
AMBA Design Kit
Revision: r3p0

Technical Reference Manual
Copyright © 2003, 2007 ARM Limited. All rights reserved.
ARM DDI 0243C

AMBA Design Kit
Technical Reference Manual

Copyright © 2003, 2007 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this document:

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited, except
as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the
trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to
license restrictions in accordance with the terms of the agreement entered into by ARM and the party that
ARM delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Change history

Date Issue Confidentiality Change

February 2003 A Confidential First release

October 2003 B Non-Confidential Updated for r3p0 release

August 2007 C Non-Confidential C for r3p0 release
ii Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Contents
AMBA Design Kit Technical Reference Manual

Preface
About this manual .. xiv
Feedback ... xviii

Chapter 1 Introduction
1.1 About the ADK .. 1-2
1.2 AMBA signals .. 1-3
1.3 Product revisions .. 1-7

Chapter 2 Functional Overview
2.1 About the ADK toolkit .. 2-2
2.2 ADK components .. 2-3
2.3 Example systems .. 2-7

Chapter 3 AHB Components
3.1 Reset controller ... 3-3
3.2 Arbiter ... 3-4
3.3 Default slave ... 3-7
3.4 Master-to-slave multiplexor ... 3-8
3.5 Slave-to-master multiplexor .. 3-9
3.6 Example retry slave .. 3-10
3.7 Example static memory interface .. 3-11
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. iii

Contents
3.8 Bus matrix ... 3-20
3.9 System decoder .. 3-37
3.10 APB bridge ... 3-40
3.11 Example bus master ... 3-44
3.12 Synchronous AHB to AHB bridge ... 3-47
3.13 Asynchronous AHB-AHB bridge ... 3-60
3.14 AHB-Lite to AHB wrapper ... 3-65
3.15 Interrupt controller .. 3-67
3.16 64-bit to 32-bit downsizer ... 3-85
3.17 64-bit to 32-bit funnel .. 3-93

Chapter 4 APB Components
4.1 Remap and pause controller .. 4-2
4.2 Example APB slave .. 4-9
4.3 Peripheral to bridge multiplexor .. 4-12
4.4 Watchdog unit ... 4-13
4.5 Dual input timer .. 4-24

Chapter 5 Behavioral Models
5.1 External RAM, .. 5-2
5.2 Internal memory .. 5-4
5.3 External ROM ... 5-6
5.4 Tube ... 5-7
5.5 AHB file reader master ... 5-8
5.6 Test interface driver .. 5-32

Chapter 6 PrimeCell GPIO
6.1 Operation .. 6-2
6.2 Integration within ADK .. 6-3

Appendix A AHB-Lite Overview
A.1 About AHB-Lite ... A-2
A.2 AHB-Lite master ... A-5
A.3 AHB-Lite slaves .. A-6

Glossary
iv Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

List of Tables
AMBA Design Kit Technical Reference Manual

Change history .. ii
Table 1-1 AMBA AHB signals ... 1-3
Table 1-2 AMBA APB signals .. 1-6
Table 3-1 Reset controller signals ... 3-3
Table 3-2 Arbiter signals descriptions ... 3-6
Table 3-3 Static memory bank select coding, Remap = 1 ... 3-12
Table 3-4 Test control signals during normal operation .. 3-13
Table 3-5 Test control signals during test operation ... 3-13
Table 3-6 Control vector bit definitions .. 3-15
Table 3-7 Signal descriptions .. 3-16
Table 3-8 Bus Matrix signals ... 3-34
Table 3-9 Decoder module signals .. 3-39
Table 3-10 AhbToAPB Bridge signals ... 3-43
Table 3-11 Configurable options ... 3-46
Table 3-12 Synchronous AHB-AHB bridge interface signals .. 3-57
Table 3-13 Asynchronous AHB-AHB bridge interface signals .. 3-62
Table 3-14 Interrupt standard configuration .. 3-68
Table 3-15 Interrupt controller registers .. 3-70
Table 3-16 ICIRQSTATUS Register bit assignments .. 3-72
Table 3-17 ICFIQSTATUS Register bit assignments .. 3-72
Table 3-18 ICRAWINTR Register bit assignments .. 3-72
Table 3-19 ICINTSELECT Register bit assignments .. 3-73
Table 3-20 ICINTENABLE Register bit assignments .. 3-73
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. v

List of Tables
Table 3-21 ICINTENCLEAR Register bit assignments ... 3-73
Table 3-22 ICSOFTINT Register bit assignments .. 3-74
Table 3-23 ICSOFTINTCLEAR Register bit assignments .. 3-74
Table 3-24 ICPROTECTION Register bit assignments .. 3-75
Table 3-25 ICVECTADDR Register bit assignments .. 3-75
Table 3-26 ICDEFVECTADDR Register bit assignments ... 3-76
Table 3-27 ICITCR Register bit assignments ... 3-76
Table 3-28 ICITIP1 Register bit assignments ... 3-77
Table 3-29 ICITIP2 Register bit assignments ... 3-77
Table 3-30 ICITOP1 Register bit assignments ... 3-78
Table 3-31 ICITOP2 Register bit assignments ... 3-78
Table 3-32 ICPERIPHID0 Register bit assignments ... 3-79
Table 3-33 ICPERIPHID1 Register bit assignments ... 3-80
Table 3-34 ICPERIPHID2 Register bit assignments ... 3-80
Table 3-35 ICPERIPHID3 Register bit assignments ... 3-80
Table 3-36 ICPCELLID0 Register bit assignments ... 3-81
Table 3-37 ICPCELLID1 Register bit assignments ... 3-82
Table 3-38 ICPCELLID2 Register bit assignments ... 3-82
Table 3-39 ICPCELLID3 Register bit assignments ... 3-82
Table 3-40 Interrupt controller signals .. 3-83
Table 3-41 Narrow transfer handling .. 3-86
Table 3-42 Address line modification and data routing ... 3-87
Table 3-43 Signal mapping when downsizer module is activated .. 3-89
Table 3-44 Downsizer interface signals .. 3-90
Table 3-45 Funnel interface signals .. 3-94
Table 4-1 Remap and pause register summary .. 4-2
Table 4-2 RPCPERIPHID0 Register bit assignments ... 4-5
Table 4-3 RPCPERIPHID1 Register bit assignments ... 4-5
Table 4-4 RPCPERIPHID2 Register bit assignments ... 4-6
Table 4-5 RPCPERIPHID3 Register bit assignments ... 4-6
Table 4-6 RPCPCELLID0 Register bit assignments ... 4-7
Table 4-7 RPCPCELLID1 Register bit assignments ... 4-7
Table 4-8 RPCPCELLID2 Register bit assignments ... 4-7
Table 4-9 RPCPCELLID3 Register bit assignments ... 4-8
Table 4-10 Remap and pause controller signals .. 4-8
Table 4-11 Example APB slave memory map .. 4-10
Table 4-12 Peripheral ID format .. 4-11
Table 4-13 Watchdog unit register summary .. 4-14
Table 4-14 WDOGCONTROL Register bit assignments .. 4-15
Table 4-15 WDOGRIS Register bit assignments .. 4-16
Table 4-16 WDOGMIS Register bit assignments ... 4-17
Table 4-17 WDOGLOCK Register bit assignments .. 4-17
Table 4-18 WDOGITCR Register bit assignments ... 4-18
Table 4-19 WDOGITOP Register bit assignments ... 4-19
Table 4-20 WDOGPERIPHID0 Register bit assignments ... 4-20
Table 4-21 WDOGPERIPHID1 Register bit assignments ... 4-20
Table 4-22 WDOGPERIPHID2 Register bit assignments ... 4-21
vi Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

List of Tables
Table 4-23 WDOGPERIPHID3 Register bit assignments ... 4-21
Table 4-24 WDOGPCELLID0 Register bit assignments ... 4-22
Table 4-25 WDOGPCELLID1 Register bit assignments ... 4-22
Table 4-26 WDOGPCELLID2 Register bit assignments ... 4-22
Table 4-27 WDOGPCELLID3 Register bit assignments ... 4-23
Table 4-28 Watchdog unit signals ... 4-23
Table 4-29 Timer register summary .. 4-28
Table 4-30 TIMERXCONTROL Register bit assignments ... 4-30
Table 4-31 TIMERXRIS Register bit assignments .. 4-32
Table 4-32 TIMERXMIS Register bit assignments .. 4-32
Table 4-33 TIMERITCR Register bit assignments .. 4-33
Table 4-34 TIMERITOP Register bit assignments .. 4-34
Table 4-35 TIMERPERIPHID0 Register bit assignments .. 4-35
Table 4-36 TIMERPERIPHID1 Register bit assignments .. 4-36
Table 4-37 TIMERPERIPHID2 Register bit assignments .. 4-36
Table 4-38 TIMERPERIPHID3 Register bit assignments .. 4-36
Table 4-39 TIMERPCELLID0 Register bit assignments .. 4-37
Table 4-40 TIMERPCELLID1 Register bit assignments .. 4-38
Table 4-41 TIMERPCELLID2 Register bit assignments .. 4-38
Table 4-42 TIMERPCELLID3 Register bit assignments .. 4-38
Table 4-43 Timer signals ... 4-39
Table 5-1 User-defined settings for the external RAM module ... 5-2
Table 5-2 External RAM module signals ... 5-2
Table 5-3 User-defined settings for the internal RAM module .. 5-4
Table 5-4 User-defined settings for the external ROM module ... 5-6
Table 5-5 External ROM module signals ... 5-6
Table 5-6 Tube module signals ... 5-7
Table 5-7 Stimulus command syntax .. 5-19
Table 5-8 Command fields .. 5-21
Table 5-9 Characters supported by comment command .. 5-23
Table 5-10 Compatibility between versions of FRM and fm2conv.pl ... 5-25
Table 5-11 Compatibility between versions of stimulus file and fm2conv.pl 5-25
Table 5-12 Preprocessor command-line options ... 5-26
Table 5-13 fm2conv.pl error messages ... 5-27
Table 5-14 fm2conv.pl warnings ... 5-28
Table 5-15 Numbering scheme for bit 7, severity .. 5-29
Table 5-16 Numbering scheme for bits [6:4] and [3:2], error and warning type and subtype 5-30
Table 5-17 Numbering scheme for bits [1:0], enumerator ... 5-31
Table 5-18 Ticbox module signals ... 5-33
Table 5-19 User-defined settings for the Ticbox module ... 5-34
Table A-1 AHB-Lite interchangeability ... A-4
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. vii

List of Tables
viii Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

List of Figures
AMBA Design Kit Technical Reference Manual

Key to timing diagram conventions .. xvi
Figure 2-1 EASY_FRBM example AMBA system .. 2-7
Figure 2-2 EASY_ARM7 example AMBA system .. 2-9
Figure 2-3 EASY_ML example AMBA system ... 2-11
Figure 2-4 ADK address map ... 2-14
Figure 3-1 Reset controller module components .. 3-3
Figure 3-2 Arbiter module components .. 3-4
Figure 3-3 Default slave module components .. 3-7
Figure 3-4 Master-to-slave multiplexor module components .. 3-8
Figure 3-5 Slave-to-master multiplexor module components ... 3-9
Figure 3-6 Retry slave module components ... 3-10
Figure 3-7 SMI components ... 3-11
Figure 3-8 BusMatrix module components ... 3-24
Figure 3-9 Example Bus Matrix design configuration ... 3-27
Figure 3-10 Region equations .. 3-30
Figure 3-11 Address map at different remap states .. 3-33
Figure 3-12 Decoder module components ... 3-37
Figure 3-13 System memory map .. 3-38
Figure 3-14 Ahb2Apb bridge module .. 3-40
Figure 3-15 Allocation of APB memory slots within EASY systems ... 3-41
Figure 3-16 AhbToApb bridge module ... 3-42
Figure 3-17 EBM module components ... 3-44
Figure 3-18 Example AHB-Lite core ... 3-45
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. ix

List of Figures
Figure 3-19 Ahb2Ahb bridge .. 3-48
Figure 3-20 Ahb2AhbSyncDn bridge ... 3-48
Figure 3-21 Ahb2AhbSyncUp bridge ... 3-49
Figure 3-22 Ahb2AhbPass bridge .. 3-49
Figure 3-23 Applications of synchronous AHB-AHB bridges ... 3-50
Figure 3-24 System memory maps without address aliasing ... 3-51
Figure 3-25 Address-aliasing hardware ... 3-52
Figure 3-26 System memory maps with aliased addressing .. 3-52
Figure 3-27 System memory maps with piecewise addressing ... 3-53
Figure 3-28 Bidirectional bridging .. 3-55
Figure 3-29 Error cancel timing .. 3-56
Figure 3-30 Error cancel using ErrorCanc timing ... 3-56
Figure 3-31 Asynchronous AHB-AHB bridge module components .. 3-60
Figure 3-32 AHB-Lite to AHB wrapper ... 3-65
Figure 3-33 Interrupt controller components .. 3-67
Figure 3-34 ICPROTECTION Register bit assignments .. 3-74
Figure 3-35 ICITCR Register bit assignments ... 3-76
Figure 3-36 ICITIP1 Register bit assignments ... 3-77
Figure 3-37 ICITOP1 Register bit assignments ... 3-77
Figure 3-38 ICPERIPHID0-3 Register bit assignments .. 3-79
Figure 3-39 ICPCELLID0-3 Register bit assignments .. 3-81
Figure 3-40 Downsizer module .. 3-85
Figure 3-41 Funnel module .. 3-93
Figure 3-42 Typical funnel connection ... 3-93
Figure 4-1 Remap and pause module components ... 4-2
Figure 4-2 RPCPERIPHID0-3 Register bit assignment s ... 4-4
Figure 4-3 RPCPCELLID0-3 Register bit assignments .. 4-6
Figure 4-4 Example APB slave components .. 4-9
Figure 4-5 Peripheral to bridge multiplexor module components ... 4-12
Figure 4-6 Watchdog components ... 4-13
Figure 4-7 WDOGCONTROL Register bit assignments .. 4-15
Figure 4-8 WDOGRIS Register bit assignments .. 4-16
Figure 4-9 WDOGMIS Register bit assignments ... 4-16
Figure 4-10 WDOGLOCK Register bit assignments .. 4-17
Figure 4-11 WDOGITCR Register bit assignments ... 4-18
Figure 4-12 WDOGITOP Register bit assignments ... 4-18
Figure 4-13 WDOGPERIPHID0-3 Register bit assignments .. 4-19
Figure 4-14 WDOGPCELLID0-3 Register bit assignments .. 4-21
Figure 4-15 Dual input timer components .. 4-25
Figure 4-16 Free-running timer block ... 4-26
Figure 4-17 Prescale clock enable generation ... 4-27
Figure 4-18 TIMERXCONTROL Register bit assignments .. 4-30
Figure 4-19 TIMERXRIS Register bit assignments .. 4-31
Figure 4-20 TIMERXMIS Register bit assignments ... 4-32
Figure 4-21 TIMERITCR Register bit assignments .. 4-33
Figure 4-22 TIMERITOP Register bit assignments .. 4-33
Figure 4-23 Peripheral identification register bit assignments ... 4-34
x Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

List of Figures
Figure 4-24 PrimeCell identification register bit assignments ... 4-37
Figure 5-1 AHB external RAM module interface diagram .. 5-2
Figure 5-2 AHB internal memory module components ... 5-4
Figure 5-3 External ROM module interface diagram .. 5-6
Figure 5-4 Tube module interface diagram .. 5-7
Figure 5-5 File reader bus master .. 5-9
Figure 5-6 Write command timing .. 5-10
Figure 5-7 Read command timing .. 5-11
Figure 5-8 Sequential command timing .. 5-12
Figure 5-9 Busy transfer timing .. 5-13
Figure 5-10 Busy cycle timing .. 5-14
Figure 5-11 Idle transfer timing ... 5-15
Figure 5-12 Idle cycle timing ... 5-16
Figure 5-13 Poll command timing ... 5-17
Figure 5-14 Stimulus file conversion .. 5-24
Figure 5-15 Ticbox module interface diagram .. 5-32
Figure A-1 AHB-Lite single-master system ... A-2
Figure A-2 AHB-Lite components ... A-6
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. xi

List of Figures
xii Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Preface

This preface introduces the AMBA Design Kit r3p0 Technical Reference Manual. It
contains the following sections:

• About this manual on page xiv

• Feedback on page xviii.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. xiii

Preface
About this manual

This is the technical reference manual for the AMBA Design Kit (ADK).

Product revision status

The rnpn identifier indicates the revision status of the product described in this manual,
where:

rn Identifies the major revision of the product.

pn Identifies the minor revision or modification status of the product.

Intended audience

This document is written for System-on-Chip (SoC) designers and system architects,
and provides a description of components within the ADK architecture.

Using this manual

This manual is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an introduction to the ADK.

Chapter 2 Functional Overview

Read this chapter for an overview of the top-level structure of the ADK,
and examples of how the ADK can be used.

Chapter 3 AHB Components

Read this chapter for a description of the AHB components used in the
ADK.

Chapter 4 APB Components

Read this chapter for a description of the APB components used in the
ADK.

Chapter 5 Behavioral Models

Read this chapter for a description of the behavioral models in the ADK.

Chapter 6 PrimeCell GPIO

Read this chapter for a description of how the PrimeCell General
Purpose Input/Output (GPIO) is integrated within the ADK.
xiv Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Preface
Appendix A AHB-Lite Overview

Read this appendix for an overview of the AHB-Lite. AHB-Lite is a
subset of the full AHB specification.

 Glossary Read the Glossary for definitions of terms used in this manual.

Conventions

This section describes the conventions that this manual uses:

• Typographical

• Timing diagrams on page xvi

• Signals on page xvi

• Numbering on page xvii.

Typographical

This manual uses the following typographical conventions:

italic Highlights important notes, introduces special terminology,
denotes internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes
ARM processor signal names. Also used for terms in descriptive
lists, where appropriate.

monospace Denotes text that you can enter at the keyboard, such as
commands, file and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. You
can enter the underlined text instead of the full command or option
name.

monospace italic Denotes arguments to monospace text where the argument is to be
replaced by a specific value.

monospace bold denotes language keywords when used outside example code.

 < and > Angle brackets enclose replaceable terms for assembler syntax
where they appear in code or code fragments. They appear in
normal font in running text. For example:

• MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

• The Opcode_2 value selects the register that is accessed.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. xv

Preface
Timing diagrams

This manual contains one or more timing diagrams. The figure named Key to timing
diagram conventions explains the components used in these diagrams. When variations
occur they have clear labels. You must not assume any timing information that is not
explicit in the diagrams.

Key to timing diagram conventions

Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is
active-HIGH or active-LOW. Asserted means HIGH for
active-HIGH signals and LOW for active-LOW signals.

Lower-case n Denotes an active-LOW signal.

Prefix H Denotes Advanced High-performance Bus (AHB) signals.

Prefix P Denotes Advanced Peripheral Bus (APB) signals.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus
xvi Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Preface
Numbering

The numbering convention is:

<size in bits>'<base><number>

This is a Verilog method of abbreviating constant numbers. For example:

• 'h7B4 is an unsized hexadecimal value.

• 'o7654 is an unsized octal value.

• 8'd9 is an eight-bit wide decimal value of 9.

• 8'h3F is an eight-bit wide hexadecimal value of 0x3F. This is
equivalent to b00111111.

• 8'b1111 is an eight-bit wide binary value of b00001111.

Further reading

This section lists publications by ARM Limited.

ARM Limited periodically provides updates and corrections to its documentation. See
http://www.arm.com for current errata sheets, addenda, and the ARM Limited
Frequently Asked Questions list.

ARM publications

This manual contains information that is specific to the ADK. Refer to the following
documents for other relevant information:

• AMBA Specification (Rev 2.0) (ARM IHI 0011)

• AMBA 3 AHB-Lite Protocol v1.0 Specification (ARM IHI 0033)

• Multi-layer AHB Overview (ARM DVI 0045)

• AMBA 3 APB Protocol Specification (ARM IHI 0024)

• ARM PrimeCell General Purpose Input/Output (PL061) Technical Reference
Manual (ARM DDI 0190)

• AMBA Design Kit User Guide (ARM DUI 0183)

• AMBA Designer (FD001) User Guide (ARM DUI 0333)

• ARM PrimeCell High-Performance Matrix (PL301) Technical Reference Manual
(ARM DDI 0397).
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. xvii

Preface
Feedback

ARM Limited welcomes feedback on the ADK and its documentation.

Feedback on the product

If you have any comments or suggestions about this product, contact your supplier
giving:

• the product name

• a concise explanation of your comments.

Feedback on this book

If you have any comments on this manual, send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments apply

• a concise explanation of your comments.

ARM Limited also welcomes general suggestions for additions and improvements.
xviii Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Chapter 1
Introduction

This chapter describes the AMBA Design Kit (ADK). It contains the following sections:

• About the ADK on page 1-2

• AMBA signals on page 1-3

• Product revisions on page 1-7.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 1-1

Introduction
1.1 About the ADK

The ADK comprises the building blocks required to create an example system based on
the low-power, generic design methodology of the Advanced Microcontroller Bus
Architecture (AMBA). Three preconfigured and validated examples enable you to
develop custom devices in very short design cycles. Therefore, you can easily reuse the
resulting subcomponents in future designs.

Note
 ADK EASY environments use AHB and APB protocols.
1-2 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Introduction
1.2 AMBA signals

This section describes the following signals:

• AMBA AHB signals

• AMBA APB signals on page 1-5.

Note
 For a description of the non-AMBA signals used in the ADK, see Chapter 3 AHB
Components, Chapter 4 APB Components, and Chapter 5 Behavioral Models.

1.2.1 AMBA AHB signals

Table 1-1 lists the AMBA AHB signals used in the ADK.

Table 1-1 AMBA AHB signals

Signal
Direction

Description
Slave Master Arbiter Decoder

HADDR[31:0] Input Output - Input The 32-bit system address bus.

HBURST[2:0] Input Output Input - These signals indicate if the transfer forms part of
a burst. Four, eight, and sixteen beat bursts are
supported and the burst can be either incrementing
or wrapping.

HBUSREQx - Output Input - A signal from bus master x to the bus arbiter to
indicate that the bus master requires the bus. There
is an HBUSREQ signal for each bus master in the
system, up to a maximum of 16 bus masters.

HCLK Input Input Input - This clock times all bus transfers.

HGRANTx - Input Output - This signal indicates that the bus master is
currently the highest priority master. Ownership of
the address/control signals changes at the end of a
transfer when HREADY is HIGH, so the master
gets access to the bus when both HREADY and
HGRANT are HIGH.

HLOCK - Output Input - When HIGH, this signal indicates that the master
requires locked access to the bus and no other
master must be granted the bus until this signal is
LOW.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 1-3

Introduction
HMASTER[3:0] Input - Output - These signals from the arbiter indicate the bus
master that is currently performing a transfer and
is used by the slaves that support SPLIT transfers
to determine the master that is attempting an
access. The timing of HMASTER is aligned with
the timing of the address and control signals.

HMASTLOCK Input - Output - Indicates that the current master is performing a
locked sequence of transfers. This signal has the
same timing as the HMASTER signals.

HPROT[3:0] Input Output - - The protection control signals provide additional
information about a bus access and are primarily
intended for use by any module that requires some
level of protection.

The signals indicate if the transfer is an opcode
fetch or data access, as well as if the transfer is a
privileged mode access or User mode access. For
bus masters with a memory management unit
these signals also indicate whether the current
access is cacheable or bufferable.

HRDATA[31:0] or
HRDATA[63:0]

Output Input - - The read data bus transfers data from bus slaves to
the bus master during read operations. ARM
recommends a minimum data bus width of 32 bits.
However, you can easily extend this to enable
higher bandwidth operation.

HREADY
HREADYOUT

Input
Output

Input - Input - - - When HIGH, the HREADY signal indicates that a
transfer has finished on the bus. You can drive this
signal LOW to extend a transfer.

HRESETn Input Input Input Input The bus reset signal is active LOW. It resets the
system and the bus.

HRESP[1:0] Output Input Input - The transfer response provides additional
information on the status of a transfer. Four
different responses are provided, OKAY, ERROR,
RETRY, and SPLIT.

Table 1-1 AMBA AHB signals (continued)

Signal
Direction

Description
Slave Master Arbiter Decoder
1-4 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Introduction
1.2.2 AMBA APB signals

Table 1-2 on page 1-6 lists the AMBA APB signals used in the ADK.

HSEL Input - - Output Each AHB slave has its own slave select signal and
this signal indicates that the current transfer is
intended for the selected slave. This signal is
simply a combinatorial decode of the address bus.

HSIZE[2:0] Input Output - - These signals indicate the size of the transfer,
typically byte (8-bit), halfword (16-bit), or word
(32-bit). The protocol permits larger transfer sizes
up to a maximum of 1024 bits.

HSPLIT[15:0] Output - Input - A split-capable slave uses the 16-bit split bus to
indicate to the arbiter the bus masters that can
reattempt a split transaction. Each bit of this split
bus corresponds to a single bus master.

HTRANS[1:0] Input Output Input - This indicates the type of the current transfer. This
can be NONSEQUENTIAL, SEQUENTIAL,
IDLE, or BUSY.

HWDATA[31:0] or
HWDATA[63:0]

Input Output - - The write data bus transfers data from the master
to the bus slaves during write operations. ARM
recommends a minimum data bus width of 32 bits.
However, you can easily extend this to enable
higher bandwidth operation.

HWRITE Input Output - - When HIGH, this signal indicates a write transfer,
and when LOW, a read transfer.

Table 1-1 AMBA AHB signals (continued)

Signal
Direction

Description
Slave Master Arbiter Decoder
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 1-5

Introduction
Table 1-2 AMBA APB signals

Signal Type
Direction
from
bridge

Description

PADDR[31:0] Peripheral
address bus

Output This is the APB address bus, and can be up to 32 bits wide.
Individual peripherals use this bus for decoding register accesses
to the peripheral. The address becomes valid after the first rising
edge of the clock at the start of the transfer. If there is a following
APB transfer, the address changes to the new value. Otherwise it
holds its current value until the start of the next APB transfer.

PCLK Peripheral clock Input This clock times all bus transfers. All events occur on rising edges
of this signal.

PENABLE Peripheral
enable

Output This enable signal times all accesses on the peripheral bus.
PENABLE goes HIGH on the second clock rising edge of the
transfer, and LOW on the third (last) rising clock edge of the
transfer.

PRDATA[31:0] Peripheral read
data bus

Input The peripheral read data bus is driven by the selected peripheral
bus slave during read cycles, when PWRITE is LOW.

PRESETn Peripheral reset Input The bus reset signal is active LOW and resets the system.

PSELx Peripheral slave
select

Output There is one of these signals for each APB peripheral present in
the system. The signal indicates that the slave device is selected,
and that a data transfer is required. It has the same timing as the
peripheral address bus. It becomes HIGH at the same time as
PADDR, but is set LOW at the end of the transfer.

PWDATA[31:0] Peripheral write
data bus

Output The peripheral write data bus is continuously driven by this
module, changing during write cycles, when PWRITE is HIGH.

PWRITE Peripheral
transfer
direction

Output This signal indicates a write to a peripheral when HIGH, and a
read from a peripheral when LOW.

It has the same timing as the peripheral address bus.
1-6 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Introduction
1.3 Product revisions

This section describes differences in functionality between product revisions of the
ADK:

r3p0 Contains the following additions to functionality:

• AMBA Designer integration of Bus Matrix

• Configurable address map for AHB matrix

• Targeted at TSMC CL013G library.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 1-7

Introduction
1-8 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Chapter 2
Functional Overview

This chapter describes the top-level structure of the AMBA Design Kit (ADK), and gives
examples of how you can use the ADK. It contains the following sections:

• About the ADK toolkit on page 2-2

• ADK components on page 2-3

• Example systems on page 2-7.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 2-1

Functional Overview
2.1 About the ADK toolkit

The ADK toolkit enables designers to create AMBA-based components and
System-on-Chip (SoC) designs using the following capabilities:

• a fully working simulation environment to enable you to become familiar with the
AMBA protocol

• a development environment for AMBA modules

• a number of different starting preconfigured arrangements from which complex
SoC designs can be built

• Verilog language support

• example synthesis scripts for the synthesizable blocks.
2-2 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Functional Overview
2.2 ADK components

The ADK is made up of components that are summarized in the following sections:

• AHB components

• APB components on page 2-5

• Behavioral models on page 2-6.

2.2.1 AHB components

This section summarizes the AHB components. For more details see Chapter 3 AHB
Components.

Reset controller

• generates a system-wide reset from power-on reset and watchdog reset signals.

Arbiter

• uses a simple priority algorithm to control the master that has access to the AHB
bus

• provides three masters plus dummy

• arbitration scheme defined in a separate sub-block for easy modification and
reuse.

Retry slave, 32 or 64-bit

• a starting point for a typical AHB slave design

• simple four-word register bank plus read-only registers providing arithmetic
combinations of the writable registers

• higher order address bits control the response

• supports retry response and wait states.

Static memory interface

• AHB access to the external RAM and ROM

• intended as a simple example

• replaceable with PrimeCell Static Memory Controller (SMC) (PL241).
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 2-3

Functional Overview
Test interface controller

• now included within the static memory interface

• converts test vectors applied on the external pins of the device into valid AHB
transfers on an internal bus

• to be used to test relevant ARM processor cores.

Bus matrix

• enables parallel access paths between multiple masters and slaves

• improves overall systems bandwidth

• gives increased system design flexibility.

AHB to APB bridge

• provides a 16-slot interface between the high-performance pipelined AHB and
the lower performance peripheral bus

• supports AMBA 3 APB protocol.

Example bus master (32 or 64 bit)

• a simple bus master that is intended to act as a reference framework for bus master
development

• demonstrates bus master activity by read-pause-write bursts

• interfaces through the AHB-Lite to AHB wrapper

• configurable address and pause length.

AHB to AHB bridges

• provide an interface between two separate AHB buses, supporting various
clocking schemes.

Interrupt controller

• generates the two ARM interrupt signals from the multiple interrupt sources that
can exist in a system

• individual bit-level control of the masking of interrupts

• interrupt driven or polled method of operation
2-4 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Functional Overview
• pin compatible with the PrimeCell Vectored Interrupt Controller (VIC) (PL190)

• can be daisy-chained with the PrimeCell VIC.

Downsizer

• AHB Slave gasket enables connection of 32-bit slave to a 64-bit bus.

Funnel

• interfaces 32-bit slaves to a 64-bit bus where accesses are word size or smaller.

2.2.2 APB components

This section summarizes the APB components. For more details see Chapter 4 APB
Components.

Timers

• two 32-bit counters with an optional prescaler up to 8 bits

• three modes of operation:

— free running

— periodic interrupt

— one shot.

Watchdog
• generates a regular, programmed interrupt

• asserts WDOGRES reset signal if device remains unserviced.

Remap/pause controller

• basic glue logic functions that are required to implement correct boot up behavior
and a basic low-power mode of operation.

Example APB slave
• a reference framework for a typical APB slave design

• simple four-word register bank plus read-only registers providing arithmetic
combinations of the writable registers.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 2-5

Functional Overview
PrimeCell General Purpose Input/Output (GPIO) (PL061)

• sixteen individually-programmable input/output pins, eight input, eight output,
with enables for usage as eight input/output pins when combined with external
tristate drivers

• control word read-back capability

• additional test registers and modes implemented for functional verification and
manufacturing test.

2.2.3 Behavioral models

This section summarizes the behavioral models. For more details see Chapter 5
Behavioral Models.

Internal memory

• 32 or 64-bit wide on-chip SRAM model

• memory can be initialized from an ASCII file

• variable size (default 1KB).

Test interface driver
• reads test input file

• outputs vectors to the test interface controller

• checks read data from the test interface controller against expected values

File reader master (32 or 64-bit)

• enables generation of legal AHB transactions from an external stimulus file

• interfaces through the AHB-Lite to AHB wrapper.
2-6 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Functional Overview
2.3 Example systems

The following example systems are provided with the ADK:

• FRM-based AMBA system, EASY_FRBM

• ARM7TDMI-based example AMBA system, EASY_ARM7 on page 2-8

• ARM922T-based example AMBA system, EASY_ML on page 2-10.

2.3.1 FRM-based AMBA system, EASY_FRBM

This example provides an AMBA system based around the AHB File Reader Master
(FRM). You can use it to generate any AMBA transaction to exercise the bus and
peripherals. The design is supplied with example files to drive the bus peripherals and
you can use it as the basis of a testbench for your peripherals. Figure 2-1 shows the
structure of the EASY_FRBM example AMBA system.

Figure 2-1 EASY_FRBM example AMBA system

The EASY_FRBM example AMBA system contains the following components:

• FileRdMaster32

• EgMaster32

• IntMem32

• Ahb2Apb

• RetrySlave32

• Interrupt

• Arbiter3

• Decoder

• DefaultSlave

• MuxM2S

AHB bus

File

reader

master

Arbiter

Example

bus

master

Internal

memory

APB

bridge

Retry

slave

Interrupt

controller

Example slave

Remap/pause

Watchdog

Timers

GPIO

APB

busFRBM
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 2-7

Functional Overview
• MuxS2M

• ResetCntl

• MuxP2B

• Watchdog

• Timers

• GPIO

• RemapPause

• EgAPBSlave.

The testbench associated with this example system is TBEasy_FRBM and contains:

• EASY_FRBM

• Tube (GPIO connected)

• Clock generation

• Reset generation.

2.3.2 ARM7TDMI-based example AMBA system, EASY_ARM7

This example provides a complete working example of an ARM7TDMI-based ASIC
design. The design is supplied with:

• example software to run in the system

• synthesis scripts to generate a netlist version of the design

• examples of the use of a test interface that enables the application of functional
test vectors to the ARM core.

Figure 2-2 on page 2-9 shows the EASY_ARM7 example AMBA system.
2-8 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Functional Overview
Figure 2-2 EASY_ARM7 example AMBA system

There are two AHB subsystems in the EASY_ARM7 example AMBA system,
consisting of the following components:

• Common:

— ResetCntl

— Ahb2Ahb.

• AHB1:

— A7TDMI - ARM Test

— SMI - TIC

— IntMem32

— Interrupt

— DefaultSlave

— Arbiter3

— Decoder

— MuxM2S

— MuxS2M.

Ticbox ExtRAM ExtROM Tube

TIC SMI

External access

Interrupt

controller

Default

slave

Internal

memory
AHB-AHB

bridge

Reset

controlDecoder

ARM

test
ARM7TDMI

Decoder

Example

bus master

Arbiter

Default

slave

Retry

slave

AHB-APB

bridge

Remap/pause

GPIO

Timers

Watchdog

Example slave

Arbiter

AHB1

AHB2
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 2-9

Functional Overview
• AHB2:

— EgMaster32

— Ahb2Apb

— RetrySlave32

— DefaultSlave

— Arbiter3

— Decoder

— MuxM2S

— MuxS2M.

• APB (connected on AHB2):

— MuxP2B

— Watchdog

— Timers

— GPIO

— RemapPause

— EgApbSlave.

The testbenches associated with this example system include:

• TBEasy_ARM7, that contains:

— EASY_ARM7

— Tube (SMI connected)

— GPIO loop-back test logic

— Memory (External RAM and ROM)

— Clock generation

— Reset generation.

• TBEasy_ARM7_TIC, used exclusively for TIF CPU test vectors, that contains:

— EASY_ARM7

— GPIO loop-back test logic

— Ticbox

— Clock generation

— Reset generation

— test clock generation for ARM7TDMI.

2.3.3 ARM922T-based example AMBA system, EASY_ML

This example provides a complete working example of an ARM922T-based ASIC
design using the multi-layer AMBA architecture. The design is supplied with:

• example software to run in the system
2-10 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Functional Overview
• synthesis scripts to generate a netlist version of the design

• examples of the use of a test interface that enables the application of functional
test vectors to the ARM core.

The system is configured with two layers (one with two masters on one AHB), a 2-to-3
bus matrix and three slave ports (one with three slaves sharing one port). Figure 2-3
shows the EASY_ML example AMBA system.

Figure 2-3 EASY_ML example AMBA system

The EASY_ML example AMBA system contains the following components:

• ResetCntl

• Bus Matrix (2-input by 3-output port variant)

— Inport0

• A922T

• ARM Test

• IntMem32
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 2-11

Functional Overview
• Decoder

• MuxS2M

— Inport1

• EgMaster

• FileRdMaster32

• MuxM2S

• Arbiter3

— Outport0

• Lite2Ahb

• SMI

• TIC

• RetrySlave32

• MuxS2M

• Decoder

• DefaultSlave

— Outport1

• Interrupt

— Outport2

• Ahb2Apb

• MuxP2B

• Watchdog

• Timers

• GPIO

• RemapPause

• EgApbSlave.

The testbenches associated with this example system include:

• TBEasy_ML, that contains:

— EASY_ML

— Tube, SMI connected

— GPIO loop-back test logic

— Memory, external RAM and ROM

— Clock generation

— ARM922T Fast Cache clock generation

— Reset generation.

• TBEasy_ML_TIC, used exclusively for TIF CPU test vectors, that contains:

— EASY_ML

— GPIO loop-back test logic
2-12 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Functional Overview
— Ticbox

— Clock generation

— ARM922T Fast Cache clock generation

— Reset generation

— test clock generation for ARM922T.

2.3.4 Address map

Figure 2-4 on page 2-14 shows a block diagram of the ADK address map.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 2-13

Functional Overview
Figure 2-4 ADK address map

Interrupt controller

Remap and pause

Unused

0xFFFFFFFF

0xC0000000

Address
Normal memory

map

Peripheral
memory map

Example APB

slave

0x80000000

0x70000000

0x40000000

0x30000000

0x10000000

Retry slave

0xE0000000

Unused

Internal memory

0xF0000000

0xD0000000

APB peripherals

Unused

External static
memory

Unused

Unused (reserved
for SDRAM)

0x00100000

0x00000000

Internal memory
alias

0xCFFFFFFF

0xCF000000

Unused

0xC9000000

0xC8000000

0xC5000000

0xC4000000

0xC3000000

0xC2000000

0xC1000000

0xC0000000

Unused (reserved
for extra GPIO)

Unused (reserved
for timers)

Unused (reserved
for system
controller)

Timers

Watchdog

GPIO

External static
memory alias

Address

Interrupt controller

Unused

Reset
memory map

Retry slave

Unused

Internal memory

APB peripherals

Unused

External static
memory

Unused

Unused (reserved
for SDRAM)
2-14 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Chapter 3
AHB Components

This chapter describes the AHB components used in the AMBA Design Kit (ADK). It
contains the following sections:

• Reset controller on page 3-3

• Arbiter on page 3-4

• Default slave on page 3-7

• Master-to-slave multiplexor on page 3-8

• Slave-to-master multiplexor on page 3-9

• Example retry slave on page 3-10

• Example static memory interface on page 3-11

• Bus matrix on page 3-20

• System decoder on page 3-37

• APB bridge on page 3-40

• Example bus master on page 3-44

• Synchronous AHB to AHB bridge on page 3-47

• Asynchronous AHB-AHB bridge on page 3-60

• AHB-Lite to AHB wrapper on page 3-65

• Interrupt controller on page 3-67

• 64-bit to 32-bit downsizer on page 3-85
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-1

AHB Components
• 64-bit to 32-bit funnel on page 3-93.
3-2 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
3.1 Reset controller

The reset controller, ResetCntl, generates the system reset signal from an external reset
input. This module is based on a state machine that is used to detect the external reset
being asserted, and is used to generate the system reset output. Figure 3-1 shows the
reset controller module block diagram.

Figure 3-1 Reset controller module components

3.1.1 Signal descriptions

Table 3-1 lists the non-AMBA signals used by the reset controller.

Reset controller module

State machine
HRESETn

output driver

External reset

synchronization

WDOGRESn

output driver

Table 3-1 Reset controller signals

Signal Type Direction Description

HRESETn System reset Output The system reset output.

nPOReset Power-on reset Input Power-on reset input. This active LOW signal causes a cold reset when
LOW. Can be asserted asynchronously to HCLK. The source of the
nPOReset signal is implementation-dependent.

WDOGRES Watchdog reset Input The watchdog clock domain reset input.

WDOGRESn Watchdog reset Output The watchdog clock domain reset output.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-3

AHB Components
3.2 Arbiter

The AMBA bus specification is a multi-master bus standard. As a result, a bus arbiter
is required to ensure that only one bus master has access to the bus at any particular time.
The arbiter, Arbiter3, can support up to three bus masters. Figure 3-2 shows the arbiter
module block diagram.

Figure 3-2 Arbiter module components

3.2.1 Operation

Operation of the arbiter is described in the following sections:

• Arbitration scheme

• Dummy master on page 3-5

• SPLIT and LOCK on page 3-5.

Arbitration scheme

The arbiter contains a fixed arbitration scheme that supports connection of three AHB
bus masters, plus the dummy master. The priority scheme is as follows:

• HBUSREQ3 is the highest priority.

• HBUSREQ0 is the second highest priority. This must only be connected to a
Pause input because it requests that the dummy master is granted the bus.

• HBUSREQ2 is the third highest priority.

• HBUSREQ1 is the lowest priority and default bus master. This input is usually
used for an uncached ARM core, for example ARM7TDMI.

The arbiter re-arbitrates on every rising edge of HCLK, and so can potentially degrant
a master part way through a burst. However, if a master has already commenced a
fixed-length burst (that is, HBURST is not SINGLE or INCR), the arbiter does not
re-arbitrate until the fixed-length burst has completed.

Arbiter module

Split masking

logic

HGRANT

output drivers

Lock control

HMASTER

number

generation

External

arbitration

scheme

Grant

input

arbitration
3-4 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
Because the HBUSREQ/HGRANT logic is pipelined, if a higher priority master
requests the bus in the cycle before the current master begins a fixed-length burst, the
current master performs the first access in the fixed length burst and is then degranted.
You can change this behavior, but only by introducing a combinatorial path from
HTRANS or HBURST to HGRANT within the arbiter. This would fail to meet the
required timing budget.

Dummy master

Bus master 0 is reserved for the dummy bus master, that never performs real transfers.
This master is granted in the following conditions:

• when the previously granted master is performing a locked transfer that has
received a SPLIT response

• when the default master receives a SPLIT response and no other master is
requesting the bus

• when all masters have received SPLIT responses.

Note
 See the AMBA FAQ on the ARM Limited website for more details of the dummy
master.

SPLIT and LOCK

When a master declares a locked sequence of transfers (through HLOCK), the arbiter
ensures that no other master is granted access to the bus until the first master completes
the locked sequence. During the locked sequence, the arbiter asserts HMASTLOCK.
If the master receives a SPLIT response to a locked transfer, the arbiter grants the
dummy master until the first master is unsplit, indicated by the slave asserting the
relevant bit of the HSPLIT bus. During this time, the arbiter deasserts the
HMASTLOCK signal.

Note
 Further arbitration schemes within the bus hierarchy, such as within a multi-layer bus
matrix, or within a multi-port slave, must also track the SPLIT/LOCK combination if
this behavior is to be fully supported by a system.

To avoid system issues, ARM Limited recommends that masters never perform locked
sequences to slave regions that can give a SPLIT response. SPLIT-capable slaves must
respond with wait states to a locked transfer, rather than responding with SPLIT.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-5

AHB Components
3.2.2 Signal descriptions

Table 3-2 lists the non-AMBA signals used by the arbiter.

Note
 For a description of the AMBA signals used by the arbiter, see AMBA signals on
page 1-3.

Table 3-2 Arbiter signals descriptions

Signal Type Direction Description

HBUSREQMx Bus request Input This signal indicates that the bus master is currently the highest
priority master. Ownership of the address/control signals
changes at the end of a transfer when HREADY is HIGH, so
the master gets access to the bus when both HREADY and
HGRANTMx are HIGH.

HGRANTMx Bus grant Output Lock signal from the bus master.

HLOCKMx Locked transfers Input Indicates the bus master that owns the current data phase. Used
by MuxM2S to remove the requirement for sequential logic
within that block.

HMASTER[3:0] Bus master Output HMASTER[3:0] indicates the master that controls the current
address phase.

HMASTERD[3:0] Bus master Output HMASTERD[3:0] indicates the master that controls the
current data phase.
3-6 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
3.3 Default slave

The default slave, DefaultSlave, responds to transfers that are made to undefined
regions of memory, where no AHB system slaves are mapped. A zero wait OKAY
response is made to IDLE or BUSY transfers, with an ERROR response being
generated if a NONSEQUENTIAL or SEQUENTIAL transfer is performed. Figure 3-3
shows the default slave module block diagram.

Figure 3-3 Default slave module components

3.3.1 Signal descriptions

The default slave uses only AMBA signals. For a description of the AMBA signals, see
AMBA signals on page 1-3.

Invalid transfer

detection

AHB slave

output drivers

Default slave module
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-7

AHB Components
3.4 Master-to-slave multiplexor

The master-to-slave multiplexor, MuxM2S, connects the outputs of each AHB master to
all of the AHB slaves on the bus segment. It uses the values on HMASTER and
HMASTERD to select the appropriate bus master outputs, and also generates the
default master outputs when no other masters are selected. The default configuration is
three masters plus one dummy master. Figure 3-4 shows the master-to-slave
multiplexor module block diagram.

Figure 3-4 Master-to-slave multiplexor module components

3.4.1 Signal descriptions

The master-to-slave multiplexor uses only AMBA signals. For a description of the
AMBA signals, see AMBA signals on page 1-3.

Address and

control

multiplexors

Write

data

multiplexors

Master-to-slave

multiplexor

module
3-8 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
3.5 Slave-to-master multiplexor

The slave-to-master multiplexor, MuxS2M, connects the read data and response signals of
the system bus slaves to the bus masters. It uses the current decoder HSELx outputs to
select the bus slave outputs to use. The default configuration is for seven slaves.
Figure 3-5 shows the slave-to-master module block diagram.

Figure 3-5 Slave-to-master multiplexor module components

3.5.1 Signal descriptions

The slave-to-master multiplexor uses only AMBA signals. For a description of the
AMBA signals, see AMBA signals on page 1-3.

Read data

multiplexors

Slave select

registers

Response

multiplexors

Slave-to-master multiplexor module
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-9

AHB Components
3.6 Example retry slave

The retry slave, RetrySlave32 and RetrySlave64, is a rudimentary module that
demonstrates how to build an AHB slave. 32-bit and 64-bit versions of the retry slave
are available. The slave generates various logic functions of these registers, that can be
read from different locations. Figure 3-6 shows a basic block diagram of the retry slave
module system.

Figure 3-6 Retry slave module components

3.6.1 Signal descriptions

The retry slave uses only AMBA signals. For a description of the AMBA signals, see
AMBA signals on page 1-3.

Wait/retry

response

generation

Standard

AHB slave

interface

Retry

slave

module

AHB slave

output

drivers

Combinational

output data

generation

Read/write

registers
3-10 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
3.7 Example static memory interface

The Static Memory Interface (SMI), SMI, is an AMBA-compliant example design that
shows the basic requirements of an External Bus Interface (EBI). It is not intended to
be a ready-made EBI for a real system because such an EBI design has to take process,
package, and varying external delays into account.

The SMI is an AMBA slave module, and connects to the AHB. It contains an AHB Test
Interface Controller (TIC) AMBA master block that you can use to test the processor
core using externally applied TIF vectors.

You can use the SMI as an interface between an AMBA AHB system bus and external,
off-chip, memory devices. The SMI provides support for up to eight independently
configurable memory banks simultaneously. Each memory bank is capable of
supporting:

• SRAM

• ROM.

Figure 3-7 shows a block diagram of the SMI.

Figure 3-7 SMI components

SMI core

Data bus

interface
Test

interface

controller

AHB slave

interface

Additional memory

controller bus interface

AHB master

interface

Memory

control signals

Data bus

Test control

signals
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-11

AHB Components
3.7.1 SMI programmer’s model

Eight memory banks are supported, with a separate chip select output for each bank.
The chip select lines SMCS[7:0] for all banks are configurable to be either active HIGH
or active LOW (default). The memory bank selection is controlled by the AMBA AHB
address lines HADDR[28:26], as shown in Table 3-3, where all SMCS are shown as
active HIGH.

The base address of the external memory banks and the base address of the SMI
memory bank registers are defined in the AMBA AHB address decoder that generates
the AHB slave select signal HSELSMC.

3.7.2 Test interface controller

The Test Interface Controller (TIC) is used during testing to read external test vectors
and apply them to the system through the AMBA AHB master interface. The TIC is a
state machine that provides an AMBA AHB bus master for system test. It reads test
write and address data from the external data bus SMDATA, and drives the external bus
with test read data, enabling the use of only one set of output tristate buffers onto
SMDATA.

The TIC converts externally applied test vectors into internal transfers on the AHB bus.
It uses a three-wire external handshake protocol, with two inputs controlling the type of
vector that is applied and a single output that indicates when the next vector can be
applied.

Table 3-3 Static memory bank select coding, Remap = 1

HADDR[28:26] SMCS[7:0]
Memory bank
(Remap 1)

Memory bank
(Remap 0)

000 00000001 Bank 0 Bank 7

001 00000010 Bank 1 Bank 1

010 00000100 Bank 2 Bank 2

011 00001000 Bank 3 Bank 3

100 00010000 Bank 4 Bank 4

101 00100000 Bank 5 Bank 5

110 01000000 Bank 6 Bank 6

111 10000000 Bank 7 Bank 7
3-12 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
Typically, the TIC is the highest priority AMBA bus master, and ensures test access
under all conditions.

The TIC model supports address incrementing and control vectors. This means that the
TIC can automatically generate the address for burst transfers.

3.7.3 TIC programmer’s model

The TIC operates as a standard AHB bus master during system test when the external
test pins show that the system is required to enter test mode. In this mode, the TIC
requests control of the AHB and, when granted, uses the AHB to perform system tests.

Table 3-4 shows the operation of the external test pins to change the TIC mode from
normal operation into test mode.

During system test the external test pins control the operation of the TIC. Table 3-5
shows the operation of these pins.

On entry into test mode the TIC indicates that it has switched to the test clock input by
asserting the TESTACK signal.

Table 3-4 Test control signals during normal operation

TESTREQA TESTREQB TESTACK Description

0 - 0 Normal operation

1 - 0 Enter test mode request

- - 1 Test mode entered

Table 3-5 Test control signals during test operation

TESTREQA TESTREQB TESTACK Description

- - 0 Current access incomplete

1 1 1 Address vector or

Control vector or

Turnaround vector

1 0 1 Write vector

0 1 1 Read vector

0 0 1 Exit test mode
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-13

AHB Components
Test vector types

The following types of test vector are associated with the test interface:

Address vector The address for all subsequent read and write transfers is sampled
by the TIC.

Write vector The TIC performs an AHB write cycle, using the write data
currently driven onto the external data bus.

Read vector The TIC performs an AHB read cycle, driving the read data onto
the external data bus when it becomes valid.

Control vector Internal TIC registers are set, that control the types of read and
write transfers that are performed.

Turnaround vector Used between a read cycle and a write cycle to avoid clashes on
the external data bus.

The address, control, and turnaround vectors are all indicated by the same value on the
TESTREQA and TESTREQB signals. You can use the following rules to determine
the type of vector that is being applied:

• a read vector, or burst of read vectors, is followed by two turnaround vectors

• when a single address or control vector is applied it is an address vector

• when multiple address or control vectors are applied, they are all address vectors
apart from the last that is a control vector.

Control vectors

The control vector determines the types of transfer the TIC can perform, by setting the
values of the HSIZETIC, HPROTTIC, and HLOCKTIC AHB master outputs.

The default TIC bus master transfer type is:

32-bit transfer width

HSIZETIC[2:0] signifies word transfer.

Privileged system access HPROTTIC[3:0] signifies supervisor data access,
uncacheable and unbufferable.

Bit 0 of the control vector indicates if the control vector is valid. Therefore, if a control
vector is applied with bit 0 LOW, the vector is ignored and does not update the control
information. This mechanism enables address vectors that have bit 0 LOW to be applied
for many cycles without updating the control information.
3-14 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
Although the default settings are sufficient for testing many systems, you can use the
control vectors to change the control signals of the transfer, and also to select whether
the TIC must generate fixed addresses or incrementing addresses.

Table 3-6 defines the bit positions of the control vector. The control vector bit
definitions are designed to be backwards compatible with earlier versions of the TIC
and therefore not all of the control bits are in obvious positions.

There is no mechanism to control the types of burst that the TIC can perform and only
incrementing bursts of an undefined length are supported. The TIC only supports 8-bit,
16-bit, and 32-bit transfers. Therefore, you cannot alter HSIZETIC[2] and it is always
LOW.

To support burst accesses using the test interface, the TIC can support incrementing of
the bus address. The TIC increments eight address bits and the address range that can
be covered by this incrementer depends on the size of the transfers being performed.

The control vector can enable and disable the address incrementer within the TIC. This
enables burst accesses to incremental addresses, as used for testing internal RAM.
Alternatively, you can disable the address increment so that successive accesses of a
burst occur to the same address, as required to continually read from a single peripheral
register.

Table 3-6 Control vector bit definitions

Bit position Description

0 Control vector valid

1 Reserved

2 HSIZETIC[0]

3 HSIZETIC[1]

4 HLOCKTIC

5 HPROTTIC[0]

6 HPROTTIC[1]

7 Address increment enable

8 Reserved

9 HPROTTIC[2]

10 HPROTTIC[3]
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-15

AHB Components
The address incrementer is disabled by default and you must enable it using a control
vector before use.

Note
 The control vector primarily changes signals that have the same timing as the address
bus. However, it also enables you to change the lock signal, that is actually required
before the locked transfer commences. If the HLOCKTIC signal is used during testing
it must be set one cycle before the transfer in which it is required. This difference in
timing on the HLOCKTIC signal can, in some cases, cause an additional transfer to be
locked both before and after the sequence that must in fact be locked.

3.7.4 Signal descriptions

Table 3-7 lists non-AMBA signals used by the SMI. A number of pins, although
present, are not used on the SMI, but are reserved for backward compatibility.

Table 3-7 Signal descriptions

Signal Type Direction Description

BIGENDIAN Input System Reserved.

CANCELSMWAIT Input Input pad Reserved.

EXTBUSMUX Input System Reserved.

HADDRTIC[31:0] Output AMBA AHB
slave

The 32-bit system address bus.

HBURSTTIC[2:0] Output AMBA AHB
slave

Indicates if the transfer forms part of a burst. The TIC always
performs incrementing bursts of unspecified length.

HBUSREQTIC Output AMBA AHB
arbiter

A signal from the TIC to the bus arbiter to indicate that it requires
the bus.

HGRANTTIC Input AMBA AHB
arbiter

This signal indicates that the TIC is currently the highest priority
master. Ownership of the address or control signals changes at the
end of the transfer when HREADYIN is HIGH.

HLOCKTIC Output AMBA AHB
arbiter

When HIGH, this signal indicates that the TIC requires locked
access to the bus and no other master must be granted the bus until
this signal is LOW.

HPROTTIC[3:0] Output AMBA AHB
slave

The protection control signals indicate if the transfer is an opcode
fetch or data access, as well as if the transfer is a Supervisor mode
access or User mode access. These signals can also indicate
whether the current access is cacheable or unbufferable.
3-16 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
HRDATATIC[31:0] Input AMBA AHB
slave

The read data bus transfers data from bus slaves to the bus master
during test read operations.

HREADYINTIC Input Other AHB
TIC slaves

Transfer completed input. Multiplexed HREADY input from all
slaves on TIC AHB bus.

HRESPTIC[1:0] Input AMBA AHB
slave

The transfer response provides additional information on the status
of a transfer. The TIC supports both SPLIT and RETRY responses.

HSELREG Input AMBA AHB
decoder

Reserved.

HSELSMC Input AMBA AHB
decoder

Slave select signal for PrimeCell AHB SMI memory banks.

HSIZETIC[2:0] Output AMBA AHB
slave

Transfer size signal. This signal indicates the size of the current
transfer, and can be byte (8-bit), halfword (16-bit), or word (32-bit).
The TIC does not support larger transfer sizes.

HTRANSTIC[1:0] Output AMBA AHB
slave

Indicates the type of the current transfer, and can be
NONSEQUENTIAL, SEQUENTIAL, or IDLE. The TIC does not
use the BUSY transfer type.

HWDATATIC[31:0] Output AMBA AHB
slave

The write data bus transfers data from the master to bus slaves
during write operations. A minimum data bus width of 32 bits is
recommended. However, you can easily extend this to enable higher
bandwidth operation.

HWRITETIC Output AMBA AHB
slave

Transfer direction signal. When HIGH, this signal indicates a write
to the SMI and when LOW, a read from the SMI.

MCADDR[31:0] Input Additional
memory
controller

Reserved.

MCBUSGNT Output Additional
memory
controller

Reserved.

MCBUSREQ Input Additional
memory
controller

Reserved.

MCDATAEN[3:0] Input Additional
memory
controller

Reserved.

Table 3-7 Signal descriptions (continued)

Signal Type Direction Description
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-17

AHB Components
MCDATAOUT[31:0] Input Additional
memory
controller

Reserved.

nHCLK Input Clock control Reserved.

nSMBLS[3:0] Output Output pad Byte lane select signals, active LOW. The signals nSMBLS[3:0]
select byte lanes [31:24], [23:16], [15:8], and [7:0] on the data bus.

nSMDATAEN[3:0] Output Output pad Tristate input/output pad enable for the byte lanes of the external
memory data bus SMDATA[31:0], active LOW. Enables the byte
lanes [31:24], [23:16], [15:8], and [7:0] of the data bus
independently.

nSMOEN Output Output pad Output enable for external memory banks, active LOW.

nSMWEN Output Output pad Reserved.

REMAP Input System Indicates the state of the memory map:

0 = reset memory map (SMCS7 mapped to SMCS0)

1 = normal memory map.

SCANENABLE Input System Dummy pin that is used as a dedicated scan enable input.

SCANINHCLK Input System Dummy pin that is used as a dedicated HCLK scan chain input.

SCANINnHCLK Input System Reserved.

SCANOUTHCLK Output System Dummy pin that is used as a dedicated HCLK scan chain input.

SCANOUTnHCLK Output System Reserved.

SMADDR[25:0] Output Output pad External memory address bus, to external memory banks.

SMBUSGNTEBI Input External bus
multiplexor

Reserved.

SMBUSREQEBI Output External bus
multiplexor

Reserved.

SMCS[7:0] Output Output pad Chip select for external memory banks 7 to 0. The default is active
LOW.

SMDATAIN[31:0] Input Input pad External input data bus used to read data from memory bank.

SMDATAOUT[31:0] Input Input pad External output data used to write data from SMI to memory bank.

Table 3-7 Signal descriptions (continued)

Signal Type Direction Description
3-18 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
Note
 For a description of the AMBA signals used by the SMI, see AMBA signals on page 1-3.

SMMWCS7[1:0] Input Input pad Reserved.

SMWAIT Input Input pad Reserved.

TBUSOUTEBI[31:0] Output External bus
multiplexor

Reserved.

TESTACK Output Output pad The test bus acknowledge signal gives external indication that the
TIC is granted and also indicates when a test access is complete.
When TESTACK is LOW, the current test vector must be extended
until TESTACK becomes HIGH.

TESTREQA Input Input pad This is the Test Bus Request A input signal and is required as a
dedicated device pin.

During normal system operation, the TESTREQA signal requests
entry into the test mode. During test TESTREQA, in combination
with TESTREQB, indicates the type of test vector that is applied
in the following cycle.

TESTREQB Input Input pad During test this signal, in combination with TESTREQA, indicates
the type of test vector that is to be applied in the following cycle.

TICBUSGNTEBI Input External bus
multiplexor

Reserved.

TICBUSREQEBI Output External bus
multiplexor

Reserved.

TICREADEBI Output External bus
multiplexor

Reserved.

Table 3-7 Signal descriptions (continued)

Signal Type Direction Description
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-19

AHB Components
3.8 Bus matrix

This section describes the Bus Matrix configurable features and operation. The section
contains the following sections:

• Key features

• Bus Matrix configurability on page 3-21

• Relationship between the AMBA Designer and Bus Matrix on page 3-21

• BusMatrix module on page 3-22

• Operation on page 3-25

• Programmer's model on page 3-26

• Block functionality on page 3-27

• Arbitration and locked transfers on page 3-29

• Address map on page 3-30

• Signal descriptions on page 3-34.

3.8.1 Key features

The Bus Matrix has the following key features:

• Number of slave ports between 1 to 16.

• Number of master ports between 1 to 16.

• Routing data width, a choice of 32 or 64 bits.

• Routing address width - between 32 to 64 bits.

• Architecture type, AHB and ARM11 extensions:

— AHB2, support an AHB 2.0 interface, the default

— V6, support all ARM11 AHB extensions

— Excl(usive), support the ARM11 exclusive access extensions only

— Unalign - support the ARM11 unaligned access extensions only.

• Arbiter type, choice of round robin, fixed and burst.

• Default slave included with each slave port.

• Optional xUSER signals, between 0 to 32 bits, with zero meaning excluded.

• Sparse connectivity:

— The sparse connectivity feature removes any un-necessary connections,
thereby reducing area and multiplexer delays.
3-20 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
— Separate instances of output stage and output arbiter will be generated for
each master port.

— For input-output stages with only one sparse connection, the choice of
arbiter is overridden with single arbiter and output stage modules. These
single modules also permit 1xn interconnects.

• Design entry by command line

— Calculated address map, but excluding REMAP support.

• Design entry by AMBA Designer

— Provides a Graphical User Interface (GUI) method to configure the
BusMatrix

— Enables user specified address map, including REMAP support

• User specified module names or automatically derived top-level name

• User specified source and target directories

• Optional `timescale Verilog directives.

3.8.2 Bus Matrix configurability

The Bus Matrix is a configurable component that enables multiple AHB masters to be
connected to multiple AHB slaves. The Bus Matrix RTL is generated automatically
through the use of the BuildBusMatrix.pl script. The script takes in different
configuration parameters, for example, the number of masters, number of slaves, and
data-width, and then generates the corresponding Verilog RTL.

AMBA Designer provides a flexible method of design entry. The AMBA Designer
configuration method enables you to specify all design parameters in addition to fully
configurable address map information. The various design parameters are explained in
more details in the AMBA Design Kit User Guide.

3.8.3 Relationship between the AMBA Designer and Bus Matrix

AMBA Designer is a configuration tool that generates a specific implementation of a
Bus Matrix. AMBA Designer drives the Bus Matrix generation engine to provide the
RTL for a set of configuration parameters.

The generated files come from two sources:

• the AMBA Designer tool

• the Bus Matrix.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-21

AHB Components
The two products are designed to work together in the following manner:

Configuration file

The AMBA Designer tool is responsible for setting the user entered
design parameters. AMBA Designer then automatically launches the
BusMatrix build engine, which is responsible for generating the Verilog
files of the configuration.

Note
 There is no Verilog testbench available for the Bus Matrix.

There are no test vectors available for the Bus Matrix.

Bus Matrix and AMBA Designer documentation

The Bus Matrix and AMBA Designer documentation suites are designed to be used
together to describe the principles of the Bus Matrix and the actual configuration
options. There is no duplication between the two sets of documentation.

ADK

The AMBA Design Kit Bus Matrix documentation, that is, this section and the AMBA
Design Kit User Guide describe:

• the functionality of the component

• example use of the BuildBusMatrix.pl script in the AMBA Design Kit User Guide

• the effect of the configuration options set in AMBA Designer.

AMBA Designer

The AMBA Designer (FD001) User Guide describes:

• how to install AMBA Designer

• how to produce an example interconnect

• how to generate the RTL

• the address map, configuration options, ranges, and default values.

3.8.4 BusMatrix module

The BusMatrix module, BusMatrix, enables multiple AHB masters from different AHB
buses to be connected to multiple AHB slaves on multiple AHB slave buses. It enables
parallel access to a number of shared AHB slaves from a number of different AHB
3-22 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
masters. The Bus Matrix determines the master that gains access to each slave, and
routes the control signals and data signals between them. This block is required in
multi-layer AHB systems.

Figure 3-8 on page 3-24 shows a block diagram of the BusMatrix module.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-23

AHB Components
Figure 3-8 BusMatrix module components
3-24 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
Figure 3-8 on page 3-24 shows a BusMatrix module components block diagram for
(m+1) input ports, (n+1) output ports, 64-bit routing data width, 32-bit routing address
width and 32-bit user signals width.

The Bus Matrix signal names have suffixes for port and pin naming:

• signals on the AHB slave interface coming from AHB masters have the suffix S

• signals on the AHB master interface going to AHB slaves have the suffix M.

The Bus Matrix connects to the masters and slaves using this naming scheme, with an
additional integer to identify the correct master and slave. For example, connect
HWDATAS0[63:0] to the 64-bit AHB Master 0 write data port, and
HWDATAM0[63:0] to the AHB Slave 0 write data port.

Note
 If the Bus Matrix is configured using AMBA Designer, the signal names get appended
with their associated interface names as a suffix. So for consistency, it is recommended
to name the slave interfaces with the letter S plus an identifying integer and the master
interfaces with the letter M plus an identifying integer.

3.8.5 Operation

The following sections describe the operation of the Bus Matrix:

• Integrating the Bus Matrix

• Locked sequences on page 3-26

• Full AHB and AHB-Lite on page 3-26.

Integrating the Bus Matrix

When integrating the Bus Matrix component:

• The input ports, with signal suffix S, are AHB slave ports, and must be connected
accordingly.

• The output ports, with signal suffix M, are AHB slave gasket ports. That is, they
are designed to be attached directly to an AHB slave port, that they mirror, and
must not be treated as full AHB master ports.

• If the output from a Bus Matrix must be used as a bus master on a further AHB
layer, it is recommended that a component such as an AHB bridge, for example,
the ADK Ahb2AhbPass component, is used.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-25

AHB Components
Note
 When connecting to an output port on the Bus Matrix, the HSEL pin must be connected
to the attached slave even if there is only one slave present. If this is not done, the slave
might see spurious transfers under certain circumstances.

Locked sequences

The Bus Matrix is only designed to support locked sequences that target a single output
port. Because of this, a snooping bus across all input ports is not required. This provides
arbitration for locked transfers on all layers simultaneously. In addition, the Bus Matrix
is not designed to cope with a SPLIT response to a locked transfer. If this occurs, the
Bus Matrix correctly passes the SPLIT response back to the initiating master, but it
might then enable another master, connected to a different input port, to access the
output port targeted by the first master.

Full AHB and AHB-Lite

The Bus Matrix inherently supports both full AHB and AHB-Lite systems. However,
you must take care with SPLIT responses. The Bus Matrix correctly passes back a
SPLIT response, but then relies on an arbiter on the AHB layer connected to the relevant
input port to ensure that the initiating master is degranted until unsplit by the slave.

3.8.6 Programmer's model

The design of the Bus Matrix can be divided into input stage, decode stage, and output
stage as described in Block functionality on page 3-27. Figure 3-9 on page 3-27 shows
an Bus Matrix design with:

• four slave ports, for connection to bus masters

• three master ports, for connection to slaves.
3-26 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
Figure 3-9 Example Bus Matrix design configuration

3.8.7 Block functionality

Functionality of the BusMatrix module is described in the following sections:

• Input stage

• Decode stage on page 3-28

• Output stage on page 3-28.

Input stage

The input stage provides the following functions:

• It registers and holds an incoming transfer if the receiving slave is not able to
accept the transfer immediately.

D Q

Input stage Decoder

D Q

Input stage Decoder

D Q

Input stage Decoder

D Q

Input stage Decoder

Output stage

Output stage

Output stage
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-27

AHB Components
• If the Bus Matrix switches between input ports while in the middle of an
undefined length burst, the input stage modifies the HTRANS and HBURST
signals for the interrupted input port, so that when it is reinstated, the remaining
transfers in the burst meet the AHB specification.

Decode stage

The decode-stage generates the select signal for individual slaves. It also handles the
multiplexing of response signals and read data. During the address phase of a transfer,
the decoder asserts the slave-select signal for the appropriate output stage
corresponding to the address of the transfer. In addition the decoder routes an Active
signal from the output stage back to the input stage. This signal indicates to the input
that its address is currently being driven onto the chosen slave. During the data phase of
a transfer the decoder routes the response signals and Read data back to the input port.

Each slave port, connected to an AHB master, is associated with a separate decoder.
This enables the AHB masters to have independent address maps, that is a shared slave
does not require to appear in the same address location for all masters. This is typically
useful for multi-processor systems.

Any gaps in the memory map are redirected to a default slave, which returns an OKAY
or ERROR response depending upon the type of access. There is an instance of a default
slave associated with each decoder.

The decoder stage also supports the system address Remap function. A 4-bit Remap
control signal connects to the decoder. Remapping might be used to change the address
of physical memory or a device after the application has started executing. This is
typically done to permit RAM to replace ROM when the initialization has been
completed.

In multi-layer AHB systems that have local slaves on some of the AHB layers, the
address decoding is performed in two stages. The first address decoder selects between
local slaves and the shared slaves available through the AHB BusMatrix module. To
support this, the decode-stage within the BusMatrix includes an HSEL input that
indicates if the address from an input port is destined for a shared slave.

Output stage

The output stage has the following functions:

• selects the address and control signals from the input stages

• selects the corresponding write data from the input stage

• determines when to switch between input ports in the input stage.
3-28 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
The output stage only selects an input source when that input has a transfer in the
holding register.

The output stage generates an active signal for each input port when the address from
that input port is being driven onto the slave. This signal enables the input stage to
determine when transfers from other masters must be held up because the slave is not
currently available.

When a sequence of transfers to a shared slave has finished and there are no more
transfers to the slave required by any of the input ports, the output stage switches the
address and control signals to an idle state.

3.8.8 Arbitration and locked transfers

This section describes arbitration and locked transfers.

Arbitration

The arbitration within the BusMatrix module determines the input port that has access
to the shared slave and each shared slave has its own arbitration. Different arbitration
schemes provide different system characteristics in terms of access latency and overall
system performance.

The slave switch supports the following arbitration schemes:

Fixed arbitration

One port always has highest priority and the order of priority for all other
ports is fixed.

A burst transfer can be broken up if a higher-priority master requests the
same slave, except where the burst transfer is a locked transfer.

Fixed (burst) arbitration

This is similar to fixed arbitration but it does not break defined length
burst transfers and it is default arbitration for the Bus Matrix.

Round robin arbitration

Arbitration is performed during every active clock cycle, indicated by
HREADYM. Priority initially goes to the lowest-numbered requestor,
that is input port 0. When multiple requests are active, priority goes to the
next lowest-numbered requestor compared to the currently active one.
Fixed-length bursts are not broken. The arbitration waits for the end of
the burst before passing control to the next requestor, if there is one.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-29

AHB Components
INCR bursts are treated as four-beat bursts, to optimize memory accesses,
with guard logic to ensure that a sequence of short INCR bursts does not
freeze the arbitration scheme.

Locked transfers

Using a multi-layer AHB system requires certain restrictions to be placed on the use of
locked transfers to prevent a system deadlock. It is required that a sequence of locked
transfers is performed to the same slave within the system. Because the minimum
address space that can be allocated to a single slave is 1KB, a bus master can ensure this
restriction is met by ensuring that it does not perform a locked sequence of transfers
over a 1KB boundary, ensuring that it never crosses an address decode boundary.

Therefore, if a bus master is to perform two locked transfer sequences to different
address regions, the bus master must not start the second locked transfer sequence until
the final data phase of the first locked transfer sequence has completed.

3.8.9 Address map

If the AMBA Designer configuration method is not used and command line parameters
are used instead, then the address map gets calculated automatically as follows:

• Figure 3-10 shows the equations that enable the address map to be divided into a
number of regions depending on the number of master ports:

Figure 3-10 Region equations

• Each slave port has the same decoder instance.

• No Remap support.

The decode-stage can have a fully customized address map when using the AMBA
Designer configuration method and each slave port can have and independent view of
the address space. Example 3-1 on page 3-31 shows a slave port address map
description. See the AMBA Design Kit User Guide for parameter descriptions.
3-30 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
Example 3-1

<slave_interface name="SI1">
<address_region interface="MI0" mem_lo="40000000" mem_hi="4fffffff" remapping="move"/>
<address_region interface="MI0" mem_lo="70000000" mem_hi="7fffffff" remapping="alias"/>
<address_region interface="MI1" mem_lo="80000000" mem_hi="9fffffff" remapping="none"/>
<address_region interface="MI2" mem_lo="a0000000" mem_hi="bfffffff" remapping="move"/>
<address_region interface="MI3" mem_lo="00000000" mem_hi="1fffffff" remapping="move"/>

<remap_region interface="MI0" mem_lo="00000000" mem_hi="1fffffff" bit="0"/>
<remap_region interface="MI1" mem_lo="50000000" mem_hi="5fffffff" bit="0"/>
<remap_region interface="MI2" mem_lo="60000000" mem_hi="6fffffff" bit="1"/>
<remap_region interface="MI3" mem_lo="c0000000" mem_hi="dfffffff" bit="0"/>

</slave_interface>

Address region

The address region parameters determine the routing of transactions to the master
interfaces. Each master interface can have multiple non-contiguous address regions,
when multiple sets of address region parameters are defined. However, the address
regions of different master interfaces must not overlap. The mem_lo parameter defines
the lower bound address and the mem_hi parameter defines the upper bound address for
the master interface.

The remapping configuration parameter defines the behavior of master interfaces that
support address remapping. It becomes active when the relevant REMAP bit is set. The
following types of address remapping behavior exist:

• If the remapping parameter is set to alias or none, the remapping creates an alias
of the defined region in the new address space.

• If the remapping parameter is set to move, the address region gets removed from
the original address space and master interface appears at the location defined by
the remap region in the new address space

Remap region

These regions get activated when using the remap facility and each remap region is
associated with a bit of the REMAP signal.

When the relevant remap bit is set, the remap regions take higher priority than normal
address regions for the same master interface. Also any normal regions that have the
remapping parameter set to 'move', get removed from the address space. If more than
one bit is asserted for the same master interface, the least significant bit takes priority.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-31

AHB Components
Figure 3-11 on page 3-33 shows the address map of the slave interface, defined in the
above example, at different remap states.

The address map is explained at the remap state REMAP = 0001:

• In normal address map MI0 appears at two non-contiguous regions 0x40000000
and 0x70000000. When remap bit 0 is set the 0x40000000 region was removed
because the remapping parameter is set to 'move' and MI0 appears at the new
remap region 0x00000000 to 0x1FFFFFFF. The MI0 region at 0x70000000 is not
removed because its remapping parameter is declared as alias.

• When remap bit 0 is set, MI1 appears at the new remap region 0x50000000 to
0x5FFFFFFF and at the region at 0x80000000 did not get changed because its
remapping is set to 'none'.

• MI2 did not change even though its remapping is declared as move, because it is
associated with remap bit 1 which is not set at the current remap state

• MI3 is moved to a new base address 0xC0000000.

Note
 MI0 can be considered as ROM and MI3 can be considered as RAM. At boot time, the
REMAP signal is set to 0001 and ROM can be seen at base address 0x00000000. After
booting the REMAP signal is set to 0000, the RAM now appears at 0x00000000 and the
ROM is moved up in the address space to 0x40000000.
3-32 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
Figure 3-11 Address map at different remap states
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-33

AHB Components
3.8.10 Signal descriptions

Table 3-8 lists the signal list for the Bus Matrix.

Table 3-8 Bus Matrix signals

Signal Direction Description

HCLK Input System bus clock. Logic is triggered on clock rising edge.

HRESETn Input Activate low asynchronous reset.

System address control

REMAP[3:0] Input System address remap control.

Interface to masters (AHB slave)

HADDRSx[N] Input N-bit address bus from AHB master. N can be in the range [31 to 63].

HBURSTSx[2:0] Input Burst size information.

HMASTERSx[3:0] Input Current active master.

HMASTLOCKSx Input Indicate the transfer on the master AHB is a locked transfer.

HPROTSx[3:0] Input Protection information.

HRDATASx[63:0 or 31:0] Output Read data to bus master. Width configurable to be either 64-bit or 32-bit
wide.

HREADYOUTSx Output HREADY signal feedback to the master bus, indicating if the AHB
BusMatrix module is ready for next operation.

HREADYSx Input HREADY signal on the master AHB bus, indicating start/ending of
transfer.

HRESPSx[1:0] Output Response from AHB BusMatrix module to AHB master. Width depends on
architecture choice.

HSELSx Input Active HIGH select signal to indicate shared slave connected to the AHB
BusMatrix module is selected.

HSIZESx[2:0] Input Size of the data.

HWDATASx[63:0 or 31:0] Input Write data from AHB masters. Width configurable to be either 64-bit or
32-bit wide.

HWRITESx Input Indication of WRITE/READ operation.

Interface to slaves (AHB master)
3-34 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
HADDRMx[N] Output N-bit address bus for AHB slave. N can be in the range [31 to 63].

HBURSTMx[2:0] Output Burst size information.

HMASTERMx[3:0] Output Current active master.

HMASTLOCKMx Output Indicates the transfer on the slave AHB is a locked transfer.

HPROTMx[3:0] Output Protection information.

HRDATAMx[63:0 or 31:0] Input Data read back from AHB slave(s). Width configurable to be either 64-bit
or 32-bit wide.

HREADYOUTMx Input HREADY from AHB slave or slave multiplexor.

HREADYMUXMx Output HREADY feed back to all slaves on slave AHB.

HRESPMx[2:0] Input HRESP from AHB slave or slave multiplexor. Width depends on
architecture choice.

HSELMx Output Active HIGH select signal to indicate slave bus is accessed. You can use
this signal to drive a single AHB slave directly, or drive a secondary AHB
decoder if multiple AHB slaves are used.

HSIZEMx[2:0] Output Size of the data.

HWDATAMx[63:0 or 31:0] Output Write data to AHB slave(s). Width configurable to be either 64-bit or 32-bit
wide.

HWRITEMx Output Indicates write/read operation.

User signals

HAUSERSx Input Additional sideband bus that has same the timing as the slave interface
address payload signals.

HWUSERSx Input Additional sideband bus that has the same timing as the slave interface
write data payload signals.

HRUSERSx Output Additional sideband bus that has the same timing as the slave interface read
data payload signals.

Table 3-8 Bus Matrix signals (continued)

Signal Direction Description
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-35

AHB Components
User signals

The Bus Matrix supports USER signals on master and slave interfaces. These signals
are optional, and a value of zero on the user_signal_width parameter removes them
from the generated Verilog. If the user_signal_width parameter or the --userwidth
command line switch is set to a non-zero value, that value defines the width of those
USER signals. The USER signals have the same timing as the payload signals for that
channel. For example, the HAUSER signals have the same timing as the address
payload signals.

The USER signals are:

• HAUSER
• HRUSER
• HWUSER.

N-bit addressing

The Bus Matrix supports N-bit addressing, that is, you can configure the address bus to
be in the range of 32 bits up to 64 bits. By default the address width is set to 32 bits, but
you can change this by supplying the --addrwidth command line switch or by changing
the routing_address_width global parameter in AMBA Designer. Setting the address
width affects both the slave ports and master ports address buses.

Note
 The presence of USER signals and the support of N-bit addressing enables the Bus
Matrix to fully connect to the AXI High Performance Matrix. The bus matrix user
signals are fully mapped to their AXI counterparts. This is typically useful in mixed
protocol designs. See the PrimeCell High-Performance Matrix PL301 Technical
Reference Manual for more information.

HAUSERMx Output Additional sideband bus that has the same timing as the master interface
address payload signals.

HWUSERMx Output Additional sideband bus that has the same timing as the master interface
write data payload signals.

HRUSERMx Input Additional sideband bus that has the same timing as the master interface
read data payload signals.

Table 3-8 Bus Matrix signals (continued)

Signal Direction Description
3-36 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
3.9 System decoder

The system decoder, Decoder, decodes the address bus and generates select lines to each
of the system bus slaves, indicating that a read or write access to that slave is required.
The default configuration is 16 slots. Figure 3-12 shows the decoder module block
diagram.

Figure 3-12 Decoder module components

3.9.1 Programmer's model

This section of code defines the memory map for the whole system. If modules are
added, removed, or moved to new locations, you must modify the code to match these
system changes, ensuring that the correct slave is selected for each address used.

The decoder controls the memory map of the system, and generates a slave select signal
for each memory region. The REMAP signal provides a different memory map at reset,
when ROM is required at address 0x00000000, and during normal operation, when
internal RAM can be used at address 0x00000000.

The REMAP signal is typically provided by a remap and pause peripheral, that drives
REMAP LOW at reset. The signal is driven HIGH only after a particular address in the
remap and pause peripheral is accessed.

Figure 3-13 on page 3-38 shows both the normal and reset memory maps.

Address

decode

Slave select

output drivers

Decoder module
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-37

AHB Components
Figure 3-13 System memory map

Interrupt controller

Unused

0xFFFFFFFF

0xC0000000

Address
Normal

memory map

0x80000000

0x70000000

0x40000000

0x30000000

0x10000000

Retry slave

0xE0000000

Unused

Internal memory

0xF0000000

0xD0000000

APB peripherals

Unused

External static
memory

Unused

Unused (reserved
for SDRAM)

0x00100000

0x00000000

Internal memory
alias

External static
memory alias

Interrupt controller

Unused

Reset
memory map

Retry slave

Unused

Internal memory

APB peripherals

Unused

External static
memory

Unused

Unused (reserved
for SDRAM)
3-38 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
3.9.2 Signal descriptions

Table 3-9 lists non-AMBA signals used by the decoder module.

Note
 For a description of the AMBA signals used by the decoder, see AMBA signals on
page 1-3.

Table 3-9 Decoder module signals

Signal Type Direction Description

REMAP Reset memory map Input When LOW, the internal memory is not part of the system memory map,
and external memory is mapped from address 0x00000000 that contains
the system startup code. In normal operation, this signal is HIGH,
permitting use of the internal memory.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-39

AHB Components
3.10 APB bridge

The AHB-APB bridge is an AHB slave, providing an interface between the high-speed
AHB domain and the low-power APB domain. Read and write transfers on the AHB are
converted into corresponding transfers on the APB through a master interface. Because
the APB is not pipelined, wait states are added during transfers to and from the APB
when the AHB is required to wait for the APB protocol. The default configuration is 16
slots.

In this release of ADK there are two versions of the APB bridge.

3.10.1 Ahb2Apb bridge

The Ahb2Apb bridge consists of the following:

• It is the original ADK bridge.

• Instanced within EASY systems, and is used in those examples.

• Supports APB 2.0 only.

• Always returns an OKAY response.

• Peripheral slot size decoded from HADDR[27:24], and is 16MB.

• Uses MuxP2B peripheral to bridge multiplexor.

Figure 3-14 shows the Ahb2Apb bridge module diagram.

Figure 3-14 Ahb2Apb bridge module
3-40 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
This subsection describes:

• Programmer's model

• Signal descriptions.

Programmer's model

The Aph2Apb bridge controls the memory map for the peripherals, and generates a
select signal for each peripheral. Figure 3-15 shows the default system memory map
used within the EASY example systems.

Figure 3-15 Allocation of APB memory slots within EASY systems

Signal descriptions

The Aph2Apb bridge uses only AMBA signals. For a description of the AMBA signals,
see AMBA signals on page 1-3.

Note
 Timing diagrams showing the relationship between AHB and APB transfers are in the
APB Specification.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-41

AHB Components
3.10.2 AhbToAPB bridge

The AhbToApb bridge consists of the following:

• New for ADK r3p0.

• Not instanced anywhere else within the ADK in this edition.

• Supports both APB 2.0 and 3.0.

• Has new signals PSEL, PREADY and PSLVERR.

• Can return OKAY and ERROR responses.

• Peripheral slot size decoded from HADDR[15:12], and is 4KB.

• Uses the new MuxPToB peripheral to bridge multiplexor.

Figure 3-16 shows the AhbToApb bridge module block diagram.

Figure 3-16 AhbToApb bridge module

Signal descriptions

The AhbToApb bridge uses only AMBA signals. For a description of the AMBA
signals, see AMBA signals on page 1-3.
3-42 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
Table 3-10 describes the extra signals declared in the AhbToApb bridge including the
APB 3.0 signals.

Note
 Timing diagrams showing the relationship between AHB and APB 3.0 transfers are in
the AMBA 3 APB Protocol Specification.

Table 3-10 AhbToAPB Bridge signals

Signal Direction Description

PSEL Output Select. It indicates that an APB slave is selected and a data
transfer is required. PSEL is a combined select output,
when HIGH indicates that an APB slave is selected and
that a data transfer is required. You can use this signal as
an input to an external address decoder.

PREADY Input Ready. The APB slave uses this signal to extend an APB
transfer.

PSLVERR Input This signal indicates a transfer failure and is driven by the
APB peripheral.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-43

AHB Components
3.11 Example bus master

The Example Bus Master (EBM), EgMaster32 and EgMaster64, consists of:

• an AHB-Lite core, that generates a fixed set of transfers in a continuous way

• an AHB-Lite to AHB wrapper, that enables its connection to a standard AHB bus.

This provides an example of both AHB-Lite bus master design and the use of the
wrapper to interface to an AHB system. You can also use this in the ADK system, in
place of an ARM processor model, to enable rapid simulation of AHB transactions.

The block is supplied as both 32-bit and 64-bit versions. Figure 3-17 shows the EBM
module.

Figure 3-17 EBM module components

3.11.1 Programmer's model

Programming details for the EBM are described in the following sections:

• Example AHB-Lite core on page 3-45

• Configurable options on page 3-46

• Endianness on page 3-46.

AHB-Lite (internal signals)

AHB

Example

AHB-Lite core

(EgMasterCore)

AHB-Lite to AHB

wrapper

(Lite2AHB)

Example bus master

HRDATA

HWDATA

HLOCK

HBUSREQ

HSIZE[2:0]

HTRANS[1:0]

HPROT[3:0]

HBURST[2:0]

HWRITE

HADDR[31:0]

HRESP[1:0]

HGRANT

HCLK

HRESETn

iHBURST[2:0]

iTRANS[1:0]

iPROT[3:0]

iHSIZE[2:0]

iHWRITE

iHADDR[31:0]

iHMASTLOCK

iHREADY

iHRESP[1:0]

HREADY
3-44 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
Example AHB-Lite core

Figure 3-18 shows the example AHB-Lite core.

Figure 3-18 Example AHB-Lite core

The core is completely synchronous with the AHB bus clock signal, HCLK, and is reset
by the AHB reset signal, HRESETn. Read transfers are not locked, but
HMASTLOCK is asserted HIGH to lock write transfers. The HREADY signal stalls
the core.

In AHB-Lite, SPLIT and RETRY responses are not supported, so only HRESP[0] must
be decoded and used in the core. However, it is safer to decode the full HRESP[1:0]
signal. When this signal indicates an ERROR response during a read operation, the
corresponding data is ignored.

The core consists of a counter, burst generation logic, and a 4x32 or 64-bit register bank.
From a power-up or reset state, it uses the counter to wait for a predefined number of
clock cycles. The core then performs a 4-beat, incrementing, read burst from a
parameterized base source address into the register bank. When the burst is complete,
the bus master waits for further predefined time, before writing data from the registers
as 32 single byte transfers. This data is written, least significant byte first, to a single
non-incrementing destination address. This process continues, using the same source
and destination addresses, until a power-down or reset condition is reached.

Example

AHB-Lite core

HRDATA

HWDATA

HBURST[2:0]

HTRANS[1:0]

HPROT[3:0]

HSIZE[2:0]

HWRITE

HADDR[31:0]

HMASTLOCK

HREADY

HRESP[1:0]

HRESETn

HCLK
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-45

AHB Components
Configurable options

The EBM has a fixed functionality and is not programmable. There are, however,
compilation-time or simulation-time options, using Verilog parameters. Table 3-11 lists
the configurable options.

Endianness

The EBM supports little-endian mode only.

3.11.2 Signal descriptions

The EBM uses only AMBA signals. For a description of the AMBA signals, see AMBA
signals on page 1-3.

Table 3-11 Configurable options

Parameter Type Default value Description

EBMenable Boolean '1' (True) When set to 0 (false), this parameter prevents the master from
generating any transfers

EBMreadAddr 8-bit vector 0xD0 Bits [31:24] of the base address for the read burst, dword aligned

EBMwriteAddr 8-bit vector 0xC4 Bits [31:24] of the base address for the write transfers, dword
aligned

EBMinitCount 10-bit vector 0x004 The number of IDLE transactions between bursts
3-46 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
3.12 Synchronous AHB to AHB bridge

The AHB-AHB bridges (Ahb2Ahb32, Ahb2Ahb64, Ahb2AhbPass32, Ahb2AhbPass64,
Ahb2AhbSyncDn32, Ahb2AhbSyncDn64, Ahb2AhbSyncUp32, and Ahb2AhbSyncUp64) provide a
unidirectional link between two AHB domains. They enable a master to access a slave
on another bus, with the transfer initiated from one side only. These bridges enable
various synchronous clocking schemes to be implemented between the AHB buses.
Each bridge is implemented with an AHB slave interface and an AHB-Lite master
interface. These are packaged with an AHB-Lite to AHB master gasket if full AHB
master support is required. An asynchronous bridge is also available (see Asynchronous
AHB-AHB bridge on page 3-60).

The synchronous bridges have the following features:

• 32 or 64-bit data bus

• bursts are preserved across the bridge, although subject to override if the bridge
master is degranted

• transfer sequences can be locked across the bridge

• SPLIT and RETRY responses are serviced by the bridge, so remain local to the
issuing slave

• fully registered designs, except for Ahb2AhbPass

• in-burst pre-emptive address generation, to reduce latency on read transfers

• read transfers incur a minimum of one wait state

• buffered writes are zero wait-state minimum, nonbufferable writes incur a
minimum of two wait-states

• modular design to facilitate the removal of logic that is not essential for a
particular application.

3.12.1 Bridge designations

The following synchronous AHB-AHB bridges are described in this section:

• Ahb2Ahb (1:1) on page 3-48

• Ahb2AhbPass (1:1) on page 3-49

• Ahb2AhbSyncDn (N:1) on page 3-48

• Ahb2AhbSyncUp (1:N) on page 3-48.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-47

AHB Components
Ahb2Ahb (1:1)

This is a fully registered bridge for connecting AHB buses that share a common clock.
This bridge includes one level of write buffering to enable zero wait-state write transfers
across it. Figure 3-19 shows the Ahb2Ahb bridge.

Figure 3-19 Ahb2Ahb bridge

Ahb2AhbSyncDn (N:1)

This bridge connects buses running at different, synchronous frequencies, where clocks
share concurrent edges, and where the master is clocked at the same or a higher
frequency than the slave.

Figure 3-20 shows the Ahb2AhbSyncDn bridge.

Figure 3-20 Ahb2AhbSyncDn bridge

Ahb2AhbSyncUp (1:N)

This bridge connects buses running at different, synchronous frequencies, where clocks
share concurrent edges, and where the master is clocked at the same or a lower
frequency than the slave. Figure 3-21 on page 3-49 shows the Ahb2AhbSyncUp bridge.

Ahb2Lite

S
la

v
e

M
a
s
te

r

AHB1

(HCLK)

AHB2

(HCLK)ErrorCanc

HCLK

Incr

override

HCLK

Lite2Ahb

HCLK HCLK

Ahb2Ahb

AHB-Lite
3-48 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
Figure 3-21 Ahb2AhbSyncUp bridge

Trial synthesis of the Ahb2Ahb, Ahb2AhbSyncUp, and Ahb2AhbSyncDn bridges is targeted at a
clock period of 6ns, implying a frequency of ~166MHz. The required input and output
port constraints are set as follows:

Inputs Maximum setup time of 30% of clock cycle, implying 1.8ns.

Outputs Maximum output valid delay of 40% of clock cycle, implying 2.4ns.

Note
 These are the preferred synthesis targets, that are not always achievable depending on
the technology library used. Trial synthesis using the TSMC 0.13 library has shown that
all internal, register-to-register, paths meet the 166MHz target, but that constraints on
some ports might have to be relaxed.

Ahb2AhbPass (1:1)

This is a simple combinatorial bridge that connects AHB buses without incurring a
latency penalty. You can use this bridge as a latency-free pin-compatible alternative to
the other bridges or where a slave gasket, such as the downsizer, is required to connect
to a multi-master bus. Figure 3-22 shows the Ahb2AhbPass bridge.

Figure 3-22 Ahb2AhbPass bridge

HTRANS

overrideS
la

v
e

M
a
s
te

r

AHB1

(HCLK)

AHB2

(HCLK)Incr

override

HCLK

Lite2Ahb

HCLK HCLK

Ahb2AhbPass

AHB-Lite
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-49

AHB Components
Trial synthesis of the Ahb2AhbPass bridge is targeted at a clock period of 6ns, implying
a frequency of approximately 166MHz. Because of the presence of combinatorial paths
through the design, the timing constraints are set as follows:

Input to register 30% of clock cycle, implying 1.8ns.

Register to output 30% of clock cycle, implying 1.8ns.

Input to output 15% of clock cycle, implying 0.9ns.

These are the preferred synthesis targets, that are not always achievable depending on
the technology library used. Trial synthesis using the TSMC 0.13 library has shown that
all internal, register-to-register, paths meet the 166MHz target, but that constraints on
some ports might have to be relaxed.

3.12.2 Typical applications

The primary use of the bridges is to connect AHB domains, enabling masters to access
slaves in a different timing or clock domain. This is commonly used in multiprocessor
systems or where an off-chip interface is required. Other less obvious applications of
the bridges are to help with timing closure when a bus is heavily loaded or when
interfacing to a slave with particularly poor timing characteristics, excluding the
passthrough bridge.

Note
 In general, AHB-AHB bridges do not provide a high bandwidth link so must not be used
to access performance-critical slaves. The performance of the bridges also degrades
with frequency mismatch between buses.

Figure 3-23 shows applications of synchronous AHB-AHB bridges.

Figure 3-23 Applications of synchronous AHB-AHB bridges

Linking two AHB systems
Retiming of a

slow AHB slave
Extending a heavily-loaded AHB system bus

AHB1 AHB2

Master Master

Slave

AHB-AHB

bridge

Slow

slave
Slave Slave Slave

Master

Slave Slave
AHB-AHB

bridge
Slave Slave

Slow

slave

Slow

slave

MasterMaster

AHB-AHB

bridge

Slow

slave
3-50 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
3.12.3 Programmer's model

The general concept of the bridge is described in the following sections:

• Preserved address map

• Aliased or piecewise address map

• Functionality on page 3-53

• Bidirectional bridging on page 3-54.

Note
 The scope of memory-map visibility is user-defined.

Preserved address map

Figure 3-24 shows the memory maps for a system with one-to-one address mapping. It
is assumed that full visibility of the slaves in system 2 is required.

Figure 3-24 System memory maps without address aliasing

Aliased or piecewise address map

Address-aliasing is a function of the address decoder and of masking-off the high-order
address bits in hardware. It is recommended that this is implemented in AHB system 1.
Figure 3-25 on page 3-52 shows a generalized scheme.

Bridge

Slave
1

1

...

Slave
1

N

Memory map of

AHB system 1

Combined system

memory map, as seen

by AHB system 1

Slave
2

2

...

Slave
2

N

Slave
2

1

...

... ...

...

Slave
1

1

...

Slave
1

N

...

...

Slave
2

2

...

Slave
2

N

Slave
2

1

AHB-AHB

bridge

A
D

D
R

E
S

S

Memory map of

AHB system 2
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-51

AHB Components
Figure 3-25 Address-aliasing hardware

Figure 3-26 and Figure 3-27 on page 3-53 show the use of address-aliasing to make
memory in system 2 appear both at address 0 and also at a higher address, so that it can
be accessed by system 1 through the bridge. In this design, only the area of ROM is
visible through the bridge.

Figure 3-26 System memory maps with aliased addressing

A[31:0]

Addr[31:0]Address

remap logic

AHB

decoder 1

AHB1 AHB-AHB

bridge

HSELremap

HSELbridge

AHB2

A
D

D
R

E
S

S

RAM

Bridge

Slave
1

1

... ...

ROM

Slave
2

N

...

Bridge

ROM

RAM

Slave
1

1

Slave
1

2Slave
1

2

...

R
em

ap

AHB-AHB

Bridge

Slave
2

1

Slave
2

2

...

ROM

Memory map of

AHB system 1

Memory map of

AHB system 2

Combined system

memory map, as seen

by AHB system 1
3-52 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
Figure 3-27 System memory maps with piecewise addressing

Functionality

This section describes the functionality of the synchronous AHB-AHB bridges.

Reset It is recommended that the buses on either side of the bridge are reset
together, for at least three cycles of each HCLK. However, AHB2 can be
held in reset while AHB1 is free-running, if no transaction is directed at
the bridge. You can use this to reduce power consumption on AHB2
while it is unused.

Slave responses

SPLIT and RETRY responses from remote slaves are supported, but they
are not propagated back to the master. The bridge inserts wait states on
bus 1 using HREADY to hold up the master until the remote slave is
ready to complete the outstanding transfer. The bridge slave interface
does not generate SPLIT or RETRY responses.

Error ERROR responses from remote slaves are normally propagated back to
the master to determine further action for that transfer. In the Ahb2Ahb
bridge (1:1), this response is suppressed for buffered writes because of a
transfer correlation issue. For buffered transfers, the master cannot
determine exactly when the transfer completes at the slave. If a

Bridge

...

...

ROM

RAM

AHB-AHB

Bridge

Slave
2

1

Slave
2

2

...

Slave
1

1

...

Slave
1

N

...

...

Slave
2

3
RAM

Slave
2

2

ROM

...

Slave
1

1

...

Slave
1

N

...

A
D

D
R

E
S

S

Memory map of

AHB system 1

Memory map of

AHB system 2

Combined system

memory map, as seen

by AHB system 1

R
e
m

a
p

ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-53

AHB Components
confirmation of completion is required, a single read can be directed at a
remote slave that only completes when any previously buffered writes are
also complete.

Wait states It is an AHB recommendation that slaves must not generate more than 16
wait-states. This is included to help with system latency predictions.
However, when using an AHB-AHB bridge, the effects of registered
paths, crossing clock domains, slave wait-states, RETRY/SPLIT
responses, and bus arbitration have a cumulative effect on the number of
wait-states generated by the bridge slave. This implies that the bridge can
easily generate wait periods that are greater than 16 cycles in length.

Locked transfers

 The bridges are designed so that HMASTLOCK is asserted on AHB2
when the first locked transfer is directed at the bridge. The lock on AHB2
is then held until the entire locked sequence completes on AHB1, even if
it contains transfers not directed at the bridge. This ensures coherency of
both buses during the locked sequence.

Bidirectional bridging

All AHB-AHB bridges are unidirectional in nature, but you can use them as a pair to
form a bidirectional bridge between buses if the following potential deadlock situation
is avoided:

• If both bridges are active simultaneously, that is, a master is accessing a slave
across the bridge, then deadlock can occur while both bridges are waiting to be
granted the remote bus.

Figure 3-28 on page 3-55 shows bidirectional bridging. If M0 accesses S3 through
bridge 1 while M3 accesses S0 through bridge 2, the bridge masters, M1, M2, are not
granted the bus because the masters M0 and M3 have bus control until their transfers
complete.
3-54 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
Figure 3-28 Bidirectional bridging

Deadlock can also happen if one bridge master happens to direct a transfer at the other
bridge slave, for example:

M0 → S1/M1 → S2/M2 → S0.

One way to avoid deadlock is to use multi-layer bus matrix on one or both of the AHB
buses. The decode must be chosen so that a bridge loop is not possible. Using
multi-layer bus matrix on AHB1 for example, enables the transfer M2 → S0 to complete
before the transfer M0 → S1, and the deadlock situation is avoided.

3.12.4 Optional additional blocks

The following blocks are described in this section:

• Error cancel

• IncrOverride on page 3-57.

Error cancel

When an AHB master receives an ERROR response from a slave, it can optionally
cancel any pending transfer, while HREADY is LOW, by driving HTRANS to IDLE
during the second cycle of the ERROR response. Figure 3-29 on page 3-56 shows this.

M1S1S0

S2M2M0

M3

S3

AHB1 AHB2

Bridge 1

Bridge 2
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-55

AHB Components
Figure 3-29 Error cancel timing

Because a registered bridge, except Ahb2AhbPass, cannot predict what the master will
do, it must always exhibit either a cancel or continue behavior. Because most AHB
masters continue with a pending transfer, the bridge also does this by default. Therefore,
if a master that can potentially cancel a transfer on ERROR response is permitted to use
the bridge, the ErrorCanc block is required to change the bridge behavior.

When an ERROR response is received by the bridge master, the ErrorCanc logic
immediately cancels any pending transfer and the ERROR response is passed back to
the originating master. If the master continues with a pending transfer and completes the
burst, the ErrorCanc block suppresses the transfer and responds with an ERROR
response to each transfer remaining in the burst. Figure 3-30 shows this.

Figure 3-30 Error cancel using ErrorCanc timing

NONSEQ SEQ SEQ IDLE NONSEQ SEQ

HCLK

HTRANS

HREADY

HRESP OKAY OKAY OKAY ERROR OKAY OKAY

Error response

from slave

Master cancels

pending transfer

SEQ

HCLK

HTRANS

HREADY

HRESP OKAY OKAY

Error response

from slave

Master continues

with pending transfer

SEQ

OKAY

SEQ NONSEQ SEQ

ERROR ERROR ERROR OKAY

Error responses from

ErrorCanc block

NONSEQ
3-56 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
Note
 For buffered write transfers, Ahb2Ahb bridge only, slave responses cannot be passed
back to the master. The error-cancelling functionality is therefore disabled for buffered
transfers in the Ahb2Ahb bridge. To facilitate this, the ErrorCanc logic is integrated into
the top level of the Ahb2Ahb bridge.

IncrOverride

An AHB master can only abort a burst if it receives an ERROR response or is degranted
before the burst is complete. If a master on AHB1, accessing a peripheral through the
bridge is degranted before the burst is complete, the bridge master on AHB2 appears to
have illegally aborted the burst. Therefore, if the arbiter on AHB1 has the potential to
rearbitrate before a burst is complete, to avoid breaking protocol, the bridge must not
generate fixed-length bursts. To avoid this, the IncrOverride block must be used. This
block overrides HBURSTM to always be INCR.

Note
 Under certain circumstances, the ADK arbiter and ADK v1 revisions of the Bus Matrix
arbiter might rearbitrate in mid-burst. If either of these are used, the IncrOverride block
must be used with the bridges.

3.12.5 Signal descriptions

Table 3-12 lists the interface signals for the synchronous AHB-AHB bridge.

Table 3-12 Synchronous AHB-AHB bridge interface signals

Signal AHB bus Direction Description

HADDRM[31:0] 2 Output The 32-bit system address bus.

HADDRS[31:0] 1 Input The 32-bit system address bus.

HBURSTM[2:0] 2 Output Indicates if the transfer forms part of a burst. The bridge supports all
types of transfer, that is single, incrementing, or wrapping.

HBURSTS[2:0] 1 Input Indicates if the transfer forms part of a burst. The bridge supports all
types of transfer, that is single, incrementing, or wrapping.

HBUSREQM 2 Output A signal from the bridge to the arbiter, that indicates that the master
interface requires bus 2. There is an HBUSREQ signal for each bus
master in the system.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-57

AHB Components
HCLKEN - Input This signal describes the relationship between HCLKS and HCLKM.
This is HIGH for coincident edges between clocks.

HCLKM 2 Input This clock times all bus transfers on AHB2. All signal timings on AHB2
are related to the rising edge of HCLKM.

HCLKS 1 Input This clock times all bus transfers on AHB1. All signal timings on AHB1
are related to the rising edge of HCLKS.

HGRANTM 2 Input This signal indicates that the bridge is currently the highest priority
master. Ownership of the address and control signals changes at the end
of a transfer when HREADYM is HIGH, so the master gets access to
the bus when both HREADYM and HGRANTM are HIGH.

HLOCKM 2 Output When HIGH, this signal indicates that the master requires locked access
on bus 2 and no other master must be granted that bus until this signal
is LOW.

HMASTLOCKS 1 Input When HIGH, this signal indicates that the master on bus 1 requires
locked access through the bridge and no other master must be granted
the bus until this signal is LOW.

HPROTM[3:0] 2 Output The protection control signals provide additional information about a
bus access and are primarily intended for use by any module that wants
to implement some level of protection.

HPROTS[3:0] 1 Input The protection control signals provide additional information about a
bus access and are primarily intended for use by any module that wants
to implement some level of protection.

HRDATAM 2 Input The read data bus, 32 or 64-bit, transfers data from the slave(s) on bus
2, to the bridge, during read operations.

HRDATAS 1 Output The read data bus, 32 or 64-bit, transfers data from the bridge to the bus
master during a read operation.

HREADYM 2 Input When HIGH, the HREADYM signal indicates that a transfer has
finished on bus 2. This signal can be driven LOW by a slave to extend a
transfer.

HREADYOUTS 1 Output When HIGH, the HREADYOUTS signal indicates that a transfer has
finished on bus 1. This signal can be driven LOW by the bridge to
extend a transfer.

HREADYS 1 Input Input version of HREADYOUTS, required by the slave interface.

Table 3-12 Synchronous AHB-AHB bridge interface signals (continued)

Signal AHB bus Direction Description
3-58 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
HRESETn - Input This signal is active LOW and resets the system and the bus.

HRESPM[1:0] 2 Input The transfer response provides additional information on the status of a
transfer. Four different responses are supported, OKAY, ERROR,
RETRY, and SPLIT.

HRESPS[1:0] 1 Output The transfer response provides additional information on the status of a
transfer. Only two responses are supported on the slave interface,
OKAY and ERROR.

HSELS 1 Input The bridge slave interface uses the HSELS signal to determine when it
must respond to a bus transfer.

HSIZEM[2:0] 2 Output Indicates the size of the transfer. The bridge uses 32-bit data for read
and write transfers.

HSIZES[2:0] 1 Input Indicates the size of the transfer. The bridge uses 32-bit data for read
and write transfers.

HTRANSM[1:0] 2 Output Indicates the type of the current transfer, and can be
NONSEQUENTIAL, SEQUENTIAL, IDLE, or BUSY.

HTRANSS[1:0] 1 Input Indicates the type of the current transfer, and can be
NONSEQUENTIAL, SEQUENTIAL, IDLE, or BUSY.

HWDATAM 2 Output The write data bus, 32 or 64-bit, transfers data from the bridge to the
slave(s) on bus 2, during write operations.

HWDATAS 1 Input The write data bus, 32 or 64-bit, transfers data from the bus master to
the bridge during a write operation.

HWRITEM 2 Output When HIGH, this signal indicates a write transfer, and when LOW, a
read transfer.

HWRITES 1 Input When HIGH, this signal indicates a write transfer, and when LOW, a
read transfer.

Table 3-12 Synchronous AHB-AHB bridge interface signals (continued)

Signal AHB bus Direction Description
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-59

AHB Components
3.13 Asynchronous AHB-AHB bridge

The asynchronous AHB-AHB bridge, Ahb2AhbAsync32 and Ahb2AhbAsync64, provides a
unidirectional link between two AHB domains with asynchronous clocks. Its function
is to enable a master to access a slave on another bus, with the transfer initiated from
one side only. The asynchronous bridge is not intended for performance applications,
because the synchronization logic increases the overhead of a registered bridge design.

The asynchronous AHB-AHB bridge has the following features:

• 32 or 64-bit data bus

• transfer sequences can be locked across the bridge

• bursts are split into single transfers to prevent excessive latency from BUSY
transfers

• SPLIT and RETRY responses are serviced by the bridge, so remain local to the
issuing slave.

Figure 3-31 shows the asynchronous AHB-AHB bridge module.

Figure 3-31 Asynchronous AHB-AHB bridge module components

3.13.1 Programmer's model

The following sections describe the programming and operation of the asynchronous
AHB-AHB bridge:

• Reset on page 3-61

• Low power operation on page 3-61

• Slave responses on page 3-61

• Locked transfers on page 3-61.

Asynchronous

slave

AHB1 AHB2Synchronization

registers

Asynchronous

master

HCLKS HCLKM

Ahb2AhbAsync

AHB signals

Control

signals
3-60 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
Reset

The bridge has two asynchronous reset domains, HRESETSn and HRESETMn. Each
reset must be asserted for at least one cycle of the relevant clock. No transfer must be
attempted through the bridge until both sides have exited from reset.

Low power operation

For low power operation, you can stop the clock on AHB2 or hold it in reset while
keeping AHB1 active, if any current bridge transfer has completed and the bridge is not
addressed while AHB2 is inactive.

Slave responses

Slave responses of SPLIT or RETRY are serviced locally in the appropriate way. The
transfer is driven back onto the bus while AHB1 is stalled. The behavior of the master
to an ERROR response is undefined, so the error is passed across the bridge to the
originating master, and can either continue or abort the current burst.

Locked transfers

If the bridge is accessed with a locked transfer, that is, HMASTLOCKS is HIGH, it
locks the transfer onto AHB2, using HLOCKM.

Note
 For a succession of locked transfers on AHB1, the bridge keeps AHB2 locked by
keeping HLOCKM asserted for the IDLE transfers between NONSEQ transactions,
even if not directed at the bridge. HLOCKM remains asserted after a locked transfer,
until the next unlocked transfer has propagated across the bridge.

3.13.2 Signal descriptions

Table 3-13 on page 3-62 lists the interface signals for the asynchronous AHB-AHB
bridge.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-61

AHB Components
Table 3-13 Asynchronous AHB-AHB bridge interface signals

Signal Block
Clock
domain

Direction Description

HADDRM[31:0] Master
interface

Master Output The 32-bit system address bus.

HADDRS[31:0] Slave
interface

Slave Input The 32-bit system address bus.

HBURSTM[2:0] Master
interface

Master Output Indicates if the transfer forms part of a burst. The bridge
only generates transfers of type SINGLE.

HBURSTS[2:0] Slave
interface

Slave Input Indicates if the transfer forms part of a burst. The bridge
supports all types of transfer, that is single,
incrementing, or wrapping.

HBUSREQM Master
interface

Master Output A signal from the bridge to the arbiter, that indicates that
the master interface requires bus 2.

HCLKM Master
interface

- Input This clock times all bus transfers. All signal timings on
the AHB2 are related to the rising edge of HCLKM.

HCLKS Slave
interface

- Input This clock times all bus transfers. All signal timings on
AHB1 are related to the rising edge of HCLKS.

HGRANTM Master
interface

Master Input This signal indicates that the bridge is currently the
highest priority master. Ownership of the address and
control signals changes at the end of a transfer when
HREADYM is HIGH, so the master gets access to the
bus when both HREADYM and HGRANTM are
HIGH.

HLOCKM Master
interface

Master Output When HIGH, this signal indicates that the master
requires locked access on bus 2.

HMASTLOCKS Slave
interface

Slave Input When HIGH, this signal indicates that the master on bus
1 requires locked access through the bridge.

HPROTM[3:0] Master
interface

Master Output The protection control signals provide additional
information about a bus access and are passed across the
bridge.

HPROTS[3:0] Slave
interface

Slave Input The protection control signals provide additional
information about a bus.

HRDATAM[31:0] Master
interface

Master Input The 32-bit read data bus transfers data from the slave(s)
on bus 2, to the bridge, during read operations.
3-62 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
HRDATAS[31:0] Slave
interface

Slave Output The 32-bit read data bus transfers data from the bridge
to the bus master during a read operation.

HREADYM Master
interface

Master Input When HIGH, the HREADYM signal indicates that a
transfer has finished on bus 2. This signal can be driven
LOW by a slave to extend a transfer.

HREADYOUTS Slave
interface

Slave Output When HIGH, the HREADYOUTS signal indicates that
a transfer has finished on bus 1. This signal can be
driven LOW by the bridge to extend a transfer.

HREADYS Slave
interface

Slave Input Multiplexed HREADYOUT signals to indicate when
transfer is complete on AHB1.

HRESETMn Master
interface

Master Input This signal is active LOW and resets AHB2.

HRESETSn Slave
interface

Slave Input This signal is active LOW and resets AHB1.

HRESPM[1:0] Master
interface

Master Input The transfer response provides additional information
on the status of a transfer. Four different responses are
supported, OKAY, ERROR, RETRY, and SPLIT.

HRESPS[1:0] Slave
interface

Slave Output The transfer response provides additional information
on the status of a transfer.

HSELS Slave
interface

Slave Input The bridge slave interface uses the HSELS signal to
determine when it must respond to a bus transfer.

HSIZEM[M:0] Master
interface

Master Output Indicates the size of the transfer. The bridge supports
sizes up to 32-bit.

HSIZES[2:0] Slave
interface

Slave Input Indicates the size of the transfer. The bridge supports
sizes up to 32-bit.

HTRANSM[1:0] Master
interface

Master Output Indicates the type of the current transfer. The bridge
supports transfers of type IDLE or NONSEQ.

HTRANSS[1:0] Slave
interface

Slave Input Indicates the type of the current transfer, and can be
NONSEQUENTIAL, SEQUENTIAL, IDLE, or BUSY.

HWDATAM[31:0] Master
interface

Master Output The 32-bit write data bus transfers data from the bridge
to the slave(s) on bus 2, during write operations.

Table 3-13 Asynchronous AHB-AHB bridge interface signals (continued)

Signal Block
Clock
domain

Direction Description
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-63

AHB Components
HWDATAS[31:0] Slave
interface

Slave Input The 32-bit write data bus transfers data from the bus
master to the bridge during a write operation.

HWRITEM Master
interface

Master Output When HIGH, this signal indicates a write transfer, and
when LOW, a read transfer.

HWRITES Slave
interface

Slave Input When HIGH, this signal indicates a write transfer, and
when LOW, a read transfer.

SCANENABLE Scan Slave Input Scan test mode enable.

SCANINHCLKM Scan Master Input Scan chain input for HCLKM registers.

SCANINHCLKS Scan Slave Input Scan chain input for HCLKS registers.

SCANOUTHCLKM Scan Master Output Scan chain output for HCLKM registers.

SCANOUTHCLKS Scan Slave Output Scan chain output for HCLKS registers.

Table 3-13 Asynchronous AHB-AHB bridge interface signals (continued)

Signal Block
Clock
domain

Direction Description
3-64 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
3.14 AHB-Lite to AHB wrapper

AHB-Lite is a subset of the full AHB specification, and is intended for designs that only
use a single bus master. This can either be a simple single-master system or a multi-layer
AHB system where there is only one AHB master per layer.

Figure 3-32 shows the AHB-Lite to AHB wrapper, Lite2Ahb.

Figure 3-32 AHB-Lite to AHB wrapper

3.14.1 Programmer's model

The wrapper is designed to enable any AHB-Lite master to connect to a standard AHB
bus. This requires the wrapper to add support for the following features:

Bus ownership When a transfer is initiated by the master, HTRANSS[1:0] is
NONSEQ, the wrapper generates a request using HBUSREQM.
The bus is also requested again if ownership is lost mid-burst.

Early terminated bursts

If a burst is terminated prematurely through loss of the bus, the
wrapper holds the master using HREADYMUXS and rebuilds
the burst when bus control is regained.

AHB wrapper

HREADYM

HBUSREQM

HBURSTM[2:0]

HTRANSM[1:0]

HPROTM[3:0]

HSIZEM[2:0]

HWRITEM

HADDRM[31:0]

HLOCKM

HGRANTM

HRESPM[1:0]HRESPS[1:0]

HREADYMUXS

HBURSTS[2:0]

HTRANSS[1:0]

HPROTS[3:0]

HSIZES[2:0]

HWRITES

HADDRS[31:0]

HMASTLOCKS

AHB-Lite AHB

H
C

L
K

H
R

E
S

E
T

n

ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-65

AHB Components
Slave responses The slave responses of SPLIT and RETRY are handled by the
wrapper. Bursts are also regenerated in these cases. ERROR
responses are passed to the master through the HRESPS[1:0]
signal and the master must determine an appropriate action.

Locked transfers The HMASTLOCK signal is retimed into the arbitration phase as
HLOCK. Additionally, unlocked IDLE transfers are inserted
between locked bursts, as recommended in the AMBA
Specification (Rev 2.0).
3-66 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
3.15 Interrupt controller

The interrupt controller, Interrupt, provides a software interface to the interrupt system.
In an ARM system, two levels of interrupt are available:

• Fast Interrupt Request (FIQ) for fast, low latency interrupt handling

• Interrupt Request (IRQ) for more general interrupts.

Only a single FIQ source at a time is generally used in a system, to provide a true
low-latency interrupt. This has the following benefits:

• You can execute the interrupt service routine directly without determining the
source of the interrupt.

• Interrupt latency is reduced. You can use the banked registers available for FIQ
interrupts more efficiently, because a context save is not required.

There are 32 interrupt lines. The interrupt controller uses a bit position for each different
interrupt source. The software can control each request line to generate software
interrupts.

Note
 Unused interrupt lines must be tied LOW to disable them.

Figure 3-33 shows a block diagram of the interrupt controller.

Figure 3-33 Interrupt controller components

Interrupt

request logic

Interrupt controller

Control logic

AHB slave

interface

Daisy chain

IRQ vector

address and

priority logic

IRQ interrupt logic

FIQ interrupt logic
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-67

AHB Components
The nonvectored and daisy-chained IRQ interrupts provide an address for an Interrupt
Service Routine (ISR). Reading from the vector interrupt address register, ICVectAddr,
provides the address of the ISR, and updates the interrupt priority hardware that masks
out the current and any lower priority interrupt requests. Writing to the ICVectAddr
register indicates to the interrupt priority hardware that the current interrupt is serviced,
enabling lower priority interrupts to go active.

The FIQ interrupt has the highest priority, followed by nonvectored IRQ interrupts.
Daisy-chained interrupts have the lowest priority. A programmed interrupt request
enables you to generate an interrupt under software control. This register is typically
used to downgrade an FIQ interrupt to an IRQ interrupt.

Note
 The priority of the FIQ over IRQ is set by the ARM core. The interrupt controller can
raise both an FIQ and an IRQ at the same time.

The IRQ and FIQ request logic has an asynchronous path. This enables interrupts to be
asserted when the clock is disabled.

3.15.1 Programmer’s model

Table 3-14 lists how, by convention, the IRQ interrupt bits [5:1] must be used. Bit 0 and
bit 6 upwards are available for use as required. For the FIQ interrupt, the bits can be used
as required.

The software can control the source interrupt lines to generate software interrupts.
These interrupts are generated before interrupt masking, in the same way as external
source interrupts. Software interrupts are cleared by writing to the software interrupt
clear register, ICSoftIntClear. See Software Interrupt Clear Register on page 3-74. This
is normally done at the end of the interrupt service routine.

Table 3-14 Interrupt standard configuration

Bi
t

Interrupt source

1 Software interrupt

2 Comms Rx

3 Comms Tx

4 Timer 1

5 Timer 2
3-68 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
Interrupt flow sequence

The following procedure shows the sequence for the vectored interrupt flow:

1. An interrupt occurs.

2. The ARM processor branches to either the IRQ or FIQ exception vector.

3. If the interrupt is an IRQ, read the ICVectAddr register and branch to the interrupt
service routine. This can be done using an LDR PC instruction. Reading the
ICVectorAddr register updates the interrupt controllers hardware priority register.

4. Stack the workspace so that IRQ interrupts can be re-enabled.

5. Enable the IRQ interrupts so that a higher priority can be serviced.

6. Execute the Interrupt Service Routine (ISR).

7. Clear the requesting interrupt in the peripheral, or write to the ICSoftIntClear
register if the request was generated by a software interrupt.

8. Disable the interrupts and restore the workspace.

9. Write to the ICVectAddr register. This clears the respective interrupt in the
internal interrupt priority hardware.

10. Return from the interrupt. This re-enables the interrupts.

Simple interrupt flow

The following procedure shows how you can use the interrupt controller without using
vectored interrupts or the interrupt priority hardware. For example, you can use it for
debugging.

1. An interrupt occurs.

2. Branch to IRQ or FIQ exception vector.

3. Branch to the interrupt handler.

4. Interrogate the ICIRQStatus register to determine the source that generated the
interrupt, and prioritize the interrupts if there are multiple active interrupt sources.
This takes a number of instructions to compute.

5. Branch to the correct ISR.

6. Execute the ISR.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-69

AHB Components
7. Clear the interrupt. If the request was generated by a software interrupt, the
ICSoftIntClear register must be written to.

8. Check the ICIRQStatus register to ensure that no other interrupt is active. If there
is an active request go to Step 4.

9. Return from the interrupt.

Note
 If the above flow is used, you must not read or write to the ICVectorAddr register.

To ensure that the vector address register can be read in a single instruction, the IC base
address must be 0xFFFFF000, the upper 4K of memory. See Vector Address Register on
page 3-75. Placing the IC anywhere else in memory increases interrupt latency as the
ARM processor is unable to access the ICVectorAddr register using a single instruction.
The offset of any particular register from the base address is fixed.

Table 3-15 lists the registers in base offset order.

Table 3-15 Interrupt controller registers

Name
Base
offset

Type Width Reset value Description

ICIRQSTATUS 0x000 Read 32 0x00000000 See IRQ Status Register on page 3-72

ICFIQSTATUS 0x004 Read 32 0x00000000 See FIQ Status Register on page 3-72

ICRAWINTR 0x008 Read 32 - See Raw Interrupt Status Register on page 3-72

ICINTSELECT 0x00C Read/
write

32 0x00000000 See Interrupt Select Register on page 3-73

ICINTENABLE 0x010 Read/
write

32 0x00000000 See Interrupt Enable Register on page 3-73

ICINTENCLEAR 0x014 Write 32 - See Interrupt Enable Clear Register on page 3-73

ICSOFTINT 0x018 Read/
write

32 0x00000000 See Software Interrupt Register on page 3-74

ICSOFTINTCLEAR 0x01C Write 32 - See Software Interrupt Clear Register on
page 3-74

ICPROTECTION 0x020 Read/
write

1 0x0 See Protection Enable Register on page 3-74
3-70 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
ICVECTADDR 0x030 Read/
write

32 0x00000000 See Vector Address Register on page 3-75

ICDEFVECTADDR I0x034 Read/
write

32 0x00000000 See Default Vector Address Register on
page 3-76

ICITCR 0x300 Read/
write

1 - See Test Control Register on page 3-76

ICITIP1 I0x304 Read 2 - See Test Input Register 1 on page 3-76

ICITIP2 0x308 Read 32 - See Test Input Register 2 on page 3-77

ICITOP1 0x30C Read 2 0x0 See Test Output Register 1 on page 3-77

ICITOP2 0x310 Read 32 0x00000000 See Test Output Register 2 on page 3-78

ICPERIPHID0 0xFE0 Read 8 0x08 See Peripheral Identification Registers on
page 3-78

ICPERIPHID1 0xFE4 Read 8 0x18 See Peripheral Identification Registers on
page 3-78

ICPERIPHID2 0xFE8 Read 8 0x04 See Peripheral Identification Registers on
page 3-78

ICPERIPHID3 0xFEC Read 8 0x00 See Peripheral Identification Registers on
page 3-78

ICPCELLID0 0xFF0 Read 8 0x0D See PrimeCell Identification Registers on
page 3-81

ICPCELLID1 0xFF4 Read 8 0xF0 See PrimeCell Identification Registers on
page 3-81

ICPCELLID2 0xFF8 Read 8 0x05 See PrimeCell Identification Registers on
page 3-81

ICPCELLID3 0xFFC Read 8 0xB1 See PrimeCell Identification Registers on
page 3-81

Table 3-15 Interrupt controller registers (continued)

Name
Base
offset

Type Width Reset value Description
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-71

AHB Components
IRQ Status Register

The ICIRQSTATUS register is read-only. It provides the status of interrupts [31:0] after
IRQ masking. Table 3-16 lists the register bit assignments.

FIQ Status Register

The ICFIQSTATUS register is read-only. It provides the status of the interrupts after
FIQ masking. Table 3-17 lists the register bit assignments.

Raw Interrupt Status Register

The ICRAWINTR register is read-only. It provides the status of the source interrupts,
and software interrupts, to the interrupt controller. Table 3-18 lists the register bit
assignments.

Table 3-16 ICIRQSTATUS Register bit assignments

Bits Name Function

[31:0] IRQStatus Shows the status of the interrupts after masking by the ICIntEnable and ICIntSelect registers. A
HIGH bit indicates that the interrupt is active, and generates an interrupt to the processor.

Table 3-17 ICFIQSTATUS Register bit assignments

Bits Name Function

[31:0] FIQStatus Shows the status of the interrupts after masking by the ICIntEnable and ICIntSelect registers. A
HIGH bit indicates that the interrupt is active, and generates an interrupt to the processor.

Table 3-18 ICRAWINTR Register bit assignments

Bits Name Function

[31:0] RawInterrupt Shows the status of the interrupts before masking by the enable registers. A HIGH bit indicates
that the appropriate interrupt request is active before masking.
3-72 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
Interrupt Select Register

The ICINTSELECT register is read/write. It selects whether the corresponding
interrupt source generates an FIQ or an IRQ interrupt. Table 3-19 lists the register bit
assignments.

Interrupt Enable Register

The ICINTENABLE register is read/write. It enables the interrupt request lines, by
masking the interrupt sources for the IRQ interrupt. Table 3-20 lists the register bit
assignments.

Interrupt Enable Clear Register

The ICINTENCLEAR register is write-only. It clears bits in the ICIntEnable register.
Table 3-21 lists the register bit assignments.

Table 3-19 ICINTSELECT Register bit assignments

Bits Name Function

[31:0] IntSelect Selects type of interrupt for interrupt request:

0 = IRQ interrupt

1 = FIQ interrupt.

Table 3-20 ICINTENABLE Register bit assignments

Bits Name Function

[31:0] IntEnable Enables the interrupt request lines:

0 = Interrupt disabled.

1 = Interrupt enabled. Enables interrupt request to processor.

On reset, all interrupts are disabled. A HIGH bit sets the corresponding bit in the ICIntEnable
register. A LOW bit has no effect.

Table 3-21 ICINTENCLEAR Register bit assignments

Bits Name Function

[31:0] IntEnable Clear Clears bits in the ICIntEnable register.

A HIGH bit clears the corresponding bit in the ICIntEnable register. A LOW bit has no effect.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-73

AHB Components
Software Interrupt Register

The ICSOFTINT register is read/write. It generates software interrupts. Table 3-22 lists
the register bit assignments.

Software Interrupt Clear Register

The ICSOFTINTCLEAR register is write-only. It clears bits in the ICSoftInt register.
Table 3-23 lists the register bit assignments.

Protection Enable Register

The ICPROTECTION register is read/write. It enables or disables protected register
access. Figure 3-34 shows the register bit assignments.

Figure 3-34 ICPROTECTION Register bit assignments

Table 3-22 ICSOFTINT Register bit assignments

Bits Name Function

[31:0] SoftInt Setting a bit generates a software interrupt for the specific source interrupt before interrupt masking.

A HIGH bit sets the corresponding bit in the ICSoftInt register. A LOW bit has no effect.

Table 3-23 ICSOFTINTCLEAR Register bit assignments

Bits Name Function

[31:0] SoftIntClear Clears bits in the ICSoftInt register.

A HIGH bit clears the corresponding bit in the ICSoftInt register. A LOW bit has no effect.

Protection

Undefined

31 0
3-74 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
Table 3-24 lists the register bit assignments.

Note
 If the bus master cannot generate accurate protection information, leave this register in
its reset state to enable User mode access.

Vector Address Register

The ICVECTADDR register is read/write. It contains the Interrupt Service Routine
(ISR) address of the currently active interrupt. Table 3-25 lists the register bit
assignments.

Reading from this register provides the address of the ISR, and indicates to the priority
hardware that the interrupt is being serviced. Writing to this register indicates to the
priority hardware that the interrupt has been serviced. You must use the register as
follows:

• the ISR reads the ICVectAddr register when an IRQ interrupt is generated

• at the end of the ISR, the ICVectAddr register is written to, to update the priority
hardware.

Reading or writing to the register at other times can cause incorrect operation.

Table 3-24 ICPROTECTION Register bit assignments

Bits Name Function

[31:1] Reserved -

[0] Protection Enables or disables protected register access.

When enabled, only privileged mode accesses, reads and writes, can access the interrupt controller
registers.

When disabled, both User mode and privileged mode can access the registers.

This register is cleared on reset, and can only be accessed in privileged mode.

Table 3-25 ICVECTADDR Register bit assignments

Bits Name Function

[31:0] VectorAddr Contains the address of the currently active ISR. Any writes to this register clear the interrupt.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-75

AHB Components
Default Vector Address Register

The ICDEFVECTADDR register is read/write. It contains the default ISR address.
Table 3-26 lists the register bit assignments.

Test Control Register

The ICITCR register is read/write. It selects test mode, and is cleared on reset.
Figure 3-35 shows the register bit assignments.

Figure 3-35 ICITCR Register bit assignments

Table 3-27 lists the register bit assignments.

Test Input Register 1

The ICITIP1 register is read-only. It indicates the status of the nICIRQIN and
nICFIQIN daisy chain input lines. Figure 3-36 on page 3-77 shows the register bit
assignments.

Table 3-26 ICDEFVECTADDR Register bit assignments

Bits Name Function

[31:0] Default VectorAddr Contains the address of the default ISR handler

ITEN

Undefined

31 0

Table 3-27 ICITCR Register bit assignments

Bits Name Function

[31:1] Reserved -

[0] ITEN Selects test mode, to use ICITIP test registers in place of input signals
3-76 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
Figure 3-36 ICITIP1 Register bit assignments

Table 3-28 lists the register bit assignments.

Test Input Register 2

The ICITIP2 register is read-only. It indicates the status of the ICVECTADDRIN daisy
chain input lines. Table 3-29 lists the register bit assignments.

Test Output Register 1

The ICITOP1 register is read-only. It indicates the status of the nICIRQ and nICFIQ
interrupt request lines to the processor. Figure 3-37 shows the register bit assignments.

Figure 3-37 ICITOP1 Register bit assignments

UndefinedFI

31 0

Undefined

5678

Table 3-28 ICITIP1 Register bit assignments

Bits Name Function

[31:8] Reserved -

[7] I Indicates status of nICIRQIN when ICITCR register is LOW

[6] F Indicates status of nICFIQIN when ICITCR register is LOW

[5:0] Reserved -

Table 3-29 ICITIP2 Register bit assignments

Bits Name Function

[31:0] VectorAddrIn Indicates status of ICVECTADDRIN when ICITCR register is LOW

UndefinedFI

31 0

Undefined

5678
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-77

AHB Components
Table 3-30 lists the bit assignments for the ICITOP1 register.

Test Output Register 2

The ICITOP2 register is read-only. It indicates the status of the ICVECTADDROUT
lines from the interrupt controller. Table 3-31 lists the register bit assignments.

Peripheral Identification Registers

The ICPERIPHID0-3 registers are four 8-bit registers, that span address locations
0xFE0-0xFEC. The registers can conceptually be treated as a single 32-bit register. The
read-only registers provide the following options of the peripheral:

Part number [11:0]

This identifies the peripheral. The three digit product code 0x90 is used
for the interrupt controller.

Designer [19:12]

This is the identification of the designer. ARM Ltd is 0x41 (ASCII A).

Revision number [23:20]

This is the revision number of the peripheral. The revision number starts
from 0.

Configuration [31:24]

This is the configuration option of the peripheral. The configuration value
is 0.

Table 3-30 ICITOP1 Register bit assignments

Bits Name Function

[31:8] Reserved -

[7] I Status of nICIRQ interrupt line. If set HIGH, the interrupt request is active

[6] F Status of nICFIQ interrupt line. If set HIGH, the interrupt request is active

[5:0] Reserved -

Table 3-31 ICITOP2 Register bit assignments

Bits Name Function

[31:0] VectorAddrOut Indicates status of ICVECTADDROUT from interrupt controller
3-78 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
Figure 3-38 shows the register bit assignments.

Figure 3-38 ICPERIPHID0-3 Register bit assignments

The four 8-bit peripheral identification registers are described in the following sections:

• Peripheral Identification Register 0

• Peripheral Identification Register 1 on page 3-80

• Peripheral Identification Register 2 on page 3-80

• Peripheral Identification Register 3 on page 3-80.

Peripheral Identification Register 0

The ICPERIPHID0 register is read-only. It is hard-coded and the fields within the
register determine the reset value. Table 3-32 lists the register bit assignments.

Part number

Part

number 1

Part

number 0

Designer

0

Designer

Revision

numberConfiguration

Configuration Revision

number
Conceptual register bit assignment

Actual register bit assignment

7 0 7 4 3 0 7 4 3 0 7 0

31 24 23 20 19 16 15 12 11 8 7 0

Designer

1

Table 3-32 ICPERIPHID0 Register bit assignments

Bits Name Function

[31:8] - Reserved, read undefined, must be written as zeros

[7:0] Partnumber0 These bits read back as 0x90
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-79

AHB Components
Peripheral Identification Register 1

The ICPERIPHID1 register is read-only. It is hard-coded and the fields within the
register determine the reset value. Table 3-33 lists the register bit assignments.

Peripheral Identification Register 2

The ICPERIPHID2 register is read-only. It is hard-coded and the fields within the
register determine the reset value. Table 3-34 lists the register bit assignments.

Peripheral Identification Register 3

The ICPERIPHID3 register is read-only. It is hard-coded and the fields within the
register determine the reset value. Table 3-35 lists the register bit assignments.

Table 3-33 ICPERIPHID1 Register bit assignments

Bits Name Function

[31:8] - Reserved, read undefined, must be written as zeros

[7:4] Designer0 These bits read back as 0x1

[3:0] Partnumber1 These bits read back as 0x1

Table 3-34 ICPERIPHID2 Register bit assignments

Bits Name Function

[31:8] - Reserved, read undefined, must be written as zeros

[7:4] Revision These bits read back as 0x0

[3:0] Designer1 These bits read back as 0x4

Table 3-35 ICPERIPHID3 Register bit assignments

Bits Name Function

[31:8] - Reserved, read undefined, must be written as zeros

[7:0] Configuration These bits read back as 0x0
3-80 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
PrimeCell Identification Registers

The ICPCELLID0-3 registers are four 8-bit registers, that span address locations
0xFF0-0xFFC. The read-only register can conceptually be treated as a single 32-bit
register. The register is used as a standard cross-peripheral identification system.
Figure 3-39 shows the register bit assignments.

Figure 3-39 ICPCELLID0-3 Register bit assignments

The four 8-bit registers are described in the following subsections:

• PrimeCell Identification Register 0

• PrimeCell Identification Register 1 on page 3-82

• PrimeCell Identification Register 2 on page 3-82

• PrimeCell Identification Register 3 on page 3-82.

PrimeCell Identification Register 0

The ICPCELLID0 register is read-only. It is hard-coded and the fields within the
register determine the reset value. Table 3-36 lists the register bit assignments.

ICPCELLID3

Conceptual register bit assignment

Actual register bit assignment

7 0 7 0 7 0 7 0

31 24 23 16 15 8 7 0

ICPCELLID2 ICPCELLID1 ICPCELLID0

ICPCELLID3 ICPCELLID2 ICPCELLID1 ICPCELLID0

Table 3-36 ICPCELLID0 Register bit assignments

Bits Name Function

[31:8] - Reserved, read undefined, must be written as zeros

[7:0] ICPCellID0 These bits read back as 0x0D
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-81

AHB Components
PrimeCell Identification Register 1

The ICPCELLID1 register is read-only. It is hard-coded and the fields within the
register determine the reset value. Table 3-37 lists the register bit assignments.

PrimeCell Identification Register 2

The ICPCELLID2 register is read-only. It is hard-coded and the fields within the
register determine the reset value. Table 3-38 lists the register bit assignments.

PrimeCell Identification Register 3

The ICPCELLID3 register is read-only. It is hard-coded and the fields within the
register determine the reset value. Table 3-39 lists the register bit assignments.

Table 3-37 ICPCELLID1 Register bit assignments

Bits Name Function

[31:8] - Reserved, read undefined, must be written as zeros

[7:0] ICPCellID1 These bits read back as 0xF0

Table 3-38 ICPCELLID2 Register bit assignments

Bits Name Function

[31:8] - Reserved, read undefined, must be written as zeros

[7:0] ICPCellID2 These bits read back as 0x05

Table 3-39 ICPCELLID3 Register bit assignments

Bits Name Function

[31:8] - Reserved, read undefined, must be written as zeros

[7:0] ICPCellID3 These bits read back as 0xB1
3-82 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
3.15.2 Signal descriptions

Table 3-40 lists non-AMBA signals that the interrupt controller uses.

Table 3-40 Interrupt controller signals

Signal Type Direction Description

HSELIC Input Decoder Slave select signal. This is a combinatorial decode of the
address bus. It indicates that the current transfer is intended for
the selected slave.

ICINTSOURCE[31:0] Input Peripheral
interrupt
request

Interrupt source input. Unused interrupt lines must be tied
LOW to disable them.

ICVECTADDRIN[31:0] Input External
interrupt
controller

Connects to the ICVECTADDROUT[31:0] signal of the
previous interrupt controller if daisy chaining is used.

Connects to logic 0 if the interrupt controller is not
daisy-chained.

ICVECTADDROUT[31:0] Output Interrupt
controller

Connects to the ICVECTADDRIN[31:0] signal of the next
interrupt controller if daisy chaining is used.

Leave unconnected if the interrupt controller is not
daisy-chained.

nICFIQ Output Interrupt
controller

Fast interrupt request to processor.

nICFIQIN Input External
interrupt
controller

Connects to the nICFIQ signal of the previous interrupt
controller if daisy chaining is used.

Connects to logic 1 if the interrupt controller is the last in the
daisy chain, or if interrupt controller is not daisy-chained.

nICIRQ Output Interrupt
controller

Interrupt request to processor.

nICIRQIN Input External
interrupt
controller

Connects to the nICIRQ signal of the previous interrupt
controller if daisy chaining is used.

Connects to logic 1 if the interrupt controller is the last in the
daisy chain, or if interrupt controller is not daisy-chained.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-83

AHB Components
Note
 For a description of the AMBA signals used by the interrupt controller, see AMBA
signals on page 1-3.

SCANENABLE Input Scan
controller

Scan enable.

SCANINHCLK Input Scan
controller

Scan data input for HCLK domain.

SCANOUTHCLK Output Scan
controller

Scan data output for HCLK domain.

Table 3-40 Interrupt controller signals (continued)

Signal Type Direction Description
3-84 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
3.16 64-bit to 32-bit downsizer

The AHB downsizer module, Downsizer64, converts 64-bit wide AHB master data buses
to narrower 32-bit slave AHB data buses. The downsizer module reduces the width of
the data bus by half from an AHB master to an AHB slave. You can use full-width
master transfers. This process involves modification of the transfer type, burst, and size,
and latching half of the master read data. In addition, multiple slave writes or reads
might be required to transfer data to and from the narrow slave.

Figure 3-40 shows the signal interface of the downsizer module.

Figure 3-40 Downsizer module

3.16.1 Programmer's model

Programming details for the downsizer are described in the following sections:

• Downsizer transfers on page 3-86

• Unsupported transfers on page 3-88

• Burst blocking after error on page 3-88

• Slave responses on page 3-89

• Modification of control signals on page 3-89.

Downsizer

HREADYM

HBURSTM[2:0]

HTRANSM[1:0]

HPROTM[3:0]

HSIZEM[2:0]

HWRITEM

HADDRM[31:0]

HMASTLOCKM

HRESPM[1:0]HRESPS[1:0]

HBURSTS[2:0]

HTRANSS[1:0]

HPROTS[3:0]

HSIZES[2:0]

HWRITES

HADDRS[31:0]

HMASTLOCKS

HCLK

HRESETn

HWDATAS[63:0]

HREADYS

HREADYOUTS

HRDATAS[63:0] HRDATAM[31:0]

HREADYOUTM

HWDATAM[31:0]

HSELS HSELM

64-bit

AHB bus

32-bit

AHB bus

AHB

slave

interface

AHB

master

interface
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-85

AHB Components
Downsizer transfers

The following are options for downsizer transfers:

Downsizer not selected

When the HSELS signal of the downsizer module is LOW, the
transfer is passed to the 32-bit AHB and HSELM is driven LOW.
The 32-bit slaves must ignore the transfers by monitoring
HSELM and HADDRM. HREADYS from the 64-bit bus is
output to HREADYM. All 32-bit devices connected to the 32-bit
AHB must monitor this HREADYM signal to determine the end
of the current transfer and the start of the next.

Narrow transfers, downsizer selected

If the downsizer module is selected, and the transfer is 32 bits or
less, the downsizer module passes the transfer through. All of the
control signals and responses from the slave are left unmodified.
In this case, the only function of the downsizer is to route the
appropriate half of the wide master write data bus on to the narrow
slave data bus for write transfers.

Read transfers require even less control and the narrow slave read
data is replicated across the wide master bus.

Table 3-41 shows the handling of narrow transfers.

For 32, 16, and 8-bit transfers, HWDATA is selected by bit [2] of
the transfer address. If this bit is set to 0, HWDATA[31:0] is
routed to the 32-bit AHB. If this bit is set to 1, bits [63:32] are
routed.

If an ERROR, SPLIT, or RETRY response is received from the
32-bit slave, the downsizer module automatically terminates the
current transfer by passing the response to the 64-bit bus. If the
current transfer request on the 64-bit bus is a valid transfer
(NON_SEQ or SEQ), it is captured by the registers in the

Table 3-41 Narrow transfer handling

Transfer on
64-bit AHB

Transfer on
32-bit AHB

Address

32, 16, or 8-bit
transfer

32, 16, or 8-bit
transfer

HADDR pass through.

If HADDR[2] = 0 then HWDATAS[31:0] pass through else HWDATAS[63:32] pass
through. HRDATAS = HRDATAM, HRDATAM.
3-86 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
downsizer module and is applied to the 32-bit AHB one cycle
later. The downsizer module inserts a wait state on the 64-bit bus
to ensure the next transfer is not missed.

If the transfer is a burst and an ERROR response is received from
a 32-bit slave, the rest of the burst is blocked. This behavior is
generated by the error-blocking logic and can be removed from
the code if necessary.

Wide transfers, downsizer selected

The role of the downsizer module is more involved for 64-bit
transfers. For both read and write transfers, the wide master
transfers are broken down into two narrow slave cycles. The
address going to the slave is modified, to ensure that the two slave
accesses go to different address locations. Table 3-42 shows the
address line modification and data routing.

64-bit write transfers are split into two 32-bit transfers on two
successive addresses. Table 3-42 lists the generation of
HADDRM[2] and the routing of data write. Because HWDATAS
is stable during the two AHB transfers on the 32-bit AHB, no
register is required to hold HWDATA.

During 64-bit read accesses, the construction of a full-width word
for the master to read two slave accesses is required. The data
from the first read is latched, and the data from the second read
flows straight through the block. Bits [31:0] are always transferred
in the first cycle, and bits [63:32] are transferred in the second
cycle using the next word address. This transfer characteristic
occurs independently of target system endianness.

Table 3-42 Address line modification and data routing

Transfer on
64-bit AHB

Transfer on
32-bit AHB

Address

64-bit transfer Cycle 1 HADDR pass through.

HWDATAS[31:0] pass through.

HRDATAM stored in downsizer module.

HADDRS[2:0] must equal 000.

Cycle 2 HADDRM[2] set to 1.

HWDATAS[63:32] pass through.

HRDATAM pass through to HRDATAS[63:32].

Previous stored data output to HRDATAS[31:0].
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-87

AHB Components
If an ERROR, SPLIT, or RETRY response is received from the
32-bit slave, the response is passed to the 64-bit bus without delay.
If this happens on the first half of the 64-bit transfer, the second
half of the transfer is not carried out.

If a two-cycle response is received, the downsizer module
automatically aborts the current transfer by inserting an IDLE
cycle on the 32-bit bus. If the current transfer request on the 64-bit
bus is a valid transfer, NON_SEQ or SEQ, it is captured by the
registers in the downsizer module and is applied to the 32-bit AHB
one cycle later. The downsizer module inserts a wait state on the
64-bit bus to ensure the next transfer is not missed.

If the transfer is a burst and an ERROR response is received from
32-bit slave, the rest of the burst is blocked.

Unsupported transfers

The following transfer types are not supported by the downsizer module:

Wide transfers

If the downsizer module receives a transfer request greater than 64 bits
wide, with HSELS = 1, the response is undefined.

Unaligned transfers

Unaligned transfers are not supported.

Burst blocking after error

If an ERROR response is received from a 32-bit slave during a 64-bit burst, and if the
64-bit master continues the burst, the rest of the burst is blocked. During blocking, the
ERROR response is fed back to the 64-bit AHB and an IDLE transfer is issued to the
32-bit AHB. The blocking ends when a nonsequential transfer request is detected, or if
HSELS on the downsizer module is LOW. This feature ensures that there is no
discontinuity in HADDR and HTRANS.

The blocking does not apply to 32,16, or 8-bit transfers. In these cases, the rest of the
transfer requests pass through as normal. If a busy cycle is detected during burst
blocking, the downsizer module replies with an OKAY response. However, the
subsequent sequential transfers are still blocked.
3-88 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
If the ERROR response occurs in the last cycle of the burst, no blocking is generated
because the next transfer is an IDLE or nonsequential access. In this case, if the next
access is nonsequential, the downsizer module issues an IDLE cycle on the 32-bit AHB
in the second cycle of the ERROR response, stores the transfer control information, and
applies it to the 32-bit AHB in the following cycle.

A wait state is inserted on the 64-bit bus to enable the 32-bit bus to catch up with the
transfer.

Slave responses

When a RETRY or SPLIT response is received, an IDLE cycle is issued to the 32-bit
AHB in the second cycle of the RETRY or SPLIT response. If the response occurs
during the first half of a 64-bit transfer, the second half is not completed. If the 64-bit
master continues to output a valid transfer while the downsizer module is still selected,
the transfer is stored and applied to the 32-bit AHB a cycle later. A wait state is output
to the 64-bit bus to enable the 32-bit AHB to catch up.

In the case of SPLIT or RETRY responses during 64-bit transfers, the HRDATA value
received is unpredictable and must be ignored.

Modification of control signals

Table 3-43 lists that, for both read and write transfers, the control signals are modified
in the same way.

Table 3-43 Signal mapping when downsizer module is activated

Control signals
Master cycle
type

Replaced by
slave cycles

Comments

HTRANS IDLE to IDLE -

BUSY to BUSY -

NONSEQ to NONSEQ, followed
by a SEQ

No change if transfer is 8, 16, or 32-bit.

SEQ to SEQ, followed by a
SEQ

No change if transfer is 8, 16, or 32-bit.

Exception for WRAP16 boundary,
WRAP16 is mapped to INCR and
NONSEQ is issued at 32-word
boundary.

HADDR[2] = 0 to 0 then 1 No change if transfer is 8, 16, or 32-bit.

= 1 - - Not permitted.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-89

AHB Components
3.16.2 Signal descriptions

Table 3-44 lists the signal connections for the downsizer module.

HSIZE 8/16/32 bit to 8/16/32 bit No conversion required.

64 bit to 32 bit Conversion process activated.

128/256 bit to 32 bit Not supported.

HBURST SINGLE to INCR No change if transfer is 8, 16, or 32-bit.

INCR to INCR No change if transfer is 8, 16, or 32-bit.

INCR4 to INCR8 No change if transfer is 8, 16, or 32-bit.

WRAP4 to WRAP8 No change if transfer is 8, 16, or 32-bit.

INCR8 to INCR16 No change if transfer is 8, 16, or 32-bit.

WRAP8 to WRAP16 No change if transfer is 8, 16, or 32-bit.

INCR16 to INCR No change if transfer is 8, 16, or 32-bit.

WRAP16 to INCR No change if transfer is 8, 16, or 32-bit.

NONSEQ broadcast if WRAP boundary
is reached.

Table 3-43 Signal mapping when downsizer module is activated (continued)

Control signals
Master cycle
type

Replaced by
slave cycles

Comments

Table 3-44 Downsizer interface signals

Signal Direction Description

HCLK Input System bus clock. Logic is triggered on the clock rising edge.

HRESETn Input Activate low asynchronous reset.

64-bit AHB interface signals, AHB slave

HADDRS[31:0] Input Address from the 64-bit AHB.

HBURSTS[2:0] Input Burst size information on the 64-bit AHB.

HMASTLOCKS Input Indicates that the transfer on the 64-bit AHB is locked.

HPROTS[3:0] Input Protection information on the 64-bit AHB.
3-90 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
HRDATAS[63:0] Output Read data to the 64-bit bus.

HREADYOUTS Output HREADY signal feedback to the 64-bit bus, indicating that the downsizer is
ready for next operation.

HREADYS Input HREADY signal on the 64-bit AHB bus, indicating start and end of transfer on
the 64-bit bus.

HRESPS[2:0] Output Response from downsizer module to 64-bit bus.

HSELS Input Active HIGH select signal to indicate 32-bit memory range is accessed on the
64-bit AHB.

HSIZES[2:0] Input Size of the data on the 64-bit AHB.

HWDATAS[63:0] Input Write data from the 64-bit bus.

HWRITES Input Indication of write/read operation on the 64-bit AHB.

32-bit AHB interface signals, AHB master

HADDRM[31:0] Output Address for the 32-bit AHB.

HBURSTM[2:0] Output Burst size information on the 32-bit AHB.

HMASTLOCKM Output Indicates that the transfer on the 32-bit AHB is locked.

HPROTM[3:0] Output Protection information on the 32-bit AHB.

HRDATAM[31:0] Input Data read back from AHB slaves.

HREADYM Output HREADY feedback to all slaves on the 32-bit AHB.

HREADYOUTM Input HREADY from 32-bit AHB slaves or slave multiplexor.

HRESPM[2:0] Input HRESP from 32-bit AHB slaves or slave multiplexor.

HSELM Output Active HIGH select signal to indicate that a 32-bit bus is accessed. This signal can
be used to drive a single AHB slave directly, or drive a secondary AHB decoder
if multiple 32-bit AHB slaves are used.

HSIZEM[2:0] Output Size of the data on the 32-bit AHB.

HWDATAM[31:0] Output Write data to 32-bit AHB slaves.

HWRITEM Output Indication of write/read operation on the 32-bit AHB.

Table 3-44 Downsizer interface signals (continued)

Signal Direction Description
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-91

AHB Components
Instead of reading HREADY from the 64-bit bus or HREADYOUT from the 32-bit
slave multiplexor, the AHB slaves on the 32-bit bus must read the HREADYM
generated from the downsizer module. This signal is multiplexed between
HREADYOUTM, when a slave attached to the M port of the downsizer is selected,
including during 64-bit to 32-bit conversion, and HREADYS, when the downsizer is
not selected.

During a conversion, the 64-bit transfer is split into two 32-bit transfers and all the AHB
slaves on the 32-bit AHB bus are able to read the HREADY signal generated by the
activated 32-bit slave. However, this HREADY signal must not be passed onto
HREADY in the 64-bit bus system because this requires the insertion of wait states for
the second 32-bit AHB transfer. Because of this, an additional HREADYM signal
enables the AHB slave to determine when the end of an AHB transfer has occurred.
3-92 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
3.17 64-bit to 32-bit funnel

The AHB funnel, Funnel, is a data path multiplexor block used to convert a 64-bit data
bus to 32-bit data bus in AMBA systems. This module is used where the 32-bit slaves
are to be accessed by a 64-bit master using transfers of word size or smaller. Figure 3-41
shows the signal interface of the funnel module.

Figure 3-41 Funnel module

3.17.1 Programmer's model

The funnel has a simple interface design to work with AHB devices. Only a small subset
of the AHB signals is implemented on the interface, because the other signals can be
connected directly between AHB masters and slaves.

The funnel has two interfaces:

• one for connection to AHB masters or an 64-bit AHB bus

• a 32-bit AHB data bus interface for connection to a 32-bit AHB slave or 32-bit
AHB slave bus.

Figure 3-42 shows an example application of the funnel.

Figure 3-42 Typical funnel connection

Funnel

HADDR2S

HCLK

HRESETn

HWDATAS[63:0]

HREADYS

HRDATAS[63:0]

HRDATAM[31:0]

HWDATAM[31:0]64-bit

AHB bus

32-bit

AHB bus

AHB

slave

interface

AHB

master

interface

64-bit

AHB

master

64-bit

AHB

32-bit

AHB

slave(s)Funnel

(handling of

data routing)
64-bit data 32-bit data

Control

Response
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-93

AHB Components
The funnel can only function correctly if the 64-bit AHB master does not issue transfers
of 64-bit to the 32-bit slave. For 32-bit accesses or accesses at smaller width, the correct
word of the data bus is routed to the 32-bit slave. You must use the downsizer module
if the transfers cannot be guaranteed to be 32-bit or less. See 64-bit to 32-bit downsizer
on page 3-85.

Funnel selected and accessing even word address

In the address phase of a transfer, the funnel stores bit [2] of the address bus, HADDR.
During data phase, the stored HADDR2S, Haddrs2Delayed, determines the side of the
HWDATA that must be routed to the 32-bit bus. HWDATA[31:0] is selected for even
word addresses and HWDATA[63:32] for even word addresses.

For read transfers, the HRDATAM signal is routed to both HRDATAS[31:0] and
HRDATA[63:32] and read by the 64-bit bus master.

Endianness

The funnel supports little-endian and word-invariant big-endian systems. It can be used
in full big-endian mode by reversing the polarity of the HWDATA multiplexor.

3.17.2 Signal descriptions

The funnel has two AHB ports. The 64-bit AHB port is a slave interface and uses an S
suffix. The 32-bit AHB port has an M suffix. Table 3-45 lists the signal connections for
the funnel module.

Table 3-45 Funnel interface signals

Signal Direction Description

HCLK Input System bus clock. Logic is triggered on the clock rising edge.

HRESETn Input Activate low asynchronous reset.

Signals connected to 64-bit AHB

HADDR2S Input Address bit 2 from 64-bit AHB.

HRDATAS[63:0] Output Read data to 64-bit bus.

HREADYS Input HREADY signal on the 64-bit AHB bus, indicating start and end of transfer on the
64-bit bus.

HWDATAS[63:0] Input Write data from 64-bit bus.
3-94 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB Components
Signals connected to 32-bit AHB

HRDATAM[31:0] Input Read data from 32-bit slave.

HWDATAM[31:0] Output Write data from 32-bit slave.

Table 3-45 Funnel interface signals (continued)

Signal Direction Description
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 3-95

AHB Components
3-96 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Chapter 4
APB Components

This chapter describes the APB components used in the AMBA Design Kit (ADK). It
contains the following sections:

• Remap and pause controller on page 4-2

• Example APB slave on page 4-9

• Peripheral to bridge multiplexor on page 4-12

• Watchdog unit on page 4-13

• Dual input timer on page 4-24.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 4-1

APB Components
4.1 Remap and pause controller

The remap and pause controller, RemapPause, is an APB slave, providing control of the
system boot behavior and low-power wait for interrupt mode. Figure 4-1 shows a basic
block diagram of the remap and pause controller module.

Figure 4-1 Remap and pause module components

4.1.1 Programmer’s model

The base address of the remap and pause controller memory is not fixed and can be
different for any particular system implementation. However, the offset of any particular
register from the base address is fixed. Table 4-1 lists the remap and pause controller
registers in base offset order.

Identification

register

Reset status

set and clear

Remap

and

pause

module

Read data

output

Remap

clear

Pause

enable

Reset status

register

Remap

output

Pause

output

Table 4-1 Remap and pause register summary

Name
Base
offset

Type Width
Reset
value

Description

Pause 0x00 WO - - See Pause Register on page 4-3

Remap 0x04 R/W 1 0x0 See Remap Register on page 4-3

ResetStatus 0x08 R/W 8 0x01 See Reset Status Register on page 4-3

ResetStatusClr 0x0C WO 8 - See Reset Status Clear Register on page 4-4

RpcPeriphID0 0xFE0 RO 8 0x09 See Peripheral Identification Registers on page 4-4

RpcPeriphID1 0xFE4 RO 8 0x18 See Peripheral Identification Registers on page 4-4
4-2 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

APB Components
Pause Register

Any write to this location sets the PAUSE Register output HIGH. The exact effect of
writing to this location is not defined, but typically this prevents the processor from
fetching further instructions until the receipt of an interrupt of a power-on reset.

Remap Register

Bit 0 of the REMAP Register drives the REMAP output. This is typically used to
change the memory map from that required during boot-up to that for normal operation.
This bit is cleared at reset and, when set, can only be cleared again by resetting the
block.

Reset Status Register

The RESETSTATUS Register provides the reset status of the system. Only bit 0 is
defined in this specification, and provides the PRESETn status:

• set HIGH at reset

• set LOW through the ResetStatusClr register.

Further bits in the RESETSTATUS register can be implemented to provide more
detailed reset information. The RESETSTATUS register has a dual mechanism for
setting and clearing bits, enabling independent bits to be altered with no knowledge of
the other bits in the register. A write to the RESETSTATUS register has the effect of
setting all the bits, except bit 0, that have a corresponding HIGH in the write data.

RpcPeriphID2 0xFE8 RO 8 0x04 See Peripheral Identification Registers on page 4-4

RpcPeriphID3 0xFEC RO 8 0x00 See Peripheral Identification Registers on page 4-4

RpcPCellID0 0xFF0 RO 8 0x0D See PrimeCell Identification Registers on page 4-6

RpcPCellID1 0xFF4 RO 8 0xF0 See PrimeCell Identification Registers on page 4-6

RpcPCellID2 0xFF8 RO 8 0x05 See PrimeCell Identification Registers on page 4-6

RpcPCellID3 0xFFC RO 8 0xB1 See PrimeCell Identification Registers on page 4-6

Table 4-1 Remap and pause register summary (continued)

Name
Base
offset

Type Width
Reset
value

Description
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 4-3

APB Components
Reset Status Clear Register

The RESETSTATUSCLR Register location clears bits in the RESETSTATUS register.
Each HIGH bit in the write data to this location causes the corresponding
RESETSTATUS bit to be cleared.

Peripheral Identification Registers

The RPCPERIPHID0-3 registers are four 8-bit registers, that span address locations
0xFE0-0xFEC. The registers can conceptually be treated as a single 32-bit register. The
read-only registers provide the following options for the peripheral:

Part number [11:0] This identifies the peripheral. The three-digit product code 0x809
is used for the remap and pause controller.

Designer [19:12] This is the identification of the designer. ARM Limited is 0x41
(ASCII A).

Revision number [23:20]

This is the revision number of the peripheral. The revision number
starts from 0.

Configuration [31:24]

This is the configuration option of the peripheral. The
configuration value is 0.

Figure 4-2 shows the register bit assignments.

Figure 4-2 RPCPERIPHID0-3 Register bit assignment s

Note
 When you design a systems memory map you must remember that the register has a
4KB-memory footprint. All memory accesses to the peripheral identification registers
must be 32-bit, using the LDR and STR instructions.

Part number

Part

number 1

Part

number 0

Designer

0

Designer

Revision

numberConfiguration

Configuration Revision

number
Conceptual register bit assignment

Actual register bit assignment

7 0 7 4 3 0 7 4 3 0 7 0

31 24 23 20 19 16 15 12 11 8 7 0

Designer

1

4-4 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

APB Components
The four 8-bit peripheral identification registers are described in the following
subsections:

• Peripheral Identification Register 0

• Peripheral Identification Register 1

• Peripheral Identification Register 2 on page 4-6

• Peripheral Identification Register 3 on page 4-6.

Peripheral Identification Register 0

The RPCPERIPHID0 register is hard-coded and the fields within the register determine
the reset value. Table 4-2 lists the register bit assignments.

Peripheral Identification Register 1

The RPCPERIPHID1 register is hard-coded and the fields within the register determine
the reset value. Table 4-3 lists the register bit assignments.

Table 4-2 RPCPERIPHID0 Register bit assignments

Bits Name Description

[31:8] - Reserved, read undefined must read as zeros

[7:0] PartNumber0 These bits read back as 0x09

Table 4-3 RPCPERIPHID1 Register bit assignments

Bits Name Description

[31:8] - Reserved, read undefined, must read as zeros

[7:4] Designer0 These bits read back as 0x1

[3:0] PartNumber1 These bits read back as 0x8
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 4-5

APB Components
Peripheral Identification Register 2

The RPCPERIPHID2 register is hard-coded and the fields within the register determine
the reset value. Table 4-4 lists the register bit assignments.

Peripheral Identification Register 3

The RPCPERIPHID3 register is hard-coded and the fields within the register determine
the reset value. Table 4-5 lists the register bit assignments.

PrimeCell Identification Registers

The RPCPCELLID0-3 registers are four 8-bit wide registers, that span address
locations 0xFF0-0xFFC. The registers can conceptually be treated as a 32-bit register. The
register is used as a standard cross-peripheral identification system. The RPCPCELLID
register is set to 0xB105F00D. Figure 4-3 shows the register bit assignments.

Figure 4-3 RPCPCELLID0-3 Register bit assignments

Table 4-4 RPCPERIPHID2 Register bit assignments

Bits Name Description

[31:8] - Reserved, read undefined, must read as zeros

[7:4] Revision These bits return the peripheral revision

[3:0] Designer1 These bits read back as 0x4

Table 4-5 RPCPERIPHID3 Register bit assignments

Bits Name Description

[31:8] - Reserved, read undefined, must read as zeros

[7:0] Configuration These bits read back as 0x00

RPCPCELLID3

Conceptual register bit assignment

Actual register bit assignment

7 0 7 0 7 0 7 0

31 24 23 16 15 8 7 0

RPCPCELLID2 RPCPCELLID1 RPCPCELLID0

RPCPCELLID3 RPCPCELLID2 RPCPCELLID1 RPCPCELLID0
4-6 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

APB Components
The four, 8-bit PrimeCell identification registers are described in the following
subsections:

• PrimeCell Identification Register 0

• PrimeCell Identification Register 1

• PrimeCell Identification Register 2

• PrimeCell Identification Register 3 on page 4-8.

PrimeCell Identification Register 0

The RPCPCELLID0 register is hard-coded and the fields within the register determine
the reset value. Table 4-6 lists the register bit assignments.

PrimeCell Identification Register 1

The RPCPCELLID1 register is hard-coded and the fields within the register determine
the reset value. Table 4-7 lists the register bit assignments.

PrimeCell Identification Register 2

The RPCPCELLID2 register is hard-coded and the fields within the register determine
the reset value. Table 4-8 lists the register bit assignments.

Table 4-6 RPCPCELLID0 Register bit assignments

Bits Name Description

[31:8] - Reserved, read undefined, must read as zeros

[7:0] RpcPCellID0 These bits read back as 0x0D

Table 4-7 RPCPCELLID1 Register bit assignments

Bits Name Description

[31:8] - Reserved, read undefined, must read as zeros

[7:0] RpcPCellID1 These bits read back as 0xF0

Table 4-8 RPCPCELLID2 Register bit assignments

Bits Name Description

[31:8] - Reserved, read undefined, must read as zeros

[7:0] RpcPCellID2 These bits read back as 0x05
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 4-7

APB Components
PrimeCell Identification Register 3

The RPCPCELLID3 register is hard-coded and the fields within the register determine
the reset value. Table 4-9 lists the register bit assignments.

4.1.2 Signal descriptions

Table 4-10 lists the non-AMBA signals used by the remap and pause controller.

Note
 For a description of the AMBA signals used by the remap and pause controller, see
AMBA signals on page 1-3.

Table 4-9 RPCPCELLID3 Register bit assignments

Bits Name Description

[31:8] - Reserved, read undefined, must read as zeros

[7:0] RpcPCellID3 These bits read back as 0xB1

Table 4-10 Remap and pause controller signals

Signal Type Direction Description

nFIQ FIQ output Input FIQ interrupt input from the interrupt controller

nIRQ IRQ output Input IRQ interrupt input from the interrupt controller

PAUSE Pause mode Output HIGH when in the wait for interrupt pause mode, and LOW at all other
times

REMAP Reset memory map Output LOW when the reset memory map is in use, and HIGH when the normal
memory map is in use
4-8 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

APB Components
4.2 Example APB slave

The example APB slave, EgApbSlave, provides sample HDL code, that can be used as a
basis for further enhancement, to produce a slave on the APB. Figure 4-4 shows that the
example APB slave consists of five functional blocks contained within one top-level
entity.

Figure 4-4 Example APB slave components

The example APB slave includes the following features:

• A simple APB slave interface.

• System bus clock and reset, that are synchronous between AHB and APB
domains.

• 32-bit data bus, endian-independent, but data handling is 32-bits only.

• Data transfers require two clock cycles.

• 32-bit address bus.

• Four 32-bit registers to hold the write data. Registers can also be read.

• Seven read-only locations that return logical functions of the registered write data.

4.2.1 Programmer’s model

The slave only responds to a transfer when not in reset, PRESETn HIGH, and when
PSEL is HIGH and PENABLE is LOW at the time of a rising edge on PCLK. The
timing of the slave corresponds to the APB specification.

Register

update enable

logic

4 x 32-bit

registers

Read data

generation

logic

Valid transfer

detect logic

Standard

APB

slave

interface

Identification

registers
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 4-9

APB Components
The functionality of the slave depends on the address location being accessed and the
direction of the data. Only bits [11:2] of the address are decoded, and this supports
accesses with word-aligned addresses. Because of the partial address decode, the same
location is accessible at several addresses. For example, Register 0 is accessible at
0x0000, 0x1000, 0x2000, ..., until the decode range of PSEL from the bridge is exceeded.

Table 4-11 lists the example APB slave memory map.

Table 4-11 Example APB slave memory map

Name
Base
offset

Type Width
Reset
value

Description

R0 0x00 R/W 32 0x00000000 Read/write data into R0.

R1 0x04 R/W 32 0x00000000 Read/write data into R1.

R2 0x08 R/W 32 0x00000000 Read/write data into R2.

R3 0x0C R/W 32 0x00000000 Read/write data into R3.

READ10 0x10 RO 32 0xFFFFFFFF Not R0.

READ14 0x14 RO 32 0x00000000 R0 and R1.

READ18 0x18 RO 32 0x00000000 R1 or R2.

READ1C 0x1C RO 32 0x00000000 R2 xor R3.

READ20 0x20 RO 32 0x00000000 R0 and R1 and R2 and R3.

READ24 0x24 RO 32 0x00000000 R0 or R1 or R2 or R3.

READ28 0x28 RO 32 0x00000000 R0 xor R1 xor R2 xor R3.

Reserved 0x2C-0xFDC R/W 32 0x00000000 Read as zero. Write has no effect.

PERIPHERALID0 0xFE0 RO 8 0x06 Peripheral ID register 0.

PERIPHERALID1 0xFE4 RO 8 0x18 Peripheral ID register 1.

PERIPHERALID2 0xFE8 RO 8 0x04 Peripheral ID register 2.

PERIPHERALID3 0xFEC RO 8 0x00 Peripheral ID register 3.

PRIMECELLID0 0xFF0 RO 8 0x0D PrimeCell ID register 0.

PRIMECELLID1 0xFF4 RO 8 0xF0 PrimeCell ID register 1.

PRIMECELLID2 0xFF8 RO 8 0x05 PrimeCell ID register 2.

PRIMECELLID3 Base + 0xFFC RO 8 0xB1 PrimeCell ID register 3.
4-10 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

APB Components
The functionality in Table 4-11 on page 4-10 is the same as the retry slave described in
Example retry slave on page 3-10, except there is no requirement to generate wait states
and responses, and all data is a fixed size (32-bit).

Note
 Address locations 0x2C-0xFDC read as zero and perform no operation when written to.

The peripheral ID information is arranged as four 8-bit registers that span address
locations 0xFE0-0xFEC. The registers can conceptually be treated as a 32-bit read-only
register. Table 4-12 lists the format of this information and the values for the peripheral.

4.2.2 Signal descriptions

The example APB slave uses only AMBA signals. For a description of the AMBA
signals, see AMBA signals on page 1-3.

Table 4-12 Peripheral ID format

Register field Description

Part number [11:0] This identifies the peripheral. The three digit product code 0x806 is used.

Designer ID [19:12] This is the identification of the designer. ARM Limited is 0x41, ASCII A.

Revision [23:20] This is the revision number of the peripheral. The revision number starts from 0.

Configuration [31:24] This is the configuration option of the peripheral. The configuration value is 0.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 4-11

APB Components
4.3 Peripheral to bridge multiplexor

The peripheral to bridge multiplexor, MuxP2B, connects the read data outputs of each
APB slave to the APB bridge module, using the PSELx signals to select the required
data source. The default configuration is sixteen slots. The read data is switched for the
duration of an APB transfer, when the PSELx signal is valid. A default value of zero is
used when no slaves are selected. Figure 4-5 shows the peripheral to bridge multiplexor
block diagram.

Figure 4-5 Peripheral to bridge multiplexor module components

Note
 The MuxP2B is used with the Ahb2Apb which is AMBA 2.0 version compatible. A newer
version, the MuxPToB is available to support APB 3.0. It is used with the AhbToApb, which
is AMBA version 3.0 compatible.

4.3.1 Signal descriptions

The peripheral to bridge multiplexor uses only AMBA signals. For a description of the
AMBA signals, see AMBA signals on page 1-3.

Read data

multiplexors

Peripheral to bridge

multiplexor module
4-12 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

APB Components
4.4 Watchdog unit

The Watchdog module is an Advanced Microcontroller Bus Architecture (AMBA)
compliant System-on-Chip (SoC) peripheral developed, tested and licensed by ARM
Limited. The Watchdog module is an AMBA slave module and connects to the
Advanced Peripheral Bus (APB).

The Watchdog module is based around a 32-bit down counter that is initialized from the
Reload Register, WdogLoad. The watchdog clock generates a regular interrupt,
WDOGINT, depending on a programmed value. The counter decrements by one on
each positive clock edge of WDOGCLK when the clock enable WDOGCLKEN is
HIGH. The watchdog monitors the interrupt and asserts a reset WDOGRES signal,
when the counter reaches zero, and the counter is stopped. On the next enabled
WDOGCLK clock edge the counter is reloaded from the WdogLoad Register and the
count down sequence continues. If the interrupt is not cleared by the time that the
counter next reaches zero then the Watchdog module reasserts the reset signal. The
Watchdog module is intended to be used to apply a reset to a system in the event of a
software failure, providing a way of recovering from software crashes. You can enable
or disable the watchdog unit as required. Figure 4-6 shows the watchdog block diagram.

Figure 4-6 Watchdog components

Watchdog

Lock register

Test

integration

registers

Read data

generation

Identification

registers

Free-running

counter

Address

decoder

WDOGCLK

WDOGCLKEN

WDOGRESn

WDOGINT

WDOGRES
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 4-13

APB Components
4.4.1 Programmer’s model

Table 4-13 lists the watchdog registers.

The following registers are described in this section:

Table 4-13 Watchdog unit register summary

Name
Base
offset

Type Width
Reset
value

Description

WDOGLOAD 0x00 R/W 32 0xFFFFFFFF See Watchdog Load Register on page 4-15

WDOGVALUE 0x04 RO 32 0xFFFFFFFF See Watchdog Value Register on page 4-15

WDOGCONTROL 0x08 R/W 2 0x0 See Watchdog Control Register on page 4-15

WDOGINTCLR 0x0C WO - - See Watchdog Clear Interrupt Register on page 4-15

WDOGRIS 0x10 RO 1 0x0 See Watchdog Raw Interrupt Status Register on
page 4-16

WDOGMIS 0x14 RO 1 0x0 See Watchdog Interrupt Status Register on page 4-16

WDOGLOCK 0xC00 R/W 32 0x0 See Watchdog Lock Register on page 4-17

WDOGITCR 0xF00 R/W 1 0x0 See Watchdog Integration Test Control Register on
page 4-18

WDOGITOP 0xF04 WO 2 0x0 See Watchdog Integration Test Output Set Register on
page 4-18

WDOGPERIPHID0 0xFE0 RO 8 0x05 See Peripheral Identification Register 0 on page 4-20

WDOGPERIPHID1 0xFE4 RO 8 0x18 See Peripheral Identification Register 1 on page 4-20

WDOGPERIPHID2 0xFE8 RO 8 0x04 See Peripheral Identification Register 2 on page 4-21

WDOGPERIPHID3 0xFEC RO 8 0x00 See Peripheral Identification Register 3 on page 4-21

WDOGPCELLID0 0xFF0 RO 8 0x0D See PrimeCell Identification Register 0 on page 4-22

WDOGPCELLID1 0xFF4 RO 8 0xF0 See PrimeCell Identification Register 1 on page 4-22

WDOGPCELLID2 0xFF8 RO 8 0x05 See PrimeCell Identification Register 2 on page 4-22

WDOGPCELLID3 0xFFC RO 8 0xB1 See PrimeCell Identification Register 3 on page 4-23
4-14 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

APB Components
Watchdog Load Register

The WDOGLOAD Register is a 32-bit register containing the value from which the
counter is to decrement. When this register is written to, the count is immediately
restarted from the new value. The minimum valid value for WDOGLOAD is 1.

Watchdog Value Register

The WDOGVALUE Register gives the current value of the decrementing counter.

Watchdog Control Register

The WDOGCONTROL Register is a read/write register that enables the software to
control the watchdog unit. Figure 4-7 shows the register bit assignments.

Figure 4-7 WDOGCONTROL Register bit assignments

Table 4-14 lists the register bit assignments.

Watchdog Clear Interrupt Register

A write of any value to the WDOGINTCLR Register clears the watchdog interrupt, and
reloads the counter from the value in WDOGLOAD.

RESEN

Undefined

31 0

INTEN

12

Table 4-14 WDOGCONTROL Register bit assignments

Bits Name Function

[31:2] - Reserved, read undefined, must read as zeros.

[1] RESEN Enable Watchdog reset output, WDOGRES. Acts as a mask for the reset output. Set HIGH to enable
the reset, and LOW to disable the reset.

[0] INTEN Enable the interrupt event, WDOGINT. Set HIGH to enable the counter and the interrupt, and set
LOW to disable the counter and interrupt. Reloads the counter from the value in WDOGLOAD when
the interrupt is enabled, and was previously disabled.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 4-15

APB Components
Watchdog Raw Interrupt Status Register

The WDOGRIS Register is read-only. It indicates the raw interrupt status from the
counter. This value is ANDed with the interrupt enable bit from the control register to
create the masked interrupt, that is passed to the interrupt output pin. Figure 4-8 shows
the register bit assignments.

Figure 4-8 WDOGRIS Register bit assignments

Table 4-15 lists the register bit assignments.

Watchdog Interrupt Status Register

The WDOGMIS Register is read-only. It indicates the masked interrupt status from the
counter. This value is the logical AND of the raw interrupt status with the INTEN bit
from the control register, and is the same value that is passed to the interrupt output pin.
Figure 4-9 shows the register bit assignments.

Figure 4-9 WDOGMIS Register bit assignments

Raw Watchdog Interrupt

Undefined

31 01

Table 4-15 WDOGRIS Register bit assignments

Bits Name Function

[31:1] - Reserved, read undefined, must read as zeros

[0] Raw Watchdog Interrupt Raw interrupt status from the counter

Watchdog Interrupt

Undefined

31 01
4-16 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

APB Components
Table 4-16 lists the register bit assignments.

Watchdog Lock Register

The WDOGLOCK Register is write-only. Use of this register causes write-access to all
other registers to be disabled. This is to prevent rogue software from disabling the
watchdog functionality. Writing a value of 0x1ACCE551 enables write access to all other
registers. Writing any other value disables write accesses. A read from this register
returns only the bottom bit:

• 0 indicates that write access is enabled, not locked

• 1 indicates that write access is disabled, locked.

Figure 4-10 shows the register bit assignments.

Figure 4-10 WDOGLOCK Register bit assignments

Table 4-17 lists the bit assignments for the WDOGLOCK register.

Table 4-16 WDOGMIS Register bit assignments

Bits Name Function

[31:1] - Reserved, read undefined, must read as zeros

[0] Watchdog Interrupt Enabled interrupt status from the counter

Register write enable status

Enable register writes

31 01

Table 4-17 WDOGLOCK Register bit assignments

Bits Name Function

[31:1] Enable register writes Enable write access to all other registers by writing 0x1ACCE551. Disable write
access by writing any other value.

[0] Register write enable status 0 = write access to all other registers is enabled, default

1 = write access to all other registers is disabled
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 4-17

APB Components
Watchdog Integration Test Control Register

The WDOGITCR Register is read/write. It is a single-bit register that enables
integration test mode. When in this mode, the masked interrupt output, WDOGINT,
and reset output, WDOGRES, are directly controlled by the test output set register.

Figure 4-11 shows the register bit assignments.

Figure 4-11 WDOGITCR Register bit assignments

Table 4-18 lists the register bit assignments.

Watchdog Integration Test Output Set Register

The WDOGITOP Register is write-only. When in integration test mode, the enabled
interrupt output and reset output are driven directly from the values in this register.
Figure 4-12 shows the register bit assignments.

Figure 4-12 WDOGITOP Register bit assignments

Integration Test Mode Enable

Undefined

31 01

Table 4-18 WDOGITCR Register bit assignments

Bits Name Function

[31:1] - Reserved, read undefined, must read as zeros

[0] Integration Test Mode Enable When set HIGH, places the Watchdog into integration test mode

Integration Test WDOGINT value

Undefined

31 0

Integration Test WDOGRES value

12
4-18 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

APB Components
Table 4-19 lists the register bit assignments.

Peripheral Identification Registers

The WDOGPERIPHID0-3 registers are four 8-bit registers, that span address locations
0xFE0-0xFEC. The registers can conceptually be treated as a single 32-bit register. The
read-only registers provide the following options for the peripheral:

Part number [11:0] This identifies the peripheral. The three digit product code 0x805
is used for the watchdog unit.

Designer [19:12] This is the identification of the designer. ARM Limited is 0x41,
ASCII A.

Revision number [23:20]

This is the revision number of the peripheral. The revision number
starts from 0.

Configuration [31:24]

This is the configuration option of the peripheral. The
configuration value is 0.

Figure 4-13 shows the register bit assignments.

Figure 4-13 WDOGPERIPHID0-3 Register bit assignments

Table 4-19 WDOGITOP Register bit assignments

Bits Name Function

[31:2] - Reserved, read undefined, must read as zeros

[1] Integration Test WDOGINT value Value output on WDOGINT when in Integration Test Mode

[0] Integration Test WDOGRES value Value output on WDOGRES when in Integration Test Mode

Part number

Part

number 1

Part

number 0

Designer

0

Designer

Revision

numberConfiguration

Configuration Revision

number
Conceptual register bit assignment

Actual register bit assignment

7 0 7 4 3 0 7 4 3 0 7 0

31 24 23 20 19 16 15 12 11 8 7 0

Designer

1

ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 4-19

APB Components
Note
 When you design a system memory map you must remember that the register has a
4KB-memory footprint. All memory accesses to the peripheral identification registers
must be 32-bit, using the LDR and STR instructions.

The four 8-bit peripheral identification registers are described in the following
subsections:

• Peripheral Identification Register 0

• Peripheral Identification Register 1

• Peripheral Identification Register 2 on page 4-21

• Peripheral Identification Register 3 on page 4-21.

Peripheral Identification Register 0

The WDOGPERIPHID0 Register is hard-coded and the fields within the register
determine the reset value. Table 4-20 lists the register bit assignments.

Peripheral Identification Register 1

The WDOGPERIPHID1 Register is hard-coded and the fields within the register
determine the reset value. Table 4-21 lists the register bit assignments.

Table 4-20 WDOGPERIPHID0 Register bit assignments

Bits Name Description

[31:8] - Reserved, read undefined, must read as zeros

[7:0] PartNumber0 These bits read back as 0x05

Table 4-21 WDOGPERIPHID1 Register bit assignments

Bits Name Description

[31:8] - Reserved, read undefined, must read as zeros

[7:4] Designer0 These bits read back as 0x1

[3:0] PartNumber1 These bits read back as 0x08
4-20 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

APB Components
Peripheral Identification Register 2

The WDOGPERIPHID2 Register is hard-coded and the fields within the register
determine the reset value. Table 4-22 lists the register bit assignments.

Peripheral Identification Register 3

The WDOGPERIPHID3 Register is hard-coded and the fields within the register
determine the reset value. Table 4-23 lists the register bit assignments.

PrimeCell Identification Registers

The WDOGPCELLID0-3 Registers are four 8-bit wide registers, that span address
locations 0xFF0-0xFFC. The registers can conceptually be treated as a 32-bit register. The
register is used as a standard cross-peripheral identification system. The
WDOGPCELLID Register is set to 0xB105F00D. Figure 4-14 shows the register bit
assignments.

Figure 4-14 WDOGPCELLID0-3 Register bit assignments

Table 4-22 WDOGPERIPHID2 Register bit assignments

Bits Name Description

[31:8] - Reserved, read undefined, must read as zeros

[7:4] Revision These bits read back as 0x0

[3:0] Designer1 These bits read back as 0x4

Table 4-23 WDOGPERIPHID3 Register bit assignments

Bits Name Description

[31:8] - Reserved, read undefined, must read as zeros

[7:0] Configuration These bits read back as 0x00

WDOGPCELLID3

Conceptual register bit assignment

Actual register bit assignment

7 0 7 0 7 0 7 0

31 24 23 16 15 8 7 0

WDOGPCELLID2 WDOGPCELLID1 WDOGPCELLID0

WDOGPCELLID3 WDOGPCELLID2 WDOGPCELLID1 WDOGPCELLID0
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 4-21

APB Components
The four, 8-bit PrimeCell identification registers are described in the following
subsections:

• PrimeCell Identification Register 0

• PrimeCell Identification Register 1

• PrimeCell Identification Register 2

• PrimeCell Identification Register 3 on page 4-23.

PrimeCell Identification Register 0

The WDOGPCELLID0 Register is hard-coded and the fields within the register
determine the reset value. Table 4-24 lists the register bit assignments.

PrimeCell Identification Register 1

The WDOGPCELLID1 Register is hard-coded and the fields within the register
determine the reset value. Table 4-25 lists the register bit assignments.

PrimeCell Identification Register 2

The WDOGPCELLID2 Register is hard-coded and the fields within the register
determine the reset value. Table 4-26 lists the register bit assignments.

Table 4-24 WDOGPCELLID0 Register bit assignments

Bits Name Description

[31:8] - Reserved, read undefined, must read as zeros

[7:0] WdogPCellID0 These bits read back as 0x0D

Table 4-25 WDOGPCELLID1 Register bit assignments

Bits Name Description

[31:8] - Reserved, read undefined, must read as zeros

[7:0] WdogPCellID1 These bits read back as 0xF0

Table 4-26 WDOGPCELLID2 Register bit assignments

Bits Name Description

[31:8] - Reserved, read undefined, must read as zeros

[7:0] WdogPCellID2 These bits read back as 0x05
4-22 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

APB Components
PrimeCell Identification Register 3

The WDOGPCELLID3 register is hard-coded and the fields within the register
determine the reset value. Table 4-27 lists the register bit assignments.

4.4.2 Signal descriptions

Table 4-28 lists the non-AMBA signals used by the watchdog unit.

Note
 For a description of the AMBA signals used by the watchdog unit, see AMBA signals
on page 1-3.

Table 4-27 WDOGPCELLID3 Register bit assignments

Bits Name Description

[31:8] - Reserved, read undefined, must read as zeros

[7:0] WdogPCellID3 These bits read back as 0xB1

Table 4-28 Watchdog unit signals

Signal Type Direction Description

WDOGCLK Watchdog clock Input The watchdog clock input.

WDOGCLKEN Watchdog clock enable Input The enable for the watchdog clock input. The counters only
decrement on a rising edge of WDOGCLK when
WDOGCLKEN is HIGH.

WDOGRESn Watchdog reset Input The watchdog clock domain reset input.

WDOGINT Watchdog interrupt Output The watchdog interrupt.

WDOGRES Watchdog reset Output The watchdog timeout reset.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 4-23

APB Components
4.5 Dual input timer

The ARM Dual-Timer module is an AMBA compliant SoC peripheral developed, tested
and licensed by ARM Limited. For more information, see the AMBA Specification
(Rev 2.0).

The Dual Input Timers module, Timers is an AMBA slave module and connects to the
APB. The Dual-Timer module consists of two programmable 32/16-bit down counters
that can generate interrupts on reaching zero. A Timer module can be programmed for
a 32-bit or 16-bit counter size and one of three timer modes using the Control Register.
The operation of each Timer module is identical. It has one of three timer modes:

• free-running

• periodic

• one-shot.

The Dual Input Timers module, Timers, provides access to two interrupt-generating,
programmable 32-bit Free-Running decrementing Counters (FRCs). The FRCs operate
from a common timer clock, TIMCLK with each FRC having its own clock enable
input, TIMCLKEN1 and TIMCLKEN2. Each FRC also has a prescaler that can
divide down the enabled TIMCLK rate by 1, 16, or 256. This enables the count rate for
each FRC to be controlled independently using their individual clock enables and
prescalers.

The system clock, PCLK, controls the programmable registers, and the second clock
input drives the counter, enabling the counters to run from a much slower clock than the
system clock. The two clocks must be synchronous while register accesses are
performed. TIMCLK can be equal to or be a submultiple of the PCLK frequency.
However, the positive edges of TIMCLK and PCLK must be synchronous and
balanced.

Figure 4-15 on page 4-25 shows a top-level block diagram of the timers.
4-24 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

APB Components
Figure 4-15 Dual input timer components

4.5.1 Functional description

Two timers are defined as the default provided, although you can easily expand this
through extra instantiations of the FRC block. The same principle of simple expansion
has been applied to the register configuration, enabling more complex counters to be
used. For each timer, the following modes of operation are available:

Free-running mode

The counter wraps after reaching its zero value, and continues to count
down from the maximum value. This is the default mode.

Periodic timer mode

The counter generates an interrupt at a constant interval, reloading the
original value after wrapping past zero.

One-shot timer mode

The counter generates an interrupt once. When the counter reaches zero,
it halts until reprogrammed by the user. This can be achieved by either
clearing the One Shot Count bit in the control register, in which case the
count proceeds according to the selection of Free-running or Periodic
mode, or by writing a new value to the Load Value register.

4.5.2 Operation

Each timer has an identical set of registers as shown in Table 4-29 on page 4-28. The
operation of each timer is identical. The timer is loaded by writing to the load register
and, if enabled, counts down to zero. When a counter is already running, writing to the
load register causes the counter to immediately restart at the new value. Writing to the

TIMINTC

generation

Test

integration

registers

Read data

generation

Dual input timer

Identification

registers

Free-running

counter 1

Address

decoder

Free-running

counter 2
TIMCLK

TIMCLKEN1

TIMCLKEN2

TIMINT2

TIMINT1

TIMINTC

APB
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 4-25

APB Components
background load value has no effect on the current count. The counter continues to
decrement to zero, and then recommences from the new load value, if in periodic mode,
and one shot mode is not selected.

When zero is reached, an interrupt is generated. The interrupt can be cleared by writing
to the clear register. If One Shot Mode is selected, the counter halts on reaching zero
until the you deselect One Shot Mode, or write a new Load value. Otherwise, after
reaching a zero count, if the timer is operating in free-running mode it continues to
decrement from its maximum value. If periodic timer mode is selected, the timer reloads
the count value from the Load Register and continues to decrement. In this mode the
counter effectively generates a periodic interrupt. The mode is selected by a bit in the
Timer Control Register. See Table 4-30 on page 4-30. At any point, the current counter
value can be read from the Current Value Register. The counter is enabled by a bit in
the Control Register. At reset, the counter is disabled, the interrupt is cleared, and the
load register is set to zero. The mode and prescale values are set to free-running, and
clock divide of 1 respectively. Figure 4-16 shows a block diagram of the free-running
timer module.

Figure 4-16 Free-running timer block

The timer clock enable is generated by a prescale unit. The enable is then used by the
counter to create a clock with a timing of one of the following:

• the system clock

• the system clock divided by 16, generated by 4 bits of prescale

• the system clock divided by 256, generated by a total of 8 bits of prescale.

Figure 4-17 on page 4-27 shows how the timer clock frequency is selected in the
prescale unit. This enables you to clock the timer at different frequencies.

Control
Timer

clock enable
Load

32-bit down counter

Value
Interrupt

generation
4-26 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

APB Components
Figure 4-17 Prescale clock enable generation

Note
 This selection is in addition to any similar facility already provided as part of any clock
generation logic external to the Timers.

Interrupt generation

An interrupt is generated when the full 32-bit counter reaches zero, and is only cleared
when the TimerXClear location is written to. A register holds the value until the
interrupt is cleared. The most significant carry bit of the counter detects the counter
reaching zero.

You can mask interrupts by writing 0 to the Interrupt Enable bit in the Control register.
Both the raw interrupt status, prior to masking, and the final interrupt status, after
masking, can be read from status registers.

The interrupts from the individual counters, after masking, are logically ORed into a
combined interrupt, TIMINTC, provides an additional output from the Timer
peripheral.

4.5.3 Clocking

The timers have two clock inputs, PCLK and TIMCLK. PCLK is the main APB
system clock, and is used by the register interface. TIMCLK is the input to the prescale
units and the decrementing counters. A pulse on TIMCLK must be qualified by the
appropriate TIMCLKENx being HIGH.

The design of the timers assumes that PCLK and TIMCLK are synchronous. To enable
the counter to operate from a lower effective frequency than that at which PCLK is
running, you can do either of the following:

• both PCLK and TIMCLK inputs are connected to the APB PCLK signal, and
TIMCLKENx is pulsed HIGH at the required frequency, synchronized to PCLK

Timer

clock

enable

Divide

by 16

Divide

by 16

Control
Prescale select

Timer clock

enable after

prescaling
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 4-27

APB Components
• TIMCLKENx is tied HIGH and an enabled version of PCLK is fed into the
TIMCLK input, giving sparse clock pulses synchronous to PCLK.

This provision of two clock inputs enables the counters to continue to run while the
APB system is in a sleep state whereby PCLK is disabled. The changeover periods
when PCLK is disabled and enabled must be handled by external system control logic,
to ensure that the PCLK and TIMCLK inputs are fed with synchronous signals when
any register access is to occur.

4.5.4 Programmer’s model

Table 4-29 lists the timer registers.

Table 4-29 Timer register summary

Name
Base
offset

Type Width
Reset
value

Description

TIMER1LOAD 0x00 R/W 32 0x00000000 See Load Register on page 4-29

TIMER1VALUE 0x04 RO 32 0xFFFFFFFF See Current Value Register on page 4-30

TIMER1CONTROL 0x08 R/W 8 0x20 See Timer Control Register on page 4-30

TIMER1INTCLR 0x0C WO - - See Interrupt Clear Register on page 4-31

TIMER1RIS 0x10 RO 1 0x0 See Raw Interrupt Status Register on page 4-31

TIMER1MIS 0x14 RO 1 0x0 See Interrupt Status Register on page 4-32

TIMER1BGLOAD 0x18 R/W 32 0x00000000 See Background Load Register on page 4-32

TIMER2LOAD 0x20 R/W 32 0x00000000 See Load Register on page 4-29

TIMER2VALUE 0x24 RO 32 0xFFFFFFFF See Current Value Register on page 4-30

TIMER2CONTROL 0x28 R/W 8 0x20 See Timer Control Register on page 4-30

TIMER2INTCLR 0x2C WO - - See Interrupt Clear Register on page 4-31

TIMER2RIS 0x30 RO 1 0x0 See Raw Interrupt Status Register on page 4-31

TIMER2MIS 0x34 RO 1 0x0 See Interrupt Status Register on page 4-32

TIMER2BGLOAD 0x38 R/W 32 0x00000000 See Background Load Register on page 4-32

TIMERITCR 0xF00 R/W 1 0x0 See Integration Test Control Register on page 4-33

TIMERITOP 0xF04 WO 2 0x0 See Integration Test Output Set Register on
page 4-33
4-28 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

APB Components
Load Register

The TIMERXLOAD Register is a 32-bit register containing the value from which the
counter is to decrement. This is the value used to reload the counter when Periodic mode
is enabled, and the current count reaches zero.

When this register is written to directly, the current count is immediately reset to the
new value at the next rising edge of TIMCLK that is enabled by TIMCLKEN.

The value in this register is also overwritten if the TIMERXBGLOAD Register is
written to, but the current count is not immediately affected.

If values are written to both the TIMERXLOAD and TIMERXBGLOAD Registers
before an enabled rising edge on TIMCLK, the following occurs:

1. On the next enabled TIMCLK edge, the value written to the TIMERXLOAD
value replaces the current count value.

2. Then, each time the counter reaches zero, the current count value is reset to the
value written to TIMERXBGLOAD.

Reading from the TIMERXLOAD Register at any time after the two writes have
occurred retrieves the value written to TIMERXBGLOAD. That is, the value read from
TIMERXLOAD is always the value that takes effect for Periodic mode after the next
time the counter reaches zero.

TIMERPERIPHID0 0xFE0 RO 8 0x04 See Peripheral Identification Register 0 on page 4-35

TIMERPERIPHID1 0xFE4 RO 8 0x18 See Peripheral Identification Register 1 on page 4-36

TIMERPERIPHID2 0xFE8 RO 8 0x04 See Peripheral Identification Register 2 on page 4-36

TIMERPERIPHID3 0xFEC RO 8 0x00 See Peripheral Identification Register 3 on page 4-36

TIMERPCELLID0 0xFF0 RO 8 0x0D See PrimeCell Identification Register 0 on page 4-37

TIMERPCELLID1 0xFF4 RO 8 0xF0 See PrimeCell Identification Register 1 on page 4-38

TIMERPCELLID2 0xFF8 RO 8 0x05 See PrimeCell Identification Register 2 on page 4-38

TIMERPCELLID3 0xFFC RO 8 0xB1 See PrimeCell Identification Register 3 on page 4-38

Table 4-29 Timer register summary (continued)

Name
Base
offset

Type Width
Reset
value

Description
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 4-29

APB Components
Current Value Register

The TIMERXVALUE Register gives the current value of the decrementing counter.

Timer Control Register

The TIMERXCONTROL Register is a read/write register. Figure 4-18 shows the
register bit assignments.

Figure 4-18 TIMERXCONTROL Register bit assignments

Table 4-30 lists the register bit assignments.

Timer Enable

Undefined

31 0

Timer Mode

12345678

Interrupt Enable

Reserved

TimerPre

Timer Size

One Shot Count

Table 4-30 TIMERXCONTROL Register bit assignments

Bits Name Function

[31:8] - Reserved, read undefined, must read as zeros

[7] Timer Enable Enable bit:

0 = Timer disabled, default

1 = Timer enabled.

[6] Timer Mode Mode bit:

0 = Timer is in free-running mode, default

1 = Timer is in periodic mode.

[5] Interrupt Enable Interrupt Enable bit:

0 = Timer Interrupt disabled

1 = Timer Interrupt enabled, default.

[4] RESERVED Reserved bit, do not modify, and ignore on read
4-30 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

APB Components
Interrupt Clear Register

Any write to the TIMERXINTCLR Register clears the interrupt output from the
counter.

Raw Interrupt Status Register

This register is read-only. It indicates the raw interrupt status from the counter. This
value is ANDed with the timer interrupt enable bit from the Timer Control Register to
create the masked interrupt, that is passed to the interrupt output pin. Figure 4-19 shows
the register bit assignments.

Figure 4-19 TIMERXRIS Register bit assignments

[3:2] TimerPre Prescale bits:

00 = 0 stages of prescale, clock is divided by 1, default

01 = 4 stages of prescale, clock is divided by 16

10 = 8 stages of prescale, clock is divided by 256

11 = Undefined, do not use.

[1] Timer Size Selects 16/32 bit counter operation:

0 = 16-bit counter, default

1 = 32-bit counter.

[0] One Shot Count Selects one-shot or wrapping counter mode:

0 = wrapping mode, default

1 = one-shot mode.

Table 4-30 TIMERXCONTROL Register bit assignments (continued)

Bits Name Function

Raw Timer Interrupt

Undefined

31 01
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 4-31

APB Components
Table 4-31 lists the register bit assignments.

Interrupt Status Register

The TIMERXMIS Register is read-only. It indicates the masked interrupt status from
the counter. This value is the logical AND of the raw interrupt status with the timer
interrupt enable bit from the Timer Control Register, and is the same value that is passed
to the interrupt output pin. Figure 4-20 shows the register bit assignments.

Figure 4-20 TIMERXMIS Register bit assignments

Table 4-32 lists the register bit assignments.

Background Load Register

The TIMERXBGLOAC Register is 32-bits and contains the value from which the
counter is to decrement. This is the value used to reload the counter when Periodic mode
is enabled, and the current count reaches zero.

This register provides an alternative method of accessing the TIMERXLOAD Register.
The difference is that writes to TIMERXBGLOAD do not cause the counter to
immediately restart from the new value.

Table 4-31 TIMERXRIS Register bit assignments

Bits Name Function

[31:1] - Reserved, read undefined, must read as zeros

[0] Raw Timer Interrupt Raw interrupt status from the counter

Timer Interrupt

Undefined

31 01

Table 4-32 TIMERXMIS Register bit assignments

Bits Name Function

[31:1] - Reserved, read undefined, must read as zeros

[0] Timer Interrupt Enabled interrupt status from the counter
4-32 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

APB Components
Reading from this register returns the same value returned from TIMERXLOAD. See
Load Register on page 4-29 for more details.

Integration Test Control Register

The TIMERITCR Register is read/write. It is a single-bit register that enables
integration test mode. When in this mode, the masked interrupt outputs are directly
controlled by the Integration Test Output Set Register. The combined interrupt output
TIMINTC then becomes the logical OR of the bits set in the Integration Test Output Set
Register. Figure 4-21 shows the register bit assignments.

Figure 4-21 TIMERITCR Register bit assignments

Table 4-33 lists the register bit assignments.

Integration Test Output Set Register

When in integration test mode, the enabled interrupt outputs are driven directly from the
values in this write-only register, TIMERITOP. Figure 4-22 shows the register bit
assignments.

Figure 4-22 TIMERITOP Register bit assignments

Integration Test Mode Enable

Undefined

31 01

Table 4-33 TIMERITCR Register bit assignments

Bits Name Function

[31:1] - Reserved, read undefined, must read as zeros

[0] Integration Test Mode Enable When set HIGH, places the Timers into integration test mode

Integration Test TIMINT2 value

Undefined

31 0

Integration Test TIMINT1 value

12
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 4-33

APB Components
Table 4-34 lists the register bit assignments.

Peripheral Identification Registers

The TIMERPERIPHID0-3 Registers are four 8-bit registers, that span address locations
0xFE0-0xFEC. The registers can conceptually be treated as a single 32-bit register. The
read-only registers provide the following options of the peripheral:

Part number [11:0]

This identifies the peripheral. The three digit product code 0x804
is used for the timer.

Designer [19:12] This is the identification of the designer. ARM Limited is 0x41,
ASCII A.

Revision number [23:20]

This is the revision number of the peripheral. The revision number
starts from 0.

Configuration [31:24]

This is the configuration option of the peripheral. The
configuration value is 0.

Figure 4-23 shows the register bit assignments.

Figure 4-23 Peripheral identification register bit assignments

Table 4-34 TIMERITOP Register bit assignments

Bits Name Function

[31:2] - Reserved, read undefined, must read as zeros

[1] Integration Test TIMINT2 value Value output on TIMINT2 when in Integration Test Mode

[0] Integration Test TIMINT1 value Value output on TIMINT1 when in Integration Test Mode

Part number

Part

number 1

Part

number 0

Designer

0

Designer

Revision

numberConfiguration

Configuration Revision

number
Conceptual register bit assignment

Actual register bit assignment

7 0 7 4 3 0 7 4 3 0 7 0

31 24 23 20 19 16 15 12 11 8 7 0

Designer

1

4-34 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

APB Components
Note
 When you design a system memory map, you must remember that the register has a
4KB-memory footprint.

The 4-bit revision number is implemented by instantiating a component called
RevisionAnd four times with its inputs tied off as appropriate, and the output sent to the
read multiplexor.

All memory accesses to the peripheral identification registers must be 32-bit, using the
LDR and STR instructions.

The four, 8-bit peripheral identification registers are described in the following
subsections:

• Peripheral Identification Register 0

• Peripheral Identification Register 1 on page 4-36

• Peripheral Identification Register 2 on page 4-36

• Peripheral Identification Register 3 on page 4-36.

Peripheral Identification Register 0

The TIMERPERIPHID0 Register is hard-coded and the fields within the register
determine the reset value. Table 4-35 lists the register bit assignments.

Table 4-35 TIMERPERIPHID0 Register bit assignments

Bits Name Function

[31:8] - Reserved, read undefined, must read as zeros

[7:0] Partnumber0 These bits read back as 0x04
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 4-35

APB Components
Peripheral Identification Register 1

The TIMERPERIPHID1 Register is hard-coded and the fields within the register
determine the reset value. Table 4-36 lists the register bit assignments.

Peripheral Identification Register 2

The TIMERPERIPHID2 Register is hard-coded and the fields within the register
determine the reset value. Table 4-37 lists the register bit assignments.

Peripheral Identification Register 3

The TIMERPERIPHID3 Register is hard-coded and the fields within the register
determine the reset value. Table 4-38 lists the register bit assignments.

Table 4-36 TIMERPERIPHID1 Register bit assignments

Bits Name Function

[31:8] - Reserved, read undefined, must read as zeros

[7:4] Designer0 These bits read back as 0x1

[3:0] Partnumber1 These bits read back as 0x08

Table 4-37 TIMERPERIPHID2 Register bit assignments

Bits Name Function

[31:8] - Reserved, read undefined, must read as zeros

[7:4] Revision These bits read back as 0x0

[3:0] Designer1 These bits read back as 0x4

Table 4-38 TIMERPERIPHID3 Register bit assignments

Bits Name Function

[31:8] - Reserved, read undefined, must read as zeros

[7:0] Configuration These bits read back as 0x0
4-36 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

APB Components
PrimeCell Identification Registers

The TIMERPCELLID0-3 Registers are four 8-bit registers, that span address locations
0xFF0-0xFFC. The read-only registers can conceptually be treated as a single 32-bit
register. The register is used as a standard cross-peripheral identification system.
Figure 4-24 shows the register bit assignments.

Figure 4-24 PrimeCell identification register bit assignments

The four, 8-bit registers are described in the following subsections:

• PrimeCell Identification Register 0

• PrimeCell Identification Register 1 on page 4-38

• PrimeCell Identification Register 2 on page 4-38

• PrimeCell Identification Register 3 on page 4-38.

PrimeCell Identification Register 0

The TIMERPCELLID0 Register is hard-coded and the fields within the register
determine the reset value. Table 4-39 lists the register bit assignments.

TIMERPCELLID3

Conceptual register bit assignment

Actual register bit assignment

7 0 7 0 7 0 7 0

31 24 23 16 15 8 7 0

TIMERPCELLID2 TIMERPCELLID1 TIMERPCELLID0

TIMERPCELLID3 TIMERPCELLID2 TIMERPCELLID1 TIMERPCELLID0

Table 4-39 TIMERPCELLID0 Register bit assignments

Bits Name Function

[31:8] - Reserved, read undefined, must read as zeros

[7:0] TimerPCellID0 These bits read back as 0x0D
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 4-37

APB Components
PrimeCell Identification Register 1

The TIMERPCELLID1 Register is hard-coded and the fields within the register
determine the reset value. Table 4-40 lists the register bit assignments.

PrimeCell Identification Register 2

The TIMERPCELLID2 Register is hard-coded and the fields within the register
determine the reset value. Table 4-41 lists the register bit assignments.

PrimeCell Identification Register 3

The TIMERPCELLID3 Register is hard-coded and the fields within the register
determine the reset value. Table 4-42 lists the register bit assignments.

Table 4-40 TIMERPCELLID1 Register bit assignments

Bits Name Type Function

[31:8] - - Reserved, read undefined, must read as zeros

[7:0] TimerPCellID1 Read These bits read back as 0xF0

Table 4-41 TIMERPCELLID2 Register bit assignments

Bits Name Type Function

[31:8] - - Reserved, read undefined, must read as zeros

[7:0] TimerPCellID2 Read These bits read back as 0x05

Table 4-42 TIMERPCELLID3 Register bit assignments

Bits Name Type Function

[31:8] - - Reserved, read undefined, must read as zeros

[7:0] TimerPCellID3 Read These bits read back as 0xB1
4-38 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

APB Components
4.5.5 Signal descriptions

Table 4-43 lists the non-AMBA signals used by the timer.

Note
 For a description of the AMBA signals used by the timer, see AMBA signals on
page 1-3.

Table 4-43 Timer signals

Signal Type Direction Description

TIMCLK Timer clock Input The timer clock input. This must be synchronous to PCLK for
normal operation.

TIMCLKEN1 Timer 1 clock
enable

Input The enable for the timer1 clock input. The counter will only
decrement on a rising edge of TIMCLK when TIMCLKEN1
is HIGH.

TIMCLKEN2 Timer 2 clock
enable

Input The enable for the timer clock input. The counter will only
decrement on a rising edge of TIMCLK when TIMCLKEN2
is HIGH.

TIMINT1 Counter 1 interrupt Output Active HIGH interrupt signal to the interrupt controller
module. This signal indicates an interrupt has been generated
by counter 1 having being decremented to zero.

TIMINT2 Counter 2 interrupt Output Active HIGH interrupt signal to the interrupt controller
module. This signal indicates an interrupt has been generated
by counter 2 having being decremented to zero.

TIMINTC Combined Counter
Interrupt

Output Active HIGH interrupt signal to the interrupt controller
module. This signal indicates an interrupt has been generated
by either counter having being decremented to zero, and is the
logical OR of TIMINT1 and TIMINT2.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 4-39

APB Components
4-40 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Chapter 5
Behavioral Models

This chapter describes the behavioral models in the AMBA Design Kit (ADK). It
contains the following sections:

• About the ADK toolkit on page 2-2

• Internal memory on page 5-4

• External ROM on page 5-6

• Tube on page 5-7

• AHB file reader master on page 5-8

• Test interface driver on page 5-32.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 5-1

Behavioral Models
5.1 External RAM,

The external RAM module, ExtRAM, is a simple model of a 32K x 8 off-chip SRAM, that
can be initialized with data from a local file. Figure 5-1 shows the external RAM
module.

Figure 5-1 AHB external RAM module interface diagram

5.1.1 Programmer’s model

Table 5-1 lists the user-defined settings for the external RAM module.

5.1.2 Signal descriptions

Table 5-2 lists the non-AMBA signals used by the external RAM module.

ExtRAM

OEn

WEn

CSn

A[14:0]

DQ[7:0]

Table 5-1 User-defined settings for the external RAM module

Signal Type
Default
setting

Description

FILENAME Input filename - This points to the local input data file that is read in after reset.

RAMDEPTH Memory depth 32 This sets the memory depth in KB. If the value is increased from the
default setting, then the address input bus A must also be increased to
enable all memory to be addressed.

Table 5-2 External RAM module signals

Signal Type Direction Description

A[14:0] External address Input The external address input

CSN Chip enable Input When LOW, this signal indicates that the chip has been selected and
must respond to the current transfer
5-2 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Behavioral Models
DQ[7:0] External data I/O Input/
output

The external data bus, sampled during write transfers and driven
during read transfers

OEN Output enable Input When LOW, this signal indicates a read transfer, and enables the
module to drive data onto DQ

WEN Write enable Input When LOW, this signal indicates a write transfer

Table 5-2 External RAM module signals (continued)

Signal Type Direction Description
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 5-3

Behavioral Models
5.2 Internal memory

The internal memory, IntMem32 and IntMem64, is a simple little-endian model of a
variable-depth 32 or 64-bit wide on-chip SRAM that can be initialized with data from
a local file.

Note
 Initialization is completed only once at simulation start up, and is not carried out based
on the module reset signal.

Figure 5-2 shows the internal memory module.

Figure 5-2 AHB internal memory module components

5.2.1 Programmer’s model

Table 5-3 lists the user-defined settings for the internal RAM module

Initialization

control

IntMem

Memory

array

Write control

Read control

AHB

control

signal

registers

Table 5-3 User-defined settings for the internal RAM module

Signal Type
Default
setting

Description

FILENAME Input filename intram.dat This signal points to the local input data file that is read in after
reset

MEMBITS Memory address width 12 This signal sets the number of used address bits
5-4 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Behavioral Models
Memory initialization from local data file

On simulation initialization, the internal memory module loads in data from the file
specified in the FileName setting. This file must be stored as an 8-character Verilog
$readmemh format data file, for Verilog format models, that cannot contain more data
than the model supports. Address lines, starting with @, and single line comments,
starting with //, are valid, but all other non-value characters are not. Loading starts from
address zero, and continues incrementing on word boundaries until an address line is
found in the file. Loading then continues from that address. All values are initialized to
zero before loading is started. Example 5-1 shows an example intram.dat file.

Example 5-1 intran.dat file

ea00000b
ea000005
// Data values stored at 0x00000200
@00000200
01234567
89ABCDEF

5.2.2 Signal descriptions

The internal memory module uses only AMBA signals. For a description of the AMBA
signals, see AMBA signals on page 1-3.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 5-5

Behavioral Models
5.3 External ROM

The external ROM module, ExtROM, is a simple model of a 16K x 8 off-chip EPROM,
that can be initialized with data from a local file. Figure 5-3 shows the external ROM
module.

Figure 5-3 External ROM module interface diagram

5.3.1 Programmer’s model

Table 5-4 lists the user-defined settings for the external ROM module.

5.3.2 Signal descriptions

Table 5-5 lists the non-AMBA signals used by the external ROM module.

ExtROM

OEn

CEn

A[13:0]

Q[7:0]

Table 5-4 User-defined settings for the external ROM module

Signal Type
Default
setting

Description

FILENAME Input filename - This signal points to the local input data file that is read in after reset.

ROMDEPTH Memory depth 16 This signal sets the memory depth in KB. If the value is increased from
the default setting, then the address input bus A must also be increased to
enable all memory to be addressed.

Table 5-5 External ROM module signals

Signal Type Direction Description

A[13:0] External address Input The external address input

CEN Chip enable Input When LOW, this signal indicates that the chip has been selected
and must respond to the current transfer

OEN Output enable Input When LOW, this signal indicates a read transfer, and enables the
module to drive data onto Q

Q[7:0] External data out Output The external data bus, driven during read transfers
5-6 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Behavioral Models
5.4 Tube

The system messaging tube, Tube, is a simple method of passing system messages from
a test program to the display, and enables a test program to stop the simulation.

Figure 5-4 shows the tube module interface.

Figure 5-4 Tube module interface diagram

The main sections of this module are:

• message output to simulator

• message output to file

• simulation termination control.

5.4.1 Signal descriptions

Table 5-6 lists the non-AMBA signals used by the tube module.

Tube

XWEN

XCSN

XD

Simulator display

and text file

Table 5-6 Tube module signals

Signal Type Direction Description

XCSN[3:0] External chip select Input These signals are active LOW chip enables.

XD[31:0] External data Input This is the external data bus, that is sampled by this module
during write transfers.

XWEN[3:0] External write enable Input This is the active LOW memory write enable. For little-endian
systems, XWEN[0] controls writes to the least significant byte
and XWEN[3], the most significant. The example system is
configured to be little-endian.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 5-7

Behavioral Models
5.5 AHB file reader master

The AHB File Reader Master (FRM), FileRdMaster32 and FileRdMaster64, enables
designers to simulate AHB systems quickly and efficiently by using it to generate
explicit bus transfers. The FRM can operate in the ADK system with or without an
ARM core present.

The FRM is a generic AHB Bus Functional Model (BFM) that directly controls bus
activity by interpreting a stimulus file. The FRM facilitates the efficient validation of
blocks or systems.

The 64-bit FRM, FileRdMaster64, is split into two parts:

• AHB-Lite file reader

• AHB-Lite to AHB wrapper.

The 32-bit FRM, FileRdMaster32, has an additional part, the funnel, that converts
32-bit transfers on a 64-bit bus to 32-bit transfers on a 32-bit bus.

The AHB-Lite file reader can:

• perform all AHB burst types at data widths of 8, 16, 32, and 64 bits

• insert BUSY states during bursts

• perform idle transfers

• compare received data with the expected data and report differences during
simulations.

The AHB-Lite file reader is controlled entirely through the stimulus file at simulation
run time. It does not have a slave interface, and therefore cannot be addressed by another
AHB master.

The human-readable input stimulus file must be transformed to a data file in Verilog
hexadecimal format by the preprocessor script fm2conv.pl.

The FRM is designed so that, wherever possible, RTL code is used to describe its logic.
All RTL code is written for synthesis with pragmas where necessary to enable the block
to pass through synthesis tools.

Figure 5-5 on page 5-9 shows a block diagram of the two versions of the FRM.
5-8 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Behavioral Models
Figure 5-5 File reader bus master

5.5.1 Programmer’s model

The FileRdMaster uses the following Verilog parameters:

InputFileName

This is the name of the stimulus data file to be read. If the file is not found,
simulation is aborted. The default file name is filestim.m2d.

MessageTag A string that is prepended to all stimulation messages from this
FileRdMaster. This tag can be used to differentiate between messages
from multiple file reader masters in a system. The default message tag is
FileReader:.

StimArraySize

The size, in words, of the internal array used to store the stimulus data.
This value has a direct effect on the simulation startup time and memory
requirement. This value must be large enough to store the whole data file.
If the data file is larger than the array, simulation is aborted. The default
value is 5000.

Stimulus

file

File reader

core

AHB-Lite

to AHB

wrapper

Funnel

Addr and ctrl

Data

AHB

FileRdMaster32

Stimulus

file

File reader

core

AHB-Lite

to AHB

wrapper

Addr and ctrl

Data

AHB

FileRdMaster64
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 5-9

Behavioral Models
The following AHB-Lite FRM functions are described in this section:

• Write command

• Read command on page 5-11

• Sequential command on page 5-12

• Busy command on page 5-13

• Idle command on page 5-14

• Poll command on page 5-16

• Loop command on page 5-17

• Resp field on page 5-18

• Clock and reset on page 5-18

• Error reporting at runtime on page 5-18

• End of stimulus on page 5-19.

Write command

The write command W starts a write burst and can be followed by one or more S vectors.
For bursts of fixed length, the Burst field determines the number of S vectors. For bursts
of undefined length, there can be any number of S vectors as long as they do not cause
the address to cross a 1K boundary.

Figure 5-6 shows the write command timing diagram.

Figure 5-6 Write command timing

Command W

HADDR A1

HTRANS NONSEQ

HWDATA D1

HWRITE

HREADY

Cycle 1 Cycle 2
5-10 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Behavioral Models
The write command operates as follows:

Cycle 1 The file reader sets up the control signals from the command and asserts
HWRITE. HTRANS is NONSEQ to indicate the first transfer of the
burst. The Data field is stored and ready to be driven during the data
phase.

If HREADY is asserted, the file reader proceeds to the second control
phase.

Cycle 2 This is the first data phase in which the data is driven for the previous
cycle. Unless the Burst field specifies a single transfer, the file reader
calculates the next address based on the Size and Burst values.

Read command

The read command R starts a read burst and can be followed by one or more S vectors.
For bursts of fixed length, the Burst field determines the number of S vectors. For bursts
of undefined length, there can be any number of S vectors as long as they do not cause
the address to cross a 1K boundary.

Figure 5-7 shows the read command timing diagram.

Figure 5-7 Read command timing

The read command operates as follows:

Cycle 1 The file reader sets up the control signals from the command and
deasserts HWRITE. HTRANS is NONSEQ to indicate the first transfer
of a burst.

Command R

HADDR A1

HTRANS NONSEQ

HRDATA D1

HWRITE

HREADY

Cycle 1 Cycle 2
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 5-11

Behavioral Models
If HREADY is asserted, the file reader proceeds to the second control
phase.

Cycle 2 The data read for the previous cycle is compared with the Data field after
applying the mask and byte lane strobes. Any differences are reported to
the simulation environment. Unless the Burst field indicates a single
transfer, the file reader calculates the next address based on the Size and
Burst values.

Sequential command

The sequential command S is a vector that provides data for a single beat within the
burst. The file reader calculates the required address. A sequential command is valid
when a burst transfer is started by a read or write command.

Figure 5-8 shows the sequential command timing diagram.

Figure 5-8 Sequential command timing

A sequential command is valid when a burst transfer has been started by a Read or
Write command:

Cycle n The file reader drives the calculated address, and HTRANS is SEQ to
indicate the remaining transfers of the burst.

If HREADY is asserted, the file reader proceeds to the second control
phase.

Cycle n + 1 In a write burst, the file reader drives the Data field data and ignores the
Mask field.

Command S

HADDR A(n)

HTRANS SEQ

HRDATA

HWRITE

HREADY

S

A(n+1)

SEQ

D(n) D(n+1)

R/W

Cycle n Cycle n+1
5-12 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Behavioral Models
In a read burst, the file reader applies the Mask and Bstrb fields to the
input data and then compares the Data field with the input data. The file
reader reports differences between the expected data and the read data to
the simulation environment.

Busy command

The busy command B inserts either a BUSY transfer or a BUSY cycle, depending on the
Wait field. A busy command is valid when a burst transfer is started by a read or write
command.

During a burst with the Wait field not specified, the busy command inserts a single
HCLK BUSY transfer on the AHB. An INCR burst can have a busy command after its
last transfer while the master determines whether it has another transfer to complete.

Figure 5-9 shows the busy command timing diagram.

Figure 5-9 Busy transfer timing

Cycle n The file reader drives the calculated address and HTRANS is BUSY.

Cycle n + 1 The file reader proceeds to the next control phase. Data is ignored.

During a burst with the Wait field specified, the busy command inserts a complete AHB
transfer as Figure 5-10 on page 5-14 shows.

Command B

HADDR A(n)

HTRANS BUSY

HWDATA or

HRDATA

HWRITE

HREADY

S

A(n)

SEQ

D(n)

R/W

Cycle n Cycle n+1
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 5-13

Behavioral Models
Figure 5-10 Busy cycle timing

The address phase is extended by wait states because of the data phase of a previous
transfer, if present.

Idle command

The idle command I performs either an IDLE transfer or an IDLE cycle, depending on
the Wait field. The options enable you to set up the control information during the IDLE
transfer, and to specify if the transfer is locked or unlocked.

If the Wait field is not specified, the idle command inserts a single HCLK cycle IDLE
transfer on the AHB, as Figure 5-11 on page 5-15 shows.

Command B + Wait

HADDR A(n)

HTRANS BUSY

HWDATA or

HRDATA

HWRITE

HREADY

S

A(n)

SEQ

R/W

Cycle n Cycle n+1
5-14 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Behavioral Models
Figure 5-11 Idle transfer timing

Cycle 1 HTRANS is IDLE and the control signals take the default values, except
for those specified in the command.

Cycle 2 The file reader proceeds to the next control phase. Data is ignored.

If the Wait field is specified, the idle command inserts a complete AHB transfer as
Figure 5-12 on page 5-16 shows. The address phase is extended by wait states due to
the data phase of a previous transfer, if present.

Command I

HADDR A

HTRANS IDLE

HWDATA or

HRDATA

HWRITE

HREADY

Cycle 1 Cycle 2

DIR
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 5-15

Behavioral Models
Figure 5-12 Idle cycle timing

Cycle 1 HTRANS is set to IDLE and the control signals are set to the default
values, except for those specified in the command.

Cycle 2 If the Wait field is not specified, or the Wait field is specified and
HREADY is asserted, then the file reader proceeds to the next control
phase. Data is ignored.

Poll command

The poll command P continually reads the input data until it matches the value in the
Data field or until the number of reads equals the number in the Timeout field. If the
input data does not match after the Timeout number, the file reader reports an error. Not
specifying a TimeOut value or specifying a Timeout value of 0 causes the poll
command to read continually until the data matches the required value. The poll
command is only for INCR or SINGLE burst types and for aligned addresses.

Figure 5-13 on page 5-17 shows the poll command.

Command I + Wait

HADDR A

HTRANS IDLE

HWDATA or

HRDATA

HWRITE

HREADY

Cycle 1 Cycle 2

DIR
5-16 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Behavioral Models
Figure 5-13 Poll command timing

The poll command operates as follows:

Cycle 1 The file reader sets up a read of the single address in the Address field.

If HREADY is asserted, the file reader proceeds to the second control
phase.

Cycle 2 The file reader issues an IDLE transfer, reads the data for the previous
address value.

Loop command

The loop command L repeats the last command a number of times. When the burst type
is INCR or SINGLE, a loop command must follow only a write or read. Because the
file reader has a 32-bit counter, the maximum number of loops is 232 -1.

Note
 Commands that do not directly represent bus transactions, for example, the simulation
comment command C, are not looped. Consecutive loops are cumulative and not
multiplicative. For example:

I 0x4000
C Commencing IDLES
L 1000
L 1000

HADDR

Command

HTRANS

HRDATA

A

NONSEQ

P

HWRITE

D'

HREADY

IDLE NONSEQ

D

A

IDLE

Cycle 1 Cycle 2 Cycle 1 Cycle 2
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 5-17

Behavioral Models
This sequence performs an IDLE to address 0x4000, generates the comment, and then
performs 2000 further IDLE access to address 0x4000.

Comment command

The comment command C sends a message to the simulation window.

Quit command

The quit command Q causes the simulation to terminate immediately. Additionally, the
quit command gives a summary of the number of commands and errors.

Resp field

The Resp field tests for the expected response. The Resp field must be present on a
command that is expected to receive an Error response from a slave.

If the Resp field is set to Errorcont or Errorcanc and an ERROR response is received, no
warning is given. If the Resp field is set to Errorcont or Errorcanc and an ERROR
response is not received, a simulation warning is generated.

If an error occurs during a burst transfer and the Resp field is set to Errorcont, the burst
continues.

If an error occurs during a burst transfer and the Resp field is set to Errorcanc, the burst
is cancelled. No attempt is made to retransmit the erroneous transfer. The stimulus file
does not have to contain the remaining transfers in the burst. An IDLE transfer is always
inserted during the ultimate cycle of the error response if the burst is to be cancelled.

Clock and reset

The file reader is synchronous with the AHB bus clock signal HCLK and is reset by the
AHB reset signal HRESETn.

Error reporting at runtime

An error can occur in the following circumstances:

• a read transfer where the expected data does not match the actual data

• a transfer that receives an AHB ERROR response and the Error field is not set

• a transfer where the Error field is set and the transfer does not receive an AHB
ERROR response

• a Poll command where the expected data is not received within the timeout
number of attempts
5-18 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Behavioral Models
• the stimulus file is longer than the array size allocated.

When an error is reported, the line number of the corresponding command on the input
file is reported to the simulation window.

End of stimulus

A summary of the number of commands and errors is given when any of the following
is reached:

• a quit command

• end of input file

• end of the internal command array.

Simulation is terminated when a Q command is encountered.

If the end of the stimulus is reached, all AHB signals are set to zero. This implies IDLE
read transfers to address 0x00.

If the end of the internal command array is reached and the end of the stimulus file has
not been reached, a warning is given, and all AHB signals are set to zero. This implies
IDLE read transfers to address 0x00.

5.5.2 Command syntax

The filename of the stimulus data file is specified using a parameter Verilog, at the point
of instantiation in the HDL code.

The syntax uses a single letter for each command followed by a number of fields.

Command syntax

Table 5-7 lists the stimulus command syntax.

Table 5-7 Stimulus command syntax

Cm
d

Fields

W Address Data [Size] [Burst] [Prot] [Lock] [Resp] [Comment]

R Address Data [Mask] [Size] [Burst] [Prot] [Lock] [Resp] [Comment]

S Data [Mask] [Resp] [Comment]

B [Wait] [Comment]
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 5-19

Behavioral Models
Note
 Items in brackets [] are optional. See Table 5-8 on page 5-21 for default values.

The commands are:

W The write command starts a write burst and can be followed by one or
more S vectors. The number of S vectors is set by the size and burst fields
for fixed length bursts. There is no limit to the number of S vectors for
undefined length bursts, as long as it does not cause the address to cross
a 1k boundary.

R The read command starts a read burst and can be followed by one or more
S vectors. The number of S vectors is set by the size and burst fields for
fixed length bursts. There is no limit to the number of S vectors for
undefined length bursts, as long as it does not cause the address to cross
a 1k boundary.

S The sequential vector provides data for a single beat in the burst. The file
reader calculates the address required.

B The busy command inserts either a BUSY cycle or a BUSY transfer mid
burst, depending on the value of the Wait field. An INCR burst can have
a busy after its last transfer, while the master determines whether it has
another transfer to complete. It is not valid to have a busy command when
a burst is not in progress.

I The Idle command performs either an IDLE cycle or an IDLE transfer,
depending on the value of the Wait field. The options enable you to set up
the control information during the idle transfer, and to specify if the
transfer is locked or unlocked.

I [Address] [Dir] [Size] [Burst] [Prot] [Lock] [Wait] [Comment]

P Address Data [Mask] [Size] [Burst] [Prot] [Timeout] [Comment]

L Number [Comment]

C Message [Comment]

Q [Comment]

Table 5-7 Stimulus command syntax (continued)

Cm
d

Fields
5-20 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Behavioral Models
P Poll command performs a read transfer that repeats until the data matches
the required value. If it repeats this Number times and the value is not
read, then an error is reported. Either omitting TimeOut or setting to value
zero causes the Poll to repeat continually until the data matches the
required value. The poll vector can only be used for INCR or SINGLE
burst types and for aligned addresses.

L Loop command repeats the last command a number of times. An L
command must only follow a W or R when the burst type is INCR or
SINGLE.

C The comment command C sends a message to the simulation window.

Q The quit command Q causes the simulation to terminate immediately.
Additionally, the quit command gives a summary of the number of
commands and errors.

Table 5-8 shows the stimulus command fields.

Table 5-8 Command fields

Field Default Values Prefix Description

Address 0x00000000 32-bit hex value 0x
(optional)

First address of burst.

Data - 8, 16, 32, or 64-bit
hex value

0x
(optional)

Data field for read, write, sequential, and poll
commands. The width of the Data field must
match either the specified transfer size or the
bus width of the FRM.

Mask 0xFF for each
active byte lane as
determined by
Address and Size,
and 0x00 for
inactive byte
lanes, or
0xFFFFFFFF if adk1
switch is set

8, 16, 32, or 64-bit
hex value

0x
(optional)

Bit mask. Enables masking of read data when
testing against required data. You must write
the Mask and Data fields as the same size. They
must match either the specified transfer size or
the bus width of the FRM.

Size word or
doubleword
depending on
user-defined
-buswidth switch

b | byte | size8 | h
| hword | size16 | w
| word | size32 | d
| dword | size64

- Data size for read, write, sequential, and poll
commands.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 5-21

Behavioral Models
Burst incr sing | single | incr
| incr4 | wrap4 |
incr8 | wrap8 |
incr16 | wrap16

- Burst type for read, write, and idle transfer
commands. For poll commands, the only
permitted values for Burst are sing, single, or
incr.

Prot 0000 4-bit binary p | P Indicates the HPROT value for the transfer.

Lock nolock nolock | lock - Transfers lock.

Resp okay okay | ok | errcanc |
errcanc

- When errcont is specified:a

• If an ERROR response occurs, no
warning is generated. A burst in
progress continues.

• If no ERROR response occurs, a
warning is generated. A burst in
progress continues.

When errcanc is specified:

• If an ERROR response occurs, no
warning is generated. A burst in
progress is cancelled.b

• If no ERROR response occurs, a
warning is generated. A burst in
progress continues.

Dir read read | write - Controls the value of HWRITE during an idle
command.

Number - Decimal value from
1-(2^32-1)

- Loops repeat value.

Timeout 0 Decimal value from
0-(2^32-1)

t | T Number of times the poll command repeats
data check before generating an error when
data does not match expected value. Specifying
0 repeats continuously.

Table 5-8 Command fields (continued)

Field Default Values Prefix Description
5-22 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Behavioral Models
Table 5-9 lists the keyboard characters that are supported by the comment command.
Any other characters are replaced with a - (dash) by the script.

5.5.3 File preprocessing

The stimulus file is converted into a format that can be fed directly into the HDL code
using the script fm2conv.pl. This script verifies that the syntax of the input file is correct.
This script provides useful error messages when the syntax is not correct. Figure 5-14
on page 5-24 shows the process of stimulus file conversion.

Wait nowait wait | nowait - Waits for HREADY before continuing. Makes
an IDLE or BUSY cycle.

Message - 1 to 80 characters
and symbols. See
Table 5-9 for
supported
characters.

comment
contained
within
double
quotes

Sends a user-defined comment to the
simulation window.

Comment
Delimiter

- ; | # | // | -- - All common comment delimiters are valid.

a. The value err or error can be used as a synonym for errcont for compatibility with legacy BFM versions but is not
recommended for use in new development.

b. An IDLE transfer is always inserted in the last cycle of the ERROR response if the burst is cancelled. No attempt is made to
retransmit the erroneous transfer. The stimulus file does not have to contain the remaining transfers of the burst.

Table 5-8 Command fields (continued)

Field Default Values Prefix Description

Table 5-9 Characters supported by comment command

Character Symbol

a-z (lower case) ! $ % ^ & * ()

A-Z (upper case) _ - + = { } []

0-9 : ; @ '~ # < >

(white space) , . ? / |
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 5-23

Behavioral Models
Figure 5-14 Stimulus file conversion

Loops

The fm2conv.pl script unfolds loops of S vectors but relies on the FRM functionality for
other commands.

Note
 Large loops of S vectors can create large stimulus data files.

Data and mask representations

Data and mask values can be specified as either:

• the bus width

• with the -buswidth switch to fm2conv.pl

• the same length as the transfer size with or without a 0x prefix.

The byte lanes are driven according to both the least significant address bits, and the
specified endian organization. The default is little-endian.

If the data or mask is represented as fewer bits than the data bus, then the transfer size
is implicitly set to be that width. If this value conflicts with an explicit Size field, then
an error is generated. The following examples show data and mask representations of
with fewer bits than the data bus:

R 00000002 DD

Read transfer with burst type INCR and implied size Byte. The Data
mask is 0x0000000000FF0000 in default little-endian mode.

R 0000ABCD 0x0123456789ABCDEF AB

The Data field is 64 bits (bus width), and the Mask field is BYTE, so the
transfer size is BYTE.

File

coversion

utility

fm2conv.pl

Input stimulus

f ile format

.m2d f ile

format

RTL bus master HDL

Behavioral

HDL f ile reader
5-24 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Behavioral Models
R 00000004 EEEEEEEE FF

Invalid stimulus on a 64-bit system. The Data field implies a word
transfer while the Mask field implies BYTE.

W 000000C0 AB WORD

Invalid stimulus. The Data field implies a byte transfer while the Size
field specifies word.

FRM versions

Because the FRM and fm2conv.pl utilities are closely coupled through the stimulus data
file, you must take care to ensure the correct versions are used. Table 5-10 lists the
compatibility between versions.

Because of enhancements in FRM functionality and stimulus extensions, the stimulus
files and data files for the AHB file reader are incompatible with previous versions of
the file reader. The versions can be identified by their ADK version keyword:

• ADK_REL1v for previous versions

• ADK2v for the FRM described in this document.

Table 5-11 lists the compatibility between versions.

The file preprocessor can translate ADK1v1 stimulus files using the corresponding
command-line switch.

Table 5-10 Compatibility between versions of FRM and fm2conv.pl

fm2conv.pl version

ADK1v1 ADK2

File reader version ADK1v1 -

- File reader version ADK2

Table 5-11 Compatibility between versions of stimulus file and fm2conv.pl

fm2conv.pl version

ADK1v1 ADK2

Stimulus file version ADK1v1 Stimulus file version ADK1v1a

a. Using -adk1 command-line switch.

- Stimulus file version ADK2
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 5-25

Behavioral Models
Endianness

The preprocessor script by default assumes little-endian data organization. Therefore, if
only a single byte of data is specified for a byte access, it is placed on the byte lane
determined by little-endian addressing.

Big-endian mode is supported for AMBA (Rev 2). The type of big-endian is legacy
big-endian, also called ARM big-endian or BE-32. The data and mask must be specified
in the same way as for little-endian mode. The preprocessor script places the data and
mask bytes in the correct lanes.

Stimulus file size

When the file reader simulation begins, the entire stimulus file is read into an array.
Ensure that the array size is large enough to store the entire stimulus file. The fm2conv.pl
utility reports the array size required and the total number of vectors in a summary of
the stimulus file conversion. A warning is generated if the array size is too small for the
resulting stimulus file.

If the array size in the RTL file reader bus master is changed from the default value, you
can set the array size through a generic parameter in the FRM HDL by using the
command line switch -stimarraysize with the fm2conv.pl utility.

File preprocessor usage

Table 5-12 lists the command-line switches accepted by the preprocessor, fm2conv.pl.

Table 5-12 Preprocessor command-line options

Switch Options Default Description

-help - - Displays the usage message.

-quiet - - Suppresses warning messages.

-adk1 - - Translates an ADK1v1 stimulus file. This option can also be
specified within the stimulus file.

-endian = <endianness> little or big little The endianness determines the byte lanes that are driven for
sparsely declared Data and Mask fields. Not supported for
v6 stimulus; instead, the full bus width must be specified for
big-endian transfers. The big-endian option is implemented
as ARM big-endian.

-infile = <filename> - filestim.m2i Input file name.
5-26 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Behavioral Models
Error reporting during file preprocessing

The script performs additional checks to ensure correct FRM operation. Table 5-13 lists
the error checks. File conversion is aborted if an error with the command-line options
is found. File conversion continues if any other error is found, so that you can generate
non-AMBA compliant stimulus for test purposes, if required.

-outfile = <filename> - filestim.m2d Output file name. This name must match the definition
specified in the file reader bus master HDL.

-buswidth = <width> 32 or 64 64 Specifies the data bus width of the target FRM.

-arch = <arch> ahb2 or V6 ahb2 Specifies the ARM processor architecture version of the
target FRM.

Note
 V6 is not supported by this version of the FRM.

-StimArraySize = <size> <size> 5000 The size of the file reader bus master file array. This size
must match the value set in the FRM HDL.

Table 5-12 Preprocessor command-line options (continued)

Switch Options Default Description

Table 5-13 fm2conv.pl error messages

Error
number

Description

17 Input file is unreadable, does not exist or has incorrect permissions.

20 Input file has same name as output file.

21 Cannot create output file.

32 Unrecognized commands within the file.

36 Required fields are missing or in the wrong format.

37 Loop command has Number field missing.

38 Comment command requires a string within double quotes.

40 Size value exceeds the data bus width. Maximum value is dword | size64 for the ADK2 64-bit version FRM,
and word | size32 for the ADK2 32-bit version FRM.

43 Loop Number field out of range.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 5-27

Behavioral Models
Most common AMBA protocol violations are detected by the file preprocessor script,
but the absence of errors and warnings does not guarantee that the stimulus are
compliant with the AMBA protocol.

Table 5-14 lists the warnings. File conversion continues when a warning is issued.

44 Poll TimeOut field out of range.

48 Data field length exceeds FRM data bus width.

49 Data field has invalid length.

52 Mask field length exceeds FRM data bus width.

53 Mask field has invalid length.

56 Mismatch between transfer size, whether specified or implicitly set by Data or Mask width, and Data or Mask
field.

64 Address is not aligned with the size of the transfer.

80 For Poll commands, burst types are not the valid incr or single.

84 S or B vectors before a defined-length or undefined-length burst has started.

88 Burst exceeds 1kB address boundary, for both defined and undefined-length bursts.

89 Loop number exceeds number of remaining transfers, for each defined-length burst type.

Table 5-13 fm2conv.pl error messages (continued)

Error
number

Description

Table 5-14 fm2conv.pl warnings

Warning
number

Description

128 Perl version older than 5.005. Command line switches not supported

132 Invalid data bus width selected.

133 Invalid architecture selected.

134 Adk1 architecture selected and data bus width not specified as 32-bits.

136 Output file length exceeds specified size of stimarraysize.

144 EOF found during burst: expected further transfers.
5-28 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Behavioral Models
Errors and warnings have the following numbering scheme:

[7] Severity.

[6:4] Error or warning type.

[3:2] Error or warning subtype.

[1:0] Enumerator.

Table 5-15 to Table 5-17 on page 5-31 list the numbering scheme for errors and
warnings.

164 An optional field has an invalid value.

165 Invalid character in comment string.

168 Comment command has a string of length greater than 80 characters.

169 Consecutive blank or commented lines exceeds 63 for line number reporting to work.

216 Number of S vectors following a W | R command is incorrect for a fixed length burst (a burst is terminated
early). This enables the simulation of early-terminated bursts.

240 Unsupported command is encountered, Memory.

241 Unsupported field is encountered, AltMaster, and entire line is ignored.

242 Unsupported field is encountered, DeGrant, and is ignored.

248 A feature in development status.

254 Currently unsupported value in field, for example, size > 64.

255 Internal or debug error. Not expected to occur in normal usage.

Table 5-14 fm2conv.pl warnings (continued)

Warning
number

Description

Table 5-15 Numbering scheme for bit 7, severity

Value Meaning

0 Error

1 Warning
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 5-29

Behavioral Models
Table 5-16 Numbering scheme for bits [6:4] and [3:2], error and warning type and
subtype

Value bits [6:4] Meaning Value bits [3:2] Meaning

000 Command line 00 Environment

01 Options

10 -

11 -

001 File input/output 00 Input file

01 Output file

10 -

11 -

010 Syntax 00 Command

01 Field

10 Range

11 -

011 Transfer size 00 Data

01 Mask

10 Mismatch

11 -

100 Alignment 00 Address

01 -

10 -

11 -
5-30 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Behavioral Models
101 Burst 00 Within burst

01 Outside burst

10 Length

11 -

110 Reserved - -

111 Reserved - -

Table 5-17 Numbering scheme for bits [1:0], enumerator

Value Meaning

(any) Creates unique identifier in conjunction with bits [7:2]

Table 5-16 Numbering scheme for bits [6:4] and [3:2], error and warning type and
subtype (continued)

Value bits [6:4] Meaning Value bits [3:2] Meaning
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 5-31

Behavioral Models
5.6 Test interface driver

The test interface driver, Ticbox, is an external module that drives the test interface lines
to gain access to the AHB bus, and then applies test vectors from a test input file. This
test input file is the output from a C program written with the TICTalk command
language.

Before reading this section, you must be familiar with AMBA and its test interface
protocol. If not, refer to the AMBA Specification for further information.

Figure 5-15 shows an interface diagram of the Ticbox module.

Figure 5-15 Ticbox module interface diagram

The main sections of this module are:

• the input file reader

• output vector generation

• read data expected value checking.

When the external system reset input has been deasserted, the Ticbox requests access to
the system. This is done by asserting TESTREQA HIGH and TESTREQB LOW. The
TIC then indicates when test mode has been entered by asserting TESTACK HIGH.
When in test mode, the test input file is then read and translated by the Ticbox into
AMBA test interface transactions, using the TESTREQA and TESTREQB signals.

The Ticbox applies test vectors to the system every time the TESTACK line indicates
the system is ready. On read cycles the value is masked and then compared with the
masked expected value given in the test vector file. An error message is given if the

AMBA AHB system

TIC

DBI

Ticbox

AHB
modules

TIF

C

Test input
file

C compiler

TICTalk
source file

SMI

A
H

B

B
U

S

TESTREQA

TESTREQB

TESTACK

TESTBUS

TESTCLK

nRESET
5-32 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Behavioral Models
comparison fails. System testing ends when the end of the input vector file is reached,
and the Ticbox indicates this by asserting both TESTREQA and TESTREQB LOW to
end the simulation.

5.6.1 Signal descriptions

Table 5-18 lists the non-AMBA signals used by the Ticbox module.

Table 5-18 Ticbox module signals

Signal Type Direction Description

nRESET External reset Input Active LOW external reset input. Used to control the operation
of the Ticbox module.

TESTACK Test acknowledge Input Indicates that the test bus has been granted and also that a test
access has been completed.

TESTBUS[31:0] Test data bus Input/output 32-bit bidirectional test port.

TESTCLK Test mode clock Input This is the system clock HCLK in test mode. All the test
interface transactions are timed using this signal.

TESTREQA Test request A Output Indicates test vector mode. Refer to the test interface chapter in
the AMBA Specification for further information about the test
protocol. It is driven early in the LOW phase of TESTCLK
and held to the falling edge of TESTCLK.

TESTREQB Test request B Output Indicates test vector mode. See the test interface chapter of the
AMBA Specification for further information about the test
protocol. It is driven early in the LOW phase of TESTCLK
and held to the falling edge of TESTCLK.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 5-33

Behavioral Models
5.6.2 User-defined settings

Table 5-19 lists the user-defined settings for the Ticbox module

Table 5-19 User-defined settings for the Ticbox module

Name Type Default setting Description

FILENAME Input
filename

infile.sim (Verilog) This points to the local input vector file that is read in
a line at a time as each vector is performed.

HALTONMISMATCH Read error
setting

FALSE This controls the operation of the module when a
read error is detected. When set to FALSE, a warning
message is displayed showing the read error, and if
set to TRUE, the simulation is halted when a read
error is detected.

VERBOSITY Comment
display

TRUE Controls the displaying of input vector file
comments. When set to TRUE, comments are
displayed, and when set to FALSE, comments are not
displayed. This does not affect the displaying of other
system messages.
5-34 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Chapter 6
PrimeCell GPIO

This chapter describes how the PrimeCell General Purpose Input/Output (GPIO) is
integrated within the ADK. It contains the following sections:

• Operation on page 6-2

• Integration within ADK on page 6-3.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 6-1

PrimeCell GPIO
6.1 Operation

The PrimeCell GPIO is an AMBA-compliant System-on-Chip (SoC) peripheral. It is an
AMBA slave module that connects to the Advanced Peripheral Bus (APB) compliant
with AMBA Specification (Rev 2.0) onwards.

The GPIO offers:

• compliance to the AMBA Specification (Rev 2.0) onwards for easy integration into
SoC implementation

• eight individually programmable input/output pins

• scalability by multiple instantiations to 16, 24, 32, 40, or more bits

• programmable interrupt generation capability, from a transition or a level
condition, on any number of pins

• hardware control capability of PrimeCell GPIO lines for different system
configurations

• bit masking in both read and write operations through address lines

• identification registers that uniquely identify the PrimeCell GPIO.

The direction registers for port A and port B are programmable. Additional test registers
and modes are implemented for functional verification and manufacturing test.

All block registers are cleared during power-on reset, PRESETn LOW. This enables
the input drivers for both ports A and B that default to inputs on reset.

For each port, there is a data register and a data direction register. On reads, the data
register contains the current status of corresponding port pins, and whether they are
configured as input or output. Writing to a data register only affects the pins that are
configured as outputs.

Additional test registers and modes are implemented for functional verification and
manufacturing test.

For full details of the features provided by the PrimeCell GPIO, see the General
Purpose Input/Output (PL061) Technical Reference Manual.
6-2 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

PrimeCell GPIO
6.2 Integration within ADK

For details on how the GPIO integrates with the ADK, see the AMBA Design Kit User
Guide.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. 6-3

PrimeCell GPIO
6-4 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Appendix A
AHB-Lite Overview

This appendix provides an overview of the AHB-Lite. It contains the following
sections:

• About AHB-Lite on page A-2

• AHB-Lite master on page A-5

• AHB-Lite slaves on page A-6.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. A-1

AHB-Lite Overview
A.1 About AHB-Lite

AHB-Lite is a subset of the full AHB specification and is intended for use in designs
where only a single bus master is used. This can either be a simple single-master system,
as shown in Figure A-1, or a multi-layer AHB system where there is only one AHB
master per layer.

Figure A-1 AHB-Lite single-master system

AHB-Lite simplifies the AHB specification by removing the protocol required for
multiple bus masters, and includes:

• request and grant protocol to the arbiter

• SPLIT and RETRY responses from slaves.

Masters designed to the AHB-Lite interface specification can be significantly simpler
in terms of interface design, compared to a full AHB master. AHB-Lite enables faster
design and verification of these masters and the addition of a standard off-the-shelf bus
mastering wrapper can be used to convert an AHB-Lite master for use in a full AHB
system.

Any master that is already designed to the full AHB specification can be used in an
AHB-Lite system with no modification.

The majority of AHB slaves can be used interchangeably in either an AHB or AHB-Lite
system. This is because AHB slaves that do not use either the SPLIT or RETRY
response are automatically compatible with both the full AHB and the AHB-Lite
specification. It is only existing AHB slaves that do use SPLIT and RETRY responses
that require an additional standard off-the-shelf wrapper to be used in an AHB-Lite
system.

Any slave designed for use in an AHB-Lite system works in both a full AHB and an
AHB-Lite design.

Master

Slave 1

Slave 2

Slave 3
A-2 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB-Lite Overview
A.1.1 Specification

The AHB-Lite specification differs from the full AHB specification in the following
ways:

• It is a single-master system. There is only one source of address, control, and
write data, so no master-to-slave multiplexor is required.

• There is no arbitration. The AHB-Lite master always has control of the bus.

• There is no master HBUSREQ output. If such an output exists on a master, it is
left unconnected.

• There is no master HGRANT input. If such an input exists on a master, it is tied
HIGH.

• There is no SPLIT or RETRY slave responses. The AHB-Lite master deals only
with a slave ERROR response.

• The AHB-Lite lock signal HMASTLOCK, compared with HLOCK for full
AHB, and it has the same timing as the address bus and other control signals. If a
master has an HLOCK output, it can be retimed to generate HMASTLOCK.

• The AHB-Lite lock signal, HMASTLOCK, must remain stable throughout a
burst of transfers, in the same way that other control signals must remain constant
throughout a burst.

Using the AHB-Lite interface makes the bus transfers generated by the AHB-Lite file
reader easier to understand and easier to debug. Because the AHB-Lite is a single
master protocol, an AHB-Lite master always has control of the bus. Unlike AHB,
AHB-Lite has no request phase. Consequently, the AHB-Lite bus might be subject to
wait states during the request phase of the AHB bus.

A.1.2 Compatibility

Table A-1 on page A-4 lists how masters and slaves designed for use in either full AHB
or AHB-Lite can be used interchangeably in different systems.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. A-3

AHB-Lite Overview
Table A-1 AHB-Lite interchangeability

Component Full AHB system AHB-Lite system

Full AHB master Yes Requires HLOCK retiming to create
HMASTLOCK

AHB-Lite master Use ADK Lite2AHB master wrapper Yes

AHB slave, no SPLIT and RETRY Yes Yes

AHB slave, with SPLIT and RETRY Yes Use AHB slave wrapper
A-4 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

AHB-Lite Overview
A.2 AHB-Lite master

An AHB-Lite master has the same signal interface as a full AHB bus master, except that
it does not support HBUSREQx and HGRANTx.

The Lock functionality is still required because the master might be performing a
transfer to a multi-port slave. The slave must be given an indication that no other
transfer should occur to the slave when the master requires locked access.

An AHB-Lite master is not required to support either the SPLIT or RETRY response
and only the OKAY and ERROR responses are required, so the AHB-Lite master
interface does not require the HRESP[1] input.

A.2.1 AHB-Lite advantages

The advantage of using the AHB-Lite protocol is that the bus master does not have to
support the following cases:

• Losing ownership of the bus. The clock enable for the master can simply be
derived from the HREADY signal on the bus.

• Early terminated bursts. There is no requirement for the master to rebuild a burst
due to early termination, because the master always has access to the bus.

• SPLIT or RETRY transfer responses. There is no requirement for the master to
retain the address of the last transfer to be able to restart a previous transfer.

A.2.2 AHB-Lite conversion to full AHB

A standard wrapper is available to convert an AHB-Lite master to make it a full AHB
master. This wrapper adds support for the features described in AHB-Lite advantages.

Because the AHB-Lite master has no bus request signal available, the wrapper generates
this directly from the HTRANS signals.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. A-5

AHB-Lite Overview
A.3 AHB-Lite slaves

AHB slaves that do not use either the SPLIT or RETRY response can be used in either
a full AHB or AHB-Lite system.

Any slave that does use SPLIT or RETRY responses can be used in an AHB-Lite system
by adding a standard wrapper. This wrapper provides the ability to store the previous
transfer in the case of a SPLIT and RETRY response and restart the transfer when
appropriate. This wrapper is very similar to that required to convert an AHB-Lite master
for use in a full AHB system.

For compatibility with Multi-layer AHB, it is required that all AHB-Lite slaves still
retain support for early terminated bursts.

Figure A-2 shows a more detailed block diagram, including Decoder and
slave-to-master multiplexor connections.

Figure A-2 AHB-Lite components

Slave 1

HSEL

HADDR

HWDATA

HRDATA

Master

HADDR

HWDATA

HRDATA

Slave 3

HSEL

HADDR

HWDATA

HRDATA

Slave 2

HSEL

HADDR

HWDATA

HRDATA

Decoder
A-6 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Glossary

This glossary describes some of the terms used in this manual. Where terms can have
several meanings, the meaning presented here is intended.

Advanced High-performance Bus (AHB)
The AMBA Advanced High-performance Bus system connects embedded processors
such as an ARM core to high-performance peripherals, DMA controllers, on-chip
memory, and interfaces. It is a high-speed, high-bandwidth bus that supports
multi-master bus management to maximize system performance.

See also Advanced Microcontroller Bus Architecture and AHB-Lite.

Advanced Microcontroller Bus Architecture(AMBA)
AMBA is the ARM open standard for multi-master on-chip buses, capable of running
with multiple masters and slaves. It is an on-chip bus specification that details a strategy
for the interconnection and management of functional blocks that make up a
System-on-Chip (SoC). It aids in the development of embedded processors with one or
more CPUs or signal processors and multiple peripherals. AMBA complements a
reusable design methodology by defining a common backbone for SoC modules. AHB
conforms to this standard.

See also Advanced High-performance Bus and AHB-Lite.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. Glossary-1

Glossary
Advanced Peripheral Bus (APB)
The AMBA Advanced Peripheral Bus is a simpler bus protocol than AHB. It is designed
for use with ancillary or general-purpose peripherals such as timers, interrupt
controllers, UARTs, and I/O ports. Connection to the main system bus is through a
system-to-peripheral bus bridge that helps to reduce system power consumption.

See also Advanced High-performance Bus.

AHB See Advanced High-performance Bus.

AHB-Lite AHB-Lite is a subset of the full AHB specification. It is intended for use in designs
where only a single AHB master is used. This can be a simple single AHB master
system or a multi-layer AHB system where there is only one AHB master on a layer.

Aligned Refers to data items stored so that their address is divisible by the highest power of two
that divides their size. Aligned words and halfwords therefore have addresses that are
divisible by four and two respectively. The terms word-aligned and halfword-aligned
therefore refer to addresses that are divisible by four and two respectively. The terms
byte-aligned and doubleword-aligned are defined similarly.

AMBA See Advanced Microcontroller Bus Architecture.

APB See Advanced Peripheral Bus.

Architecture The organization of hardware and/or software that characterizes a processor and its
attached components, and enables devices with similar characteristics to be grouped
together when describing their behavior, for example, Harvard architecture, instruction
set architecture, ARMv6 architecture.

ARM state A processor that is executing ARM (32-bit) instructions is operating in ARM state.

See also Thumb state.

Banked registers The physical registers whose use is defined by the current processor mode. The banked
registers are r8 to r14.

Big-endian Memory organization in which the least significant byte of a word is at a higher address
than the most significant byte.

See also Little-endian and Endianness.

Burst A group of transfers to consecutive addresses. Because the addresses are consecutive,
there is no requirement to supply an address for any of the transfers after the first one.
This increases the speed at which the group of transfers can occur. Bursts over AHB
buses are controlled using the HBURST signals to specify if transfers are single,
four-beat, eight-beat, or 16-beat bursts, and to specify how the addresses are
incremented.
Glossary-2 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Glossary
Byte lane strobe An AHB signal, HBSTRB, that is used for unaligned or mixed-endian data accesses to
determine the byte lanes that are active in a transfer. One bit of HBSTRB corresponds
to eight bits of the data bus.

Cache A block of on-chip or off-chip fast access memory locations, situated between the
processor and main memory, used for storing and retrieving copies of often used
instructions and/or data. This is done to increase the average speed of memory accesses
and therefore to increase processor performance.

Central Processing Unit (CPU)
The part of a processor that contains the ALU, the registers, and the instruction decode
logic and control circuitry. Also commonly known as the processor core.

Cold reset Also known as power-on reset. Starting the processor by turning power on. Turning
power off and then back on again clears main memory and many internal settings. Some
program failures can lock up the processor and require a cold reset to enable the system
to be used again. In other cases, only a warm reset is required.

See also Warm reset.

Coprocessor A processor that supplements the main CPU. It carries out additional functions that the
main CPU cannot perform. Usually used for floating-point math calculations, signal
processing, or memory management.

Core reset See Warm reset.

CPU See Central Processing Unit.

Domain A memory division that is made up of supersections, sections, large pages, or small
pages of memory, that can have their access permissions switched rapidly by writing to
the Domain Access Control Register, CP15 register 3.

Doubleword A 64-bit data item. The contents are taken as being an unsigned integer unless otherwise
stated.

Endianness Byte ordering. The scheme that determines the order in which successive bytes of a data
word are stored in memory.

See also Little-endian and Big-endian.

Little-endian Memory organization where the least significant byte of a word is at a lower address
than the most significant byte.

See also Big-endian and Endianness.

Memory bank One of two or more parallel divisions of interleaved memory, usually one word wide,
that enable reads and writes of multiple words at a time, rather than single words. All
memory banks are addressed simultaneously and a bank enable or chip select signal
determines the bank that is accessed for each transfer. Accesses to sequential word
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. Glossary-3

Glossary
addresses cause accesses to sequential banks. This enables the delays associated with
accessing a bank to occur during the access to its adjacent bank, speeding up memory
transfers.

Power-on reset See Cold reset.

Processor A contraction of microprocessor. A processor includes the CPU or core, plus additional
components such as memory, and interfaces. These are combined as a single macrocell,
that can be fabricated on an integrated circuit.

Region A partition of instruction or data memory space.

Register A temporary storage location used to hold binary data until it is ready to be used.

Remapping Changing the address of physical memory or devices after the application has started
executing. This is typically done to enable RAM to replace ROM when the initialization
has been done.

Reserved A field in a control register or instruction format is reserved if the field is to be defined
by the implementation, or produces Unpredictable results if the contents of the field are
not zero. These fields are reserved for use in future extensions of the architecture or are
implementation-specific. All reserved bits not used by the implementation must be
written as zero and are read as zero.

Scan chain A scan chain is made up of serially-connected devices that implement boundary scan
technology using a standard JTAG TAP interface. Each device contains at least one TAP
controller containing shift registers that form the chain connected between TDI and
TDO, through which test data is shifted. Processors can contain several shift registers
to enable you to access selected parts of the device.

TAP See Test Access Port.

Test Access Port (TAP)
The collection of four mandatory terminals and one optional terminal that form the
input/output and control interface to a JTAG boundary-scan architecture. The
mandatory terminals are TDI, TDO, TMS, and TCK. The optional terminal is TRST.

Unaligned Memory accesses that are not appropriately word-aligned or halfword-aligned.

See also Aligned.

Undefined Indicates an instruction that generates an Undefined instruction trap. See the ARM
Architectural Reference Manual for more information on ARM exceptions.

Warm reset Also known as a core reset. Initializes the majority of the processor excluding the debug
controller and debug logic. This type of reset is useful if you are using the debugging
features of a processor.
Glossary-4 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

Glossary
Write buffer A block of high-speed memory, arranged as a FIFO buffer, between the Data Cache and
main memory, whose purpose is to optimize stores to main memory. Each entry in the
write buffer can contain the address of a data item to be stored to main memory, the data
for that item, and a sequential bit that indicates if the next store is sequential or not.

Write completion The memory system indicates to the CPU that a write has been completed at a point in
the transaction where the memory system is able to guarantee that the effect of the write
is visible to all processors in the system. This is not the case if the write is associated
with a memory synchronization primitive, or is to a Device or Strongly Ordered region.
In these cases the memory system might only indicate completion of the write when the
access has affected the state of the target, unless it is impossible to distinguish between
having the effect of the write visible and having the state of target updated. This stricter
requirement for some types of memory ensures that any side-effects of the memory
access can be guaranteed by the processor to have taken place. You can use this to
prevent the starting of a subsequent operation in the program order until the side-effects
are visible.
ARM DDI 0243C Copyright © 2003, 2007 ARM Limited. All rights reserved. Glossary-5

Glossary
Glossary-6 Copyright © 2003, 2007 ARM Limited. All rights reserved. ARM DDI 0243C

	AMBA Design Kit Technical Reference Manual
	Contents
	List of Tables
	List of Figures
	Preface
	About this manual
	Product revision status
	Intended audience
	Using this manual
	Conventions
	Typographical
	Timing diagrams
	Signals
	Numbering

	Further reading
	ARM publications

	Feedback
	Feedback on the product
	Feedback on this book

	Introduction
	1.1 About the ADK
	1.2 AMBA signals
	1.2.1 AMBA AHB signals
	1.2.2 AMBA APB signals

	1.3 Product revisions

	Functional Overview
	2.1 About the ADK toolkit
	2.2 ADK components
	2.2.1 AHB components
	Reset controller
	Arbiter
	Retry slave, 32 or 64-bit
	Static memory interface
	Test interface controller
	Bus matrix
	AHB to APB bridge
	Example bus master (32 or 64 bit)
	AHB to AHB bridges
	Interrupt controller
	Downsizer
	Funnel

	2.2.2 APB components
	Timers
	Watchdog
	Remap/pause controller
	Example APB slave
	PrimeCell General Purpose Input/Output (GPIO) (PL061)

	2.2.3 Behavioral models
	Internal memory
	Test interface driver
	File reader master (32 or 64-bit)

	2.3 Example systems
	2.3.1 FRM-based AMBA system, EASY_FRBM
	2.3.2 ARM7TDMI-based example AMBA system, EASY_ARM7
	2.3.3 ARM922T-based example AMBA system, EASY_ML
	2.3.4 Address map

	AHB Components
	3.1 Reset controller
	3.1.1 Signal descriptions

	3.2 Arbiter
	3.2.1 Operation
	Arbitration scheme
	Dummy master
	SPLIT and LOCK

	3.2.2 Signal descriptions

	3.3 Default slave
	3.3.1 Signal descriptions

	3.4 Master-to-slave multiplexor
	3.4.1 Signal descriptions

	3.5 Slave-to-master multiplexor
	3.5.1 Signal descriptions

	3.6 Example retry slave
	3.6.1 Signal descriptions

	3.7 Example static memory interface
	3.7.1 SMI programmer’s model
	3.7.2 Test interface controller
	3.7.3 TIC programmer’s model
	Test vector types
	Control vectors

	3.7.4 Signal descriptions

	3.8 Bus matrix
	3.8.1 Key features
	3.8.2 Bus Matrix configurability
	3.8.3 Relationship between the AMBA Designer and Bus Matrix
	Bus Matrix and AMBA Designer documentation

	3.8.4 BusMatrix module
	3.8.5 Operation
	Integrating the Bus Matrix
	Locked sequences
	Full AHB and AHB-Lite

	3.8.6 Programmer's model
	3.8.7 Block functionality
	Input stage
	Decode stage
	Output stage

	3.8.8 Arbitration and locked transfers
	Arbitration
	Locked transfers

	3.8.9 Address map
	Address region
	Remap region

	3.8.10 Signal descriptions
	User signals

	3.9 System decoder
	3.9.1 Programmer's model
	3.9.2 Signal descriptions

	3.10 APB bridge
	3.10.1 Ahb2Apb bridge
	Programmer's model
	Signal descriptions

	3.10.2 AhbToAPB bridge
	Signal descriptions

	3.11 Example bus master
	3.11.1 Programmer's model
	Example AHB-Lite core
	Configurable options
	Endianness

	3.11.2 Signal descriptions

	3.12 Synchronous AHB to AHB bridge
	3.12.1 Bridge designations
	Ahb2Ahb (1:1)
	Ahb2AhbSyncDn (N:1)
	Ahb2AhbSyncUp (1:N)
	Ahb2AhbPass (1:1)

	3.12.2 Typical applications
	3.12.3 Programmer's model
	Preserved address map
	Aliased or piecewise address map
	Functionality
	Bidirectional bridging

	3.12.4 Optional additional blocks
	Error cancel
	IncrOverride

	3.12.5 Signal descriptions

	3.13 Asynchronous AHB-AHB bridge
	3.13.1 Programmer's model
	Reset
	Low power operation
	Slave responses
	Locked transfers

	3.13.2 Signal descriptions

	3.14 AHB-Lite to AHB wrapper
	3.14.1 Programmer's model

	3.15 Interrupt controller
	3.15.1 Programmer’s model
	Interrupt flow sequence
	Simple interrupt flow
	IRQ Status Register
	FIQ Status Register
	Raw Interrupt Status Register
	Interrupt Select Register
	Interrupt Enable Register
	Interrupt Enable Clear Register
	Software Interrupt Register
	Software Interrupt Clear Register
	Protection Enable Register
	Vector Address Register
	Default Vector Address Register
	Test Control Register
	Test Input Register 1
	Test Input Register 2
	Test Output Register 1
	Test Output Register 2
	Peripheral Identification Registers
	Peripheral Identification Register 0
	Peripheral Identification Register 1
	Peripheral Identification Register 2
	Peripheral Identification Register 3
	PrimeCell Identification Registers
	PrimeCell Identification Register 0
	PrimeCell Identification Register 1
	PrimeCell Identification Register 2
	PrimeCell Identification Register 3

	3.15.2 Signal descriptions

	3.16 64-bit to 32-bit downsizer
	3.16.1 Programmer's model
	Downsizer transfers
	Unsupported transfers
	Burst blocking after error
	Slave responses
	Modification of control signals

	3.16.2 Signal descriptions

	3.17 64-bit to 32-bit funnel
	3.17.1 Programmer's model
	Funnel selected and accessing even word address
	Endianness

	3.17.2 Signal descriptions

	APB Components
	4.1 Remap and pause controller
	4.1.1 Programmer’s model
	Pause Register
	Remap Register
	Reset Status Register
	Reset Status Clear Register
	Peripheral Identification Registers
	Peripheral Identification Register 0
	Peripheral Identification Register 1
	Peripheral Identification Register 2
	Peripheral Identification Register 3
	PrimeCell Identification Registers
	PrimeCell Identification Register 0
	PrimeCell Identification Register 1
	PrimeCell Identification Register 2
	PrimeCell Identification Register 3

	4.1.2 Signal descriptions

	4.2 Example APB slave
	4.2.1 Programmer’s model
	4.2.2 Signal descriptions

	4.3 Peripheral to bridge multiplexor
	4.3.1 Signal descriptions

	4.4 Watchdog unit
	4.4.1 Programmer’s model
	Watchdog Load Register
	Watchdog Value Register
	Watchdog Control Register
	Watchdog Clear Interrupt Register
	Watchdog Raw Interrupt Status Register
	Watchdog Interrupt Status Register
	Watchdog Lock Register
	Watchdog Integration Test Control Register
	Watchdog Integration Test Output Set Register
	Peripheral Identification Registers
	Peripheral Identification Register 0
	Peripheral Identification Register 1
	Peripheral Identification Register 2
	Peripheral Identification Register 3
	PrimeCell Identification Registers
	PrimeCell Identification Register 0
	PrimeCell Identification Register 1
	PrimeCell Identification Register 2
	PrimeCell Identification Register 3

	4.4.2 Signal descriptions

	4.5 Dual input timer
	4.5.1 Functional description
	4.5.2 Operation
	Interrupt generation

	4.5.3 Clocking
	4.5.4 Programmer’s model
	Load Register
	Current Value Register
	Timer Control Register
	Interrupt Clear Register
	Raw Interrupt Status Register
	Interrupt Status Register
	Background Load Register
	Integration Test Control Register
	Integration Test Output Set Register
	Peripheral Identification Registers
	Peripheral Identification Register 0
	Peripheral Identification Register 1
	Peripheral Identification Register 2
	Peripheral Identification Register 3
	PrimeCell Identification Registers
	PrimeCell Identification Register 0
	PrimeCell Identification Register 1
	PrimeCell Identification Register 2
	PrimeCell Identification Register 3

	4.5.5 Signal descriptions

	Behavioral Models
	5.1 External RAM,
	5.1.1 Programmer’s model
	5.1.2 Signal descriptions

	5.2 Internal memory
	5.2.1 Programmer’s model
	Memory initialization from local data file

	5.2.2 Signal descriptions

	5.3 External ROM
	5.3.1 Programmer’s model
	5.3.2 Signal descriptions

	5.4 Tube
	5.4.1 Signal descriptions

	5.5 AHB file reader master
	5.5.1 Programmer’s model
	Write command
	Read command
	Sequential command
	Busy command
	Idle command
	Poll command
	Loop command
	Comment command
	Quit command
	Resp field
	Clock and reset
	Error reporting at runtime
	End of stimulus

	5.5.2 Command syntax
	Command syntax

	5.5.3 File preprocessing
	Loops
	Data and mask representations
	FRM versions
	Endianness
	Stimulus file size
	File preprocessor usage
	Error reporting during file preprocessing

	5.6 Test interface driver
	5.6.1 Signal descriptions
	5.6.2 User-defined settings

	PrimeCell GPIO
	6.1 Operation
	6.2 Integration within ADK

	AHB-Lite Overview
	A.1 About AHB-Lite
	A.1.1 Specification
	A.1.2 Compatibility

	A.2 AHB-Lite master
	A.2.1 AHB-Lite advantages
	A.2.2 AHB-Lite conversion to full AHB

	A.3 AHB-Lite slaves

	Glossary

