
ARM Architecture Reference
Manual

Debug supplement
Copyright © 2006 ARM Limited. All rights reserved.
ARM DDI 0379A

ARM Architecture Reference Manual

Copyright © 2006 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this document.

Proprietary Notice

ARM, the ARM Powered logo, Jazelle, RealView, and Thumb are registered trademarks of ARM Limited.

The ARM logo, AMBA, and CoreSight are trademarks of ARM Limited.

All other products or services mentioned herein may be trademarks of their respective owners.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM Limited in good faith.

1. Subject to the provisions set out below, ARM Limited hereby grants to you a perpetual, non-exclusive, nontransferable,
royalty free, worldwide licence to use this ARM Architecture Reference Manual for the purposes of developing; (i)
software applications or operating systems which are targeted to run on microprocessor cores distributed under licence
from ARM Limited; (ii) tools which are designed to develop software programs which are targeted to run on
microprocessor cores distributed under licence from ARM Limited; (iii) integrated circuits which incorporate a
microprocessor core manufactured under licence from ARM Limited.

2. Except as expressly licensed in Clause 1 you acquire no right, title or interest in the ARM Architecture Reference
Manual, or any Intellectual Property therein. In no event shall the licences granted in Clause 1, be construed as granting
you expressly or by implication, estoppel or otherwise, licences to any ARM technology other than the ARM Architecture
Reference Manual. The licence grant in Clause 1 expressly excludes any rights for you to use or take into use any ARM
patents. No right is granted to you under the provisions of Clause 1 to; (i) use the ARM Architecture Reference Manual
for the purposes of developing or having developed microprocessor cores or models thereof which are compatible in
whole or part with either or both the instructions or programmer's models described in this ARM Architecture Reference
Manual; or (ii) develop or have developed models of any microprocessor cores designed by or for ARM Limited; or (iii)
distribute in whole or in part this ARM Architecture Reference Manual to third parties without the express written
permission of ARM Limited; or (iv) translate or have translated this ARM Architecture Reference Manual into any other
languages.

3.THE ARM ARCHITECTURE REFERENCE MANUAL IS PROVIDED “AS IS” WITH NO WARRANTIES
EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF
SATISFACTORY QUALITY, NONINFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE.

4. No licence, express, implied or otherwise, is granted to LICENSEE, under the provisions of Clause 1, to use the ARM
tradename, in connection with the use of the ARM Architecture Reference Manual or any products based thereon.
Nothing in Clause 1 shall be construed as authority for you to make any representations on behalf of ARM Limited in
respect of the ARM Architecture Reference Manual or any products based thereon.

Change History

Date Issue Confidentiality Change

8 February 2006 A Non-Confidential First release.
ii Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Copyright © 2006 ARM Limited

110 Fulbourn Road Cambridge, England CB1 9NJ

Restricted Rights Legend: Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. iii

iv Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Contents
ARM Architecture Reference Manual Debug
supplement

Preface
About this manual .. x
Conventions ... xii
Further reading ... xiii
Feedback .. xiv

Chapter 1 Introduction
1.1 Overview .. 1-2
1.2 Debug .. 1-3
1.3 Performance counters .. 1-5
1.4 Trace .. 1-6
1.5 Register interfaces ... 1-7

Chapter 2 Debug Events
2.1 Overview .. 2-2
2.2 Invasive debug authentication ... 2-4
2.3 Software Debug events .. 2-6
2.4 Halting Debug events ... 2-18
2.5 Generation of Debug events .. 2-20
2.6 Debug event priority and order .. 2-23
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. v

Contents
Chapter 3 Debug Exceptions
3.1 Overview .. 3-2
3.2 Effects of Debug Exceptions on CP15 registers and the WFAR 3-4

Chapter 4 Debug State
4.1 Overview .. 4-2
4.2 Entering Debug state ... 4-3
4.3 Behavior of the PC and CPSR in Debug state 4-7
4.4 Executing instructions in Debug state .. 4-9
4.5 Privilege in Debug state ... 4-13
4.6 Behavior of non-invasive debug in Debug state 4-18
4.7 Exceptions in Debug state ... 4-19
4.8 Leaving Debug state .. 4-21

Chapter 5 Debug Register Interfaces
5.1 About the Debug Register Interface ... 5-2
5.2 Reset and Power-down support ... 5-6
5.3 Debug Register Map .. 5-13
5.4 Synchronization of debug register updates 5-18
5.5 Access permissions ... 5-20
5.6 Coprocessor interface .. 5-24
5.7 The Memory-mapped and recommended external debug interfaces 5-34

Chapter 6 Recommended External Debug Interface
6.1 System integration signals ... 6-2
6.2 Recommended debug slave port ... 6-10

Chapter 7 Debug Requirements on Memory Systems
7.1 About debug requirements on memory systems 7-2
7.2 Recommended access to specific CP15 registers 7-3
7.3 Debug state Cache/MMU Control Registers 7-4

Chapter 8 Non-invasive debug
8.1 About non-invasive debug ... 8-2
8.2 Program counter sampling register .. 8-3
8.3 Non-invasive debug authentication .. 8-4

Chapter 9 Core-based Performance Counters
9.1 About core-based performance counters ... 9-2
9.2 Status in the ARM architecture .. 9-4
9.3 Accuracy of performance counters .. 9-5
9.4 Behavior on overflow ... 9-6
9.5 Interaction with Security Extensions .. 9-7
9.6 Interaction with trace .. 9-8
9.7 Interaction with power saving operations ... 9-9
vi Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Contents
9.8 Register map .. 9-10
9.9 Access permissions ... 9-12
9.10 Event numbers ... 9-13

Chapter 10 Debug Register Reference
10.1 Identification registers .. 10-3
10.2 Control and status registers ... 10-8
10.3 Instruction and data transfer registers .. 10-32
10.4 Breakpoint and watchpoint registers .. 10-39
10.5 Operating-system save and restore registers 10-58
10.6 Memory system control registers ... 10-61
10.7 Management registers ... 10-69
10.8 Core-based performance counters registers 10-80

Glossary
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. vii

Contents
viii Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Preface

This preface introduces the ARM Architecture Reference Manual, Debug supplement. It contains the
following sections:

• About this manual on page x

• Conventions on page xii

• Further reading on page xiii

• Feedback on page xiv.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. ix

Preface
About this manual

The purpose of this manual is to describe the ARM Debug architecture. It is a supplement to the ARM
Architecture Reference Manual (ARM DDI 0100, the ARM ARM), and is intended to be used with it.

It is assumed that the reader is familiar with:

• the ARM programmer's model, described in Part A Chapter 2 of the ARM Architecture Reference
Manual

• the memory system architecture support, described in Part B of the ARM Architecture Reference
Manual.

This manual is described in the following sections:

• Intended audience

• Using this manual.

Intended audience

This book is written for all developers designing:

• ARM processors

• hardware using ARM processors

• software for systems using ARM processors.

Using this manual

This manual is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an introduction to the purpose of the ARM Debug Architecture, and
an overview of how this purpose is achieved.

Chapter 2 Debug Events

Read this chapter for information about what Debug events are, and how a processor
responds to them.

Chapter 3 Debug Exceptions

Read this chapter for information about Debug Exceptions.

Chapter 4 Debug State

Read this chapter for information about Debug State.

Chapter 5 Debug Register Interfaces

Read this chapter for information about the Debug Register Interfaces.

Chapter 6 Recommended External Debug Interface

Read this chapter for details of the recommended external debug interface.
x Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Preface
Chapter 7 Debug Requirements on Memory Systems

Read this chapter for details of the requirements placed on memory systems by debug.

Chapter 8 Non-invasive debug

Read this chapter for information about non-invasive debug.

Chapter 9 Core-based Performance Counters

Read this chapter for information about core-based performance counters.

Chapter 10 Debug Register Reference

Read this chapter for reference information about the debug registers.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. xi

Preface
Conventions

Conventions that this manual can use are described in:

• Typographic

• Signals.

Typographic

typewriter Is used for assembler syntax descriptions, pseudo-code descriptions of instructions,
and source code examples.

The typewriter font is also used in the main text for instruction mnemonics and for
hexadecimal numbers.

italic Highlights important notes, introduces special terminology, and denotes internal
cross-references and citations.

bold Is used for emphasis in descriptive lists and elsewhere, where appropriate.

SMALL CAPITALS Are used for a few terms that have specific technical meanings. Their meanings can
be found in the Glossary.

< and > Angle brackets enclose replaceable terms for assembler syntax where they appear
in code or code fragments. They appear in normal font in running text. For example:

• MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

• The Opcode_2 value selects which register is accessed.

Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or
active-LOW. Asserted means HIGH for active-HIGH signals and LOW for
active-LOW signals.

Lower-case n Denotes an active-LOW signal.

Prefix DBG Denotes debug signals.
xii Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Preface
Further reading

This section lists publications that provide additional information on the ARM family of processors.

ARM periodically provides updates and corrections to its documentation. See http://www.arm.com for
current errata sheets and addenda, and the ARM Frequently Asked Questions.

ARM publications

This architecture specification is a supplement to, and must be read in conjunction with, the ARM
Architecture Reference Manual, ARM DDI 0100.

The following documents contain additional information that is relevant to the information given in this
specification, or complement the information given here:

• ARM Architecture Reference Manual Security Extensions Supplement, ARM DDI 0309

• ARM Debug Interface v5 Architecture Specification, ARM IHI 0031

• CoreSight Architecture Specification, ARM IHI 0029

• Embedded Trace Macrocell Architecture Specification, ARM IHI 0014.

Other publications

This section lists relevant documents published by third parties:

• EEE 1149.1-1990 IEEE Standard Test Access Port and Boundary Scan Architecture (JTAG).

• JEP106M, Standard Manufacture’s Identification Code, JEDEC Solid State Technology Association.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. xiii

Preface
Feedback

ARM Limited welcomes feedback on its documentation.

Feedback on this manual

If you have any comments on this manual, send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments apply

• a concise explanation of your comments.

ARM Limited also welcomes general suggestions for additions and improvements.
xiv Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Chapter 1
Introduction

This chapter introduces the ARM Debug Architecture. It contains the following sections:

• Overview on page 1-2

• Debug on page 1-3

• Performance counters on page 1-5

• Trace on page 1-6

• Register interfaces on page 1-7.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 1-1

Introduction
1.1 Overview

ARMv6 was the first version of the ARM architecture to include debug provisions. The introduction of the
ARM Architecture Security Extensions extended the ARMv6 Debug Architecture:

• ARMv6 systems without Security Extensions implement v6 debug

• ARMv6 systems with Security Extensions implement v6.1 debug.

ARMv7 introduces additional extensions to support developments in the debug environment.

The main change in the debug environment is the emergence of new forms of external debug interface.
Although ARMv6 did not require a particular debug interface, it was designed with the JTAG scan-chain
model in mind. JTAG remains an important and widely used interface. However, systems such as the ARM
CoreSight architecture require changes in the debug interface. For more information about the CoreSight
architecture see the CoreSight Architecture Specification. Some of the aims of the CoreSight architecture,
such as a more system-centric view of debug, and improved debug of powered-down systems, are addressed
in the ARMv7 core debug architecture.

Another important aspect of v6 Debug is the optional trace extension. This is implemented by an Embedded
Trace Macrocell (ETM) compliant to ETMv3. This optional extension is retained in ARMv7, and the first
version of the ETM architecture for ARMv7 implementations is ETMv3.3.

ARMv7 debug also introduces an architecture extension to provide core-based performance counters.

Table 1-1 shows the main components of ARMv7 debug, and where they are described.

ARM processors implement two types of debug support:

Invasive debug All debug features that allow modification of the processor state.

Non-invasive debug All debug features that allow data and program flow observation, especially trace
support.

Table 1-1 ARMv7 Debug sub-architectures

Component Status Reference

Debug Required Chapter 2 Debug Events

Chapter 3 Debug Exceptions

Chapter 4 Debug State

Chapter 5 Debug Register Interfaces

Performance counters Optional Chapter 9 Core-based Performance Counters

Trace Optional Embedded Trace Macrocell Architecture Specification
1-2 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Introduction
1.2 Debug

The debug component of the ARM Debug Architecture is primarily intended for run-control debugging.
Versions 6 and 7 of the architecture (ARMv6 and ARMv7) provide a software interface that includes:

• a Debug Identification Register (DIDR)

• status and control registers, including the Debug Status and Control Register (DSCR)

• hardware breakpoint and watchpoint support

• a Debug Communications Channel (DCC).

The ARMv7 software interface also includes reset, Power-down and Operating System support features.

The debug architecture also requires an external debug interface that supports access to the programmers’
model.

The programmers’ model can be used to manage and control Debug events. Watchpoints and breakpoints
are two examples of Debug events. Debug events are described in Chapter 2 Debug Events.

You can configure the core through the DSCR into one of two Debug-modes:

Monitor Debug-mode

This causes a Debug Exception to occur as a result of a Debug event. Debug Exceptions are
serviced through the same exception vectors as the Prefetch and Data Aborts, depending on
whether they relate to instruction execution or data access.

Debug Exceptions are described in Chapter 3 Debug Exceptions.

Halting Debug-mode

This allows the system to enter a special Debug state when a Debug event occurs. When the
system is in Debug state, the processor core ceases to execute instructions from the program
counter location, but is instead controlled through the external debug interface and the
Instruction Transfer Register (ITR) in particular. This allows an external agent, such as a
debugger, to interrogate processor context, and control all subsequent instruction execution.
Because the processor is stopped, it ignores the external system and cannot service
interrupts.

Debug state is described in Chapter 4 Debug State.

A debug solution can use a mixture of the two methods, for example to support an OS or RTOS with both:

• Running System Debug (RSD) using Monitor Debug-mode

• Halting Debug-mode support available as a fallback for system failure and boot time debug.

The ability to switch between these two Debug-modes is fully supported by the architecture.

You can program the Vector Catch Register (VCR) to trap many exceptions. Trapped exceptions cause a
Debug event. Untrapped exceptions cause a normal exception in the execution flow.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 1-3

Introduction
When both Debug-modes are disabled, debug is restricted to simple monitor solutions. These are usually
ROM or Flash-based. Such a monitor might use standard system features, such as a UART or Ethernet
connection, to communicate with a debug host. Alternatively, it might use the DCC as an out-of-band
communications channel to the host. This minimizes its requirement on system resources.

This forms the basis of the Debug Programmer's Model (DPM) for ARMv6 and ARMv7.

1.2.1 Security Extensions and debug

Security Extensions debug allows you to disable invasive debug and non-invasive debug independently in
either:

• all Secure modes

• only in Secure Privileged modes.

This is controlled by four input signals and two control bits in the Secure Debug Enable Register:

• the Debug Enable signal, DBGEN

• the Non-Invasive Debug Enable signal, NIDEN

• the Secure Privileged Invasive Debug Enable signal, SPIDEN
• the Secure Privileged Non-Invasive Debug Enable signal, SPNIDEN

• the Secure User Invasive Debug Enable bit, SUIDEN

• the Secure User Non-invasive Debug Enable bit, SUNIDEN.

For more information, see:

• Invasive debug authentication on page 2-4

• Non-invasive debug authentication on page 8-4

• the ARM Architecture Reference Manual Security Extensions Supplement, for details of the Secure
Debug Enable Register

• Authentication signals on page 6-3 for details of the DBGEN, NIDEN, SPIDEN and SPNIDEN
signals.
1-4 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Introduction
1.3 Performance counters

Performance Counters were implemented in several processors before ARMv7, however, before ARMv7
they did not form part of the architecture. The form described here follows those implementations with
minor modifications to allow for potential future expansion.

The basic form consists of:

• A cycle counter, with the ability to count cycles or every sixty-fourth cycle.

• A number of performance counters whose events can be programmed. Previous implementations
have provided up to four counters, but architecturally space is provided for up to 31 counters allowing
for additional expansion (up to 31). The actual number of counters is IMPLEMENTATION DEFINED, and
an identification mechanism is provided.

• Controls for enabling and resetting performance counters, to flag overflows and to enable interrupts
on overflow. The cycle counter can be independently enabled from the rest of the performance
counters.

The set of events that can be monitored split into those that are likely to be consistent across many
micro-architectures and the rest, that are likely to be implementation specific. As a result, this architecture
defines a core set of events to be used across many micro-architectures, together with a large space reserved
for IMPLEMENTATION DEFINED events. The full set of events for any given implementation is
IMPLEMENTATION DEFINED. There is no requirement to implement any of the core set of events, but the
numbers allocated for the core set of events must not be used except as defined.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 1-5

Introduction
1.4 Trace

Trace support is an architecture extension typically implemented using an Embedded Trace Macrocell
(ETM). The ETM constructs a real-time trace stream corresponding to the operation of the processor. It is
IMPLEMENTATION DEFINED whether the trace stream is stored locally in an Embedded Trace Buffer (ETB)
for independent download and analysis, or whether it is exported directly through a trace port to a Trace Port
Analyzer (TPA) and its associated host based trace debug tools.

Use of the ETM is non-invasive. Development tools can connect to the ETM, configure it, capture trace and
download the trace without affecting the operation of the processor in any way. The ETM architecture
extension provides an enhanced level of run-time system observation and debug granularity. It is particularly
useful in cases where:

• Stopping the core affects the behavior of the system.

• There is insufficient state visible in a system by the time a problem is detected to be able to determine
its cause. Trace provides a mechanism for system logging and back tracing of faults.

Trace might also be used to perform analysis of code running on the processor, such as performance analysis
or code coverage.

The ETM architecture is documented separately. Licensees and third-party tools vendors should contact
ARM Limited to ensure that they have the latest version. The ETM architecture specifies the following:

• the ETM programmers’ model

• permitted trace protocol formats

• the physical trace port connector.

The ETM architecture version is defined with a major part and a minor part, in the form ETMvX.Y where
X is the major version number and Y is the minor version number. The first ETM version that aligns with
ARMv7 is ETMv3.3.
1-6 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Introduction
1.5 Register interfaces

This section gives a brief description of the different debug register interfaces defined by ARMv7. The most
important distinction is between:

• the external debug interface, that defines how an external debugger can access the ARMv7 debug
resources

• the processor interface, that describes how an ARMv7 processor core can access its own debug
resources.

ARMv7 recommends an external debug interface based on the ARM Debug Interface v5 Architecture
Specification (ADIv5). The most significant difference between ADIv5 and the interface recommended by
ARMv6 is that ADIv5 supports debug over power-down of the processor core.

Although the ADIv5 interface is not required for compliance with the ARMv7 architecture, ARM's
RealView tools require this interface to be implemented.

ADIv5 supports both a JTAG wire interface and a low pin-count Serial Wire interface. ARM's RealView
tools support either wire interface.

An ADIv5 interface allows a debug object, such as an ARMv7 processor, to abstract a set of resources as a
memory-mapped peripheral. Accesses to debug resources are made as 32-bit read/write transfers.
Power-down is supported by introducing the abstraction that accesses to certain resources can return an error
response when they are unavailable, just as a memory-mapped peripheral can return a slave-generated error
response in exceptional circumstances.

The ARMv7 Debug Architecture requires software executing on the processor to be able to access all debug
registers. To provide access to a particular basic subset of debug registers ARMv7 requires that the Baseline
Coprocessor 14 (CP14) Interface is implemented, see Baseline CP14 interface on page 5-24. In order to
provide access to the rest of the debug registers ARMv7 allows one of two options:

• An Extended CP14 Interface. This is similar to the requirement of the ARMv6 architecture.

• A Memory-mapped interface.

An implementation can include both of these options.

ARMv7 does not allow all combinations of debug, ETM, and performance monitor interfaces. There are
three options for ARMv7 implementations, shown as options A, B, and C in Table 1-2 on page 1-8.

The ETM architecture provides the same implementation options as ARMv7 Debug. It is optional whether
Trace registers are implemented but if they are implemented, the interface to them must be as shown in
Table 1-2 on page 1-8.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 1-7

Introduction
Table 1-2 Options for interfacing to debug in ARMv7

Option
Processor interface to
debug registers

Processor interface
to trace registers

Processor interface to
performance monitor

A Baseline CP14 + Extended CP14 CP14 CP15

B Baseline CP14 + Memory-mapped Memory-mapped CP15

C Baseline CP14 + Extended CP14 +
Memory-mapped

CP14 +
Memory-mapped

CP15
1-8 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Chapter 2
Debug Events

This chapter contains the following sections:

• Overview on page 2-2

• Invasive debug authentication on page 2-4

• Software Debug events on page 2-6

• Halting Debug events on page 2-18

• Generation of Debug events on page 2-20

• Debug event priority and order on page 2-23.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 2-1

Debug Events
2.1 Overview

A Debug event can be either:

• A Software Debug event, see Software Debug events on page 2-6

• A Hardware Debug event, see Halting Debug events on page 2-18.

A processor responds to a Debug event in one of the following ways:

• ignores the Debug event

• takes a Debug Exception, see Chapter 3 Debug Exceptions

• enters Debug State, see Chapter 4 Debug State.

The response depends on the configuration. This is shown in Table 2-1, and in Figure 2-1 on page 2-3.

Table 2-1 Processor behavior on Debug events

Configuration Behavior
Debug-mode
selected and
enabled

Invasive
debug
permitted a

DSCR[15:14] b
BKPT
instruction

Other Software
Debug event

Halting Debug
event

No bxx c Debug
exceptiond

Ignore Ignoree Disabled, not
permitted

Yes b00 Debug
exceptiond

Ignore Debug state
entryf

None

Yes bx1 Debug state
entry

Debug state entry Debug state
entry

Halting

Yes b10 Debug
exception

Debug exception or
Ignore, but see
footnoteg

Debug state
entryf

Monitor

a. See Invasive debug authentication on page 2-4.
b. See Halting Debug-mode enable, bit [14] on page 10-15 and Monitor Debug-mode enable, bit [15] on page 10-15.
c. The value of DSCR[15:14] is ignored when invasive debug is not permitted. If DBGEN is LOW these bits read as zero.
d. When debug is disabled or not permitted, the BKPT instruction generates a Debug exception rather than being ignored.

The DSCR, IFSR and IFAR are set to 1 as if a BKPT Instruction Debug Exception occurred. See Effects of Debug
Exceptions on CP15 registers and the WFAR on page 3-4.

e. The processor might enter Debug State later, see Halting Debug events on page 2-18.
f. In ARMv6, these entries are IMPLEMENTATION DEFINED, see the ARM Architecture Reference Manual.
g. Be careful when programming Debug events when Monitor Debug-mode is selected and enabled, because certain

conditions can lead to UNPREDICTABLE behavior, see unpredictable behavior on Software Debug events on page 2-14.
2-2 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Events
Figure 2-1 Processor behavior on Debug events

�������	
���
�
���
���
�������

����
�����
�����

����������

������
 ���!

"���!�����

#�	�
���
���

$%
&�	���
 ���!

���
�
���������
����'���!
(�����

���
�
���������
�����
(�����

���
�
%����
����)

*�����+

%�'�,���
���
�
�-����

#�	����
���
�
�-����

���
�
+����	�+.���
���/����+ ���
�0/�+�1
����

���
�0/�+�1
#�	���� ���
�0/�+�1
2������

�������	
���
�
���
���
�������

����
�����
�����

����������

������
 ���!

"���!�����

#�	�
���
���

$%
&�	���
 ���!

���
�
���������
����'���!
(�����

���
�
���������
�����
(�����

���
�
%����
����)

*�����+

%�'�,���
���
�
�-����

#�	����
���
�
�-����

�������	
���
�
���
���
�������

����
�����
�����

����������

������
 ���!

"���!�����

#�	�
���
���

$%
&�	���
 ���!

���
�
���������
����'���!
(�����

���
�
���������
�����
(�����

���
�
%����
����)

*�����+

%�'�,���
���
�
�-����

#�	����
���
�
�-����

�������	
���
�
���
���
�������

����
�����
�����

����������

������
 ���!

"���!�����

#�	�
���
���

$%
&�	���
 ���!

���
�
���������
����'���!
(�����

���
�
���������
�����
(�����

���
�
%����
����)

*�����+

%�'�,���
���
�
�-����

#�	����
���
�
�-����
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 2-3

Debug Events
2.2 Invasive debug authentication

Invasive debug can be enabled or disabled. If it is disabled the processor ignores all debug events except
BKPT Instruction. This means that debug events other than BKPT Instruction do not cause the processor to
enter Debug state or to take a debug exception.

In addition, if a processor implements the Security Extensions, invasive debug can be permitted or not
permitted. If invasive debug is not permitted, the processor again ignores all debug events except BKPT
Instruction.

The difference between enabled and permitted is that permitted debug operation depends on the security
state and the operating mode of the processor. The alternatives for when Invasive debug is permitted are:

• in all processor modes, in both Secure and Nonsecure worlds

• only in Nonsecure world

• in Nonsecure world and Secure User mode.

The external debug interface signals that control the enabling and permitting of Debug events are DBGEN
and SPIDEN. SPIDEN is only implemented on processors that implement Security Extensions. See
Authentication signals on page 6-3.

If DBGEN is LOW, all invasive debug is disabled.

On processors that do not implement Security Extensions, if DBGEN is HIGH, invasive debug is enabled
and permitted in all modes, see Table 2-2.

On processors that implement Security Extensions, if both DBGEN and SPIDEN are HIGH, invasive debug
is enabled and permitted in all modes and in both Secure and Nonsecure worlds. If DBGEN is HIGH and
SPIDEN is LOW:

• Invasive debug is enabled and permitted in the Nonsecure world.

• Invasive debug is not permitted in Secure privileged modes.

• Whether invasive debug is permitted in Secure User mode depends on the value of the SUIDEN bit
in the Secure Debug Enable (SDE) Register. See the ARM Architecture Reference Manual Security
Extensions Supplement for details of the Secure Debug Enable Register.

This is shown in Table 2-3 on page 2-5.

Table 2-2 Invasive debug authentication, Security Extensions not implemented

DBGEN Modes in which Invasive debug is permitted

LOW None

HIGH All modes
2-4 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Events
Note
 If you only enable invasive debug when the processor is in a Nonsecure mode this only protects your secure
processing from direct observation or invasion by an untrusted debugger. System designers must be aware
that such configurations might still allow attacks such as denial of service attacks. For example:

• The processor can be forced into Debug state from a Nonsecure mode, preventing processing of
secure operations.

• The Interrupts disable bit in the Debug Status and Control Register can be used to prevent servicing
of secure interrupts.

ARM Limited recommends that you disable invasive debug in all modes where you are concerned about
such attacks.

Table 2-3 Invasive debug authentication, Security Extensions implemented

DBGEN SPIDEN SUIDEN Modes in which invasive debug is permitted

LOW X X None

HIGH LOW 0 All modes in Nonsecure world

HIGH LOW 1 All modes in Nonsecure world, and Secure User mode

HIGH HIGH X All modes in all worlds
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 2-5

Debug Events
2.3 Software Debug events

A Software Debug event can be any of the following:

• A Watchpoint Debug event, see Watchpoint Debug events

• A Breakpoint Debug event, see Breakpoint Debug events on page 2-10

• A BKPT Instruction Debug event, see BKPT Instruction Debug events on page 2-12

• A Vector Catch Debug event, see Vector Catch Debug events on page 2-13.

If Monitor Debug-mode is selected and enabled, the behavior of certain types of Software Debug events is
noted in the following sections as UNPREDICTABLE. See unpredictable behavior on Software Debug events
on page 2-14 for more information.

2.3.1 Watchpoint Debug events

Watchpoint Debug events are controlled by pairs of registers referred to as Watchpoint Register Pairs
(WRPs). An implementation may contain many WRPs. The first two WRPs are identified as WRP0 and
WRP1, and this numbering pattern continues for additional WRPs. WRPn refers to any particular pair.
WRPn consists of two registers:

• a Watchpoint Control Register, WCRn

• a Watchpoint Value Register, WVRn.

For a given Watchpoint Register Pair, WRPn, a Watchpoint Debug event occurs when all of the following
are true:

• The Data Virtual Address (DVA) matches the value in WVRn. See Memory addresses on page 2-13
for a definition of the DVA.

• At the time when the watchpoint is evaluated, all the conditions of WCRn match.

• The watchpoint is enabled.

• If linking is enabled in WCRn, the linked Context ID matching Breakpoint Register Pair (BRP) must
meet the following conditions:

— the BRP is enabled

— the value held in the BRP matches the Context ID in CP15 register 13.

See Breakpoint Debug events on page 2-10 for more information about BRPs.

• The instruction that initiated the memory access is committed for execution. Watchpoint Debug
events are only generated if the instruction passes its condition code.

All instructions that the ARM Architecture Reference Manual defines as memory access instructions can
generate Watchpoint Debug events.
2-6 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Events
It is IMPLEMENTATION DEFINED whether either or both of the memory hint instructions, PLD and PLI, generate
Watchpoint Debug events. When Watchpoint Debug event generation by either or both of the PLD and PLI
instructions is implemented, the behavior must be:

• if PLI is implemented, no watchpoint is generated in a situation where the instruction would generate
a prefetch abort, if it was a real fetch rather than a hint

• If PLD is implemented, no watchpoint is generated in a situation where the instruction would generate
a Data Abort, if it was a real data access rather than a hint

• in all other situations a Watchpoint Debug event is generated.

It is IMPLEMENTATION DEFINED whether the following cache maintenance operations generate Watchpoint
Debug events:

• clean the data cache by modified virtual address (MVA)

• invalidate the data cache by MVA

• invalidate the instruction cache by MVA

• clean and invalidate the data cache by MVA.

Note
 When Watchpoint Debug event generation by these cache maintenance operations is implemented, these
operations must generate Watchpoint Debug events on a DVA match, regardless of whether the data is stored
in any cache.

For regular data accesses, the Watchpoint Debug event generation includes a comparison of the WCR
contents with the size of access. For the purpose of this comparison, the sizes of these operations are
IMPLEMENTATION DEFINED:

• memory hints, PLD and PLI

• cache maintenance operations.

Watchpoint Debug events can be Precise or Imprecise:

• Precise Watchpoint Debug events act like a precise Data Abort exception on the data access
instruction itself

• Imprecise Watchpoint Debug events act like an exception that cancels a later instruction.

For more information see Precise and Imprecise Watchpoint Debug events on page 2-8.

For the ordering of debug events, the ARMv7 architecture requires that:

• Regardless of the actual ordering of memory accesses, Watchpoint Debug events must be taken in
program order. See Debug event priority and order on page 2-23.

• Watchpoint Debug events must behave as if they were evaluated before the memory access is
observed, regardless of whether the Watchpoint Debug event is precise or imprecise. See Generation
of Debug events on page 2-20.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 2-7

Debug Events
Precise and Imprecise Watchpoint Debug events

ARMv7 allows watchpoints to be either precise or imprecise. An implementation can implement precise
watchpoints, imprecise watchpoints, or both. It is IMPLEMENTATION DEFINED under what circumstances a
watchpoint is precise or imprecise.

ARMv6 only allows imprecise watchpoints.

Precise Watchpoint Debug events

A Precise Watchpoint Debug event has the same behavior as a precise Data Abort:

• If Monitor Debug-mode is enabled, R14_abt is set to the address of the watchpointed exception + 8.

• The Debug event occurs before any following instructions or exceptions have altered the state of the
processor.

• The value in the base register for the memory access is not updated.

Note
 The Base Updated Abort Model is not permitted in ARMv7.

• If the instruction was a register load, the data returned is marked as invalid. If the instruction was a
single register load, the destination is not updated. If the instruction loaded multiple registers, the
values in the destination registers, other than the PC and base register, are UNPREDICTABLE.

• If the instruction is a coprocessor load, the values left in the coprocessor register are UNPREDICTABLE.

• If the instruction is a store, the content of the memory location written to is unchanged.

On a Precise Watchpoint Debug event, the DSCR[5:2] Method of Debug Entry bits are set to Precise
Watchpoint Occurred.

If a Precise Watchpoint Debug event is signalled by a memory operation other than the first operation of an
instruction that causes multiple operations, such as the LDM and LDC instructions, to Device or Strongly
Ordered memory, the memory access rules may not be maintained.

For example, if the second memory operation of an STM instruction signals a Precise Watchpoint Debug
event, then when the instruction is re-tried following processing of the Debug event, the first memory
operation would be repeated. This behavior is not normally permitted for Device or Strongly Ordered
memory.

To avoid this circumstance, debuggers should not set watchpoints on addresses within regions of Device or
Strongly Ordered memory which may be accessed in this way. The address masking features of watchpoints
may be used to set a watchpoint on an entire region, thereby ensuring the Precise Watchpoint Debug event
is taken on the first operation of such an instruction.
2-8 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Events
Imprecise Watchpoint Debug events

An Imprecise Watchpoint Debug event has similar, but not identical, behavior to an imprecise Data Abort.
Its behavior is:

• The state of the processor on the imprecise watchpoint exception must be such that the processor can
return to the instruction cancelled by the Debug event.

• If Monitor Debug-mode is enabled, R14_abt is set to the address of the instruction to return to + 8.

• The watchpointed instruction must have completed, and other instructions that followed it, in
program order, might have completed. For more information see Recognizing Imprecise Watchpoint
Debug events.

• The watchpoint must be taken before any exceptions that occur in program order after the watchpoint
is triggered.

• All the registers written by the watchpointed instruction are updated.

• Any memory accessed by the watchpointed instruction is updated.

An imprecise watchpoint is not an External Abort. An imprecise watchpoint:

• is not affected by the EA bit in the Secure Configuration Register (SCR)

• is not ignored when the A flag, bit [8] of the CPSR, is set to 1.

An imprecise watchpoint is also more constrained than an imprecise Data Abort, because it must be possible
to return to the program that caused the watchpoint.

On an Imprecise Watchpoint Debug event, the DSCR[5:2] Method of Debug Entry bits are set to Imprecise
Watchpoint Occurred.

Recognizing Imprecise Watchpoint Debug events

When an instruction that consists of multiple memory operations is accessing Device or Strongly Ordered
memory, and an Imprecise Watchpoint Debug event is signalled by a memory operation other than the first
operation of the instruction, the Debug event must not cause Debug state entry or a Debug Exception until
all the operations have completed. This ensures the memory access rules for Device and Strongly Ordered
memory are preserved.

Examples of instructions that cause multiple memory operations are the LDM and LDC instructions.

Note
 To understand why the architecture does not allow the Imprecise Watchpoint Debug event to be taken before
the watchpointed instruction completes, consider an LDM instruction accessing Device or Strongly Ordered
memory, with an Imprecise Watchpoint Debug event signalled after the first word of memory is accessed.
If the Debug event was taken immediately, the LDM would be re-executed on return from the event handler.
This would cause a new access to the first word of memory, breaking the rule that, for Device or Strongly
Ordered memory, each memory operation of an instruction is issued precisely once.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 2-9

Debug Events
2.3.2 Breakpoint Debug events

Breakpoint Debug events are controlled by pairs of registers referred to as Breakpoint Register Pairs (BRPs).
An implementation may contain many BRPs. The first two BRPs are identified as BRP0 and BRP1, and this
numbering pattern continues for additional BRPs. BRPn refers to any particular pair. BRPn consists of two
registers:

• a Breakpoint Control Register, BCRn

• a Breakpoint Value Register, BVRn.

For a given Breakpoint Register Pair, BRPn, a Breakpoint Debug event occurs when:

• BCRn is programmed for linked or unlinked Instruction Virtual Address (IVA) match or mis-match.
See Memory addresses on page 2-13 for a definition of the IVA.

• The IVA of an instruction is compared with the BVRn value:

— for a match, if BCRn is programmed for matches

— for a mis-match, if BCRn is programmed for mis-matches.

Note
 For more information on address matching and mis-matching, see Variable length instruction sets on

page 2-11 and Byte address select, bits [8:5] on page 10-41.

• At the time when the breakpoint is evaluated, all the conditions specified in BCRn match.

• The breakpoint is enabled.

• If BCRn is programmed for linked Context ID match and, at the time the breakpoint is evaluated:

— the linked BRP indicated by BCRn, BRPm, is enabled

— the value held in BVRm matches the Context ID held in CP15 register 13.

• The instruction is committed for execution. The Debug event is generated whether the instruction
passes or fails its condition code.

A Breakpoint Debug event also occurs when:

• BCRn is programmed for unlinked Context ID match.

• The Context ID, in CP15 register 13, matches the BVRn value.

• At the same time as the breakpoint is evaluated, all the conditions specified in BCRn match.

• The breakpoint is enabled.

• The instruction is committed for execution. The Debug event is generated whether the instruction
passes or fails its condition code.
2-10 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Events
If Monitor Debug-mode is selected and enabled then the behavior is UNPREDICTABLE if both of the following
are true:

• BCRn is programmed for linked or unlinked IVA mismatch, or BCRn is programmed for unlinked
Context ID match.

• BCRn is programmed to generate Debug Events in a privileged mode or in any mode.

Breakpoint Debug events are precise. That is, the Debug event acts like an exception that cancels the
breakpointed instruction. Breakpoint Debug events must be evaluated before the instruction is executed. See
Generation of Debug events on page 2-20.

For more information, see Breakpoint Value Registers (BVRn) on page 10-39 and Breakpoint Control
Registers (BCRn) on page 10-40.

Variable length instruction sets

In the ARMv7 Architecture Specification:

• a variable length instruction set is one where instructions comprise one or more units of memory, each
of a fixed size.

• a fixed length instruction set is one where instructions are always a single unit of memory of a fixed
size.

Thumb-2, Thumb-2EE and Java byte codes are examples of variable length instruction sets. In Thumb-2 and
Thumb-2EE, an instruction comprises one or two halfwords. In Java, an instruction comprises one or more
bytes.

In the Thumb instruction set, the BL instruction consists of two halfwords:

• On processors that do not implement Thumb-2 instructions, implementations can choose to execute
the two halfwords separately. In these cases Thumb is considered as a fixed length instruction set

• Alternatively, in an implementation where the Thumb BL instruction is executed as a single
instruction, Thumb is considered as a variable length instruction set.

The distinction between these two implementations of the Thumb instruction set is whether the second half
of the BL instruction can be considered as a valid target for an exception return. In other words, Thumb is
implemented as a variable length instruction set if an exception can be taken between executing the two
halves of a BL instruction.

ARM instructions are all a fixed size, and therefore ARM is fixed length instruction set.

In ARMv7, a BRP configured such that a match occurs on an address other than the first unit of the
instruction does not cause the instruction to generate a Breakpoint Debug event. For example, on a Thumb-2
instruction, a BRP that matches the second halfword of the instruction will not cause the instruction to
generate a Breakpoint Debug event.

Instructions in a fixed length instruction set consist of a single unit, which is therefore the first unit of the
instruction. For instructions in a variable length instruction set consisting of more than one unit, the first unit
of the instruction is defined as the unit of the instruction with the lowest address in memory.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 2-11

Debug Events
In ARMv6 the behavior of breakpoints that match on an instruction memory unit other than the first one is
IMPLEMENTATION DEFINED. However, ARMv6 specifies that, for the Java instruction set, breakpoints
matching on operands do not cause the instruction to be breakpointed. A Breakpoint Debug event is only
generated if the BRP is configured to match the opcode. The opcode is always the first memory unit of the
instruction.

In all cases, a debugger must configure the BRP such that it matches on all bytes of the first unit of the
instruction, otherwise the generation of Breakpoint Debug events is UNPREDICTABLE.

On a ARMv6 architecture processor that does not implement Thumb-2 instructions and that allows an
exception to be taken between executing the two halves of a Thumb BL instruction, a Debugger must treat
the Thumb BL as two instructions, and therefore set breakpoints on both halves of the instruction. This might
require two BRPs.

Note
 To ensure compatibility across ARMv6 implementations, a debugger can always treat BL as two instructions
when debugging code on an ARMv6 processor that does not implement Thumb-2 instructions.

For example:

• On an ARMv7 processor:

— To breakpoint on a 32-bit Thumb-2 instruction starting at address 0x8000, a Debugger must set
BVRn = 0x8000 and BCRn[8:5] = b0011. These are the settings for breakpointing on any
Thumb-2 instruction, including a BL.

— To breakpoint on a 32-bit Thumb-2 instruction starting at address 0x8002, a Debugger must set
BVRn = 0x8000 and BCRn[8:5] = b1100.

— To breakpoint on an ARM instruction starting at address 0x8004, a Debugger must set
BVRn = 0x8004 and BCRn[8:5] = b1111.

• On an ARMv6 processor that does not implement Thumb-2:

— To breakpoint on a Thumb BL instruction at address 0xC120, a Debugger must set
BVRn = 0xC120 and BCRn[8:5] = b1111.

— To breakpoint on a Thumb BL instruction at address 0xC122, a Debugger must set
BVRn = 0xC120, BVRm = 0xC124, BCRn[8:5] = b1100 and BCRm[8:5] = b0011.

2.3.3 BKPT Instruction Debug events

A BKPT Instruction Debug event occurs when a BKPT instruction is committed for execution. BKPT is an
unconditional instruction.

BKPT Instruction Debug events are precise. That is, the Debug event acts like an exception that cancels the
BKPT instruction.

See the ARM Architecture Reference Manual for details of the BKPT instruction and its encodings in the ARM
and Thumb instruction sets.
2-12 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Events
2.3.4 Vector Catch Debug events

Vector Catch Debug events are controlled by the Vector Catch Register (VCR).

A Vector Catch Debug event occurs when:

• The IVA of an instruction matches a vector location address for the current security world.

See Memory addresses for a definition of the IVA.

• At the same time as the vector catch is evaluated, the corresponding bit of the VCR is set to 1,
indicating vector catch enabled.

• The instruction is committed for execution. The Debug event is generated whether the instruction
passes or fails its condition code.

Vector Catch Debug events must be evaluated before the instruction is executed. The vector catch behaves
exactly like a BRPn set with BVRn[31:2] set to the top 30 bits of the exception vector address, and
BCRn[8:5], the Byte Address Select field, set to b1111 and BCRn programmed for unlinked IVA match.

Note
 Under this model, any instruction prefetched from an exception vector address that is committed for
execution can trigger a Vector Catch Debug event, not just those due to exception entries.

Instruction fetches from non word-aligned addresses within the 4-bytes of the exception vector address also
trigger vector catches. For example, a Thumb instruction fetch from the second half-word of the address can
trigger a vector catch.

However, unlike breakpoints, if the vector catch address matches a unit of an instruction in a variable length
instruction set that is not the first unit of the instruction, vector catch generation is UNPREDICTABLE. See
Variable length instruction sets on page 2-11 for more information on breakpoint generation and variable
length instruction sets.

If Monitor Debug-mode is selected and enabled, and the vector is either the Prefetch abort vector or the Data
Abort vector, the Debug event is ignored.

Vector Catch Debug events are precise. That is, the Debug event acts like an exception that cancels the
instruction at the caught vector. Vector Catch Debug events must be evaluated before the instruction is
executed. See Generation of Debug events on page 2-20.

For more information, see Vector Catch Register (VCR) on page 10-54.

2.3.5 Memory addresses

On processors that implement the Virtual Memory System Architecture (VMSA), and also implement the
Fast Context Switch Extension (FCSE):

• It is IMPLEMENTATION DEFINED whether the Instruction Virtual Address (IVA) used in generating
Breakpoint Debug events is the Modified Virtual Address (MVA) or Virtual Address (VA) of the
instruction.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 2-13

Debug Events
• It is IMPLEMENTATION DEFINED whether the Data Virtual Address (DVA) used in generating
Watchpoint Debug events is the MVA or VA of the data access.

• The IVA used in generating Vector Catch Debug events is always the VA of the instruction.

• The Watchpoint Fault Address Register (WFAR) reads a VA plus an offset dependent on the processor
state.

• The Program Counter Sampling Register (PCSR) reads a VA plus an offset dependent on the
processor state.

Note
 The use of the FCSE is deprecated in ARMv7.

On processors that implement the VMSA, and do not implement the FCSE:

• The IVA used in generating Breakpoint Debug events is the VA of the instruction.

• The DVA used in generating Watchpoint Debug events is the VA of the data access.

• The IVA used in generating Vector Catch Debug events is the VA of the instruction.

• The WFAR reads a VA plus an offset dependent on the processor state.

• The PCSR reads a VA plus an offset dependent on the processor state.

On processors that implement the Protected Memory System Architecture (PMSA), all addresses are
Physical Addresses (PAs):

• The IVA used in generating Breakpoint Debug events is the PA of the instruction.

• The DVA used in generating Watchpoint Debug events is the PA of the data access.

• The IVA used in generating Vector Catch Debug events is the PA of the instruction.

• The WFAR reads a PA plus an offset dependent on the processor state.

• The PCSR reads a PA plus an offset dependent on the processor state.

For more information about the WFAR, see Effects of Debug Exceptions on CP15 registers and the WFAR
on page 3-4, The effect of entering Debug state on CP15 registers and the WFAR on page 4-4, and
Watchpoint Fault Address Register (WFAR) on page 10-22.

For more information about the PCSR, see Program counter sampling register on page 8-3 and Program
Counter Sampling Register (PSCR) on page 10-31.

2.3.6 UNPREDICTABLE behavior on Software Debug events

Vector Catch Debug events on the Prefetch abort and Data Abort vectors are ignored if Monitor
Debug-mode is configured, because they would lead to an unrecoverable state.

ARM Limited recommends that VCR[28,27,12,11,4,3] are always programmed as zero when Monitor
Debug-mode is configured, see Vector Catch Register (VCR) on page 10-54.

Vector Catch Debug events on the Secure Monitor Call vector are not ignored. However, VCR[10] should
normally also be programmed as zero; see Monitor Debug-mode vector catch on Secure Monitor Call on
page 2-17.
2-14 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Events
In ARMv6 the following events are ignored if Monitor Debug-mode is configured, because they can lead to
an unrecoverable state:

• Unlinked Context ID Breakpoint Debug events, if the processor is running in a privileged mode.

• Breakpoint Debug events with BCR[22:21] = b10, if the processor is running in a privileged mode.

In ARMv7, debuggers must avoid these cases by restricting the programming of the BCR if Monitor
Debug-mode is enabled and selected. This means that the allowed values of the Privileged Mode control
bits, bits [2:1], of BCRn must be restricted in the following cases:

• if BCRn[22:20] = b010, selecting an unlinked Context ID breakpoint

• If BCRn[22:20] = b100 or b101, selecting an IVA mismatch breakpoint.

For these cases, BCRn[2:1] must be programmed to one of:

• b00, selecting match only in User, Supervisor or System Mode

• b10, selecting match only in User Mode.

See Debug exceptions in abort handlers for additional points that must be considered before using the b00
setting.

Caution
 The following values must not be selected for BCRn[2:1]:

• b01, match in any privileged mode

• b11, match in any mode.

For details of programming the BCR see Breakpoint Control Registers (BCRn) on page 10-40.

If these restrictions are not followed, the processor behavior on a resulting Debug event is UNPREDICTABLE.
The processor can enter an unrecoverable state, because taking the Debug Exception does not take the
processor out of the state in which the Debug event occurs.

Debug exceptions in abort handlers

The previous section indicated that, in ARMv7, a debugger might set BCR[2:1] to b00, match in User,
Supervisor and System Modes, to avoid the possibility of reaching an unrecoverable state in the unlinked
Context ID and IVA mismatch breakpoint cases when Monitor Debug-mode is selected. However, BCR[2:1]
must only be programmed to b00 if you are confident that the abort handler will not switch to one of these
modes before saving context that may be corrupted by a additional Debug event. The context that might be
corrupted by such an event includes R14_abt, SPSR_abt, IFAR, DFAR, and DFSR.

It is unlikely that an abort handler would switch to User Mode to process an abort before saving these
registers, so setting BCR[2:1] to b10, match only in User Mode, is safer

Also, take care when setting a Breakpoint or BKPT Instruction Debug event inside a Prefetch abort or Data
Abort handler, or when setting a Watchpoint Debug event on a data address that might be accessed by any
of these handlers.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 2-15

Debug Events
In general, the user must only set Breakpoint or BKPT Instruction Debug events inside an abort handler at
a point after the context that would be corrupted by a Debug event has been saved. Breakpoint Debug events
in code that may be run by an abort handler can be avoided by setting BCR[2:1] to b00 or b01, as
appropriate.

Watchpoint Debug events in abort handlers can be avoided by setting WCR[2:1] for the watchpoint to b10,
match only non-privileged accesses, if the code being debugged is not running in a privileged mode.

Failure to follow these guidelines may lead to Debug events occurring before the handler is able to save the
context of the abort causing the context to be overwritten, resulting in UNPREDICTABLE software behavior.
The context that might be corrupted by such events includes R14_abt, SPSR_abt, IFAR, DFAR, and DFSR.

Debug events in the debug monitor

Because Debug Exceptions are overlaid on top of the Data Abort and Prefetch abort exceptions, the
precautions outlined in the section Debug exceptions in abort handlers on page 2-15 also apply to debug
monitors. The suggested settings for breakpoints and watchpoints that can avoid taking Debug Exceptions
within a Data Abort handler can be used to avoid taking Debug Exceptions in the debug monitor.

In addition, particularly on ARMv7 processors that do not implement the Extended CP14 Interface, and
particularly those that implement Precise Watchpoint Debug events, when Monitor Debug-mode is enabled
debuggers must avoid:

• setting Watchpoint Debug events on the addresses of debug registers

• setting Breakpoint and Vector Catch Debug events on the addresses of instruction within the debug
monitor.

In particular, it is unwise to set a watchpoint on the address of the Watchpoint Control Register (WCR) for
that watchpoint, or to set a breakpoint on the address of an instruction that disables the breakpoint.

As noted in section Generation of Debug events on page 2-20:

• a write to the WCR for a watchpoint set on the address of that WCR, to disable that watchpoint will
trigger the watchpoint

• an instruction that disables a breakpoint on that instruction will trigger the breakpoint.

In the first of these cases:

• if watchpoints are imprecise, the write to the WCR still takes place and the watchpoint is disabled.
The debug software must then deal with the re-entrant Debug Exception.

• if watchpoints are precise the value in the WCR after the watchpoint is signaled is unchanged, and
the Debug event is left enabled.

In the breakpoint case, the Debug Exception will be taken before the Debug event is disabled.

In both the watchpoint and the breakpoint case it might be impossible to recover.
2-16 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Events
Monitor Debug-mode vector catch on Secure Monitor Call

Debuggers must also be cautious about programming a Vector Catch Debug event on the Secure Monitor
Call (SMC) vector when Monitor Debug-mode is enabled. If such an event is programmed, the following
sequence can occur:

1. Nonsecure code executes an SMC instruction.

2. The processor takes the SMC exception, branching to the Monitor vector in Monitor Mode.
SCR[0] = 1, indicating the SMC originated in the Nonsecure world.

3. The Vector Catch Debug event is taken. Although SCR[0] = 1, the processor is in the Secure World
because it is in Monitor Mode.

4. The processor jumps to the Secure Prefetch abort vector, and sets SCR[0] = 0.

Note
 Aborts taken in Secure World cause SCR[0] to be set to 0.

5. The abort handler at the Secure Prefetch abort handler can tell a Vector Catch Debug event occurred,
and can determine the address of the SMC instruction from R14_mon. However, it cannot determine
whether that is a Secure or Nonsecure address.

Therefore, ARM Limited advises you not to program a Vector Catch Debug event on the SMC vector when
Monitor Debug-mode is enabled.

Note
 This is not a security issue, because the sequence given here can only occur if SPIDEN is HIGH.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 2-17

Debug Events
2.4 Halting Debug events

Halting Debug events are caused by the external debug interface requesting that the processor enters Debug
state. The three types of Halting Debug event are:

• Activation of the External Debug Request signal, EDBGRQ.

This signal can be driven by, for example:

— an external agent such as a cross-triggering unit

— an ETM.

See EDBGRQ, DBGTRIGGER, DBGCPUDONE and DBGACK on page 6-4.

• A Halt Request Debug event. This occurs following receipt of a Halt Request command.

The Halt Request command is activated by a debugger writing 1 to the Halt Request bit of the Debug
Run Control Register (DRCR). The processor debug control logic holds the request until the
processor enters Debug state.

See Halt Request, bit [0] on page 10-23.

• An OS Unlock Catch Debug event. This occurs when both of the following are true:

— the OS Unlock Catch is enabled in the Event Catch Register

— the OS Lock transitions from being locked to being unlocked.

The event is held by the debug control logic until the processor enters Debug state.

See OS Unlock Catch, bit [0] on page 10-57 and OS Lock Access Register (OSLAR) on page 10-58
for details.

If debug is disabled when one of these events is detected, the request is ignored and no Halting Debug event
occurs. Debug is disabled when the external debug interface signal DBGEN is LOW.

If DBGEN is HIGH, meaning that debug is enabled, and a Halting Debug event occurs when debug is not
permitted, the Halting Debug event is pended. This means that the processor enters Debug state when it
transitions to a security world or processor mode where debug is permitted.

While a Halting Debug event is pended:

• For External Debug requests, the requestor holds EBDGRQ HIGH until the core enters Debug state.

• For the other Halting Debug events the event is pended internally until the processor enters a security
world or processor mode where debug is permitted. However, if DBGEN goes LOW before the
processor enters the world or mode where debug is permitted, it is UNPREDICTABLE whether the
processor keeps the event pended. If the debug logic is reset before the processor enters the permitted
world or mode, the processor must remove the pending Halting Debug event.

If a Halting Debug event occurs when debug is enabled and permitted, or debug becomes enabled and
permitted whilst a Halting Debug event is pending, it is guaranteed that Debug state is entered by the end of
the next Instruction Synchronization Barrier (ISB) operation, exception entry, or exception return.
2-18 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Events
In v6 Debug and v6.1 Debug:

• if you are using the recommended ARM Debug Interface v4.0, the Halt Request command is issued
by placing the HALT instruction in the IR register and taking the Debug Test Access Port State
Machine (DBGTAPSM) through the Run-Test/Idle state

• the OS Unlock Catch Debug event is not supported.

In v6 Debug it is IMPLEMENTATION DEFINED whether Halting Debug events cause entry to Debug state when
Halting Debug-mode is not configured and enabled
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 2-19

Debug Events
2.5 Generation of Debug events

The generation of Breakpoint and Watchpoint Debug events can be dependent on the context of the
processor, including:

• the current processor mode

• the contents of the Context ID register

• the Secure world setting, if the processor implements Security Extensions.

The generation of Debug events is also dependent on the state of the debug logic:

• Breakpoint Debug events are dependent on the contents of the relevant Breakpoint Register Pair
(BRP)

• Watchpoint Debug events are dependent on the contents of the relevant Watchpoint Register Pair
(WRP)

• Linked Breakpoint or Watchpoint Debug events are dependent on the settings of a second BRP

• Vector Catch Debug events are dependent on the settings in the Vector Catch Register (VCR)

• OS Unlock Catch Debug events are dependent on the setting of the Event Catch Register (ECR).

In addition, as shown in Table 2-1 on page 2-2, the generation of Debug events is dependent on:

• the settings of the authentication signals, see Authentication signals on page 6-3

• the values in the Debug Status and Control Register (DSCR), see Halting Debug-mode enable,
bit [14] on page 10-15, and Monitor Debug-mode enable, bit [15] on page 10-15.

The following events are guaranteed to take effect on the Debug event generation logic by the end of the
next Instruction Synchronization Barrier (ISB) operation, exception entry, or exception return:

• Context changing operations, including:

— mode changes

— writes to the Context ID register

— Secure world changes.

• Operations that change the state of the Debug event generation logic, including:

— writes to BRP registers, for Breakpoint Debug events, or linked Breakpoint or Watchpoint
Debug events

— writes to WRP registers, for Watchpoint Debug events

— writes to the VCR register, for Vector Catch Debug events

— writes to the ECR, for OS Unlock Catch Debug events

— changes to the authentication signals

— writes to the DSCR register.
2-20 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Events
Exception return sequences are usually also context changing operations, and hence the context change
operation is guaranteed to take effect on the breakpoint matching logic by the end of that exception return
sequence.

If you require a change in the Debug event generation logic to complete before a particular event or piece
of code is debugged then you must ensure there is an explicit synchronization operation after the change in
the Debug settings. In the absence of an explicit synchronization operation, the changes take effect as
operations drain down the pipeline. This might be acceptable in some situations, if you require only that the
debug changes take effect within a number of instructions.

An explicit synchronization operation is one of:

• an exception entry

• a return from exception

• an Instruction Synchronization Barrier (ISB) instruction.

Between a context change operation and the end of the next explicit synchronization operation it is
UNPREDICTABLE whether the processing of a Debug event will depend the old or the new context.

Between operations that change the state of the Debug event generation logic and the end of the next ISB,
exception entry or exception return, it is UNPREDICTABLE whether Debug event generation depends on the
old or the new settings.

Note
 The rules for how a write to a debug register through a Memory-mapped interface has side-effects, for
example, the enabling or disabling of a Debug event, are defined by the memory ordering model of the ARM
Architecture. See Synchronization of debug register updates on page 5-18 and the ARM Architecture
Reference Manual for more information.

It is not a requirement of this architecture that such changes take effect on instruction fetches from the
memory system, or on memory accesses made by the processor, at the same point as they take effect on the
debug logic. The only architectural requirement is that such a change executed before an Instruction
Synchronization Barrier (ISB) operation must be visible to both the memory system and the debug logic for
all instructions executed after the ISB operation. This requirement is described earlier in this section.

Watchpoint Debug events must be evaluated before a memory access operation is observed. Breakpoint and
Vector Catch Debug events must be evaluated before the instruction is executed, that is, before the
instruction has any effect on the architectural state of the processor. As a result, if the instruction is one that
modifies the context in which Debug events are evaluated, the Debug event must be evaluated in terms of
the context before the memory access operation is observed or the instruction executes. For example:

• In an ARMv7 implementation that uses the Memory-mapped interface, if the Watchpoint Control
Register (WCR) is located in Device or Strongly Ordered memory, a write to the WCR to enable a
watchpoint on a Data Virtual Address (DVA) of the WCR itself must not trigger the watchpoint.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 2-21

Debug Events
Note
 If the WCR is located in Normal memory, the Memory Ordering Model allows for the write to happen

out-of-order, and possibly to be repeated. In this case there is a possibility that the write to the WCR
can trigger a watchpoint on this instruction.

Conversely, a write to the WCR to disable the same watchpoint must trigger the watchpoint if the
WCR is located in Device or Strongly Ordered memory. For more information see Debug events in
the debug monitor on page 2-16.

• An instruction that writes to a Breakpoint Control Register (BCR) or Vector Catch Register (VCR)
to enable a Debug event on the Instruction Virtual Address (IVA) of the instruction itself must not
trigger the Debug event.

Conversely, a write to the BCR or VCR to disable the same Debug event must trigger the Debug event.
2-22 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Events
2.6 Debug event priority and order

Table 2-4 shows where Debug events come in the ARM exception priority model.

Table 2-4 shows that:

• precise and imprecise Watchpoints have the same priority as Precise Data Aborts

• Breakpoints, Vector Catch and Halting Debug events have the same priority as Prefetch abort

• the BKPT Instruction Debug event has the same priority as Undefined Instruction, SVC and SMC
exceptions.

Although Breakpoints, Vector Catch and Halting Debug events are shown as lower priority than
Watchpoints, the former are canceling Debug events. This means that the instruction is not executed if the
Debug event is taken. Therefore, if one of these Debug events is taken on an instruction that, if executed,
would trigger a Watchpoint, the Watchpoint is never triggered. The same is true for Prefetch aborts and Data
Aborts.

Breakpoint Debug events (IVA or Context ID match), Vector Catch Debug events, and Halting Debug events
have the same priority. If more than one of these events occurs on the same instruction, it is UNPREDICTABLE
which event is taken.

BKPT Instruction Debug events have a lower priority than all other Debug events.

Debug events must occur in the execution order of the sequential execution model. This means that if an
instruction causes a debug event then that event must be taken before any other Debug event, or any other
exception, on any instruction that would execute after that instruction in the sequential execution model.

For example, if an Imprecise Watchpoint Debug event is triggered by the first instruction of a code sequence,
then a second Debug event that would be triggered by an instruction which, in the sequential execution
model, executes after the first instruction is not taken. This is the case even if the second Debug event is
precise, for example, a Breakpoint. It is also the case if the second Debug events is also a Watchpoint, that
is, both instructions are memory operations, and the memory operations are not strictly ordered by the
architecture.

Table 2-4 Position of Debug events in the ARM exception priority model

Priority order Exception source Debug event

Highest Reset Not applicable

Precise Data Abort Watchpoints, precise or imprecise

FIQ Not applicable

IRQ Not applicable

Imprecise Abort Not applicable

Prefetch abort Breakpoints, Vector Catch and Halting Debug events

Lowest Undefined Instruction, SVC and SMC BKPT Instruction.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 2-23

Debug Events
Table 2-5 shows the priority order of Debug events and Data and Prefetch aborts.

Note
 This table is not complete. It is only intended to show the relative priority of Watchpoints and external
aborts. For a complete abort priority table see the ARM Architecture Reference Manual.

If the watchpointed access is subject to an imprecise Data Abort:

• If the imprecise Data Abort can be associated with the watchpointed access, ARM Limited
recommends that the watchpoint exception is taken, rather than the Data Abort.

• If an implementation cannot associate the imprecise Data Abort with the watchpointed access, it is
IMPLEMENTATION DEFINED whether the implementation will take the imprecise Data Abort or the
watchpoint, because the order in which the events are detected by the processor is IMPLEMENTATION
DEFINED

• An implementation must ignore the watchpoint if it takes the imprecise Data Abort.

In v6 Debug, all Debug events have a lower priority than Imprecise Data Aborts.

Note
 In the ARM Architecture Reference Manual, Imprecise Data Aborts are referred to as Imprecise Aborts,
when describing the exception.

Table 2-5 Relative priorities of Debug events and Data and Prefetch aborts

Priority order Source

Highest MMU fault

Precise Watchpoint Debug event

Precise External Abort

Imprecise Watchpoint Debug event, Breakpoint Debug event, Vector Catch Debug
event, and all Halting Debug events

Lowest Imprecise External Abort
2-24 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Chapter 3
Debug Exceptions

This chapter contains the following sections:

• Overview on page 3-2

• Effects of Debug Exceptions on CP15 registers and the WFAR on page 3-4.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 3-1

Debug Exceptions
3.1 Overview

A Debug exception is taken when Monitor Debug-mode is enabled and permitted and a Software Debug
event occurs. You must be careful when programming certain events because you might leave the processor
in an unrecoverable state. See unpredictable behavior on Software Debug events on page 2-14.

If the cause of the Debug exception is a Breakpoint, BKPT Instruction, or a Vector Catch Debug event, the
processor performs the following actions:

• It sets the DSCR[5:2] Method of Debug Entry bits according to Table 10-5 on page 10-10.

• It sets the CP15 IFSR and IFAR registers as described in Effects of Debug Exceptions on CP15
registers and the WFAR on page 3-4.

• It performs the same sequence of actions as occur in a Prefetch abort exception. This includes:

— Update SPSR_abt with the saved CPSR.

— Set R14_abt to the address of the cancelled instruction + 4:

If the return from the Debug exception handler is made by an instruction that is intended to
return from a Prefetch abort exception and retry the cancelled instruction, Table 3-1 shows the
instruction that is retried.

— If the cancelled instruction is within an IT block, save a value in SPSR_abt so that the
instruction resumes with the IT bits in the CPSR set as they were before the instruction was
cancelled.

— Update the CPSR to change to abort mode with normal interrupts and imprecise aborts
disabled, the J and IT bits cleared to 0, and T bit set to the value of the TE bit in the CP15
control register.

— If the security extensions are implemented and the processor is in Monitor Mode, clear bit [0]
of the Secure Configuration Register (SCR) to 0.

— Set the PC to the appropriate Prefetch abort vector.

— Resume execution.

The Prefetch abort handler is responsible for checking the IFSR bits to find out whether the exception entry
was caused by a Debug exception or a Prefetch abort exception. If the cause was a Debug exception, it must
branch to the debug monitor.

Table 3-1 Retry on return from Debug exception

Cause of Debug exception On return from Debug event, retries:

Breakpoint Debug event The breakpointed instruction

BKPT Instruction Debug event The instruction at the address of the BKPT instruction

Vector Catch Debug event The instruction at the vector
3-2 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Exceptions
If the cause of the Debug exception was a Watchpoint Debug event, the processor performs the following
actions:

• It sets the DSCR[5:2] Method of Debug Entry bits either to Imprecise Watchpoint Occurred or to
Precise Watchpoint Occurred.

• It sets the CP15 DFSR, DFAR, and WFAR registers as described in Effects of Debug Exceptions on
CP15 registers and the WFAR on page 3-4.

• It performs the same sequence of actions as in a Data Abort exception. This includes:

— Update SPSR_abt with the saved CPSR.

— Set R14_abt to the address of the cancelled instruction + 8:

an instruction that is intended to return from a Data Abort exception to retry the aborted
instruction returns from a Watchpoint Debug event exception to retry the cancelled instruction.

— If the instruction returned to is in an IT block, save a value in SPSR_abt so that the IT block
resumes correctly.

— Update the CPSR to change to abort mode and ARM state with normal interrupts and
imprecise aborts disabled, the J and IT bits cleared to 0, and T bit set to the value of the TE bit
in the CP15 control register.

— If the security extensions are implemented and the processor is in Monitor Mode, clear bit [0]
of the SCR to 0.

— Set the PC to the appropriate Data Abort vector.

— Resume execution.

For more information see Precise and Imprecise Watchpoint Debug events on page 2-8.

The Data Abort handler is responsible for checking the DFSR bits to find out whether the exception entry
was caused by a Debug exception or a Data Abort exception. If the cause was a Debug exception, it must
branch to the debug monitor:

• the address of the instruction that caused the Watchpoint Debug event is in the WFAR

• the address of (instruction to restart at + 8) is in R14_abt.

This is the standard Data Abort behavior.

Halting Debug events never cause a Debug Exception. The Halting Debug events are External Debug
Request Debug event, Halt Request Debug event and OS Unlock Catch Debug event.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 3-3

Debug Exceptions
3.2 Effects of Debug Exceptions on CP15 registers and the WFAR

There are four CP15 registers that are used to record abort information:

DFAR Data Fault Address Register

IFAR Instruction Fault Address Register

IFSR Instruction Fault Status Register

DFSR Data Fault Status Register

Their usage model for normal operation is described in the ARM Architecture Reference Manual.

In v6 Debug the Watchpoint Fault Address Register (WFAR) exists in CP15. In implementations of v6.1
Debug this register exists in CP14, and the CP15 alias is deprecated.

In ARMv7 the WFAR is one of the debug registers that can be implemented in the Extended CP14 Interface,
and is not implemented in CP15. See Watchpoint Fault Address Register (WFAR) on page 10-22 for details.

In Monitor Debug-mode the behavior on Breakpoint, BKPT Instruction, or Vector Catch Debug events is as
follows:

• the IFSR is updated with the encoding for a Debug event, IFSR[10,3:0] = b00010

• the IFAR is UNPREDICTABLE following these Debug Exceptions

• the DFSR, DFAR and WFAR are unchanged.

In Monitor Debug-mode the behavior on a Watchpoint Debug event is as follows:

• the IFSR and IFAR are unchanged.

• the DFSR is updated with the encoding for a Debug event (DFSR[10,3:0] = b00010).

• the Domain and Write fields in the DFSR (DFSR[11,7:4]) are UNPREDICTABLE. However, an ARMv6
watchpoint sets the Domain field.

• the DFAR is UNPREDICTABLE.

• the WFAR is updated with the Instruction Virtual Address (IVA) of the instruction that accessed the
watchpointed address, plus an offset that depends on the processor state:

— 8 in ARM state

— 4 in Thumb and ThumbEE states

— IMPLEMENTATION DEFINED in Jazelle state.

See Memory addresses on page 2-13 for a definition of the IVA used to update the WFAR.
3-4 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Chapter 4
Debug State

This chapter contains the following sections:

• Overview on page 4-2

• Entering Debug state on page 4-3

• Behavior of the PC and CPSR in Debug state on page 4-7

• Executing instructions in Debug state on page 4-9

• Privilege in Debug state on page 4-13

• Behavior of non-invasive debug in Debug state on page 4-18

• Exceptions in Debug state on page 4-19

• Leaving Debug state on page 4-21.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 4-1

Debug State
4.1 Overview

If a Debug event occurs when Halting Debug-mode is enabled and permitted, the processor switches to a
special state called Debug state and control passes to an external agent.

Note
 This external agent is usually a debugger. However it might be some other agent connecting to the debug
port of the processor. This could be another processor in the same System on Chip device. In this
architecture specification this agent is often referred to as a debugger.

Halting Debug-mode is configured by setting DSCR[14], see Halting Debug-mode enable, bit [14] on
page 10-15.

Debug state allows the external agent to control the processor following a Debug event. While in Debug
state, the processor behaves as follows:

• The PC and CPSR behave as described in Behavior of the PC and CPSR in Debug state on page 4-7.

• Instructions are prefetched from the Instruction Transfer Register (ITR), see Executing instructions
in Debug state on page 4-9.

• The rules about modes and privileges are different to those in normal execution state, see Privilege
in Debug state on page 4-13.

• Non-invasive debug features are disabled, see Behavior of non-invasive debug in Debug state on
page 4-18.

• Exceptions are treated as described in Exceptions in Debug state on page 4-19. Other software and
hardware Debug events and interrupts are ignored.

• If the processor implements a DMA engine, its behavior is IMPLEMENTATION DEFINED.

• If the processor implements a cache or other local memory that it keeps coherent with other memories
in the system during normal operation, it must continue to service coherency requests from the other
memories.

Leaving Debug state on page 4-21 describes how to leave Debug state.
4-2 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug State
4.2 Entering Debug state

The processor switches to Debug state if a Debug event occurs when Halting Debug-mode is enabled and
permitted.

A processor can also enter Debug state if a Halting Debug event occurs when Halting Debug-mode is not
configured. This is the case if debug has been enabled through the external debug interface and is permitted,
see Table 2-1 on page 2-2.

On entering Debug state:

1. In ARMv7 only, the DBGTRIGGER signal is driven HIGH.

2. The processor is halted, meaning:

• The instruction pipeline is flushed and no more instructions are prefetched from memory.

• The PC and CPSR are frozen.

• The effect of Debug state entry on other core registers is described in The effect of entering
Debug state on core registers.

• The effect of Debug state entry on coprocessor registers is described in The effect of entering
Debug state on CP15 registers and the WFAR on page 4-4.

• The processor might:

— ensure that all memory operations complete

— set the DSCR[19] Imprecise Data Aborts discarded bit to 1

— drive the DBGCPUDONE signal HIGH.

However, processor behavior regarding memory accesses outstanding at Debug state entry is
IMPLEMENTATION DEFINED, see Imprecise Data Aborts and entry to Debug state on page 4-4.

3. The processor signals that it has entered Debug state and is ready for an external agent to take control:

• the DSCR[0] Core Halted bit is set to 1

• the DSCR[5:2] Method of Debug Entry bits are set according to Table 10-5 on page 10-10

• the DBGACK signal is driven HIGH.

See EDBGRQ, DBGTRIGGER, DBGCPUDONE and DBGACK on page 6-4 for more information about the
DBGTRIGGER, DBGACK and DBGCPUDONE signals.

4.2.1 The effect of entering Debug state on core registers

All general-purpose and program status registers, including SPSR_abt and R14_abt, are unchanged on entry
to Debug state.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 4-3

Debug State
4.2.2 The effect of entering Debug state on CP15 registers and the WFAR

On entry to Debug state, the WFAR is updated with the Instruction Virtual Address (IVA) of the instruction
which accessed the watchpointed address, plus an offset that depends on the processor state:

• 8 in ARM state

• 4 in Thumb and ThumbEE states

• IMPLEMENTATION DEFINED in Jazelle state.

See Memory addresses on page 2-13 for a definition of the IVA used to update the WFAR.

Note
 In ARMv6, the WFAR is accessed as a CP15 register.

In ARMv7 the WFAR is accessed as described in Chapter 5 Debug Register Interfaces.

In both cases, on Debug state entry the WFAR is set as described in this section.

In ARMv7, all CP15 registers are unchanged on entry to Debug state. In ARMv6, all CP15 register except
for the WFAR are unchanged on entry to Debug state. The unchanged registers include the IFSR, DFSR,
DFAR, and IFAR.

On processors that implement Security Extensions, bit [0] of the Secure Configuration Register (SCR) is
not changed on entry to Debug state.

4.2.3 Imprecise Data Aborts and entry to Debug state

On entry to Debug state, it is IMPLEMENTATION DEFINED whether a processor ensures that all memory
operations complete and that all possible outstanding Imprecise Data Aborts have been recognized before
it signals to the external agent that it has entered Debug state.

Behavior in ARMv7

In ARMv7 the behavior on entry to Debug state is signalled by the value of the DSCR[19] bit:

If DSCR[19] = 1

The processor has already ensured that all possible outstanding imprecise Data Aborts have
been recognized, and the debugger has no additional action to take.

If the processor logic always automatically sets DSCR[19] to 1 on entry to Debug state, then
DSCR[19] is implemented as a RO bit.

If DSCR[19] = 0

The following sequence must occur:

1. The debugger must execute an IMPLEMENTATION DEFINED sequence to determine
whether all possible outstanding imprecise Data Aborts have been recognized.
4-4 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug State
Any imprecise Data Abort recognized as a result of this sequence is not taken
immediately. Instead, the processor latches the abort event and its type. The
imprecise Data Abort is taken when the processor leaves Debug state.

2. DSCR[19] is set to 1.

There are two ways this requirement can be implemented:

• The processor automatically sets this bit on detecting the execution of the
IMPLEMENTATION DEFINED sequence. In this case, DSCR[19] is implemented
as a RO bit.

• The IMPLEMENTATION DEFINED sequence sets DSCR[19] to 1, using the
processor interface to the debug resources. In this case, DSCR[19] is
implemented as a RW bit.

While the processor is in Debug state and DSCR[19] is 1, any memory access that triggers an imprecise Data
Aborts cause DSCR[7], the sticky imprecise Data Abort flag, to be set to 1, but has no other effect on the
state of the processor. The cause and type of the abort are not recorded. Because the abort is not pended, if
the imprecise abort is an external imprecise abort and the Interrupt Status Register (ISR) is implemented,
bit [8] of the ISR is not updated. Refer to the ARM Architecture Reference Manual Security Extensions
supplement for details of the ISR.

Any abort that is latched before or during the entry to Debug state sequence, is not overwritten by any new
abort. This means it is not discarded if the processor detects another imprecise Data Abort while DSCR[19]
is set to 1. The processor acts on the latched abort on exit from Debug state. If the imprecise abort is an
external imprecise abort and the ISR is implemented, bit [8] of the ISR reads as 1 indicating that an external
abort is pending.

After writes to memory by the debugger, and before exiting Debug state, the debugger must issue an
IMPLEMENTATION DEFINED sequence of operations to ensure that any imprecise Data Aborts have been
recognized and discarded.

On exit from Debug state, the processor automatically clears DSCR[19] to 0.

If an imprecise Data Abort occurs before entry to Debug state or between entry to Debug state and
DSCR[19] transitioning from 0 to 1, then the processor acts on the imprecise Data Abort on exit from Debug
state:

• If the A-bit in the CPSR is 1, the abort is pended, and is taken when the A-bit is cleared to 0.

• If the A-bit in the CPSR is 0, the abort is taken by the processor.

The value of DSCR[19] is reflected at the external debug interface by the signal DBGCPUDONE. If the
processor sets DSCR[19] automatically on entry to Debug state then the DBGCPUDONE signal is
redundant, because the DBGACK signal has the same properties. See EDBGRQ, DBGTRIGGER,
DBGCPUDONE and DBGACK on page 6-4 for details of the DBGCPUDONE signal.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 4-5

Debug State
Behavior in ARMv6

The behavior of imprecise Data Aborts on entry to Debug state differs between v6 Debug and v6.1 Debug:

ARMv6 DSCR[19] not defined. A debugger must always issue a Data Synchronization Barrier
(DSB) following entry to Debug state.

It is IMPLEMENTATION DEFINED whether DSCR[7] is set to 1 on imprecise Data Aborts that
occur when not in Debug state.

ARMv6.1 A debugger must always issue a Data Synchronization Barrier (DSB) following entry to
Debug state. This DSB causes DSCR[19] to be set to 1.

DSCR[7] is set to 1 on any imprecise Data Abort detected while the processor is in Debug
state, regardless of the setting of DSCR[19].
4-6 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug State
4.3 Behavior of the PC and CPSR in Debug state

The PC value is frozen on entry to Debug state. A read of R15 after the processor has entered Debug state
returns a value that depends on the previous state of the processor and the type of Debug event. Table 4-1
lists the values that can be returned.

On entry to Debug state, the value of the CPSR is the value that the instruction at the return address would
have been executed with, if it had not been cancelled by the Debug event. That is, it is the value that would
be written to the SPSR_irq if the instruction at the return address was interrupted by an IRQ exception.

Table 4-1 Value of an R15 read after entering Debug state

Debug event

Previous state of processor
Meaning of return address (RA)a
obtained from R15 read

a. Return address (RA) is the address of the first instruction that the processor must execute on exit from
Debug state. This enables program execution to continue from where it stopped.

ARM
Thumb or
ThumbEE Jazelleb

b. Offset is an IMPLEMENTATION DEFINED constant and documented value.

Breakpoint RA + 8 RA + 4 RA + Offset Breakpointed instruction address

Precise
Watchpoint

RA + 8 RA + 4 RA + Offset Address of the instruction that
triggered the watchpointc

c. Returning to RA has the effect of retrying the instruction. This may have implications under the memory
ordering model. See Precise and Imprecise Watchpoint Debug events on page 2-8.

Imprecise
Watchpoint

RA + 8 RA + 4 RA + Offset Address of the instruction for the
execution to resumed

d. RA is not the address of the instruction that triggered the watchpoint, but one that was executed some
number of instructions later. The address of the instruction that triggered the watchpoint can be discovered
from the value in the WFAR. See Watchpoint Fault Address Register (WFAR) on page 10-22.

BKPT
instruction

RA + 8 RA + 4 RA + Offset BKPT instruction address

Vector Catch RA + 8 RA + 4 RA + Offset Vector address

External Debug
Request

RA + 8 RA + 4 RA + Offset Address of the instruction for the
execution to resume

Halt Request RA + 8 RA + 4 RA + Offset Address of the instruction for the
execution to resume

OS Unlock
Catch

RA + 8 RA + 4 RA + Offset Address of the instruction for the
execution to resume
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 4-7

Debug State
Note
 This rule also applies to the IT bits in the CPSR. On entry to Debug states these bits apply to the instruction
at the return address.

The behavior of the PC and CPSR registers in Debug state is as follows:

• The PC does not increment on instruction execution.

• The IT status bits in the CPSR do not change on instruction execution.

• Predictable instructions that explicitly modify the PC or CPSR operate normally, updating the PC or
CPSR.

• After the processor has entered Debug state, if R15 is specified as a source operand for an instruction
it returns a value as described in Table 4-1 on page 4-7. The value read from R15 is aligned according
to the rules of the instruction set indicated by the J and T execution state bits in the CPSR, regardless
of the fact that the core only executes the ARM instruction set in Debug state. For more information
see Executing instructions in Debug state on page 4-9.

• If a sequence for writing a particular value to the PC is executed while in Debug state, and the
processor is later forced to restart without any additional write to the PC or CPSR, the execution starts
at the address corresponding to the written value.

• If the CPSR is written to while in Debug state, subsequent reads of R15 return an UNPREDICTABLE
value, and if the processor is later forced to restart without having performed a write to the PC, the
restart address is UNPREDICTABLE. However, the CPSR can be read correctly while in Debug state.

Note
 In v6 Debug, the CPSR and PC can be written in a single instruction, for example, MOVS pc,lr. In this

case, the behavior is as if the CPSR is written first, followed by the PC. That is, if the processor is
later forced to restart the restart address is predictable. This does not apply to v6.1 Debug or ARMv7
because such instructions are themselves UNPREDICTABLE in Debug state.

• If the processor is forced to restart without having performed a write to the PC, the restart address is
UNPREDICTABLE.

• If the PC is written to while in Debug state, later reads of R15 return an UNPREDICTABLE value.

See also Executing instructions in Debug state on page 4-9, for more restrictions on instructions that might
be executed in Debug state, including those that access the PC and CPSR.
4-8 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug State
4.4 Executing instructions in Debug state

In Debug State the processor executes instructions issued through the Instruction Transfer Register in the
external debug interface, see Instruction Transfer Register (ITR) on page 10-37. This mechanism is enabled
through DSCR[13] described in Execute ARM instruction enable, bit [13] on page 10-14.

The following rules and restrictions apply to instructions that can be executed in this manner in Debug state:

• The processor execution state always corresponds to the state indicated by the J and T execution state
bits in the CPSR. However, the processor always interprets the instructions issued through the ITR
as ARM instruction set opcodes, regardless of the setting of the J and T execution state bits. The next
point gives more information about the significance of the processor execution state.

• With the exception of those instructions listed in Table 4-2 on page 4-10 as UNPREDICTABLE, the
processor can execute any ARM state instruction in Debug state, and, with the exception of the value
read for R15, the instructions operate as specified for ARM state.

The value read for R15 is the return address (RA) plus an offset that depends on the previous state of
the processor, as shown in Table 4-1 on page 4-7. This state is indicated by the value of the J and T
execution bits in the CPSR at the point of entry to Debug state.

• The IT execution state bits in the CPSR are ignored. This means that instructions issued through the
ITR do not fail their condition tests unexpectedly. However, the condition code field in an ARM
instruction is honored.

The IT execution state bits in the CPSR are preserved and do not change when instructions are
executed, unless an instruction that modifies those bits explicitly is executed.

• The branch instructions B, BL, BLX (1), and BLX (2) are UNPREDICTABLE in Debug state.

• The hint instructions WFI, WFE and YIELD are UNPREDICTABLE in Debug state.

• All memory read and memory write instructions with R15 as the base address register read an
UNPREDICTABLE value for the base address.

• Certain instructions that normally update the CPSR can be UNPREDICTABLE in Debug state, see
Writing to the CPSR in Debug state on page 4-10.

• Instructions that load a value from memory into the PC are UNPREDICTABLE in Debug state.

• Conditional instructions that write explicitly to the PC are UNPREDICTABLE in Debug state.

• There are additional restrictions on data processing instructions that write to the PC. See Data
processing instructions with R15 as the target on page 4-12.

• The exception generating instructions SVC, SMC and BKPT are UNPREDICTABLE in Debug state.

The result of an instruction that is UNPREDICTABLE in Debug state cannot be relied upon. These instructions
or results must not represent security holes, such as putting the processor into a state or mode in which debug
is not permitted, or changing the state of registers which cannot be accessed from the current state and mode.
UNPREDICTABLE instructions must not halt or hang the processor, or any parts of the system.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 4-9

Debug State
4.4.1 Writing to the CPSR in Debug state

Table 4-2 lists all the instructions that normally update the CPSR, and gives their behavior in Debug state.
The rule for which instructions are allowed in Debug state depends on the version of the debug architecture
that is implemented.

Instructions that only update bits [31:27,19:16] of the CPSR, the N, Z, C, V, Q and GE bits, are excluded
from this list and have their normal behavior when executed in Debug state. Instructions that cause
exceptions, such as SVC, SMC, and load or store instructions that cause aborts, are also excluded from this list.
Their behavior is described in Exceptions in Debug state on page 4-19.

In v6.1 Debug and ARMv7, the debugger must use the MSR instruction to update the other bits in the CPSR.
The MSR instruction must write to all fields in the CPSR, MSR instructions that only write to certain fields are
UNPREDICTABLE. An MSR instruction that writes to a SPSR behaves as it does in normal (non-debug) state.

Note
 Table 4-2 only governs the behavior of instructions that update the CPSR. See also Altering CPSR
Privileged bits in Debug state on page 4-13 for information about what values can be written to the CPSR.

Table 4-2 Instructions that modify the CPSR, and their behavior in Debug state

Instruction v6 Debug v6.1 Debug, ARMv7

BX UNPREDICTABLE if the J bit in the CPSR is 1.

Use for setting/clearing the T bit in the CPSR.

UNPREDICTABLE

BXJ UNPREDICTABLE if either the J or T bits are 1.

Use for setting the J bit in the CPSR to 1.

UNPREDICTABLE

SETEND UNPREDICTABLE. UNPREDICTABLE

CPS UNPREDICTABLE. UNPREDICTABLE

SPSR to CPSR transfers (Data
processing instructions with S
bit 1 and R15 as target)

Use for setting the CPSR to any value. UNPREDICTABLE

Data processing instructions
with S bit 0 and R15 as target

Does not update the CPSR in ARMv6. See Data processing
instructions with R15 as the
target on page 4-12
4-10 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug State
In v6.1 Debug and ARMv7, the behavior of the CPSR forms of the MSR and MRS instructions in Debug state
differs from their behavior in normal state.

When not in Debug state:

• Values written to the Execution State bits in the CPSR by an MSR instruction are ignored.

• An MRS instruction returns the Execution State bits as zero.

Note
 In ARM state, the T, J, and IT bits are all always zero.

However, in Debug state:

• Values written to the Execution State bits in the CPSR are not ignored, and the Execution State bits
in the CPSR are updated. A direct modification of the Execution State bits in the CPSR by an MSR
instruction must be followed by an Instruction Synchronization Barrier (ISB).

• An MRS instruction returns the correct values of the Execution State bits for the application being
debugged.

• Instructions that do not write to all fields of the CPSR are UNPREDICTABLE.

• If an MRS instruction reads the CPSR after an MSR writes the Execution State bits, and before an
Instruction Synchronization Barrier (ISB) operation, the value returned is UNPREDICTABLE.

• If the processor leaves Debug state after an MSR writes the Execution State bits, and before an ISB, the
behavior of the processor is UNPREDICTABLE.

MSR CPSR_fsxc Use for setting the User-writable and
Privileged bits in the CPSR.

Use for setting the CPSR to
any value

MSR CPSR_<not fsxc> Use for setting the User-writable and
Privileged bits in the CPSR.

UNPREDICTABLE

RFE UNPREDICTABLE. UNPREDICTABLE

Table 4-2 Instructions that modify the CPSR, and their behavior in Debug state (continued)

Instruction v6 Debug v6.1 Debug, ARMv7
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 4-11

Debug State
4.4.2 Data processing instructions with R15 as the target

In ARMv6, data processing instructions with R15 as the target and the S bit set to 0 do not change the CPSR.
Therefore, this section is irrelevant to ARMv6.

In ARMv7, when in normal (non-debug) state:

• In ARM state, data processing instructions with R15 as the target and the S instruction bit set to 0
write the 32-bit result as:

— Bit [0] is written to CPSR[5], the T bit.

— Bit [1] must be 0. Behavior is UNPREDICTABLE if bit [1] is not zero.

— Bits [31:2] are written to the PC.

• In Thumb and ThumbEE states, for data processing instructions with R15 as the target and the S
instruction bit set to 0:

— Bit [0] of the result is ignored. However, when in Debug state, bit [0] of the result must be 1.

— Bits [31:1] are written to the PC.

• In Jazelle state, there is no equivalent instruction. However, Jazelle state requires that a full 32-bit
value can be written to the PC.

In Debug state, when the debugger issues such an instruction, the behavior relating to the result of the data
processing operation (alu) is as shown in Table 4-3.

Data processing instructions with R15 as the target and the S instruction bit set to 1 are always
UNPREDICTABLE, as shown in Table 4-2 on page 4-10.

Table 4-3 Rules for data processing instructions that write to the PC

CPSR[24],
J bit

CPSR[5],
T bit

State
Value of
alu[1:0]

Operation
Value written to PC

[31:2] [1] [0]

0 0 ARM b00 OK alu[31:2] 0 0

bx1 UNPREDICTABLE - - -

b1x UNPREDICTABLE - - -

X 1 Thumb or
ThumbEE

bx0 UNPREDICTABLE - - -

bx1 OK alu[31:2] alu[1] 0

1 0 Jazelle bxx OK alu[31:2] alu[1] alu[0]
4-12 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug State
4.5 Privilege in Debug state

On processors that implement Security Extensions, the processor ignores any attempt to execute privileged
instructions, other than certain CP14 and CP15 instructions, if all the following conditions are true:

• the processor is in Debug state

• the processor is in Secure User mode

• debug is not allowed in secure privileged modes (either DBGEN or SPIDEN is LOW).

When the processor ignores an instruction in these circumstances, it sets DSCR[8], the sticky undefined bit.

On processors that do not implement Security Extensions, any privileged instruction can be executed in
Debug state at any time.

4.5.1 Accessing registers and memory

The rules for accessing banked registers and memory are the same in Debug state as in normal state. For
example, if the CPSR mode bits indicate the processor is in Supervisor Mode:

• reads of the registers return the Supervisor Mode registers

• normal load/store operations make privileged accesses to memory

• the load/store with User Mode privilege operations, for example LDRT, make User Mode privilege
accesses.

4.5.2 Altering CPSR Privileged bits in Debug state

On processors that implement Security Extensions, the processor:

• prevents attempts to set the CPSR Mode field to a value that would place the processor in a mode or
security world where debug is not permitted

• prevents updates to the Privileged bits of the CPSR in cases where debugging is restricted to User
Mode applications in the Secure world.

On processors that do not implement Security Extensions, all CPSR updates that are allowed in a privileged
mode when not in Debug state, are allowed in Debug state.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 4-13

Debug State
Table 4-4 defines the behavior on writes to the CPSR in Debug state. See Authentication signals on page 6-3
for details of SPIDEN and DBGEN.

Note
 It is possible to be in Debug state in a secure privileged mode with SPIDEN LOW, see Generation of Debug
events on page 2-20 and Changing the Authentication signals on page 6-3. More generally, it is possible to
be in Debug state when the current mode, security world or debug authentication signals indicate that, in
normal state, Debug events would be ignored. There are two situations where this can occur:

• Between a change in the debug authentication signals and the end of the next Instruction
Synchronization Barrier operation, exception entry, or exception return, it is it is UNPREDICTABLE
whether the behavior of Debug events that are generated will follow the old or the new authentication
signal settings.

• Because it is possible to change the authentication signals while in Debug state.

For example, the following sequence of events can occur:

1. The processor is in a secure privileged mode. SPIDEN and DBGEN are both set HIGH.

2. An instruction is prefetched that matches all the conditions for a breakpoint to occur.

3. That instruction is committed for execution.

4. At the same time, an external device writes to the peripheral that controls SPIDEN and DBGEN,
causing SPIDEN to be deasserted to LOW.

Table 4-4 Allowed updates to the CPSR in Debug state

Mode Secure world a DBGEN && SPIDEN
Update privileged
CPSR bits b

Modify M[4:0] to
Monitor Mode

User Yes 0 Update ignored UNPREDICTABLE c

Privileged Yes 0 Allowed Allowed

Any No 0 Allowedd UNPREDICTABLE c

Any X 1 Allowedd Allowed

a. The processor is in the Secure world if SCR[0] is 0, or the processor is in Monitor Mode.
b. This column does not apply to changing M[4:0] to Monitor Mode. Apart from this, the CPSR bits are defined in the

ARM Architecture Reference Manual.
c. The definition of UNPREDICTABLE in the ARM Architecture Reference Manual precludes this being a security hole. The

behavior of the processor must at least prevent this attempt to enter a mode with higher privilege than the modes and
states in which debug is permitted.

d. Regardless of the state of SPIDEN:
The F bit in the CPSR is read-only and cannot be updated in the Nonsecure world in Debug state if the FW bit in the
Secure Control Register (SCR) is set to 1.
The A bit in the CPSR is read-only and cannot be updated in the Nonsecure world in Debug state if the AW bit in the
SCR is set to 1.
4-14 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug State
5. SPIDEN changes, but the processor is already committed to entering Debug state.

6. The processor enters Debug state and is in a secure privileged mode, even though SPIDEN is LOW.

If this series of events occurs, the processor can change to other secure privileged modes (including
Monitor) and update privileged bits in the CPSR, because it is in a privileged mode. However, if the
processor leaves Secure world or moves to Secure User mode, it cannot return to a Secure privileged mode.

4.5.3 Changing the NS-bit

The NS-bit (NonSecure state bit) is located in the Secure Configuration Register (SCR), bit [0]. In Debug
state, the SCR can only be written to:

• in Secure User mode if DBGEN and SPIDEN are HIGH

• in a secure privileged mode (including Monitor Mode), regardless of the state of DBGEN and
SPIDEN.

This is the case even if invasive debug is allowed everywhere.

A write to the SCR in any other case is treated as an Undefined Instruction exception. See Exceptions in
Debug state on page 4-19 for details of how undefined exceptions are handled in Debug state.

This is a particular case of the rules for accessing CP15 registers described in Coprocessor instructions.

4.5.4 Coprocessor instructions

The processor accesses external coprocessors in a privileged mode as indicated by the CPSR mode bits.
Accesses to the internal coprocessors CP14 and CP15 are as follows:

• Instructions that access CP14 or CP15 registers that are permitted (not UNDEFINED) in User Mode
when not in Debug state, are always permitted in Debug state.

• Instructions that access CP14 debug registers (MCR and MRC instructions with opcode_1 set to b000)
that are permitted (not UNDEFINED) in privileged modes when not in Debug state are always permitted
in Debug state, regardless of debug permissions and the processor mode and security state.

• ARM Limited recommends that certain CP15 instructions required by a debugger to maintain
memory coherency are permitted in Debug state regardless of debug permissions and the processor
mode, see Recommended access to specific CP15 registers on page 7-3.

• Otherwise, if the debugger is permitted to write to the M[4:0] bits of the CPSR to change to a
privileged mode, then instructions that access CP14 or CP15 registers that are not permitted
(UNDEFINED) in User Mode when not in Debug state are nonetheless permitted in Debug state. There
is no requirement to change to a privileged mode first.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 4-15

Debug State
Note
 A particular case is when the processor does not implement Security Extensions. In this case the

M[4:0] bits of the CPSR can always be changed to a privileged mode and, therefore, the debugger is
able to access all CP14 and CP15 registers at all times.

• In every case, permissions to access CP15 registers while in Debug state are never greater than the
permissions granted to any privileged mode (except Monitor Mode) when in normal state in the
current Security world.

• Any attempt to perform accesses that are not permitted is treated as an undefined exception. See
Exceptions in Debug state on page 4-19 for details of how undefined exceptions are handled in Debug
state.

• On processors that implement Security Extensions, accesses to CP15 registers access the CP15
registers of the current world, Secure or Nonsecure. If the debugger requires access to Secure CP15
registers it must change to the Secure world, and if it requires access to the Nonsecure CP15 registers
it must change to the Nonsecure world.

This means, for example, that:

• if the processor is stopped in any nonsecure mode (including stopped in Nonsecure User mode), then
the processor has access to the Nonsecure world CP15 registers

• if the processor is stopped in a secure privileged mode other than Monitor Mode then the processor
has access to the Secure world CP15 registers

• if the processor is stopped in Secure User mode, and debug is permitted in secure privileged modes
(SPIDEN HIGH), the processor has access to the Secure world CP15 registers

• if the processor is stopped in Monitor Mode, the normal rules for accessing CP15 registers in Monitor
Mode apply.

If the CP15SDISABLE input to the core is HIGH, any operation affected by CP15SDISABLE in normal
state results in an Undefined Instruction exception in Debug state.

If the processor is stopped in the Nonsecure world, then the processor is restricted to access only:

• The Nonsecure world CP15 registers.

• Any Secure world CP15 register that are normally accessible in the Nonsecure world.

Note
 The rules for accessing Secure registers from the Nonsecure world while in normal state also apply

in Debug state. For example, some read/write Secure registers might be read-only when read from
the Nonsecure world.

• Those common CP15 registers that are configured to be accessible in the Nonsecure world.
4-16 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug State
If debug is permitted only in the Nonsecure world, the following conditions therefore apply:

• the debugger cannot access Secure CP15 registers

• the debugger cannot write those bits in Secure world registers that are read-only in the Nonsecure
world

• the debugger cannot access those common CP15 registers that have been configured not to be
accessible in the Nonsecure world.

These rules are summarized in Table 4-5.

Table 4-5 Allowed accesses to CP15 registers and CP14 debug registers in Debug state

Mode SCR[0]
DBGEN
&&
SPIDEN

Access to
CP14
debug
registers

Access to CP15 registers and other CP14 registers

Normally
accessible
in all modes

Normally accessible in
privileged modes only

Banked a
Restricted
Access a

Configurable
Access a

User 0 0 Allowed Secure b UNDEFINED c UNDEFINED c UNDEFINED c

User 0 1 Allowed Secure b Secure b Allowed Allowed

Monitor 0 X Allowed Secure b Secure b Allowed Allowed

Monitor 1 X Allowed Nonsecure b Nonsecure b Allowed Allowed

PxM d 0 X Allowed Secure b Secure b Allowed Allowed

User or
PxM d

1 X Allowed Nonsecure b Nonsecure e UNDEFINED e As configured e

a. These registers are defined in the ARM Architecture Reference Manual Security Extensions supplement.
b. The accesses are allowed and, if banked, return the register corresponding to the indicated security world. In all these

cases the debugger can access the SCR register to change to the other security world and access the other banked
register. This changes the processor state. After the state change, a different row of this table applies, and it might not
be possible to return to the original state.

c. It is impossible for the debugger to access these registers from this state. It does not have permissions to access them
directly from User Mode, and it cannot update CPSR M[4:0] field to promote to a privileged mode.

d. PxM means privileged modes, excluding Monitor Mode.
e. If both DBGEN and SPIDEN are HIGH the debugger can update the CPSR to change to Monitor Mode. This changes

the processor state, and a different row in this table then applies. This permits the debugger to access the Secure banked
registers, restricted access registers, and configurable access registers configured for no access in the Nonsecure world.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 4-17

Debug State
4.6 Behavior of non-invasive debug in Debug state

If any non-invasive debug features exit, their behavior in Debug state is broadly the same as when
non-invasive debug is not permitted. See Non-invasive debug authentication on page 8-4 for details.

Note
 When the Force Debug Acknowledge bit in the Debug Status and Control Register (DSCR) is set to 1 and
the processor is not in Debug state, the behavior of non-invasive debug features is IMPLEMENTATION
DEFINED. Non-invasive debug features behave either as if in Debug state or as if in normal state.
4-18 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug State
4.7 Exceptions in Debug state

Note
 The information in this section applies to v6.1 Debug and ARMv7 only. Refer to the ARM Architecture
Reference Manual for details of how exceptions are handled in v6 Debug.

Exceptions are handled as follows when the processor is in Debug state:

Reset The processor leaves Debug state.

Prefetch abort

This exception cannot occur because no instructions are prefetched in Debug state.

SVC The SVC instruction is UNPREDICTABLE.

SMC The SMC instruction is UNPREDICTABLE.

BKPT The BKPT instruction is UNPREDICTABLE.

Debug events Debug events are ignored in Debug state.

Interrupts Interrupt request and fast interrupt request exceptions are ignored in Debug state.

However, if the Interrupt Status Register (ISR) is implemented, bits [7:6] of the ISR
continue to reflect the values of the IRQ and FIQ inputs to the processor. See the ARM
Architecture Reference Manual Security Extensions supplement for details of the ISR.

Undefined When an Undefined Instruction exception occurs in Debug state, the core behaves as
follows:

• PC, CPSR, SPSR_und, R14_und, SCR[0], and DSCR[5:2] are unchanged.

• The processor remains in Debug state.

• DSCR[8], the sticky undefined bit, is set to 1.

See Sticky Undefined, bit [8] on page 10-13 for more information.

Precise Data Abort

When a precise Data Abort occurs in Debug state, the core behaves as follows:

• PC, CPSR, SPSR_abt, R14_abt, SCR[0], and DSCR[5:2] are unchanged.

• The processor remains in Debug state.

• DSCR[6], the sticky precise Data Abort bit, is set to 1.

• If the processor is not in Secure User mode, or if debug is permitted in secure
privileged modes, DFSR and DFAR are set. Otherwise it is IMPLEMENTATION
DEFINED whether DFSR and DFAR are updated.

• If the ISR is implemented, bit [8] of the ISR is not changed, because no abort is
pended.

See also Sticky Precise Abort, bit [6] on page 10-11.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 4-19

Debug State
Imprecise Data Abort

When an imprecise Data Abort occurs in Debug state, the core behaves as follows:

• The setting of the CPSR A-bit is ignored.

• PC, CPSR, SPSR_abt, R14_abt, SCR[0], and DSCR[5:2] are unaltered.

• The processor remains in Debug state.

• The imprecise Data Abort is not taken and DFSR remains unchanged.

• If DSCR[19] is 1:

— DSCR[7], the sticky imprecise Data Abort bit, is set to 1.

— This imprecise Data Abort is not acted upon on exit from Debug state.

— If the ISR is implemented, bit [8] of the ISR is not changed, because no abort
is pended.

• if DSCR[19] is 0:

— DSCR[7] is unchanged.

Note
 In v6.1 Debug, DSCR[7] is set to 1.

— This imprecise Data Abort is acted upon on exit from Debug state.

— If the imprecise Data Abort is an external imprecise abort, and the ISR is
implemented, bit [8] of the ISR is set to 1 indicating that an external abort is
pending.

• See also:

— Imprecise Data Aborts and entry to Debug state on page 4-4.

— Sticky Imprecise Abort, bit [7] on page 10-12.

— Imprecise Data Aborts discarded, bit [19] on page 10-16.
4-20 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug State
4.8 Leaving Debug state

The processor leaves Debug state when a Restart Request command is received.

In ARMv7, the Restart Request bit is set to 1 by writing to the Debug Run Control Register (DRCR). See
Restart Request, bit [1] on page 10-23 for details.

In ARMv6 using the recommended ARM Debug Interface v4.0, the Restart Request command is issued by
placing the RESTART instruction in the IR register and taking the Debug Access Port State Machine
(DAPSM) through the Run-Test/Idle state.

ARMv7 also supports the DBGRESTART and DBGRESTARTED signals in the external interface, that
can also be used to generate a restart request. This mechanism allows multiple cores to be restarted in
synchrony. See DBGRESTART and DBGRESTARTED on page 6-6.

In ARMv6, the DRCR register, DBGRESTART and DBGRESTARTED signals are not part of the
recommended external debug interface.

Note
 A number of flags in the Debug Status and Control Register (DSCR) must be set to 0 correctly before
leaving Debug state. The flags that must be set to 0 are:

• the sticky exception flags, DSCR[8:6]

• the Execute ARM Instruction Enable bit, DSCR[13].

In ARMv7 the sticky exception flags are cleared to 0 by writing 0 to the appropriate bits of the DRCR. This
can be combined with the Restart Request. See Clear Sticky Exceptions, bit [2] on page 10-24.

In addition, the debugger must not request the processor to leave Debug state until the Latched Instruction
Complete flag, InstrCompl_l, DSCR[24], is set to 1.

If the processor is signaled to leave Debug state without all of these flags set to the correct values the results
are UNPREDICTABLE.

On receipt of one of these two restart requests, the processor:

1. Clears the Core Restarted flag in the DSCR to 0 and drives the DBGRESTARTED signal LOW. See
Core Restarted, bit [1] on page 10-10 for details.

2. If the request was made using DBGRESTART, the core waits for DBGRESTART to be driven
LOW.

3. Leaves Debug state:

a. Clears the Core Halted flag in the DSCR. See Core Halted, bit [0] on page 10-10 for details.

b. Drives the DBGACK, DBGTRIGGER, and DBGCPUDONE signals LOW unless the
DbgAck bit in the DSCR is set to 1. See EDBGRQ, DBGTRIGGER, DBGCPUDONE and
DBGACK on page 6-4 and Force Debug Acknowledge (DbgAck), bit [10] on page 10-13 for
details.

c. Sets the Core Restarted flag in the DSCR to 1 and drives the DBGRESTARTED signal HIGH.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 4-21

Debug State
4. Stops ignoring debug events and starts executing instructions from the address held in the PC, and in
the mode and state indicated by the current value of the CPSR. The execution state bits of the CPSR
are honored, and the IT bits state machine is restarted (with the current value applying to the first
instruction restarted).

For more details of the handshake between DBGRESTART and DBGRESTARTED, see DBGRESTART
and DBGRESTARTED on page 6-6.
4-22 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Chapter 5
Debug Register Interfaces

This chapter contains the following sections:

• About the Debug Register Interface on page 5-2

• Reset and Power-down support on page 5-6

• Debug Register Map on page 5-13

• Synchronization of debug register updates on page 5-18

• Access permissions on page 5-20

• Coprocessor interface on page 5-24

• The Memory-mapped and recommended external debug interfaces on page 5-34.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 5-1

Debug Register Interfaces
5.1 About the Debug Register Interface

The ARMv7 Debug Architecture defines a set of debug registers. There are several possibilities for
implementing the Debug Register Interfaces used by software running on the core and an External Debugger
to access these registers.

Four Debug Register Interfaces are described by the Debug Architecture:

• A Baseline CP14 Interface. This is implemented by all processors.

• An external debug interface. This is IMPLEMENTATION DEFINED, but must be implemented.

ARMv6 and ARMv7 each define their own recommended external debug interfaces

The External Debugger connects to the external debug interface via a Debug Access Port (DAP), as
shown in Figure 5-1. For more information about the DAP and the recommended external debug
interface see the ARM Debug Interface v5 Architecture Specification.

• An Extended CP14 Interface. This is required in ARMv6 and is optional in ARMv7.

• A Memory-mapped interface. This is optional in ARMv7.

An ARMv7 implementation must implement at least one of the Extended CP14 or Memory-mapped
interfaces. An ARMv7 processor can implement all four interfaces, as shown in Figure 5-1.

Figure 5-1 ARMv7 system with four Debug Register Interfaces

If a Memory-mapped interface is implemented, the debug registers are accessible through loads or stores to
physical memory addresses. ARMv7 does not define how this Memory-mapped interface is implemented at
the processor or system level. Some of the debug registers can also be accessed through a coprocessor
interface.

���
�
(�����
����

%)���/
�
�

 �&
 ���

���������

���
�
���������

���
�
*�����������

�������	
*����'���
�'��
���/�	�3
4�(��

����	���
��+
�����+�+
 �56
*����'���

2�/��)0
2����+
*����'���

�������	
���
�
*����'���
5-2 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Interfaces
One valid ARMv7 configuration is where the ARM processor is not able to access these registers without
some level of system support. This means that loads or stores to this register map might go out on the system
bus. The system bus might or might not map them back to the same ARM processor on a slave port.

Such a system is shown in Figure 5-2. In this example, the external Debug Access Port has a system access
port such that system accesses to debug registers can be multiplexed with debugger accesses to the debug
interconnect. In this scenario the external debug interface and Memory-mapped interface might be identical.

Figure 5-2 ARMv7 system with system-wide debug interconnect

ARMv7 recommends that the combined Memory-mapped and external debug interface for accessing this
register map is an APBv3 slave port. Use of a bus standard and system-wide debugging allows this debug
subsystem to be extensible and to inter-operate with other debug components, such as the ROM Table shown
in Figure 5-2.

Note
 The ROM Table holds information about the debug system and its components, see the ARM Debug
Interface v5 Architecture Specification for more information.

An alternative implementation detects accesses to the debug registers within the processor itself, with the
Debug Access Port also contained in the processor. An example of this kind of system is shown in Figure 5-3
on page 5-4:

• The external debug interface consists of:

— the debug signals to connect the processor to the rest of the system

— the interface to the External Debugger itself, for example, a JTAG interface.

• The Debug Access Port is part of the external debug interface control logic.

�������	
���
�
(�����
����

%)���/
�
�

 �&
 ���

���������

���
�
���������

�$2
���	�

��������	�

���
�
*�����������

%)���/
������
����

�������	
*����'���
�'��
���/�	�3
4�(��

�������	
���
�
*����'���

����	���
 �56
*����'���
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 5-3

Debug Register Interfaces
• There is no system-wide access to the debug registers, meaning that devices other than the processor
core cannot access these registers directly. However, the registers are Memory-mapped, and the DAP
gives access to the debug registers.

Figure 5-3 ARMv7 system with private debug interconnect

In all ARMv6 implementations and ARMv7 implementations with the Extended CP14 Interface, the debug
registers can be accessed through a coprocessor interface in the processor core. In this case the external
Debug Access Port has a private interface to the debug registers, but the processor core uses only the CP14
debug interface. Figure 5-4 on page 5-5 shows an ARMv7 implementation of this type, where the
Memory-mapped interface is not implemented. The Debug Access Port private interface to the debug
registers can be implemented in various ways, including as a bus. As in the previous example, the external
debug interface consists of the debug control signals to connect the processor to the rest of the system and
the interface to the External Debugger, for example, a JTAG interface. However, in this case the Debug
Access Port is part of the external debug interface control logic.

���
�
(�����
����

%)���/
�
�

 �&
 ���

���������

���
�
���������

�$2
���	�
��������	�

���
�
*�����������

�������	
*����'���
�'��
���/�	�3
4�(��
5-4 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Interfaces
Figure 5-4 ARMv7 system with no Memory-mapped interface

An ARMv7 system can also include the system access port to allow other system components access to the
processor's Debug Registers, in which case the structure is more similar to that in Figure 5-2 on page 5-3
above, with a full CP14 interface implemented.

In all cases, the interface to the debug registers by an External Debugger is not defined by the debug
architecture. However, ARMv7 recommends a Debug Access Port interface that implements the ARM
Debug Interface v5, see the ARM Debug Interface v5 Architecture Specification. Although this interface is
not required by the architecture, it is required for compatibility with ARM RealView tools.

The ROM Table is required by ADIv5 if more than one debug component is accessed by the Debug Access
Port, but might be implemented when there is only one debug component. For more information see the
ARM Debug Interface v5 Architecture Specification.

���
�
(�����
����

%)���/
�
�

 �&
 ���

���������

���
�
���������

�$2
���	�
��������	�

���-���
���
�
������������

�������	
*����'���

�'��
���/�	�3
4�(��

����	���
��+

�����+�+
 �56
*����'���
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 5-5

Debug Register Interfaces
5.2 Reset and Power-down support

This section contains the following subsections:

• Power domains and debug

• Recommended reset scheme on page 5-12.

5.2.1 Power domains and debug

This section does not apply to ARMv6. ARMv6 only supports a single power domain.

This section discusses how, in ARMv7, certain registers can be split between different power domains to
implement support for debug over power-down and re-powering of the processor core.

In ARMv7, it is IMPLEMENTATION DEFINED whether a processor supports debug over power-down. If debug
over power-down is not supported, those features associated with debug over power-down are not
implemented and a single power domain is usually sufficient. An ARMv7 processor with a single power
domain cannot support debug over power-down.

This means that the number of power domains that an ARMv7 processor supports is IMPLEMENTATION
DEFINED. However, ARMv7 recommends that at least two are implemented, to provide support for debug
over power-down. The two power domains required for this are:

• a debug power domain

• a core power domain.

The debug power domain contains the external debug interface control logic and a subset of the debug
resources, determined by physical placement constraints and other considerations, that are explained later
in this chapter. Figure 5-5 on page 5-8 shows an example of such a system.

This arrangement is useful for debugging systems where several processors are connected to the same
SoC-wide debug bus and where one or more processors can power down at any time.

There are two advantages:

• The debug bus (for example, APBv3 or internal debug bus) is not made unavailable by a processor
powering down. If the debugger tries to access the powered-down processor, the external debug
interface can return a slave-generated error response instead of locking the system. And if the
debugger tries to access another processor, it can proceed normally.

• Some debug registers are unaffected by power-down. This means that a debugger can, for example,
identify the SoC while the processor is unavailable.

To have full debug support for power-down and re-powering of the core, the following registers and
individual bits need to be in the debug power domain:

ECR This is so the debugger can set the OS Unlock Catch bit to 1 any time and still break on
completion of the power-up sequence. If this register was in the core power domain, the
power-down event would clear this catch bit to 0. See OS Unlock Catch, bit [0] on
page 10-57 for details.
5-6 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Interfaces
DRCR[0] Halt Request bit

This is so the debugger can still request a Debug state entry even if the processor is powered
down. Also, if the debugger makes this request before powering-down but it cannot be
satisfied, for example because the processor is in Secure state but
(DBGEN AND SPIDEN) = 0, the request remains pending through power-down.

Note
 The core needs to be powered up to respond to a pending DRCR[0] halt request or

EDBGRQ.

OS Save/Restore registers

This is so the lock that the OS sets before saving the debug registers remains set through
power-down. See Operating-system save and restore registers on page 10-58 for details.

The Device Power-down & Reset registers

These registers have to be in the debug power domain because some of their functions are
used for debugging power-down events. See Device Power-Down and Reset Control
Register (PRCR) on page 10-25, Device Power-Down and Reset Status Register (PRSR) on
page 10-28.

Lock Access Register

This register has to be in the debug power domain because it is used to enable certain
accesses by external debug interface, and this functionality is required when debugging
power-down events.

The identification registers and the DIDR

The identification registers are at addresses 0xD00-0xDFC, and 0xFD0-0xFEC. See Management
registers on page 10-69 for details of these registers.

Debugger operation only requires the above registers and bits to be in the debug power domain. However,
to rationalize the split between the debug and core power domains in the register map, ARMv7 requires an
implementation that supports debug over power-down to have all bits of the following registers in the debug
power domain:

DIDR, ECR, and DRCR

No error response is returned on read or write accesses when the core is powered down.

OS Save/Restore registers, and Device Power-down and Reset registers

No error response returned on read or write accesses when the core is powered down.
However, accesses to the OS Lock Access Register (OSLAR) and OS Save and Restore
Register (OSSRR) are UNPREDICTABLE when the core is powered-down.

All of the management registers, except for the IMPLEMENTATION DEFINED integration registers

The management registers are the registers in the address range 0xD00-0xFFC. Requiring all
these registers to be in the debug power domain simplifies the decoding of register addresses
for the registers in the debug power domain.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 5-7

Debug Register Interfaces
Note
 The CP15 c0 register (0xD00-0xDFC) is also included in this category.

Note
 ARMv7 requires all bits of a register to be in the same power domain. Therefore, the requirement that
DRCR[0] is in the debug power domain means that the DRCR must be implemented in the debug power
domain.

It is IMPLEMENTATION DEFINED whether an IMPLEMENTATION DEFINED register is in the core or debug power
domain. In this context, the Integration Registers are IMPLEMENTATION DEFINED registers.

All other registers must be in the core power domain.

Figure 5-5 Recommendation for Core/Debug power domain split

The signals DBGNOPWRDWN and DBGPWRDUP shown in Figure 5-5 above form an interface
between the debug logic of the core in the debug power domain and the power controller such that:

• the External Debugger can request the Power Controller emulates power-down, simplifying the
requirements on software by sacrificing entirely realistic behavior

• the external debug interface knows when the core is powered down, and can communicate this
information to the External Debugger.

See DBGNOPWRDWN on page 6-7 and DBGPWRDUP on page 6-7 for details of these signals,

If the core power domain is not being powered down at the same time as the debug power domain then the
authentication signal DBGEN must be pulled LOW before power is removed from the debug power domain.
The behavior of the debug logic, and in particular the generation of Debug events, is UNPREDICTABLE when
the debug power domain is not powered if DBGEN is not LOW. Pulling DBGEN LOW ensures that Debug
events are ignored by the core.

��,��
��/���
��
�+��)

���������
 ���

(
��!��
���
�
���������

�*��3
� �3
�� �3
$%
%�-�
7
�������
���������3
�� �3
��%�3
��+
2�����/���
���������

���
�
*����'���

��,��
 �����		��

���
�
�++

 ���
�++

���������

���	
�����	
5-8 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Interfaces
Reads and writes of debug registers when the debug logic is powered down are UNPREDICTABLE.

The core-based performance monitors must be implemented in the core power domain, and must continue
to operate when debug power is removed.

The rest of this document assumes that two power domains are implemented as described in this section.
However, the features that are not required for an ARMv7 processor with a single power domain are marked
as SinglePower, with a description of the differences in behavior.

5.2.2 Operating System Save and Restore support

The Operating System Save and Restore Registers (OSSRR) enable an operating system to save the debug
registers before power-down and restore them when power is restored. This extends the support for debug
over power-down, and permits debug tools to work at a higher level of abstraction where there are no
power-down events.

In ARMv7:

• If an implementation supports debug over power-down, then it must support the OS Save and Restore
Registers. If the implementation does not support debug over power-down, these registers are
implemented as read-as-zero, write-ignored

• On a SinglePower implementation, it is IMPLEMENTATION DEFINED whether the OS Save and Restore
Registers are implemented.

In ARMv6, these registers are not defined.

Implementations that support debug over power down do so, in part, by providing support for an operating
system to save and restore the debug registers over a power-down. Mechanisms are also provided to allow
a debugger to detect that a processor has powered-down. See Permissions in relation to power-down on
page 5-22 for more information.

The save and restore mechanism is provided by three registers:

• OS Save and Restore Register (OSSRR), see OS Save and Restore Register (OSSRR) on page 10-60

• OS Lock Access Register (OSLAR), see OS Lock Access Register (OSLAR) on page 10-58

• OS Lock Status Register (OSLSR), see OS Lock Status Register (OSLSR) on page 10-59.

You can read the OSLSR to detect whether the OS Save and Restore mechanism is implemented.

The OSSRR works in conjunction with an internal sequence counter, so that a series of reads or writes of
this register return or restore the complete debug state of the processor that would be lost when the core is
powered down.

The number of accesses required, and the order and interpretation of the data are IMPLEMENTATION
DEFINED.

The internal sequence counter is reset to the beginning by writing the key, 0xC5ACCE55, to the OS Lock
Access Register, see OS Lock Access Register (OSLAR) on page 10-58. This write also resets the internal
sequence counter for the OS save or restore process.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 5-9

Debug Register Interfaces
The first access to the OSSRR following the reset of the internal sequence counter must be a read, which
returns the number of registers to be saved or restored. The result of issuing a write to the OSSRR following
a reset of the internal sequence counter is UNPREDICTABLE.

Note
 If the OS Save and Restore mechanism is not implemented, this read will return zero, correctly indicating
to software that no registers are to be saved or restored.

The subsequent accesses to the OSSRR must be either all reads or all writes. UNPREDICTABLE behavior
results if:

• reads and writes are mixed

• more accesses are performed than the number of registers to be saved or restored, as returned by first
read.

If the OS Lock is cleared before the full set of accesses has been completed, the sequence will be restarted
the next time the OS Lock is set.

If this register is read or written while the core is powered down or when the OS Lock Access Register is
not set to its locked value, the results are UNPREDICTABLE.

The complete debug state of the processor

If the core/debug power domain split described in Power domains and debug on page 5-6 is implemented
then the complete debug state of the processor consists of:

• The WFAR.

• The BVRs, BCRs, WVRs, WCRs, and VCR.

• the DSCCR and DSMCR.

• If DTRTXfull is set to 1 when the OS save is performed, then the value of DTRTX is guaranteed to
be saved and restored. If DTRRXfull is set to 1 when the OS save is performed, then the value of
DTRRX is guaranteed to be saved and restored. If either of these flags is not set to 1 when the OS
save is performed then the value of the corresponding register is UNPREDICTABLE after the OS restore
sequence.

Note
 The save and restore sequences must not stall reading the values of DTRTX and DTRRX, and must

not cause any instructions to be issued to the core, regardless of the settings of the DTR Access Mode
bits in the DSCR.

• The DTR status flags themselves:

— DTRTXfull, bit[29]

— DTRTXfull_l, bit[26]
5-10 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Interfaces
— DTRRXfull, bit[30]

— DTRRXfull_l, bit[27].

Note
 Unlike a read of EXT-DSCR, when the value of DSCR is saved through OSSRR the values of

DTRTXfull_l and DTRRXfull_l are not changed.

• All other writable flags in the DSCR:

— Method of Debug Entry (MOE), bits[5:2]

— Force Debug Acknowledge (DbgAck), bit[10]

— Interrupts Disable (IntDis), bit[11]

— User Mode Access to Comms Channel Enable, bit[12]

— Execute ARM Instruction Enable, bit[13]

— Halting Debug-mode Enable, bit[14]

— Monitor Debug-mode Enable, bit[15]

— EXT-DTR Access Mode, bits[21:20].

The save and restore sequence does not preserve:

• Any debug state that is not lost when the core is powered down. For example, if the split between the
core and debug power domains described in Power domains and debug on page 5-6 is implemented,
this includes the ECR, OSLSR, Device Power-down and Reset registers, and all of the management
registers.

• The sticky exception flags in the DSCR, and the contents of the ITR.

• The read-only processor status flags in the DSCR:

— Core halted, bit[0]

— Core restarted, bit[1]

— Secure Privileged Debug Disabled, bit[16]

— Secure Privileged Non-invasive Debug Disabled, bit[17]

— Nonsecure world status bit, bit[18]

— Discard imprecise abort, bit[19]

— Latched instruction complete, bit[24]

— Sticky pipeline advance, bit[25].

• The core-based performance counters registers. See Chapter 9 Core-based Performance Counters.

• The ETM registers.

The restore sequence always overwrites the debug registers with the values that were saved. In particular,
the values of the DTRTX and DTRRX registers, and of the DTR status flags DTRTXfull, DTRTXfull_l,
DTRRXfull, and DTRRXfull_l after the restore will be the saved values.

If there were valid values in the DTRTX or DTRRX registers immediately before the restore then those
values are lost.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 5-11

Debug Register Interfaces
5.2.3 Recommended reset scheme

The processor reset scheme is IMPLEMENTATION DEFINED.

 ARMv7 recommends the following four reset signals for an implementation that supports different core and
debug power domains:

nSYSPORESET This signal must be driven LOW on power-up of both the core and debug power
domains. It sets parts of the processor logic, including debug logic, to a known state.

nCOREPORESET If the core is powered down while the system is still powered up, this signal must be
driven LOW when the core is powered back up. It sets parts of the processor logic
in the core power domain to a known state. The debug registers that are placed on
core power are also initialized by this reset.

nRESET This signal is driven LOW to generate a soft reset, that is, when the system wants to
set the processor to a known state but the reset has nothing to do with any
power-down, for example a watchdog reset. It sets parts of the non-debug processor
logic to a known state. A debug session must be unaffected by this reset.

PRESETDBGn The debugger drives this signal LOW to set parts of the debug logic to a known state.
This signal must be driven LOW on power-up of the debug logic.

ARMv6 systems do not support multiple power domains and therefore a less flexible reset scheme is
recommended, consisting of only nSYSPORESET and nRESET. The debug logic is only reset on
nSYSPORESET and has no independent reset signal.

In the recommended ARMv7 reset scheme, a separate PRESETDBGn reset signal can be asserted at any
time, not just at power-up. This new signal has similar effects to nSYSPORESET, that is, it clears all debug
registers, unless otherwise noted by the register definition. See Chapter 6 Recommended External Debug
Interface for details.

For ARMv7 SinglePower systems, only nSYSPORESET, nRESET, and PRESETDBGn are
recommended.

Table 5-1 Recommended reset scheme, ARMv7

Debug power domain Core power domain

Signal Debug logic Debug logic Non-debug logic

nSYSPORESET Reset Reset Reset

nCOREPORESET Not reset Reset Reset

nRESET Not reset Not reset Reset

PRESETDBGn Reset Reset Not reset
5-12 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Interfaces
5.3 Debug Register Map

The complete list of debug registers is defined in Table 5-2. Full details of each register can be found in the
referenced section.

The number of BVR/BCR and WVR/WCR pairs is IMPLEMENTATION DEFINED, see Number of Breakpoint
Register Pairs implemented, bits [27:24] on page 10-5 and Number of Watchpoint Register Pairs (WRPs)
implemented, bits [31:28] on page 10-5. An implementation can have up to 16 of each. In Table 5-2, n refers
to the index of the BVR, BCR, WVR, or WCR register. If n is more than the number of breakpoint or
watchpoint pairs implemented, the register is Reserved.

The interpretation of the information in the Access column depends on the interface used to access the
register, coprocessor or Memory-mapped.

Registers 832-1023 are collectively known as the Management Registers.

Table 5-2 Debug register map

Register
number

Offset Access Versionsa Name and reference to description

0 0x000 RO All Debug ID Register (DIDR) on page 10-3.

N/Ab - RO v7 only Debug ROM Address Register (DRAR) on page 10-5.

N/Ab - RO v7 only Debug Self Address Offset Register (DSAR) on page 10-6.

1-5 - RAZ - Reserved.

6 0x018 RW v7 c Watchpoint Fault Address Register (WFAR) on page 10-22.

7 0x01C RW All Vector Catch Register (VCR) on page 10-54.

8 - RAZ - Reserved.

9 0x024 RW v7 only Event Catch Register (ECR) on page 10-57.

10 0x028 RW v6.1, v7 Debug State Cache Control Register (DSCCR) on
page 10-62.

11 0x02C RW v6.1, v7 Debug State MMU Control Register (DSMCR) on
page 10-65.

12-31 - RAZ - Reserved.

32 0x080 RW v7 d DTRRX external viewe. See Host to Target Data Transfer
Register (DTRRX) on page 10-32.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 5-13

Debug Register Interfaces
33 0x084 W v7 d Instruction Transfer Register (ITR) on page 10-37.

UNP v7 d Program Counter Sampling Register (PSCR) on
page 10-31.

34 0x088 RW v7 d DSCR external viewe. See Debug Status and Control
Register (DSCR) on page 10-8.

35 0x08C RW v7 d DTRTX external viewe. See Target to Host Data Transfer
Register (DTRTX) on page 10-35.

36 0x090 RAZ/WO v7 only Debug Run Control Register (DRCR) on page 10-23.

37-63 - RAZ - Reserved.

64-79 0x100-0x13C RW/- All Breakpoint Value Registers (BVRn) on page 10-39 /
Reserved.

80-95 0x140-0x17C RW/- All Breakpoint Control Registers (BCRn) on page 10-40 /
Reserved.

96-111 0x180-0x1BC RW/- All Watchpoint Value Registers (WVRn) on page 10-48 /
Reserved.

112-127 0x1C0-0x1FC RW/- All Watchpoint Control Registers (WCRn) on page 10-49 /
Reserved.

128-191 - RAZ - Reserved.

192 0x300 RAZ/WO v7 only OS Lock Access Register (OSLAR) on page 10-58.

193 0x304 RO v7 only OS Lock Status Register (OSLSR) on page 10-59.

194 0x308 RW v7 only OS Save and Restore Register (OSSRR) on page 10-60.

195 - RAZ - Reserved.

196 0x310 RW v7 only Device Power-Down and Reset Control Register (PRCR)
on page 10-25.

197 0x314 RW v7 only Device Power-Down and Reset Status Register (PRSR) on
page 10-28.

198-511 - RAZ - Reserved.

512-575 0x800-0x8FC - v7 only IMPLEMENTATION DEFINED.

Table 5-2 Debug register map (continued)

Register
number

Offset Access Versionsa Name and reference to description
5-14 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Interfaces
576-831 - RAZ - Reserved.

832-895 0xD00-0xDFC RO v7 only Processor Identification Registers on page 10-69.

896-927 - RAZ - Reserved.

928-959 0xE80-0xEFC R/RW v7 only IMPLEMENTATION DEFINED Integration registers. See the
CoreSight Architecture Specification.

960 0xF00 RW v7 only Integration Mode Control Register (ITCTRL) on
page 10-70.

961-999 0xF04- 0xF9C - v7 only Reserved for Management Registers expansion.

1000 0xFA0 RW v7 only Claim Tag Set Register (CLAIMSET) on page 10-71.

1001 0xFA4 RW v7 only Claim Tag Clear Register (CLAIMCLR) on page 10-71.

1002-1003 - RAZ - Reserved.

1004 0xFB0 RAZ/W v7 only Lock Access Register (LAR) on page 10-72.

1005 0xFB4 RO v7 only Lock Status Register (LSR) on page 10-73.

1006 0xFB8 RO v7 only Authentication Status Register (AUTHSTATUS) on
page 10-74.

1007-1009 - RAZ - Reserved.

1010 0xFC8 RAZ v7 only Device Identifier (DEVID). Reserved.

1011 0xFCC RO v7 only Device Type Register (DEVTYPE) on page 10-75.

1012-1019 0xFD0-0xFEC RO v7 only Peripheral Identification Registers (PERIPHERALID) on
page 10-76.

1020-1023 0xFF0-0xFFC RO v7 only Component Identification Registers (COMPONENTID)
on page 10-79.

a. An entry of All in the Versions column indicates that the register is implemented in v6 Debug, v6.1 Debug, and ARMv7.
b. Not applicable. These registers are only implemented through the Baseline CP14 Interface and do not have register

numbers or offsets.
c. The method of accessing the WFAR register is different in v6 Debug, v6.1 Debug and ARMv7. See Watchpoint Fault

Address Register (WFAR) on page 10-22 for details.
d. In ARMv6 these registers are recommended as part of the external debug interface, and are not implemented through

the ARMv6 Extended CP14 Interface. In ARMv7 these registers are required.
e. Internal views of the DTRRX, DTRTX, and DSCR are implemented through the Baseline CP14 Interface. This is

explained in Internal and external views of DSCR and DTR on page 5-16.

Table 5-2 Debug register map (continued)

Register
number

Offset Access Versionsa Name and reference to description
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 5-15

Debug Register Interfaces
5.3.1 Internal and external views of DSCR and DTR

Each of the three registers DSCR, DTRTX and DTRRX have two views denoted by the INT- and EXT-
prefixes. The differences between these aliases relate to the handling of the Debug Communications
Channel (DCC), and in particular the DTRTXfull and DTRRXfull status flags. The nomenclature internal
and external derives from the intended usage model.

Accesses to INT-DSCR, INT-DTRRX or INT-DTRTX are always made through the Baseline CP14
Interface described in Baseline CP14 interface on page 5-24. INT-DSCR is read only in ARMv7

Accesses to EXT-DSCR, EXT-DTRRX or EXT-DTRTX can be made through:

• the Extended CP14 interface, if implemented

• the Memory-mapped interface, if implemented

• the external debug interface.

However, if at any given time you attempt to access the EXT-DSCR, EXT-DTRRX and EXT-DTRTX
registers through more than one interface the behavior is UNPREDICTABLE. If an implementation provides a
single port to handle external debug interface and the Memory-mapped interface accesses, that port might
serialize accesses to the registers from the two interfaces. However, the effects of reads and writes to these
registers are such that the behavior observed from either interface will appear as UNPREDICTABLE.
5-16 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Interfaces
Figure 5-6 Internal (INT-) and External (EXT-) views of DSCR, DTRTX and DTRRX, for ARMv7

Note
 INT-DSCR and EXT-DSCR, INT-DTRRX and EXT-DTRRX, and INT-DTRTX and EXT-DTRTX
respectively only provide different views onto the same underlying registers, DSCR, DTRRX and DTRTX.

See also Host to Target Data Transfer Register (DTRRX) on page 10-32 and Target to Host Data Transfer
Register (DTRTX) on page 10-35.

5.3.2 Banking of debug registers

On processors that implement Security Extensions, no debug registers are banked between the Secure and
Nonsecure worlds.

*8�0�% �
��$�

*8�0����9
�"$� �9�0����9
��"�

�9�0�% �
��"�

����9

����9

 ����+
��
���+�

�% �

����9'
		

����9'
		

����9'
		:	

����9'
		:	

����9'
		

����9'
		:	

*8�0����9
��$� �9�0����9
��"�

�9
���+
;����

5
���
,������

�9
"����
;����

<
���
���+�� ����9'
		

����9'
		:	

*8�0
-��,� �9�0
-��,�
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 5-17

Debug Register Interfaces
5.4 Synchronization of debug register updates

Debug registers can be programmed by software running on the processor through the CP14 coprocessor,
and also, optionally in ARMv7, through the Memory-mapped interface.

• Where debug registers are programmed through a CP14 interface they are updated immediately
following the CP14 instruction that performs the update.

Any CP14 register changes caused by instructions that appears in program order after an explicit
memory operation are guaranteed not to alter the effect on Debug event generation of that memory
operation. For example, a CP14 instruction that enables debug is guaranteed not to cause the previous
instruction to trigger a watchpoint.

• Where debug registers are programmed through the Memory-mapped interface, writes to the debug
registers from the processor must be followed by a Data Synchronization Barrier (DSB) operation to
ensure they have been updated.

The region of memory occupied by the debug registers must not be marked as Normal, as the Memory
Order Model allows accesses to such memory locations that are not appropriate for debug register
accesses, for example repeated, speculative, or cached accesses. Reads and writes of debug registers
may have side-effects.

If the region of memory occupied by the debug registers is marked as Device, then writes to the debug
registers must normally be preceded by a Data Memory Barrier (DMB) operation to ensure that
previous memory accesses complete before the write to the debug register takes place. This is
particularly important where the write has effects on the generation of Watchpoint Debug events.

If the region of memory occupied by the debug registers is marked as Strongly Ordered, the DMB is
not required.

The effect of a debug register write, for example the enabling of a Debug event, is guaranteed to be
achieved only from the point when the write access completes. Therefore you must use a DSB
operation to ensure that a change in debug configuration has been made.

All writes to debug registers that are explicitly ordered after any memory operations are guaranteed
not to affect those preceding memory operations. When a debug register write is issued after a
particular memory access, the debug register write is said to be explicitly ordered after the memory
access if either:

— a DMB or DSB operation is performed between the memory accesses and the debug register
writes

— the debug register write is to Strongly-Ordered memory.

See the ARM Architecture Reference Manual for details of the relative ordering of writes.

See also Generation of Debug events on page 2-20.

All writes to debug registers, whether a CP14 write or a memory write to Device or Strongly Ordered
memory followed by a DSB, are guaranteed to be visible to instructions and memory operations that appear
in program order after the write only after the execution of an Instruction Synchronization Barrier (ISB)
operation, the taking of an exception, or the return from an exception.
5-18 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Interfaces
Note
 This applies equally to writes affecting the generation of Watchpoint Debug events as it does those affecting
the generation of other Debug events. See Generation of Debug events on page 2-20.

The synchronization between register updates made through the external debug interface and updates made
by software running on the processor is IMPLEMENTATION DEFINED. However, if the external debug interface
is implemented through the same port as the Memory-mapped interface, then such updates have the same
properties as updates made through the Memory-mapped interface.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 5-19

Debug Register Interfaces
5.5 Access permissions

This section describes the basic concepts governing the access permissions for debug registers on ARMv7
processors. The actual rules for each interface, and for ARMv6 implementations, are given in the section
describing the register interface:

• CP14 debug registers access permissions on page 5-28

• Access permissions for External Debug and Memory-mapped interfaces on page 5-37

The restrictions for accessing the registers can be divided into three categories:

Privilege of the access

Accesses from processors in the system to the memory-mapped registers, and accesses to
coprocessor registers, may be required to be privileged.

Locks You can lock out different parts of the register map so they cannot be accessed.

Power-down Access to registers inside the core power domain is not possible when the core is powered
down.

When permission to access a register is not granted, an error is returned. The nature of this error depends on
the interface:

• For coprocessor interfaces, the error is an Undefined Instruction exception

• For the Memory-mapped interface, the error is a slave-generated error response, for example
PSLVERRDBG. The error is normally taken as an Abort Exception.

• For the external debug interface, the error is signaled to the debugger by the Debug Access Port.

The behavior of the Memory-mapped or external debug interface is not affected by the core being held in
soft reset, whether through the external nRESET signal or through the Device Power-down and Reset
Control Register (PRCR).

The Hold Internal Reset control bit of the PRCR allows an external debugger to keep the core in soft reset
while programming other debug registers. See Device Power-Down and Reset Control Register (PRCR) on
page 10-25 for details.

5.5.1 Permissions in relation to the privilege of the access

The majority of debug registers can only be accessed by privileged code. The exception to this general
requirement is a small subset of the registers, defined in Baseline CP14 interface on page 5-24. Using the
coprocessor interface, privileged code can disable User Mode access to this subset of registers.

For the Memory-mapped interface, it is IMPLEMENTATION DEFINED whether restricting debug register access
to privileged code is implemented by the processor or must be implemented by the system designer at the
system level. The behavior of the disallowed access is IMPLEMENTATION DEFINED. It can either be ignored
or aborted.
5-20 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Interfaces
Note
 • The recommended Memory-mapped interface port is based on the AMBA Advanced Peripheral Bus

(APB), which does not support signaling of access privileges. Therefore in this case the system must
prevent the access.

• This access restriction applies to the privilege of the initiator of the access, not the current mode of
the processor being accessed. The privilege of accesses made by a Debug Access Port is
IMPLEMENTATION DEFINED.

The system designer can impose additional restrictions. However, ARM Limited strongly discourages
restrictions such as only allowing secure privileged accesses, and will not support such restrictions in its tool
chain.

5.5.2 Permissions in relation to locks

The registers can be locked by a Debugger or by an operating system so that access to debug registers is
restricted.

There are three locks, although some of these locks only apply to certain interfaces:

Software Lock

The Software Lock only applies to accesses made through the Memory-mapped interface.

By default, software is locked out so the debug registers settings are not modified. A debug
monitor must leave this lock set when not accessing the debug registers, to reduce the chance
of erratic code modifying its settings. When this lock is set, writes to these registers from
the Memory-mapped interface are ignored. See Lock Access Register (LAR) on page 10-72
and Lock Status Register (LSR) on page 10-73 for details on how to set and check this lock.

OS Lock An OS can set this lock on the debug registers so that the debug registers cannot be read or
written while the OS is in the middle of a save or restore sequence. When this lock is set,
accesses to some registers return errors. Only the OS Save and Restore Registers can be
accessed safely.

Note
 An External Debugger can clear this lock at any time, even if an OS save or restore operation

is in progress.

See OS Lock Access Register (OSLAR) on page 10-58 and OS Lock Status Register (OSLSR)
on page 10-59 for details on how to set or check the status of this lock.

Debug Software Enable

A debugger can lock out the processor and other potential debug bus masters from the debug
bus entirely, guaranteeing that the debug registers cannot be modified by a debug monitor
or other software running on the system. The Debug Software Enable is a required function
of the Debug Access Port, and is implemented as part of the ARM Debug Interface v5.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 5-21

Debug Register Interfaces
ARMv7 processors that implement the Extended CP14 Interface also require a
DBGSWENABLE input so that the CP14 interface can be locked out. See
DBGSWENABLE on page 6-8.

Note
 The states of the software lock and the OS lock are held in the debug power domain, and the Debug Software
Enable is in the Debug Access Port. Therefore, these locks are unaffected by the core powering down. Also,
all of these locks are set to their reset values only on reset of the debug power domain, that is. on a
PRESETDBGn or nSYSPORESET reset.

On SinglePower systems, these locks are lost over a power-down.

5.5.3 Permissions in relation to power-down

Accesses cannot be made through the coprocessor interface when the core is powered-down.

Access to registers inside the core power domain is not possible when the core is powered down, and
accesses return a slave-generated error response such as PSLVERRDBG. The Memory-mapped and
external debug interfaces ignore accesses to powered-down registers. This means that reads return an
UNPREDICTABLE value and writes do not have any effect.

Note
 Returning this error response, rather than simply ignoring writes, means that the debugger and the debug
monitor detect the debug session interruption as soon as it occurs. This makes re-starting the session, after
power-up, considerably easier.

When the processor powers down, the Sticky Power-down bit , bit [1] of the Device Power-down and Reset
Status Register, is set to 1. This bit remains set to 1 until the debugger clears it by reading this register after
the processor has powered up. If the register is read whilst the processor is still powered down, the bit
remains set to 1. When this bit is 1 the Memory-mapped interface behavior is as if the core is powered down,
meaning it ignores accesses to registers inside the core power domain and returns a slave-generated error
response.

This behavior is useful because when the external debugger tries to access a register whose contents might
have been lost by a power-down, it gets the same response regardless of whether the core is currently
powered down or has powered back up. This means that, if the external debugger does not access the
external debug interface during the window where the core is powered down, the processor still reports the
occurrence of the power-down event.

Access to all debug registers is not possible if the debug logic is powered down. In this situation, the system
or Debug Access Port (DAP), as applicable, must ignore or abort the accesses.

Accesses through the coprocessor interface are UNPREDICTABLE when debug logic is powered down.
5-22 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Interfaces
On a SinglePower implementations, the system must return an error response to all accesses made through
the Memory-mapped or external debug interface while the processor is powered-down. The tables in the
section Permissions summary for SinglePower (debug and core in single power domain) on page 5-40
summarize the required behavior in this case.

5.5.4 Access to Reserved and IMPLEMENTATION DEFINED locations

It is UNPREDICTABLE whether or not the processor returns an error response if an access is made to a
Reserved register, other than a Reserved register in the management registers space (0xD00-0xFFC), while any
of the following are true:

• the processor is powered-down

• the sticky powered-down flag is set to 1

• either the OS Lock or the Software Lock is set.

Note
 • There are no Reserved registers in the Baseline CP14 Interface.

• Reserved registers in the management register space, 0xD00-0xFFC, always Read-as-zero and ignore
writes (WI), even if one or more of the listed conditions applies. Accesses to these registers never
return an error response.

The response of the processor to accesses to IMPLEMENTATION DEFINED registers under these conditions is
IMPLEMENTATION DEFINED. This also applies to accesses to the integration registers.

When none of these conditions apply, that is during normal operation, reads from Reserved locations return
zero and writes to these locations are ignored.

Unused registers in the IMPLEMENTATION DEFINED spaces (0x800-0x8FC and 0xE80-0xEFC) must have the
same behavior as that described for Reserved locations.

Note
 Unimplemented breakpoint and watchpoint registers are Reserved locations.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 5-23

Debug Register Interfaces
5.6 Coprocessor interface

This section contains the following subsections:

• Baseline CP14 interface

• Extended CP14 interface on page 5-25

• CP14 debug registers access permissions on page 5-28.

5.6.1 Baseline CP14 interface

Table 5-3, lists the set of valid CP14 debug instructions for accessing the debug registers.

Additional MRC and MCR instructions with cp_num = b1110 and opcode_1 = b000 not listed below are defined
in Extended CP14 interface on page 5-25. All other such instructions are Reserved for use by the Debug
Architecture. The behavior of Reserved instructions is defined in CP14 debug registers access permissions
on page 5-28.

All MRC and MCR instructions with cp_num = b1110 and opcode_1 = b001 are used by the trace extension;
other values of opcode_1 are not used by the Debug Architecture.

All LDC and STC instructions with cp_num =b1110 that are not listed below are Reserved for use by the Debug
Architecture and are currently UNDEFINED. All CDP, MRC2, MCR2, LDC2, STC2, LDCL, STCL, LDC2L, and STC2L
instructions with cp_num = b1110 are UNDEFINED.

Instructions that access registers that are only available in ARMv7 are UNDEFINED in earlier versions of the
Debug Architecture. For example, MRC p14,0,Rd,c1,c0,0 (read from DRAR) is UNDEFINED in ARMv6, but
is allowed in ARMv7.

Rd refers to any of the general purpose registers R0-R14. Use of R15 (PC) is UNPREDICTABLE except where
stated.

Table 5-3 Baseline CP14 debug instructions

Instruction Mnemonic Version Name and reference to description

MRC p14,0,Rd,c0,c0,0 DIDR All Debug ID Register (DIDR) on page 10-3

MRC p14,0,Rd,c1,c0,0 DRAR v7 only Debug ROM Address Register (DRAR) on page 10-5

MRC p14,0,Rd,c2,c0,0 DSAR v7 only Debug Self Address Offset Register (DSAR) on page 10-6

MRC p14,0,Rd,c0,c5,0 INT-DTRRX Alla DTRRX internal view. See Host to Target Data Transfer
Register (DTRRX) on page 10-32STC p14,c5,<addr_mode>

MCR p14,0,Rd,c0,c5,0 INT-DTRTX Alla DTRTX internal view. See Target to Host Data Transfer
Register (DTRTX) on page 10-35LDC p14,c5,<addr_mode>

MRC p14,0,Rd,c0,c1,0 INT-DSCR Alla DSCR internal view. See Debug Status and Control Register
(DSCR) on page 10-8MRC p14,0,PC,c0,c1,0 b

a. See the register description for more information.
b. DSCR[31:28] are transferred to the CPSR flags. See the ARM Architecture Reference Manual for details.
5-24 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Interfaces
5.6.2 Extended CP14 interface

In ARMv6 all debug registers can be accessed through CP14, and implementations must provide an external
access mechanism for debuggers, the details of which are not covered in the architecture. See ARMv6 Debug
Architecture specifics on page 5-27.

The Extended CP14 Interface to the debug registers is optional in ARMv7.

The Baseline CP14 Interface is sufficient to boot-strap access to the register file, and allows software to
distinguish between the Extended CP14 and Memory-mapped interfaces.

See ARMv7 Debug Architecture specifics on page 5-26.

If the Extended CP14 Interface is not implemented, the Memory-mapped interface must be implemented.
See section The Memory-mapped and recommended external debug interfaces on page 5-34.

This section does not apply if the Extended CP14 Interface is not implemented.

The full list of debug registers is given in Table 5-2 on page 5-13 and is not repeated here.

With some exceptions, listed in ARMv7 Debug Architecture specifics on page 5-26 and ARMv6 Debug
Architecture specifics on page 5-27, the debug registers, including those in the IMPLEMENTATION DEFINED
space, are mapped to the following coprocessor instructions, with CRn <= b0111 and the mapping shown
in Figure 5-7:

• MRC p14,0,Rd,CRn,CRm,opcode_2 ; Read

• MCR p14,0,Rd,CRn,CRm,opcode_2 ; Write

Figure 5-7 Mapping from register number to CP14 instruction

For example, the instruction:

MRC p14,0,Rd,c0,c0,5

reads the value of BCR0, that is register 80, b000 101 000.

���

��	
�

=��	+

��������
�
/���>?1<@
�<05<AB�

 ��>B1<@ �/>B1<@����+�:A>A1<@

5< ? <5AB6CDEF

<

ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 5-25

Debug Register Interfaces
ARMv7 Debug Architecture specifics

Table 5-4 lists the exceptions in the ARMv7 Extended CP14 Interface to this canonical mapping. The
Instruction Transfer Register (ITR), PC Sample Register (PCSR) and Lock Access/Status Registers are not
for the use of software running on the target. In addition, the Identification Registers in the Management
Register space are not canonically mapped as they can be read through CP15.

Accesses to EXT-DSCR, EXT-DTRRX and EXT-DTRTX (external views) can be made through the
canonical mapping of these registers, in addition to the instructions to access INT-DSCR, INT-DTRRX and
INT-DTRTX (internal views) in the Baseline CP14 Interface. See Internal and external views of DSCR and
DTR on page 5-16.

Table 5-4 Exceptions in the canonical mapping, ARMv7 with Extended CP14 Interface

Register
number

Name Canonical mapping Note

33 Program Counter Sampling
Register

MRC p14,0,Rd,c0,c1,2 Returns an UNPREDICTABLE value in Rd.

Instruction Transfer Register MCR p14,0,Rd,c0,c1,2 Has UNPREDICTABLE behavior

832-895 Processor Identification
Registers

MRC p14,0,Rd,c6,c0,4 to
MRC p14,0,Rd,c6,c15,7

Returns an UNPREDICTABLE value in Rd.
Use the CP15 identification registers.

1004-1005 Lock Access and Lock Status
Registers

MRC p14,0,Rd,c7,c12,6 Returns zero to Rd.

MRC p14,0,Rd,c7,c13,6 No lock is required on coprocessor
accesses.

MCR p14,0,Rd,c7,c12,6 These instructions are no-ops.

MCR p14,0,Rd,c7,c13,6 No lock is required on coprocessor
accesses.
5-26 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Interfaces
ARMv6 Debug Architecture specifics

Table 5-5 lists the exceptions in the ARMv6 Extended CP14 Interface to this canonical mapping. All the
instructions listed are UNDEFINED in ARMv6.

See also footnote d on Table 5-2 on page 5-13, regarding registers 32, 33, 34 and 35.

No registers in ARMv6 map to CP14 instructions with CRn != b0000.

In addition, an instruction for making an internal access write to the DSCR is defined in Table 5-6.

Table 5-5 ARMv6 exceptions in the canonical mapping

Register
number

Name
Canonical mapping,
all UNDEFINED

32 Host to Target Data Transfer Register MRC p14,0,Rd,c0,c0,2

MCR p14,0,Rd,c0,c0,2

33 Program Counter Sampling Register MRC p14,0,Rd,c0,c1,2

Instruction Transfer Register MCR p14,0,Rd,c0,c1,2

34 Debug Status and Control Register MRC p14,0,Rd,c0,c2,2

MCR p14,0,Rd,c0,c2,2

35 Target to Host Data Transfer Register MRC p14,0,Rd,c0,c3,2

MCR p14,0,Rd,c0,c3,2

Table 5-6 Additional ARMv6 CP14 debug instruction

Instruction Mnemonic Name

MCR p14,0,Rd,c0,c1,0 INT-DSCR Debug Status and Control Register (DSCR) on page 10-8
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 5-27

Debug Register Interfaces
5.6.3 CP14 debug registers access permissions

By default, certain CP14 debug registers can be accessed from User Mode. However, the processor can be
programmed to disallow User Mode access to these CP14 registers. See User Mode access to Comms
Channel disable, bit [12] on page 10-14 for details.

All CP14 debug registers can be accessed if the processor is in Debug state.

Note
 When the software lock (LAR) is implemented for a Memory-mapped interface, it does not affect the
behavior of CP14 instructions.

Baseline CP14 debug registers access permissions

Access to the baseline CP14 registers is governed only by the processor mode, Debug state and the setting
of DSCR[12], as shown in Table 5-7.

Note
 The recommended DbgSwEnable control in the Debug Access Port has no effect on the baseline CP14
instructions. See DBGSWENABLE on page 6-8.

See also Access permissions on page 5-20 for more information on access permissions and restrictions.
Instructions that access the debug registers are UNPREDICTABLE if the debug power domain is powered
down.

Table 5-7 Access to baseline CP14 debug registers

Conditions
Baseline CP14 instructionsa

a. Read DIDR, DSAR, DRAR, INT-DSCR, read/write INT-DTR.

Debug state Processor mode DSCR[12] b

b. DCC user accesses disable.

Yes X X Proceed

No User 0 Proceed

No User 1 UNDEFINED

No Privileged X Proceed
5-28 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Interfaces
ARMv7 CP14 debug registers access permissions, Extended CP14 Interface not
implemented

Table 5-8 summarizes the complete set of CP14 instructions if the Extended CP14 Interface is not
implemented, that is, only the Baseline CP14 Interface is implemented.

Table 5-8 Access to unallocated CP14 debug registers, ARMv7 with no Extended CP14
Interface

Conditions
Unallocated MCR and MRC instructions with
cp_num == b1110 and opcode_1 == b000

Debug state Processor mode CRn <= b0111 CRn >= b1000

Yes X UNPREDICTABLE UNPREDICTABLE

No User UNDEFINED UNDEFINED

No Privileged UNPREDICTABLE UNPREDICTABLE
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 5-29

Debug Register Interfaces
ARMv7 CP14 debug registers access permissions, Extended CP14 Interface
implemented

If the Extended CP14 Interface is implemented, the DBGSWENABLE input can be used to disallow access
to registers other than the DIDR, DSCR, DTR, DSAR, DRAR, OSLAR, OSLSR and OSSRR. For more
information see DBGSWENABLE on page 6-8.

Table 5-9 summarizes the access permissions to the CP14 debug registers, and Table 5-10 on
page 5-31gives additional information about access to the Extended CP14 Interface debug registers.

Table 5-9 Access to CP14 debug registers, ARMv7 with Extended CP14 Interface

Conditions
Baseline
CP14
instructionsa

Other CP14 debug instructionsb

Debug
state

Processor
mode Enablec DSCR[12]d CRn <= b0111e CRn >= b1000

Yes X 0 X Proceed UNDEFINED UNPREDICTABLE

Yes X 1 X Proceed See Table 5-10 on
page 5-31

UNPREDICTABLE

No User X 0 Proceed UNDEFINED UNDEFINED

No User X 1 UNDEFINED UNDEFINED UNDEFINED

No Privileged 0 X Proceed UNDEFINEDf UNPREDICTABLE

No Privileged 1 X Proceed See Table 5-10 on
page 5-31

UNPREDICTABLE

a. Read accesses to DIDR, DSAR, DRAR, and INT-DSCR, read/write accesses to INT-DTR.
b. All other MRC and MCR instructions with cp_num == b1110 and opcode_1 == b000
c. DBGSWENABLE signal driven HIGH to enable debug access.
d. DCC User accesses disable
e. Where indicated in this column, see Table 5-10 on page 5-31 for a more detailed description of access permissions to

the other registers defined by the debug architecture. In addition, there is more information about access to Reserved
and IMPLEMENTATION DEFINED registers in Access to Reserved and implementation defined locations on page 5-23.

f. Except for the OS Save and Restore Registers, OSLAR, OSLSR, and OSSRR. These registers are always accessible
through the Extended CP14 Interface, regardless of the setting of DBGSWENABLE. Access to these registers must
always be provided, even on implementations that do not support debug over power down. If the implementation does
not support debug over power down these registers are RAZ.
5-30 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Interfaces
The behavior of Extended CP14 Interface MRC and MCR instructions in ARMv7 also depends on access type
of the register, as shown in Table 5-2 on page 5-13. All CP14 debug instructions are defined, that is, all
instructions with opcode_1 = b000 and CRn <= b0111. The behavior is summarized in Table 5-11.

For example, the following instruction reads the value of WVR7, register 103, if at least 8 watchpoints are
implemented, and is a no-op otherwise:

MRC p14,0,Rd,c0,c7,6

Table 5-10 Access to Extended CP14 Interface debug registers

Conditions Registers:

Sticky
Power-
down set

OS Lock
Set

ECR, DRCR,
OSLARa, OSLSRa,
PRCR, PRSR

OSSRRa Other
Debugb

All
Reservedc

Other
mgmtd

No No OK UNPe OK OK, RAZ OK

No Yes OK OK UNDEFINED UNPe OK

Yes X OK UNPe UNDEFINED UNPe OK

a. If the OS Save and Restore Registers are not implemented, these registers addresses behave as Reserved locations.
b. Registers in the range 0x000 to 0x1FC, except for the ECR, DRCR, the registers defined as baseline registers, and

Reserved registers. See Footnote a to Table 5-9 on page 5-30 for details of the baseline registers.
c. See also Access to Reserved and implementation defined locations on page 5-23.
d. Other management registers. This means registers in the range 0xD00 to 0xFFC, except for the IMPLEMENTATION

DEFINED locations, see Access to Reserved and implementation defined locations on page 5-23.
e. UNPREDICTABLE.

Table 5-11 Behavior of CP14 MRC and MCR instructions, ARMv7 with Extended CP14 Interface

Access MCR p14,0,Rd,CRn,CRm,op2 MRC p14,0,Rd,CRn,CRm,op2

RAZ (Reserved) Ignored (No-op) Returns zero in Rd

RO Ignored (No-op) Returns register value in Rd

RAZ / WO Writes value in Rd to register Returns zero in Rd

RW Writes value in Rd to register Returns register value in Rd
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 5-31

Debug Register Interfaces
Note
 The access permissions in Table 5-9 on page 5-30 and Table 5-10 on page 5-31 have precedence over the
behavior in Table 5-11 on page 5-31. For example, even if at least 8 watchpoints are implemented, the
following instruction is UNDEFINED in User Mode, and is UNPREDICTABLE in privileged modes when
DBGSWENABLE is 0:

MRC p14,0,Rd,c0,c7,6

ARMv6 Debug CP14 debug registers access permissions

In ARMv6, Debug access to registers other than the DIDR, DSCR and DTR is disallowed if Halting
Debug-mode is selected. DBGSWENABLE, Sticky power-down and the OS Lock are not implemented,
and there are fewer CP14 Debug registers than in the ARMv7 Extended CP14 Interface.

The behavior of CP14 MRC and MCR instructions in ARMv6 also depends on access type of the register shown
in Table 5-2 on page 5-13. The behavior is summarized in Table 5-13 on page 5-33.

Table 5-12 Access to CP14 debug registers, ARMv6

Conditions
Baseline
CP14
instructionsa

Write
INT-DSCRb

Other CP14
debug
instructionscDebug

state
Processor
mode DSCR[15:14]d DSCR[12]e

Yes X XX X Proceed Proceed Proceed

No User XX 0 Proceed UNDEFINED UNDEFINED

No User XX 1 UNDEFINED UNDEFINED UNDEFINED

No Privileged b00 (None) X Proceed Proceed UNDEFINED

No Privileged bx1 (Halting) X Proceed Proceed UNDEFINED

No Privileged b10 (Monitor) X Proceed Proceed Proceed

a. Read accesses to DIDR and INT-DSCR, read/write accesses to INT-DTR.
b. In ARMv6 only certain bits in the DSCR can be written through the coprocessor interface. These are described in the

section Debug Status and Control Register (DSCR) on page 10-8.
c. All other instructions with opcode_1 == b000 and CRn == b0000. See also Table 5-13 on page 5-33.
d. Debug-mode enabled and selected.
e. DCC User accesses disable
5-32 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Interfaces
For example, the following instruction reads the value of WVR7 (register 103) if at least 8 watchpoints are
implemented, and is UNDEFINED otherwise:

MRC p14,0,Rd,c0,c7,6

Note
 The access permissions in Table 5-12 on page 5-32 have precedence over those in Table 5-13. For example,
even if at least 8 watchpoints are implemented, the following instruction is UNDEFINED in User Mode, and
is also UNDEFINED in privileged modes when Halting Debug-mode is enabled:

MRC p14,0,Rd,c0,c7,6

Table 5-13 Behavior of CP14 MRC and MCR instructions in ARMv6

Access MCR p14,0,Rd,c0,CRm,op2 MRC p14,0,Rd,c0,CRm,op2

RAZ (Reserved) UNDEFINED UNDEFINED

RO UNDEFINED Returns register value in Rd

RAZ / WO Writes value in Rd to register UNDEFINED

RW Writes value in Rd to register Returns register value in Rd
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 5-33

Debug Register Interfaces
5.7 The Memory-mapped and recommended external debug interfaces

The ARMv6 recommended external debug interface is IMPLEMENTATION DEFINED and is not described in
this document.

The Memory-mapped interface to the debug registers is optional in ARMv7.

The Baseline CP14 Interface is sufficient to boot-strap access to the register file, and allows software to
distinguish between the Extended CP14 and Memory-mapped interfaces.

The Memory-mapped interface is defined in terms of an addressable register file mapped over a region of
memory. The recommended external debug interface is also defined in terms of an addressable register file.

This section describes the memory map for both the processor's own view of the debug registers through the
Memory-mapped interface, and the memory map of the recommended external debug interface.

If the Memory-mapped interface is not implemented, the Extended CP14 Interface must be implemented.
See Extended CP14 interface on page 5-25.

5.7.1 Register map

The register map occupies 4KB of physical address space. The base address is IMPLEMENTATION DEFINED
and must be aligned to a 4KB boundary.

Each register is mapped at an offset that is the register number multiplied by 4 (the size of a word). For
example, WVR7 (register 103) is mapped at offset 0x19C (412).

The complete list of registers is defined in Debug register map on page 5-13, and is not repeated here.

5.7.2 Shared interface port for the Memory-mapped and external debug interfaces

Because the Memory-mapped interface and external debug interface share the same memory map and many
of the same properties, it is possible to implement both interfaces using a single memory slave port on the
processor.

If the Memory-mapped interface and external debug interface share the same port, External Debugger
accesses must be distinguishable from those of software running on a processor, including the ARM
processor itself, in the target system. A debug monitor is an example of software that might be running on
a processor. For the recommended Memory-mapped or external debug interface this is achieved using the
PADDRDBG[31] signal, see PADDRDBG on page 6-12.

Note
 This scheme can permit the External Debugger to make accesses through the combined Memory-mapped
or external debug interface port that appear to be Memory-mapped interface accesses. This behavior is
permitted by the ARMv7 Debug Architecture.

Through the remainder of this section it is assumed that such a combined port and PADDRDBG[31] signal
is implemented. However, ARMv7 does not require this arrangement.
5-34 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Interfaces
5.7.3 Endianness

The recommended Memory-mapped and external debug interface port, referred to as the debug port, is
permitted to only allow word accesses. Data presented or returned on the interface is always 32-bits and is
in a fixed byte order:

• bits [7:0] of the debug register are mapped to bits [7:0] of the connected data bus

• bits [15:8] of the debug register are mapped to bits [15:8] of the connected data bus

• bits [23:16] of the debug register are mapped to bits [23:16] of the connected data bus

• bits [31:24] of the debug register are mapped to bits [31:24] of the connected data bus.

The debug port ignores bits [1:0] of the address. These signals are not present in the debug port interface.

The Debug Access Port (DAP) and the interface between it and the debug port together form part of the
external debug interface, and must support word accesses from the External Debugger to these registers. The
recommended ARM Debug Interface v5.0 (ADIv5) supports word accesses. Where this interface is used the
implementation must ensure that a 32-bit access by the debugger through the Debug Access Port has the
same 32-bit value, in the same bit order, as the corresponding access to the debug registers. This is a
requirement for tools support using the ARM Debug Interface v5.0.

If a Memory-mapped interface is implemented, the debug port normally connects to the system interconnect
fabric via some form of bridge component. Such system interconnect fabrics normally support byte
accesses. The system must support word-sized accesses to the debug registers. The behavior of
smaller-than-word-sized accesses to debug registers is UNPREDICTABLE.

The detailed behavior of this bridge and of the system interconnect is outside the scope of the architecture.

Accesses to registers made through the debug port are not affected by the endianness configuration of the
processor in which the registers reside. However, they will be affected by the endianness configuration of
the bus master making the access, and by the nature and configuration of the fabric that connects the two.

In an ARMv7 processor, the E bit in the CPSR controls the endianness. With some assumptions, described
later in this section, the operation of the E bit is:

E bit set to 0, for little-endian operation

If the processor reads its own DIDR with an LDR instruction, the system ensures that the
value returned in the destination register will be in the same bit order as the DIDR register
itself.

E bit set to 1, for big-endian operation

If the processor reads its own DIDR with an LDR instruction, the system ensures that:

• bits [7:0] of the DIDR are read into bits [31:24] of the destination register

• bits [15:8] of the DIDR are read into bits [23:16] of the destination register

• bits [23:16] of the DIDR are read into bits [15:8] of the destination register

• bits [31:24] of the DIDR are read into bits [7:0] of the destination register.

Similarly the bytes of a data value written to a debug register, for example the DSCR, are reversed in
big-endian configuration.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 5-35

Debug Register Interfaces
If an ARMv7 processor, with the E-bit set for little-endian operation, reads the DIDR of a second ARMv7
processor with an LDR instruction, then bits [7:0] of the DIDR of the second processor will be read into
bits [7:0] of the destination register of the LDR, on the first processor. Similarly, the other bytes of the DIDR
will be copied to the corresponding bytes of the destination register. However, if the E-bit of the first
processor is set for big-endian operation the bytes are reversed during the LDR operation, with bits [31:24]
of the DIDR of the second processor being read to bits [7:0] of the destination register of the LDR.

Note
 The ordering of the bytes in the destination register on the first processor is in no way affected by the setting
of the E-bit in the CPSR of the second processor.

These examples assume that no additional manipulation of the data occurs in the interconnect fabric of the
system. For example, an interconnect might perform byte transposition for accesses made across a boundary
between a little-endian subsystem and a big-endian subsystem. Such transformations are beyond the scope
of the architecture.

5.7.4 Permission summaries for Memory-mapped and external debug interface

Access permissions for External Debug and Memory-mapped interfaces on page 5-37 describes the
restrictions for accessing the Memory-mapped and external debug interface port. This section gives
summaries of the permission controls and their effects for different implementations of ARMv7 debug
systems. It contains the following sections:

• Meanings of terms and abbreviations used in this section

• Permissions summary for separate debug and core power domains on page 5-39

• Permissions summary for SinglePower (debug and core in single power domain) on page 5-40.

Meanings of terms and abbreviations used in this section

The following terms and abbreviations are used in the tables that summarize the access permissions:

X Don't care. The outcome does not depend on this condition.

0 The condition is false.

1 The condition is true. See Table 5-14 on page 5-37 for more information.

IG/ABT The system or DAP, as applicable, ignores or aborts the access.

Proceed The system or DAP, as applicable, allows the access. However, the processor might return
an error response.

NPOSS Accessing the debug registers while the processor is powered down is Not Possible if a
single power domain is implemented. The response is system dependent and
IMPLEMENTATION DEFINED.

Error Slave-generated error response. Writes ignored and reads return an UNPREDICTABLE value.

OK Access (read or write) succeeds. Writes to RO locations are ignored. Reads from RAZ/WO
locations return zero.

UNP The access has UNPREDICTABLE results. Reads return UNPREDICTABLE value.

LAR Lock Access Register, see Lock Access Register (LAR) on page 10-72. This is one of the
Management registers.
5-36 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Interfaces
Table 5-14 lists the control conditions used in this section, and tells you where you can find more
information about each of these controls. These conditions can be given an argument of X, 0 or 1, as defined
at the start of this section. The table gives more information about the meaning when the argument = 1 for
each condition.

Access permissions for External Debug and Memory-mapped interfaces

Table 5-15 summarizes the access permissions for the External Debug and Memory-mapped interfaces.

At the system level, certain Memory-mapped accesses must be prohibited. An implementation can either
ignore or abort these accesses.

Table 5-14 Meaning of (Argument = 1) for the control condition

Control condition Meaning of (Argument = 1) For details see

DBGPWRDUP The DBGPWRDUP signal is HIGH,
indicating the processor is powered up

DBGPWRDUP on page 6-7.

Sticky Power-down PRSR[1] = 1 Permissions in relation to power-down on
page 5-22.

OS Lock OSLSR[1] = 1 Permissions in relation to locks on page 5-21.

Software Lock LSR[1] = 1 Permissions in relation to locks on page 5-21.

Debug Software Enable The recommended function of the Debug
Access Port (DAP) is enabled.

Permissions in relation to locks on page 5-21a.

a. For more information about the Debug Software Enable function of the Debug Access Port see ARM Debug Interface
v5 Architecture Specification.

Table 5-15 Memory-mapped and external debug interface registers access permissions

Conditions
DAP or
system
response

Processor
response?

Side-
effects?Debug

logic
powered?

Indicated
Interfacea

Debug
Software
Enable

Access
Privilege

Software
Lock

No X X X X IG/ABT No -

Yes Ext. Dbg. X X X Proceed Yesb Yes

Yes Mem-map 0 X X IG/ABT No -

Yes Mem-map X User X IG/ABT No -
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 5-37

Debug Register Interfaces
When no Memory-mapped interface is implemented, the Software Lock cannot be implemented and the
access permissions table simplifies, as shown in Table 5-16.

Yes Mem-map 1 Privileged 0 Proceedc Yesb Yes

Yes Mem-map 1 Privileged 1 Proceedc Yesb LAR onlyd

a. In the recommended combined External Debug and Memory-mapped interface port, this indication is given by the
PADDRDBG[31] signal, which is:

HIGH to indicate an external debug interface access, indicated by an entry of Ext. Dbg. in the column
LOW to indicate a Memory-mapped interface access, indicated by an entry of Mem-map. in the column.

The external debug interface might be able to simulate a Memory-mapped interface access. In this case the access must
behave as if Debug Software Enable is set to 1 and the access is privileged.

b. For details of the response by the processor see:
Permissions summary for separate debug and core power domains on page 5-39
Permissions summary for SinglePower (debug and core in single power domain) on page 5-40.

c. With a SinglePower implementation:
the access will Proceed if the core is powered up
if the core is powered down the system response is IMPLEMENTATION DEFINED.

d. Writes are ignored and reads, such as reads of EXT-DSCR, have no side-effects. Writes to LAR have the defined
side-effect, if permitted.

Table 5-15 Memory-mapped and external debug interface registers access permissions (continued)

Conditions
DAP or
system
response

Processor
response?

Side-
effects?Debug

logic
powered?

Indicated
Interfacea

Debug
Software
Enable

Access
Privilege

Software
Lock

Table 5-16 External debug interface registers access permissions when Memory-mapped interface
not implemented

Conditions
System
response

Processor
response?

Side-
effects?Debug logic

powered?
Indicated
Interfacea

Debug Software
Enableb

Access
Privilegeb

No Ext. Debug X X IG/ABT No -

Yes Ext. Debug X X Proceed Yesc Yes

a. The indication of the External Debug (Ext. Debug) Interface is implied by the fact that the Memory-mapped interface
is not implemented.

b. These control conditions are ignored when the Memory-mapped interface is not implemented.
c. For details of the response by the processor see:

Permissions summary for separate debug and core power domains on page 5-39
Permissions summary for SinglePower (debug and core in single power domain) on page 5-40.
5-38 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Interfaces
Permissions summary for separate debug and core power domains

For implementations with separate Debug and Core power domains, the effects of permissions on access to
Memory-mapped debug registers is shown in the following tables:

• Table 5-17 for access to Debug and Management registers

• Table 5-18 for access to the OS Lock and Power-down Control registers.

See Table 5-14 on page 5-37 for more information about the conditions that control access to these registers,
and Meanings of terms and abbreviations used in this section on page 5-36 for details of the table entries.

Table 5-17 Debug and Management register access for separate debug and core power domains

Conditions Registers:

DBGPWRDUP
Sticky
Powerdown

OS
Lock

DIDR, ECR,
DRCR

Other
debuga, c

Managementb, c Reservedc

0 X X OK Error OK UNP

1 0 0 OK OK OK OK, RAZ/WI

1 0 1 OK Error OK UNP

1 1 X OK Error OK UNP

a. Registers in the memory region 0x000 - 0x1FC, except for the DIDR, ECR, and DRCR, and Reserved and
IMPLEMENTATION DEFINED locations.

b. Registers in the memory region 0xD00 - 0xFFC, except for IMPLEMENTATION DEFINED registers, see Access to Reserved
and implementation defined locations on page 5-23.

c. For details of the behavior of accesses to Reserved and IMPLEMENTATION DEFINED registers see Access to Reserved and
implementation defined locations on page 5-23.

Table 5-18 OS Lock and Power-down register access for separate debug and core power domains

Conditions Registers:

DBGPWRDUP
Sticky
Powerdown

OS
Lock

OSLSRa

PRCR, PRSR
OSLARa OSSRRa

0 X X OK UNP UNP

1 0 0 OK OK UNP

1 0 1 OK OK OK

1 1 X OK OK UNP

a. If the OS Save and Restore Registers are not implemented, these registers behave as Reserved locations. For
details of the behavior of accesses to Reserved and IMPLEMENTATION DEFINED registers see Access to Reserved
and implementation defined locations on page 5-23.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 5-39

Debug Register Interfaces
Permissions summary for SinglePower (debug and core in single power domain)

For implementations with a single Debug and Core power domain, when the processor is powered down, it
is not possible to access the debug register map, and now error responses can be generated. The Sticky
Power-down bit is not present.

The effects of permissions on access to Memory-mapped debug registers is shown in Table 5-19.

See Table 5-14 on page 5-37 for more information about the conditions that control access to these registers,
and Meanings of terms and abbreviations used in this section on page 5-36 for details of the table entries.

5.7.5 Registers not implemented in the Memory-mapped or external debug interface

The following registers are not implemented in any debug architecture version through the Memory-mapped
or external debug interfaces:

DRAR Debug ROM Address Register (DRAR) on page 10-5

DSAR Debug Self Address Offset Register (DSAR) on page 10-6.

These registers are not required by an external debugger.

In addition, there is no interface to access to INT-DSCR, INT-DTRRX or INT-DTRTX through the
Memory-mapped or external debug interface. These operations are only available through the Baseline
CP14 Interface.

Table 5-19 Register accesses for single Debug and Core power domain

Conditions Registers:

DBGPWRDUP
OS
Lock

DIDR, ECR,
DRCR,
OSLSRa,
PRCR, PRSR

OSLARa OSSRRa
Other
debugb, d Mgmtc, d Reservedd

0 X NPOSS NPOSS NPOSS NPOSS NPOSS NPOSS

1 0 OK OK UNP OK OK OK,
RAZ/WI

1 1 OK OK OK Error OK UNP

a. If the OS Save and Restore Registers are not implemented, these registers behave as Reserved locations, see also
footnote d.

b. Registers in the memory region 0x000 - 0x1FC, except for the DIDR, ECR, and DRCR, and Reserved and
IMPLEMENTATION DEFINED locations.

c. Management Registers, that is, registers in the memory region 0xD00 - 0xFFC, except for IMPLEMENTATION DEFINED
registers.

d. For details of the behavior of accesses to Reserved and IMPLEMENTATION DEFINED registers see Access to Reserved and
implementation defined locations on page 5-23.
5-40 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Chapter 6
Recommended External Debug Interface

This chapter contains the following sections:

• System integration signals on page 6-2

• Recommended debug slave port on page 6-10.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 6-1

Recommended External Debug Interface
6.1 System integration signals

The signals recommended in ARMv7 are shown in Table 6-1.

Table 6-1 Miscellaneous debug signals

Name Direction Versions Description Section

DBGEN In v6, v6.1, v7 Debug Enable Authentication
signals on page 6-3NIDEN In v6, v6.1: optional

v7: required
Non-invasive Debug Enable

SPIDEN In v6.1, v7 Secure Privileged Invasive
Debug Enable

SPNIDEN In v6.1, v7 Secure Privileged Non-Invasive
Debug Enable

EDBGRQ In v6, v6.1, v7 External Debug Request EDBGRQ,
DBGTRIGGER,
DBGCPUDONE
and DBGACK on
page 6-4

DBGACK Out v6, v6.1, v7 Debug Acknowledge signal

DBGTRIGGER Out v7 only, optional Debug Acknowledge signal

DBGCPUDONE Out v7 only, optional Debug Acknowledge signal

DBGRESTART In v7 only External restart request DBGRESTART and
DBGRESTARTED
on page 6-6

DBGRESTARTED In v7 only Handshake for
DBGRESTART

COMMRX Out v6, v6.1, v7 DTRRX full signal COMMRX and
COMMTX on
page 6-6

COMMTX Out v6, v6.1, v7 DTRTX empty signal

DBGOSLOCKINIT In v7 only Initialize O/S Lock on reset DBGOSLOCKINIT
on page 6-7

DBGNOPWRDWN Out v6, v6.1: optional
v7: required

No power-down request signal DBGNOPWRDWN
on page 6-7

DBGPWRDUP In v7 only Processor powered up DBGPWRDUP on
page 6-7

DBGROMADDR[31:12] In v7 only Debug ROM physical address DBGROMADDR
and
DBGROMADDRV
on page 6-8

DBGROMADDRV In v7 only Debug ROM physical address
valid
6-2 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Recommended External Debug Interface
6.1.1 Authentication signals

DBGEN, NIDEN, SPIDEN and SPNIDEN are the authentication signals.

NIDEN and SPNIDEN can be omitted if no non-invasive debug features are implemented.

SPIDEN and SPNIDEN can be omitted if Security Extensions are not implemented.

When DBGEN is LOW (debug disabled), the processor behaves as if DSCR[15:14] equals b00 (see Debug
Status and Control Register (DSCR) on page 10-8) with the exception that Halting Debug events are ignored
when this signal is LOW.

See Invasive debug authentication on page 2-4 and Non-invasive debug authentication on page 8-4 for
details of how these signals control enabling of invasive and non-invasive debug.

Note
 The ARMv7 Debug Architecture authentication signal interface described here is compatible with the
CoreSight architecture requirements for the authentication interface of a debug component. However the
CoreSight architecture places additional requirements on other components in the system, see the CoreSight
Architecture Specification for more information.

SPIDEN also controls permissions in Debug state. See Privilege in Debug state on page 4-13 for details.

See also Authentication Status Register (AUTHSTATUS) on page 10-74.

Changing the Authentication signals

In ARMv7, the NIDEN, DBGEN, SPIDEN, and SPNIDEN authentication signals can be controlled
dynamically, meaning that they might change while the processor is running, or while the processor is in
Debug state.

Note
 In ARMv6 debut DBGEN is a static signal and must be changed only while the processor is in reset.

DBGSELFADDR[31:12] In v7 only Debug self-address offset DBGSELFADDR
and
DBGSELFADDRV
on page 6-8

DBGSELFADDRV In v7 only Debug self-address offset valid

DBGSWENABLE In v7 only Debug software access enable DBGSWENABLE on
page 6-8

PRESETDBGn In v7 only Debug logic reset PRESETDBGn on
page 6-9

Table 6-1 Miscellaneous debug signals (continued)

Name Direction Versions Description Section
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 6-3

Recommended External Debug Interface
Normally, these signals are driven by the system, meaning that they are driven by a peripheral connected to
the ARM processor. If the software running on the ARM processor has to change any of these signals it must
follow this procedure:

1. Execute an implementation specific sequence of instructions to change the signal value. For example,
this might be an instruction to write a value to a control register in a system peripheral.

2. If step 1 involves any memory operation, issue a Data Synchronization Barrier (DSB).

3. Poll the debug registers for the processor view of the signal values. This is required because the
processor might not see the signal change until several cycles after the DSB completes.

4. Issue an Instruction Synchronization Barrier, exception entry or exception return.

The software cannot perform debug or analysis operations that rely on the new value until this procedure
has been completed. The same rules apply for instructions executed through the ITR while in Debug state.

The processor view of the DBGEN, NIDEN, SPIDEN and SPNIDEN signals can be polled through
DSCR[17:16].

Note
 Exceptionally, the core might be in Debug state even though the mode, Secure world and authentication
signal settings are such that, in normal state, Debug events would be ignored. This can occur because:

• it is UNPREDICTABLE whether the behavior of Debug events that are generated between a change in
the authentication signals and the next Instruction Synchronization Barrier, exception entry or
exception return follow the behavior of the old or new settings

• it is possible to change the authentication signals while the core is in Debug state.

See also Generation of Debug events on page 2-20 and Altering CPSR Privileged bits in Debug state on
page 4-13.

6.1.2 EDBGRQ, DBGTRIGGER, DBGCPUDONE and DBGACK

EDBGRQ is a request to cause the processor to enter Debug state. If this happens, the DSCR[5:2] Method
of Debug Entry bits are set to b0100.

EDBGRQ, DBGTRIGGER, DBGCPUDONE and DBGACK are all active HIGH. Asserting one of these
signals means the signal is driven HIGH.

Once EDBGRQ is asserted it must be held HIGH until the Debug Acknowledge signal is asserted HIGH.

Before ARMv7, only one Debug Acknowledge signal is recommended, DBGACK.

The ARMv7 architecture defines three acknowledge signals, DBGTRIGGER, DBGCPUDONE, and
DBGACK. Either DBGACK or DBGTRIGGER can be used as an acknowledge for EDBGRQ.

An ARMv7 implementation can choose not to implement DBGTRIGGER or DBGCPUDONE if these
signals would have identical behavior to DBGACK.
6-4 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Recommended External Debug Interface
The processor asserts DBGTRIGGER to indicate that it is committed to entering Debug state. Therefore,
DBGTRIGGER can be used as the handshake for the EDBGRQ signal. DBGTRIGGER should be
asserted as early as possible, so that it can be used in the system to signal to other devices that the core is
entering Debug state. For example, DBGTRIGGER can be used for cross-triggering, meaning it can be
used as a halt signal to other processor cores within a multi-processor system when one core halts.

See Chapter 4 Debug State for the definition of Debug state.

The processor asserts DBGACK to indicate that it has entered Debug state. Therefore, DBGACK might be
used as a handshake for the EDBGRQ signal, instead of using DBGTRIGGER. DBGACK reflects the
state of the status flag DSCR[0].

In ARMv6, DBGACK can be used for cross-triggering.

The signal DBGCPUDONE is only asserted after the core has completed a data synchronization barrier
operation. Therefore, it can be used to guarantee that memory transactions, issued by the core are as a result
of operations issued by a debugger, have completed. DBGCPUDONE reflects the state of the status flag
DSCR[19].

Figure 6-1 shows the external debug request handshaking. It is diagrammatic only, and no timings are
implied.

Figure 6-1 External debug request handshake using DBGTRIGGER, DBGACK and DBGCPUDONE

In Figure 6-1these events must occur in order:

1 The peripheral asserts EBDGRQ and waits for DBGTRIGGER to go HIGH.

2 The core takes the Debug event and starts the Debug state entry sequence. The core drives
DBGTRIGGER HIGH.

3 The core completes the Debug state entry sequence and drives DBGACK HIGH.

4 The core completes a data synchronization barrier operation and drives DBGCPUDONE
HIGH. This might only be done after intervention by an external debugger, see Imprecise
Data Aborts and entry to Debug state on page 4-4.

Event 2a, the peripheral driving EDBGRQ LOW to deassert the signal, can occur at any time after the
peripheral recognizes event 2. Event 2a is not ordered relative to events 3 and 4.

���
�
�����
����)8��/�	
�����

������

���
������

5 A�

������

�������
	�

A

���
�
�����

%��
�!�
����
���
�
�!�
��+�����
�'
����������
A�G

B 6
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 6-5

Recommended External Debug Interface
The DBGTRIGGER, DBGCPUDONE, and DBGACK signals are also driven HIGH when the DbgAck
bit in the DSCR is set to 1, see Force Debug Acknowledge (DbgAck), bit [10] on page 10-13 for details.

If the DbgAck bit is not set to 1, DBGTRIGGER, DBGCPUDONE, and DBGACK are all driven LOW
on exit from Debug state.

6.1.3 DBGRESTART and DBGRESTARTED

Asserting DBGRESTART HIGH causes the core to exit from Debug state. Once DBGRESTART is
asserted, it must be held HIGH until DBGRESTARTED is deasserted.

DBGRESTARTED reflects bit [1] of the DSCR. See Core Restarted, bit [1] on page 10-10 for details.

DBGRESTART and DBGRESTARTED form a four-phase handshake, as shown in Figure 6-2.

Figure 6-2 DBGRESTART / DBGRESTARTED handshake

Figure 6-2 is diagrammatic only, and no timings are implied. The numbers in Figure 6-2 have the following
meanings:

1. If DBGRESTARTED is asserted (HIGH) the peripheral asserts DBGRESTART HIGH and waits
for DBGRESTARTED to go LOW

2. The core drives DBGRESTARTED LOW to deassert the signal and waits for DBGRESTART to go
LOW

3. The peripheral drives DBGRESTART LOW to deassert the signal.

4. The core leaves Debug state and asserts DBGRESTARTED HIGH.

In the process of leaving Debug state the core normally clears the DBGACK and DBGTRIGGER signals
to LOW. It is IMPLEMENTATION DEFINED when this change occurs relative to the changes in
DBGRESTART and DBGRESTARTED.

6.1.4 COMMRX and COMMTX

COMMRX and COMMTX reflect the state of DSCR[30:29] through the external debug interface:

• COMMTX is the inverse of DSCR[29] (DTRTXfull). Processor is ready to transmit. See DTRTX
register full (DTRTXfull), bit [29] on page 10-21.

• COMMRX is equivalent to DSCR[30] (DTRRXfull). Processor has data to receive. See DTRRX
register full (DTRRXfull), bit [30] on page 10-22.

���
�
����� 8��/�	
�����

������
��

A B

������
��
��

65
6-6 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Recommended External Debug Interface
These signals are active HIGH indicators of when the DTR needs processing by the target system. The
purpose of these status signals is to allow interrupt-driven communications over the DTR. By connecting
these signals to an interrupt controller, software using the debug communications channel can be interrupted
whenever there is new data on the channel or when the channel is clear for transmission.

Note
 There can be race conditions between reading the DTR flags through a read of EXT-DSCR and reads/writes
to the INT-DTR through the Baseline CP14 Interface. However the timing of these signals with respect to
the DTR must be such that target code executing off an interrupt triggered off either of these signals must
be able to write to INT-DTR and read INT-DTR without race conditions.

6.1.5 DBGOSLOCKINIT

DBGOSLOCKINIT is not required in ARMv6.

DBGOSLOCKINIT is a configuration signal that determines the state of the OS Lock immediately after a
debug registers reset. On a debug registers reset:

• if DBGOSLOCKINIT is HIGH then the OS Lock is set from the reset

• if DBGOSLOCKINIT is LOW then the OS Lock is clear from the reset.

Normally, DBGOSLOCKINIT is tied off HIGH.

See Recommended reset scheme on page 5-12 for a description of debug registers reset, and
Operating-system save and restore registers on page 10-58 for details on the OS Lock.

See also Permissions in relation to locks on page 5-21.

6.1.6 DBGNOPWRDWN

DBGNOPWRDWN is optional in ARMv6.

DBGNOPWRDWN is equivalent to the value of bit [0] of the Device Power-Down and Reset Control
Register. The processor power controller must work in emulate mode when this signal is HIGH.

See No Power-down (DBGNOPWRDWN), bit [9] on page 10-13 for details.

6.1.7 DBGPWRDUP

DBGPWRDUP is not required in ARMv6.

DBGPWRDUP is not required in a SinglePower system (a single power domain design).

The DBGPWRDUP input signal is HIGH when the processor is powered up, and LOW otherwise. The
DBGPWRDUP signal is reflected in bit [0] of the Device Power-Down and Reset Status Register.

See also Power-up Status, bit [0] on page 10-28 and Permissions in relation to power-down on page 5-22.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 6-7

Recommended External Debug Interface
6.1.8 DBGROMADDR and DBGROMADDRV

DBGROMADDR and DBGROMADDRV are not required in ARMv6. They are required in ARMv7 if the
Memory-mapped interface is implemented.

DBGROMADDR specifies bits [31:12] of the debug ROM table physical address. This is a configuration
input. It must be either a tie-off or change while the processor is in reset. In a system with multiple debug
ROM tables, this address must be tied off to the top-level ROM address.

In a system with no debug ROM tables this address must be tied off with the physical address where the
debug registers are memory-mapped. Debug software can use the Component Identification Registers at the
end of the 4KB block addressed by DBGROMADDR to distinguish a ROM table from a processor.

Note
 If more than one debug component, for example a processor and an ETM, are implemented in the system,
a debug ROM table must be provided.

DBGROMADDRV is the valid signal for DBGROMADDR. If the address cannot be determined,
DBGROMADDR must be tied off to zero and DBGROMADDRV tied LOW.

The format of debug ROM tables is defined in ARM Debug Interface v5 Architecture Specification.

6.1.9 DBGSELFADDR and DBGSELFADDRV

DBGSELFADDR and DBGSELFADDRV are not required in ARMv6.

In ARMv7, DBGSELFADDR and DBGSELFDDRV are required if the Memory-mapped interface is
implemented. If DBGROMADDR and DBGROMADDRV are not implemented, DBGSELFADDR and
DBGSELFADDRV must not be implemented.

DBGSELFADDR specifies bits [31:12] of the 2’s complement signed offset from the debug ROM table
physical address to the physical address where the debug registers are Memory-mapped. This is a
configuration input. It must be either a tie-off, or change only while the processor is in reset.

If there is no debug ROM table, DBGROMADDR must be configured as described in section 8.1.8 above,
and DBGSELFADDR must be tied off to zero with DBGSELFADDRV tied HIGH.

DBGSELFADDRV is the valid signal for DBGSELFADDR. If the offset cannot be determined,
DBGSELFADDR must be tied off to zero and DBGSELFADDRV tied LOW.

6.1.10 DBGSWENABLE

In ARMv6, DBGSWENABLE is not required.

In ARMv7, DBGSWENABLE is required if the Extended CP14 Interface is implemented.
DBGSWENABLE must be driven by the Debug Access Port. See the ARM Debug Interface v5 Architecture
Specification for details.

The same control is recommended within the Debug Access Port that locks the system out from the
Memory-mapped interface.
6-8 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Recommended External Debug Interface
DBGSWENABLE is a signal that can be asserted HIGH by the debugger by some IMPLEMENTATION
DEFINED means to block system access to the debug register file. This gives the debugger full control over
the debug registers in the processor.

In the ARM Debug Interface v5, DBGSWENABLE is asserted HIGH by writing to the DbgSwEnable
control bit in the Access Port Control/Status Word register (CSW). See the ARM Debug Interface v5
Architecture Specification for details. This signal must normally be asserted HIGH at reset and taken LOW
under debugger control.

When this signal is asserted HIGH, Extended CP14 operations become UNDEFINED instructions. See CP14
debug registers access permissions on page 5-28.

6.1.11 PRESETDBGn

PRESETDBGn is not required on ARMv6 systems. The debug logic is only reset on system power-up
reset.

The reset signal resets all debug registers. See also section Recommended reset scheme on page 5-12.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 6-9

Recommended External Debug Interface
6.2 Recommended debug slave port

This slave port is not required on ARMv6.

The Memory-mapped interface is optional on ARMv7. This section describes the recommended slave port
(APBv3). It provides both the Memory-mapped and external debug interfaces.

A valid external debug interface for ARMv7 is any access mechanism that allows the external debugger to
complete reads or writes to the Memory-mapped registers described in The Memory-mapped and
recommended external debug interfaces on page 5-34.

In ARMv7 a Memory-mapped interface can be provided for access to the debug registers using load and
store operations. Such an interface is sufficient for the requirements of the external debug interface, and
hence it is possible to implement both the Memory-mapped and external debug interfaces using a single
memory slave port on the processor.

This section describes the ARMv7 recommendations for a memory slave port (APBv3) as part of the
external debug interface. In addition, a Debug Access Port capable of mastering an APBv3 bus and
compatible with the ARM Debug Interface v5 (ADIv5) is recommended. Figure 6-3 shows the
recommendations.

Figure 6-3 Recommended external debug interface (including APBv3 slave port)

In Figure 6-3, signals with a lower-case n suffix are active LOW and all other signals are active HIGH.

���������
 ���

���
�
 �//�
 !����	

#��+�!���

��,��
 �����		��
*����'���

 ��'��
������

���
�
�
�
*����'���
�(��-B�

�����
����

�������
����
����
����������
���������
��	�������
����
����
����
����
��������
�������

�����	���

������	����

����
�����
����
������
�����������
������������
���
��
���	�

 ����0�������
*����'���

������
��

������
������

������
��
��

���
������
�������
	�

���	
�����	
���������

�
����
�
��
�

(
�!����������
*����'���

����	

��	���	
	���	
�����	
6-10 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Recommended External Debug Interface
ARMv7 recommends that the debug registers are accessible through an ARM AMBA 3 Peripheral Bus
version 1 (APBv3) external debug interface. This APBv3 interface:

• is 32-bits wide

• supports only 32-bit reads and writes

• has stallable accesses

• has slave-generated aborts

• has 10 address bits ([11:2]) mapping 4KB of memory.

An extra PADDRDBG[31] signal informs the debug slave port about the source of the access.

Table 6-2 describes the external debug interface signals.

Table 6-2 Recommended external debug interface signals

Name Direction Description

PSELDBG In Selects the external debug interface

PADDRDBG[31,11:2] In Address. see PADDRDBG on page 6-12

PRDATADBG[31:0] Out Read data

PWDATADBG[31:0] In Write data

PENABLEDBG In Indicates a second and subsequent cycle of a transfer

PREADYDBG Out Used to extend a transfer (that is, to insert wait states)

PSLVERRDBG Out Slave-generated error response, see PSLVERRDBG on page 6-12

PWRITEDBG In Distinguishes between a read (LOW) and a write (HIGH)

PCLKDBG In Clock

PCLKENDBG In Clock enable for PCLKDBG
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 6-11

Recommended External Debug Interface
6.2.1 PADDRDBG

PADDRDBG selects the register to read or write.

In the recommended debug slave port that implements both the external debug interface and the
Memory-mapped interface, the complete register set is aliased twice. The first view (the Memory-mapped
interface view) starts at 0x0. The second view (the external debug interface view) starts at 0x8000 0000. That
is, PADDRDBG[31] is used to distinguish accesses from the External Debugger (set, 1) from accesses from
the system as a whole (clear, 0).

Note
 Only bits 31 and 11 through 2 of PADDRDBG are specified. bits [1:0] are not required because all registers
are word-sized. bit [31] is used as above. Because some HDL languages do not allow partial buses to be
specified in this way an actual implementation can use a different name for PADDRDBG[31], such as
PADDRDBG31.

6.2.2 PSLVERRDBG

PSLVERRDBG has the same timing as the ready response, PREADYDBG. Under the ARMv7 model,
accesses are only aborted (return PSLVERRDBG) in power-down related scenarios. See also Access
permissions for External Debug and Memory-mapped interfaces on page 5-37.
6-12 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Chapter 7
Debug Requirements on Memory Systems

This chapter contains the following sections:

• About debug requirements on memory systems on page 7-2

• Recommended access to specific CP15 registers on page 7-3

• Debug state Cache/MMU Control Registers on page 7-4.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 7-1

Debug Requirements on Memory Systems
7.1 About debug requirements on memory systems

The Debug Architecture places requirements on the memory system. There are two general guidelines:

• Memory coherency has to be maintained during debugging.

• It is best if debugging is non-intrusive. This requires a way to preserve, for example, the contents of
memory caches and translation lookaside buffers (TLBs), so the state of the target application is not
altered.

In Debug state, it is strongly recommended that the caches and TLBs, where implemented, behave as
follows. For preservation purposes it is strongly recommended that it be possible to:

• disable cache evictions and line fills, so that cache accesses (read or write) do not cause the contents
of caches do not change.

• disable TLB evictions and replacements, so that translations do not cause the contents of TLBs to
change.

These facilities must be accessible by the external debugger, but are only required when in Debug state. In
ARMv7, the Debug State Cache Control Register (DSCCR) and the Debug State MMU Control Register
(DSMCR) are used for this purpose.

However, in Debug state, no instruction fetches occur, and therefore in systems that implement separate
instruction and data caches, and/or separate instruction and data TLBs, there can be no instruction cache or
instruction TLB evictions or replacements while in Debug state.

In Debug state, caches must behave as follows, for memory coherency purposes:

• Reads behave as in normal operation (cache reads return data from the cache, cache misses fetch from
external memory).

• Writes update all levels of memory. That is, all caches and all external memory where the address
written to exists.

It must be possible to reset the processor's memory system to a known safe and coherent state. Similarly, it
must be possible to reset any caches of meta-information (such as branch predictor arrays) to a safe and
coherent state.

It is also recommended, for debugging purposes, that TLBs can be disabled such that all TLB accesses are
read from the main translation tables, and not from the TLB. This allows a debugger to access memory
without using the virtual to physical memory mapping of the application (where implemented).
7-2 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Requirements on Memory Systems
7.2 Recommended access to specific CP15 registers

Mechanisms must exist to allow these requirements to be met when debugging in Secure User mode when
debug of secure privileged modes is not permitted. In such a case, access to the CP15 cache and TLB control
registers would normally be prohibited.

To allow these requirements to be met, it is recommended that the rules for accessing CP15 registers on
processors that implement Security Extensions do not apply for certain register access operations when the
processor is in Debug state. See Coprocessor instructions on page 4-15 for more information.

The set of instructions depends on the version of the ARM Architecture implemented, and is listed in
Table 7-1.

These instructions must be executable in Debug state regardless of any processor setting. However, they can
generate aborts if I-cache lockdown is in use.

In ARMv6 and on other devices that do not implement Security Extensions, or when debugging in a state
where privileged CP15 operations can be executed, the debugger can use any CP15 operations. These
include, but are not limited to, those operations listed in Table 7-2.

Table 7-1 CP15 operations allowed from User Mode in Debug state

Versions a

a. These are ARM architecture versions, not the Debug architecture versions.

Operation Description

v7 MCR p15,0,Rd,c7,c5,0 Invalidate All I-Cache and flush Branch Predictor arrays

v7 MCR p15,0,Rd,c7,c5,1 Invalidate I-Cache by MVA

v6Z MCRR p15,0,Rd,Rn,c5 Invalidate I-cache by VA range

v6Z, v7 MCR p15,0,Rd,c7,c5,6 Flush entire Branch Predictor array

Table 7-2 Privileged CP15 operations used to maintain instruction/data coherency

Operation Description

MCR p15,0,Rd,c7,c5,0 Invalidate All I-Cache and flush Branch Predictor arrays

MCR p15,0,Rd,c7,c5,1 Invalidate I-Cache by MVA

MCR p15,0,Rd,c7,c5,6 Flush entire Branch Predictor array.

MCR p15,0,Rd,c7,c5,7 Invalidate Branch Predictor array by MVA.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 7-3

Debug Requirements on Memory Systems
7.3 Debug state Cache/MMU Control Registers

In v6 Debug, a Cache Behavior Override Register (CBOR) and a TLB Debug Control Register (TDCR)
were recommended in the IMPLEMENTATION DEFINED region of the CP15 register space. The Debug state
MMU Control Register (DSMCR) and Debug state Cache Control Register (DSCCR) are not defined in v6
Debug.

In v6.1 Debug, both the CP15 registers (CBOR and TDCR) and CP14 registers (DSMCR and DSCCR) are
recommended.

In ARMv7, the DSMCR and DSCCR registers are required, but there can be IMPLEMENTATION DEFINED
limits on their behavior. The CBOR and TDCR registers are no longer recommended, but the relevant CP15
instructions remain IMPLEMENTATION DEFINED.

The ARMv7 Debug Architecture requires a pair of additional debug control registers that allow a debugger
to disable cache behavior only when in Debug state. There can be IMPLEMENTATION DEFINED limits on their
behavior, but must follow as far as possible the behavior described in this architecture.

For details of these registers, see Memory system control registers on page 10-61.
7-4 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Chapter 8
Non-invasive debug

This chapter contains the following sections:

• About non-invasive debug on page 8-2

• Program counter sampling register on page 8-3

• Non-invasive debug authentication on page 8-4.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 8-1

Non-invasive debug
8.1 About non-invasive debug

Non-invasive debug includes all debug features that allow data and program flow to be observed, but that
do not allow modification of the main processor state.

The ARMv7 Debug Architecture implements three areas of non-invasive debug:

• A Program Counter Sampling Register, see Program counter sampling register on page 8-3.

• Core-based performance counters. These are described in detail in Chapter 9 Core-based
Performance Counters

• Instruction and data trace. Trace support is an architecture extension typically implemented using an
Embedded Trace Macrocell (ETM). The ETM architecture is described in the Embedded Trace
Macrocell Architecture Specification.

Other forms of non-invasive debug might be implemented in a system.
8-2 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Non-invasive debug
8.2 Program counter sampling register

In ARMv6, the Program Counter Sampling Register (PCSR) is an optional part of the recommended
external debug interface. It is not defined by the architecture.

In ARMv7, the PCSR is an IMPLEMENTATION DEFINED feature. It is an optional extension to the debug
architecture, that provides a mechanism for course-grained profiling of code executing on the processor core
without changing the behavior of that code. See Program Counter Sampling Register (PSCR) on page 10-31
for details.

If the program counter sampling register is implemented, bit [13] of the Debug Identification Register
(DIDR) is set to 1, see Program Counter Sampling Register implemented, bit [13] on page 10-4.

When read, the PCSR returns one of the following:

• the address of an instruction recently executed by the ARM core

• 0xFFFF FFFF if the processor is in Debug state, or in a state and mode where non-invasive debug is not
permitted.

Note
 There is no architectural definition of recently executed. The delay between an instruction being executed
by the core and its address appearing in the PCSR is not defined. For example, if a piece of code reads the
PCSR of the processor it is running on, there is no guaranteed relationship between the program counter for
that piece of code and the value read. The PCSR is intended only for use by an external agent to provide
statistical information for code profiling.

The value always references a committed instruction. It is IMPLEMENTATION DEFINED whether instructions
that do not pass their condition codes are sampled, however, ARM Limited recommends that they are.
Implementations must not sample values that reference instructions that are fetched but not committed for
execution.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 8-3

Non-invasive debug
8.3 Non-invasive debug authentication

Non-invasive debug is enabled though the external debug interface. On processors that implement Security
Extensions, this can be conditional on the state of the processor, and the alternatives for when Non-invasive
debug is permitted are:

• in all processor modes, in both Secure and Nonsecure worlds

• only in Nonsecure world

• in Nonsecure world and Secure User mode.

Whether Non-invasive debug is permitted in Secure User mode depends on the value of the SUNIDEN bit
in the Secure Debug Enable (SDE) Register.

The external debug interface signals that control enabling of non-invasive debug are DBGEN, SPIDEN,
NIDEN and SPNIDEN.

DBGEN and SPIDEN also control invasive debug.

SPIDEN and SPNIDEN are only implemented on processors that implement Security Extensions. NIDEN
is an optional signal in ARMv6.

For more information see:

• the ARM Architecture Reference Manual Security Extensions Supplement for details of the Secure
Debug Enable Register

• Authentication signals on page 6-3 for details of the DBGEN, SPIDEN, NIDEN and SPNIDEN
signals.

Note
 In ARMv6, if NIDEN is not present the device behaves as if NIDEN is present and tied HIGH. NIDEN
might be implemented on some non-invasive debug components and not on others. For example, the
performance monitoring unit for a processor might implement NIDEN when the ETM for the same
processor does not.

See ARMv6 non-invasive debug authentication on page 8-8 for more information about ARMv6
non-invasive debug.

If both DBGEN and NIDEN are LOW, all non-invasive debug is disabled.

Non-invasive debug authentication is described in the following sections:

• Non-invasive debug authentication, Security Extensions not implemented on page 8-5

• Non-invasive debug authentication, Security Extensions implemented on page 8-5.

The behavior of the non-invasive debug components when non-invasive debug is not enabled or not
permitted is described in the following sections. These sections also describe the behavior when the core is
in Debug state:

• Core-based performance counters on page 8-7

• Program Counter Sampling Register on page 8-7

• Trace on page 8-7.
8-4 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Non-invasive debug
Note
 Only enabling non-invasive debug in Nonsecure modes prevents non-invasive debug features directly
observing code processed in Secure modes. However, indirect effects, such as the effect of cache
interference between Nonsecure and Secure code, might still be observed. ARM Limited recommends that
non-invasive debug is disabled in all modes where such attacks are a concern.

8.3.1 Non-invasive debug authentication, Security Extensions not implemented

On processors that do not implement Security Extensions, if NIDEN is asserted HIGH, non-invasive debug
is enabled and permitted in all modes.

In ARMv7, if the Security Extensions are not implemented then if DBGEN is asserted HIGH the system
behaves as if NIDEN is asserted HIGH, regardless of the actual state of the NIDEN signal.

Table 8-1 shows the required behavior on ARMv7.

Non-invasive debug authentication for ARMv6 systems that do not implement the Security Extensions are
described in ARMv6 non-invasive debug authentication on page 8-8.

8.3.2 Non-invasive debug authentication, Security Extensions implemented

On processors that implement Security Extensions:

• if both NIDEN and SPNIDEN are asserted HIGH, non-invasive debug is enabled and permitted in
all modes and worlds.

• If NIDEN is HIGH and SPNIDEN is LOW:

— non-invasive debug is enabled and permitted in the Nonsecure world

— non-invasive debug is not permitted in Secure privileged modes

Table 8-1 ARMv7 Non-invasive debug authentication, Security Extensions not
implemented

DBGEN NIDEN Modes in which non-invasive debug is permitted

LOW LOW None

X HIGH All modes

HIGH LOW All modes
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 8-5

Non-invasive debug
— whether non-invasive debug is permitted in Secure User mode depends on the value of the
SUNIDEN bit in the SDE Register.

In ARMv7:

• if DBGEN is HIGH, the system behaves as if NIDEN is HIGH, regardless of the actual state of the
NIDEN signal

• if SPIDEN is HIGH, the system behaves as if SPNIDEN is HIGH, regardless of the actual state of
the SPNIDEN signal.

Table 8-2 shows the non-invasive debug authentication for ARMv7 processors that implement the security
extensions.

Non-invasive debug authentication for ARMv6 systems that implement the Security Extensions are
described in ARMv6 non-invasive debug authentication on page 8-8.

The value of the SUIDEN bit in the SDE register does not have any effect on non-invasive debug.

Non-invasive debug authentication for ARMv6 systems that implement the Security Extensions are
described in ARMv6 non-invasive debug authentication on page 8-8.

Table 8-2 ARMv7 Invasive debug authentication, Security Extensions implemented

Signals
SUNIDENa Modes in which non-invasive

debug is permitted
DBGEN NIDEN SPIDEN SPNIDEN

LOW LOW X X X None

LOW HIGH LOW LOW 0 All modes in Nonsecure world

LOW HIGH LOW LOW 1 All modes in Nonsecure world

Secure User mode

LOW HIGH LOW HIGH X All modes in all worlds

LOW HIGH HIGH X X All modes in all worlds

HIGH X LOW LOW 0 All modes in Nonsecure world

HIGH X LOW LOW 1 All modes in Nonsecure world

Secure User mode

HIGH X LOW HIGH X All modes in all worlds

HIGH X HIGH X X All modes in all worlds

a. Value of the SUNIDEN bit in the SDE Register.
8-6 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Non-invasive debug
8.3.3 Core-based performance counters

Performance counters provide a non-invasive debug feature, and are controlled by the non-invasive debug
authentication signals. For more information see Chapter 9 Core-based Performance Counters.

The cycle counter, CCNT, is not controlled by the non-invasive debug authentication signals. Disabling the
cycle counter in Secure states does not add to the security of the processor. However, a control register flag
is provided so that CCNT counting can be disabled in regions of code where the performance counters are
disabled. See Disable CCNT when prohibited, bit [5] on page 10-82 for details.

Table 8-3 describes the behavior of the performance counters when non-invasive debug is disabled or not
permitted, and in Debug state.

The performance counters are not intended to be completely accurate, see Accuracy of performance
counters on page 9-5. In particular, some inaccuracy is permitted at the point of changing security world.
However, to avoid the leaking of information from the Secure world, the permitted inaccuracy that
non-prohibited transactions can be uncounted. Prohibited transactions must not be counted.

Entry to and exit from Debug state can also disturb the normal running of the processor that causes
additional inaccuracy in the performance counters. Disabling the counters while in Debug state limits the
extent of this inaccuracy. Implementations can limit this inaccuracy to a greater extent, for example by
disabling the counters as soon as possible during the Debug state entry sequence.

8.3.4 Program Counter Sampling Register

When the core is in a mode where non-invasive debug is not permitted, or in Debug state, the PC sample
register always reads 0xFFFF FFFF. See Program Counter Sampling Register (PSCR) on page 10-31 for
details.

8.3.5 Trace

When the core is in a mode where non-invasive debug is not permitted, or in Debug state, all instructions
and data transfers are ignored by the Trace device.

Table 8-3 Behavior of performance counters when non-invasive debug not permitted

Debug state
Non-invasive debug
permitted and enabled

PMNC[5]
Performance counters
enabled and exported

CCNT enabled

Yes X X No No

No Yes X Yes Yes

No No 0 No Yes

No No 1 No No
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 8-7

Non-invasive debug
8.3.6 ARMv6 non-invasive debug authentication

An ARMv6 processor might implement the ARMv7 non-invasive debug authentication signalling described
in Non-invasive debug authentication, Security Extensions not implemented on page 8-5 and Non-invasive
debug authentication, Security Extensions implemented on page 8-5. However, in ARMv6 some signal
combinations might have IMPLEMENTATION DEFINED alternative behavior that can prevent non-invasive
debug. This alternative behavior is described in:

• Table 8-4 for ARMv6 processors that do not implement the Security Extensions

• Table 8-5 on page 8-9 for ARMv6 processors that implement the Security Extensions.

There is no mechanism that a debugger can use to determine whether an ARMv6 processor implements the
alternative behavior of the non-invasive debug authentication signals. Therefore, any debug system that
incorporates an ARMv6 processor must avoid setting the signal combinations that prevent non-invasive
debug.

Table 8-4 shows the IMPLEMENTATION DEFINED alternative behavior of the non-invasive debug
authentication signals on ARMv6 processors that do not implement the Security Extensions, and includes
all possible combinations of these signals.

Table 8-5 on page 8-9 shows the IMPLEMENTATION DEFINED alternative behavior for some signal
combinations on ARMv6 processors that implement the Security Extensions. There is no alternative
behavior for signal combinations not listed in the table, and these combinations always act as shown in
Table 8-2 on page 8-6.

Table 8-4 ARMv6 signals with alternative behavior, Security Extensions not implemented

DBGEN NIDEN
Modes in which non-invasive debug is permitted,
ARMv6 alternative behavior

LOW LOW None

X HIGH All modes

HIGH LOW None
8-8 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Non-invasive debug
In ARMv6, the authentication can vary between types of non-invasive debug. For example, a performance
monitoring unit might follow the alternative behavior and the ETM follow the ARMv7 behavior. However,
the behavior of a each non-invasive debug component must choose between the ARMv7 prescribed behavior
and the ARMv6 alternative behavior. For this reason, and because it is IMPLEMENTATION DEFINED whether
NIDEN is present, systems incorporating ARMv6 components must avoid certain combinations of
DBGEN, NIDEN, SPIDEN and SPNIDEN. These forbidden combinations are identified in:

• Table 8-4 on page 8-8, for ARMv6 systems that do not implement the Security Extensions,

• Table 8-5, for ARMv6 systems that implement the Security Extensions.

Table 8-5 ARMv6 signals with alternative behavior, Security Extensions implemented

Signals
SUNIDENa Modes in which non-invasive debug is

permitted, ARMv6 alternative behavior
DBGEN NIDEN SPIDEN SPNIDEN

HIGH LOW LOW LOW 0 None.

HIGH LOW LOW LOW 1 All modes in Nonsecure world.

HIGH LOW X HIGH X Noneb.

X HIGH HIGH LOW 0 All modes in Nonsecure world.

X HIGH HIGH LOW 1 All modes in Nonsecure world.

Secure User mode.

HIGH LOW HIGH LOW X Noneb.

a. Value of the SUNIDEN bit in the SDE Register.
b. As noted earlier in this section, in ARMv6 the NIDEN signal is optional and the ARMv6 processor might behave as if

NIDEN is asserted. As a result, some forms of non-invasive debug might be enabled in Nonsecure modes and, if the
SUNIDEN flag is set to 1 in the SDE register, in Secure User modes.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 8-9

Non-invasive debug
8-10 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Chapter 9
Core-based Performance Counters

This chapter contains the following sections:

• About core-based performance counters on page 9-2

• Status in the ARM architecture on page 9-4

• Accuracy of performance counters on page 9-5

• Behavior on overflow on page 9-6

• Interaction with Security Extensions on page 9-7

• Interaction with trace on page 9-8

• Interaction with power saving operations on page 9-9

• Register map on page 9-10

• Access permissions on page 9-12

• Event numbers on page 9-13.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 9-1

Core-based Performance Counters
9.1 About core-based performance counters

The basic form of the core-based performance counters consists of:

• A cycle counter. This can be incremented either on every cycle, or once every 64 cycles.

• A number of performance counters whose events can be programmed. Space is provided in the
architecture for up to 31 counters. The actual number of counters is IMPLEMENTATION DEFINED, and
there is an identification mechanism for the counters.

• Controls for enabling the counters, resetting the counters, flagging overflows, and enabling interrupts
on counter overflow.

The cycle counter can be enabled independently of the rest of the performance counters.

The counters are held in a set of registers that can be accessed in coprocessor space. This means the counters
can be accessed from the operating system running on the core, enabling a number of uses, including:

• dynamic compilation techniques

• energy management.

In addition, you can provide access to the counters from application code, if required. This allows
applications to monitor their own performance with fine grain control without requiring operating system
support. For example, an application might implement per-function performance monitoring.

There are many situations where performance monitoring features integrated into the core are valuable for
applications and for application development. When an operating system does not use the performance
counters itself, ARM Limited recommends that it enables application code access to the performance
counters. However an implementations can choose not to implement any performance counters.

To allow interaction with external monitoring, an implementation might consider additional enhancements,
including:

• Providing a set of events, from which a section can be exported onto a bus for use as external events.
For very high frequency operation, this might introduce unacceptable timing requirements, but the
bus could be interfaced to the ETM or another closely coupled resource.

• Providing the ability to trace external events. Here, again, there are clock frequency issues between
the core and the system. A suitable approach might be to edge-detect changes in the signal and to use
those changes to increment a counter. This requires the core to implement a set of external event input
pins.

• Providing memory-mapped access to the performance counter registers, to allow the counter
resources to be used for system monitoring in systems where they are not used by the software
running on the core. Such a memory-mapped access is not described in this document, but might
follow the structure of the debug memory map described in The Memory-mapped and recommended
external debug interfaces on page 5-34.

The set of events that might be monitored splits into:

• events that are likely to be consistent across many micro-architectures

• implementation specific events.
9-2 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Core-based Performance Counters
Therefore, this architecture defines a core set of events to be used across many micro-architectures, together
with a large space reserved for IMPLEMENTATION DEFINED events. The full set of events for any given
implementation is IMPLEMENTATION DEFINED, and there is no requirement to implement any of the core set
of events.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 9-3

Core-based Performance Counters
9.2 Status in the ARM architecture

The status of the core-based performance counters block is that it is an IMPLEMENTATION DEFINED space for
ARMv7, but ARM Limited recommends implementers to use this approach.
9-4 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Core-based Performance Counters
9.3 Accuracy of performance counters

The performance counters are designed to provide approximately accurate performance count information,
but to keep the implementation and validation cost low, a reasonable degree of inaccuracy in the counts is
acceptable. There is no exact definition of reasonable degree of inaccuracy, but the following guidelines are
recommended:

• Under normal operating conditions, the counters must present an accurate value of the count.

• In exceptional circumstances, such as changes in Security state or other boundary conditions, it is
acceptable for the count to be inaccurate.

• Under very unusual non-repeating pathological cases counts can be inaccurate. These are likely to
occur as a result of asynchronous exceptions, such as interrupts, where the chance of a systematic
error in the count is vanishingly unlikely.

Note
 Implementations must not introduce inaccuracies that can be triggered systematically by normal pieces of
code that are running. For example, dropping a branch count in a loop due to the structure of the loop gives
a systematic error that makes the count of branch behavior very inaccurate, and this is not reasonable.
However, the dropping of a single branch count as the result of a rare interaction with an interrupt is
acceptable.

The permissibility of inaccuracy limits the possible uses of the performance counters. In particular, the point
in a pipeline where the performance counter is incremented is not defined relative to the point where a read
of the performance counters is made, so allowing for some imprecision due to pipelining effects.

Implementations must document any particular scenarios where significant inaccuracies are expected.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 9-5

Core-based Performance Counters
9.4 Behavior on overflow

On counter overflow:

• An overflow status flag bit is set to 1. See Overflow Flag Status Register (FLAG) on page 10-87.

• An interrupt is generated if the processor is configured to generate counter overflow interrupts. See
Interrupt Enable Set Register (INTENS) on page 10-83 and Interrupt Enable Clear Register
(INTENC) on page 10-84 for details.

• The counter wraps to zero and continues counting events. Counting continues as long as the counters
are enabled, regardless of any overflows.

The counter always resets to zero and overflows after 32 bits of increment. To allow a more frequent
generation of interrupts, the counters can be written to. For example, an interrupt handler can reset the
overflowed counter to 0xFFFF 0000 (–65536) to generate another overflow interrupt after 16 bits of
increment.

The interrupt handler must cancel the interrupt by clearing the overflow flag.
9-6 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Core-based Performance Counters
9.5 Interaction with Security Extensions

Performance counters provide a non-invasive debug feature, and therefore are controlled by the non-invasive
debug authentication signals. Non-invasive debug authentication on page 8-4 describes how non-invasive
debug interacts with Security Extensions.

Core-based performance counters on page 8-7 describes the behavior of the performance counters when
non-invasive debug is not permitted.

Note
 Additional controls in the PMNC register can also disable the performance counters and the CCNT. The
PMNC register controls take precedence over the authentication controls.

The performance counters are not banked, and are always accessible regardless of the values of the
authentication signals and SUNIDEN. The purpose of authentication is to control whether the counters
count events, not to control access to the performance counter registers.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 9-7

Core-based Performance Counters
9.6 Interaction with trace

It is IMPLEMENTATION DEFINED whether events are exported to the Embedded Trace Macrocell or other
external monitoring agents to provide triggering information. The form of the exporting is also
IMPLEMENTATION DEFINED. If implemented, this exporting might be enabled as part of the performance
monitoring control functionality.

Similarly, ARM Limited recommends that a mechanism for importing a set of external events to be counted
is implemented, but such a feature is IMPLEMENTATION DEFINED. When implemented, this feature allows the
Trace module to pass in events to be counted.
9-8 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Core-based Performance Counters
9.7 Interaction with power saving operations

All counters are subject to any changes in clock frequency, including clock stopping caused by the WFI and
WFE instructions.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 9-9

Core-based Performance Counters
9.8 Register map

The performance counter registers are mapped into part of the CP15 register map. The registers are
described in Core-based performance counters registers on page 10-80.

Table 9-1 Recommended reset scheme

Instructiona Name or notes

MRC|MCR p15,0,Rd,c9,c12,0 Performance Monitor Control Register (PMNC) on page 10-80

MRC|MCR p15,0,Rd,c9,c12,1 Count Enable Set Register (CNTENS) on page 10-85

MRC|MCR p15,0,Rd,c9,c12,2 Count Enable Clear Register (CNTENC) on page 10-86

MRC|MCR p15,0,Rd,c9,c12,3 Overflow Flag Status Register (FLAG) on page 10-87

MRC|MCR p15,0,Rd,c9,c12,4 Software Increment Register (SWINCR) on page 10-89

MRC|MCR p15,0,Rd,c9,c12,5 Performance Counter Selection Register (PMNXSEL) on page 10-90

MRC|MCR p15,0,Rd,c9,c12,<n> <n> is 6 or 7. Reserved

MRC|MCR p15,0,Rd,c9,c13,0 Cycle Count Register (CCNT) on page 10-89

MRC|MCR p15,0,Rd,c9,c13,1 Event Select Register (EVTSELX) on page 10-90

MRC|MCR p15,0,Rd,c9,c13,2 Performance Count Registers (PMNX) on page 10-91

MRC|MCR p15,0,Rd,c9,c13,<n> <n> is 3 - 7. Reserved

MRC|MCR p15,0,Rd,c9,c14,0 User Enable Register (USEREN) on page 10-91

MRC|MCR p15,0,Rd,c9,c14,1 Interrupt Enable Set Register (INTENS) on page 10-83

MRC|MCR p15,0,Rd,c9,c14,2 Interrupt Enable Clear Register (INTENC) on page 10-84

MRC|MCR p15,0,Rd,c9,c14,<n> <n> is 3 - 7. Reserved

a. All registers can be accessed by both MRC and MCR commands. Only the MRC commands are listed. The MCR commands
have the same syntax, for example for the PMC Register the command is MCR p15,0,Rd,c9,c12,0
9-10 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Core-based Performance Counters
9.8.1 Power domains and performance counters registers reset

ARMv7 recommends that performance counters are implemented as part of the processor logic power
domain, not as part of a separate debug logic power domain. There is no interface to access the performance
counter registers when the processor logic is powered down.

The performance counter registers must be set to their reset values on a core reset (nSYSPORESET,
nCOREPORESET or nRESET). Performance counter registers are not changed by a debug logic reset
(PRESETDBGn).

See Recommended reset scheme on page 5-12 for more information on the reset scheme recommended by
ARMv7.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 9-11

Core-based Performance Counters
9.9 Access permissions

Normally the Performance Counter Registers are accessible from privileged modes only. To allow access
from User Mode code, for example for instrumentation and profiling purposes, a control flag is provided in
the USEREN Register. However, USEREN does not provide access to the registers that control interrupt
generation.

Table 9-2 Performance Counter Access Permissions

Register Operation
Access from a
privileged mode

Access from User Modea

a. See User Enable Register (USEREN) on page 10-91 for details.

USEREN = 0 USEREN = 1

PMNC MRC or MCR Proceed UNDEFINED Proceed

CNTENS MRC or MCR Proceed UNDEFINED Proceed

CNTENC MRC or MCR Proceed UNDEFINED Proceed

FLAG MRC or MCR Proceed UNDEFINED Proceed

SWINCR MRC or MCR Proceed UNDEFINED Proceed

PMNXSEL MRC or MCR Proceed UNDEFINED Proceed

CCNT MRC or MCR Proceed UNDEFINED Proceed

EVTSELX MRC or MCR Proceed UNDEFINED Proceed

PMNX MRC or MCR Proceed UNDEFINED Proceed

USERENa MRC Proceed Proceed Proceed

MCR Proceed UNDEFINED UNDEFINED

INTENS MRC or MCR Proceed UNDEFINED UNDEFINED

INTENC MRC or MCR Proceed UNDEFINED UNDEFINED

Reserved b

b. All the registers marked as Reserved in Table 9-1 on page 9-10.

MRC or MCR UNPREDICTABLE UNDEFINED UNDEFINED
9-12 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Core-based Performance Counters
9.10 Event numbers

The event numbers are described in the following subsections:

• Common feature numbers

• implementation defined feature numbers on page 9-16.

9.10.1 Common feature numbers

For the common features, normally the counters must increment only once for each event. Exceptions to this
rule are stated in the individual definitions.

In these definitions, the term architecturally executed means that the instruction flow is such that the counted
instruction would have been executed in a simple sequential execution model.

Note
 An instruction is architecturally executed if the behavior of the program on the processor is consistent with
the instruction having been executed on a simple execution model of the architecture. Therefore an
instruction that has been executed and retired is defined to be architecturally executed. In processors that
perform speculative execution, an instruction is not architecturally executed if the results of the speculative
execution are discarded. Where an instruction has no visible effect (for example, a NOP), the point where the
instruction is retired is IMPLEMENTATION DEFINED.

The common feature numbers are assigned to the following events:

0x00 Software increment. The register is incremented only on writes to the Software Increment
Register. See Software Increment Register (SWINCR) on page 10-89 for details.

0x01 Instruction fetch that causes a refill at (at least) the lowest level(s) of instruction or unified
cache. Each instruction fetch from normal cacheable memory that causes a refill from
outside of the cache is counted. Accesses that do not cause a new cache refill, but are
satisfied from refilling data of a previous miss, are not counted. Where instruction fetches
consist of multiple instructions, these accesses count as single events. CP15 cache
maintenance operations do not count as events. This counter increments on speculative
instruction fetches as well as on fetches of instructions that reach execution.

0x02 Instruction fetch that causes a TLB refill at (at least) the lowest level of TLB. Each
instruction fetch that causes an access to a level of memory system due to a page table walk
or an access to another level of TLB caching is counted CP15 TLB maintenance operations
do not count as events. This counter increments on speculative instruction fetches as well as
on fetches of instructions that reach execution.

0x03 Data Read or Write operation that causes a refill at (at least) the lowest level of data or
unified cache. Each data read from or write to normal cacheable memory that causes a refill
from outside of the cache is counted. Accesses that do not cause a new cache refill, but are
satisfied from refilling data of a previous miss are not counted. Each access to a cache line
to normal cacheable memory that causes a new linefill is counted, including the multiple
transactions of load or store multiples, including PUSH and POP. Write-through writes that hit
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 9-13

Core-based Performance Counters
in the cache do not cause a linefill and so are not counted. CP15 cache maintenance
operations do not count as events. This counter increments on speculative data accesses as
well as for data accesses that are explicitly made by instructions.

0x04 Data Read or Write operation that causes a cache access at (at least) the lowest level(s) of
data or unified cache. Each access to a cache line to normal cacheable memory is counted
including the multiple transactions of instructions such as LDM or STM. CP15 cache
maintenance operations do not count as events. This counter increments on speculative data
accesses as well as for data accesses that are explicitly made by instructions.

0x05 Data Read or Write operation that causes a TLB refill at (at least) the lowest level of TLB.
Each data read or write operation that causes a page table walk or an access to another level
of TLB caching is counted. CP15 TLB maintenance operations do not count as events. This
counter increments on speculative data accesses as well as for data accesses that are
explicitly made by instructions.

0x06 Data Read architecturally executed. This counter increments for every instruction that
explicitly read data (including SWP). This counter only increments for instructions that are
unconditional or that pass their condition codes.

0x07 Data Write architecturally executed. The counter increments for every instruction that
explicitly wrote data (including SWP). This counter only increments for instructions that are
unconditional or that pass their condition codes.

0x08 Instruction architecturally executed. This counter counts for all instructions, including
conditional instructions that fail their condition code.

0x09 Exception taken. This counts for each exception taken.

0x0A Exception return architecturally executed. This counts every exception return:

• RFE <addressing_mode> <Rn>{!}

• MOVS PC (and other similar data processing instructions)

• LDM <addressing_mode> Rn{!}, <registers_and_pc>

These instructions, with the exception of RFE, copy the SPSR to the CPSR. RFE copies a value
in memory to the CPSR. This counter only increments for instructions that are unconditional
or that pass their condition codes.

0x0B Instruction that writes to the Context ID register architecturally executed. This counter only
increments for instructions that are unconditional or that pass their condition codes.

0x0C Software change of PC (except by an exception) architecturally executed. This counter only
increments for instructions that are unconditional or that pass their condition codes.

0x0D Immediate branch architecturally executed:

• B{L} <target_address>

• BLX <target_address>

• CB{N}Z <target_address>

• HB{L} #<handler_id> (ThumbEE state only)
9-14 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Core-based Performance Counters
• HB{L}P #<immed>, #<handler_id> (ThumbEE state only).

This counter counts for all immediate branch instructions that are architecturally executed,
including conditional instructions that fail their condition code.

0x0E Procedure return (other than exception returns) architecturally executed:

• BX R14

• MOV PC, LR

• POP {...,PC}

• LDR PC,[R13],#offset

• LDMIA R9!,{...,PC} (ThumbEE state only)

• LDR PC,[R9],#offset (ThumbEE state only).

This counter only increments for instructions that are unconditional or that pass their
condition codes.

Note
 Only these instructions are counted as procedure returns. For example, the following are not

counted as procedure return instructions:

• BX R0 (Rm != R14)

• MOV PC,R0 (Rm != R14)

• LDM R13,{...,PC} (writeback not specified)

• LDR PC,[R13,#offset] (wrong addressing mode).

0x0F Unaligned access architecturally executed. This counts each instruction that was an access
to an unaligned address. That is, either triggered an unaligned fault, or would have done so
if the A-bit in the CPSR had been 1. This counter only increments for instructions that are
unconditional or that pass their condition codes.

0x10 Branch mispredicted/not predicted: this counts for every pipeline flush due to a
misprediction from the program flow prediction resources that could have predicted
correctly within the core.

0x11 Reserved.

0x12 Branches or other change in program flow that could have predicted by the branch
prediction resources of the processor.

0x13-0x3F Reserved.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 9-15

Core-based Performance Counters
9.10.2 IMPLEMENTATION DEFINED feature numbers

For IMPLEMENTATION DEFINED feature numbers, the counters are defined to increment only once for each
event, or they can be used to count the duration for which an event occurs as defined for each feature.

Implementers are encouraged to establish house styles for these events, with common definitions, and
common count numbers, applied to all cores implemented by a particular implementer. In general, the
approach is for standardization across implementations with common features. However, it is recognized
that the approach of standardizing micro-architecturally specific features across too wide a range is not
productive.

It is strongly recommended that at least the following classes of event are identified within this section:

• Cumulative duration of stalls due to the holes in the instruction availability, separating out counts for
key buffering points that might exist.

• Cumulative duration of stalls due to data dependent stalling, separating out counts for key
dependency classes that might exist.

• Cumulative duration of stalls due to unavailability of execution resources (including write buffers, for
example), separating out counts for key resources that might exist.

• Missed superscalar issue opportunities (if relevant), separating out counts for key classes of issue that
might exist.

• Miss rates for different levels of caches and TLB.

• Transaction counts on external buses.

• External events passed into the core via an IMPLEMENTATION DEFINED mechanism. Typically this
involves counting the number of cycles while the signal is asserted.

• Cumulative duration that I and F interrupt masks are set to 1.

• Any other micro-architectural features that are deemed valuable to count.

IMPLEMENTATION DEFINED feature numbers are 0x40 to 0xFF.
9-16 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Chapter 10
Debug Register Reference

See Debug Register Map on page 5-13 for a list of all the debug registers.

In this section, the register offsets refer to the offsets in the ARMv7 Memory-mapped or external debug
interface. In ARMv7 there is also a canonical mapping from these offsets to coprocessor instructions in the
ARMv7 Extended CP14 Interface, see Extended CP14 interface on page 5-25. The locations of these
registers in the ARMv6 external debug interface might differ.

The register numbers and offsets for the DSCR, DTRRX and DTRTX registers apply only to the external
view of that register. See Internal and external views of DSCR and DTR on page 5-16 for more information.

Note
 The recommended ARMv7 external debug interface is described in ARM Debug Interface v5 Architecture
Specification. Contact ARM Limited if you require details of the ARMv6 recommended external debug
interface.

This chapter contains the following sections:

• Identification registers on page 10-3

• Control and status registers on page 10-8

• Instruction and data transfer registers on page 10-32

• Breakpoint and watchpoint registers on page 10-39

• Operating-system save and restore registers on page 10-58

• Memory system control registers on page 10-61
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-1

Debug Register Reference
• Management registers on page 10-69

• Core-based performance counters registers on page 10-80.
10-2 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
10.1 Identification registers

This section contains the following subsections:

• Debug ID Register (DIDR)

• Debug ROM Address Register (DRAR) on page 10-5

• Debug Self Address Offset Register (DSAR) on page 10-6.

10.1.1 Debug ID Register (DIDR)

The DIDR is register 0, at offset 0x000.

The DIDR is required on all versions of the debug architecture from ARMv6 onwards. It specifies which
version of the debug architecture is implemented. Table 10-1 shows the layout of the Debug Identification
Register.

Revision, bits [3:0]

Bits [3:0]. The value of the Revision field is IMPLEMENTATION DEFINED. This number is incremented on
corrections. The value must match bits [3:0] of the CP15 Main ID register.

Table 10-1 Debug Identification Register bit definitions

Bits Access Description

[31:28] RO Number of Watchpoint Register Pairs (WRPs) implemented, bits [31:28] on
page 10-5

[27:24] RO Number of Breakpoint Register Pairs implemented, bits [27:24] on page 10-5

[23:20] RO Number of Breakpoint Register Pairs (BRPs) with Context ID comparison capability,
bits [23:20] on page 10-4

[19:16] RO Debug Architecture Version, bits [19:16] on page 10-4

[15:14] RAZ Reserved

[13] RO Program Counter Sampling Register implemented, bit [13] on page 10-4

[12] RO Security Extensions implemented, bit [12] on page 10-4

[11:8] RAZ Reserved

[7:4] RO Variant, bits [7:4] on page 10-4

[3:0] RO Revision, bits [3:0]
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-3

Debug Register Reference
Variant, bits [7:4]

Bits [7:4]. The value of the Variant field is IMPLEMENTATION DEFINED. This number is incremented on
functional changes. The value must match bits [23:20] of the CP15 Main ID register.

Security Extensions implemented, bit [12]

 The meanings of the values of bit [12] are as follows:

0 Security Extensions are not implemented

1 Security Extensions are implemented.

v6 Debug is not a permitted option for implementations that include Security Extensions. This bit always
reads as zero in v6 Debug.

Program Counter Sampling Register implemented, bit [13]

In ARMv6, the Program Counter Sampling Register is an IMPLEMENTATION DEFINED feature of the Debug
Access Port, and is not indicated in the DIDR.

The meanings of the values of bit [13] are as follows:

0 Program Counter Sampling Register (PCSR) is not implemented

1 Program Counter Sampling Register (PCSR) is implemented.

See also Program Counter Sampling Register (PSCR) on page 10-31.

Debug Architecture Version, bits [19:16]

The meanings of the values of bits [19:16] are as follows:

b0001 ARMv6 Debug Architecture

b0010 v6.1 Debug Architecture

b0011 ARMv7 Debug Architecture - Extended CP14 interface implemented

b0100 ARMv7 Debug Architecture - No Extended CP14 Interface implemented.

Number of Breakpoint Register Pairs (BRPs) with Context ID comparison
capability, bits [23:20]

The meanings of the values of bits [23:20] are as follows:

b0000 1 BRP has Context ID comparison capability

b0001 2 BRPs have Context ID comparison capability

b0010 3 BRPs have Context ID comparison capability

... ...

b1111 16 BRPs have Context ID comparison capability.

The minimum number of BRPs with Context ID comparison capability is 1.
10-4 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
The breakpoint comparators with Context ID comparison capability must be the highest addressed
comparators. For example, if six comparators are implemented and two have Context ID comparison
capability, these must be comparators 4 and 5.

Number of Breakpoint Register Pairs implemented, bits [27:24]

The meanings of the values of bits [27:24] are as follows:

b0000 Reserved

b0001 2 BRPs implemented

b0010 3 BRPs implemented

... ...

b1111 16 BRPs implemented.

The minimum number of BRPs is 2.

Number of Watchpoint Register Pairs (WRPs) implemented, bits [31:28]

The meanings of the values of bits [31:28] are as follows:

b0000 1 WRP implemented

b0001 2 WRPs implemented

b0010 3 WRPs implemented

... ...

b1111 16 WRPs implemented.

The minimum number of WRPs is 1.

10.1.2 Debug ROM Address Register (DRAR)

v6, v6.1 This register is not defined in ARMv6.

v7 If no Memory-mapped debug components (including this processor) are implemented, this
register reads as zero.

This register is only implemented through the Baseline CP14 interface. See Coprocessor
interface on page 5-24.

The Debug ROM Address Register (DRAR) defines the physical address in memory of a ROM table that
locates the debug components in the system. The ROM table contains a zero-terminated list of signed 32-bit
offsets from the ROM table base to other Memory-mapped debug components in the system. All the debug
components pointed to must contain a set of Component Identification Registers compatible with the format
in Component Identification Registers (COMPONENTID) on page 10-79.

It is IMPLEMENTATION DEFINED how the processor determines the value to be read in debug ROM address.
If the processor cannot determine the value, the register must read as zero.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-5

Debug Register Reference
One implementation scheme is to provide inputs DBGROMADDR[31:12] and DBGROMADDRV that a
system designer must tie-off to the correct value. DBGROMADDRV must be tied HIGH only if
DBGROMADDR[31:12] is tied off to a valid value, otherwise DBGROMADDR[31:12] and
DBGROMADDRV must be tied LOW.

The DRAR is read-only. Table 10-2 shows the layout of the DRAR.

10.1.3 Debug Self Address Offset Register (DSAR)

v6, v6.1 This register is not defined in ARMv6.

v7 If no Memory-mapped interface is provided, this register reads as zero.

This register is only implemented through the Baseline CP14 interface. See Coprocessor
interface on page 5-24.

The Debug Self Address Offset Register (DSAR) gives the offset from the debug ROM address register to
the physical address of the processor's own debug registers.

If the processor cannot determine the offset from the debug ROM address register, this register must read as
zero, and software must scan the contents of the debug ROM (if provided) to locate the processor.

It is IMPLEMENTATION DEFINED how the processor determines the value to be read in debug self address
offset. If the processor cannot determine the value, the register must read as zero.

One implementation scheme is to provide inputs DBGSELFADDR[31:12] and DBGSELFADDRV that a
system designer must tie-off to the correct value. DBGSELFADDRV must be tied HIGH only if
DBGSELFADDR[31:12] is tied off to a valid value, otherwise DBGSELFADDR[31:12] and
DBGSELFADDRV must be tied LOW.

The DSAR is read-only. Table 10-3 on page 10-7 shows the layout of the DSAR.

Table 10-2 Debug ROM Address Register

Bits Access Value Description

[31:12] RO DBGROMADDR[31:12] Bits [31:12] of the debug ROM physical address.

[11:2] RAZ/WI - Reserved.

[1:0] RO (DBGROMADDRV),
see Description entry

Reads b11 if DBGROMADDRV is tied HIGH, reads b00
otherwise.
10-6 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
Table 10-3 Debug Self Address Offset Register

Bits Access Value Description

[31:12] RO DBGSELFADDR[31:12] Bits [31:12] of the 2's complement offset from the debug ROM
physical address to the physical address where the debug
registers are mapped.

[11:2] RAZ/WI - Reserved

[1:0] RO (DBGSELFADDRV),
see Description entry

Reads b11 if DBGSELFADDRV is tied HIGH, reads b00
otherwise.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-7

Debug Register Reference
10.2 Control and status registers

This section contains the following subsections:

• Debug Status and Control Register (DSCR)

• Watchpoint Fault Address Register (WFAR) on page 10-22

• Debug Run Control Register (DRCR) on page 10-23

• Device Power-Down and Reset Control Register (PRCR) on page 10-25

• Device Power-Down and Reset Status Register (PRSR) on page 10-28

• Program Counter Sampling Register (PSCR) on page 10-31.

10.2.1 Debug Status and Control Register (DSCR)

The DSCR external view is register 34 at offset 0x088.

The DSCR external view is the main control register for the debug facilities in the ARM architecture.

In all debug versions there are two views of the DSCR: INT-DSCR (internal view) and EXT-DSCR (external
view). See Internal and external views of DSCR and DTR on page 5-16 for definitions of the INT- and EXT-
views.

The behavior differs only on the Access Type (for ARMv6 only) and on the behavior of DTRRXfull and
DTRTXfull on reads of DSCR through the two views.

Table 10-4 Debug Status and Control Register bit definitions

Bits Versions Access a
Debug
reset
value

Description

[31] - RAZ/SBZP - Reserved

[30] All RO 0 DTRRX register full (DTRRXfull), bit [30] on page 10-22

[29] All RO 0 DTRTX register full (DTRTXfull), bit [29] on page 10-21

[28] - RAZ/SBZP - Reserved

[27] v7 RO 0 Bit 27 is the Latched DTRRXfull (DTRRXfull_l) bit.

Bit 26 is the Latched DTRTXfull (DTRTXfull_l) bit.

See Latched DTRTXfull (DTRTXfull_l) and Latched DTRRXfull
(DTRRXfull_l), bits [27:26] on page 10-21.

[26] v7 RO 0

[25] v7 RO UNP Sticky Pipeline Advance (PipeAdv), bit [25] on page 10-21

[24] v7 RO UNP Latched Instruction Complete (InstrCompl_l), bit [24] on page 10-20

[23:22] - RAZ/SBZP - Reserved

[21:20] v7 RWEXT 00 EXT-DTR Access Mode, bits [21:20] on page 10-16

[19] v6.1, v7 RO/RWb 0 Imprecise Data Aborts discarded, bit [19] on page 10-16
10-8 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
[18] v6.1, v7 RO e Nonsecure world status (NS), bit [18] on page 10-16

[17] v6.1, v7 RO e Secure Privileged Non-invasive Debug Disabled (SPNIDDIS),
bit [17] on page 10-15

[16] v6.1, v7 RO e Secure Privileged Invasive Debug Disabled (SPIDDIS), bit [16] on
page 10-15

[15] All RWINT 0 Monitor Debug-mode enable, bit [15] on page 10-15

[14] All RWEXT 0 Halting Debug-mode enable, bit [14] on page 10-15

[13] All RWEXT 0 Execute ARM instruction enable, bit [13] on page 10-14

[12] All RWINT 0 User Mode access to Comms Channel disable, bit [12] on page 10-14

[11] All RWEXT 0 Interrupts Disable (IntDis), bit [11] on page 10-14

[10] All RWEXT 0 Force Debug Acknowledge (DbgAck), bit [10] on page 10-13

[9] v6, v6.1c RWEXT 0 No Power-down (DBGNOPWRDWN), bit [9] on page 10-13

[8] v6.1, v7 RO d 0 Sticky Undefined, bit [8] on page 10-13

[7] All RO d 0 Sticky Imprecise Abort, bit [7] on page 10-12

[6] All RO d 0 Sticky Precise Abort, bit [6] on page 10-11

[5:2] All RW 0 Method of Debug Entry (MOE), bits [5:2] on page 10-10

[1] All RO e Core Restarted, bit [1] on page 10-10

[0] All RO e Core Halted, bit [0] on page 10-10

a. In ARMv6 RW bits can only be written through either the coprocessor instruction (INT) or through the Debug Access
Port (EXT), as indicated by the subscript. For example, the Disable Interrupts bit (bit [11]) is read-write through the
Debug Access Port (DAP) but read-only through the coprocessor interface. In ARMv7 INT-DSCR is read-only.

b. DSCR[19] can be RW. This is IMPLEMENTATION DEFINED, see Imprecise Data Aborts and entry to Debug state on
page 4-4.

c. This bit is Reserved in ARMv6, but some implementations have used it for the same purpose as the No Power-down bit
in the Device Power-down and Reset Control Register. In ARMv7 the Device Power-down and Reset Control Register
is implemented, and this bit is Reserved and RAZ/SBZP.

d. In ARMv6 these bits are cleared to 0 on read through the Debug Access Port. In ARMv7 these registers have to be
cleared to 0 using a write to the Debug Run Control Register, see Debug Run Control Register (DRCR) on page 10-23.

e. These are read-only status bits that reflect the current state of the processor.

Table 10-4 Debug Status and Control Register bit definitions (continued)

Bits Versions Access a
Debug
reset
value

Description
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-9

Debug Register Reference
Core Halted, bit [0]

After programming a Debug event, the external debugger can poll this bit until it is 1, so that it knows that
the processor has entered Debug state. See Chapter 4 Debug State for a definition of Debug state.

The meanings of the values of bit [0] are as follows:

0 The processor is in normal state

1 The processor is in Debug state.

Core Restarted, bit [1]

After forcing the processor to leave Debug state, the external debugger polls this bit until it is set to 1 so that
it knows that the exit command has taken effect and the processor has exited Debug state. Polling DSCR[0]
until it is set to 0 is not safe, because the processor could re-enter Debug state due to another Debug event
before the external debugger samples the DSCR. See Chapter 4 Debug State for a definition of Debug state.

The meanings of the values of bit [1] are as follows:

0 The processor is exiting Debug state. This bit only reads as 0 between receiving a request to
exit Debug state, and restarting normal state

1 The processor has exited Debug state. This bit remains 1 if the processor re-enters Debug
state.

Method of Debug Entry (MOE), bits [5:2]

Table 10-5 shows the meanings of Method of Debug Entry values.

Table 10-5 Meaning of Method of Debug Entry values

Value Versions Description Section

b0000 All Halt Request Debug event occurred. Halting Debug events on page 2-18

b0001 All Breakpoint Debug event occurred. Breakpoint Debug events on page 2-10

b0010 All Imprecise Watchpoint Debug event
occurred.

Watchpoint Debug events on page 2-6

b0011 All BKPT Instruction Debug event occurred. BKPT Instruction Debug events on
page 2-12

b0100 All External Debug Request Debug event
occurred.

Halting Debug events on page 2-18

b0101 All Vector catch Debug event occurred. Vector Catch Debug events on page 2-13

b0110 v6 only D-side abort occurred.

This value is Reserved in v6.1 and v7.

-

10-10 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
A Prefetch abort or Data Abort handler can determine whether a Debug event occurred by checking the
value of the relevant Fault Status Register (IFSR or DFSR), and use these bits to determine the specific
Debug event.

In v6 Debug, the DSCR can be checked first to determine whether an abort had occurred, and hence whether
the abort handler jumps to the debug monitor or not. In v6.1 and ARMv7 the D-side abort occurred and
I-side abort occurred encodings are Reserved. An abort handler must therefore always check the IFSR or
DFSR first.

When debug is disabled or not permitted, the BKPT instruction generates a Debug exception rather than being
ignored. The DSCR, IFSR, and IFAR are set as if a BKPT Instruction Debug Exception occurred. See
Effects of Debug Exceptions on CP15 registers and the WFAR on page 3-4. Monitor software might also
need to check that debug was not disabled for security reasons before communicating with an external
debugger.

In ARMv7 support for precise watchpoint events is added, see Precise and Imprecise Watchpoint Debug
events on page 2-8.

Sticky Precise Abort, bit [6]

v6 If the DSCR[13] (Execute ARM instruction enable) bit is 0, or the core is not in
Debug state, the value of this flag is UNPREDICTABLE.

v6, v6.1 This flag is cleared to 0 on reads of the DSCR by the external debugger.

v6.1 If the core is not in Debug state this flag reads as zero.

v6.1, v7 This flag does not change when the processor is not in Debug state.

b0111 v6 only I-side abort occurred.

This value is Reserved in v6.1 and v7.

-

b1000 v7 OS Unlock Catch Debug event occurred.

This value is Reserved in v6 and v6.1.

Halting Debug events on page 2-18

b1001 All Reserved. -

b1010 v7 Precise Watchpoint Debug event occurred.

This value is Reserved in v6 and v6.1.

Watchpoint Debug events on page 2-6

b1011-
b1111

All Reserved. -

Table 10-5 Meaning of Method of Debug Entry values (continued)

Value Versions Description Section
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-11

Debug Register Reference
v7 This flag can be cleared to 0 only by writing to DRCR[2], see Debug Run Control
Register (DRCR) on page 10-23.

Leaving Debug state with this flag set to 1 leads to UNPREDICTABLE behavior.

This flag is used to detect precise Data Aborts generated by instructions issued to the processor while in
Debug state.

The meanings of the values of bit [6] are as follows:

0 no precise Data Abort exception occurred since the last time this bit was cleared to 0

1 a precise Data Abort exception has occurred since the last time this bit was cleared to 0.

If DSCR[6] is set to 1 then instructions are not issued by the Instruction Transfer Register. See Instruction
Transfer Register (ITR) on page 10-37, and also EXT-DTR Access Mode, bits [21:20] on page 10-16.

See also Exceptions in Debug state on page 4-19.

Sticky Imprecise Abort, bit [7]

v6 If the DSCR[13] (Execute ARM instruction enable) bit is 0, or the core is not in Debug state,
the value of this flag is UNPREDICTABLE.

v6, v6.1 This flag is cleared to 0 on reads of the DSCR by the external debugger.

v6.1 This flag is set to 1 on all imprecise aborts occurring when in Debug state.

If the core is not in Debug state, this flag reads as zero.

v6.1, v7 This flag does not change when the processor is not in Debug state.

v7 This flag is only set to 1 on Imprecise Data Aborts that are discarded in Debug state due to
DSCR[19] being set to 1, and not other Imprecise Data Aborts occurring in Debug state.

This flag can be cleared to 0 only by writing to DRCR[2], see Debug Run Control Register
(DRCR) on page 10-23.

Leaving Debug state with this flag set to 1 leads to UNPREDICTABLE behavior.

This flag is used to detect imprecise aborts generated by, or taken on, instructions issued to the processor
whilst in Debug state, but that have been discarded because DSCR[19] is set to 1 (see Imprecise Data Aborts
discarded, bit [19] on page 10-16). If DSCR[19] is 0, the imprecise Data Abort is acted upon on exit from
Debug state.

The meanings of the values of bit [7] are as follows:

0 no imprecise Data Abort exception has been discarded since the last time this bit was cleared
to 0

1 an imprecise Data Abort exception has been discarded since the last time this bit was cleared
to 0.

See also Imprecise Data Aborts and entry to Debug state on page 4-4 and Exceptions in Debug state on
page 4-19.
10-12 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
Sticky Undefined, bit [8]

v6 This flag is not defined in v6 Debug. DSCR[8] is Reserved and RAZ/SBZP.

v6.1 If the core is not in Debug state, this flag reads as zero.

This flag is cleared to 0 on reads to the DSCR by the external debugger.

v6.1, v7 This flag does not change when the processor is not in Debug state.

v7 This flag can be cleared to 0 only by writing to DRCR[2], see Debug Run Control
Register (DRCR) on page 10-23.

Leaving Debug state with this flag set to 1 leads to UNPREDICTABLE behavior.

This flag is used to detect Undefined Instruction exceptions generated by instructions issued to the processor
while in Debug state.

The meanings of the values of bit [0] are as follows:

0 no Undefined Instruction exception occurred since the last time this bit was cleared to 0

1 an Undefined Instruction exception occurred since the last time this bit was cleared to 0.

See also Exceptions in Debug state on page 4-19.

No Power-down (DBGNOPWRDWN), bit [9]
v6, v6.1 This bit is not defined in ARMv6, although many implementations define DSCR[9] as the

No Power-down bit. If not implemented, DSCR[9] is Reserved and RAZ/SBZP.

v7 This bit is implemented in the Device Power-down and Reset Control Register (PRCR), see
No Power-down (DBGNOPWRDWN), bit [0] on page 10-26. DSCR[9] is Reserved and
RAZ/SBZP in ARMv7.

This bit has the same behavior as the No Power-down bit in the ARMv7 Device Power-down and Reset
Control Register (PRCR) see No Power-down (DBGNOPWRDWN), bit [0] on page 10-26.

Force Debug Acknowledge (DbgAck), bit [10]

If this bit (DbgAck) is set to 1, the DBGACK, DBGTRIGGER, and DBGCPUDONE output signals are
forced HIGH, regardless of the processor state. See EDBGRQ, DBGTRIGGER, DBGCPUDONE and
DBGACK on page 6-4 for details of these signals.

If the external debugger needs to execute pieces of code in normal state as part of the debugging process,
but needs the rest of the system to behave as if the processor is in Debug state, the external debugger must
set this bit to 1.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-13

Debug Register Reference
Interrupts Disable (IntDis), bit [11]

If this bit (IntDis) is set to 1, the IRQ and FIQ input signals are inhibited:

0 interrupts enabled

1 interrupts disabled.

If the external debugger needs to execute pieces of code in normal state as part of the debugging process,
but that code must not be interrupted, the external debugger must set this bit to 1.

For example, when single stepping code in a system with a periodic timer interrupt, the period of the
interrupt is likely to be more frequent than the stepping frequency of the debugger. In this situation, if the
debugger steps the target without setting DSCR[11] for the duration of the step, the interrupt is pending.
This means that, if interrupts are enabled in the CPSR, the interrupt is taken as soon as the processor leaves
Debug state.

DSCR[11] is ignored if DSCR[15:14] is set to b00 or DBGEN is LOW (that is, if DSCR[15:14] reads as
b00), see Halting Debug-mode enable, bit [14] on page 10-15, Monitor Debug-mode enable, bit [15] on
page 10-15, and Authentication signals on page 6-3.

User Mode access to Comms Channel disable, bit [12]

If this bit is 1 and a User Mode process tries to access the DIDR, INT-DSCR, INT-DTRRX, or INT-DTRTX
through CP14 operations, the Undefined Instruction exception is taken.

Setting bit [12] to 1 prevents User Mode process access to any CP14 debug register.

The meanings of the values of bit [12] are:

0 User Mode access to Comms Channel enabled

1 User Mode access to Comms Channel disabled.

Execute ARM instruction enable, bit [13]

v6, v6.1 If the external debug interface does not have a mechanism for forcing the core to execute
instructions in Debug state via the external debug interface, this bit always reads as zero and
ignores writes.

v7 This bit, and the Instruction Transfer Register (the mechanism for forcing the core to
execute instructions in Debug state) are required.

The meanings of the values of this bit are:

0 disabled

1 the mechanism for forcing the core to execute instructions in Debug state via the external
debug interface is enabled.

Setting this bit to 1 when the core is not in Debug state leads to UNPREDICTABLE behavior.
10-14 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
Halting Debug-mode enable, bit [14]

The meanings of the values of this bit are:

0 Halting Debug-mode disabled

1 Halting Debug-mode enabled.

Note
 If the external interface input DBGEN is LOW, DSCR[14] reads as 0. The programmed value is masked
until DBGEN is taken HIGH. When DBGEN goes HIGH, the value read and the behavior of the core
correspond to the programmed value.

It is the programmed value of DSCR[14], not the value returned by reads of the DSCR, that is saved by the
OS Save and Restore Register in a power-down sequence.

Monitor Debug-mode enable, bit [15]

The meanings of the values of this bit are as follows:

0 Monitor Debug-mode disabled

1 Monitor Debug-mode enabled.

Note
 If Halting Debug-mode is enabled (bit [14] is set) then the monitor Debug-mode setting is disabled
regardless of the setting of the Monitor Debug-mode enable bit.

If the external interface input DBGEN is LOW, DSCR[15] reads as 0. The programmed value is masked
until DBGEN is taken HIGH. When DBGEN goes HIGH, the value read and the behavior of the core
correspond to the programmed value.

It is the programmed value of DSCR[15], not the value returned by reads of the DSCR, that is saved by the
OS Save and Restore Register in a power-down sequence.

Secure Privileged Invasive Debug Disabled (SPIDDIS), bit [16]

v6 This bit is not defined in v6 Debug. DSCR[16] is Reserved and RAZ/SBZP.

v6.1 If the processor implements Security Extensions, bit [16] takes the value of the inverse of
the SPIDEN input. Otherwise it reads as zero.

v7 This bit is the inverse of bit [4] of the Authentication Status Register, see Authentication
Status Register (AUTHSTATUS) on page 10-74.

Secure Privileged Non-invasive Debug Disabled (SPNIDDIS), bit [17]

v6 this bit is not defined in v6 Debug. DSCR[17] is Reserved and RAZ/SBZP
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-15

Debug Register Reference
v6.1 if the processor implements Security Extensions, this bit takes the value of the inverse of the
SPNIDEN input. Otherwise it reads as zero.

v7 This bit is the inverse of bit [6] of the Authentication Status Register, see Authentication
Status Register (AUTHSTATUS) on page 10-74.

Nonsecure world status (NS), bit [18]

If the processor implements Security Extensions, this bit indicates whether the processor is in the Secure
world. The meanings of the values of the NS bit are as follows:

0 the processor is in the Secure world (SCR[0]=0 or the processor is in Monitor Mode)

1 the processor is not in the Secure world (SCR[0]=1 and the processor is not in Monitor
Mode).

If the processor does not implement Security Extensions, this bit reads as zero.

Imprecise Data Aborts discarded, bit [19]

In v6 Debug, this flag is not defined. DSCR[19] is Reserved and RAZ/SBZP.

It is IMPLEMENTATION DEFINED whether this bit is automatically set to 1 on entry to Debug state:

• If the processor logic sets this bit to 1 on entry to Debug state then this bit is read-only.

• If this bit is not automatically set to 1 on entry to Debug state then it is set to 1 after execution of an
IMPLEMENTATION DEFINED sequence of operations in Debug state. In this case it is IMPLEMENTATION
DEFINED whether this bit is read-only or read/write:

— this bit can only be read/write if the sequence of operations performed on entry to Debug state
includes an explicit write of 1 to this bit

— if the processor detects the sequence of operations performed on entry to Debug state and
automatically sets DSCR[19] to 1b1 following that sequence then this bit must be read-only.

The bit is cleared to 0 on exit from Debug state.

If an imprecise Data Abort is signaled while this bit is set to 1, the core sets the Sticky Imprecise Abort bit
to 1, but otherwise discards the abort (see Sticky Imprecise Abort, bit [7] on page 10-12).

See Imprecise Data Aborts and entry to Debug state on page 4-4 for details.

EXT-DTR Access Mode, bits [21:20]

In ARMv6, these flags are not defined. DSCR[21:20] are Reserved and RAZ/SBZP.

The EXT-DTR Access Mode can be used to optimize access to EXT-DTR from an External Debugger. The
aim of the various modes is to cut down the number of interactions required through the external debug
interface, which reduces the bandwidth required between the device and the debugger.
10-16 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
Note
 The EXT-DTR Access Mode controls all accesses made to EXT-DTRRX and EXT-DTRTX, and in some
cases accesses to the Instruction Transfer Register (ITR). Those accesses might not necessarily be made by
an External Debugger. See Internal and external views of DSCR and DTR on page 5-16.

Three modes of operation are provided, as follows:

Note
 Non-blocking mode is the default setting because improper use of the other modes can result in the external
debug interface becoming deadlocked.

See Instruction and data transfer registers on page 10-32. The DTR External Access Mode flags have no
effect on INT-DTRRX or INT-DTRTX accesses.

Non-blocking mode

When Non-blocking mode is selected, reads from EXT-DTRTX and writes to EXT-DTRRX and ITR are
ignored if the appropriate latched ready flag was not in the ready state. These latched flags are updated on
DSCR reads:

• if DTRRXfull_l is set to 1, writes to EXT-DTRRX are ignored

• if InstrCompl_l is set to 0, writes to ITR are ignored

• if DTRTXfull_l is set to 0, reads from EXT-DTRTX are ignored and return an UNPREDICTABLE value.

Following a successful write to EXT-DTRRX, DTRRXfull and DTRRXfull_l are set to 1.

Following a successful read from EXT-DTRTX DTRTXfull and DTRTXfull_l are cleared to 0.

Following a successful write to ITR, InstrCompl and InstrCompl_l are cleared to 0.

Table 10-6 Meaning of Method of Debug Entry values

Value Description Section

b00 Non-blocking mode Non-blocking mode

b01 Stall mode Stall mode on page 10-18

b10 Fast mode Fast mode on page 10-19

b11 Reserved -
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-17

Debug Register Reference
Note
 If the access is made through the Memory-mapped interface and the Software Lock is set the registers are
read-only and the flags remain unchanged. If the access is made through the external debug interface and
the OS Lock or Sticky Power Down flag is set to 1, accesses to these registers generate a error response and
the flags remain unchanged. See Access permissions for External Debug and Memory-mapped interfaces
on page 5-37 for more information.

Debuggers accessing these registers must first read EXT-DSCR. This has the side-effect of copying
DTRRXfull and DTRTXfull to DTRRXfull_l and DTRTXfull_l, and setting InstrCompl_l. The debugger
can then:

• write to the EXT-DTRRX if the DTRRXfull flag was 0 (DTRRXfull_l is 0)

• read from the EXT-DTRTX if the DTRTXfull flag was 1 (DTRTXfull_l is 1)

• write to the ITR if the InstrCompl_l flag was 1.

However, debuggers can issue both actions together and later determine from the read EXT-DSCR value
whether the read/write went ahead.

Stall mode

When Stall mode is selected, accesses to EXT-DTRRX, EXT-DTRTX, and ITR are modified such that each
access stalls under the following conditions:

• writes to EXT-DTRRX are not completed until DTRRXfull is 0

• writes to ITR are not completed until InstrCompl is 1

• reads from EXT-DTRTX are not completed until DTRTXfull is 1.

If an access is stalled in this way you cannot access any of the debug registers until the stalled EXT-DTRRX,
EXT-DTRTX, or ITR access completes.

Note
 The mechanism by which an access is stalled by the external debug interface must be defined by the external
debug interface. For details of how accesses are stalled by the recommended ARM Debug Interface v5, see
the ARM Debug Interface v5 Architecture Specification.

Following a write to EXT-DTRRX or ITR, or a read from EXT-DTRTX, the flags InstrCompl,
InstrCompl_l, DTRRXfull, DTRXfull_l, DTRTXfull, and DTRTXfull_l are set as in Non-blocking mode on
page 10-17.

Note
 The rules used in Non-blocking mode for ignoring accesses based on the values of the latched flags
InstrCompl_l, DTRRXfull_l and DTRTXfull_l do not apply in Stall mode.
10-18 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
Stall mode can be selected when the processor is not in Debug state. However, because Stall mode blocks
the interface to the DTR until the core issues the correct MCR or MRC instruction to unblock the access, it is
not recommended to use Stall mode in cases where the External Debugger does not have complete control
over the instructions executing on the processor.

Accesses to EXT-DTRRX and EXT-DTRTX through the Extended CP14 Interface are UNPREDICTABLE if
Stall mode is selected.

Fast mode

If Fast mode is selected and the Execute ARM Instruction Enable bit is 0, or the processor is not in Debug
state, the results are UNPREDICTABLE.

When Fast mode is selected, writes to the ITR register do not trigger an instruction for execution. Instead,
the instruction is latched. Accesses to EXT-DTRRX and EXT-DTRTX through the Extended CP14 Interface
are UNPREDICTABLE. Other reads of EXT-DTRTX and writes to EXT-DTRRX cause the latched instruction
to be executed by the processor.

This allows a single instruction to be executed repeatedly without reloading the ITR.

In summary:

• Writes to ITR do not trigger an instruction to be executed. If a previously issued instruction is
executing, it must not be affected by the write to the ITR. Implementations can choose to stall the
write until InstrCompl is set to 1 to achieve this requirement.

• External access writes to EXT-DTRRX:

— are not completed until InstrCompl is set to 1

— write the data to the DTRRX register

— issue the instruction last written to ITR in time for it to read the data written to the
EXT-DTRRX, if it is an instruction that reads the INT-DTRRX.

If DTRRXfull is set to 1 before the write, after the write the values of DTRRX and the DTRRXfull
and DTRRXfull_l flags in the DSCR are UNPREDICTABLE.

• Reads from EXT-DTRTX:

— Are not completed until InstrCompl is set to 1.

— Return the data from the DTRTX.

— Issue the instruction last written to the ITR in time for it to write a new value to the DTRTX,
if it is an instruction that writes to the INT-DTRTX, without affecting the data returned from
this read of the EXT-DTRTX. (That is, this instruction can write the next DTRTX value to be
read.)

If DTRTXfull is set to 0 before the read, after the read the values of DTRTX and the DTRTXfull and
DTRTXfull_l flags in the DSCR are UNPREDICTABLE.

If a Fast mode access is stalled you cannot access any of the debug registers until the stalled EXT-DTRRX,
EXT-DTRTX, or ITR access completes.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-19

Debug Register Reference
Note
 The rules used in Non-blocking mode for ignoring accesses based on the values of the latched flags
InstrCompl_l, DTRRXfull_l and DTRTXfull_l do not apply in Fast mode.

If DSCR[6] (Sticky Precise Abort) is set to 1, reads of EXT-DTRTX and writes to EXT-DTRTX do not cause
the latched instruction to be executed by the processor, and the access completes. In these cases:

• a read of EXT-DTRTX returns an UNPREDICTABLE value, and the values of DTRTX and the
DTRTXfull and DTRTXfull_l flags become UNPREDICTABLE

• if you write to EXT-DTRRX, the values of DTRRX and the DTRRXfull and DTRRXfull_l flags in
the DSCR become UNPREDICTABLE.

Otherwise, following a write to EXT-DTRRX or ITR, or a read from EXT-DTRTX, the flags InstrCompl,
InstrComp_l, DTRRXfull, DTRRXfull_l, DTRTXfull, and DTRTXfull_l are set as in Non-blocking mode
on page 10-17.

Latched Instruction Complete (InstrCompl_l), bit [24]

In v6 and v6.1 Debug, InstrCompl and InstrCompl_l are not defined. DSCR[24] is Reserved and
RAZ/SBZP.

InstrCompl_l is a copy of the internal Instruction Complete flag (InstrCompl), taken on reads of
EXT-DSCR. InstrCompl signals whether the processor has completed execution of an instruction issued
through the Instruction Transfer Register (ITR).

Normally, InstrCompl is cleared to 0 following issue of an instruction through ITR, and InstrCompl
becomes 1 once the instruction completes. InstrCompl is set to 1 on entry to Debug state. For more
information about the behavior of InstrCompl, InstrCompl_l and the ITR register, see:

• Instruction Transfer Register (ITR) on page 10-37

• Host to Target Data Transfer Register (DTRRX) on page 10-32

• Target to Host Data Transfer Register (DTRTX) on page 10-35.

On reads of EXT-DSCR, InstrCompl_l always returns the current value of InstrCompl.

The meanings of the values of InstrCompl are as follows:

0 an instruction previously issued through the ITR has not completed its changes to the
architectural state of the processor

1 all instructions previously issued through the ITR have completed their changes to the
architectural state of the processor.

If InstrCompl_l reads as 0, a subsequent write to the ITR register is ignored unless DSCR[20] != b00 (Stall
mode or Fast mode selected).

If the processor is not in Debug state, the value read for this flag is UNPREDICTABLE. The value for this flag
when read through the Baseline CP14 Interface is always UNPREDICTABLE.
10-20 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
Sticky Pipeline Advance (PipeAdv), bit [25]

This flag is not defined in v6 and v6.1 Debug. DSCR[25] is Reserved and RAZ/SBZP.

This bit is set to 1 every time the processor pipeline retires one instruction. It is cleared to 0 by a write to
DRCR[3], see Debug Run Control Register (DRCR) on page 10-23.

The purpose is to allow the debugger to detect that the processor is idle. In some situations this might mean
that the processor is deadlocked.

Latched DTRTXfull (DTRTXfull_l) and Latched DTRRXfull (DTRRXfull_l),
bits [27:26]

These flags are not defined in ARMv6. DSCR[27:26] is Reserved and RAZ/SBZP.

Bit 27 is the Latched DTRRXfull (DTRRXfull_l) bit.

Bit 26 is the Latched DTRTXfull (DTRTXfull_l) bit.

The DTRTXfull_l and DTRRXfull_l bits are, respectively, copies of the DTRTXfull and DTRRXfull bits,
taken on read of EXT-DSCR. That is, they represent the last values of DTRTXfull and DTRRXfull read
through EXT-DSCR.

On reads of EXT-DSCR, DTRRXfull_l and DTRTXfull_l always read the same values as DTRRXfull and
DTRTXfull respectively.

Normally:

• DTRTXfull_l is cleared to 0 on reads of EXT-DTRTX

• DTRRXfull_l is set to 1 on writes of EXT-DTRRX.

On reads of INT-DSCR, the values read for these bits are UNPREDICTABLE.

The latched versions of the flags control the processor behavior on reads of EXT-DTRTX and writes to
EXT-DTRRX. For more information about the behavior of the DTRRX and DTRTX registers see Host to
Target Data Transfer Register (DTRRX) on page 10-32 and Target to Host Data Transfer Register (DTRTX)
on page 10-35.

DTRTX register full (DTRTXfull), bit [29]

The meanings of the values of DTRTXfull are as follows:

0 DTRTX register empty

1 DTRTX register full.

Normally, DTRTXfull is:

• cleared to 0 on reads of EXT-DTRTX

• set to 1 on writes to INT-DTRTX.

For more information about the behavior of DTRTXfull and the DTRTX register see Target to Host Data
Transfer Register (DTRTX) on page 10-35.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-21

Debug Register Reference
DTRRX register full (DTRRXfull), bit [30]

The meanings of the values of DTRRXfull are as follows:

0 DTRRX register empty

1 DTRRX register full.

Normally, DTRRXfull is:

• set to 1 on writes to EXT-DTRRX

• cleared to 0 on reads of INT-DTRRX.

For more information about the behavior of DTRRXfull and the DTRRX register see Host to Target Data
Transfer Register (DTRRX) on page 10-32.

10.2.2 Watchpoint Fault Address Register (WFAR)

The WFAR is register 6, at offset 0x018.

v6 Debug In v6 Debug, the WFAR can only be accessed through CP15.

v6.1 Debug In v6.1 Debug, the WFAR can be accessed through CP14, and the CP15 access is
deprecated.

ARM v7 In ARMv7, the WFAR encoding in CP15 is UNDEFINED in User Mode and UNPREDICTABLE
in privileged modes.

On every Watchpoint Debug event the WFAR is updated with the Instruction Virtual Address (IVA) of the
instruction that accessed the watchpointed address plus an offset that depends on the processor state:

• 8 if the processor was in ARM state

• 4 if the processor was in Thumb or ThumbEE state

• an IMPLEMENTATION DEFINED offset if the processor was in Jazelle state.

See Memory addresses on page 2-13 for a definition of the IVA used to update the WFAR.

Table 10-7 Watchpoint Fault Address Register bit definition

Bits Access Debug reset value Description

[31:0] RW UNPREDICTABLE Address of the watchpointed instruction plus an
offset that depends on the processor state
10-22 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
10.2.3 Debug Run Control Register (DRCR)

The DRCR is register 36, at offset 0x090.

Table 10-8 shows the layout of the Debug Run Control Register.

This register is not defined in ARMv6.

The main purpose of the run-control register is to request the processor to enter or leave Debug state. It is
also used to clear to 0 the sticky exception bits in the DSCR.

Halt Request, bit [0]

The actions on writing Halt Request values are as follows:

0 no action

1 request entry to Debug state.

Writing 1 to this bit requests that the processor enters Debug state. This request is held until the Debug state
entry occurs, see Halting Debug events on page 2-18.

Writing 0 has no effect.

Once the request has been made, the debugger polls DSCR[0] until it reads 1.

This bit always reads as 0. Writes are ignored if the processor is already in Debug state.

Restart Request, bit [1]

The actions on writing Restart Request values are as follows:

0 no action

1 request exit from Debug state.

Writing 1 to this bit requests that the processor leaves Debug state. This request is held until the processor
exits Debug state.

Table 10-8 Debug Run Control Register bit definition

Bits Access Description

[31:5] RAZ/SBZP Reserved

[4] RAZ/W Cancel BIU Requests, bit [4] on page 10-24

[3] RAZ/W Clear Sticky Pipeline Advance, bit [3] on page 10-24

[2] RAZ/W Clear Sticky Exceptions, bit [2] on page 10-24

[1] RAZ/W Restart Request, bit [1]

[0] RAZ/W Halt Request, bit [0]
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-23

Debug Register Reference
Writing 0 has no effect.

Once the request has been made, the debugger polls DSCR[1] until it reads 1.

This bit always reads as 0. Writes are ignored if the processor is not in Debug state.

Clear Sticky Exceptions, bit [2]

The actions on writing Clear Sticky Exceptions values are as follows:

0 no action

1 clear DSCR[8:6] to b000.

When the processor is not in Debug state, it is UNPREDICTABLE whether a write of 1 to DRCR[2] clears
DSCR[8:6] to b000.

When the processor is in Debug state, a request to clear DSCR[8:6] combined with a restart request,
DRCR[1], in a single write of DRCR with DRCR[2:1] = b11, clears DSCR[8:6] to b000 before leaving
Debug state.

Clear Sticky Pipeline Advance, bit [3]

The actions on writing Clear Sticky Pipeline Advance values are as follows:

0 no action

1 clear DSCR[25] to 0.

When the processor is powered down, it is UNPREDICTABLE whether a write of 1 to DRCR[3] clears
DSCR[25] to 0.

Cancel BIU Requests, bit [4]

The actions on writing Cancel BIU Requests are as follows:

0 no action

1 cancel pending transactions.

It is IMPLEMENTATION DEFINED whether this feature is supported. If this feature is not implemented, writes
to this bit are ignored.

When support for Cancel BIU Requests is implemented, if 1 is written to this bit, the processor cancels any
pending transactions (Bus Interface Unit Requests) on the system bus until Debug state is entered (that is,
Debug state entry is the acknowledge event that clears this request). An implementation must abandon all
data load and store transactions; it is IMPLEMENTATION DEFINED whether other transactions, including
instruction fetches and cache operations, are also abandoned.

Abandoned transactions have the following behavior:

• abandoned data stores write an UNPREDICTABLE value to the target address

• abandoned data loads return an UNPREDICTABLE value to the register bank

• abandoned instruction fetches return an UNPREDICTABLE instruction for execution

• abandoned cache operations leave the memory system in an UNPREDICTABLE state.
10-24 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
However, an abandoned transaction does not cause any exception. Additional BIU requests, after Debug
state has been entered, have an UNPREDICTABLE behavior.

The number of ports on the processor and their protocols are implementation specific and, therefore, the
detailed behavior of this bit is IMPLEMENTATION DEFINED. It is also IMPLEMENTATION DEFINED whether this
behavior is supported on all ports of a processor. For example, an implementation can choose not to
implement this behavior on instruction fetches.

The purpose of this control bit is to allow the debugger to release a deadlock on the system bus so Debug
state can be entered. This Debug state entry does not need to be recoverable, because the debugger only
wants to know what the state of the processor was at the time the deadlock occurred. A Halt Request
(DRCR[0]) or External Debug Request (EDBGRQ) must be pending at the time the deadlock is released.

If a Debug state entry occurs, the PC reads as if the cancelled transactions completed successfully.

Note
 It might not be easy to infer the cause of the deadlock from the PC value if, for example, the processor has
a non-blocking cache design or a write buffer, or if the deadlocked transaction corresponded to a load to the
PC.

If the processor implements Security Extensions, a write to this bit only takes effect if DBGEN and
SPIDEN are HIGH, meaning that invasive debug is allowed in all processor states and modes.

If the processor does not implement Security Extensions, a write to this bit is ignored unless DBGEN is
HIGH.

See Authentication signals on page 6-3 for details of DBGEN and SPIDEN.

It is UNPREDICTABLE whether a write of 1 to DRCR[4] has any effect when the processor is powered-down.

10.2.4 Device Power-Down and Reset Control Register (PRCR)

The PRCR is register 196, at offset 0x310, and is not defined in ARMv6.

Table 10-9 shows the layout of the PRCR in ARMv7.

The PRCR controls reset and power-down related functionality.

Table 10-9 Device Power-down & Reset Control Register bit definition

Bits Access Debug reset value Description

[31:3] RAZ/SBZP - Reserved

[2] RW 0 Hold Internal Reset, bit [2] on page 10-27

[1] RAZ/W 0 Force Internal Reset, bit [1] on page 10-26

[0] RW 0 No Power-down (DBGNOPWRDWN), bit [0]
on page 10-26
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-25

Debug Register Reference
No Power-down (DBGNOPWRDWN), bit [0]

The actions on writing No Power-down values are as follows:

0 DBGNOPWRDWN LOW

1 DBGNOPWRDWN HIGH.

DBGNOPWRDWN is an IMPLEMENTATION DEFINED feature. If it is implemented, setting this flag requests
the power controller to work in an emulation mode where the core is not actually powered down when
requested.

See DBGNOPWRDWN on page 6-7 for details.

Force Internal Reset, bit [1]

The actions on writing Force Internal Reset values are as follows:

0 no action

1 force internal reset.

Note
 • Force Internal Reset is an IMPLEMENTATION DEFINED feature. If an implementation does not support

Force Internal Reset then bit [1] ignores writes.

• This bit always reads as zero. The sticky reset status bit in the Device Power-Down and Reset Status
Register must be used to read the current reset status of the processor, see Sticky Reset Status, bit [3]
on page 10-30.

The external debugger can use this bit to force the processor into reset if it does not have access to the
nRESET input. The reset behavior is the same as soft reset (nRESET). It does not cause power-down.

If the processor implements Security Extensions, a write to this bit is ignored unless both the external debug
interface signals DBGEN and SPIDEN are HIGH, meaning that invasive debug is allowed in all processor
states and modes.

If the processor does not implement Security Extensions, a write is ignored unless DBGEN is HIGH.

See Authentication signals on page 6-3 for details of DBGEN and SPIDEN.

Unless Hold Internal Reset (bit [2]) is set to 1, the internal reset is only held for long enough to reset the
core. The bit then self-clears to 0 and the core leaves the reset state.

Note
 If an implementation supports both features, the Force Internal Reset and Hold Internal Reset bits can be set
to 1 in a single write to the PRCR. In this case the core must enter reset and be held there.
10-26 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
Hold Internal Reset, bit [2]

The actions on writing Hold Internal Reset values are as follows:

0 do not hold internal reset on power-up or warm reset

1 hold processor's non-debug logic in reset on power-up or warm reset until this flag is cleared
to 0.

Note
 • Hold Internal Reset is an IMPLEMENTATION DEFINED feature. If an implementation does not support

Hold Internal Reset then bit [2] is Read-as-zero and ignores writes.

• When Hold Internal Reset is implemented this bit cannot work on system power-up, because it resets
to 0.

In ARMv7 the primary purpose of this bit is to avoid the processor running again before the debugger has
had the chance to detect a power-down occurrence and restore the state of the debug registers inside the core
power domain.

This bit also causes the internal nRESET signal to be held on warm nRESET or a Force Internal Reset
request, that is, on a regular reset of the processor's non-debug logic, not related to core power-down. It can
therefore be used in conjunction with an external reset controller to take the processor into reset and hold it
there while letting the rest of the system come out of reset.

The bit can be written at the same time as a Force Internal Reset request to force the core into reset and hold
it there, for example while programming other debug registers such as programming a Halt Debug Request
to take the processor into Debug state on leaving Reset. See Halt Request, bit [0] on page 10-23 for details.

Note
 The core is not held in Debug state, and cannot enter Debug state until released from reset. The processor
must not accept instructions issued via the Instruction Transfer Register (ITR) while held in reset.

The effect of this bit depends on the state of the external debug interface signals:

• If the processor implements Security Extensions, this bit only takes effect if both of the external
debug interface signals DBGEN and SPIDEN are HIGH, meaning that invasive debug is allowed in
all processor states and modes.

• If the processor does not implement Security Extensions, this bit only takes effect if the external
debug interface signal DBGEN is HIGH.

See Authentication signals on page 6-3 for details of DBGEN and SPIDEN.

The debugger can distinguish between a held power-down occurrence and a held warm nRESET by
examining the Device Power-Down and Reset Status Register (PRSR).
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-27

Debug Register Reference
10.2.5 Device Power-Down and Reset Status Register (PRSR)

The PRSR is register 197, at offset 0x314, and is not defined in ARMv6.

SinglePower: in ARMv7, if only a single power-domain is implemented, bits [1:0] of this register read as
b01.

This register gives the information about the reset and power-down state of the processor.

Table 10-10 shows the layout of the PRSR.

Power-up Status, bit [0]

The meaning of the Power-up Status values are as follows:

0 the processor is powered-down

1 the processor is powered-up.

The Power-up Status bit reads the value of the DBGPWRDUP input on the external debug interface. See
DBGPWRDUP on page 6-7 for details of the DBGPWRDUP input.

The processor is in the powered-up state when DBGPWRDUP is HIGH, and is in the powered-down state
when DBGPWRDUP is LOW.

Power-up Status is not affected by the reset state of the processor, whether that reset is:

• a power-up reset, nCOREPORESET

• an internal reset, nRESET

• a reset occurring because the Hold Internal Reset bit in the Device Power-Down and Reset Control
Register (PRCR) is set to 1.

Table 10-10 Device Power-down & Reset Control Register bit definition

Bits Access Debug reset value Description

[31:4] RAZ/SBZP - Reserved

[3] RC 0 a

a. If both the debug logic and core are reset at the same time (PRESETDBGn and nRESET), the value of
the Sticky Reset Status flag after reset is UNPREDICTABLE.

Sticky Reset Status, bit [3] on page 10-30

[2] RO b

b. Bits [2,0] are status bits. On read they report the current status of the processor.

Reset Status, bit [2] on page 10-29

[1] RC 1 Sticky Power-down Status, bit [1] on page 10-29

[0] RO b Power-up Status, bit [0]
10-28 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
Reads of PRSR made when the processor is in the powered up state return 1 for Power-up Status.

Reads of PRSR made when the processor is in the powered down state return 0 for Power-up Status.

For more information see Power domains and debug on page 5-6.

Sticky Power-down Status, bit [1]

The meaning of Sticky Power-down Status values are as follows:

0 the processor has not been powered-down since the last time this register was read

1 the processor has powered-down since the last time this register was read. Cleared to 0 on
reading this register.

Note
 Powered-down is defined in Power-up Status, bit [0] on page 10-28.

When the processor is in the powered-down state, the Sticky Power-down Status bit is set to 1.

Reads of PRSR made when the processor is in the powered down state return 1 for Sticky Power-down
Status and do not change the value of Sticky Power-down Status.

Note
 Bits [1:0] of the PRSR never read as b00.

Reads of PRSR made when the processor is in the powered up state return the current value of Sticky
Power-down Status, and then clear Sticky Power-down Status to 0.

Note
 The bit is not cleared to 0 if the read of the PRSR was made through the Memory-mapped interface when
the Software Lock is set. See Permissions in relation to locks on page 5-21 for more information on the
Software Lock.

If this bit is set to 1, accesses to certain registers return an error response. See Permissions in relation to
power-down on page 5-22 for more information.

Reset Status, bit [2]

The meaning of Reset Status values are as follows:

0 the processor is not currently held in reset state

1 the processor is currently held in reset state.

The processor enters reset state following the assertion of one or both of:

• the internal or warm reset input, nRESET, asserted LOW

• the power-up reset input, nCOREPORESET, asserted LOW
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-29

Debug Register Reference
The processor stops executing instructions before it enters reset state.

The processor remains in reset state until:

• both nRESET and nCOREPORESET are deasserted HIGH

• the Hold Internal Reset request bit in the Device Power-Down and Reset Control Register (PRCR)
is 0.

The processor then resumes execution of instructions with the Reset exception.

Reads of the PRSR made when the processor is in reset state return 1 for the Reset Status.

Reads of the PRSR made when the processor is not in reset state return 0 for the Reset Status.

Sticky Reset Status, bit [3]

The meaning of Sticky Reset Status values are as follows:

0 the processor has not been reset since the last time this register was read

1 the processor has been reset since the last time this register was read.

Note
 Reset state is defined in Reset Status, bit [2] on page 10-29.

When the processor is in reset state, the Sticky Reset Status bit is set to 1.

Reads of PRSR made when the processor is in reset state return 1 for Sticky Reset Status.

Reads of PRSR made when the processor is not in reset state return the current value of Sticky Reset Status,
and then clear Sticky Reset Status to 0.

Note
 • The Sticky Reset Status bit is not cleared to 0 if the read of the PRSR is made through the

Memory-mapped interface when the Software Lock is set. See Permissions in relation to locks on
page 5-21 for more information on the Software Lock.

• Bits [3:2] of PRSR never read as b01.
10-30 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
10.2.6 Program Counter Sampling Register (PSCR)

The PSCR is register 33, at offset 0x084.

v6, v6.1 This register is not defined in ARMv6. However, it might form part of the external debug
interface.

v7 It is IMPLEMENTATION DEFINED whether the PCSR is implemented. If the PCSR is not
implemented, reads of the PCSR return an UNPREDICTABLE value.

Reads through the Extended CP14 Interface of the CP14 register that maps to the PCSR
return an UNPREDICTABLE value.

In ARMv7, writes to the PCSR write to the Instruction Transfer Register. See Instruction Transfer Register
(ITR) on page 10-37. In ARMv6 the PCSR, if implemented, is read-only.

For more information about the PCSR, see Program counter sampling register on page 8-3. See also
Program Counter Sampling Register implemented, bit [13] on page 10-4.

Table 10-11 shows the layout of the PCSR.

Meaning of PC Sample Value, bits [1:0]

The value sampled through this register is the Instruction Virtual Address (IVA) of the instruction plus an
offset that depends on the processor state. The bottom two bits of the sampled value encode the processor
state so the profiling tool can work out the IVA by subtracting the offset. See Memory addresses on
page 2-13 for a definition of the IVA read through the PCSR.

The meaning of Meaning of PC Sample Value values are as follows:

b00 ((PCSR[31:2] << 2) - 8) references an ARM state instruction

bx1 ((PCSR[31:1] << 1) - 4) references a Thumb or ThumbEE state instruction

b10 IMPLEMENTATION DEFINED.

Table 10-11 Program Counter Sampler Register bit definition

Bits Access Debug reset value Description

[31:2] R - Program Counter Sample value

[1:0] R - Meaning of PC Sample Value, bits [1:0]
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-31

Debug Register Reference
10.3 Instruction and data transfer registers

This section contains the following subsections:

• Host to Target Data Transfer Register (DTRRX)

• Target to Host Data Transfer Register (DTRTX) on page 10-35

• Instruction Transfer Register (ITR) on page 10-37.

The following registers and flags form the Debug Communications Channel:

• the DTRRX register, see Host to Target Data Transfer Register (DTRRX)

• the DTRTX register, see Target to Host Data Transfer Register (DTRTX) on page 10-35

• the DTRRXfull flag, see DTRRX register full (DTRRXfull), bit [30] on page 10-22

• the DTRTXfull_l and DTRRXfull_l flags, see Latched DTRTXfull (DTRTXfull_l) and Latched
DTRRXfull (DTRRXfull_l), bits [27:26] on page 10-21.

10.3.1 Host to Target Data Transfer Register (DTRRX)

The DTRRX is register 32, at offset 0x080.

v6, v6.1 DTRRX was previously named rDTR. EXT-DTRRX is not defined in ARMv6. However,
the functionality must be implemented as part of the external debug interface.

v7 The Extended CP14 Interface instructions that access EXT-DTRRX, if implemented, are
UNPREDICTABLE in Debug state. See Internal and external views of DSCR and DTR on
page 5-16 and Extended CP14 interface on page 5-25 for more details.

Table 10-12 shows the layout of the DTRRX.

In all Debug versions there are two views of DTRRX:

• INT-DTRRX, the internal view

• EXT-DTRRX, the external view.

See Internal and external views of DSCR and DTR on page 5-16 for definitions of the internal and external
views.

Table 10-12 Host to Target Data Transfer Register bit definition

Bits Debug reset value Description

[31:0] UNPREDICTABLE Host to target data
10-32 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
The behavior on various accesses to the DTRRX is described in the following tables:

• Table 10-13 shows the behavior of accesses to INT-DTRRX

• Table 10-14 shows the behavior of read accesses to EXT-DTRRX

• Table 10-15 on page 10-34 shows the behavior of write accesses to EXT-DTRRX.

Note
 • If the STC instruction that reads INT-DTRRX aborts, the value in DTRRX and the value of the

DTRRXfull flag are UNPREDICTABLE.

• The behavior on accesses to INT-DTRRX does not depend on the value of DTRRXfull_l, and
accesses to INT-DTRTXfull do not update the value of DTRRXfull_l.

Table 10-13 Behavior of accesses to INT-DTRRX

Access DTRRXfull Action
New
DTRRXfull

Read 0 Returns an UNPREDICTABLE value. Unchanged

1 Returns DTRRX contents 0

Write X Not possible. There is no operation that writes to INT-DTRRX -

Table 10-14 Behavior of read accesses to EXT-DTRRX

Access
modea Flagb Flag

value
Action

New
DTRRXfull

New
DTRRXfull_l

X DTRRXfull 0 Returns an UNPREDICTABLE value. Unchanged Unchanged

1 Returns DTRRX contents Unchanged Unchanged

a. For more information see EXT-DTR Access Mode, bits [21:20] on page 10-16.
b. This column indicates which of the DTRTXfull, DTRTXfull_l and InstrCompl flags are used to control the

access. The access does not depend on the value of any other flags.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-33

Debug Register Reference
Table 10-15 Behavior of write accesses to EXT-DTRRX

Access
modea Flagb Flag

value
Action

New
DTRRXfull

New
DTRRXfull_l

Non-
blocking

DTRRXfull_l 0 Writes to DTRRXc. 1c 1c

1 Write is ignored. Unchanged Unchanged

Stall DTRRXfull 0 Writes to DTRRXc. 1c 1c

1 Stall until DTRRXfull = 0 - -

Fast InstrCompl 0 Stall until (InstrCompl = 1) - -

1 Writes to DTRRXc, d and issue the
instruction from the ITRc, e

1c 1c

a. For more information see EXT-DTR Access Mode, bits [21:20] on page 10-16.
b. This column indicates which of the DTRTXfull, DTRTXfull_l and InstrCompl flags are used to control the access. The

access does not depend on the value of any other flags.
c. If the write is made through the Memory-mapped interface and the Software Lock is set, the registers are read-only and

DTRRX, DTRRXfull, DTRRXfull_l, InstrCompl and InstrCompl_l are unchanged. No instruction is issued in Fast
Mode. For more information see Permission summaries for Memory-mapped and external debug interface on
page 5-36.

d. If DTRRXfull is 1, the values of DTRRX, DTRRXfull, and DTRRXfull_l become UNPREDICTABLE.
e. If DSCR[6], the Sticky Precise Data Abort bit, is set to 1, the instruction is not issued. InstrCompl and InstrCompl_l are

unchanged, and the values of DTRRX, DTRRXfull and DTRRXfull_l become UNPREDICTABLE. For more information
see Sticky Precise Abort, bit [6] on page 10-11.
Otherwise, the instruction is issued and InstrCompl and InstrCompl_l are cleared to 0.
10-34 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
10.3.2 Target to Host Data Transfer Register (DTRTX)

The DTRTX is register 35, at offset 0x08C.

v6, v6.1 DTRTX was previously named wDTR. EXT-DTRTX is not defined in ARMv6. However,
the functionality must be implemented as part of the external debug interface.

v7 The Extended CP14 Interface instructions that access EXT-DTRTX, if implemented, are
UNPREDICTABLE in Debug state. See Internal and external views of DSCR and DTR on
page 5-16 and Extended CP14 interface on page 5-25 for more details.

Table 10-16 shows the layout of the DTRTX.

In all Debug versions there are two views of DTRTX:

• INT-DTRTX, the internal view

• EXT-DTRTX, the external view.

See Internal and external views of DSCR and DTR on page 5-16 for definitions of the internal and external
views.

The behavior on various accesses to the DTRTX is described in the following tables:

• Table 10-17 shows the behavior of accesses to INT-DTRTX

• Table 10-18 on page 10-36 shows the behavior of read accesses to EXT-DTRTX

• Table 10-19 on page 10-37 shows the behavior of write accesses to EXT-DTRTX.

Table 10-16 Target to Host Data Transfer Register bit definition

Bits Debug reset value Description

[31:0] UNPREDICTABLE Target to host data

Table 10-17 Behavior of accesses to INT-DTRTX

Access DTRTXfull Action New DTRTXfull

Read X Not possible. There is no operation that reads from INT-DTRTX. -

Write 0 Writes value to DTRTX. 1

1 UNPREDICTABLE. Unchanged
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-35

Debug Register Reference
Note
 • If the LDC instruction that writes to INT-DTRTX aborts, the value in DTRTX and the value of the

DTRTXfull flag are UNPREDICTABLE.

• The behavior on accesses to INT-DTRTX does not depend on the value of DTRTXfull_l, and accesses
to INT-DTRTXfull do not update the value of DTRTXfull_l.

Table 10-18 Behavior of read accesses to EXT-DTRTX

Access
modea Flagb Flag

value
Action

New
DTRTXfull

New
DTRTXfull_l

Non-
blocking

DTRTXfull_l 0 Returns UNPREDICTABLE value. Unchanged Unchanged

1 Returns DTRTX contents. 0c 0c

Stall DTRTXfull 0 Stalls until DTRTXfull = 1. - -

1 Returns DTRTX contents. 0c 0c

Fast InstrCompl 0 Stalls until (InstrCompl = 1). - -

1 Returns DTRTX contentsd. Issue the
instruction in the ITRc, e.

0c 0c

a. For more information see EXT-DTR Access Mode, bits [21:20] on page 10-16.
b. This column indicates which of the DTRTXfull, DTRTXfull_l and InstrCompl flags are used to control the access. The

access does not depend on the value of any other flags.
c. If the read is made through the Memory-mapped interface and the Software Lock is set, the registers are read-only and

DTRRXfull, DTRRXfull_l, InstrCompl and InstrCompl_l remain unchanged. No instruction is issued in Fast Mode. For
more information see Permission summaries for Memory-mapped and external debug interface on page 5-36.

d. If DTRTXfull is 0, this returns an UNPREDICTABLE value and the values of DTRTX, DTRTXfull and DTRTXfull_l
become UNPREDICTABLE.

e. The value returned is the value of DTRTX before the instruction issued modifies the state of the processor.
If DSCR[6], the Sticky Precise Data Abort bit, is set to 1, the instruction is not issued, InstrCompl and InstrCompl_l
remain unchanged, and the values of DTRTXfull and DTRTXfull_l become unpredictable. For more information see
Sticky Precise Abort, bit [6] on page 10-11.
Otherwise, the instruction is issued and InstrCompl and InstrCompl_l are cleared to 0.
10-36 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
10.3.3 Instruction Transfer Register (ITR)

The ITR is register 33, at offset 0x084.

v6, v6.1 ITR is not defined in ARMv6. However, it might have formed part of the external debug
interface.

v7 Writes through the Extended CP14 Interface of the CP14 register that maps to the ITR are
always UNPREDICTABLE.

The Instruction Transfer Register (ITR) allows the external debugger to feed ARM instructions into the core
for execution while in Debug state. The ITR is write-only.

Table 10-20 shows the layout of the ITR.

Writes to the ITR are UNPREDICTABLE when:

• not in Debug state

• DSCR[13], Execute ARM instructions enable, is set to 0.

Table 10-19 Behavior of write accesses to EXT-DTRTX

Access modea Flagb Flag value Action New DTRTXfull and DTRTXfull_l

X X X Updates DTRTX valuec. Unchanged

a. For more information see EXT-DTR Access Mode, bits [21:20] on page 10-16.
b. This column indicates which of the DTRTXfull, DTRTXfull_l and InstrCompl flags are used to control the access.

The access does not depend on the value of any other flags.
c. In the event of a race condition with writes to both INT-DTRTX and EXT-DTRTX occurring, the result is

UNPREDICTABLE. Writes to EXT-DTRTX must only be performed under controlled circumstances, for example
when the core is in Debug state.

Table 10-20 Instruction Transfer Register bit definition

Bits Access Debug reset value Description

[31:0] W UNPREDICTABLE ARM instruction to execute on the core
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-37

Debug Register Reference
Table 10-21 shows the behavior of writes to the ITR when in Debug state with DSCR[13] set to 1.

If the write is made through the Memory-mapped interface and the Software Lock is set to 1, writes to the
ITR are ignored, and the ITR, InstrCompl and InstrCompl_l remain unchanged. No instruction is issued.
For more information see Permission summaries for Memory-mapped and external debug interface on
page 5-36.

Table 10-21 Behavior of write accesses to ITR

Access
modea Flagb Flag

value
Action

New
InstrCompl

New
InstrCompl_l

Non-
blocking

InstrCompl_l 0 Write is ignored. Unchanged Unchanged

1 Issue instructionc. 0c 0c

Stall InstrCompl 0 Stall until (InstrCompl = 0). - -

1 Issue instructionc. 0c 0c

Fast Not applicable - Save instruction in ITRd. - -

a. For more information see EXT-DTR Access Mode, bits [21:20] on page 10-16.
b. This column indicates which of the DTRTXfull, DTRTXfull_l and InstrCompl flags are used to control the access.

The access does not depend on the value of any other flags.
c. If DSCR[6], the Sticky Precise Data Abort bit, is set to 1, the instruction is not issued and InstrCompl remains

unchanged. For more information see Sticky Precise Abort, bit [6] on page 10-11.
d. The instruction is saved in the ITR and is issued on a read of EXT-DTRTX or a write of EXT-DTRTX. For more

information see EXT-DTR Access Mode, bits [21:20] on page 10-16.
10-38 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
10.4 Breakpoint and watchpoint registers

This section contains the following subsections:

• Breakpoint Value Registers (BVRn)

• Breakpoint Control Registers (BCRn) on page 10-40

• Watchpoint Value Registers (WVRn) on page 10-48

• Watchpoint Control Registers (WCRn) on page 10-49

• Vector Catch Register (VCR) on page 10-54

• Event Catch Register (ECR) on page 10-57

10.4.1 Breakpoint Value Registers (BVRn)

The BVRs are registers 64-79, at offsets 0x100-0x13C.

Each BVR is associated with a BCR register:

• BVR0 with BCR0

• BVR1 with BCR1

This pattern continues up to:

• BVR15 with BCR15.

A pair of breakpoint registers, BVRn and BCRn, is called a Breakpoint Register Pair (BRPn).

The breakpoint value contained in this register corresponds to either an Instruction Virtual Address (IVA)
or a Context ID. Breakpoints can be set either on an IVA, a Context ID or an IVA/Context ID pair. For the
third case, two BRPs have to be linked (see Breakpoint Control Registers (BCRn) on page 10-40). A Debug
event is generated when both the IVA and the Context ID pair match at the same time.

See Memory addresses on page 2-13 for a definition of the IVA used to program a BVR.

Note
 Not all BVR registers support Context ID comparison.

Table 10-22 on page 10-40 shows the layout of the Breakpoint Value Registers.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-39

Debug Register Reference
10.4.2 Breakpoint Control Registers (BCRn)

The Breakpoint Control Registers are registers 80-95, at offsets 0x140-0x71C.

Table 10-23 shows the layout of the Breakpoint Control Registers.

Table 10-22 Breakpoint Value Register bit definition

Bits Access Debug reset value
Description

IVA comparison Context ID comparison

[31:2] RW UNPREDICTABLE Breakpoint address [31:2] Context ID [31:2]

[1:0] RWa UNPREDICTABLE Must be written as b00b Context ID [1:0]

a. If this BRP cannot be used for Context ID comparison, BVR[1:0] is RAZ/SBZP.
b. If the BRP can be used for Context ID comparison and is configured as for IVA comparison, then if BVR[1:0]

is not programmed as b00, breakpoint hit generation is UNPREDICTABLE.

Table 10-23 Breakpoint Control Register bit definition

Bits Access Versions
Debug reset
value

Description

[31:29] RAZ/SBZP All - Reserved

[28:24] RW v7 UNPREDICTABLE Breakpoint address mask, bits [28:24] on page 10-47

[23] RAZ/SBZP All - Reserved

[22:20] RW All UNPREDICTABLE Meaning of BVR, bits [22:20] on page 10-43

[19:16] RW All UNPREDICTABLE Linked BRP number, bits [19:16] on page 10-43

[15:14] RW v6.1, v7 UNPREDICTABLE Secure world control, bits [15:14] on page 10-43

[13:9] RAZ/SBZP All - Reserved

[8:5] RW All UNPREDICTABLE Byte address select, bits [8:5] on page 10-41

[4:3] RAZ/SBZP All - Reserved

[2:1] RW All UNPREDICTABLE Privileged mode control, bits [2:1] on page 10-41

[0] RW All UNPREDICTABLEa Breakpoint enable, bit [0] on page 10-41

a. In ARMv6, the enable bit resets as 0. On an ARMv7 processor, before programming DSCR[15:14] to enable debug, a
debugger must ensure that BCR[0] has a defined state.
10-40 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
Breakpoint enable, bit [0]

The meaning of the Breakpoint enable bit is as follows:

0 Breakpoint disabled

1 Breakpoint enabled.

Privileged mode control, bits [2:1]

The breakpoint can be conditional on the mode of the processor. The meanings of the privileged mode
control values are as follows:

b00 USR/SYS/SVC. Match any of User, System and Supervisor Modes.

This value is supported in ARMv7 only.

b01 Privileged. Match in any privileged mode.

b10 USR. Match in User Mode only.

b11 Any. Match in any mode.

For more information see Generation of Debug events on page 2-20.

Byte address select, bits [8:5]

The BVR is programmed with a word address. You can use this field to program the breakpoint so that it
hits only if certain byte addresses are accessed. The exact interpretation depends on the setting of the
Meaning of BVR bits, see Meaning of BVR, bits [22:20] on page 10-43.

Table 10-24 Breakpoint hit and miss generation and Byte address select values, when BRP
programmed for IVA match or IVA mismatch

CPSR This BRP programmed for:

J T State Instruction PC value a BCR[8:5] IVA match IVA mismatch

X X - Any address b0000 Miss Hit

0 0 ARM BVR AND 0xFFFFFFFC b1111 Hit Miss

b0000 Miss Hit

Any other value UNPREDICTABLE

Any other address bxxxx Miss Hit
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-41

Debug Register Reference
If the BRP is programmed for Context ID comparison (linked or unlinked), or an address mask field is used,
the byte address select comparison field must be programmed as follows:

b1111 the Byte address select field must be programmed to b1111.

bxxxx UNPREDICTABLE. Breakpoints and watchpoints might not be generated as expected.

In a processor with a trivial implementation of the Jazelle extension that does not provide hardware
acceleration of opcodes, writing a value to BCR[8:5] such that BCR[8] != BCR[7], or BCR[6] != BCR[5],
has UNPREDICTABLE results.

X 1 Thumb or
ThumbEE

BVR AND 0xFFFFFFFC bxx11 Hit Miss

bxx10 UNPREDICTABLE

bxx01 UNPREDICTABLE

bxx00 Miss Hit

(BVR AND 0xFFFFFFFC) + 2 b11xx Hit Miss

b10xx UNPREDICTABLE

b01xx UNPREDICTABLE

b00xx Miss Hit

Any other address bxxxx Miss Hit

1 0 Jazelle BVR AND 0xFFFFFFFC bxxx1 Hit Miss

bxxx0 Miss Hit

(BVR AND 0xFFFFFFFC) + 1 bxx1x Hit Miss

bxx0x Miss Hit

(BVR AND 0xFFFFFFFC) + 2 bx1xx Hit Miss

bx0xx Miss Hit

(BVR AND 0xFFFFFFFC) + 3 b1xxx Hit Miss

b0xxx Miss Hit

Any other address bxxxx Miss Hit

a. The instruction PC value is the address of the first unit of the instruction as described in Variable length instruction sets
on page 2-11. If this address is the address of a unit of the instruction other than the first unit, the behavior is as described
in Variable length instruction sets on page 2-11.

Table 10-24 Breakpoint hit and miss generation and Byte address select values, when BRP
programmed for IVA match or IVA mismatch (continued)

CPSR This BRP programmed for:

J T State Instruction PC value a BCR[8:5] IVA match IVA mismatch
10-42 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
These are little-endian byte addresses. This ensures that a breakpoint is triggered regardless of the
endianness of the instruction fetch. For example, if a breakpoint is set on a Thumb instruction by setting
BCR[8:5] = b0011, it is triggered if fetched little-endian with IVA[1:0] = b00, or if fetched big-endian with
IVA[1:0] = b10.

See also Variable length instruction sets on page 2-11.

Secure world control, bits [15:14]

v6 Bits [15:14] of BCRn are Reserved and RAZ/SBZP.

v6.1, v7 If the processor does not implement Security Extensions, bits [15:14] of BCRn are Reserved
and RAZ/SBZP.

If this processor implements Security Extensions, these bits allow the breakpoint to be conditional on the
world of the processor:

b00 breakpoint matches in both Nonsecure and Secure worlds

b01 breakpoint matches only in Nonsecure world

b10 breakpoint matches only in Secure world

b11 Reserved.

See also Generation of Debug events on page 2-20.

Linked BRP number, bits [19:16]

If this BRP is configured for linked or unlinked Context ID match, or for unlinked Instruction Virtual
Address match or mismatch, BCR[19:16] must be programmed as b0000.

Otherwise, this BRP is configured for linked Instruction Virtual Address match or mismatch, and the binary
number encoded in BCR[19:16] indicates another BRP to link this one with.

If a BRP is linked with itself, it is UNPREDICTABLE whether a Breakpoint Debug event is generated or not.

If the BRP that this BRP is linked to is not configured for linked Context ID match, it is UNPREDICTABLE
when Breakpoint Debug events might be generated.

See also Generation of Debug events on page 2-20.

Meaning of BVR, bits [22:20]

v6 bit [22] is RAZ on v6 Debug implementations.

v6.1, v7 bit [22] is implemented for all BRPs. See also Variable length instruction sets on page 2-11
regarding limitations on the use of the mismatch capability on v6.1 Debug.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-43

Debug Register Reference
The meanings of the Meaning of BVR values are as follows:

b000 Unlinked Instruction Virtual Address match

Compare this BVR[31:2] and BCR[8:5] against the IVA bus, and the state of the processor
against this BCR[15:14,2:1]. Generate a Breakpoint Debug event on a joint IVA match and
state match.

BCR[19:16] must be b0000.

b001 Linked Instruction Virtual Address match

Compare this BVR[31:2] and BCR[8:5] against the IVA bus, and the state of the processor
against this BCR[15:14,2:1]. This BRP is linked with the one indicated by BCR[19:16].
Generate a Breakpoint Debug event on a joint IVA match, Context ID match and state
match.

b010 Unlinked Context ID match

Compare this BVR[31:0] against the CP15 Context ID (register 13), and the state of the
processor against this BCR[15:14,2:1]. This BRP is not linked with any other one. Generate
a Breakpoint Debug event on a joint Context ID match and state match.

BCR[8:5] for this BRP must be programmed to b1111, otherwise the generation of
breakpoint events is UNPREDICTABLE.

BCR[19:16] must be b0000.

Note
 In ARMv6, breakpoint hit generation is disabled in this case if Monitor Debug-mode is

selected and the processor is in a privileged mode.

b011 Linked Context ID match

Compare this BVR[31:0] against the CP15 Context ID (register 13). Another BRP (of the
BCR[21:20] = b01 type) or WRP (with WCR[20] = 1) is linked with this BRP. Generate a
Breakpoint/Watchpoint Debug event on a joint IVA/DVA match and Context ID match.

For this BRP, BCR[8:5] must be programmed to b1111, BCR[15:14] must be programmed
to b00, and BCR[2:1] must be programmed to b11, otherwise the generation of breakpoint
events is UNPREDICTABLE.

BCR[19:16] must be b0000.

If the state of the processor is to be tested for this breakpoint, the required values for
BCR[15:14,2:1] must be programmed in the linked BCR/WCR registers.
10-44 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
b100 Unlinked Instruction Virtual Address mismatch

Compare this BVR[31:2] and BCR[8:5] against the IVA bus, and the state of the processor
against this BCR[15:14,2:1]. Generate a Breakpoint Debug event on a joint IVA mismatch
(not equal) and state match.

BCR[19:16] must be b0000.

Note
 This feature is not supported in v6 Debug.

In v6.1 Debug, breakpoint hit generation is disabled in this case if Monitor Debug-mode is
selected and the processor is in a privileged mode.

b101 Linked Instruction Virtual Address mismatch

Compare this BVR[31:2] and BCR[8:5] against the IVA bus, and the state of the processor
against this BCR[15:14,2:1]. This BRP is linked with the one indicated by BCR[19:16].
Generate a Breakpoint Debug event on a joint IVA mismatch (not equal), state match and
Context ID match.

Note
 This feature is not supported in v6 Debug.

In v6.1 Debug, breakpoint hit generation is disabled in this case if Monitor Debug-mode is
selected and the processor is in a privileged mode.

b11x Reserved

Behavior is UNPREDICTABLE.

If this BRP does not have Context ID comparison capability, bit [21] reads as zero.

Table 10-25 on page 10-46 shows which values are compared and which are not for each type of BRP. Table
entries in bold typewriter indicate an element of the comparison that is made. Reading across the
Comparison columns for a row of the table gives the comparison to be made. For example, for the Linked
IVA mismatch (b001), the comparison is:

Not (Equals[IVA] && Set[Byte lanes]) && Match[State] && Link[Linked Breakpoint]
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-45

Debug Register Reference
Table 10-25 Meaning of BVR bits summary

Value Description
Comparison

IVAa, b Byte lanesc Context IDd Statee Linked Notes

b000 IVAa match Equals && Set && Match -

b001 Linked IVA match Equals && Set && Match && Link f

b010 Context ID Equals && Match g, h

b011 Linked Context ID Equals && Link g, i

b100 IVAa mismatch Not (Equals && Set) && Match h

b101 Linked IVAa
mismatch

Not (Equals && Set) && Match && Link f, h

b11x Reserved - - - - - -

a. IVA = Instruction Virtual Address.
b. Matching IVA[31:2] against BVR[31:2]. If the breakpoint address mask bits [28:24] are set to a value other than

b00000, a masked comparison is used. See Breakpoint address mask, bits [28:24] on page 10-47.
c. IVA byte lanes. BCR[8:5] indicate the byte lanes to be compared, see Byte address select, bits [8:5] on page 10-41.
d. Matching CID[31:0] against BVR[31:0].
e. Processor state comparison made, according to value of BCR[15:14, 2:1], see Secure world control, bits [15:14] on

page 10-43 and Privileged mode control, bits [2:1] on page 10-41.
f. The Context ID is compared against the value of the linked breakpoint and a breakpoint event is only generated when

both conditions match. If the linked breakpoint is not capable of Context ID comparison, or is not configured for
linked Context ID match, the generation of breakpoint events is UNPREDICTABLE.

g. BCR[8:5] for this BRP must be programmed to b1111; otherwise the generation of Breakpoint Debug events is
UNPREDICTABLE.

h. In ARMv6, these events are ignored in privileged modes when Monitor Debug-mode is selected. In ARMv7, these
events are generated. Care must therefore be taken when programming BCR[2:1] (supervisor access control) to
prevent the processor entering an unrecoverable state. See unpredictable behavior on Software Debug events on
page 2-14.

i. See Linked Context ID matching on page 10-47.
10-46 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
Linked Context ID matching

For linked Context ID matching, the IVA of the instruction or DVA of the data access is compared with the
linked BVR or WVR. A linked breakpoint is configured for either match or mismatch. Only if both
conditions are true will the Breakpoint or Watchpoint Debug event be generated.

If no breakpoints or watchpoints are linked to this breakpoint, no Debug events will be generated. If a
breakpoint that is linked to this breakpoint is not configured for linked IVA match or IVA mismatch the
generation of Breakpoint Debug events is UNPREDICTABLE.

For the BRP that is configured for linked Context ID matching, BCR[15:14] must be programmed to b00,
and BCR[2:1] must be programmed to b11. If these bits are not programmed correctly, the generation of
linked breakpoint or watchpoint events is UNPREDICTABLE. If the state of the processor is to be tested for
this breakpoint, the required values for BCR/WCR[15:14,2:1] must be programmed in the linked BCR or
WCR registers.

Breakpoint address mask, bits [28:24]
v6, v6.1 Bits [28:24] of BCRn are Reserved and RAZ/SBZP.

v7 Breakpoint address masks are optional. If not implemented, bits [28:24] are RAZ/SBZP.

This field can be used to break on a range of addresses by masking lower order address bits out of the
breakpoint comparison. The meaning of Breakpoint address mask values is as follows:

b00000 no mask

b00001 Reserved

b00010 Reserved

b00011 0x00000007 mask for instruction address

b00100 0x0000000F mask for instruction address

b00101 0x0000001F mask for instruction address

. .

. .

. .

b11111 0x7FFFFFFF mask for instruction address.

The IVA mismatch function can be combined with a masked address. If BCR[28:24] != b00000 and
BCR[22] = 1, the address comparison portion of breakpoint generation succeeds for all addresses outside of
the masked address region.

If BCR[28:24] != b00000, BCR[8:5] must be set to b1111, otherwise the behavior is UNPREDICTABLE.

If BCR[28:24] != b00000, the corresponding BVR bits that are not being included in the comparison must
be zero, otherwise the behavior is UNPREDICTABLE.

If this BRP does not support breakpoint address masking, these bits read as zero.

There is no encoding for a full 32-bit mask. The same effect of a break anywhere breakpoint can be achieved
by setting BCR[22] to 1 (selecting an IVA mismatch) and BCR[8:5] to b0000.

If this BRP is programmed for Context ID comparison, this field must be programmed to b00000.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-47

Debug Register Reference
10.4.3 Watchpoint Value Registers (WVRn)

The WVRs are registers 96-111, at offsets 0x180-0x1BC.

Each WVR is associated with a WCR register:

• WVR0 with WCR0

• WVR1 with WCR1

• ...

• WVR15 with WCR15.

A pair of watchpoint registers, WVRn and WCRn, is called a Watchpoint Register Pair (WRPn).

The watchpoint value contained in this register always corresponds to a Data Virtual Address (DVA). See
Memory addresses on page 2-13 for a definition of the DVA.

Watchpoints can be set either on a DVA or on a DVA/Context ID pair. For the second case a WRP and a BRP
with Context ID comparison capability have to be linked, see Watchpoint Control Registers (WCRn) on
page 10-49. A Debug event is generated when both the DVA and the Context ID pair match at the same time.

Table 10-26 shows the layout of the Watchpoint Value Registers.

Table 10-26 Watchpoint Value Register bit definition

Bits Access Debug reset value Description

[31:2] RW UNPREDICTABLE Watchpoint value bits [31:2]

[1:0] RAZ/SBZP - Reserved
10-48 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
10.4.4 Watchpoint Control Registers (WCRn)

The WCRs are registers 112-127, at offsets 0x1C0-0x1FC.

Each of these registers contains all the necessary control bits for setting appropriately either a simple
watchpoint or a linked watchpoint.

Table 10-27 shows the layout of the Watchpoint Control Registers.

Watchpoint enable, bit [0]

The meaning of the Watchpoint enable values is as follows:

0 Watchpoint disabled

1 Watchpoint enabled.

Table 10-27 Watchpoint Control Register bit definition

Bits Access Versions
Debug reset
value

Description

[31:29] RAZ/SBZP All 0 Reserved

[28:24] RW v7 UNPREDICTABLE Watchpoint address mask, bits [28:24] on page 10-53

[23:21] RAZ/SBZP All 0 Reserved

[20] RW All UNPREDICTABLE Enable linking, bit [20] on page 10-53

[19:16] RW All UNPREDICTABLE Linked BRP number, bits [19:16] on page 10-52

[15:14] RW v6.1, v7 UNPREDICTABLE Secure world control, bits [15:14] on page 10-52

[13] RAZ/SBZP All 0 Reserved

[12:5] RW All UNPREDICTABLE Byte address select, bits [12:5] on page 10-50

[4:3] RW All UNPREDICTABLE Load/Store access control, bits [4:3] on page 10-50

[2:1] RW All UNPREDICTABLE Privileged access control, bits [2:1] on page 10-50

[0] RW All UNPREDICTABLEa Watchpoint enable, bit [0]

a. In ARMv6, the enable bit resets as 0. On an ARMv7 processor, before programming DSCR[15:14] to enable debug, a
debugger must ensure that BCR[0] has a defined state.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-49

Debug Register Reference
Privileged access control, bits [2:1]

The watchpoint can be conditional on the privilege of the access. The meaning of the privileged access
control values is as follows:

b00 Reserved.

b01 Privileged. Match only privileged accesses.

b10 USR. Match only non-privileged accesses.

b11 Any. Match all accesses.

Note
 For all cases the match refers to the privilege of the access, not the mode of the processor. For example, if
the watchpoint is configured to match privileged accesses only (b01), and the processor executes an LDRT or
STRT instruction in a privileged mode, the watchpoint does not match.

Load/Store access control, bits [4:3]

The watchpoint can be conditional on the type of access being done. The meaning of the Load/Store access
control values is as follows:

b00 Reserved.

b00 Load, load exclusive, or swap.

b00 Store, store exclusive or swap. A store exclusive matches whether or not it succeeds.

b00 Any type of access.

Byte address select, bits [12:5]

v6, v6.1 Bits [12:9] of WCRn are Reserved and RAZ/SBZP.

v7 It is IMPLEMENTATION DEFINED whether bits [12:9] of WCRn can be programmed.

WVRs are programmed with word-aligned addresses. You can use this field to program the watchpoint so
that it hits only if certain byte addresses are accessed.

Table 10-28 on page 10-51 and Table 10-29 on page 10-51 show the meaning of the byte address select
values.
10-50 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
In ARMv7, it is IMPLEMENTATION DEFINED whether bits [12:9] of WCRn can also be programmed. If they
can be programmed, then WVRn can be programmed with a 64-bit-aligned address (WVRn[2] = 0) and
WCRn programmed to match any of the 8-bytes within that 64-bit value.

If WVRn[2] = 1 (indicating a word aligned, but not a 64-bit-byte aligned address), then bits [12:9] of WCRn
must be programmed with zero. If WVRn[2] = 1 and WCRn[9:5] != b0000, Watchpoint Debug event
generation is UNPREDICTABLE.

If they cannot be programmed, only four byte address select bits are implemented, and WCRn[12:9] are
ignored and read-as-zero.

This allows the same programming model on both implementation options.

Table 10-28 Meaning of Byte address select values (word-aligned address)

Value Description

b00000000 watchpoint never hits

bxxxxxxx1 watchpoint hits if byte at address (WVR[31:0] & 0xFFFFFFFC) + 0 is accessed

bxxxxxx1x watchpoint hits if byte at address (WVR[31:0] & 0xFFFFFFFC) + 1 is accessed

bxxxxx1xx watchpoint hits if byte at address (WVR[31:0] & 0xFFFFFFFC) + 2 is accessed

bxxxx1xxx watchpoint hits if byte at address (WVR[31:0] & 0xFFFFFFFC) + 3 is accessed

Table 10-29 Meaning of Byte address select values (doubleword-aligned address)

Value Description

bxxx1xxxx watchpoint hits if byte at address (WVR[31:0] & 0xFFFFFFF8) + 4 is accessed

bxx1xxxxx watchpoint hits if byte at address (WVR[31:0] & 0xFFFFFFF8) + 5 is accessed

bx1xxxxxx watchpoint hits if byte at address (WVR[31:0] & 0xFFFFFFF8) + 6 is accessed

b1xxxxxxx watchpoint hits if byte at address (WVR[31:0] & 0xFFFFFFF8) + 7 is accessed
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-51

Debug Register Reference
Note
 These are little-endian byte addresses. This ensures that, on ARMv6 processors that implement
word-invariant memory models, a watchpoint is triggered regardless of the way it is accessed. For example,
if a watchpoint is set on a certain byte in memory by setting WCR[8:5] = b0001, and Rn contains a 4-byte
aligned address, then:

• LDRB Rd,[Rn,0] triggers the watchpoint in the little-endian and BE-8 memory models

• LDRB Rd,[Rn,3] triggers the watchpoint in the BE-32 memory model.

BE-32 is not supported in the ARMv7 Architecture.

Secure world control, bits [15:14]

v6 Bits [15:14] of WCRn are Reserved and RAZ/SBZP.

v6.1, v7 If the processor does not implement Security Extensions, bits [15:14] of WCRn are
Reserved and RAZ/SBZP.

If this processor implements Security Extensions then these bits allow the watchpoint to be conditional on
the security of the world making the access:

b00 watchpoint matches accesses made in both Nonsecure and Secure world

b01 watchpoint only matches accesses made in Nonsecure world

b10 watchpoint only matches accesses made in Secure world

b11 Reserved.

If this processor does not implement Security Extensions these bits are Reserved and read-as-zero.

Note
 For all cases the match refers to the security world of the processor, not the security of the access. For
example, on a processor that implements the Virtual Memory System Architecture (VMSA), the watchpoint
does not match when all of the following apply:

• the watchpoint is configured to match in Nonsecure world only (b01)

• the processor is executing code in the Secure world (SCR[0] = 0 or in Monitor Mode)

• the address accessed is in a page marked as nonsecure in the page tables.

Linked BRP number, bits [19:16]

The binary number encoded here indicates a BRP to link this one with.

If the BRP this WRP is linked to is not configured for linked Context ID match, it is UNPREDICTABLE when
Watchpoint Debug events might be generated.

If linking is not enabled, bits [19:16] must be zero.
10-52 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
Enable linking, bit [20]

When this bit is set to 1, this watchpoint is linked with the BRP selected by the linked BRP number field:

0 linking disabled

1 linking enabled.

Watchpoint address mask, bits [28:24]
v6, v6.1 Bits [28:24] of WCRn are Reserved and RAZ/SBZP.

v7 Watchpoint address masks are optional. If not implemented, bits [28:24] are RAZ/SBZP.

This field can be used to watch a range of addresses by masking lower order address bits out of the
watchpoint comparison:

b00000 no mask

b00001 Reserved

b00010 Reserved

b00011 0x00000007 mask for data address

b00100 0x0000000F mask for data address

b00101 0x0000001F mask for data address

... ...

b11111 0x7FFFFFFF mask for data address.

If WCR[28:24] != b00000 then WCR[12:5] must be b11111111 (or WCR[8:5] must be b1111, if bits [12:9]
are not implemented), otherwise the behavior is UNPREDICTABLE.

If WCR[28:24] != b00000 then the corresponding WVR bits that are not being included in the comparison
must be zero, otherwise the behavior is UNPREDICTABLE.

If this WRP does not support watchpoint address masking, these bits read as zero.

To watch for a write to any byte in an 8-byte aligned object of size 8 bytes, debuggers are recommended to
set WCR[28:24] = 0x7, and WCR[12:5] = b11111111, as this is compatible with both implementations with
8 byte address select bits and implementations with 4 byte address select bits, because in the latter case
writes to WCR[12:9] are ignored.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-53

Debug Register Reference
10.4.5 Vector Catch Register (VCR)

The VCR is register 7, at offset 0x01C.

v6 Bits [31,30,28:25,15,14,12:10] are not implemented. These bits are Reserved and
RAZ/SBZP.

v6.1 Bits [31,30,28:25,15,14,12:10] are not implemented on processors that do not implement
Security Extensions. If the processor does implement Security Extensions, these bits are
optional. If these bits are not implemented, they are Reserved and RAZ/SBZP.

For forwards compatibility with ARMv7, ARM Limited recommends that these bits are
implemented on processors that implement Security Extensions.

v7 Bits [31,30,28:25,15,14,12:10] are not implemented on processors that do not implement
Security Extensions. If the processor does implement Security Extensions, these bits are
required. If these bits are not implemented, they are Reserved and RAZ/SBZP.

If a bit in the VCR is 1, when an instruction is prefetched from the corresponding vector address and
committed for execution, either a Debug exception or a Debug State entry can be generated.

For more information, see Vector Catch Debug events on page 2-13.

The vector catch behaves exactly like a BRP set with BVR[31:2] set to the top 30-bits of the exception vector
address, and BCR[8:5] set to b1111 and programmed for IVA match.

Note
 Under this model, any kind of prefetch from an exception vector can trigger a vector catch, not just those
due to exception entries.

Instruction fetches from non word-aligned addresses within the 4-bytes of the exception vector address also
trigger vector catches, for example, Thumb instruction fetches from the second half-word of the address.

However, unlike breakpoints, if the vector catch address matches a unit of an instruction in a variable length
instruction set that is not the first unit of the instruction, vector catch generation is UNPREDICTABLE. See
Variable length instruction sets on page 2-11 for more information on breakpoint generation and variable
length instruction sets.

Bits [7:6,4:0] are required for all implementations.

Table 10-30 on page 10-55 shows the bit definition for processors that implement
bits [31:30,28:25,15:14,12:10]. All such processors implement Security Extensions. Therefore each vector
address is relative to a vector base address register. The table uses the following abbreviations:

VBAR Vector Base Address Register (Secure)

VBARNS Vector Base Address Register (Nonsecure)

MVBAR Monitor Vector Base Address Register.

If bits [31:8] are implemented:

• catches due to bits [15:0] are only triggered in Secure world

• catches due to bits [31:25] are only triggered in Nonsecure world.
10-54 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
If bits [31:8] are not implemented and the processor implements Security Extensions (v6.1 only), then
catches due to bits [7:0] are triggered in either world, with the current world vector base address used as the
base-address for the vector catch match.

Table 10-30 Vector Catch Register bit definition, for processors that implement Security Extensions

Bits Access Vector Catch enable World Normal address High vector address

[31] RW FIQ VE = 0 Nonsecure VBARNS+0x0000001C 0xFFFF001C

VE = 1 Nonsecure Most recent nonsecure FIQ address

[30] RW IRQ VE = 0 Nonsecure VBARNS+0x00000018 0xFFFF0018

VE = 1 Nonsecure Most recent nonsecure IRQ address

[29] RAZ/SBZP Reserved - - -

[28] RW Data Abort Nonsecure VBARNS+0x00000010 0xFFFF0010

[27] RW Prefetch abort Nonsecure VBARNS+0x0000000C 0xFFFF000C

[26] RW SVC Nonsecure VBARNS+0x00000008 0xFFFF0008

[25] RW Undefined Nonsecure VBARNS+0x00000004 0xFFFF0004

[24:16] RAZ/SBZP Reserved - - -

[15] RW FIQ Secure MVBAR+0x0000001C MVBAR+0x0000001C

[14] RW IRQ Secure MVBAR+0x00000018 MVBAR+0x00000018

[13] RAZ/SBZP Reserved - - -

[12] RW Data Abort Secure MVBAR+0x00000010 MVBAR+0x00000010

[11] RW Prefetch abort Secure MVBAR+0x0000000C MVBAR+0x0000000C

[10] RW SMC Secure MVBAR+0x00000008 MVBAR+0x00000008

[9:8] RAZ/SBZP Reserved - - -

[7] RW FIQ VE = 0 Secure VBAR+0x0000001C 0xFFFF001C

VE = 1 Secure Most recent Secure FIQ address

[6] RW IRQ VE = 0 Secure VBAR+0x00000018 0xFFFF0018

VE = 1 Secure Most recent Secure IRQ address

[5] RAZ/SBZP Reserved - - -

[4] RW Data Abort Secure VBAR+0x00000010 0xFFFF0010

[3] RW Prefetch abort Secure VBAR+0x0000000C 0xFFFF000C

[2] RW SVC Secure VBAR+0x00000008 0xFFFF0008

[1] RW Undefined Secure VBAR+0x00000004 0xFFFF0004

[0] RW Reset - 0x00000000 0xFFFF0000
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-55

Debug Register Reference
Note
 Debug Reset Values

In ARMv6, all defined bits of the VCR reset as 0. On an ARMv7 processor, the reset values
are UNPREDICTABLE, and before programming DSCR[15:14] to enable debug, a debugger
must ensure that the VCR has a defined state.

If the processor does not implement Security Extensions, bits [31:8] are not implemented and read as zero.
Table 10-31 shows the VCR definition for processors that do not implement Security Extensions. Because
the vector base address registers are part of the Security Extensions, the vector addresses are absolute.

Note
 Debug Reset Values

In ARMv6, all defined bits of the VCR reset as 0. On an ARMv7 processor, the reset values
are UNPREDICTABLE, and before programming DSCR[15:14] to enable debug, a debugger
must ensure that the VCR has a defined state.

Bits [28:27,12] (where implemented) and bits [4:3] must be programmed as zero if Monitor Debug-mode is
configured and enabled. See unpredictable behavior on Software Debug events on page 2-14.

Table 10-31 Vector Catch Register bit definition, for processors without Security
Extensions

Bits Access Vector Catch enable Normal address High vectors address

[31:8] RAZ/SBZP Reserved - -

[7] RW FIQ VE = 0 0x0000001C 0xFFFF001C

VE = 1 Most recent FIQ address

[6] RW IRQ VE = 0 0x00000018 0xFFFF0018

VE = 1 Most recent IRQ address

[5] RAZ/SBZP Reserved - -

[4] RW Data Abort 0x00000010 0xFFFF0010

[3] RW Prefetch abort 0x0000000C 0xFFFF000C

[2] RW SVC 0x00000008 0xFFFF0008

[1] RW Undefined 0x00000004 0xFFFF0004

[0] RW Reset 0x00000000 0xFFFF0000
10-56 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
10.4.6 Event Catch Register (ECR)

The ECR is register 9,at offset 0x024, and is not defined in ARMv6.

The ECR allows the external debugger or debug monitor to configure the debug logic so that it triggers a
Debug state entry on certain conditions.

Table 10-32 shows the layout of the Event Catch Register.

OS Unlock Catch, bit [0]

The meanings of OS Unlock Catch values are as follows:

0 Catch disabled

1 Catch enabled.

If this bit is 1, an OS Unlock Catch Debug event is generated on unlocking of the OS Lock, see OS Lock
Access Register (OSLAR) on page 10-58. The OS Unlock Catch Debug event is a Halting Debug event, see
Halting Debug events on page 2-18.

OS Unlock Catch Debug events are only generated on clearing of the OS Lock. That is, its transition from
locked to unlocked.

Note
 In the scenario where a debugger is monitoring an application running on top of an OS with save/restore
capability, this event indicates the right time when the debug session can continue.

If an implementation supports debug over power-down, then it must support the OS Unlock Catch Debug
event. If the implementation does not support debug over power-down, the OS Unlock Catch Debug event
is not supported and this bit is read-as-zero.

Table 10-32 Event Catch Register bit definition

Bits Access Debug reset value Description

[31:1] RAZ/SBZP - Reserved

[0] RW 0 OS Unlock Catch, bit [0]
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-57

Debug Register Reference
10.5 Operating-system save and restore registers

v6, v6.1 These registers are not defined in ARMv6.

v7 If an implementation supports debug over power-down, then it must support the OS save and
restore registers. If the implementation does not support debug over power-down, these
registers are implemented as read-as-zero/write-ignored.

In SinglePower systems, it is IMPLEMENTATION DEFINED whether the OS Save and Restore
Registers are implemented.

This section contains the following subsections:

• OS Lock Access Register (OSLAR)

• OS Lock Status Register (OSLSR) on page 10-59

• OS Save and Restore Register (OSSRR) on page 10-60.

10.5.1 OS Lock Access Register (OSLAR)

The OSLAR is register 192, at offset 0x300.

The layout of the OSLAR is shown in Table 10-33.

Writing the key value 0xC5ACCE55 to the OS Lock Access Register (OSLAR) locks the debug registers, so
that accesses to locked registers return a slave-generated error response. Writing any other value to OSLAR
unlocks them if they are currently locked.

Writing the key also has the side effect of resetting the internal save/restore counter.

For details of error responses when accessing the debug registers, see Access permissions on page 5-20.

Note
 A write to OSLAR is not guaranteed to lock/unlock the OS Lock until the end of the next Data
Synchronization Barrier (DSB) operation. See Synchronization of debug register updates on page 5-18 for
details.

If bit [0] of the Event Catch Register is set to 1 at the point when the OS Lock is unlocked, an OS Unlock
Catch Debug event is generated. See OS Unlock Catch, bit [0] on page 10-57 for details.

Table 10-33 OS Lock Access Register

Bits Access Description

[31:0] RAZ/W OS Lock Access
10-58 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
10.5.2 OS Lock Status Register (OSLSR)

The OSLSR is register 193, at offset 0x304.

Table 10-34 shows the layout of the OSLSR.

Lock implemented, bit [0]

This bit reads 1 if it is possible to set the OS Lock for this processor. If this bit reads 0, OS Lock and OS
Save/Restore registers are not implemented and the entire register reads as zero.

Locked, bit [1]

The meanings of the Locked bit are as follows:

0 Lock not set.

1 Lock set. Writes ignored.

On debug logic reset:

• if DBGOSLOCKINIT is LOW this lock is not set

• if DBGOSLOCKINIT is HIGH this lock is set.

32-bit access, bit [2]

This bit always reads as 0. It indicates that a 32-bit access is needed to write the key to the OS Lock Access
Register.

Table 10-34 OS Lock Status Register

Bits Access Debug reset value Description

[31:3] RAZ - Reserved

[2] RO 0 32-bit access, bit [2]

[1] RO DBGOSLOCKINIT Locked, bit [1]

[0] RO 1 Lock implemented, bit [0]
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-59

Debug Register Reference
10.5.3 OS Save and Restore Register (OSSRR)

The OSSRR is register 194, at offset 0x308.

Table 10-35 shows the layout of the OSSRR.

This register works in conjunction with an internal sequence counter, so that a series of reads or writes of
this register return or restore the complete debug state of the processor that would be lost when the core is
powered down.

The OS Lock must be set before accessing the OSSRR, see OS Lock Access Register (OSLAR) on
page 10-58.

See Operating System Save and Restore support on page 5-9 for a description of using the OS Save and
Restore Registers.

Table 10-35 OS Save and Restore Register

Bits Access Debug reset value Description

[31:0] RW UNPREDICTABLE OS Save/Restore
10-60 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
10.6 Memory system control registers

v6, v6.1 In some ARMv6 implementations a Cache Behavior Override Register (CBOR) and a TLB
Debug Control Register (TDCR) are provided in the IMPLEMENTATION DEFINED region of
the CP15 register space. In addition, primarily in v6.1 Debug implementations, the Debug
state MMU Control Register (DSMCR) and Debug state Cache Control Register (DSCCR)
are implemented as IMPLEMENTATION DEFINED extensions to CP14 as described below.

ARMv6 does not architecturally require such registers. However, these features are
recommended to assist debuggers in maintaining memory coherency avoiding costly
explicit coherency operations.

v7 In ARMv7, the DSMCR and DSCCR registers are mandatory; however, there may be
IMPLEMENTATION DEFINED limits on their behavior. The CP15 registers CBOR and TDCR
remain IMPLEMENTATION DEFINED.

The Debug State Cache Control Register (DSCCR) and Debug State MMU Control Register (DSMCR)
control cache and TLB behavior for memory operations issued by a debugger when the processor is in
Debug state.

They enable a debugger to request the minimum amount of intrusion to the processor caches, as permitted
by the implementation. It is IMPLEMENTATION DEFINED what levels of cache and TLB are controlled by these
requests, and it is IMPLEMENTATION DEFINED to what extent the intrusion will be limited.

The DSCCR also provides a mechanism for a debugger to force writes to memory through to the point of
coherency without the overhead of issuing additional operations.

The DSCCR and DSMCR controls must apply for all memory operations issued in Debug state when the
DSCR[19] Imprecise Aborts discarded bit is set to 1. It is IMPLEMENTATION DEFINED whether memory
operations issued in Debug state whilst this bit is not set to 1 are affected by the DSCCR and DSMCR.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-61

Debug Register Reference
10.6.1 Debug State Cache Control Register (DSCCR)

The DSCCR is register 10, at offset 0x028.

The DSCCR controls cache behavior in Debug state.

Table 10-36 shows the layout of the DSCCR.

Cache Line-Fill and Eviction, bits [1:0]

The meaning of the Cache Line-Fill values is as follows:

0 Request disabling of cache line-fills and evictions for memory operations issued by a
debugger when the processor is in Debug state

1 Normal operation of cache line-fills and evictions for memory operations issued by a
debugger when the processor is in Debug state.

When cache line-fill and eviction is disabled, all memory accesses that would be checked against a cache
are checked against the cache. If a match is found, the cached result is used. If no match is found the next
level of memory is used, but the result is not cached, and no cache entries are evicted.

The next level of memory can refer to looking in the next level of cache, or to accessing external memory,
depending on the numbers of levels of cache implemented.

When the processor is in Debug state, cache maintenance operations are not affected by the nDL and nIL
control bits, and have their normal architected behavior.

The behavior of memory hint instructions, PLD and PLI, is UNPREDICTABLE in Debug state when the
corresponding nDL or nIL control bit is set to 1.

Table 10-36 Debug State Cache Control Register bit definition

Bits Access Debug reset valuea Mnemonic Description

[31:3] RAZ/SBZP - - Reserved.

[2] RW UNPREDICTABLE nWT Force Write-through, bit [2] on page 10-63.

[1] RW/RAZ UNPREDICTABLE nIL/- Cache Line-Fill and Eviction, bits [1:0] /
Reserved.

[0] RW/RAZ UNPREDICTABLE nDL/- Cache Line-Fill and Eviction, bits [1:0] /
Reserved.

a. In ARMv6, all defined bits of the DSCCR reset as 0. On an ARMv7 processor, the reset values are UNPREDICTABLE,
and before issuing operations through the ITR with the processor in Debug state, a debugger must ensure that the
DSCCR has a defined state.
10-62 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
Force Write-through, bit [2]

The meaning of the Force Write-through values is as follows:

0 Force write-through behavior for memory operations issued by a debugger when the
processor is in Debug state

1 Normal operation for memory operations issued by a debugger when the processor is in
Debug state.

In Debug state, if the nWT bit is set to 1, on completion a write to memory the effect of the write must be
visible at all levels of memory to the Point of Coherency (PoC). The nWT control must be implemented at
all levels of memory to the PoC. This allows an External Debugger to write through to the PoC without
having to perform costly and intrusive cache clean operations.

Note
 nWT does not force the ordering of writes, and does not force writes to complete immediately. A debuggers
might have to insert a barrier operations to ensure ordering.

Permitted IMPLEMENTATION DEFINED limits

The DSCCR register is required. However, there can be IMPLEMENTATION DEFINED limits on its behavior.
Table 10-37 lists five permitted options for implementations (some of these options are orthogonal).
However, nWT must always be implemented to allow a debugger to ensure that writes are made to the point
of coherency.

Table 10-37 shows the limits on DSCCR behavior.

Table 10-37 Permitted IMPLEMENTATION DEFINED limits on DSCCR behavior

Limit Description Notes

Full DSCCR Bits [2:0]
implemented

-

No I-cache control bit [1] RAZ Instruction cache line-fill and eviction disable features not implemented.

Instruction fetches are disabled in Debug state. For most implementations no
instruction cache accesses take place in Debug state, and nIL is not required.

Unified cache bit [1] RAZ -

Cache evictions
always enabled

- nIL / nDL disables cache line-fills in Debug state. However cache evictions
might still take place even when these control bits are set to 0.

No line-fill control Bits [1:0]
RAZ

No cache line-fill and eviction disable features are implemented.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-63

Debug Register Reference
Interaction with Cache Behavior Override Register

On ARMv6 processors, a Cache Behavior Override Register (CBOR) might also be implemented in CP15.

Table 10-38 shows the relative precedence of the CBOR and the DSCCR according to the state of the
processor where a core implements both the Debug state Cache Control Register (DSCCR) and the CBOR.

A processor that does not implement Security Extensions has only WT, IL and DL settings in the CP15
Cache Behavior Override Register. Processors that implement Security Extensions can have separate
settings for, for example, NS_WT and S_WT in the CP15 Cache Behavior Override Register. For brevity
the full matrix of possibilities in this case is omitted from Table 10-38. For the behavior on such a processor,
duplicate Table 10-38, once for the Nonsecure case (for example NS_WT), once for the Secure case (for
example S_WT).

Table 10-38 Interaction of CP15 Cache Behavior Override Register (CBOR) and DSCCR

DSCCR setting CBOR setting Debug state Behavior

nWT = 1 WT = 0 X areas marked WB are write-back

nWT = X WT = 0 No areas marked WB are write-back

nWT = X WT = 1 X areas marked WB are write-through

nWT = 0 WT = X Yes areas marked WB are write-through

nDL = 1 DL = 0 X Data/Unified cache line-fills are enabled

nDL = X DL = 0 No Data/Unified cache line-fills are enabled

nDL = X DL = 1 X Data/Unified cache line-fills are disabled

nDL = 0 DL = X Yes Data/Unified cache line-fills are disabled

nIL = 1 IL = 0 X Instruction cache line-fills are enabled

nIL = X IL = 0 No Instruction cache line-fills are enabled

nIL = X IL = 1 X Instruction cache line-fills are disabled

nIL = 0 IL = X Yes Instruction cache line-fills are disabled
10-64 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
10.6.2 Debug State MMU Control Register (DSMCR)

The DSMCR is register 11, at offset 0x02C.

The DSMCR controls TLB behavior in Debug state. Table 10-39 shows the layout of the DSMCR.

TLB Loading, bits [1:0]

The meanings of the TLB loading values are as follows:

0 Request disabling of TLB load and flush for memory operations issued by a debugger when
the processor is in Debug state

1 Normal operation of TLB loading and flushing for memory operations issued by a debugger
when the processor is in Debug state.

When TLB load and flush is disabled, all memory accesses normally checked against a TLB are checked
against the TLB. If a match is found, the cached result is used. If no match is found the next level of
translation is performed, but the result is not cached in the TLB, and no TLB entries are evicted.

The next level of translation might mean looking in the next level TLB, or doing a page table walk,
depending on the numbers of levels of TLB implemented.

In Debug state, TLB maintenance operations are not affected by the nDUL/nIUL control bits, and have their
normal architected behavior.

Table 10-39 Debug State MMU Control Register bit definition

Bits Access
Debug reset
valuea Mnemonic Description

[31:4] RAZ / SBZP - - Reserved

[3] RW / RAZ UNPREDICTABLE nIUM/- Instruction TLB Matching, bit [3:2] on
page 10-66 / Reserved

[2] RW / RAZ UNPREDICTABLE nDUM/- Data/Unified TLB Matching, bit [3:2] on
page 10-66 / Reserved

[1] RW / RAZ UNPREDICTABLE nIUL/- Instruction TLB Loading, bits [1:0] / Reserved

[0] RW / RAZ UNPREDICTABLE nDUL/- Data/Unified TLB Loading, bits [1:0] / Reserved

a. In ARMv6, all defined bits of the DSMCR reset as 0. On an ARMv7 processor, the reset values are
UNPREDICTABLE, and before issuing operations through the ITR with the processor in Debug state, a debugger must
ensure that the DSMCR has a defined state.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-65

Debug Register Reference
TLB Matching, bit [3:2]

The meanings of the TLB matching values are as follows:

0 Request disabling of TLB matching for memory operations issued by a debugger when the
processor is in Debug state

1 Normal operation of TLB matching for memory operations issued by a debugger when the
processor is in Debug state.

When TLB matching is disabled, all memory accesses normally checked against a TLB are not checked
against the TLB. For every access the next level of translation is performed. The results are not cached in
the TLB, and no TLB entries are evicted. The next level of translation is used for every access.

The next level of translation might mean looking in the next level TLB, or doing a page table walk,
depending on the numbers of levels of TLB implemented.

Note
 If TLB matching is disabled, and TLB management functions have not been correctly performed by the
system being debugged (for example, if the TLB has not been flushed following a change to the translation
tables), memory accesses made by the debugger might not undergo the same virtual to physical memory
mapping results as the application being debugged.

A debugger can create temporary alternative memory mappings by altering the contents of the external page
tables and disabling all levels of TLB matching. However, for normal debugging operations, it is
recommended that this bit is set to 1.

Permitted IMPLEMENTATION DEFINED limits

The DSMCR register is required. However, there can be IMPLEMENTATION DEFINED limits on its behavior.
Table 10-40 lists six permitted options for implementations (some of these options are orthogonal).

Table 10-40 Permitted IMPLEMENTATION DEFINED limits on DSCCR behavior

Limit Description Notes

Full DSMCR Bits [2:0]
implemented

-

No I-TLB controls Bits [3,1]
RAZ

Instruction cache line-fill and eviction disable features not implemented.

Instruction fetches disabled in Debug state. For most implementations no
TLB accesses take place in Debug state, and nIUL and nIUM are not
required.

Unified TLB Bits [3,1]
RAZ

-

10-66 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
Interaction with TLB Debug Control Register

On ARMv6 processors, a TLB Debug Control Register (TDCR) can also be implemented in CP15.

Where a core implements both the Debug state MMU Control Register (DSMCR) and the TDCR,
Table 10-41 shows the relative precedence of the TDCR and the DSMCR according to the state of the
processor.

The same interaction applies for the IUM and IUL control bits in the TDCR, and the corresponding nIUM
and nIUL control bits in the DSMCR. If the TDCR provides controls for more than one level of TLB, these
controls interact with the DSMCR controls in the same way.

No matching
control

Bits [3:2]
RAZ

The TLB matching controls are not used to reduce the impact of debugging,
only for advanced debugging features. If not implemented, these bits read
as zero, although the processor behaves as if they were set to 1.

TLB evictions
always enabled

- nIUL / nDUL disable TLB loading in Debug state. However TLB evictions
can still take place even when these control bits are set to 0.

No loading control Bits [1:0]
RAZ

Table 10-40 Permitted IMPLEMENTATION DEFINED limits on DSCCR behavior (continued)

Limit Description Notes

Table 10-41 Interaction of CP15 TLB Debug Control Register (TDCR) and DSMCR

DSMCR setting TDCR setting Debug state Behavior

nDUM = 1 DUM = 0 X Data/Unified TLB matching enabled

nDUM = X DUM = 0 No Data/Unified TLB matching enabled

nDUM = X DUM = 1 X Data/Unified TLB matching disabled

nDUM = 0 DUM = X Yes Data/Unified TLB matching disabled

nDUL = 1 DUL = 0 X Data/Unified TLB loading enabled

nDUL = X DUL = 0 No Data/Unified TLB loading enabled

nDUL = X DUL = 1 X Data/Unified TLB loading disabled

nDUL = 0 DUL = X Yes Data/Unified TLB loading disabled
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-67

Debug Register Reference
A processor that does not implement Security Extensions has only IUM, DUM and related settings in the
TDCR. Processors that implement Security Extensions can have separate NS_IUM, S_IUM and related
settings in the TDCR. For brevity the full matrix of possibilities in this case is omitted from Table 10-41 on
page 10-67. For the behavior on such an implementation, duplicate Table 10-41 on page 10-67, once for the
Nonsecure case (NS_DUM and NS_DUL), once for the Secure case (S_DUM and S_DUL).
10-68 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
10.7 Management registers

These registers are not defined in ARMv6.

The layout of the Management Registers (registers 832-1023) is in line with the CoreSight Architecture
Specification.

10.7.1 Processor Identification Registers

These are registers 832-895, at offsets 0xD00-0xDFC.

Note
 The Extended CP14 Interface MRC instructions that map to these registers return UNPREDICTABLE values, and
the MCR instructions are ignored. These registers can be read through the CP15 interface.

These registers return the values stored in the main ID and feature registers of the processor. Writes to these
registers are ignored.

Table 10-42 Processor Identifier Registers

Register number Access Mnemonic Description

832 RO CPUID Main ID Register a

833 RO (RAZ)b CACHETYPE (-)b Cache Type Registera (Reserved)b

834 RO (RAZ)b TCMTYPE (-)b TCM Type Register a (Reserved)b

835 RO (RAZ)b TLBTYPE (-)b TLB Type Register a (Reserved)b

836 RO (RAZ)b MPUTYPE (-)b MPU Type Register a (Reserved)b

837 RO (RAZ)b MPAFF (-)b MP Affinity Registera (Reserved)b

838 RAZ - Reserved

839 RO (RAZ)b FEATID (-)b Feature ID Registera (Reserved)b

840 RO ID_PFR0 Processor Feature Register 0

841 RO ID_PFR1 Processor Feature Register 1

842 RO ID_DFR0 Debug Feature Register 0

843 RO ID_AFR0 Auxiliary Feature Register 0

844 RO ID_MMFR0 Processor Feature Register 0

845 RO ID_MMFR1 Processor Feature Register 1
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-69

Debug Register Reference
10.7.2 Integration Mode Control Register (ITCTRL)

The ITCTRL register is register 960, at offset 0xF00.

The ITCTRL register allows the device to switch from its default functional mode into Integration mode,
where the inputs and outputs of the device can be directly controlled for the purpose of integration testing
or topology detection. Once the processor is in this mode, the IMPLEMENTATION DEFINED Integration
Registers can be used to drive output values and to read inputs.

Table 10-43 shows the layout of the Integration Mode Control Register.

846 RO ID_MMFR2 Processor Feature Register 2

847 RO ID_MMFR3 Processor Feature Register 3

848 RO ID_ISAR0 ISA Feature Register 0

849 RO ID_ISAR1 ISA Feature Register 1

850 RO ID_ISAR2 ISA Feature Register 2

851 RO ID_ISAR3 ISA Feature Register 3

852 RO ID_ISAR4 ISA Feature Register 4

853 RO ID_ISAR5 ISA Feature Register 5

854-895 RAZ - Reserved

a. Implemented ID code registers, registers 832-839, return the same value as returned by the
instruction MRC p15,0,Rd,c0,c0,<opcode_2>, where <opcode_2> is the register number minus 832.
If the register is not implemented or Reserved, the register reads as zero. For details of these
registers, refer to the ARM Architecture Reference Manual.

b. These registers are optional. The information in brackets applies when the register is not
implemented.

Table 10-42 Processor Identifier Registers (continued)

Register number Access Mnemonic Description

Table 10-43 Integration Mode Control Register bit definition

Bits Access Debug reset value Description

[31:1] RAZ/SBZP - Reserved

[0] RW 0 Integration Mode Enable on page 10-71
10-70 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
Integration Mode Enable

The meanings of the Integration Mode Enable bit are as follows:

0 Normal operation

1 Integration Mode enabled.

When this bit is set to 1, the device reverts to an Integration Mode to enable integration testing or topology
detection. The Integration Mode behavior is IMPLEMENTATION DEFINED.

10.7.3 Claim Tag Set Register (CLAIMSET)

The Claim Tag Set Register is register 1000, at offset 0xFA0.

CLAIMSET bits do not have any specific functionality. The expected usage model is for an external
debugger and a debug monitor to set specific bits to 1 to claim the corresponding debug resources. ARMv7
processors implement eight claim tag bits.

Table 10-44 shows the layout of the Claim Tag Set Register.

Writing 1 to a specific claim tag set bit sets that claim tag. Writing 0 to a specific claim tag bit has no effect.
This register always reads 0xFF, indicating eight claim tags are implemented.

10.7.4 Claim Tag Clear Register (CLAIMCLR)

The Claim Tag Clear Register is register 1001, at offset 0xFB0.

Table 10-44 shows the layout of the Claim Tag Clear Register.

Writing 1 to a specific claim tag set bit clears that claim tag. Writing 0 to a specific claim tag bit has no
effect. Reading this register returns the current claim tag values.

Table 10-44 Claim Tag Set Register bit definition

Bits Access Debug reset value Description

[31:8] RAZ/SBZP - Reserved

[7:0] RAO/W 0xFF Claim tags

Table 10-45 Claim Tag Clear Register bit definition

Bits Access Debug reset value Description

[31:8] RAZ/SBZP - Reserved

[7:0] RW 0x00 Claim tags
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-71

Debug Register Reference
10.7.5 Lock Access Register (LAR)

The LAR is register 1004, at offset 0xFB0.

Note
 This register reads as zero and ignores writes when accessed through the external debug interface or
Extended CP14 Interface.

Where the external debug interface and Memory-mapped interface use the same port, external debug
interface accesses are distinguished by, for example, PADDRDBG[31] being set to 1, see PADDRDBG on
page 6-12.

Writes to the debug registers through the Memory-mapped interface are controlled via the Lock Access
Register. The purpose of this lock mechanism is to reduce the risk of accidental damage to the contents of
the debug registers. It does not, and cannot, prevent all accidental or malicious damage.

The Software Lock (as opposed to the OS Lock described in OS Lock Access Register (OSLAR) on
page 10-58) is cleared by writing the 0xC5ACCE55 key to the Lock Access Register (LAR). It is set by writing
any value other than 0xC5ACCE55 to the LAR.

Note
 The state of this lock is on debug power. It is unaffected by the core powering down.

This lock is set on reset of the debug power domain (that is, on PRESETDBGn or nSYSPORESET).

Table 10-46 shows the layout of the Lock Access Register.

Accesses through the Memory-mapped interface to locked debug registers are ignored, see Permissions in
relation to locks on page 5-21 for more information.

Table 10-46 Lock Access Register bit definition

Bits Access Description

[31:0] RAZ/W Lock access control. Write a 0xC5ACCE55 key to unlock the debug registers. Write any other
value to lock them.
10-72 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
10.7.6 Lock Status Register (LSR)

The Lock Status Register is register 1005, at offset 0xFB4.

Note
 This register reads as zero when read through the external debug interface or Extended CP14 Interface.

Where the external debug interface and Memory-mapped interface use the same port, external debug
interface accesses are distinguished by, for example, PADDRDBG[31] being set to 1, see PADDRDBG on
page 6-12.

The Lock Status Register returns the current lock status. Table 10-46 on page 10-72 shows the layout of the
Lock Status Register.

Lock implemented, bit [0]

The meanings of the Lock Implemented bit are as follows:

0 This access is from an interface that ignores the lock registers, that is, the external debug
interface or the Extended CP14 Interface

1 This access is from an interface that requires the registers to be unlocked, that is, the
Memory-mapped interface.

Locked, bit [1]

The meanings of the Locked bit are as follows:

0 writes are permitted

1 writes are ignored.

For interfaces that require the registers to be unlocked, the registers are locked from reset, and this bit has
the reset value 1. For interfaces that ignore the lock registers, this bit always reads as zero.

Table 10-47 Lock Status Register bit definition

Bits Access Debug reset value Description

[31:3] RAZ/SBZP - Reserved

[2] RO 0 32-bit Access, bit [2] on page 10-74

[1] RO See Locked, bit [1] Locked, bit [1]

[0] RO See Lock implemented, bit [0] Lock implemented, bit [0]
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-73

Debug Register Reference
32-bit Access, bit [2]

This bit always reads 0. It indicates that a 32-bit access is needed to write the key to the Lock Access
Register.

10.7.7 Authentication Status Register (AUTHSTATUS)

AUTHSTATUS is register 1006, at offset 0xFB8.

AUTHSTATUS reads the current values of the configuration inputs that determine the debug permission
level. The value read depends on whether the processor implements Security Extensions.

 Table 10-48 shows the layout of the Authentication Status Register for a processor that implements Security
Extensions.

 Table 10-49 on page 10-75 shows the layout of the Authentication Status Register for a processor that does
not implement Security Extensions. If a processor does not implement Security Extensions, it does not
implement any Nonsecure debug features.

Table 10-48 Authentication Status Register bit definition, when Security Extensions are implemented

Bits Access Value Description

[31:8] RAZ - Reserved

[7] RO 1 Secure non-invasive debug features
implemented

[6] RO Logical result of

(DBGEN OR NIDEN) AND
(SPIDEN OR SPNIDEN)

Secure non-invasive debug enabled

[5] RO 1 Secure invasive debug features implemented

[4] RO Logical result of (DBGEN AND SPIDEN) Secure invasive debug enabled

[3] RO 1 Nonsecure non-invasive debug features
implemented

[2] RO Logical result of (DBGEN OR NIDEN) Nonsecure non-invasive debug enabled

[1] RO 1 Nonsecure invasive debug features
implemented

[0] RO State of DBGEN signal Nonsecure invasive debug enabled
10-74 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
10.7.8 Device Type Register (DEVTYPE)

The Device Type Register is register 1011, at offset 0xFCC.

DEVTYPE is a read-only register present in all CoreSight architecture compatible components and
indicates the type of debug component. Table 10-50 shows the layout of the Device Type Register.

Table 10-49 Authentication Status Register bit definition, when Security Extensions are not
implemented

Bits Access Value Description

[31:8] RAZ - Reserved

[7] RO 1 Secure non-invasive debug features
implemented

[6] RO Logical result of (DBGEN OR NIDEN) Secure non-invasive debug enabled

[5] RO 1 Secure invasive debug features implemented

[4] RO State of DBGEN signal Secure invasive debug enabled

[3] RO 0 Nonsecure non-invasive debug features not
implemented

[2] RO 0 Nonsecure non-invasive debug disabled

[1] RO 0 Nonsecure invasive debug features not
implemented

[0] RO 0 Nonsecure invasive debug disabled

Table 10-50 Device Type Register bit definition

Bits Access Value Description

[31:8] RO - Reserved

[7:4] RO 0x1 Sub Type: Processor/Core.

[3:0] RO 0x5 Main class: Debug Logic.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-75

Debug Register Reference
10.7.9 Peripheral Identification Registers (PERIPHERALID)

The Peripheral Identification Registers are registers 1012-1019, at offsets 0xFD0-0xFEC.

These registers provide standard information required by all ARM Debug Interface v5 components. Only
bits [7:0] of each register are used.

There are eight Peripheral Identification Registers, as shown in Table 10-51.

Table 10-51 Peripheral Identification Registers (except v7C Debug)

Register number Access Description Reference

1012 RO Peripheral ID4 Table 10-57 on page 10-78

1013 RO Reserved for Peripheral ID5 -

1014 RO Reserved for Peripheral ID6 -

1015 RO Reserved for Peripheral ID7 -

1016 RO Peripheral ID0 Table 10-53 on page 10-77

1017 RO Peripheral ID1 Table 10-54 on page 10-77

1018 RO Peripheral ID2 Table 10-55 on page 10-78

1019 RO Peripheral ID3 Table 10-56 on page 10-78
10-76 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
These registers contain the fields shown in Table 10-52.

For more information about these fields, see the ARM Debug Interface v5 Architecture Specification.

Table 10-52 Fields in the Peripheral Identification Registers

Name Size Description

4KB Count 4 bits Log2 of the number of 4KB blocks occupied by the device. ARMv7 debug registers occupy
a single 4KB block, so this field is always 0x0.

JEP106
code

4+7
bits

Identifies the designer of the device. This consists of a 4-bit continuation code (bank
number) and a 7-bit identity code. For implementations designed by ARM Limited, the
continuation code is 0x4 (bank 5) and the identity code is 0x3B. For details, see JEP106M,
Standard Manufacture’s Identification Code.

Part Number 12 bits Part number for the device. Each designer keeps its own part number list.

Revision 4 bits Starts at 0x0 and increments by 1 at both major (functionality change) and minor (bug fix)
revisions.

RevAnd 4 bits Manufacturer Revision Number. Indicates a late modification to the device, usually as a
result of an Engineering Change Order. Starts at 0x0 and increments by the integrated
circuit manufacturer on metal fixes.

Customer
modified

4 bits Indicates an endorsed modification to the device. If the system designer cannot modify the
RTL of the processor designer, these bits read as zero.

Table 10-53 Peripheral ID0 bit definition

Bits Access Value Description

[31:8] RAZ - Reserved

[7:0] RO IMPLEMENTATION DEFINED Part Number[7:0]

Table 10-54 Peripheral ID1 bit definition

Bits Access Value Description

[31:8] RAZ - Reserved

[7:4] RO IMPLEMENTATION DEFINED JEP106 Identity Code [3:0]

[3:0] RO IMPLEMENTATION DEFINED Part Number[11:8]
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-77

Debug Register Reference
Table 10-55 Peripheral ID2 bit definition

Bits Access Value Description

[31:8] RAZ - Reserved

[7:4] RO IMPLEMENTATION DEFINED Revision

[3] RO 1 Always 1

[2:0] RO IMPLEMENTATION DEFINED JEP106 Identity Code [6:4]

Table 10-56 Peripheral ID3 bit definition

Bits Access Value Description

[31:8] RAZ - Reserved

[7:4] RO IMPLEMENTATION DEFINED RevAnd

[3:0] RO IMPLEMENTATION DEFINED Customer Modified

Table 10-57 Peripheral ID4 bit definition

Bits Access Value Description

[31:8] RAZ - Reserved

[7:4] RO 0x0 4KB count, always 0x0

[3:0] RO IMPLEMENTATION DEFINED JEP106 Continuation Code
10-78 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
10.7.10 Component Identification Registers (COMPONENTID)

The Component Identification Registers are registers 1020-1023, at offsets 0xFF0-0xFFC.

These registers identify the processor as an ARM Debug Interface v5 Component. For more information,
see the ARM Debug Interface v5 Architecture Specification.

Only bits [7:0] of each register are used. Bits [31:0] read as zero. The values in the registers are fixed.

There are four Component Identification Registers, as shown in Table 10-58.

Table 10-58 Component Identification Registers bit definitions

Register number Bits Access Value Description

1020 [7:0] RO 0x0D Preamble

1021 [3:0] RO 0x0 Preamble

[7:4] RO 0x9 Component class, ARM Debug Interface component

1022 [7:0] RO 0x05 Preamble

1023 [7:0] RO 0xB1 Preamble
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-79

Debug Register Reference
10.8 Core-based performance counters registers
v6, v6.1 These registers are not defined in ARMv6.

v7 The Core-based Performance Counters are an optional feature in ARMv7.

This section contains the following subsections:

• Performance Monitor Control Register (PMNC)

• Interrupt Enable Set Register (INTENS) on page 10-83

• Interrupt Enable Clear Register (INTENC) on page 10-84

• Count Enable Set Register (CNTENS) on page 10-85

• Count Enable Clear Register (CNTENC) on page 10-86

• Overflow Flag Status Register (FLAG) on page 10-87

• Software Increment Register (SWINCR) on page 10-89

• Cycle Count Register (CCNT) on page 10-89

• Performance Counter Selection Register (PMNXSEL) on page 10-90

• Event Select Register (EVTSELX) on page 10-90

• Performance Count Registers (PMNX) on page 10-91

• User Enable Register (USEREN) on page 10-91.

10.8.1 Performance Monitor Control Register (PMNC)

Table 10-59 shows the layout of the Performance Monitor Control Register.

Table 10-59 Performance Monitor Control Register bit definitions

Bits Access
Core reset
value

Mnemonic Description

[31:24] RO IMP. DEF. a IMP Implementer code, bits [31:24] on page 10-83

[23:16] RO IMP. DEF. a IDCODE Identification code, bits [23:16] on page 10-82

[15:11] RO IMP. DEF. a N Number of counters, bits [15:11] on page 10-82

[10:6] RAZ/SBZP - - Reserved

[5] RW 0 DP Disable CCNT when prohibited, bit [5] on page 10-82

[4] RW 0 X Export Enable, bit [4] on page 10-82

[3] RW 0 D Clock Divider, bit [3] on page 10-81

[2] RAZ/W 0 C Clock Counter reset, bit [2] on page 10-81

[1] RAZ/W 0 P Performance Counter reset, bit [1] on page 10-81

[0] RW 0 E Enable, bit [0] on page 10-81

a. IMPLEMENTATION DEFINED.
10-80 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
Enable, bit [0]

The meanings of the Enable bit values are as follows:

0 all counters, including the Clock Counter (CCNT), are disabled

1 all counters are enabled.

Performance counter overflow IRQs are only signaled when the enable bit is 1.

Performance Counter reset, bit [1]

This bit is write-only. It always reads as zero.

The effects of writing to the Performance Counter reset bit are as follows:

0 no action

1 reset all performance counters, not including CCNT, to zero.

Note
 Resetting the performance counters does not clear any overflow flags to 0. See Overflow Flag Status
Register (FLAG) on page 10-87 for details.

Clock Counter reset, bit [2]

This bit is write-only. It always reads as zero.

The effects of writing to the Clock Counter reset bit are as follows:

0 no action

1 reset CCNT to zero.

Note
 Resetting CCNT does not clear the CCNT overflow flag to 0. See Overflow Flag Status Register (FLAG) on
page 10-87 for details.

Clock Divider, bit [3]

The meanings of the Clock Divider bit values are as follows:

0 CCNT counts every clock cycle when enabled

1 CCNT counts once every 64 clock cycles when enabled.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-81

Debug Register Reference
Export Enable, bit [4]

The meanings of the Export Enable bit values are as follows:

0 export of events is disabled

1 export of events is enabled.

This bit exists to allow events to be exported to another debug device, such as the Embedded Trace
Macrocell (ETM), over an event bus. If the implementation does not implement such an event bus, this bit
reads as zero and ignores writes.

This bit does not affect the generation of performance counter interrupts, which can be implemented as a
signal exported from the core to an interrupt controller.

Disable CCNT when prohibited, bit [5]

The meanings of the Disable CCNT when prohibited bit values are as follows:

0 count is enabled in prohibited regions

1 count is disabled in prohibited regions.

Prohibited regions are defined as regions where event counting would be prohibited. For example, if the
SPNIDEN input to the processor is LOW, the Secure world is a prohibited region. See Authentication
signals on page 6-3 for a description of SPNIDEN.

Note
 This bit exists only to allow a nonsecure process to discard cycle counts from being accumulated during
periods that the other counts are prohibited due to security prohibitions. It is not a control to enhance
security. The function of this bit is to avoid corruption of the count. See also Interaction with Security
Extensions on page 9-7.

Number of counters, bits [15:11]

The meanings of the Number of counters values are as follows:

b00000 no counters implemented

b00001 1 counter implemented

b00010 2 counters implemented

... ...

b11111 31 counters implemented.

It is permissible to implement only the CCNT register.

Identification code, bits [23:16]

The identification code is an IMPLEMENTATION DEFINED value. Each implementer must maintain a list of
identification codes. The list of identification codes is unique to each implementer. A unique
implementation can be determined from the combination of the implementer code and the identification
code.
10-82 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
Implementer code, bits [31:24]

The implementer code is a value allocated by ARM Limited. Values have the same interpretation as bits
[31:24] of the CP15 Main ID register. See the ARM Architecture Reference Manual for a list of valid values.

10.8.2 Interrupt Enable Set Register (INTENS)

Each performance counter register (PMNX) and the CCNT can generate an interrupt on overflow. The ith
bit of the interrupt enable register controls whether PMNi register generates an interrupt on overflow. On
reads this register returns the current setting. On writes, interrupts can be enabled. Interrupts can be disabled
through the Interrupt Enable Clear Register, see Interrupt Enable Clear Register (INTENC) on page 10-84.

The instructions that access the INTENS register are always UNDEFINED in User Mode, even if the USEREN
flag is set to 1, see User Enable Register (USEREN) on page 10-91.

Table 10-60 shows the layout of the INTENS. In this table, N is the value of PMNC[15:11].

Note
 The interrupt that can be asserted in this case is expected to be exported from the core, to allow it to be
factored into a system interrupt controller if applicable. As a result, more levels of control of the interrupt
generated are expected to exist in the system.

The contents of this register are UNPREDICTABLE on core reset. To avoid spurious interrupts being generated,
the interrupt enable values must be set before enabling any of the counters. Interrupts are not signaled if the
Enable bit in the PMNC is clear (0).

Once an interrupt is signaled, it can be removed by clearing the overflow flag for the counter in the Overflow
Flag Status Register. See Overflow Flag Status Register (FLAG) on page 10-87.

Table 10-60 Interrupt Enable Set Register bit definitions

Bits Access
Core reset
value

Mnemonic Description Reference

[31] RW UNPREDICTABLE C Interrupt on CCNT Overflow
Enabled / Enable Interrupt

Table 10-62 on
page 10-84

[30:N] UNP/SBZP - - Reserved -

[N-1] RW UNPREDICTABLE PN-1 Interrupt on PMNN–1 Overflow
Enabled / Enable Interrupt

Table 10-61 on
page 10-84

...

[1] RW UNPREDICTABLE P1 Interrupt on PMN1 Overflow
Enabled / Enable Interrupt

[0] RW UNPREDICTABLE P0 Interrupt on PMN0 Overflow
Enabled / Enable Interrupt
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-83

Debug Register Reference
10.8.3 Interrupt Enable Clear Register (INTENC)

Table 10-63 shows the layout of the INTENC. In this table, N is the value of PMNC[15:11].

Table 10-61 Meaning of the Interrupt on PMNX Overflow Enable values

Value Meaning on read Action on write

0 Interrupt disabled No action

1 Interrupt enabled Enable Interrupt

Table 10-62 Meaning of the Interrupt on CCNT Overflow Enable values

Value Meaning on read Action on write

0 Interrupt disabled No action

1 Interrupt enabled Enable Interrupt

Table 10-63 Interrupt Enable Clear Register bit definitions

Bits Access Core reset value Mnemonic Description Reference

[31] RW UNPREDICTABLE C Interrupt on CCNT Overflow
Enabled or Disable Interrupt

Table 10-65
on
page 10-85

[30:N] UNP/SBZP - - Reserved -

[N-1] RW UNPREDICTABLE PN-1 Interrupt on PMNN–1 Overflow
Enabled or Disable Interrupt

Table 10-64
on
page 10-85

...

[1] RW UNPREDICTABLE P1 Interrupt on PMN1 Overflow
Enabled or Disable Interrupt

[0] RW UNPREDICTABLE P0 Interrupt on PMN0 Overflow
Enabled or Disable Interrupt
10-84 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
The instructions that access the INTENC register are always UNDEFINED in User Mode, even if the USEREN
flag is set to 1, see User Enable Register (USEREN) on page 10-91.

10.8.4 Count Enable Set Register (CNTENS)

Table 10-66 shows the layout of the CNTENS. In this table, N is the value of PMNC[15:11].

Table 10-64 Meaning of the Interrupt on PMNX Overflow Enable values

Value Meaning on read Action on write

0 Interrupt disabled No action

1 Interrupt enabled Disable Interrupt

Table 10-65 Meaning of the Interrupt on CCNT Overflow Enable values

Value Meaning on read Action on write

0 Interrupt disabled No action

1 Interrupt enabled Disable Interrupt

Table 10-66 Interrupt Enable Set Register bit definitions

Bits Access Core reset value Mnemonic Description Reference

[31] RW UNPREDICTABLE C CCNT Enabled or Enable CCNT Table 10-68
on
page 10-86

[30:N] UNP/SBZP - - Reserved -

[N-1] RW UNPREDICTABLE PN-1 PMNN–1 Enabled or
Enable counter PMNN–1

Table 10-67
on
page 10-86

...

[1] RW UNPREDICTABLE P1 PMN1 Enabled or
Enable counter PMN1

[0] RW UNPREDICTABLE P0 PMN0 Enabled or
Enable counter PMN0
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-85

Debug Register Reference
The instructions that access the CNTENS register are always UNDEFINED in User Mode, even if the
USEREN flag is set to 1, see User Enable Register (USEREN) on page 10-91.

10.8.5 Count Enable Clear Register (CNTENC)

Table 10-69 shows the layout of the CNTENC. In this table, N is the value of PMNC[15:11].

The instructions that access the CNTENC register are always UNDEFINED in User Mode, even if the
USEREN flag is set to 1, see User Enable Register (USEREN) on page 10-91.

Table 10-67 Meaning of the PMNX Enable values

Value Meaning on read Action on write

0 PMNX counter disabled No action

1 PMNX counter enabled Enable counter

Table 10-68 Meaning of the CCNT Enable values

Value Meaning on read Action on write

0 CCNT disabled No action

1 CCNT enabled Enable CCNT

Table 10-69 Interrupt Enable Set Register bit definitions

Bits Access Core reset value Mnemonic Description Reference

[31] RW UNPREDICTABLE C CCNT Enabled or Disable CCNT Table 10-71
on
page 10-87

[30:N] UNP/SBZP - - Reserved -

[N-1] RW UNPREDICTABLE PN-1 PMNN-1 Enabled or
Disable counter PMNN-1

Table 10-70
on
page 10-87

...

[1] RW UNPREDICTABLE P1 PMN1 Enabled or
Disable counter PMN1

[0] RW UNPREDICTABLE P0 PMN0 Enabled or
Disable counter PMN0
10-86 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
Note
 The Enable bit in the PMNC can be used to override the settings in this register and disable all performance
counters including CCNT, see Enable, bit [0] on page 10-81. The counter enable register retains its value
when the Enable bit is 0, even though its settings are ignored.

10.8.6 Overflow Flag Status Register (FLAG)

Table 10-72 shows the layout of the FLAG Register. In this table, N is the value of PMNC[15:11].

Table 10-70 Meaning of the PMNX Disable values

Value Meaning on read Action on write

0 PMNX counter disabled No action

1 PMNX counter enabled Disable PMNX counter

Table 10-71 Meaning of the CCNT Disable values

Value Meaning on read Action on write

0 CCNT disabled No action

1 CCNT enabled Disable CCNT

Table 10-72 Overflow Flag Status Register bit definitions

Bits Access Core reset value Mnemonic Description Reference

[31] RW UNPREDICTABLE C CCNT overflowed or
Clear CCNT overflow to 0

Table 10-74
on
page 10-88

[30:N] UNP/SBZP - - Reserved -
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-87

Debug Register Reference
Note
 The overflow flag values for individual counters are retained until cleared to 0 by a write to the Overflow
Flag Status Register or processor reset, even if the counter is later disabled by writing to the Counter Enable
Set Register or through the Enable bit in the PMNC. The overflow flags are also not cleared to 0 if the
counters are reset through the Performance Counter reset / Clock Counter reset bits in the PMNC.

[N-1] RW UNPREDICTABLE PN-1 PMNN-1 counter overflowed or
Clear PMNN-1 counter overflow
to 0

Table 10-73

...

[1] RW UNPREDICTABLE P1 PMN1 counter overflowed or
Clear PMN1 counter overflow to 0

[0] RW UNPREDICTABLE P0 PMN0 counter overflowed or
Clear PMN0 counter overflow to 0

Table 10-72 Overflow Flag Status Register bit definitions (continued)

Bits Access Core reset value Mnemonic Description Reference

Table 10-73 Meaning of the PMNX Overflowed values

Value Meaning on read Action on write

0 PMNX counter has not overflowed No action

1 PMNX counter has overflowed Clear PMNX counter overflow status to 0

Table 10-74 Meaning of the CCNT Overflowed values

Value Meaning on read Action on write

0 CCNT has not overflowed No action

1 CCNT has overflowed Clear CCNT overflow status to 0
10-88 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
10.8.7 Software Increment Register (SWINCR)

Table 10-75 shows the layout of the SWINCR. In this table, N is the value of PMNC[15:11].

Increment PMNX, bits [N-1:0]

These bits are write-only. They return UNPREDICTABLE values on reads.

The effect of writing to each of the PMNX bits of the register is shown in Table 10-76.

10.8.8 Cycle Count Register (CCNT)

CCNT counts the number of clock cycles since the register was reset, see Clock Counter reset, bit [2] on
page 10-81.

Table 10-77 shows the layout of the CCNT.

Table 10-75 Software Increment Register bit definitions

Bits Access Mnemonic Description

[31:N] UNPREDICTABLE/SBZ - Reserved

[N-1] UNPREDICTABLE/WO PMNN-1 Increment PMNX, bits [N-1:0]

... UNPREDICTABLE/WO ...

[1] UNPREDICTABLE/WO PMN1

[0] UNPREDICTABLE/WO PMN0

Table 10-76 Effects of writes to PMNX

Value Event selected for PMNX Effect on write

0 X No action

1 0x00, Software count Increment PMNX

Not 0x00 UNPREDICTABLE

Table 10-77 Cycle Count Register bit definitions

Bits Access Core reset value Mnemonic Description

[31:0] RW UNPREDICTABLE CCNT Cycle Count Register
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-89

Debug Register Reference
10.8.9 Performance Counter Selection Register (PMNXSEL)

Table 10-78 shows the layout of the PMNXSEL.

Selection value, bits [4:0]

The selection value determines which registers are mapped into EVTSELX and PMNX. Writing a value
greater than or equal to N, the value in PMNC[15:11], gives UNPREDICTABLE results. For more information
see Number of counters, bits [15:11] on page 10-82.

The meaning of the Number of counters values is as follows:

b00000 PMNX and EVTSELX are mapped to PMN0 and EVTSEL0

b00001 PMNX and EVTSELX are mapped to PMN1 and EVTSEL1

... ...

b11110 PMNX and EVTSELX are mapped to PMN30 and EVTSEL30

b11111 Reserved.

10.8.10 Event Select Register (EVTSELX)

Table 10-79 shows the layout of the EVTSELX.

Event number, bits [7:0]

The event numbers are used in the EVTSELX register to determine what events are used to cause counts. It
is envisaged that a common set of events can be assigned that all implementers following this approach must
adopt, together with a set of IMPLEMENTATION DEFINED features. A range of events associated with a linkage
to debug is provided as separate from the common features, and it is IMPLEMENTATION DEFINED whether
these events are supported.

Table 10-78 Cycle Count Register bit definitions

Bits Access Core reset value Mnemonic Description

[31:5] RAZ/SBZP - - Reserved

[4:0] RW UNPREDICTABLE SEL Selection value, bits [4:0]

Table 10-79 Event Selection Register bit definitions

Bits Access Core reset value Mnemonic Description

[31:8] RAZ/SBZP - - Reserved

[7:0] RW UNPREDICTABLE evtCount Event number, bits [7:0]
10-90 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Debug Register Reference
The event triggers are split into two ranges:

0x00-0x3F common features

0x40-0xFF IMPLEMENTATION DEFINED features.

A more complete description of the event numbers is given in Event numbers on page 9-13.

10.8.11 Performance Count Registers (PMNX)

Table 10-80 shows the layout of the PMNX Register.

The register read as PMNX depends on the value in the PMNXSEL register, see Performance Counter
Selection Register (PMNXSEL) on page 10-90.

Note
 • A read of the PMNX Register returns the current value of the register.

• You can write to PMNX even when the counter is disabled, regardless of whether the counter is
disabled by CNTENS, PMNC or by non-invasive debug authentication.

10.8.12 User Enable Register (USEREN)

Table 10-81 shows the layout of the USEREN.

The meanings of the User Mode Enable values are as follows:

0 User Mode access to performance counters disabled

1 User Mode access to performance counters enabled.

Certain MCR and MRC instructions used to access the performance counters are UNDEFINED in User Mode when
User Mode access to the performance counters is disabled. For more information see Access permissions on
page 9-12.

Table 10-80 Performance Count Register bit definitions

Bits Access Core reset value Mnemonic Description

[31:0] RW UNPREDICTABLE PMNX Performance Count Register

Table 10-81 User Enable Register bit definitions

Bits Access Core reset value Mnemonic Description

[31:1] RAZ/SBZP - - Reserved

[0] RW 0 EN User Mode Enable
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. 10-91

Debug Register Reference
10-92 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Glossary

Abort A mechanism that indicates to a core that the value associated with a memory access is invalid. An abort
can be caused by the external or internal memory system as a result of attempting to access invalid
instruction or data memory. An abort is classified as either a Prefetch or Data Abort, and an internal or
External Abort.

See also Data Abort, External Abort and Prefetch Abort.

Abort model
An abort model is the defined behavior of an ARM processor in response to a Data Abort exception.
Different abort models behave differently with regard to load and store instructions that specify base register
write-back.

Addressing modes
A mechanism, shared by many different instructions, for generating values used by the instructions. For four
of the ARM addressing modes, the values generated are memory addresses (which is the traditional role of
an addressing mode). A fifth addressing mode generates values to be used as operands by data-processing
instructions.

Advanced eXtensible Interface (AXI)
A bus protocol that supports separate address/control and data phases, unaligned data transfers using byte
strobes, burst-based transactions with only start address issued, separate read and write data channels to
enable low-cost DMA, ability to issue multiple outstanding addresses, out-of-order transaction completion,
and easy addition of register stages to provide timing closure.

The AXI protocol also includes optional extensions to cover signaling for low-power operation.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. Glossary-1

Glossary
AXI is targeted at high performance, high clock frequency system designs and includes a number of features
that make it very suitable for high speed sub-micron interconnect.

Advanced High-performance Bus (AHB)
A bus protocol with a fixed pipeline between address/control and data phases. It only supports a subset of
the functionality provided by the AMBA AXI protocol. The full AMBA AHB protocol specification
includes a number of features that are not commonly required for master and slave IP developments and
ARM Limited recommends only a subset of the protocol is usually used. This subset is defined as the
AMBA AHB-Lite protocol.

See also Advanced Microcontroller Bus Architecture.

Advanced Microcontroller Bus Architecture (AMBA)
A family of protocol specifications that describe a strategy for the interconnect. AMBA is the ARM open
standard for on-chip buses. It is an on-chip bus specification that details a strategy for the interconnection
and management of functional blocks that make up a System-on-Chip (SoC). It aids in the development of
embedded processors with one or more CPUs or signal processors and multiple peripherals. AMBA
complements a reusable design methodology by defining a common backbone for SoC modules.

Advanced Peripheral Bus (APB)
A simpler bus protocol than AXI and AHB. It is designed for use with ancillary or general-purpose
peripherals such as timers, interrupt controllers, UARTs, and I/O ports. Connection to the main system bus
is through a system-to-peripheral bus bridge that helps to reduce system power consumption.

AHB See Advanced High-performance Bus.

Aligned A data item stored at an address that is divisible by the number of bytes that defines the data size is said to
be aligned. Aligned words and halfwords have addresses that are divisible by four and two respectively. The
terms word-aligned and halfword-aligned therefore stipulate addresses that are divisible by four and two
respectively.

AMBA See Advanced Microcontroller Bus Architecture.

APB See Advanced Peripheral Bus.

Architecture
The organization of hardware and/or software that characterizes a processor and its attached components,
and enables devices with similar characteristics to be grouped together when describing their behavior, for
example, Harvard architecture, instruction set architecture, ARMv6 architecture.

ARM instruction
A word that specifies an operation for an ARM processor to perform. ARM instructions must be
word-aligned.

ARM state
A processor that is executing ARM (32-bit) word-aligned instructions is operating in ARM state.

AXI See Advanced eXtensible Interface.

Banked registers
Those physical registers whose use is defined by the current processor mode. The banked registers are r8 to
r14.
Glossary-2 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Glossary
Base register
A register specified by a load or store instruction that is used to hold the base value for the instruction’s
address calculation. Depending on the instruction and its addressing mode, an offset can be added to or
subtracted from the base register value to form the virtual address that is sent to memory.

Base register write-back
Updating the contents of the base register used in an instruction target address calculation so that the
modified address is changed to the next higher or lower sequential address in memory. This means that it is
not necessary to fetch the target address for successive instruction transfers and enables faster burst accesses
to sequential memory.

BE-8 Big-endian view of memory in a byte-invariant system.

See also BE-32, LE, Byte-invariant and Word-invariant.

BE-32 Big-endian view of memory in a word-invariant system.

See also BE-8, LE, Byte-invariant and Word-invariant.

Big-endian
Byte ordering scheme in which bytes of decreasing significance in a data word are stored at increasing
addresses in memory.

See also Little-endian and Endianness.

Big-endian memory
Memory in which:

• a byte or halfword at a word-aligned address is the most significant byte or halfword within the word
at that address

• a byte at a halfword-aligned address is the most significant byte within the halfword at that address.

See also Little-endian memory.

Branch prediction
The process of predicting if conditional branches are to be taken or not in pipelined processors. Successfully
predicting if branches are to be taken enables the processor to prefetch the instructions following a branch
before the condition is fully resolved. Branch prediction can be done in software or by using custom
hardware. Branch prediction techniques are categorized as static, in which the prediction decision is decided
before run time, and dynamic, in which the prediction decision can change during program execution.

Breakpoint
A breakpoint is a mechanism provided by debuggers to identify an instruction at which program execution
is to be halted. Breakpoints are inserted by the programmer to enable inspection of register contents,
memory locations, variable values at fixed points in the program execution to test that the program is
operating correctly. Breakpoints are removed after the program is successfully tested.

See also Watchpoint.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. Glossary-3

Glossary
Burst A group of transfers to consecutive addresses. Because the addresses are consecutive, there is no
requirement to supply an address for any of the transfers after the first one. This increases the speed at which
the group of transfers can occur. Bursts over AMBA are controlled using signals to indicate the length of
the burst and how the addresses are incremented.

Byte An 8-bit data item.

Byte-invariant
In a byte-invariant system, the address of each byte of memory remains unchanged when switching between
little-endian and big-endian operation. When a data item larger than a byte is loaded from or stored to
memory, the bytes making up that data item are arranged into the correct order depending on the endianness
of the memory access.
The ARM architecture supports byte-invariant systems in ARMv6 and later versions. When byte-invariant
support is selected, unaligned halfword and word memory accesses are also supported. Multi-word accesses
are expected to be word-aligned.

See also Word-invariant.

Cache A block of on-chip or off-chip fast access memory locations, situated between the processor and main
memory, used for storing and retrieving copies of often used instructions and/or data. This is done to greatly
increase the average speed of memory accesses and so improve processor performance.

Cache hit
A memory access that can be processed at high speed because the instruction or data that it addresses is
already held in the cache.

Cache line
The basic unit of storage in a cache. It is always a power of two words in size (usually four or eight words),
and is required to be aligned to a suitable memory boundary.

Cache miss
A memory access that cannot be processed at high speed because the instruction/data it addresses is not in
the cache and a main memory access is required.

Coherency
See Memory coherency.

Cold reset
Also known as power-up reset. Starting the processor by turning power on. Turning power off and then back
on again clears main memory and many internal settings. Some program failures can lock up the processor
and require a cold reset to enable the system to be used again. In other cases, only a warm reset is required.

See also Warm reset.

Communications channel
The hardware used for communicating between the software running on the processor, and an external host,
using the debug interface. When this communication is for debug purposes, it is called the Debug Comms
Channel. In an ARMv6 compliant core, the communications channel includes the Data Transfer Register,
some bits of the Data Status and Control Register, and the external debug interface controller, such as the
DBGTAP controller in the case of the JTAG interface.
Glossary-4 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Glossary
Context The environment that each process operates in for a multitasking operating system. In ARM processors, this
is limited to mean the physical address range that it can access in memory and the associated memory access
permissions.

See also Fast context switch.

Control bits
The bottom eight bits of a Program Status Register. The control bits change when an exception arises and
can be altered by software only when the processor is in a privileged mode.

Coprocessor
A processor that supplements the main processor. It carries out additional functions that the main processor
cannot perform. Usually used for floating-point math calculations, signal processing, or memory
management.

Core A core is that part of a processor that contains the ALU, the datapath, the general-purpose registers, the
Program Counter, and the instruction decode and control circuitry.

Core reset
See Warm reset.

CoreSight
The infrastructure for monitoring, tracing, and debugging a complete system on chip.

CPSR See Current Program Status Register

Current Program Status Register (CPSR)
The register that holds the current operating processor status.

DAP See Debug Access Port.

Data Abort
An indication from a memory system to the core of an attempt to access an illegal data memory location.
An exception must be taken if the processor attempts to use the data that caused the abort.

See also Abort, External Abort, and Prefetch Abort.

Data cache
A block of on-chip fast access memory locations, situated between the processor and main memory, used
for storing and retrieving copies of often used data. This is done to greatly increase the average speed of
memory accesses and so improve processor performance.

DBGTAP
See Debug Test Access Port.

Debug Access Port (DAP)
A component that provides a means for the External Debugger to make accesses to the debug registers over
the External Debug Interface. for example a JTAG-based interface. In ARMv6 implementations, the Debug
Access Port and External Debug Interface are always tightly integrated parts of the ARM processor
macrocell. In ARMv7 this is a design choice.

Debug bus
A SoC-wide bus onto which a port for the Debug Registers Interface may be connected.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. Glossary-5

Glossary
Debug Comms Channel
One word full-duplex communication channel between software running on the core and the External
Debugger. Accessible through CP14 debug instructions on the inside, and through the External Debug
Interface on the outside.

Debugger
A debugging system that includes a program, used to detect, locate, and correct software faults, together
with custom hardware that supports software debugging.

Debug Monitor
Debugging software that runs on the target (ARM processor).

Debug Registers Interface
An interface to the debug registers.

Debug Test Access Port (DBGTAP)
The collection of four mandatory and one optional terminals that form the input/output and control interface
to a JTAG boundary-scan architecture. The mandatory terminals are DBGTDI, DBGTDO, DBGTMS, and
TCK. The optional terminal is TRST. This signal is mandatory in ARM cores because it is used to reset the
debug logic.

Embedded Trace Buffer (ETB)
The ETB provides on-chip storage of trace data using a configurable sized RAM.

Embedded Trace Macrocell (ETM)
A hardware macrocell that, when connected to a processor core, outputs instruction and data trace
information on a trace port. The ETM provides processor driven trace through a trace port compliant to the
ATB protocol.

Endianness
Byte ordering. The scheme that determines the order that successive bytes of a data word are stored in
memory. An aspect of the system’s memory mapping.

See also Little-endian and Big-endian

ETB See Embedded Trace Buffer.

ETM See Embedded Trace Macrocell.

External Debug Interface
Interface into a processor core that provides access to the Debug Registers Interface and signals to integrate
the processor core with the rest of the system. The External Debugger must have means, such as a Debug
Access Port, to access the External Debug Interface in order to access the debug resources.

The External Debug Interface also contains the signals and connections required for the processor to
integrate with other debug components in the system, such as Cross-Triggering Interfaces and
Authentication Modules.

Parts of the External Debug Interface may be tightly integrated with the Debug Access Port. External, in this
context, means external to the ARM processor core, not necessarily external to the macrocell, or to the chip.
Glossary-6 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Glossary
External Debugger
Any combination of hardware and software external to the ARM processor whose purpose is to drive the
External Debug Interface, for example an emulator box connected to a Debug Access Port, plus a personal
computer, plus debugging software such as RealView Debugger.

Event An observable condition that can be used by an ETM to control aspects of a trace.

Exception
A fault or error event that is considered serious enough to require that program execution is interrupted.
Examples include attempting to perform an invalid memory access, external interrupts, and undefined
instructions. When an exception occurs, normal program flow is interrupted and execution is resumed at the
corresponding exception vector. This contains the first instruction of the interrupt handler to deal with the
exception.

Exception vector
See Interrupt vector.

External Abort
An indication from an external memory system to a core that the value associated with a memory access is
invalid. An external abort is caused by the external memory system as a result of attempting to access invalid
memory.

See also Abort, Data Abort and Prefetch Abort.

Fast context switch
In a multitasking system, the point at which the time-slice allocated to one process stops and the one for the
next process starts. If processes are switched often enough, they can appear to a user to be running in
parallel, in addition to being able to respond quicker to external events that might affect them.

In ARM processors, a fast context switch is caused by the selection of a non-zero PID value to switch the
context to that of the next process. A fast context switch causes each Virtual Address for a memory access,
generated by the ARM processor, to produce a Modified Virtual Address that is sent to the rest of the
memory system to be used in place of a normal Virtual Address. For some cache control operations Virtual
Addresses are passed to the memory system as data. In these cases no address modification takes place.

See also Fast Context Switch Extension.

Fast Context Switch Extension (FCSE)
An extension to the ARM architecture that enables cached processors with an MMU to present different
addresses to the rest of the memory system for different software processes, even when those processes are
using identical addresses.

See also Fast context switch, Modified Virtual Address.

FCSE See Fast Context Switch Extension.

Halfword
A 16-bit data item.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. Glossary-7

Glossary
Halting Debug-mode
One of two mutually exclusive debug modes. In Halting Debug-mode all processor execution halts when a
breakpoint or watchpoint is encountered. All processor state, coprocessor state, memory and input/output
locations can be examined and altered by the JTAG interface.

See also Monitor Debug-mode.

High vectors
Alternative locations for exception vectors. The high vector address range is near the top of the address
space, rather than at the bottom.

Host A computer that provides data and other services to another computer. Especially, a computer providing
debugging services to a target being debugged.

IMB See Instruction Memory Barrier

IMPLEMENTATION DEFINED

The behavior is not architecturally defined, but is defined and documented by individual implementations.

Instruction cache
A block of on-chip fast access memory locations, situated between the processor and main memory, used
for storing and retrieving copies of often used instructions. This is done to greatly increase the average speed
of memory accesses and so improve processor performance.

Instruction Memory Barrier (IMB)
An operation to ensure that the prefetch buffer is flushed of all out-of-date instructions.

Interrupt handler
A program that control of the processor is passed to when an interrupt occurs.

Interrupt vector
One of a number of fixed addresses in low memory, or in high memory if high vectors are configured, that
contains the first instruction of the corresponding interrupt handler.

Invalidate
To mark a cache line as being not valid by clearing the valid bit. This must be done whenever the line does
not contain a valid cache entry. For example, after a cache flush all lines are invalid.

Jazelle architecture
The ARM Jazelle architecture extends the Thumb and ARM operating states by adding a Java state to the
processor. Instruction set support for entering and exiting Java applications, real-time interrupt handling,
and debug support for mixed Java/ARM applications is present. When in Java state, the processor fetches
and decodes Java bytecodes and maintains the Java operand stack.

Joint Test Action Group (JTAG)
The name of the organization that developed standard IEEE 1149.1. This standard defines a boundary-scan
architecture used for in-circuit testing of integrated circuit devices. It is commonly known by the initials
JTAG.

JTAG See Joint Test Action Group.
Glossary-8 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Glossary
LE Little endian view of memory in both byte-invariant and word-invariant systems.

See also Byte-invariant, Word-invariant.

Line See Cache line.

Little-endian
Byte ordering scheme in which bytes of increasing significance in a data word are stored at increasing
addresses in memory.

See also Big-endian and Endianness.

Little-endian memory
Memory in which:

• a byte or halfword at a word-aligned address is the least significant byte or halfword within the word
at that address

• a byte at a halfword-aligned address is the least significant byte within the halfword at that address.

See also Big-endian memory.

Macrocell
A complex logic block with a defined interface and behavior. A typical VLSI system comprises several
macrocells (such as a processor, an ETM, and a memory block) plus application-specific logic.

Memory coherency
A memory is coherent if the value read by a data read or instruction fetch is the value that was most recently
written to that location. Memory coherency is made difficult when there are multiple possible physical
locations that are involved, such as a system that has main memory, a write buffer and a cache.

Memory Management Unit (MMU)
Hardware that controls caches and access permissions to blocks of memory, and translates virtual addresses
to physical addresses.

Memory Protection Unit (MPU)
Hardware that controls access permissions to blocks of memory. Unlike an MMU, an MPU does not
translate virtual addresses to physical addresses.

Microprocessor
See Processor.

Miss See Cache miss.

MMU See Memory Management Unit.

Modified Virtual Address (MVA)
A Virtual Address produced by the ARM processor can be changed by the current Process ID to provide a
Modified Virtual Address (MVA) for the MMUs and caches.

See also Fast Context Switch Extension.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. Glossary-9

Glossary
Monitor Debug-mode
One of two mutually exclusive debug modes. In Monitor Debug-mode the processor enables a software
abort handler provided by the debug monitor or operating system debug task. When a breakpoint or
watchpoint is encountered, this enables vital system interrupts to continue to be serviced while normal
program execution is suspended.

See also Halting Debug-mode.

MPU See Memory Protection Unit.

MVA See Modified Virtual Address.

Nonsecure State
A processor that implements Security Extensions is said to be in Nonsecure state if the CP15 NS-bit is 1.

Nonsecure World
A processor that implements Security Extensions is said to be in the Nonsecure world if the CP15 NS-bit is
1 and the current processor mode is not Secure Monitor.

PA See Physical Address.

Physical Address (PA)
The MMU performs a translation on Modified Virtual Addresses (MVA) to produce the Physical Address
(PA) that is given to the AMBA bus to perform an external access. The PA is also stored in the data cache
to avoid the necessity for address translation when data is cast out of the cache.

See also Fast Context Switch Extension.

Power-on reset
See Cold reset.

Prefetching
In pipelined processors, the process of fetching instructions from memory to fill up the pipeline before the
preceding instructions have finished executing. Prefetching an instruction does not mean that the instruction
has to be executed.

Prefetch Abort
An indication from a memory system to the core that an instruction has been fetched from an illegal memory
location. An exception must be taken if the processor attempts to execute the instruction. A Prefetch Abort
can be caused by the external or internal memory system as a result of attempting to access invalid
instruction memory.

See also Data Abort, External Abort and Abort.

Processor
A processor is the circuitry in a computer system required to process data using the computer instructions.
It is an abbreviation of microprocessor. A clock source, power supplies, and main memory are also required
to create a minimum complete working computer system.

Read Reads are defined as memory operations that have the semantics of a load. That is, the ARM instructions
LDM, LDRD, LDC, LDR, LDRT, LDRSH, LDRH, LDRSB, LDRB, LDRBT, LDREX, RFE, STREX, SWP, and SWPB, and the Thumb
instructions LDM, LDR, LDRSH, LDRH, LDRSB, LDRB, and POP.
Glossary-10 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Glossary
Java instructions that are accelerated by hardware can cause a number of reads to occur, according to the
state of the Java stack and the implementation of the Java hardware acceleration.

Region A partition of instruction or data memory space.

Reserved
A field in a control register or instruction format is reserved if the field is to be defined by the
implementation, or produces UNPREDICTABLE results if the contents of the field are not zero. These fields
are reserved for use in future extensions of the architecture or are implementation-specific. All reserved bits
not used by the implementation must be written as 0 and read as 0.

Saved Program Status Register (SPSR)
The register that holds the CPSR of the task immediately before the exception occurred that caused the
switch to the current mode.

SBZ See Should Be Zero.

SBZP See Should Be Zero or Preserved.

Secure State
A processor that implements Security Extensions is said to be in Secure state if the CP15 NS-bit is set to 0.

Secure World
A processor that implements the Security Extensions is said to be in the Secure world if the CP15 NS-bit is
set to 0 or if the current processor mode is Secure Monitor.

Should Be Zero (SBZ)
Should be written as 0 (or all 0s for bit fields) by software. Writing a 1 produces Unpredictable results.

Should Be Zero or Preserved (SBZP)
Should be written as 0 (or all 0s for bit fields) by software, or preserved by writing the same value back that
has been previously read from the same field on the same processor.

SoC System-on-Chip.

SPSR See Saved Program Status Register

Synchronization primitive
The memory synchronization primitive instructions are those instructions that are used to ensure memory
synchronization. That is, the LDREX, STREX, SWP, and SWPB instructions.

Tag The upper portion of a block address used to identify a cache line within a cache. The block address from
the CPU is compared with each tag in a set in parallel to determine if the corresponding line is in the cache.
If it is, it is said to be a cache hit and the line can be fetched from cache. If the block address does not
correspond to any of the tags, it is said to be a cache miss and the line must be fetched from the next level
of memory.

TCM See Tightly Coupled Memory.

Thumb instruction
A halfword that specifies an operation for an ARM processor in Thumb state to perform. Thumb instructions
must be halfword-aligned.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. Glossary-11

Glossary
Thumb state
A processor that is executing Thumb (16-bit) halfword aligned instructions is operating in Thumb state.

Tightly Coupled Memory (TCM)
An area of low latency memory that provides predictable instruction execution or data load timing in cases
where deterministic performance is required. TCMs are suited to holding:

• critical routines such as for interrupt handling

• scratchpad data

• data types whose locality is not suited to caching

• critical data structures, such as interrupt stacks.

TLB See Translation Look-aside Buffer.

TPA See Trace Port Analyzer.

Trace port
A port on a device, such as a processor or ASIC, used to output trace information.

Trace Port Analyzer (TPA)
A hardware device that captures trace information output on a trace port. This can be a low-cost product
designed specifically for trace acquisition, or a logic analyzer.

Translation Lookaside Buffer (TLB)
A cache of recently used page table entries that avoid the overhead of page table walking on every memory
access. Part of the Memory Management Unit.

Translation table
A table, held in memory, that contains data that defines the properties of memory areas of various fixed
sizes.

Translation table walk
The process of doing a full translation table lookup. It is performed automatically by hardware.

Unaligned
A data item stored at an address that is not divisible by the number of bytes that defines the data size is said
to be unaligned. For example, a word stored at an address that is not divisible by four.

Undefined
Indicates an instruction that generates an Undefined instruction trap. See the ARM Architecture Reference
Manual for more details on ARM exceptions.

UNP See UNPREDICTABLE.

UNPREDICTABLE

For reads, the data returned when reading from this location is unpredictable, and can have any value. For
writes, writing to this location causes unpredictable behavior, or an unpredictable change in device
configuration. UNPREDICTABLE instructions must not halt or hang the processor, or any part of the system.

v6 Debug
Debug component of the ARMv6 Debug Architecture.
Glossary-12 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

Glossary
v6.1 Debug
Debug component of the ARMv6.1 Debug Architecture.

VA See Virtual Address.

Virtual Address (VA)
The MMU uses its page tables to translate a Virtual Address into a Physical Address. The processor executes
code at the Virtual Address, that might be located elsewhere in physical memory.

See also Fast Context Switch Extension, Modified Virtual Address, and Physical Address.

Warm reset
Also known as a core reset. Initializes the majority of the processor excluding the debug controller and
debug logic. This type of reset is useful if you are using the debugging features of a processor.

Watchpoint
A watchpoint is a mechanism provided by debuggers to halt program execution when the data contained by
a particular memory address is changed. Watchpoints are inserted by the programmer to enable inspection
of register contents, memory locations, and variable values when memory is written to test that the program
is operating correctly. Watchpoints are removed after the program is successfully tested. See also
Breakpoint.

WB See Write-back.

Word A 32-bit data item.

Word-invariant
In a word-invariant system, the address of each byte of memory changes when switching between
little-endian and big-endian operation, in such a way that the byte with address A in one endianness has
address A EOR 3 in the other endianness. As a result, each aligned word of memory always consists of the
same four bytes of memory in the same order, regardless of endianness. The change of endianness occurs
because of the change to the byte addresses, not because the bytes are rearranged.

The ARM architecture supports word-invariant systems in ARMv3 and later versions. When word-invariant
support is selected, the behavior of load or store instructions that are given unaligned addresses is
instruction-specific, and is in general not the expected behavior for an unaligned access. It is recommended
that word-invariant systems use the endianness that produces the desired byte addresses at all times, apart
possibly from very early in their reset handlers before they have set up the endianness, and that this early
part of the reset handler must use only aligned word memory accesses.

See also Byte-invariant.

Write Writes are defined as operations that have the semantics of a store. That is, the ARM instructions SRS, STM,
STRD, STC, STRT, STRH, STRB, STRBT, STREX, SWP, and SWPB, and the Thumb instructions STM, STR, STRH, STRB, and
PUSH.

Java instructions that are accelerated by hardware can cause a number of writes to occur, according to the
state of the Java stack and the implementation of the Java hardware acceleration.
ARM DDI 0379A Copyright © 2006 ARM Limited. All rights reserved. Glossary-13

Glossary
Write-back (WB)
In a write-back cache, data is only written to main memory when it is forced out of the cache on line
replacement following a cache miss. Otherwise, writes by the processor only update the cache. This is also
known as copyback.

Write buffer
A block of high-speed memory, arranged as a FIFO buffer, between the data cache and main memory, whose
purpose is to optimize stores to main memory.

Write-through (WT)
In a write-through cache, data is written to main memory at the same time as the cache is updated.

WT See Write-through.
Glossary-14 Copyright © 2006 ARM Limited. All rights reserved. ARM DDI 0379A

	ARM Architecture Reference Manual Debug supplement
	Contents
	Preface
	About this manual
	Intended audience
	Using this manual

	Conventions
	Typographic
	Signals

	Further reading
	ARM publications
	Other publications

	Feedback
	Feedback on this manual

	Introduction
	1.1 Overview
	1.2 Debug
	1.2.1 Security Extensions and debug

	1.3 Performance counters
	1.4 Trace
	1.5 Register interfaces

	Debug Events
	2.1 Overview
	2.2 Invasive debug authentication
	2.3 Software Debug events
	2.3.1 Watchpoint Debug events
	2.3.2 Breakpoint Debug events
	2.3.3 BKPT Instruction Debug events
	2.3.4 Vector Catch Debug events
	2.3.5 Memory addresses
	2.3.6 unpredictable behavior on Software Debug events

	2.4 Halting Debug events
	2.5 Generation of Debug events
	2.6 Debug event priority and order

	Debug Exceptions
	3.1 Overview
	3.2 Effects of Debug Exceptions on CP15 registers and the WFAR

	Debug State
	4.1 Overview
	4.2 Entering Debug state
	4.2.1 The effect of entering Debug state on core registers
	4.2.2 The effect of entering Debug state on CP15 registers and the WFAR
	4.2.3 Imprecise Data Aborts and entry to Debug state

	4.3 Behavior of the PC and CPSR in Debug state
	4.4 Executing instructions in Debug state
	4.4.1 Writing to the CPSR in Debug state
	4.4.2 Data processing instructions with R15 as the target

	4.5 Privilege in Debug state
	4.5.1 Accessing registers and memory
	4.5.2 Altering CPSR Privileged bits in Debug state
	4.5.3 Changing the NS-bit
	4.5.4 Coprocessor instructions

	4.6 Behavior of non-invasive debug in Debug state
	4.7 Exceptions in Debug state
	4.8 Leaving Debug state

	Debug Register Interfaces
	5.1 About the Debug Register Interface
	5.2 Reset and Power-down support
	5.2.1 Power domains and debug
	5.2.2 Operating System Save and Restore support
	5.2.3 Recommended reset scheme

	5.3 Debug Register Map
	5.3.1 Internal and external views of DSCR and DTR
	5.3.2 Banking of debug registers

	5.4 Synchronization of debug register updates
	5.5 Access permissions
	5.5.1 Permissions in relation to the privilege of the access
	5.5.2 Permissions in relation to locks
	5.5.3 Permissions in relation to power-down
	5.5.4 Access to Reserved and implementation defined locations

	5.6 Coprocessor interface
	5.6.1 Baseline CP14 interface
	5.6.2 Extended CP14 interface
	5.6.3 CP14 debug registers access permissions

	5.7 The Memory-mapped and recommended external debug interfaces
	5.7.1 Register map
	5.7.2 Shared interface port for the Memory-mapped and external debug interfaces
	5.7.3 Endianness
	5.7.4 Permission summaries for Memory-mapped and external debug interface
	5.7.5 Registers not implemented in the Memory-mapped or external debug interface

	Recommended External Debug Interface
	6.1 System integration signals
	6.1.1 Authentication signals
	6.1.2 EDBGRQ, DBGTRIGGER, DBGCPUDONE and DBGACK
	6.1.3 DBGRESTART and DBGRESTARTED
	6.1.4 COMMRX and COMMTX
	6.1.5 DBGOSLOCKINIT
	6.1.6 DBGNOPWRDWN
	6.1.7 DBGPWRDUP
	6.1.8 DBGROMADDR and DBGROMADDRV
	6.1.9 DBGSELFADDR and DBGSELFADDRV
	6.1.10 DBGSWENABLE
	6.1.11 PRESETDBGn

	6.2 Recommended debug slave port
	6.2.1 PADDRDBG
	6.2.2 PSLVERRDBG

	Debug Requirements on Memory Systems
	7.1 About debug requirements on memory systems
	7.2 Recommended access to specific CP15 registers
	7.3 Debug state Cache/MMU Control Registers

	Non-invasive debug
	8.1 About non-invasive debug
	8.2 Program counter sampling register
	8.3 Non-invasive debug authentication
	8.3.1 Non-invasive debug authentication, Security Extensions not implemented
	8.3.2 Non-invasive debug authentication, Security Extensions implemented
	8.3.3 Core-based performance counters
	8.3.4 Program Counter Sampling Register
	8.3.5 Trace
	8.3.6 ARMv6 non-invasive debug authentication

	Core-based Performance Counters
	9.1 About core-based performance counters
	9.2 Status in the ARM architecture
	9.3 Accuracy of performance counters
	9.4 Behavior on overflow
	9.5 Interaction with Security Extensions
	9.6 Interaction with trace
	9.7 Interaction with power saving operations
	9.8 Register map
	9.8.1 Power domains and performance counters registers reset

	9.9 Access permissions
	9.10 Event numbers
	9.10.1 Common feature numbers
	9.10.2 implementation defined feature numbers

	Debug Register Reference
	10.1 Identification registers
	10.1.1 Debug ID Register (DIDR)
	10.1.2 Debug ROM Address Register (DRAR)
	10.1.3 Debug Self Address Offset Register (DSAR)

	10.2 Control and status registers
	10.2.1 Debug Status and Control Register (DSCR)
	10.2.2 Watchpoint Fault Address Register (WFAR)
	10.2.3 Debug Run Control Register (DRCR)
	10.2.4 Device Power-Down and Reset Control Register (PRCR)
	10.2.5 Device Power-Down and Reset Status Register (PRSR)
	10.2.6 Program Counter Sampling Register (PSCR)

	10.3 Instruction and data transfer registers
	10.3.1 Host to Target Data Transfer Register (DTRRX)
	10.3.2 Target to Host Data Transfer Register (DTRTX)
	10.3.3 Instruction Transfer Register (ITR)

	10.4 Breakpoint and watchpoint registers
	10.4.1 Breakpoint Value Registers (BVRn)
	10.4.2 Breakpoint Control Registers (BCRn)
	10.4.3 Watchpoint Value Registers (WVRn)
	10.4.4 Watchpoint Control Registers (WCRn)
	10.4.5 Vector Catch Register (VCR)
	10.4.6 Event Catch Register (ECR)

	10.5 Operating-system save and restore registers
	10.5.1 OS Lock Access Register (OSLAR)
	10.5.2 OS Lock Status Register (OSLSR)
	10.5.3 OS Save and Restore Register (OSSRR)

	10.6 Memory system control registers
	10.6.1 Debug State Cache Control Register (DSCCR)
	10.6.2 Debug State MMU Control Register (DSMCR)

	10.7 Management registers
	10.7.1 Processor Identification Registers
	10.7.2 Integration Mode Control Register (ITCTRL)
	10.7.3 Claim Tag Set Register (CLAIMSET)
	10.7.4 Claim Tag Clear Register (CLAIMCLR)
	10.7.5 Lock Access Register (LAR)
	10.7.6 Lock Status Register (LSR)
	10.7.7 Authentication Status Register (AUTHSTATUS)
	10.7.8 Device Type Register (DEVTYPE)
	10.7.9 Peripheral Identification Registers (PERIPHERALID)
	10.7.10 Component Identification Registers (COMPONENTID)

	10.8 Core-based performance counters registers
	10.8.1 Performance Monitor Control Register (PMNC)
	10.8.2 Interrupt Enable Set Register (INTENS)
	10.8.3 Interrupt Enable Clear Register (INTENC)
	10.8.4 Count Enable Set Register (CNTENS)
	10.8.5 Count Enable Clear Register (CNTENC)
	10.8.6 Overflow Flag Status Register (FLAG)
	10.8.7 Software Increment Register (SWINCR)
	10.8.8 Cycle Count Register (CCNT)
	10.8.9 Performance Counter Selection Register (PMNXSEL)
	10.8.10 Event Select Register (EVTSELX)
	10.8.11 Performance Count Registers (PMNX)
	10.8.12 User Enable Register (USEREN)

	Glossary

