

DAI 0492B Copyright 2015-2016 ARM Limited. All rights reserved. 1
 Non-Confidential

GICv3 and GICv4 Software Overview
Non-Confidential

2 Copyright 2015-2016 ARM Limited. All rights reserved. DAI 0492B
 Non-Confidential

 GICv3 and GICv4 Software Overview

Copyright © 2008, 2011, 2015, 2016 ARM Limited or its affiliates. All rights

reserved.

 Release Information

The following changes have been made to this document.

 Change history

Date Issue Confidentiality Change

July 2015 A Non-Confidential First release

Feburary 2016 B Non-Confidential Added coverage of virtualization

 Proprietary notice

This document is protected by copyright and other related rights and the practice or implementation of the

information contained in this document may be protected by one or more patents or pending patent

applications. No part of this document may be reproduced in any form by any means without the express prior

written permission of ARM Limited ("ARM").

No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this

document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or

permit others to use the information for the purposes of determining whether implementations infringe any

patents.

THIS DOCUMENT IS PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO

WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE

IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-

INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE

DOCUMENT.

For the avoidance of doubt, ARM makes no representation with respect to, and has undertaken no analysis to

identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

This document may be translated into other languages for convenience, and you agree that if there is any

conflict between the English version of this document and any translation, the terms of the English version

shall prevail.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY

DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,

INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND

REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS

DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use,

duplication or disclosure of this document complies fully with any relevant export laws and regulations to

assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such

export laws. Use of the word "partner" in reference to ARM's customers is not intended to create or refer to

any partnership relationship with any other company. ARM may make changes to this document at any time

and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written

agreement specifically covering this document with ARM, then the signed written agreement prevails over

and supersedes the conflicting provisions of these terms.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its

affiliates in the EU and/or elsewhere. All rights reserved. Other brands and names mentioned in this document

may be the trademarks of their respective owners. You must follow the ARM trademark usage guidelines

http://www.arm.com/about/trademark-usage-guidelines.php.

Copyright © 2008, 2011, 2015, 2016 ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

DAI 0492B Copyright 2015-2016 ARM Limited. All rights reserved. 3
 Non-Confidential

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20327

In this document, where the term ARM is used to refer to the company it means "ARM or any of its

subsidiaries as appropriate".

 Confidentiality status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to

license restrictions in accordance with the terms of the agreement entered into by ARM and the party that

ARM delivered this document to.

 Product Status

The information in this document is final, that is for a developed product.

 Feedback on content

If you have any comments on content, then send an e-mail to errata@arm.com. Give:

 The title.

 The number.

 The page numbers to which your comments apply.

 A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

 Web Address

http://www.arm.com

mailto:errata@arm.com
http://www.arm.com/

4 Copyright 2015-2016 ARM Limited. All rights reserved. DAI 0492B
 Non-Confidential

Table of Contents
GICv3 and GICv4 Software Overview.. 1-1

1. Preface .. 1-5

1.1 Document status ... 1-5
1.2 References .. 1-5
1.3 Terms and Abbreviations .. 1-5

2. Introduction .. 2-7

2.1 Scope .. 2-7
2.2 Brief history of the GIC architecture .. 2-7
2.3 Implementations of the GICv3 architecture ... 2-8
2.4 Legacy support .. 2-8

3. GICv3 fundamentals .. 3-9

3.1 Interrupts types.. 3-9
3.2 Interrupt state machine ... 3-11
3.3 Affinity routing.. 3-13
3.4 Security model... 3-14
3.5 Programmers’ model ... 3-16

4. Configuring the GIC ... 4-18

4.1 Global settings... 4-18
4.2 Individual PE settings .. 4-18
4.3 SPI, PPI and SGI configuration ... 4-19

5. Handling Interrupts .. 5-21

5.1 What happens when an interrupt becomes pending .. 5-21
5.2 Interrupt acknowledge ... 5-21
5.3 Spurious interrupts .. 5-22
5.4 Running priority & preemption... 5-23
5.5 End of interrupt .. 5-25
5.6 Checking the current state of the system .. 5-26

6. Configuring LPIs .. 6-28

6.1 ITS ... 6-28
6.2 Redistributors .. 6-34

7. Sending and receiving SGIs ... 7-38

7.1 Generating SGIs ... 7-38
7.2 GICv3 vs GICv2 .. 7-40

8. Virtualization .. 8-41

8.1 Terminology... 8-41
8.2 Interfaces ... 8-41
8.3 Managing virtual Interrupts .. 8-42
8.4 Maintenance interrupts .. 8-44
8.5 Legacy virtual machines .. 8-44
8.6 Context switching .. 8-44

9. GICv4: Direct Injection of Virtual LPIs ... 9-45

9.1 Redistributors, vLPI state and configuration ... 9-45
9.2 Operation of an ITS in GICv4 .. 9-46
9.3 Mapping a vPE and vINTID ... 9-47
9.4 Mapping a vPE to a different Redistributor ... 9-48
9.5 Remapping or removing the mapping of vPEs/vINTIDs 9-49
9.6 Changing vLPI configuration ... 9-49
9.7 Mixing GICv3 and GICv4 .. 9-50

DAI 0492B Copyright 2015-2016 ARM Limited. All rights reserved. 5
 Non-Confidential

1. Preface
This document provides an overview of version 3 of the Generic Interrupt Controller Architecture

(GICv3). It is primarily intended for software engineers writing bare metal code for ARMv8-A

based platforms. A familiarity with ARMv8-A and writing bare metal code is assumed.

1.1 Document status

This is release B of the document.

1.2 References

This document refers to the following documents:

 ARM
®

 Generic Interrupt Controller Architecture Specification GIC architecture version

3.0 and 4.0 (ARM IHI 0069A)

 ARM
®

 Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile (ARM

DDI 0487A)

 ARM
®

 CoreLink™ GIC-500 Generic Interrupt Controller Technical Reference Manual

(ARM DDI 0516A)

 ARM
®

 Cortex
®

-A57 MPCore™ Processor Technical Reference Manual (ARM DDI

0488D)

1.3 Terms and Abbreviations

Table 1 Terms and Abbreviations shows the terms and abbreviations that are used in this

document.

Term Description

ARE Affinity Routing Enable

BPR Binary Point Register

EL Exception level (ARMv8-A)

EOIR End of Interrupt Register

GIC Generic Interrupt Controller

GICv3 Version 3 of the Generic Interrupt Controller Architecture

GICv4 Version 4 of the Generic Interrupt Controller Architecture

IAR Interrupt Acknowledge Register

ITS Interrupt Translation Service

ITT Interrupt Translation Table

LPI Locality-specific Peripheral Interrupt

PE Processing element. The abstract machine defined in the

ARM architecture, as documented in an ARM Architecture

Reference Manual. See also ARM® Architecture

Reference Manual, ARMv8, for ARMv8-A architecture

profile.

PPI Private Peripheral Interrupt

RAO/WI Read-As-One, Writes Ignored

RAZ/WI Read-As-Zero, Writes Ignored

6 Copyright 2015-2016 ARM Limited. All rights reserved. DAI 0492B
 Non-Confidential

SGI Software Generated Interrupt

SPI Shared Peripheral Interrupt

SRE System Register Enable

VM Virtual Machine

vPE Virtual PE

VPT Virtual LPI Pending Table

Table 1 Terms and Abbreviations

The ARM
®

 Generic Interrupt Controller Architecture Specification GIC architecture version 3.0

and 4.0 and ARM
®

 Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile use

the term Processing Element or PE as a generic term for a machine that implements the ARM

architecture. As an example, the ARM
®
 Cortex

®
-A57 MPCore™ is a multi-core processor, with

up to four cores. For the ARM
®
 Cortex

®
-A57 MPCore™ , each core is what the architecture

specifcations refer to as a PE.

DAI 0492B Copyright 2015-2016 ARM Limited. All rights reserved. 7
 Non-Confidential

2. Introduction
This document provides a software focused overview of the features of GICv3, and describes the

operation of a GICv3 compliant interrupt controller. It is also a primer on how to configure a

GICv3 interrupt controller for use in a bare metal environment.

This document compliments the ARM
®

 Generic Interrupt Controller Architecture Specification

GIC architecture version 3.0 and 4.0. It is not a replacement or alternative. Refer to the ARM
®

Generic Interrupt Controller Architecture Specification GIC architecture version 3.0 and 4.0 for

detailed descriptions of registers and behaviors.

2.1 Scope

GICv3 allows for a number of different configurations and use cases. For simplicity, this

document concentrates on a sub-set. It only describes the case where:

 Two Security states are present.

 Affinity routing is enabled for both Security states.

 System register access is enabled at all Exception levels.

 The connected processor, or processors, are ARMv8-A compliant, implement all

Exception levels and use AArch64 at all Exception levels.

This document does not cover:

 Legacy operation, other than in the introduction.

 Use from an Exception level that is using AArch32.

2.2 Brief history of the GIC architecture

GICv3 adds several new features. To put these new features in context Table 2 provides a brief

overview of the different versions of the GIC architecture, and their key features.

Table 2 GIC version history

Version Key features Typically used with

GICv1 Support for up to eight PEs.

Support for up to 1020 interrupt IDs.

Support for two Security states.

ARM Cortex-A5 MPCore

ARM Cortex-A9 MPCore

ARM Cortex-R7 MPCore

GICv2 All key features of GICv1

Support for virtualization.

ARM Cortex-A7 MPCore

ARM Cortex-A15 MPCore

ARM Cortex-A53 MPCore

ARM Cortex-A57 MPCore

GICv3 All key features of GICv2

Support for more than eight PEs.

Support for message-based interrupts.

Support for more than 1020 interrupt IDs.

System register access to the CPU Interface

registers.

An enhanced security model, separating Secure and

Non-secure Group 1 interrupts.

ARM Cortex-A53 MPCore

ARM Cortex-A57 MPCore

ARM Cortex-A72 MPCore

GICv4 All key features of GICv3 and:

Direct injection of virtual interrupts

ARM Cortex-A53 MPCore

ARM Cortex-A57 MPCore

ARM Cortex-A72 MPCore

8 Copyright 2015-2016 ARM Limited. All rights reserved. DAI 0492B
 Non-Confidential

NOTE: GICv2m is an extension to GICv2 to add support for message based interrupts.

For more information contact ARM.

2.3 Implementations of the GICv3 architecture

The ARM
®
 CoreLink™ GIC-500 is an implementation of GICv3. The ARM

®
 Cortex

®
-A53,

ARM
®
 Cortex

®
 -A57 and ARM

®
 Cortex

®
-A72 MPCore processors implement the required CPU

interface.

2.4 Legacy support

GICv3 makes a number of changes to the programmers’ model. To support legacy software

written for GICv2 systems, GICv3 supports legacy operation.

The programmers’ model that is used is controlled by the Affinity Routing Enable (ARE) bits in

GICD_CTRL:

 When ARE == 0, affinity routing is disabled (legacy operation).

 When ARE == 1, affinity routing is enabled.

NOTE: For readability, GICD_CTLR.ARE_S and GICD_CTLR.ARE_NS are referred to

collectively as ARE in this document where appropriate.

In a system with two Security states, affinity routing can be controlled separately for each Security

state. Only specific combinations are permitted, and these are shown in Figure 1.

Figure 1 Supported ARE combinations

This documents focusses on the new GICv3 programmers’ model, where ARE=1 for both security

states. Legacy operation, where ARE==0, is not described.

NOTE: Support for legacy operation is OPTIONAL. When support for legacy operation is

implemented, legacy operation is selected out of reset.

DAI 0492B Copyright 2015-2016 ARM Limited. All rights reserved. 9
 Non-Confidential

3. GICv3 fundamentals
This chapter describes the basic operation of an interrupt controller that is compliant with the

GICv3 architecture. It also describes the different programming interfaces.

3.1 Interrupts types

GICv3 defines the following types of interrupt:

 SPI (Shared Peripheral Interrupt)

This is a global peripheral interrupt that can be routed to a specified PE, or to one of a group of

PEs.

 PPI (Private Peripheral Interrupt)

This is peripheral interrupt that targets a single, specific PE.

An example of a PPI is an interrupt from the Generic Timer of a PE.

 SGI (Software Generated Interrupt)

SGIs are typically used for inter-processor communication, and are generated by a write to an SGI

register in the GIC.

 LPI (Locality-specific Peripheral Interrupt)

LPIs are new in GICv3, and they are different to the other types of interrupt in a number of ways.

In particular, LPIs are always message-based interrupts, and their configuration is held in tables in

memory rather than registers. This is described in more detail in Chapter 6.

NOTE: LPIs are only supported when GICD_CTLR.ARE_NS==1.

3.1.2 Interrupt Identifiers

Each interrupt source is identified by an ID number, referred to as an INTID. The available

INTIDs are grouped into ranges, and each range is assigned to a particular type of interrupt.

Table 3 Interrupt ID ranges

INTID Interrupt Type Notes

0 - 15 SGIs Banked per PE

16 - 31 PPIs Banked per PE

32 - 1019 SPIs -

1020 - 1023 Special interrupt number Used to signal special cases, see section

5.3

1024 - 8191 Reserved -

8192 and greater LPIs The upper boundary is

IMPLEMENTATION DEFINED

10 Copyright 2015-2016 ARM Limited. All rights reserved. DAI 0492B
 Non-Confidential

3.1.3 How interrupts are signaled to the interrupt controller

Traditionally, interrupts are signaled from a peripheral to the interrupt controller using a dedicated

hardware signal.

Figure 2 Dedicated interrupt signal

GICv3 supports this model, and additionally supports message-based interrupts. A message-based

interrupt is an interrupt that is set and cleared by a write to a register in the interrupt controller.

Figure 3 Message-based interrupt transported over the interconnect

Using a message to forward the interrupt from a peripheral to the interrupt controller removes the

requirement for a dedicated signal per interrupt source. This can be an advantage for hardware

designers of large systems, where potentially hundreds or even thousands of signals might be

routed across a SoC and converge on the interrupt controller.

In GICv3, SPIs can be message-based interrupts, but LPIs are always message-based interrupts.

Different registers are used for the different interrupt types, as shown in Table 4.

Table 4 Message-based interrupt registers

Interrupt Type Registers

SPI GICD_SETSPI_NSR asserts an interrupt

GICD_CLRSPI_NSR deasserts an interrupt

LPI GITS_TRANSLATER

 Impact of message-based interrupts on software

Whether an interrupt is sent as a message or using a dedicated signal has little effect on the way the

interrupt handling code handles the interrupt.

Some configuration of the peripherals might be required. For example, it might be necessary to

specify the address of the interrupt controller. This is outside of the scope of this document and is

not described.

DAI 0492B Copyright 2015-2016 ARM Limited. All rights reserved. 11
 Non-Confidential

3.2 Interrupt state machine

The interrupt controller maintains a state machine for each SPI, PPI and SGI interrupt source. This

state machine consists of four states:

 Inactive

The interrupt source is not currently asserted.

 Pending

The interrupt source has been asserted, but the interrupt has not yet been acknowledged

by a PE.

 Active

The interrupt source has been asserted, and the interrupt has been acknowledged by a PE.

 Active and Pending

An instance of the interrupt has been acknowledged, and another instance is now pending.

NOTE: LPIs do not have an active or active and pending state. For more information, see section

6.2.

Figure 4 shows the structure of the state machine, and the possible transitions.

Inactive Pending

Active
a

Active and

pending
a

a. Not applicable for LPIs.

Figure 4 Interrupt state machine for PPIs, SGIs and SPIs

The life cycle of an interrupt depends on whether it is configured to be level-sensitive or edge-

triggered. Sections 3.2.1 and 3.2.2 provide example sequences.

3.2.1 Level sensitive

Inactive Pending AP
a

Active Inactive

Interrupt signal from

peripheral to GIC

GIC state machine

for the interrupt

Interrupt signal from

GIC to core

a
Active and Pending

Figure 5 Interrupt life cycle - level sensitive interrupts

12 Copyright 2015-2016 ARM Limited. All rights reserved. DAI 0492B
 Non-Confidential

 Inactive to Pending

An interrupt transitions from inactive to pending when the interrupt source is asserted.

At this point the GIC asserts the interrupt signal to the PE (if the interrupt is enabled and is of

sufficient priority).

 Pending to Active & Pending

The interrupt transitions from pending to active and pending when a PE acknowledges the

interrupt by reading one of the IARs (Interrupt Acknowledge Registers) in the CPU interface. This

read is typically part of an interrupt handling routine that executes after an interrupt exception is

taken. However, software can also poll the IARs.

At this point the GIC deasserts the interrupt signal to the PE.

 Active and Pending to Active

The interrupt transitions from active and pending to active when the peripheral de-asserts the

interrupt signal. This typically happens in response to the interrupt handling software that is

executing on the PE writing to a status register in the peripheral.

 Active to Inactive

The interrupt goes from active to inactive when the PE writes to one of the EOIRs (End of

Interrupt Registers) in the CPU interface. This indicates that the PE has finished handling the

interrupt.

3.2.2 Edge-triggered

Inactive Pending A&PActive Pending

Interrupt signal from

peripheral to GIC

GIC state machine

for the interrupt

Interrupt signal from

GIC to core

Figure 6 Interrupt life cycle - edge-triggered interrupts

 Inactive to Pending

An interrupt transitions from inactive to pending when the interrupt source is asserted.

At this point the GIC asserts the interrupt signal to the PE (if the interrupt is enabled and is of

sufficient priority).

 Pending to Active

The interrupt transitions from pending to active when a PE acknowledges the interrupt by reading

one of the IARs in the CPU interface. This read is typically part of an interrupt handling routine

that executes after an interrupt exception is taken. However, software can also poll the IARs.

At this point the GIC de-asserts the interrupt signal to the PE.

 Active to Active and Pending

The interrupt goes from active to active and pending if the peripheral re-asserts the interrupt

signal.

DAI 0492B Copyright 2015-2016 ARM Limited. All rights reserved. 13
 Non-Confidential

 Active and Pending to Pending

The interrupt goes from active and pending to pending when the PE writes to one of the EOIRs in

the CPU interface. This indicates that the PE has finished handling the first instance of the

interrupt.

At this point the GIC re-asserts the interrupt signal to the PE.

3.3 Affinity routing

GICv3 uses affinity routing to identify connected PEs and to route interrupts to a specific PE or

group of PEs. The affinity of a PE is represented as four 8-bit fields:

 <affinity level 3>.<affinity level 2>.<affinity level 1>.<affinity level 0>

Figure 7 shows an example of an affinity level hierarchy.

Figure 7 Example of an affinity hierarchy

At affinity level 0 there is a Redistributor. Each Redistributor connects to a single CPU interface.

The Redistributors controls SGIs, PPIs and LPIs, see chapter 4.

The affinity scheme matches that used in ARMv8-A, with the affinity of a PE reported in

MPIDR_EL1. System designers must ensure that the affinity value indicated by MPIDR_EL1 is

identical to that indicated by GICR_TYPER for the Redistributor connected to the PE.

The exact meaning of the different levels of affinity is defined by the specific processor and SoC.

The following are examples:

<group of groups>. <group of processors>.<processor>.<core>

<group of processors>.<processor>.<core>.<thread>

It is highly unlikely that all the possible nodes exist in a single implementation. For example, a

SoC for a mobile device could have a layout similar to this:

0.0.0.[0:3] Cores 0 to 3 of a Cortex-A53 processor

0.0.1.[0:1] Cores 0 to 1 of a Cortex-A57 processor

14 Copyright 2015-2016 ARM Limited. All rights reserved. DAI 0492B
 Non-Confidential

In ARMv8-A, AArch64 state supports four levels of affinity. AArch32 state, and ARMv7, can

only support three levels of affinity. This means a design that uses AArch32 state is limited to a

single node at affinity level 3 (0.x.y.z). GICD_TYPER.A3V indicates whether the interrupt

controller can support multiple level 3 nodes.

NOTE: Although each level 1 node can host up to 256 Redistributors at level 0, in practice it is

likely to be 16 or fewer. This is because of the way the target PEs for an SGI are encoded, as

described in Chapter 7.

3.4 Security model

The GICv3 architecture supports the ARM TrustZone technology. Each INTID must be assigned a

group and security setting. GICv3 supports three combinations, as shown in Table 5.

Table 5 Security and groupings

Interrupt Type Example use

Secure Group 0 Interrupts for EL3 (Secure Firmware)

Secure Group 1 Interrupts for Secure EL1 (Trusted OS)

Non-secure Group 1 Interrupts for the Non-secure state (OS and/or Hypervisor)

Group 0 interrupts are always signaled as FIQs. Group 1 interrupts are signaled as either IRQs or

FIQs depending on the current Security state and Exception level of the PE.

Table 6 Mapping between security settings and exception type when EL3 is using
AArch64

EL and Security state of PE Group 0 Group 1

 Secure Non-secure

Secure EL0/1 FIQ IRQ FIQ

Non-secure EL0/1/2 FIQ FIQ IRQ

EL3 FIQ FIQ FIQ

These rules are designed to complement the ARMv8-A Security state and Exception level routing

controls. Figure 8 shows a simplified software stack, and what happens when different types of

interrupt are signaled while executing at EL0:

DAI 0492B Copyright 2015-2016 ARM Limited. All rights reserved. 15
 Non-Confidential

Figure 8 Interrupt routing example

In this example, IRQs are routed to EL1 (SCR_EL3.IRQ==0) and FIQs routed to EL3

(SCR_EL3.FIQ==1) . Given the rules described in Table 6, while executing at EL1 or EL0 a

Group 1 interrupt for the current Security state is taken as an IRQ.

An interrupt for the other Security state triggers an FIQ, and the exception is taken to EL3. This

then allows software executing at EL3 to perform the necessary context switch. A more detailed

example of this can be found in chapter 5.3.

3.4.1 Impact on software

Software controls the allocation of INTIDs to interrupt groups when configuring the interrupt

controller. Only software executing in Secure state can allocate INTIDs to interrupt groups.

Typically only software executing in Secure state must be able to access the settings and state of

Secure interrupts (Group 0 and Secure Group 1).

Accesses from Non-secure state to Secure interrupt settings and state can be enabled. This is

controlled individually for each INTID, using the GICD_NSACRn and GICR_NSACR registers.

NOTE: The interrupt group to which an INTID belongs at reset is IMPLEMENTATION DEFINED.

NOTE: LPIs are always treated as Non-secure Group 1 interrupts.

3.4.2 Support for single Security state

Support for two Security states is OPTIONAL in ARMv8-A and GICv3. An implementation can

choose to implement only a single Security state or two Security states.

In a GICv3 implementation that supports two Security states, one Security state can be disabled.

This is controlled by GICD_CTLR.DS.

 GICD_CTLR.DS == 0

Two Security states (Secure and Non-secure) are supported.

16 Copyright 2015-2016 ARM Limited. All rights reserved. DAI 0492B
 Non-Confidential

 GICD_CTLR.DS == 1

Only a single Security state is supported. On implemenations that only implement a

single Security state, this bit is RAO/WI.

When only a single Security state is supported, there are two interrupt groups. These are Group 0

and Group 1.

This document describes the case where two Security states are implemented.

NOTE: If software sets GICD_CTLR.DS to 1, it can only be cleared by a reset.

3.5 Programmers’ model

The register interface of a GICv3 interrupt controller is split into three groups:

 Distributor interface.

 Redistributor interface.

 CPU interface.

Figure 9 The programming interfaces of a GICv3 interrupt controller

 Distributor (GICD_*)

The Distributor registers are memory-mapped, and contain global settings that affect all PEs

connected to the interrupt controller. The Distributor provides a programming interface for:

 Interrupt prioritization and distribution of SPIs.

 Enabling and disabling SPIs.

 Setting the priority level of each SPI.

 Routing information for each SPI.

 Setting each SPI to be level-sensitive or edge-triggered.

 Generating message-based SPIs.

 Controlling the active and pending state of SPIs.

 Controls to determine the programmers’ model that is used in each Security state (affinity

routing or legacy).

DAI 0492B Copyright 2015-2016 ARM Limited. All rights reserved. 17
 Non-Confidential

 Redistributors (GICR_*)

For each connected PE there is a Redistributor. The Redistributors provides a programming

interface for:

 Enabling and disabling SGIs and PPIs.

 Setting the priority level of SGIs and PPIs.

 Setting each PPI to be level-sensitive or edge-triggered.

 Assigning each SGI and PPI to an interrupt group.

 Controlling the state of SGIs and PPIs.

 Base address control for the data structures in memory that support the associated

interrupt properties and pending state for LPIs.

 Power management support for the connected PE.

 CPU interfaces (ICC_*_ELn)

Each Redistributor is connected to a CPU interface. The CPU interface provides a programming

interface for:

 General control and configuration to enable interrupt handling.

 Acknowledging an interrupt.

 Performing a priority drop and deactivation of interrupts.

 Setting an interrupt priority mask for the PE.

 Defining the preemption policy for the PE.

 Determining the highest priority pending interrupt for the PE.

In GICv3 the CPU Interface registers are accessed as System registers (ICC_*_ELn).

Software must enable the System register interface before using these registers. This is controlled

by the SRE bit in the ICC_SRE_ELn registers, where “n” specifies the Exception level (EL1-

EL3).

NOTE: In GICv1 and GICv2 the CPU Interface registers were memory mapped (GICC_*).

NOTE: Software can check for GIC System register support by reading ID_AA64PFR0_EL1 for

the PE, see ARM
®

 Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for

details.

18 Copyright 2015-2016 ARM Limited. All rights reserved. DAI 0492B
 Non-Confidential

4. Configuring the GIC
This chapter describes how to enable and configure a GICv3 compliant interrupt controller in a

bare metal environment. For detailed register descriptions see the ARM
®

 Generic Interrupt

Controller Architecture Specification GIC architecture version 3.0 and 4.

The configuration of LPIs is significantly different to the configuration of SPIs, PPIs and SGIs, and

they are therefore described separately in Chapter 6.

Most systems that use a GICv3 interrupt controller are multi-core systems, and possibly also multi-

processor systems. Some settings are global, that is, they affect all the connected PEs. Other

settings are particular to a single PE.

This chapter will first look at the global settings, and then the per-PE settings.

4.1 Global settings

The Distributor control register (GICD_CTLR) must be configured to enable the interrupt groups

and to set the routing mode.

 Enable Affinity routing (ARE bits)

The ARE bits in GICD_CTLR control whether affinity routing is enabled. If affinity

routing is not enabled, GICv3 can be configured for legacy operation . Whether affinity

routing is enabled or not can be controlled separately for Secure and Non-secure state.

 Enables

GICD_CTLR contains separate enable bits for Group 0, Secure Group 1 and Non-secure

Group 1:

o GICD_CTLR.EnableGrp1S enables distribution of Secure Group 1

interrupts.

o GICD_CTLR.EnableGrp1NS enables distribution of Non-secure Group 1

interrupts.

o GICD_CTLR.EnableGrp0 enables distribution of Group 0 interrupts.

4.2 Individual PE settings

4.2.1 Redistributor configuration

On reset, a Redistributor treats the PE to which it is connected as sleeping. Wake-up is controlled

through GICR_WAKER. To mark the connected PE as being awake, software must:

 Clear GICR_WAKER .ProcessorSleep to 0.

 Poll GICR_WAKER .ChildrenAsleep until it reads 0.

Enabling and configuring LPIs is described in Chapter 6.

Writing to the CPU interface registers, other than ICC_SRE_ELn, when either

GICR_WAKER.ProcessorSleep==1 or GICR_WAKR.ChildrenAsleep==1 leads to

UNPREDICTABLE behaviour.

4.2.2 CPU interface configuration

The CPU interface is responsible for delivering interrupts to the PE to which it is connected. To

enable the CPU interface software must configure the following:

 Enable System register access.

Chapter 3.5 describes the CPU interface registers, and how they are accessed as System

registers in GICv3. Software must enable access to the CPU interface registers, by setting

the SRE bit in theICC_SRE_ELn registers.

DAI 0492B Copyright 2015-2016 ARM Limited. All rights reserved. 19
 Non-Confidential

 Set priority mask and binary point registers.

The CPU interface contains the Priority Mask register (ICC_PMR_EL1) and the Binary

Point registers (ICC_BPRn_EL1). The Priority Mask sets the minimum priority an

interrupt must have in order to be forwarded to the PE. The Binary Point register is used

for priority grouping and preemption. The use of both of these registers is described in

more detail in Chapter 5.

 Set EOI mode.

The EOImode bits in ICC_CTLR_EL1 and ICC_CTLR_EL3 in the CPU interface

control how the completion of an interrupt is handled. This is described in more detail in

chapter 5.5.

 Enable signaling of each interrupt group.

The signalling of each interrupt group must be enabled before interrupts of that group will

be forwarded by the CPU interface to the PE. To enable signaling software must write to

ICC_IGRPEN1_EL1 register for Group 1 interrupts and ICC_IGRPEN0_EL1 registers

for Group 0 interrupts.

ICC_IGRPEN1_EL1 is banked by Security state. This means that ICC_GRPEN1_EL1

controls Group 1 for the current Security state. At EL3, software can access both Secure

Group 1 interrupt enables and Non-secure Group 1 interrupt enables using

ICC_IGRPEN1_EL3.

4.2.3 PE configuration

Some configuration of the PE is also required to allow it to receive and handle interrupts. A

detailed description of this is outside of the scope of this document. It is sufficient here to describe

the basic steps required for an ARMv8-A compliant PE executing in AArch64 state.

 Routing controls

The routing controls for interrupts are in SCR_EL3 and HCR_EL2 of the PE. The routing

control bits determine the Exception level to which an interrupt is taken. The routing bits

in these registers have an UNKNOWN value at reset, so they must be initialized by

software.

 Interrupt masks

The PE also has exception mask bits in PSTATE. When these bits are set, interrupts are

masked. These bits are set at reset.

 Vector table

The location of the vector tables of the PE is set by the VBAR_ELn registers. As with

SCR_EL3 and HCR_EL2, VBAR_ELn registers have an UNKNOWN value at reset.

Software must set the VBAR_ELn registers to point to the appropriate vector tables in

memory.

For more information, see ARM® Architecture Reference Manual, ARMv8, for ARMv8-A

architecture profile.

4.3 SPI, PPI and SGI configuration

SPIs are configured through the Distributor, using the GICD_* registers. PPIs and SGIs are

configured through the individual Redistributors, using the GICR_* registers.

For each INTID, software must configure the following:

 Priority (GICD_IPRIORITYn, GICR_IPRIORITYn)

Each INTID has an associated priority, represented as an 8-bit unsigned value. 0x00 is

the highest possible priority, and 0xFF is the lowest possible priority. Chapter 5

20 Copyright 2015-2016 ARM Limited. All rights reserved. DAI 0492B
 Non-Confidential

describes how the priority value in GICD_IPRIORITYn and GICR_IPRIORITYn

masks low priority interrupts, and how it controls preemption.

An interrupt controller is not required to implement all 8 priority bits. A minimum of 5

bits must be implemented if the GIC supports two Security states. A minimum of 4 bits

must be implemented if the GIC support only a single Security state.

 Group (GICD_IGROUPn, GICD_IGRPMODn, GICR_IGROUP0, GICR_IGRPMOD0)

As described in section 3.4, an interrupt can be configured to belong to one of the three

distinct interrupt groups. These interrupt groups are Group 0, Secure Group 1 and Non-

secure Group 1.

 Edge-triggered/level-sensitive (GICD_ICFGRn, GICR_ICFGRn)

If the interrupt is sent as a physical signal, it must be configured to be either edge-

triggered or level-sensitive. SGIs are always treated as edge-triggered, and therefore

GICR_ICFGR0 behaves as RAO/WI for these interrupts.

 Enable (GICD_ISENABLERn, GICD_ICENABLER, GICR_ISENABLER0,

GICR_ICENABLER0)

Each INTID has an enable bit. Set-enable registers and Clear-enable registers remove the

requirement to perform read-modify-write routines. ARM recommends that the settings

outlined in this section are configured before enabling the INTID.

For a bare metal environment, it is often unnecessary to change settings after initial configuration.

However, if an interrupt must be reconfigured, for example to change the Group setting, it is

advisable to first disable that particular INTID.

The reset values of most of the configurations registers are IMPLEMENTATION DEFINED. This

means that the designer of the interrupt controller decides what the values are, and the values might

vary between systems.

4.3.1 Setting the target PE for SPIs

For SPIs, the target of the interrupt must additionally be configured. This is controlled by

GICD_IROUTERn. There is a GICD_IROUTERn register per SPI, and the

Interrupt_Routing_Mode bit controls the routing policy. The options are:

 GICD_IROUTERn.Interrupt_Routing_Mode == 0

The SPI is to be delivered to the PE A.B.C.D, the affinity co-ordinates specified in the

register.

 GICD_IROUTERn.Interrupt_Routing_Mode == 1

The SPI can be delivered to any connected PE that is participating in distribution of the

interrupt group. The Distributor, rather than software, selects the target PE, and this can

vary each time the interrupt is signaled.

This type of routing is referred to as 1-of-N.

A PE can opt-out of receiving 1-of-N interrupts. This is controlled by the DPG1S, DPG1NS and

DPG0 bits in GICR_CTLR.

DAI 0492B Copyright 2015-2016 ARM Limited. All rights reserved. 21
 Non-Confidential

5. Handling Interrupts

5.1 What happens when an interrupt becomes pending

Section 3.2 describes how an interrupt transitions from the inactive to the pending state when the

source of the interrupt is asserted. This is typically due to a peripheral asserting a dedicated

interrupt signal.

When an interrupt becomes pending, the interrupt controller decides whether to send the interrupt

to one of the connected PEs. The PE which the interrupt controller selects, if any, depends on the

following settings:

 Group enables

Section 3.4 described how INTID is assigned to a Group (Group 0, Secure Group 1 or

Non-secure Group 1). For each Group, there is a Group bit in the Distributor and in the

CPU Interface. An interrupt that is a member of a disabled Group cannot be signaled to a

PE.

 Interrupt enables

Individually disabled interrupts can become pending, but will not be forwarded to a PE.

 Routing controls

Depending on the type of interrupt, the interrupt controller must decide which PEs can

receive the interrupt.

For SPIs, this is controlled by GICD_IROUTERn. An SPI can target one specific PE, or

any one of the connected PEs.

For LPIs, the routing information comes from the ITS if an ITS is implemented (see

section 6.1).

PPIs are specific to one PE, and can only be handled by that PE.

For SGIs, the originating PE defines the list of target PEs. This is described further in

chapter 7.

 Interrupt priority & priority mask

Each PE has a Priority Mask register (ICC_PMR_EL1) in its CPU Interface. This

register sets the minimum priority that is required for an interrupt to be forwarded to that

PE. Only interrupts with a higher priority than the value in the register are signaled to the

PE.

 Running priority

Section 5.4 covers running priority, and how this affects preemption. If the PE is not

already handling an interrupt, the running priority is the idle priority (0xFF). Only an

interrupt with a higher priority than the running priority can preempt the current interrupt.

5.2 Interrupt acknowledge

The CPU interface has two IARs. Reading the IAR returns the INTID, and advances the interrupt

state machine. In a typical interrupt handler, one of the first steps when handling an interrupt is to

read one of the IARs.

Table 7 Interrupt acknowledge registers

Register Use

ICC_IAR0_EL1 Used to acknowledge Group 0 interrupts.

ICC_IAR1_EL1 Used to acknowledge Group 1 interrupts.

22 Copyright 2015-2016 ARM Limited. All rights reserved. DAI 0492B
 Non-Confidential

5.3 Spurious interrupts

Section 3.1.2 describes how the INTID range 1020 to 1023 is reserved for special purposes. These

INTIDs can be returned by reads of the IARs, and indicate special cases in exception handling.

Table 8 Reserved IDs

ID Meaning Example scenario

1020 Only returned by reads of

ICC_IAR0_EL1.

Highest pending interrupt is

Secure Group 1.

Only seen when taking FIQ to

EL3

An interrupt for the Trusted OS was signaled while the

PE was executing in Non-secure state. This is taken as

an FIQ to EL3, so that the Secure Monitor could

context switch to the Trusted OS.

1021 Only returned by reads of

ICC_IAR0_EL1.

Highest pending interrupt is

Non-secure Group 1.

Only seen when taking FIQ to

EL3

An interrupt for the rich OS was signaled while the PE

was executing in Secure state. This would be taken as a

FIQ to EL3, so that the Secure Monitor could context

switch to the rich OS.

1022 Used only for legacy operation.

Legacy operation is not addressed in this document.

1023 Spurious interrupt.

There are no enabled INTIDs in

the pending state, or all INTIDs

in that pending are of

insufficient priority to be taken.

When polling the IARs, this value indicates that there

are no interrupts to available to acknowledge.

 Example

In the following example, a mobile system has a modem interrupt which signals an incoming phone call.

This interrupt is intended to be handled by the Rich OS in the Non-secure state.

Figure 10 Example of using reserved INTID 1021

DAI 0492B Copyright 2015-2016 ARM Limited. All rights reserved. 23
 Non-Confidential

1. The modem interrupt becomes pending while the PE is executing the Trusted OS at Secure EL1.

As the modem interrupt is configured as Non-secure Group 1, it will be signaled as an FIQ. With

SCR_EL3.FIQ==1, the exception is taken to EL3.

2. Secure Monitor software executing at EL3 reads the IAR, which returns 1021. This values

indicates that the interrupt is expected to be handled in Non-secure state. The Secure Monitor then

performs the necessary context switching operations.

3. Now that the PE is in Non-secure state, the interrupt is signaled as an IRQ and taken to Non-secure

EL1 to be handled by the Rich OS.

In the example shown in Figure 10 the Non-secure Group 1 interrupt caused an immediate exit from the

Secure OS. This might not always be required or wanted. Figure 11 shows an alternative model, where the

interrupt is initially taken to Secure EL1.

Figure 11 Alternative routing model

1. The modem interrupt becomes pending while the PE is executing the Trusted OS at Secure EL1.

As the modem interrupt is configured as Non-secure Group 1, it will be signaled as an FIQ. With

SCR_EL3.FIQ==0, the exception is taken to Secure EL1.

2. The Trusted OS performs actions to tidy up its internal state. When it is ready, the Trusted OS

uses an SMC instruction to yield to Non-secure state.

4. The SMC exception is taken to EL3. The Secure Monitor software executing at EL3 performs the

necessary context switching operations.

5. Now that the PE is in Non-secure state, the interrupt is signaled as an IRQ and taken to Non-secure

EL1 to be handled by the Rich OS.

5.4 Running priority & preemption

The PMR sets the minimum priority that an interrupt must have to be forwarded to a particular PE. The

GICv3 architecture has the concept of a running priority. When a PE acknowledges an interrupt, its running

priority becomes that of the interrupt. The running priority returns to its former value when the PE writes to

one of the EOI registers.

24 Copyright 2015-2016 ARM Limited. All rights reserved. DAI 0492B
 Non-Confidential

Figure 12 Running priority value over time

The current running priority is reported in the Running Priority register in the CPU interface

(ICC_RPR_EL1).

The concept of running priority is important when considering preemption. Preemption occurs when a high

priority interrupt is signaled to a PE that is already handling a lower priority interrupt. Preemption

introduces some additional complexity for software, but it can prevent a low priority interrupt blocking the

handling of a higher priority interrupt.

Figure 13 Without preemption

Figure 14 With preemption

DAI 0492B Copyright 2015-2016 ARM Limited. All rights reserved. 25
 Non-Confidential

Figure 14 shows one level of preemption. However, it is possible to have multiple levels of preemption.

In some situations preemption might not be required or wanted. The GICv3 architecture allows the

difference in priority required for preemption to be controlled through the Binary Point registers

(ICC_BPRn_EL1).

The Binary Point registers split the priority into two fields, group priority and subpriority:

Figure 15 Eight bit priority value split between group priority and subpriority fields

For preemption, only the group priority bits are considered. The subpriority bits are ignored.

For example, consider the following three interrupts:

 INTID A has priority 0x10

 INTID B has priority 0x20

 INTID C has priority 0x21

In this scenario it is decided that:

 A can preempt B or C.

 B cannot preempt C, because B and C have similar priorities.

To achieve this the the split between Group and Subpriority could be set at N=4:

Figure 16 Group priority/Subpriority example

With this split, B and C are now considered to have the same priority for the purpose of preemption.

However, A still has a higher priority so it can preempt either B or C.

NOTE: Preemption requires that the interrupt handler, or handlers, are written to support nesting. Details of

this are outside of the scope of this document, and are not described here.

5.5 End of interrupt

When the interrupt has been handled, software must inform the interrupt controller that the interrupt has

been handled so that the state machine can transition to the next state. The GICv3 architecture treats this as

two tasks:

 Priority drop

This means dropping the running priority back to the value that it had before the interrupt was taken.

 Deactivation

This means updating the state machine of the interrupt that is currently being handled. Typically this

will be a transition from the Active state to the Inactive state.

http://armv8.arm.com/armv8-sysreg/latest/AArch64-icc_bpr0_el1.xml

26 Copyright 2015-2016 ARM Limited. All rights reserved. DAI 0492B
 Non-Confidential

In the GICv3 architecture priority drop and deactivation can happen together or separately. This is

determined by the settings of ICC_CTLR_ELn.EOImode.

 EOImode = 0

A write to ICC_EOIR0_EL1 for Group 0 interrupts, or ICC_EOIR1_EL1 for Group 1 interrupts,

performs both the priority drop and deactivation. This is the model typically used for a simple bare

metal environment.

 EOImode = 1

A write to ICC_EOIR_EL10 for Group 0 interrupts, or ICC_EOIR1_EL1 for Group 1 interrupts

results in a priority drop. A separate write to ICC_DIR_EL1 is required for deactivation. This mode

is often used for virtualization purposes.

When writing these registers, software must write the INTID.

5.6 Checking the current state of the system

5.6.1 Highest priority pending interrupt and running priority

As the names suggests, the Highest Priority Pending Interrupt registers (ICC_HPPIR0_EL1 &

ICC_HPPIR1_EL1) report the INTID of the highest priority pending interrupt for this PE. This might be

different on different PEs, for example because of different routing settings for SPIs.

Running priority was introduced in section 5.4, and is reported by the Running Priority register

(ICC_RPR_EL1).

5.6.2 State of individual INTIDs

The Distributor provides registers that indicate the current state of each SPI. Similarly the Redistributors

provide registers that indicate the state of PPIs and SGIs for their connected PEs.

These registers can also move an interrupt to a specific state. This can be useful, for example, for testing

that the configuration is correct without requiring the peripheral to assert the interrupt.

There are separate registers to report the active state and the pending state. Table 9 lists the active state

registers. The pending state registers have the same format.

DAI 0492B Copyright 2015-2016 ARM Limited. All rights reserved. 27
 Non-Confidential

Table 9 Active State registers

Register Description

GICD_ISACTIVERn Sets the active state for SPIs.

One bit per INTID.

Reads of a bit return the current state of the INTID:

 1 – the INTID is active

 0 – the INTID is not active

Writing 1 to a bit activates the corresponding INTID.

Writing 0 to a bit has not effect.

GICD_ICACTIVERn Clears the active state for SPIs.

One bit per INTID.

Reads of a bit return the current state of the interrupt:

 1 – the INTID is active

 0 – the INTID is not active

Writing 1 to a bit deactivates the corresponding INTID.

Writing 0 to a bit has not effect.

GICR_ISACTIVER0 Sets the active state for SGIs and PPIs.

One bit INTID. (Covers INTIDs 0 to 31, which are private to each PE)

Reads of a bit return the current state of the interrupt:

 1 – the INTID is active

 0 – the INTID is not active

Writing 1 to a bit activates the corresponding INTID.

Writing 0 to a bit has not effect.

GICR_ICACTIVER0 Clears the active state for SGIs and PPIs.

One bit INTID. (Covers INTIDs 0 to 31, which are private to each PE)

Reads of a bit return the current state of the interrupt

 1 – the INTID is active

 0 – the INTID is not active

Writing 1 to a bit deactivates the corresponding INTID.

Writing 0 to a bit has not effect.

NOTE: GICD_ISACTIVER0 and GICD_ICACTIVER0 are treated as RES0 when affinity routing is

enabled. This is because GICD_ISACTIVER0 and GICD_ICACTIVER0 correspond to INTIDs 0 to 31,

which are banked per-PE and reported through the Redistributor of each PE.

NOTE: Software executing in Non- secure state cannot see the state of Group 0 or Secure Group 1

interrupts, unless access is permitted by GICD_NASCRn or GICR_NASCRn.

28 Copyright 2015-2016 ARM Limited. All rights reserved. DAI 0492B
 Non-Confidential

6. Configuring LPIs
LPIs are only supported when affinity routing is enabled, and they are configured differently compared to

the other interrupt types.

Configuring LPIs involves setting up the:

 Redistributors.

 The optional ITSs (Interrupt Translation Service).

LPIs are always message–based interrupts, and they can be supported by an ITS. An ITS is responsible for

receiving interrupts from peripherals and forwarding them to the appropriate Redistributor as LPIs. A

system might include more than one ITS, in which case each ITS must be configured individually.

A peripheral can also send the LPI directly to a Redistributor, bypassing the ITS. However, the ITS

provides a number of features to allow efficient handling of large numbers of interrupt sources.

NOTE: Support for LPIs is optional, and is indicated by GICD_TYPER.LPIS. If at least one ITS is

present, it is IMPLEMENTATION DEFINED whether a peripheral can send LPIs directly to a Redistributor,

bypassing the ITSs.

6.1 ITS

6.1.1 Operation of an ITS

A peripheral generates an LPI by writing to GITS_TRANSLATER in the ITS. The write provides the ITS

with the following information:

 EventID

This is the value written to GITS_TRANSLATER. The EventID idenitifies which interrupt the

peripheral is sending. The EventID might be the same as the INTID, or it might be translated by

the ITS into the INTID.

 DeviceID

The DeviceID identifies the peripheral. The manner in which a DeviceID is generated is

IMPLEMENTATION DEFINED. For example, the AXI User signals could be used.

The ITS translates the EventID that is written to GITS_TRANSLATER by the peripheral to an INTID.

How the EventID translates into an INTID is specific to each peripheral, which is why a DeviceID is

required.

LPI INTIDs are grouped together in collections. All INTIDs in a collection are routed to the same

Redistributor. Software allocates LPI INTIDs to Collections, allowing it to efficiently move interrupts from

one PE to another.

An ITS uses three types of table to handle the translation and routing of LPIs. These are:

 Device Tables

These map DeviceIDs to Interrupt Translation Tables.

 Interrupt Translation Tables

These contain the DeviceID specific mappings between EventID and INTID. They also contain

the Collection of which the INTID is a member.

 Collection Tables

These map collections to Redistributors.

DAI 0492B Copyright 2015-2016 ARM Limited. All rights reserved. 29
 Non-Confidential

Figure 17 An ITS forwarding an LPI to a Redistributor

When a peripheral writes to GITS_TRANSLATER, the ITS:

1. Uses the DeviceID to select the appropriate entry from the Device Table. This entry identifies

which Interrupt Translation Table to use.

2. Uses the EventID to select the appropriate entry from the Interrupt Translation Table. This entry

provides the INTID, and the Collection ID.

3. Uses the Collection ID to select the required entry in the Collection Table, which returns the

routing information.

4. Forwards the interrupt to the target Redistributor.

NOTE: An ITS can optionally support a number of hardware collections. Hardware collections are where

the ITS holds the configuration internally, rather than storing it in memory. GITS_TYPER.HCC reports

the number of hardware collections that are supported.

6.1.2 The command queue

An ITS is controlled using a command queue in memory. The command queue is a circular buffer and it is

defined by three registers.

 GITS_CBASER

This register specifies the base address and size of the command queue. The command queue must

be 64KB aligned, and the size must be a multiple of 4KB. Each entry in the command queue is 32

bytes. GITS_CBASER also specifies the cacheability and shareability settings that the ITS uses

when accessing the command queue.

 GITS_CREADR

This register points to the next command that the ITS will process.

 GITS_CWRITER

This register points to the entry in the queue where the next new command should be written.

Figure 18 shows a simplified representation of a command queue.

30 Copyright 2015-2016 ARM Limited. All rights reserved. DAI 0492B
 Non-Confidential

Figure 18 ITS circular command queue

The ARM
®

 Generic Interrupt Controller Architecture Specification GIC architecture version 3.0 and 4.0

provides details of all the commands supported by an ITS, and how these are encoded.

6.1.3 Initial configuration of an ITS

To configure an ITS at system start up, software must:

1. Allocate memory for the Device and Collection tables.

The GITS_BASER[0..7] registers specify the base address and size of the ITS Device and

Collection tables. Software uses these registers to discover the number and type of tables that the

ITS supports. Software must then allocate the required memory, and set the GITS_BASERn

registers to point to this allocated memory.

2. Allocate memory for the command queue.

Software must allocate the memory for the command queue and set GITS_CBASER and

GITS_CWRITER to point to the start of this allocated memory.

3. Enable the ITS.

When the tables and command queue have been allocated, the ITS can be enabled. This is done by

setting the GITS_CTLR.Enable bit to 1.

Once GITS_CTLR.Enable has been set, the GITS_BASERn and GITS_CBASER registers

become read-only.

6.1.4 The sizes and layout of Collection and Device tables

The location and size of the Device and Collection tables is configured using the GITS_BASERn registers.

Software must allocate sufficient memory for these tables, and configure the GITS_BASERn registers,

before enabling the ITS.

Software can allocate a flat (single level) table, or two-level tables. This is specified by

GITS_BASERn.Indirect.

NOTE: Support for two-level tables is OPTIONAL. If the ITS only supports flat tables,

GITS_BASERn.Indirect is RAZ/WI.

 Flat level tables

With a flat table, a single contiguous block of memory is allocated to the ITS to record mappings.

Software is required to fill the memory with 0s before enabling the ITS. Thereafter the table is populated

by the ITS as it processes commands from the command queue.

DAI 0492B Copyright 2015-2016 ARM Limited. All rights reserved. 31
 Non-Confidential

Entry
Entry
Entry

Entry
Entry

Entry

...

GITS_BASERn S
iz

e
 i
s
 a

 m
u

lt
ip

le

o
f
p

a
g

e
 s

iz
e

Figure 19 A flat Device or Collection table

The size of the table scales with the width of DeviceID or Collection ID, as appropriate. The required size

can be calculated as follows:

Size in bytes = 2
ID_width

 * entry_size

Where entry_size is the number of bytes per table entry, and is reported by

GITS_BASERn.Entry_Size.

When configuring the GITS_BASERn registers, the size of the table is specified as a number of pages. The

size of a page is controlled by GITS_BASERn.Page_Size, and can be 4KB, 16KB or 64KB. Therefore,

the result of the formula given above must be rounded up to the next whole page size.

For example, if a system implements an 8-bit DeviceID, the bytes per table entry is 8 and a 4K page size is

used:

2
8
 * 8 = 2048 bytes => which rounded up to the next full page is 4K

 Two-level tables

With two-level tables, software allocates a single first level table, and a number of second level tables.

Invalid
Entry

Invalid

Invalid
Entry

Invalid

...

GITS_BASERn

Entry
Entry

Entry
Entry

...

Entry
Entry

Entry
Entry

...

O
n

e
 p

a
g

e

O
n

e
 p

a
g

e

S
iz

e
 i
s
 a

 m
u

lt
ip

le

o
f
p

a
g

e
 s

iz
e

Figure 20 A two-level Device or Collection table

The first level table is populated by software, with each entry either pointing at a second level table or

marked as invalid. The second level tables must be filled with 0s before they are allocated to the ITS, and

are populated by the ITS as it processes commands from the command queue.

While the ITS is enabled (GITS_CTLR.Enabled==1) software might allocate additional second level

tables, and update the corresponding first level table entry to point at these additional tables. Software must

not remove allocations, or change existing allocations, while the ITS is enabled.

The size of each second level table is one page. As with the flat tables, the page size is configured by

GITS_BASERn.Page_Size. It therefore contains (page_size / entry_size) entries.

32 Copyright 2015-2016 ARM Limited. All rights reserved. DAI 0492B
 Non-Confidential

Each first level table entry represents (page_size / entry_size) IDs, and can either point to a second level

table or be marked as invalid. Any ITS command that uses an ID which corresponds to an invalid entry will

be discarded.

The required size of the first level table can be calculated by:

Size in bytes = (2
ID_width

 / (page_size / entry_size)) * 8

As with the single level tables, the size of the first level table is specified as a number of pages. Therefore

the result of the formula must be rounded up to the next whole page size.

6.1.5 Adding a new command to the command queue

To add a new command to the command queue, software must:

1. Write the new command to the queue.

GITS_CWRITER points to the next entry that does not contain a valid command in the command

queue. Software must write the command to this entry, and it must ensure global visibility.

2. Update GITS_CWRITER

Software must update GITS_CWRITER to the next entry that does not contain a new command.

Updating GITS_CWRITER informs the ITS that a new command has been added.

Software can add multiple commands to the queue at the same time, provided there are enough empty

spaces in the command queue and that GITS_CWRITER is updated accordingly.

3. Wait for the command to be read by the ITS

Software can check whether the command has been read by the ITS by polling GITS_CREADR. All

commands have been read by the ITS when GITS_CWRITER.Offset ==

GITS_CREADR.Offset.

Alternatively, an INT command can be added to generate an interrupt to signal that a group of

commands has been read by the ITS.

The ITS reads the commands from the command queue in order. However, the effects that these

commands have on the Redistributors might be visible out-of-order. A SYNC command can ensure that

the effects of previously issued commands are visible.

NOTE: The command queue is full when GITS_CWRITER points at the location before GITS_CREADR.

Software must check that there is sufficient space in the queue before attempting to add new commands.

6.1.6 Mapping an interrupt to a Redistributor

 Mapping a DeviceID to a translation table.

Every peripheral that can send interrupts to an ITS has its own DeviceID. Each DeviceID requires its own

Interrupt Translation Table (ITT) to hold its EventID to INTID mappings. Software must allocate memory

for the ITT, and then use the MAPD command to map the DeviceID to the ITT.

MAPD <DeviceID>, <ITT_Address>, <Size>

 Mapping INTIDs to a collection, and collections to a Redistributor

When the DeviceID of a peripheral has been mapped to an ITT, the different EventIDs it can send must be

mapped to INTIDs, and these INTIDs must be mapped to collections. Each collection is mapped to a target

Redistributor.

INTIDs can be mapped to a collection using the MAPTI and MAPI commands. The MAPI command is

used when the EventID and INTID are the same.

DAI 0492B Copyright 2015-2016 ARM Limited. All rights reserved. 33
 Non-Confidential

MAPI <DeviceID>, <EventID>, <Collection ID>

The MAPTI command is used when the EventID and INTID are different.

MAPTI <DeviceID>, <EventID>, <INTID>, <Collection ID>

Collections are mapped to a Redistributor using the MAPC command:

MAPC <Collection ID>, <Target Redistributor>

Idenitification of the target Redistributor depends on GITS_TYPER.PTA:

 GITS_TYPER.PTA==0

The Redistributor is specified by ID, which can be read from

GICR_TYPER.Processor_Number.

 GITS_TYPER.PTA==1

The Redistributor is specified by physical address.

 Example

A timer has DeviceID 5 and uses a two bit EventID. We want EventID 0 to be mapped to INTID 8725.

The ITT allocated for the timer is at address 0x84500000.

We decide to use collection number 3 and deliver the interrupt to the Redistributor at physical address

0x78400000.

The command sequence for this is:

MAPD 5, 0x84500000, 2 Map DeviceID 5 to an ITT

MAPTI 5, 0, 8725, 3 Map EventID 0 to INTID 8725 and collection 3

MAPC 3, 0x78400000 Map collection 3 to Redistributor at address 0x78400000

SYNC 0x78400000

NOTE: The example assumes that none of the mappings have previously been set up, and that

GITS_TYPER.PTA==1.

6.1.7 Migrating interrupts between Redistributors

There is more than one way to move an interrupt from one Redistributor to another.

• Remapping a collection

Software can move all interrupts from one Redistributor to a different Redistributor by rermapping the

entire collection. This is typically done when the PE attached to the Redistributor is powering down,

and the interrupts must be moved to another Redistributor. This can be done using the following

command sequence:

MAPC <Collection ID>, <RDADDR2> Remap collection to new Redistributor

SYNC <RDADDR2> Ensure visibility of the mapping

MOVALL <RDADDR1>, <RDADDR2> Move pending state to new Redistributor

SYNC <RDADDR1> Ensure visibility of move

In this command sequence RDADDR1 is the previously targeted Redistributor, and RDADDR2 is the

new target Redistributor.

34 Copyright 2015-2016 ARM Limited. All rights reserved. DAI 0492B
 Non-Confidential

If there were multiple Collections targeting RDADDR1, then we would need multiple MAPC commands,

one for each collection. This sequence assumes that all the collections are being remapped to the same

new target Redistributor.

• Mapping an interrupt to a different collection

Individual interrupts can be remapped to a different collection. This can be done using the following

command sequence:

MOVI <DeviceID>, <EventID>, <ID of new Collection>

SYNC <RDADDR1>

In this command sequence RDADDR1 is the Redistributor that is targeted by the collection to which the

interrupt was originally assigned, before the interrupt was remapped.

6.1.8 Removing interrupts mappings

To remap or remove the mapping of an interrupts, software must:

1. Disable the physical INTID to which interrupt is currently mapped. This is done in the LPI

configuration tables, see section 6.2.2.

2. Issue a DISCARD command. This removes the mapping of the interrupt and clears the pending state of

the mapped INTID.

3. Issue a SYNC command, and wait until the command has completed.

After the command has completed, no more interrupts are delivered to the Redistributor to which the

interrupts were previously mapped.

6.1.9 Remapping or removing the mapping of devices

To change or remove the mapping for devices software must:

1. Follow the steps in 6.1.8 for each EventID of that peripheral that is currently mapped.

2. Issue a MAPD command to remap the device. Alternatively, a MAPD command with the valid bit

cleared to 0 removes the mapping.

3. Issue a SYNC command and wait until the command has completed.

6.2 Redistributors

The Redistributors hold the control, prioritization, and pending information for all physical LPIs, using

tables held in memory.

Configuration information for LPIs is stored in a table in memory. This is the LPI Configuration tables,

which is pointed to by GICR_PROPBASER. LPI configuration is global, that is, all Redistributors must see

the same configuration. Typically a system has a single LPI Configuration table that is shared by all

Redistributors.

Similarly, state information for LPIs is also stored in tables in memory. These are the LPI Pending tables,

which are pointed to by GICR_PENDBASER. Each Redistributor has its own LPI Pending table, and these

tables are not shared between Redistributors.

DAI 0492B Copyright 2015-2016 ARM Limited. All rights reserved. 35
 Non-Confidential

Figure 21 LPI Configuration and LPI Pending tables

6.2.1 Initial configuration of a Redistributor

The steps to initialize the Redistributors in a system are:

1. Allocate memory for the LPI Configuration table, and initialize the table with the appropriate

configurations for each LPI.

2. Set GICR_PROPBASER in each Redistributor to point at the LPI Configuration table.

3. Allocate memory for the LPI Pending table of each Redistributor, and initialize the content of each

table. At system start-up, this typically means zeroing the memory, meaning that all LPI INTIDs

are in the inactive state.

4. Set GICR_PENDBASER in each Redistributor to point to the particular LPI Pending table

associated with the Redistributor.

5. Set GICR_CTLR.EnableLPIs to 1 in each Redistributor to enable LPIs.

When GICR_CTLR.EnableLPIs has been set to 1, the GICR_PENDBASER and

GICR_PROPBASER registers become read-only

 LPI Configuration table

The LPI Configuration table has one byte for each LPI INTID. Figure 22 shows the format of these entries.

Enable
027 1

RES0Priority

Figure 22 Format of an entry in the LPI Configuration table

Although priority values are 8 bits for SPIs, PPIs and SGIs, there are only 6 bits in the table to record the

priority of an LPI. The lower two bits of the priority of an LPI are always treated as 0b00.

There is no field for recording the security configuration. LPIs are always treated as Non-secure Group 1

interrupts.

36 Copyright 2015-2016 ARM Limited. All rights reserved. DAI 0492B
 Non-Confidential

The size of the LPI Configuration table and the amount of memory that must be allocated depend on the

number of LPIs. The maximum number of INTIDs (SPIs, PPIs, SGIs and LPIs) that are supported by the

GIC is indicated by GICD_TYPER.IDbits. The LPI Configuration table handles LPIs, which use

INTIDs that are greater than 8191. Therefore to support all the possible LPIs the LPI Configuration table

size is calculated as follows:

Size in bytes = 2GICD_TYPER.IDbits+1 – 8192

However, it is possible to support a smaller range of INTIDs. GICR_PROPBASER also includes an

IDbits fields, that indicates the number of INTIDs that are supported by the LPI Configuration table.

This number must be equal to or smaller than the value in GICD_TYPER. Software must allocate enough

memory for this number of entries. In this case the required size of the LPI Configuration table becomes:

Size in bytes = 2GICR_PROPBASER.IDbits+1 – 8192

The interrupt controller must be able to read the memory allocated for the LPI Configuration table.

However, it never writes to this memory.

 LPI Pending tables

The states information for LPIs is stored in memory. LPIs have two states, inactive and pending.

Figure 23 State machine for LPIs

Interrupts transition from pending to inactive when they have been acknowledged.

Because there are only two states, there is only 1 bit for each LPI in the LPI Pending tables. Therefore, to

support all possible INTIDs in an implementation, the tables must be:

 Size in bytes = (2GICD_TYPER.IDbits+1) / 8

Unlike the LPI Configuration table, the size of the LPI Pending tables is not adjusted to take account of

LPIs starting at INTID 8192. The first 1KB of the table (corresponding to the entries for INTIDs 0 to 8291)

stores IMPLEMENTATION DEFINED state.

As described in this section, it is possible to use a smaller range of INTIDs than is supported by hardware.

GICR_PROPBASER.IDBits controls the size of the INTID range. Therefore, it affects both the size of

the LPI Configuration tables and the size of the LPI Pending table. To support the configured INTID range,

the required LPI Pending table size is:

Size in bytes = (2GICR_PROPBASER.IDbits+1)/8

The interrupt controller must be able to read and write the memory allocated for the LPI Pending table.

Typically, a Redistributor will cache the highest priority pending interrupts internally, and write out state

information to the LPI Pending table when there are too many pending interrupts to cache or when entering

a low power state.

6.2.2 Reconfiguring LPIs

LPI configuration information is stored in a table in memory, not in registers. Redistributors are allowed to

cache the LPI configuration information. This means that to reconfigure an LPI, software must:

DAI 0492B Copyright 2015-2016 ARM Limited. All rights reserved. 37
 Non-Confidential

1. Update the entry in the LPI Configuration table.

2. Ensure global visibility of the update or updates.

3. Invalidate any caching of the configuration in the Redistributors.

The invalidation of the cache in the Redistributor is performed by issuing the ITS INV or INVALL

commands. The INV command invalidates the entry for a specific interrupt, so this command is typically

used when reconfiguring a small number of LPIs. The INVALL command invalidates entries for all

interrupts in a specified collection. For more information about ITS commands, see section 6.1.5.

If an ITS is not implemented, software must write to GICR_INVLPIR or GICR_INVALLR in any of

Redistributors instead.

38 Copyright 2015-2016 ARM Limited. All rights reserved. DAI 0492B
 Non-Confidential

7. Sending and receiving SGIs
Software Generated Interrupts, SGIs, are interrupts that software can trigger by writing to a register in the

interrupt controller.

7.1 Generating SGIs

An SGI is generated by writing to one of the SGI registers in the CPU interface.

Table 10 SGI registers that are used when System register access is enabled

System register
interface

Description

ICC_SGI0R_EL1 Generates a Secure Group 0 interrupt

ICC_SGI1R_EL1 Generates a Group 1 interrupt, for the current

Security state of the PE

ICC_ASGI1R_EL1 Generates a Group 1 interrupt, for the other

Security state of the PE

The basic format of the SGI registers is shown in Figure 24.

Figure 24 Format of the SGI registers, when SRE=1

 Controlling the SGI ID

The SGI ID field controls which INTID is generated. As described in section 3.1.2, INTIDs 0-15 are used

for SGIs.

 Controlling the target

The IRM (Interrupt Routing Mode) field in the SGI registers controls which PE or PEs an SGI is sent to.

There are two options:

 IRM = 0

The interrupt is sent to <aff3>.<aff2>.<aff1>.<Target List>, where <target list> is encoded as 1 bit

for each affinity 0 node under <aff1>. This means that the interrupt can be sent to a maximum of

16 PEs, which might include the originating PE.

 IRM = 1

The interrupt is sent to all connected PEs, except the originating PE (self).

As described in section 3.3, the exact meaning of the hierarchal affinity fields depends on the particular

design. Typically, affinity level 1 identifies a multi-core processor and affinity level 0 a PE within that

processor.

DAI 0492B Copyright 2015-2016 ARM Limited. All rights reserved. 39
 Non-Confidential

 Controlling the Security state and grouping

The Security state and grouping of SGIs is controlled by:

 The SGI register (ICC_SGI0R_EL1, ICC_SGI1R_EL1, or ICC_ASGIR_EL1) that is written

by software on the originating PE.

 The GICR_IGROUPR0 and GICR_IGRPMODR0 registers of the target PE or PEs.

Software executing in Secure state can send both Secure and Non-secure SGIs. Whether software executing

in Non-secure state can generate Secure SGIs is controlled by GICR_NSACR. This register can only be

accessed by software executing in Secure state. Table 11 shows how the Security state of the originating

PE, the interrupt handling configuration of the PE which the interrupt is targetting, and the SGI register,

affect whether an interrupt is forwarded or not.

Table 11 SGI security/group controls, when GICD_CTLR.DS=0

Security state of
sending PE

SGI register written Configuration on
receiving PE

Forwarded?

Secure EL3/EL1 ICC_SGI0R_EL1 Secure Group 0 Yes

Secure Group 1 No

Non-secure Group 1 No

ICC_SGI1R_EL1 Secure Group 0 No (*)

Secure Group 1 Yes

Non-Secure Group 1 No

ICC_ASGI1R_EL1 Secure Group 0 No

Secure Group 1 No

Non-secure Group 1 Yes

Non-secure EL2/EL1 ICC_SGI0R_EL1 Secure Group 0 Configurable by GICR_NSACR (*)

Secure Group 1 No

Non-secure Group 1 No

ICC_SGI1R_EL1 Secure Group 0 Configurable by GICR_NSACR (*)

Secure Group 1 Configurable by GICR_NSACR

Non-secure Group 1 Yes

ICC_ASGI1R_EL1 Secure Group 0 Configurable by GICR_NSACR (*)

Secure Group 1 Configurable by GICR_NSACR

Non-secure Group 1 No

40 Copyright 2015-2016 ARM Limited. All rights reserved. DAI 0492B
 Non-Confidential

NOTE: Table 11 assumes that GICD_CTLR.DS==0. When GICD_CTLR.DS==1, the SGIs marked with

(*) are also forwarded.

7.2 GICv3 vs GICv2

In GICv2, SGI INTIDs are banked by the originating PE and the target PE. This means that a given PE

could have the same SGI INTID pending a maximum of eight times, once from each PE in the system.

In GICv3, SGIs are only banked by the target PE. This means that a given PE can only have one instance of

an SGI INTID pending.

This difference is best illustrated with an example. PEs A and B simultaneously send SGI INTID 5 to PE

C.

Figure 25 Multiple senders of the same ID example

How many interrupts will C see?

 GICv2: Two.

It will see both the interrupts from A and B. The order of the two interrupts is dependent on the

individual design and the precise timing. The two interrupts can be distinguished by the fact that

the ID of the originating PE is prefixed to the INTID that is returned by GICC_IAR.

 GICv3: One.

Because the originating PE does not bank the SGI, the same interrupt cannot be pending on two

PEs. Therefore, C only sees one interrupt, with ID 5 (no prefix).

The example assumes that the two interrupts are sent simultaneously or almost simultaneously. If C were

able to acknowledge the first SGI before the second arrived, then C would see two interrupts in GICv3 as

well.

NOTE: During legacy operation, that is when GICD_CTLR.ARE=0, the behavior of SGIs is the same as in

GICv2.

DAI 0492B Copyright 2015-2016 ARM Limited. All rights reserved. 41
 Non-Confidential

8. Virtualization
ARMv8-A includes optional support for virtualization. To complement this, GICv3 also supports

virtualization. Support for virtualization support in GICv3 adds:

 Hardware virtualization of the CPU interface registers.

 Virtual interrupts.

 Maintenance interrupts.

NOTE: The GIC architecture does not provide features for virtualizaing the Distributor, Redistributors or

ITSs. Virtualization of these interfaces must be handled by software. This is outside the scope of this

document and is not described here.

8.1 Terminology

Hypervisors create, control and schedule virtual machines (VM). A virtual machine is functionally

equivalent to a physical system, and contains one or more virtual processors. Each of those virtual

processors contain one or more virtual PEs (vPEs).

Figure 26 Virtual machine, virtual processor and virtual PE

Most of the controls that are discussed in this chapter work at the level of vPE.

8.2 Interfaces

The CPU Interface registers are split into three groups:

 Physical CPU interface registers.

 Virtualization control registers.

 Virtual CPU interface registers.

Figure 27 CPU interface registers with virtualization

Physical CPU interface (ICC_*_ELn)

The hypervisor software executing at EL2 uses the regular ICC_*_ELn registers to handle physical

interrupts.

Virtualization Control (ICH_*_EL2)

The hypervisor has access to additional registers to control the virtualization features provided by the

architecture. These features are:

42 Copyright 2015-2016 ARM Limited. All rights reserved. DAI 0492B
 Non-Confidential

 Enabling/disabling the virtual CPU interface.

 Accessing virtual register state to enable context switching.

 Configuring maintenance interrupts.

 Controlling virtual interrupts.

These registers control the virtualization features of the physical PE from which they are accessed. It is not

possible to access the state of another PE. That is, software on PE X cannot access state for PE Y.

Virtual CPU interface (ICV_*_ELn)

Software executing in a virtualizaed environment uses the ICV_*_EL1 registers to handle interrupts.

These registers have the same format and function as the ICC_*_EL1 registers.

The ICV and ICC registers have the same instruction encodings. At EL2, EL3 and Secure EL1, the ICC

registers are always accessed. At Non-secure EL1, whether the ICC or the ICV registers are accessed is

determined by the routing bits in HCR_EL2.

The ICV registers are split into three groups:

 Group 0

Registers used for handling Group 0 interrupts, for example ICC_IAR0_EL1/ICC_IAR0_EL1.

When HCR_EL2.FMO==1, ICV registers, instead of ICC registers, are accessed at Non-secure

EL1.

 Group 1

Registers used for handling Group 1 interrupts, for example ICC_IAR1_EL1/ICC_IAR1_EL1.

When HCR_EL2.IMO==1, ICV registers, instead of ICC registers, are accessed at Non-secure

EL1.

 Common

Registers used for handling both Group 0 and 1 interrupts, for example

ICC_DIR_EL1/ICV_DIR_EL1 and ICC_PMR_EL1/ICV_PMR_EL1.

When either HCR_EL2.IMO==1 or HCR_EL2.FMO==1, ICV registers, instead of ICC registers,

are accessed at Non-secure EL1.

Figure 28 shows an example of how the same instruction can access either an ICC or ICV register

based on the HCR_EL2 routing controls.

Figure 28 Example of ICC/ICV register selection

8.3 Managing virtual Interrupts

A hypervisor executing at EL2 can generate virtual interrupts using the List registers, ICH_LRn_EL2.

Each register represents one virtual interrupt, and records:

DAI 0492B Copyright 2015-2016 ARM Limited. All rights reserved. 43
 Non-Confidential

 vINTID (virtual INTID)

This is the INTID reported in the virtual environment.

 State

The state (Pending, Active, Active and Pending or Inactive) of the virtual interrupt. The state

machine is automatically updated as software in the virtual environment interacts with the GIC.

For example, the hypervisor might create a new virtual interrupt, initially setting the state as

pending. When software on the vPE reads ICV_IARn_EL1, the state is updated to Active.

 Group

The virtual environment always behaves as if GICD_CTLR.DS==1. Therefore virtual interrupts

can be Group 0 or Group 1. Group 0 interrupts are delivered as vFIQs. Group 1 interrupts are

delivered as vIRQs.

 pINTID (physical INTID)

A virtual interrupt can be optionally tagged with the INTID of a physical interrupt. When the state

machine of the vINTID is updated, so is that of the pINTID.

8.3.1 Example of a physical interrupt being forwarded to a vPE

Figure 29 shows an example sequence of a physical interrupt that is forwarded to a vPE.

Figure 29 Example of forwarding a physical interrupt to a vPE

1. A physical Non-secure Group 1 interrupt is forwarded to the physical CPU interface from

the Redistributor.

2. The physical CPU interface checks whether the physical interrupt can be forwarded to the

PE. This process is described in section 5.1. In this instance, the checks pass and a physical

exception is asserted.

3. The interrupt is taken to EL2. The hypervisor reads the IAR, which returns the pINTID.

The pINTID is now in the Active state. The hypervisor determines that the interrupt is to be

forwarded to the currently running vPE. The hypervisor writes the pINTID to ICC_EOIR1_EL1.

With ICC_CTLR_EL1.EOImode==1, this only performs priority drop without deactiving the

physical interrupt.

4. The hypervisor writes one of the List register, in order to register a virtual interrupt as

pending. The List register entry specifies the vINTID that is to be sent and the original pINTID.

The hypervisor then performs an exception return, returning execution to the vPE.

5. The virtual CPU interface checks whether the virtual interrupt can be forwared to the vPE.

These checks are the same as for physical interrupts, other than that they use the ICV registers. In

this instance, the checks pass and a virtual exception is asserted.

44 Copyright 2015-2016 ARM Limited. All rights reserved. DAI 0492B
 Non-Confidential

6. The virtual exception is taken to Non-secure EL1. When software reads the IAR, the

vINTID will be returned and the virtual interrupt is now in the Active state.

7. The Guest OS handles the interrupt. When it has finished handling the interrupt, it writes

the EOIR to perform a priority drop and deactivation. As the List register recorded the pINTID, this

deactivates both the vINTID and pINTID.

8.4 Maintenance interrupts

The CPU interface can be configured to generate physical interrupts if certain conditions are true in the

virtual CPU interface.

These interrupts are reported as a PPI, with INTID 25. This interrupt is typically configured as Non-secure

Group 1, and handled by the hypervisor software at EL2.

The generation of maintenance interrupts is controlled by ICH_HCR_EL2, and the interrupts that are

currently asserted are reported in ICH_MISR_EL2.

 Example

A maintenance interrupt can be generated if the vPE clears one of the Group enable bits in the virtual CPU

interface. On seeing this, a hypervisor could remove any List register entries for pending virtual interrupts

belonging to the disabled group.

8.5 Legacy virtual machines

A hypervisor using the GICv3 system registers (ICC_SRE_EL2.SRE==1) can host VMs that use legacy

operation (ICC_SRE_EL1(NS)==0). In this case software running in the virtual environment uses the

memory mapped GICV registers, as in GICv2.

8.6 Context switching

When context switching between vPEs, the hypervisor software saves off the state of one vPE and loads the

context of another. The state of the Virtual CPU interface forms part of the context of a vPE. The Virtual

CPU interface state consists of:

 The state of the ICV registers.

 The active virtual priorities.

 Any pending, active or active and pending virtual interrupts.

The state of the ICV registers can be accessed from EL2 using the ICH registers. As an example, Figure 30

shows how the fields in ICH_VMCR_EL2 map on to the ICV register state.

Figure 30 Accessing ICV state from EL2

The active virtual priorties must be saved and restored when switching vPEs. The active priorities for the

current vPE can be accessed via the ICV_APnR_EL2 registers.

As described in section 8.3, virtual interrupts are managed via the List registers. The state of these registers

are specific to the current vPE. Therefore these registers must be saved and restored on context switches.

DAI 0492B Copyright 2015-2016 ARM Limited. All rights reserved. 45
 Non-Confidential

9. GICv4: Direct Injection of Virtual LPIs
GICv4 adds support for the direct injection of virtual LPIs (vLPIs). This feature allows software to describe

to the ITS how physical events (a combination of an EventID and a DeviceID) map to virtual interrupts. If

the vPE targeted by interrupt is running, the virtual interrupt can be forwarded without the need to first enter

the hypervisor. This can reduce the overhead associated with virtualized interrupts.

9.1 Redistributors, vLPI state and configuration

To support the direct injection of vLPIs, the Redistributors have two additional registers:

 GICR_VPROPBASER

This register sets the address of the virtual LPI Configuration table. As with the physical LPI

Configuration table, the virtual LPI Configuration table records the configuration of vLPIs. The

configuration of vLPIs is global to all vPEs in the same VM. ARM expects that all vPEs in a VM

will use the same copy of the virtual Configuration Table.

 GICR_VPENDBASER

This register sets the address of the virtual LPI Pending table (VPT). As with the physical LPI

Pending table, the VPT records the pending state of the vLPIs. Each vPE has its own private

VPT.

9.1.1 Scheduled virtual PE

Multiple vPEs might be hosted by a single physical PE, with the hypervisor context switching between

them. The currently running vPE is referred to to as being scheduled. A vPE is defined as being scheduled

when GICR_VPENDBASER is set to point at its VPT.

Virtual interrupts for the scheduled vPE can be directly injected. If the target vPE is not scheduled, the

virtual interrupt is recorded as being pending in the appropriate VPT.

When performing a context swith between vPEs, a hypervisor must update the Redistributor registers. This

means that the hypervisor must:

 Clear GICR_VPENDBASER.Valid

Clearing the Valid bit informs the Redistributor that a context switch is taking place. The

Redistributor will retrieve any pending virtual interrupts from the virtual CPU interface, and

ensure that the VPT in memory is correct.

 Poll GICR_VPENDBASER.Dirty until it reads 0

The Dirty bit reports that the Redistributor has finished updating the VPT. The new vPE cannot

be scheduled until this bit reads 0.

 Update GICR_VPROPBASER

If switching between different vPEs of the same VM, this might not be necessary.

 Update GICR_VPENDBASER, setting Valid==1 in the process

Setting the Valid bit to 1 informs the Redistributor that the new vPE is now valid, and that virtual

interrupts for that vPE can be forwarded to the virtual CPU interface.

The first 1KB of a VPT is IMPLEMENTATION DEFINED. ARM expects an implementation will use this

space to record information that makes parsing the VPT quicker on context switches. When a vPE is

scheduled, the Redistributor must be informed whether this region contains valid data. Software indicates

whether the space is valid or not using GICR_VPENDBASER.IDAI:

 GICR_VPENDBASER.IDAI==1 (invalid)

The reserved region is not valid, and the Redistributor must parse the entire VPT. The IDAI bit

must be set when:

o A vPE is moved to a Redistributor that is connected to a different GIC implementation.

46 Copyright 2015-2016 ARM Limited. All rights reserved. DAI 0492B
 Non-Confidential

o A vPE is made schuled for the first time since the VPT was allocated, and at the time

of allocation the entire table was not filled with zeros.

 GICR_VPENDBASER.IDAI==0 (valid)

The reserved region is valid, and the Redistributor can rely on the values stored there. ARM

expects this to be the most common case. The IDAI bit can be cleared when:

o A vPE is scheduled on the same Redistributor on which it was last scheduled.

o A vPE is scheduled on a different Redistributor, but connected to the same GIC.

o A vPE is scheduled for the first time since the VPT was allocated, and at the time of

allocation the entire VPT was filled with zeros (meaning there are no pending

interrupts).

 NOTE: The restriction is that the VPT contained all zeros at the time of

allocation, not that it contains all zeros when it is first scheduled. If ITS

mappings for the vPE exist, virtual interrupts might be set pending between

creation and first residency.

9.2 Operation of an ITS in GICv4

GICv4 adds a number of new commands, and an additional table type, to the ITS. This allows software to:

 Map an EventID-DeviceID combination to a vINTID for a specific vPE.

o Optionally a door-bell interrupt can be specified. This is a pINTID that is generated if the vPE is

not scheduled when the interrupt is generated.

 Map a vPE to a physical Redistributor.

Figure 31 shows the process that an ITS follows when forwarding a virtual interrupt.

Figure 31 Using an ITS to directly inject virtual interrupts

DAI 0492B Copyright 2015-2016 ARM Limited. All rights reserved. 47
 Non-Confidential

When a peripheral writes to GITS_TRANSLATER:

1. The ITS uses the DeviceID to select the appropriate entry from the Device table. This entry

identifies the Interrupt translation table to use.

2. The ITS uses the EventID to select the appropriate entry from the Interrupt translation table. This

will return either:

a. A pINTID and Collection ID, as described in section 6.1.1.

b. A vINTID and vPE ID, and optionally a pINTID as a door-bell interrupt.

3. The ITS uses the vPE ID to select the required entry in the vPE table and the vPE table returns the

target Redistributor and the address of the VPT of the vPE.

4. The ITS forwards the vINTID, door-bell interrupt and VPT address to the target Redistributor.

5. The Redistributor compares the VPT address from the ITS against the current

GICR_VPENDBASER:

a. If the VPT address and current GICR_VPENDBASER match, the vPE is scheduled, and

the vINTID is forwarded to the virtual CPU interface.

b. If the VPT address and current GICR_VPENDBASER do not match, the vPE is not

scheduled. The vINTID is set as pending in the VPT. If a door-bell interrupt was provided, the

pINTID is forwarded to the physical CPU interface.

9.3 Mapping a vPE and vINTID

EventID DeviceID combinatons are mapped to a vINTID and vPE. The VMAPI command is used when the

EventID and vINTID are the same.

VMAPI <DeviceID>, <EventID>, <Doorbell pINTID>, <vPE ID>

The VMAPTI command is used when the EventID and vINTID are different.

VMAPTI <DeviceID>, <EventID>, <vINTID>, <pINTID>, <vPE ID>

In these commands:

 <DeviceID> and <EventID> together identify the interrupt that is being remapped.

 <vPE ID> is the ID of the vPE. For systems that contain multiple ITSs, the same vPE ID must be

assigned to a given vPE on all ITSs.

 <pINTID> is the doorbell interrupt that must be generated if the vPE is not scheduled. Specifying

1023 means that there is no door-bell interrupt.

 <vINTID> is the INTID of the virtual LPI. For VMAPI, EventID and vINTID have the same value.

48 Copyright 2015-2016 ARM Limited. All rights reserved. DAI 0492B
 Non-Confidential

The ITS must be aware of which physical PE a vPE will be scheduled on when it is running. The VMAPP

command maps a vPE to a physical Redistributor:

VMAPP <vPE ID>, <RDADDR>, <VPT>, <VPT size>

In this command:

 <vPE ID> is the the ID of the vPE.

 <RDADDR> is the target Redistributor.

 <VPT> and <VPT size> identify the virtual LPI Pending table of the vPE. As described in section

9.1.1, a vPE is scheduled when GICR_VPENDBASER points at its VPT. When forwarding a

virtual interrupt to a Redistributor, the ITS includes the VPT address. This allows the

Redistributor to check whether the vPE is scheduled on the PE, and if it is not scheduled, to update

the VPT so that the interrupt is not lost.

 Example

A timer has DeviceID 5. It generates two EventIDs, 0 and 1. Both EventIDs are mapped to vINTIDs that

belong to the vPE with vPE ID 6:

 EventID 0 – vINTID 8725, door-bell pINTID 8192

 EventID 1 – vINTID 9000, no door-bell interrupt

vPE 6 is mapped to the Redistributor at address 0x78400000, and its VPT is at address 0x97500000.

The command sequence for this is:

VMAPTI 5, 0, 8725, 8192, 6

VMAPTI 5, 1, 9000, 1023, 6

VMAPP 6, 0x78400000, 0x97500000, 12

VSYNC 6

NOTE: The example assumes that GITS_TYPER.PTA==1, and that a MAPD command has previously

been issued to map the ITT.

9.4 Mapping a vPE to a different Redistributor

If a hypervisor maps a vPE to a different physical PE, the ITS mappings must be updated so that virtual interrupts are

sent to the correct physical PE. The ITS mappings are updated using the VMOVP command, followed by VSYNC to

synchronize the context.

A system can include multiple ITSs. Where more than one ITS has mappings for a vPE, any change must be applied

to all ITSs that contain the original mappings. GICv4 supports two models for doing this, and GITS_TYPER.VMOVP

indicates which model is used.

GITS_TYPER.VMOVP==0

The VMOVP command must be issued on all ITSs with a mapping for the vPE.

VMOVP <vPE ID>, <RDADDR>, <ITS List>, <Sequence Number>

In this command:

 <vPE ID> is the ID of the vPE.

 <RDADDR> is the Redistributor that the vPE is being remapped to.

 <ITS List> is a list of all the ITSs with mappings for the vPE. This field is encoded as one per-bit ITS,

where bit 0 maps to ITS 0. The number of an ITS is reported by GITS_CTLR.ITS_Number.

DAI 0492B Copyright 2015-2016 ARM Limited. All rights reserved. 49
 Non-Confidential

 <Sequence Number> is the synchronization point. Software must use the same value when issuing the

VMOVP to the different ITSs, and must not re-use the same value until the commands have completed on all

ITSs.

GITS_TYPER.VMOVP==1

The VMOVP command must be issued on only one ITS, regardless of how many ITSs have mappings for the vPE.

The hardware is required to propagate the change and handle synchronization. This means that the ITS List and

SequenceNumber fields are not required.

VMOVP <vPE ID>, <RDADDR>

9.5 Remapping or removing the mapping of vPEs/vINTIDs

VMOVI remaps an EventID DeviceID combination to a different vINTID or vPE.

VMOVI <DeviceID>, <EventID>, <vPE ID>, <Doorbell pINTID>

In this command:

 <DeviceID> and <EventID> together identify the interrupt that is being remapped.

 <vPE ID> is the ID of the vPE that the interrupt is being moved to.

 <Doorbell pINTID> is the Redistributor that the vPE is being remapped to.

9.6 Changing vLPI configuration

As with physical LPIs, a Redistributor is permitted to cache the configuration of vLPIs. If the configuration of a vLPI

is changed, the cached copy must be invalidated. There are two ITS commands available to do this.

The INV command is typically used when changing the configuration of a single, or small number, of vLPIs. A

separate INV is required for each vLPI that is modified.

The VINVALL command invalidates the configuration of all vLPIs that belong to a specified vPE. This command is

typically used when modifying a large number of vLPIs.

50 Copyright 2015-2016 ARM Limited. All rights reserved. DAI 0492B
 Non-Confidential

9.7 Mixing GICv3 and GICv4

A mixture of GICv3 and GICv4 capable CPU interfaces might be connected to a single GIC. Figure 32 shows an

example of such a system.

Figure 32 GICv4 interrupt controller, with GICv3 CPU interfaces attached

Only CPU interfaces that implement GICv4 are capable of receiving directly injected virtual LPIs. Scheduling a vPE,

that is setting GICR_VPENDBASER.Valid==1, on a GICv3 CPU interface is UNPREDICTABLE. Software can

determine whether directly injected virtual interrupts are supported by reading ICH_VTR_EL2.nV4.

	GICv3 and GICv4 Software Overview
	GICv3 and GICv4 Software Overview
	Release Information
	Proprietary notice
	Confidentiality status
	Product Status
	Feedback on content
	Web Address

	1. Preface
	1.1 Document status
	1.2 References
	1.3 Terms and Abbreviations

	2. Introduction
	2.1 Scope
	2.2 Brief history of the GIC architecture
	2.3 Implementations of the GICv3 architecture
	2.4 Legacy support

	3. GICv3 fundamentals
	3.1 Interrupts types
	SPI (Shared Peripheral Interrupt)
	PPI (Private Peripheral Interrupt)
	SGI (Software Generated Interrupt)
	LPI (Locality-specific Peripheral Interrupt)
	3.1.2 Interrupt Identifiers
	3.1.3 How interrupts are signaled to the interrupt controller
	Impact of message-based interrupts on software

	3.2 Interrupt state machine
	3.2.1 Level sensitive
	Inactive to Pending
	Pending to Active & Pending
	Active and Pending to Active
	Active to Inactive

	3.2.2 Edge-triggered
	Inactive to Pending
	Pending to Active
	Active to Active and Pending
	Active and Pending to Pending

	3.3 Affinity routing
	3.4 Security model
	3.4.1 Impact on software
	3.4.2 Support for single Security state

	3.5 Programmers’ model
	Distributor (GICD_*)
	Redistributors (GICR_*)
	CPU interfaces (ICC_*_ELn)

	4. Configuring the GIC
	4.1 Global settings
	4.2 Individual PE settings
	4.2.1 Redistributor configuration
	4.2.2 CPU interface configuration
	4.2.3 PE configuration

	4.3 SPI, PPI and SGI configuration
	4.3.1 Setting the target PE for SPIs

	5. Handling Interrupts
	5.1 What happens when an interrupt becomes pending
	5.2 Interrupt acknowledge
	5.3 Spurious interrupts
	Example

	5.4 Running priority & preemption
	5.5 End of interrupt
	5.6 Checking the current state of the system
	5.6.1 Highest priority pending interrupt and running priority
	5.6.2 State of individual INTIDs

	6. Configuring LPIs
	6.1 ITS
	6.1.1 Operation of an ITS
	6.1.2 The command queue
	6.1.3 Initial configuration of an ITS
	6.1.4 The sizes and layout of Collection and Device tables
	Flat level tables
	Two-level tables

	6.1.5 Adding a new command to the command queue
	6.1.6 Mapping an interrupt to a Redistributor
	Mapping a DeviceID to a translation table.
	Mapping INTIDs to a collection, and collections to a Redistributor
	Example

	6.1.7 Migrating interrupts between Redistributors
	6.1.8 Removing interrupts mappings
	6.1.9 Remapping or removing the mapping of devices

	6.2 Redistributors
	6.2.1 Initial configuration of a Redistributor
	LPI Configuration table
	LPI Pending tables

	6.2.2 Reconfiguring LPIs

	7. Sending and receiving SGIs
	7.1 Generating SGIs
	Controlling the SGI ID
	Controlling the target
	Controlling the Security state and grouping

	7.2 GICv3 vs GICv2

	8. Virtualization
	8.1 Terminology
	8.2 Interfaces
	Physical CPU interface (ICC_*_ELn)
	Virtualization Control (ICH_*_EL2)
	Virtual CPU interface (ICV_*_ELn)

	8.3 Managing virtual Interrupts
	8.3.1 Example of a physical interrupt being forwarded to a vPE

	8.4 Maintenance interrupts
	Example

	8.5 Legacy virtual machines
	8.6 Context switching

	9. GICv4: Direct Injection of Virtual LPIs
	9.1 Redistributors, vLPI state and configuration
	9.1.1 Scheduled virtual PE

	9.2 Operation of an ITS in GICv4
	9.3 Mapping a vPE and vINTID
	Example

	9.4 Mapping a vPE to a different Redistributor
	GITS_TYPER.VMOVP==0
	GITS_TYPER.VMOVP==1

	9.5 Remapping or removing the mapping of vPEs/vINTIDs
	9.6 Changing vLPI configuration
	9.7 Mixing GICv3 and GICv4

