected 
slave. This signal is simply a combinatorial decode of the 
address bus.

HRDATA[31:0] Read data bus Output The read data bus is used to transfer data from bus slaves to the 
bus master during read operations. A minimum data bus width 
of 32 bits is recommended. However, this can easily be 
extended to allow for higher bandwidth operation.

HREADYin

HREADYout

Transfer done Input / 
output

When HIGH the HREADY signal indicates that a transfer has 
finished on the bus. This signal can be driven LOW to extend a 
transfer.

HRESP[1:0] Transfer response Output The transfer response provides additional information on the 
status of a transfer. This module always generates the OKAY 
response.

Table 6-5 Signal descriptions for the AHB internal RAM module (continued)

Signal Type Direction Description

Table 6-6 User-defined settings for the external RAM module

Signal Type
Default
setting

Description

MemSize Memory size 1 This sets the memory size in KB.

FileName Input filename intram.dat This points to the local input data file that is read in after reset.
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6.3.3 Function and operation of module

Operations described are:

• Memory initialization from local data file

• Memory read and write from system bus.

Memory initialization from local data file

On simulation initialization, the internal RAM module loads in data from the file 
specified in the FileName setting. This must be stored as an 8-character Verilog 
$readmemh format data file (for both VHDL and Verilog format models), which cannot 
contain more data than the model supports. Address lines (starting with @) and single 
line comments (starting with //) are valid, but all other non-value characters are not 
allowed. Loading starts from address zero, and continues incrementing on word 
boundaries until an address line is found in the file. Loading then continues from that 
address. All values are initialized to zero before loading is started. An example 
intram.dat file is shown in Example 6-3.

Example 6-3

ea00000b
ea000005
// Data values stored at 0x00000200
@00000200
01234567
89ABCDEF

The internal RAM module stores data as 32-bit words, and in default configuration is 
256 words deep, which is equivalent to 1KB. This is only accessible when the normal 
memory map is in use (Remap set HIGH), and occupies the address range from 
0x00000000 to 0x000003FF. If the size of the internal memory is modified, the address 
range that it occupies also changes. This requires the system decoder to be updated so 
that it only selects the internal RAM module over the correct address range.

Memory read and write from system bus

The internal RAM module is accessed by standard system bus transfers, allowing both 
reads from memory and writes to memory. These can be performed as 32-bit word, 
16-bit halfword or 8-bit byte transfers. Each byte lane of the transfer is treated 
separately, so a byte write to byte zero does not alter the values stored in the other three 
bytes at that word address. Data reads are all treated the same, and the full 32-bit word 
at the selected word address is driven out onto the system data bus.
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All transfers are performed with zero wait states. An ERROR response is never 
generated.
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6.4 Test interface driver

The test interface driver (Ticbox) is an external module which drives the test interface 
lines to gain access to the AHB bus, and then applies test vectors from a test input file. 
This test input file is the output from a C program written with the TICTalk command 
language.

Before reading this section, you should be familiar with AMBA and its test interface 
protocol. If not, see the AMBA Specification for more information. Figure 6-4 shows an 
interface diagram of the ticbox module.

Figure 6-4 Ticbox module interface diagram

The main sections of this module are:

• the input file reader

• output vector generation

• read data expected value checking.

TESTREQA

Ticbox

TESTREQB

TESTACK

TESTBUS

TESTCLK nRESET

TIC

EBI

AHB
modules

AMBA AHB system

AHB bus

TIF

C

Test input
file

C compiler

TICTalk
source file
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6.4.1 Signal descriptions

Table 6-7 shows signal descriptions for the Ticbox module

Table 6-7 Signal descriptions for the Ticbox module

Signal Type Direction Description

TESTCLK Test mode clock Input This is the system clock HCLK in test mode. All the test 
interface transactions are timed using this signal.

nReset External reset Input Active LOW external reset input. Used to control the operation 
of the Ticbox module.

TESTREQA Test request A Output Indicates test vector mode. See the test interface chapter in the 
AMBA Specification for more information about the test 
protocol. It is driven early in the LOW phase of TESTCLK 
and held to the falling edge of TESTCLK.

TESTREQB Test request B Output Indicates test vector mode. See the test interface chapter of the 
AMBA Specification for more information about the test 
protocol. It is driven early in the LOW phase of TESTCLK 
and held to the falling edge of TESTCLK.

TESTACK Test acknowledge Input Indicates that the test bus has been granted and also that a test 
access has been completed.

TESTBUS[31:0] Test data bus Input/ 
output

32-bit bidirectional test port.
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6.4.2 User-defined settings

Table 6-8 shows user-defined settings for the Ticbox module

6.4.3 Function and operation of module

When the external system reset input has been deasserted, the Ticbox requests access to 
the system. This is done by asserting TESTREQA HIGH and TESTREQB LOW. The 
Test Interface Controller (TIC) then indicates when test mode has been entered by 
asserting TESTACK HIGH. When in test mode, the test input file is then read and 
translated by the Ticbox into AMBA test interface transactions, using the TESTREQA 
and TESTREQB signals.

The Ticbox applies test vectors to the system every time the TESTACK line indicates 
the system is ready. On read cycles the value is masked and then compared with the 
masked expected value given in the test vector file. An error message is given if the 
comparison fails. System testing ends when the end of the input vector file is reached, 
and the Ticbox indicates this by asserting both TESTREQA and TESTREQB LOW to 
end the simulation.

A typical simulation output display while running a TIC program is shown in 
Example 6-4.

Example 6-4

#    Time: 2603 ns Iteration: 0 Instance:/u_ticbox
# ** Note: ; Addressing location 80000614

Table 6-8 User-defined settings for the Ticbox module

Name Type Default setting Description

FileName Input 
filename

infile.tif (VHDL)

infile.sim (Verilog)

This points to the local input vector file that is read in 
a line at a time as each vector is performed.

HaltOnMismatch Read error 
setting

FALSE This is used to control the operation of the module 
when a read error is detected. When set FALSE, a 
warning message is displayed showing the read error, 
and if set TRUE, the simulation is halted when a read 
error is detected.

Verbosity Comment 
display

TRUE Controls the displaying of input vector file comments. 
When set TRUE, comments are displayed, and when 
set FALSE, comments are not displayed. This does 
not affect the displaying of other system messages.
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#    Time: 2703 ns Iteration: 0 Instance:/u_ticbox
# ** Note: ; Writing data 00000005

#    Time: 3003 ns Iteration: 0 Instance:/u_ticbox
# ** Note: ; Addressing location 80000618

#    Time: 3103 ns Iteration: 0 Instance:/u_ticbox
# ** Note: ; Reading. Expected: 00000010. Mask 0000003F

#    Time: 3403 ns Iteration: 0 Instance:/u_ticbox
# ** Note: ; Addressing location 8000061c

#    Time: 3703 ns Iteration: 0 Instance:/u_ticbox
# ** Warning: Error on vector read. Expected: 00000010 Actual: 00000011 Mask: 
0000003F
#    Time: 3753 ns Iteration: 0 Instance:/u_ticbox

#    Time: 4003 ns Iteration: 0 Instance:/u_ticbox
# ** Note: ; Addressing location 80000584

#    Time: 4303 ns Iteration: 0 Instance:/u_ticbox
# ** Note: ; Writing data 00000000

#    Time: 4603 ns Iteration: 0 Instance:/u_ticbox
# ** Note: ; Addressing cycle at end

#    Time: 4903 ns Iteration: 0 Instance:/u_ticbox
# ** Note: ; Exiting Test Mode

#    Time: 5203 ns Iteration: 0 Instance:/u_ticbox
# ** Failure: Vector run completed: halting simulation
#    Time: 77703 ns Iteration: 0 Instance:/u_ticbox
# Break at ticbox.vhd line 288

In Example 6-4 on page 6-14, a read error has occurred, but the error message is 
broadcast later in the simulation. This is because there are a number of clock cycles 
between when the read is requested, and when the information is sampled by the Ticbox 
to be compared with the expected value. The example simulation has been run without 
HaltOnMismatch set, and therefore the program does not stop after the error has been 
detected. Verbosity is set, because all TIF vector comments have been displayed in the 
simulation output.
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6.4.4 TICTalk command language

TICTalk is a very simple set of commands that allows the development of validation 
programs for the AMBA blocks. The TICTalk language is a small library of C functions. 
When a TICTalk program is compiled and run, it produces a test input file in what is 
called the TIC Interface Format (TIF) which can be applied using the Ticbox module to 
test the desired block.

The AMBA test interface is able to perform the following actions:

• address vector

• write vector

• burst of write vectors

• read vector

• burst of read vectors

• change from write to read and read to write.

The TICTalk language performs these actions by combining together a number of basic 
commands. These commands are described in the following sections.

6.4.5 TICTalk commands

The basic TICTalk commands are described in the following sections:

• Write address vector (A)

• Write test vector (W)

• Read test vector (R) on page 6-17

• Burst read test vector (B) on page 6-17

• Repeat last command (L) on page 6-17

• Include the string message into the TIF (C) on page 6-17

• Exit test mode (E) on page 6-17.

Write address vector (A)

The A(int32 address_vector) command is used to address a new location in the system. 
It is always followed by a write test vector, or a read test vector command to perform 
the required action (write or read data) at that location. 

Write test vector (W)

The W(int32 write_vector) command generates a data vector write. It can be used after 
an address vector (single write), another write test vector (burst write) or a read test 
vector (change from reads to writes).
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Read test vector (R)

The R(int32 expected_value, int32 mask_value) command generates a data vector 
read. The read value is masked with the specified mask_value and compared with the 
expected_value. If the comparison is false, an error message is broadcast. It can be used 
after an address vector (single read), or a write test vector (change from writes to reads), 
and to indicate the last read on a burst, but it cannot be used after another read test 
vector. To signal a burst sequence of reads, the burst read vector command must be used 
instead.

Burst read test vector (B)

The B(int32 expected_value, int32 mask_value) command is similar to the read test 
vector. The only difference is that it can only be used if the next action is another read. 
This is because, in this case, a change of bus direction is not needed. Otherwise the 
function performed is the same.

Repeat last command (L)

The L(int32 number_of_loops) command signals that the last action must be repeated 
the specified number of times. This is useful when, for example, a burst of reads or 
writes from the same address location needs to be performed.

Include the string message into the TIF (C)

The C(char * message) command is used to add extra simulation comments.

Exit test mode (E)

The E() command must always be used at the end of a program so the Ticbox can signal 
the end of the test.

6.4.6 Programming with TICTalk commands

The possible combinations that are available when using the TICTalk commands are:

Single writes The command sequence is: A-W A-W A-W, and so on.

Single reads The command sequence is: A-R A-R A-R, and so on.

Burst of writes The command sequence is: A-W-W-W, and so on. 

If the value to be written is always the same, the command 
sequence could also be A-W-L, specifying on the L command the 
number of writes required.
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Burst of reads This is a special case. After the A command, B (burst read vector) 
should be used on consecutive reads, and only on the last read of 
the burst do we apply the R command. Therefore the sequence is: 
A-B-B-B-R A-B-B-....-B-R, and so on.

If the value to be read is expected always to be the same, or there 
is no requirement to check it against an expected value, the 
sequence could also be A-B-L-R, with the L command specifying 
the number of reads required.

Change from read to write 

This change can only be made after a R command (R-W), and not 
after a B command.

Change from write to read 

If the change is for a single read, the sequence W-R is used. On the 
other hand if the change is for a read burst, the W-B sequence is 
used (W-B-B-...-B-R).

6.4.7 The TICTalk file

An example C program using the TICTalk commands is shown in Example 6-5.

Example 6-5

#define CT1Load Counter_Base + 0x00
#define CT1Value Counter_Base + 0x04
#define CT1Control Counter_Base + 0x08
#define CT1Clear Counter_Base + 0x0C 
#define CT1Test Counter_Base + 0x10 

#define MaskAll     0x00000000
#define NoMask      0xFFFFFFFF
#define MaskControl 0x000000CC
#define MaskValue   0x0000FFFF
#define DUMMY       0x12345678

#include “header.h”
#include “ticmacros.h”

int main()
{
  A(CT1Load)
  W(0x55555555)
  A(CT1Control)
  W(0x000000C0) /* Counter Enabled, Periodic Mode, Prescale 0 */
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  A(CT1Value)
  R(0x55555547, MaskValue)
  A(CT1Load)
  W(0xDADADADA)
  B(0xDADADADA, MaskValue)    /* Read CT1Value */
  R(0x000000C0, MaskControl)  /* Read CT1Control */
  A(CT1Value)
  R(0xAAAAAAB8, MaskAll)
  W(0x000000C4)          /* Write to CT1Control */
  W(DUMMY)               /* Write to CT1Clear   */
  L(5)                   /* Repeat last write 5 times */
  E()
}

Example 6-5 on page 6-18 shows the TICTalk commands accept 32-bit integers as 
arguments. These can be specified using the #define directive, immediate values or 
normal C variables. This C-like approach provides the flexibility to develop more 
elaborate tests and new extended functions. For example, the basic commands could be 
used to build a pair of functions for reading and writing vectors that automatically take 
care of bus turnaround and address vectors.

The ticmacros.h file includes all the macro definitions for each command. These 
macros are expanded to generate a test input file in a format that can be read by the 
Ticbox.

The header.h file contains the base address definitions for the different blocks in the 
system. This is where the Counter_Base constant should be defined. This ensures 
portability of the test program to other systems with different peripheral address 
mapping.

6.4.8 Generating a test input format file

To generate a TIF file, the TICTalk program must be C compiled (using gcc for 
example) in the following way:

gcc -ansi source_file ticmacros.c -o object_file

Afterwards the object_file must be run and its output redirected to a file with the same 
name as the generic variable FileName defined in the Ticbox, for example:

object_file > infile.tif

This output file must then be copied or linked to the directory where the Ticbox 
simulation model exists.
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6.4.9 TIF format file

The TIF file is very similar to the TICTalk file as shown in Example 6-6, with the 
difference that all the constant definitions have been substituted with their hexadecimal 
values and each line reflects a single test cycle. The previous example compiled and 
executed outputs the following TIF. Lines preceded with a semicolon (;) are comments 
that the simulator prints on the screen while the test is being executed.

Example 6-6

; Addressing location 84000000
A 84000000
; Writing data 55555555
W 55555555
; Addressing location 84000008
A 84000008
; Writing data 000000C0
W 000000C0
; Addressing location 84000004
A 84000004
; Reading. Expected: 55555547. Mask: 0000FFFF
R 55555547 0000FFFF
A ZZZZZZZZ
; Addressing location 84000000
A 84000000
; Writing data DADADADA
W DADADADA
; Reading. Expected: DADADADA. Mask: 0000FFFF
R DADADADA 0000FFFF
; Reading. Expected: 000000C0. Mask: 000000CC
R 000000C0 000000CC
A ZZZZZZZZ
; Addressing location 84000004
A 84000004
; Reading. Expected: AAAAAAB8. Mask: 00000000
R AAAAAAB8 00000000
A ZZZZZZZZ
; Writing data 000000C4
W 000000C4
; Writing data 12345678
W 12345678
; Looping for 5 cycles
L 5
; Addressing cycle at end
A 00000000
; Exiting Test Mode
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E ZZZZZZZZ

6.4.10 SIM format file

The Verilog Ticbox requires the input file to be in the SIM format, which is formatted 
as a Verilog ̀ include input file, with each test vector calling a task in the Verilog Ticbox 
behavioural module.

A SIM file is generated from a TIF file using the conversion script tif2sim in the 
following way:

tif2sim infile.tif > infile.sim

Comments use the Verilog style double slash (//) and, because of the properties of 
Verilog `include files, are not displayed in the simulation output. The Verilog Ticbox 
directly generates the simulation comments based on the test vector that is being run.

The TIF file above is shown in Example 6-7 in SIM format:

Example 6-7

// Addressing location 84000000 
A(32'h84000000);

// Writing data 55555555 
W(32'h55555555);

// Addressing location 84000008 
A(32'h84000008);

// Writing data 000000C0 
W(32'h000000C0);

// Addressing location 84000004 
A(32'h84000004);

// Reading. Expected: 55555547. Mask: 0000FFFF 
R(32'h55555547, 32'h0000FFFF);
A(32'hZZZZZZZZ);

// Addressing location 84000000 
A(32'h84000000);

// Writing data DADADADA 
W(32'hDADADADA);
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// Reading. Expected: DADADADA. Mask: 0000FFFF 
R(32'hDADADADA, 32'h0000FFFF);

// Reading. Expected: 000000C0. Mask: 000000CC 
R(32'h000000C0, 32'h000000CC);
A(32'hZZZZZZZZ);

// Addressing location 84000004 
A(32'h84000004);

// Reading. Expected: AAAAAAB8. Mask: 00000000 
R(32'hAAAAAAB8, 32'h00000000);
A(32'hZZZZZZZZ);

// Writing data 000000C4 
W(32'h000000C4);

// Writing data 12345678 
W(32'h12345678);

// Looping for 5 cycles 
L(32'd5);

// Addressing cycle at end 
A(32'h00000000);

// Exiting Test Mode 
E(32'hZZZZZZZZ);
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6.5 Tube

The tube is a simple method of passing system messages from a test program to the 
display, and allows a test program to stop the simulation.

Figure 6-5 shows the tube module interface.

Figure 6-5 Tube module interface diagram

The main sections of this module are:

• message output to simulator

• message output to file

• simulation termination control.

6.5.1 Signal descriptions

Table 6-9 shows signal descriptions for the tube module.

TUBE

XD

XCSN

XWEN

Simulator display
and text file

Table 6-9 Signal descriptions for the tube module

Signal Type Direction Description

XD[31:0] External data Input This is the external data bus, which is sampled by this module 
during write transfers.

XCSN[3:0] External chip select Input These signals are active LOW chip enables. 

XWEN[3:0] External write enable Input This is the active LOW memory write enable. For 
little-endian systems, XWEN[0] controls writes to the least 
significant byte and XWEN[3], the most significant. The 
example system is configured to be little-endian.
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6.5.2 User-defined settings

Table 6-10 shows user-defined settings for the tube module

6.5.3 Function and operation of module

The tube module is used to perform program message and simulation termination 
control. It acts as a one-way communications port through which ASCII information 
can be passed.

Messages are written, one byte at a time, to the tube model location. In the default 
system this is address range 0x20000000 to 0x2FFFFFFF, detected by the model using the 
external enable XCSN[2]. These bytes are buffered until a terminating control character 
is written to the tube, or the buffer overflows (default buffer length is 80 characters). The 
message is then printed by the simulator, and written to the output text file. An example 
message is:

# ** Note: TUBE: Hard Reset

In this example the message Hard Reset has been passed to the tube. The program 
running on the microcontroller can also terminate simulation by writing a control 
character to the tube with no message to produce the following assertion:

# ** Failure: TUBE: Program exit

All user messages sent to the simulator display are also recorded in the output text file.

The tube module only accepts the ASCII control characters shown in Table 6-11.

Table 6-10 User-defined settings for the tube module

Signal Type
Default
setting

Description

OutFile Output filename Tube.txt This points to the local output data file that is written to during 
simulation when messages are passed to the tube.

Table 6-11 Valid tube ASCII control characters

ASCII 
character

Decimal
value

Tube
function

Control D (^D) 04 Exit test 

Linefeed 10 Print output

Carriage return 13 Print output
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Other standard alphanumeric characters are stored in the buffer until displayed. The 
values for commonly used display characters are shown in Table 6-12.

Table 6-12 Commonly used ASCII alphanumeric characters

ASCII
character

Decimal
value

0-9 48-57

a-z 97-122

A-Z 65-90

space 32

_ 95

# 35
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Chapter 7 
Designer’s Guide

This chapter briefly describes adding new modules to the EASY microcontroller. Since 
AMBA has been designed specifically to be modular, little change needs to be made to 
other elements when a component is added or removed. The chapter contains the 
following sections:

• Adding bus masters on page 7-2

• Adding AHB slaves on page 7-3

• Adding APB peripherals on page 7-4.
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7.1 Adding bus masters

For bus masters, the arbiter is the only block that requires changes.

The arbiter currently has facilities for up to two more masters without any modification. 
A new master needs to be connected to the appropriate HBUSREQx and HGRANTx 
signals. This can be done by altering the top-level HDL file, which connects all AHB 
modules together. 

Note
 If a system requires more than four masters, the arbiter HDL file also has to be modified.

7.1.1 Arbiter modifications

When modifying the arbiter the following rules must be followed:

• The ARM core must be the default master (granted on reset), and granted when 
no masters are requesting the bus.

• The Test Interface Controller (TIC) must have the highest priority (to allow test 
access under all conditions).

• Only one master should tie its HBUSREQx permanently HIGH.

• Currently the ARM bus master always asserts HBUSREQx, therefore no other 
bus master should constantly request the bus. Consequently the ARM must be the 
lowest priority master, because masters of lower priority than the ARM are never 
granted.

If more sophisticated round-robin type arbitration schemes are used, the latter point is 
no longer valid. Alternative arbitration schemes are not considered further in this 
document.

7.1.2 Bus master requirements

New designs of bus master must drive all the relevant signals at appropriate times. For 
more information consult the AMBA Specification.
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7.2 Adding AHB slaves

When a slave is added, the decoder needs to be modified. This adds an HSELx signal 
for the new slave. The central slave to master multiplexor must also have extra 
connections added for the new slave.

7.2.1 AHB slave modifications

When adding new AHB slaves, care must be taken to:

• plan the slave position in the memory map

• consider any issues concerning the remapping of memory to allow the external 
boot ROM to appear at location zero

• decode as few address lines as possible, to keep the slave address decode section 
gate count low

• ensure that all areas of address space have one, and only one, slave selected.

The default slave must be set so that all holes in the memory map are filled. If any holes 
are left without a slave to drive the HREADY line, any accesses to this area cause the 
system to lock, with HREADY staying LOW until a system reset.

7.2.2 Slave requirements

These vary according to the function of the slave. Special cases like external bus 
interfaces (which must also consider the requirements of the TIC), or the AHB to APB 
bridge interface have more complex requirements. For more information consult the 
AMBA Specification.
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7.3 Adding APB peripherals

When adding a peripheral, the APB bridge needs to be modified. This adds a new 
PSELx signal for the new peripheral. The central peripheral to bridge multiplexor must 
also have extra connections added for the new peripheral.

7.3.1 APB bridge modifications

When adding new PSELx lines, similar steps must be taken to those outlined in AHB 
slave modifications on page 7-3, although reset memory map is not an issue for APB 
peripherals.

7.3.2 Peripheral requirements 

When designing APB peripherals, ensure that the resulting hardware has a low power 
consumption. The following guidelines must be followed where possible:

• Do not use PCLK in peripherals unless absolutely necessary because its use 
dramatically increases power consumption.

• Ensure that peripherals cannot drive PRDATA[31:0] during reset (by including a 
PRESETn term on the output enable control).

Designers familiar with conventional circuits connected to free-running clocks might 
find this design approach difficult. However, it results in small circuits with low power 
consumption.
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