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1. Preface 
This document provides an overview of version 3 of the Generic Interrupt Controller Architecture  

(GICv3).  It is primarily intended for software engineers writing bare metal code for ARMv8-A 

based platforms.  A familiarity with ARMv8-A and writing bare metal code is assumed.   

1.1 Document status 

This is release B of the document. 

1.2 References 

This document refers to the following documents: 

 ARM
®

 Generic Interrupt Controller Architecture Specification GIC architecture version 

3.0 and 4.0 (ARM IHI 0069A) 

 ARM
®

 Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile (ARM 

DDI 0487A) 

 ARM
®

 CoreLink™  GIC-500 Generic Interrupt Controller Technical Reference Manual  

(ARM DDI 0516A) 

 ARM
®

 Cortex
®

-A57 MPCore™ Processor Technical Reference Manual (ARM DDI 

0488D) 

1.3 Terms and Abbreviations 

Table 1 Terms and Abbreviations shows the terms and abbreviations that are used in this 

document. 

Term Description 

ARE Affinity Routing Enable 

BPR Binary Point Register 

EL Exception level (ARMv8-A) 

EOIR End of Interrupt Register 

GIC Generic Interrupt Controller 

GICv3 Version 3 of the Generic Interrupt Controller Architecture 

GICv4 Version 4 of the Generic Interrupt Controller Architecture 

IAR Interrupt Acknowledge Register 

ITS Interrupt Translation Service 

ITT Interrupt Translation Table 

LPI Locality-specific Peripheral Interrupt 

PE Processing element.  The abstract machine defined in the 

ARM architecture, as documented in an ARM Architecture 

Reference Manual. See also ARM® Architecture 

Reference Manual, ARMv8, for ARMv8-A architecture 

profile. 

PPI Private Peripheral Interrupt 

RAO/WI Read-As-One, Writes Ignored 

RAZ/WI Read-As-Zero, Writes Ignored 
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SGI Software Generated Interrupt 

SPI Shared Peripheral Interrupt 

SRE System Register Enable 

VM Virtual Machine 

vPE Virtual PE 

VPT Virtual LPI Pending Table 

Table 1 Terms and Abbreviations 

 

The ARM
®

 Generic Interrupt Controller Architecture Specification GIC architecture version 3.0 

and 4.0 and ARM
®

 Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile use 

the term Processing Element or PE as a generic term for a machine that implements the ARM 

architecture.  As an example, the ARM
®
 Cortex

®
-A57 MPCore™  is a multi-core processor, with 

up to four cores.  For the ARM
®
 Cortex

®
-A57 MPCore™ , each core is what the architecture 

specifcations refer to as a PE. 
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2. Introduction 
This document provides a software focused overview of the features of GICv3, and describes the 

operation of a GICv3 compliant interrupt controller.  It is also a primer on how to configure a 

GICv3 interrupt controller for use in a bare metal environment. 

This document compliments the ARM
®

 Generic Interrupt Controller Architecture Specification 

GIC architecture version 3.0 and 4.0.  It is not a replacement or alternative.  Refer to the  ARM
®

 

Generic Interrupt Controller Architecture Specification GIC architecture version 3.0 and 4.0 for 

detailed descriptions of registers and behaviors. 

2.1 Scope 

GICv3 allows for a number of different configurations and use cases.  For simplicity, this 

document concentrates on a sub-set.   It only describes the case where: 

 Two Security states are present. 

 Affinity routing is enabled for both Security states. 

 System register access is enabled at all Exception levels. 

 The connected processor, or processors, are ARMv8-A compliant, implement all 

Exception levels and use AArch64 at all Exception levels. 

This document does not cover: 

 Legacy operation, other than in the introduction. 

 Use from an Exception level that is using AArch32. 

2.2 Brief history of the GIC architecture 

GICv3 adds several new features.  To put these new features in context Table 2 provides a brief 

overview of the different versions of the GIC architecture, and their key features. 

Table 2 GIC version history 

Version Key features Typically used with 

GICv1 Support for up to eight PEs. 

Support for up to 1020 interrupt IDs. 

Support for two Security states. 

ARM Cortex-A5 MPCore 

ARM Cortex-A9 MPCore 

ARM Cortex-R7 MPCore 

GICv2 All key features of GICv1  

Support for virtualization. 

ARM Cortex-A7 MPCore 

ARM Cortex-A15 MPCore 

ARM Cortex-A53 MPCore 

ARM Cortex-A57 MPCore 

GICv3 All key features of GICv2 

Support for more than eight PEs. 

Support for message-based interrupts. 

Support for more than 1020 interrupt IDs. 

System register access to the CPU Interface 

registers. 

An enhanced security model, separating Secure and 

Non-secure Group 1 interrupts. 

ARM Cortex-A53 MPCore 

ARM Cortex-A57 MPCore 

ARM Cortex-A72 MPCore 

GICv4 All key features of GICv3 and: 

Direct injection of virtual interrupts 

ARM Cortex-A53 MPCore 

ARM Cortex-A57 MPCore 

ARM Cortex-A72 MPCore 
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NOTE: GICv2m is an extension to GICv2 to add support for message based interrupts.  

For more information contact ARM. 

2.3 Implementations of the GICv3 architecture 

The ARM
®
 CoreLink™ GIC-500 is an implementation of GICv3.  The ARM

®
 Cortex

®
-A53,  

ARM
®
 Cortex

®
 -A57 and ARM

®
 Cortex

®
-A72 MPCore processors implement the required CPU 

interface. 

 

2.4 Legacy support 

GICv3 makes a number of changes to the programmers’ model.  To support legacy software 

written for GICv2 systems, GICv3 supports legacy operation. 

The programmers’ model that is used is controlled by the Affinity Routing Enable (ARE) bits in 

GICD_CTRL: 

 When ARE == 0, affinity routing is disabled (legacy operation). 

 When ARE == 1, affinity routing is enabled. 

NOTE: For readability, GICD_CTLR.ARE_S and GICD_CTLR.ARE_NS are referred to 

collectively as ARE in this document where appropriate. 

In a system with two Security states, affinity routing can be controlled separately for each Security 

state.  Only specific combinations are permitted, and these are shown in Figure 1. 

 

 

Figure 1 Supported ARE combinations 

 

This documents focusses on the new GICv3 programmers’ model, where ARE=1 for both security 

states.  Legacy operation, where ARE==0, is not described. 

 

NOTE: Support for legacy operation is OPTIONAL.  When support for legacy operation is 

implemented, legacy operation is selected out of reset.   
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3. GICv3 fundamentals 
This chapter describes the basic operation of an interrupt controller that is compliant with the 

GICv3 architecture.  It also describes the different programming interfaces. 

3.1 Interrupts types 

GICv3 defines the following types of interrupt: 

 SPI (Shared Peripheral Interrupt) 

This is a global peripheral interrupt that can be routed to a specified PE, or to one of a group of 

PEs. 

 PPI (Private Peripheral Interrupt) 

This is peripheral interrupt that targets a single, specific PE.   

An example of a PPI is an interrupt from the Generic Timer of a PE.   

 SGI (Software Generated Interrupt) 

SGIs are typically used for inter-processor communication, and are generated by a write to an SGI 

register in the GIC.   

 LPI (Locality-specific Peripheral Interrupt) 

LPIs are new in GICv3, and they are different to the other types of interrupt in a number of ways.  

In particular, LPIs are always message-based interrupts, and their configuration is held in tables in 

memory rather than registers.  This is described in more detail in Chapter 6. 

 

NOTE: LPIs are only supported when GICD_CTLR.ARE_NS==1. 

3.1.2 Interrupt Identifiers 

Each interrupt source is identified by an ID number, referred to as an INTID.  The available 

INTIDs are grouped into ranges, and each range is assigned to a particular type of interrupt.  

Table 3 Interrupt ID ranges 

INTID Interrupt Type Notes 

0 - 15 SGIs Banked per PE 

16 - 31 PPIs Banked per PE 

32 - 1019 SPIs - 

1020 - 1023 Special interrupt number  Used to signal special cases, see section 

5.3 

1024 - 8191 Reserved - 

8192 and greater LPIs The upper boundary is 

IMPLEMENTATION DEFINED 

 

 



 

10 Copyright  2015-2016 ARM Limited. All rights reserved. DAI 0492B 
 Non-Confidential 
 

3.1.3 How interrupts are signaled to the interrupt controller 

Traditionally, interrupts are signaled from a peripheral to the interrupt controller using  a dedicated 

hardware signal.   

 

 

Figure 2 Dedicated interrupt signal 

 

GICv3 supports this model, and additionally supports message-based interrupts.  A message-based 

interrupt is an interrupt that is set and cleared by a write to a register in the interrupt controller.    

 

 

Figure 3 Message-based interrupt transported over the interconnect 

 

Using a message to forward the interrupt from a peripheral to the interrupt controller removes the 

requirement for a dedicated signal per interrupt source.  This can be an advantage for hardware 

designers of large systems, where potentially hundreds or even thousands of signals might be 

routed across a SoC and converge on the interrupt controller. 

In GICv3, SPIs can be message-based interrupts, but LPIs are always message-based interrupts.  

Different registers are used for the different interrupt types, as shown in Table 4. 

Table 4 Message-based interrupt registers 

Interrupt Type Registers 

SPI GICD_SETSPI_NSR asserts an interrupt 

GICD_CLRSPI_NSR deasserts an interrupt 

LPI GITS_TRANSLATER 

 

 Impact of message-based interrupts on software 

Whether an interrupt is sent as a message or using a dedicated signal has little effect on the way the 

interrupt handling code handles the interrupt.   

Some configuration of the peripherals  might be required.  For example, it might be necessary to 

specify the address of the interrupt controller.  This is outside of the scope of this document and is 

not described.  
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3.2 Interrupt state machine 

The interrupt controller maintains a state machine for each SPI, PPI and SGI interrupt source.  This 

state machine consists of four states: 

 Inactive  

The interrupt source is not currently asserted. 

 Pending  

The interrupt source has been asserted, but the interrupt has not yet been acknowledged 

by a PE. 

 Active 

The interrupt source has been asserted, and the interrupt has been acknowledged by a PE. 

 Active and Pending   

An instance of the interrupt has been acknowledged, and another instance is now pending. 

 

NOTE: LPIs do not have an active or active and pending state. For more information, see section 

6.2. 

 

Figure 4 shows the structure of the state machine, and the possible transitions. 

Inactive Pending

Active
a

Active and 

pending
a

a. Not applicable for LPIs.
 

Figure 4 Interrupt state machine for PPIs, SGIs and SPIs 

 

The life cycle of an interrupt depends on whether it is configured to be level-sensitive or edge-

triggered.  Sections 3.2.1 and 3.2.2 provide example sequences. 

 

3.2.1 Level sensitive 

Inactive Pending AP
a

Active Inactive

Interrupt signal from 

peripheral to GIC

GIC state machine 

for the interrupt

Interrupt signal from 

GIC to core

a
Active and Pending

 

Figure 5 Interrupt life cycle - level sensitive interrupts 
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 Inactive to Pending 

An interrupt transitions from inactive to pending when the interrupt source is asserted. 

At this point the GIC asserts the interrupt signal to the PE (if the interrupt is enabled and is of 

sufficient priority). 

 Pending to Active & Pending 

The interrupt transitions from pending to active and pending when a PE acknowledges the 

interrupt by reading one of the IARs (Interrupt Acknowledge Registers) in the CPU interface.  This 

read is typically part of an interrupt handling routine that executes after an interrupt exception is 

taken.  However, software can also poll the IARs. 

At this point the GIC deasserts the interrupt signal to the PE. 

 Active and Pending to Active 

The interrupt transitions from active and pending to active when the peripheral de-asserts the 

interrupt signal.  This typically happens in response to the interrupt handling software that is 

executing on the PE writing to a status register in the peripheral. 

 Active to Inactive 

The interrupt goes from active to inactive when the PE writes to one of the EOIRs (End of 

Interrupt Registers) in the CPU interface.  This indicates that the PE has finished handling the 

interrupt. 

 

3.2.2 Edge-triggered 

Inactive Pending A&PActive Pending

Interrupt signal from 

peripheral to GIC

GIC state machine 

for the interrupt

Interrupt signal from 

GIC to core

 

Figure 6 Interrupt life cycle - edge-triggered interrupts 

 Inactive to Pending 

An interrupt transitions from inactive to pending when the interrupt source is asserted.   

At this point the GIC asserts the interrupt signal to the PE (if the interrupt is enabled and is of 

sufficient priority). 

 Pending to Active 

The interrupt transitions from pending to active when a PE acknowledges the interrupt by reading 

one of the IARs in the CPU interface.  This read is typically part of an interrupt handling routine 

that executes after an interrupt exception is taken.  However, software can also poll the IARs. 

At this point the GIC de-asserts the interrupt signal to the PE. 

 Active to Active and Pending 

The interrupt goes from active to active and pending  if the peripheral re-asserts the interrupt 

signal. 
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 Active and Pending to Pending 

The interrupt goes from active and pending to pending when the PE writes to one of the EOIRs in 

the CPU interface.  This indicates that the PE has finished handling the first instance of the 

interrupt. 

At this point the GIC re-asserts the interrupt signal to the PE. 

 

 

3.3 Affinity routing 

GICv3 uses affinity routing to identify connected PEs and to route interrupts to a specific PE or 

group of PEs.  The affinity of a PE is represented as four 8-bit fields: 

 

 <affinity level 3>.<affinity level 2>.<affinity level 1>.<affinity level 0> 

 

Figure 7 shows an example of an affinity level hierarchy. 

 

 

Figure 7 Example of an affinity hierarchy 

   

At affinity level 0 there is a Redistributor.  Each Redistributor connects to a single CPU interface.  

The  Redistributors controls SGIs, PPIs and LPIs,  see chapter 4.  

The affinity scheme matches that used in ARMv8-A, with the affinity of a PE reported in 

MPIDR_EL1.  System designers must ensure that the affinity value indicated  by MPIDR_EL1 is 

identical to that indicated by GICR_TYPER for the Redistributor connected to the PE. 

The exact meaning of the different levels of affinity is defined by the specific processor and SoC.  

The following are examples: 

 

<group of groups>. <group of processors>.<processor>.<core> 

 

<group of processors>.<processor>.<core>.<thread> 

 

It is highly unlikely that all the possible nodes exist in a single implementation.  For example, a 

SoC for a mobile device could have a layout similar to this: 

 

0.0.0.[0:3]  Cores 0 to 3 of a Cortex-A53 processor 

0.0.1.[0:1]  Cores 0 to 1 of a Cortex-A57 processor 
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In ARMv8-A, AArch64 state supports four levels of affinity.  AArch32 state, and ARMv7, can 

only support  three levels of affinity.  This means a design that uses AArch32 state is limited to a 

single node at affinity level 3 (0.x.y.z).  GICD_TYPER.A3V indicates whether the interrupt 

controller can support multiple level 3 nodes. 

NOTE: Although each level 1 node can host up to 256 Redistributors at level 0, in practice it is 

likely to be 16 or fewer.  This is because of the way the target PEs for an SGI are encoded, as 

described in Chapter 7. 

 

3.4 Security model 

The GICv3 architecture supports the ARM TrustZone technology.  Each INTID must be assigned a 

group and security setting.  GICv3 supports three combinations, as shown in Table 5.  

 

Table 5 Security and groupings 

Interrupt Type Example use 

Secure Group 0 Interrupts for EL3 (Secure Firmware) 

Secure Group 1 Interrupts for Secure EL1 (Trusted OS) 

Non-secure Group 1 Interrupts for the Non-secure state (OS and/or Hypervisor) 

 

Group 0 interrupts are always signaled as FIQs.  Group 1 interrupts are signaled as either IRQs or 

FIQs depending on the current Security state and Exception level of the PE. 

 

Table 6 Mapping between security settings and exception type when EL3 is using 
AArch64 

EL and Security state of PE Group 0 Group 1 

 Secure Non-secure 

Secure EL0/1 FIQ IRQ FIQ 

Non-secure EL0/1/2 FIQ FIQ IRQ 

EL3 FIQ FIQ FIQ 

 

These rules are designed to complement the ARMv8-A Security state and Exception level routing 

controls.  Figure 8 shows a simplified software stack, and what happens when different types of 

interrupt are signaled while executing at EL0: 
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Figure 8 Interrupt routing example 

 

In this example, IRQs are routed to EL1 (SCR_EL3.IRQ==0) and FIQs routed to EL3 

(SCR_EL3.FIQ==1) .  Given the rules described in Table 6, while executing at EL1 or EL0 a 

Group 1 interrupt for the current Security state is taken as an IRQ.   

An interrupt for the other Security state triggers an FIQ, and the exception is taken to EL3.  This 

then allows software executing at EL3 to perform the necessary context switch.  A more detailed 

example of this can be found in chapter 5.3. 

 

3.4.1 Impact on software 

Software controls the allocation of INTIDs to interrupt groups when configuring the interrupt 

controller.  Only software executing in Secure state can allocate INTIDs to interrupt groups. 

Typically only software executing in Secure state must be able to access the settings and state of 

Secure interrupts (Group 0 and Secure Group 1). 

Accesses from Non-secure state to Secure interrupt settings and state can be enabled.  This is 

controlled individually for each INTID, using the GICD_NSACRn and GICR_NSACR registers.   

 

NOTE: The interrupt group to which an INTID belongs at reset is IMPLEMENTATION DEFINED.   

NOTE: LPIs are always treated as Non-secure Group 1 interrupts. 

3.4.2 Support for single Security state 

Support for two Security states is OPTIONAL in ARMv8-A and GICv3.  An implementation can 

choose to implement only a single Security state or two Security states. 

In a GICv3 implementation that supports two Security states, one Security state can be disabled.  

This is controlled by GICD_CTLR.DS. 

 

 GICD_CTLR.DS == 0  

Two Security states (Secure and Non-secure) are supported. 
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 GICD_CTLR.DS == 1 

Only a single Security state is supported.  On implemenations that only implement a 

single Security state, this bit is RAO/WI. 

 

When only a single Security state is supported, there are two interrupt groups.  These are Group 0 

and Group 1.   

This document describes the case where two Security states are implemented. 

 

NOTE: If software sets GICD_CTLR.DS to 1, it can only be cleared by a reset. 

 

3.5 Programmers’ model 

The register interface of a GICv3 interrupt controller is split into three groups: 

 Distributor interface. 

 Redistributor interface. 

 CPU interface. 

 

Figure 9 The programming interfaces of a GICv3 interrupt controller 

 Distributor (GICD_*) 

The Distributor registers are memory-mapped, and contain global settings that affect all PEs 

connected to the interrupt controller.  The Distributor provides a programming interface for: 

 Interrupt prioritization and distribution of SPIs. 

 Enabling and disabling SPIs. 

 Setting the priority level of each SPI. 

 Routing information for each SPI. 

 Setting each SPI to be level-sensitive or edge-triggered. 

 Generating message-based SPIs. 

 Controlling the active and pending state of SPIs. 

 Controls to determine the programmers’ model that is used in each Security state (affinity 

routing or legacy). 
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 Redistributors (GICR_*) 

For each connected PE there is a Redistributor.  The Redistributors provides a programming 

interface for:  

 Enabling and disabling SGIs and PPIs. 

 Setting the priority level of SGIs and PPIs. 

 Setting each PPI to be level-sensitive or edge-triggered. 

 Assigning each SGI and PPI to an interrupt group. 

 Controlling the state of SGIs and PPIs. 

 Base address control for the data structures in memory that support the associated 

interrupt properties and pending state for LPIs. 

 Power management support for the connected PE. 

 

 CPU interfaces (ICC_*_ELn) 

Each Redistributor is connected to a CPU interface. The CPU interface provides a programming 

interface for: 

 General control and configuration to enable interrupt handling. 

 Acknowledging an interrupt. 

 Performing a priority drop and deactivation of interrupts. 

 Setting an interrupt priority mask for the PE. 

 Defining the preemption policy for the PE. 

 Determining the highest priority pending interrupt for the PE. 

 

In GICv3 the CPU Interface registers are accessed as System registers (ICC_*_ELn).   

Software must enable the System register interface before using these registers.  This is controlled 

by the SRE bit in the ICC_SRE_ELn registers, where “n” specifies the Exception level (EL1-

EL3). 

NOTE: In GICv1 and GICv2 the CPU Interface registers were memory mapped (GICC_*).   

NOTE: Software can check for GIC System register support by reading ID_AA64PFR0_EL1 for 

the PE, see ARM
®

 Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for 

details. 
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4. Configuring the GIC 
This chapter describes how to enable and configure a GICv3 compliant interrupt controller in a 

bare metal environment.  For detailed register descriptions see the ARM
®

 Generic Interrupt 

Controller Architecture Specification GIC architecture version 3.0 and 4. 

The configuration of LPIs is significantly different to the configuration of SPIs, PPIs and SGIs, and 

they are therefore described separately in Chapter 6. 

Most systems that use a GICv3 interrupt controller are multi-core systems, and possibly also multi-

processor systems.  Some settings are global, that is, they affect all the connected PEs.  Other 

settings are particular to a single PE.   

This chapter will first look at the global settings, and then the per-PE settings. 

4.1 Global settings 

The Distributor control register (GICD_CTLR) must be configured to enable the interrupt groups 

and to set the routing mode. 

 Enable Affinity routing (ARE bits) 

The ARE bits in GICD_CTLR control whether affinity routing is enabled. If affinity 

routing is not enabled, GICv3 can be configured for  legacy operation .  Whether affinity 

routing is enabled or not can be controlled separately for Secure and Non-secure state.   

 Enables 

GICD_CTLR contains separate enable bits for Group 0, Secure Group 1 and Non-secure 

Group 1: 

o GICD_CTLR.EnableGrp1S enables distribution of Secure Group 1 

interrupts. 

o GICD_CTLR.EnableGrp1NS enables distribution of Non-secure Group 1 

interrupts. 

o GICD_CTLR.EnableGrp0 enables distribution of Group 0 interrupts.   

4.2 Individual PE settings 

4.2.1 Redistributor configuration 

On reset, a Redistributor treats the PE to which it is connected as sleeping. Wake-up is controlled 

through GICR_WAKER. To mark the connected PE as being awake, software must: 

 Clear GICR_WAKER .ProcessorSleep to 0. 

 Poll GICR_WAKER .ChildrenAsleep until it reads 0. 

Enabling and configuring LPIs is described in Chapter 6. 

Writing to the CPU interface registers, other than ICC_SRE_ELn, when either 

GICR_WAKER.ProcessorSleep==1 or GICR_WAKR.ChildrenAsleep==1 leads to  

UNPREDICTABLE behaviour. 

4.2.2 CPU interface configuration 

The CPU interface is responsible for delivering interrupts to the PE to which it is connected.  To 

enable the CPU interface software must configure the following: 

 

 Enable System register access.  

Chapter 3.5 describes the CPU interface registers, and how they are accessed as System 

registers in GICv3.  Software must enable access to the CPU interface registers, by setting 

the SRE bit in theICC_SRE_ELn registers. 



 

DAI 0492B Copyright  2015-2016  ARM Limited. All rights reserved. 19 
 Non-Confidential 

 Set priority mask and binary point registers.  

The CPU interface contains the Priority Mask register (ICC_PMR_EL1) and the Binary 

Point registers (ICC_BPRn_EL1).  The Priority Mask sets the minimum priority an 

interrupt must have in order to be forwarded to the PE.  The Binary Point register is used 

for priority grouping and preemption. The use of both of these registers is described in 

more detail in Chapter 5. 

 Set EOI mode.  

The EOImode bits in ICC_CTLR_EL1 and ICC_CTLR_EL3 in the CPU interface  

control how the completion of an interrupt is handled.  This is described in more detail in 

chapter 5.5. 

 Enable signaling of each interrupt group. 

The signalling of each interrupt group must be enabled before interrupts of that group will 

be forwarded by the CPU interface to the PE.  To enable signaling software must write to 

ICC_IGRPEN1_EL1 register for Group 1 interrupts and ICC_IGRPEN0_EL1 registers 

for Group 0 interrupts. 

ICC_IGRPEN1_EL1 is banked by Security state.  This means that ICC_GRPEN1_EL1 

controls Group 1 for the current Security state.  At EL3, software can access both Secure 

Group 1 interrupt enables and Non-secure Group 1 interrupt enables using 

ICC_IGRPEN1_EL3. 

 

4.2.3 PE configuration 

Some configuration of the PE is also required to allow it to receive and handle interrupts.  A 

detailed description of this is outside of the scope of this document.  It is sufficient here to describe 

the basic steps required for an ARMv8-A compliant PE executing in AArch64 state. 

 Routing controls 

The routing controls for interrupts are in SCR_EL3 and HCR_EL2 of the PE.  The routing 

control bits determine the Exception level to which an interrupt is taken. The routing bits 

in these registers have an UNKNOWN value at reset, so they must be initialized by 

software. 

 Interrupt masks 

The PE also has exception mask bits in PSTATE.  When these bits are set, interrupts are 

masked.  These bits are set at reset.  

 Vector table 

The location of the vector tables of the PE is set by the VBAR_ELn registers.  As with 

SCR_EL3 and HCR_EL2, VBAR_ELn registers have an UNKNOWN value at reset.  

Software must set the VBAR_ELn registers to point to the appropriate vector tables in 

memory. 

For more information, see ARM® Architecture Reference Manual, ARMv8, for ARMv8-A 

architecture profile. 

 

4.3 SPI, PPI and SGI configuration 

SPIs are configured through the Distributor, using the GICD_* registers.  PPIs and SGIs are 

configured through the individual Redistributors, using the GICR_* registers.   

For each INTID, software must configure the following: 

 

 Priority (GICD_IPRIORITYn, GICR_IPRIORITYn) 

Each INTID has an associated priority, represented as an 8-bit unsigned value.  0x00 is 

the highest possible priority, and 0xFF is the lowest possible priority.  Chapter 5 
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describes how the  priority value in GICD_IPRIORITYn and GICR_IPRIORITYn 

masks low priority interrupts, and how it  controls preemption. 

An interrupt controller is not required to implement all 8 priority bits.  A minimum of 5 

bits must be implemented if the GIC supports two Security states.  A minimum of  4 bits 

must be implemented if the GIC support only a single Security state.    

 Group (GICD_IGROUPn, GICD_IGRPMODn, GICR_IGROUP0, GICR_IGRPMOD0) 

As described in section 3.4, an interrupt can be configured to belong to one of the three 

distinct interrupt groups.  These interrupt groups are Group 0, Secure Group 1 and Non-

secure Group 1. 

 Edge-triggered/level-sensitive (GICD_ICFGRn, GICR_ICFGRn) 

If the interrupt is sent as a physical signal, it must be configured to be either edge-

triggered or level-sensitive.  SGIs are always treated as edge-triggered, and therefore 

GICR_ICFGR0 behaves as RAO/WI for these interrupts. 

 Enable (GICD_ISENABLERn, GICD_ICENABLER, GICR_ISENABLER0, 

GICR_ICENABLER0) 

Each  INTID has an enable bit.  Set-enable registers and Clear-enable registers remove the 

requirement to perform read-modify-write routines.  ARM recommends that the settings 

outlined in this section are configured before enabling the INTID. 

 

For a bare metal environment, it is often unnecessary to change settings after initial configuration.  

However, if  an interrupt must be reconfigured, for example to change the Group setting, it is 

advisable to first disable that particular INTID. 

The reset values of most of the configurations registers are IMPLEMENTATION DEFINED.  This 

means that the designer of the interrupt controller decides what the values are, and the values might 

vary between systems.   

 

4.3.1 Setting the target PE for SPIs 

For SPIs, the target of the interrupt must additionally be configured.  This is controlled by 

GICD_IROUTERn.  There is a GICD_IROUTERn register per SPI, and the 

Interrupt_Routing_Mode bit controls the routing policy.  The options are: 

 

 GICD_IROUTERn.Interrupt_Routing_Mode == 0  

The SPI is to be delivered to the PE A.B.C.D, the affinity co-ordinates specified in the 

register. 

 

 GICD_IROUTERn.Interrupt_Routing_Mode == 1  

The SPI can be delivered to any connected PE that is participating in distribution of the 

interrupt group. The Distributor, rather than software, selects the target PE, and this can 

vary each time the interrupt is signaled. 

This type of routing is referred to as 1-of-N. 

 

A PE can opt-out of receiving 1-of-N interrupts.  This is controlled by the DPG1S, DPG1NS and 

DPG0 bits in GICR_CTLR. 
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5. Handling Interrupts 

5.1 What happens when an interrupt becomes pending 

Section 3.2 describes how an interrupt transitions from the inactive to the pending state when the 

source of the interrupt is asserted.  This is typically due to a peripheral asserting a dedicated 

interrupt signal. 

When an interrupt becomes pending, the interrupt controller decides whether to send the interrupt 

to one of the connected PEs.  The PE which the interrupt controller selects, if any, depends on the 

following settings: 

 Group enables 

Section 3.4 described how INTID is assigned to a Group (Group 0, Secure Group 1 or 

Non-secure Group 1).  For each Group, there is a Group bit in the Distributor and in the 

CPU Interface.  An interrupt that is a member of a disabled Group cannot be signaled to a 

PE. 

 Interrupt enables 

Individually disabled interrupts can become pending, but will not be forwarded to a PE. 

 Routing controls 

Depending on the type of interrupt, the interrupt controller must decide which PEs can 

receive the interrupt. 

For SPIs, this is controlled by GICD_IROUTERn.  An SPI can target one specific PE, or 

any one of the connected PEs. 

For LPIs, the routing information comes from the ITS if an ITS is implemented (see 

section 6.1). 

PPIs are specific to one PE, and can only be handled by that PE. 

For SGIs, the originating PE defines the list of target PEs.  This is described further in 

chapter 7. 

 Interrupt priority & priority mask 

Each PE has a Priority Mask register (ICC_PMR_EL1) in its CPU Interface.  This 

register sets the minimum priority that is required for an interrupt to be forwarded to that 

PE.  Only interrupts with a higher priority than the value in the register are signaled to the 

PE. 

 Running priority 

Section 5.4 covers running priority, and how this affects preemption.  If the PE is not 

already handling an interrupt, the running priority is the idle priority (0xFF).  Only an 

interrupt with a higher priority than the running priority can preempt the current interrupt. 

5.2 Interrupt acknowledge 

The CPU interface has two IARs.  Reading the IAR returns the INTID, and advances the interrupt 

state machine.  In a typical interrupt handler, one of the first steps when handling an interrupt is to 

read one of the IARs.   

 

Table 7 Interrupt acknowledge registers 

Register Use 

ICC_IAR0_EL1 Used to acknowledge Group 0 interrupts.  

ICC_IAR1_EL1 Used to acknowledge Group 1 interrupts. 
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5.3 Spurious interrupts 

Section 3.1.2 describes how the INTID range 1020 to 1023 is reserved for special purposes.  These 

INTIDs can be returned by reads of the IARs, and indicate special cases in exception handling. 

 

Table 8 Reserved IDs 

ID Meaning Example scenario 

1020 Only returned by reads of 

ICC_IAR0_EL1. 

Highest pending interrupt is 

Secure Group 1. 

Only seen when taking FIQ to 

EL3 

An interrupt for the Trusted OS was signaled while the 

PE was executing in Non-secure state.  This is taken as 

an FIQ to EL3, so that the Secure Monitor could 

context switch to the Trusted OS. 

1021 Only returned by reads of 

ICC_IAR0_EL1. 

Highest pending interrupt is 

Non-secure Group 1. 

Only seen when taking FIQ to 

EL3 

An interrupt for the rich OS was signaled while the PE 

was executing in Secure state.  This would be taken as a 

FIQ to EL3, so that the Secure Monitor could context 

switch to the rich OS. 

1022 Used only for legacy operation. 

 

Legacy operation is not addressed in this document. 

1023 Spurious interrupt. 

There are no enabled INTIDs in 

the pending state, or all INTIDs 

in that pending are of  

insufficient priority to be taken. 

When polling the IARs, this value indicates that there 

are no  interrupts to available to acknowledge. 

 

 Example 

In the following example, a mobile system has a modem interrupt which signals an incoming phone call.  

This interrupt is intended to be handled by the Rich OS in the Non-secure state.     

 

 

Figure 10 Example of using reserved INTID 1021 
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1. The modem interrupt becomes pending while the PE is executing the Trusted OS at Secure EL1.  

As the modem interrupt is configured as Non-secure Group 1, it will be signaled as an FIQ.  With 

SCR_EL3.FIQ==1, the exception is taken to EL3. 

2. Secure Monitor software executing at EL3 reads the IAR, which returns 1021.  This values 

indicates that the interrupt is expected to be handled in Non-secure state.  The Secure Monitor then 

performs the necessary context switching operations. 

3. Now that the PE is in Non-secure state, the interrupt is signaled as an IRQ and taken to Non-secure 

EL1 to be handled by the Rich OS. 

 

In the example shown in Figure 10 the Non-secure Group 1 interrupt caused an immediate exit from the 

Secure OS.  This might not always be required or wanted.  Figure 11 shows an alternative model, where the 

interrupt is initially taken to Secure EL1. 

 

Figure 11 Alternative routing model 

1. The modem interrupt becomes pending while the PE is executing the Trusted OS at Secure EL1.  

As the modem interrupt is configured as Non-secure Group 1, it will be signaled as an FIQ.  With 

SCR_EL3.FIQ==0, the exception is taken to Secure EL1.   

2. The Trusted OS performs actions to tidy up its internal state.  When it is ready, the Trusted OS 

uses an SMC instruction to yield to Non-secure state. 

4. The SMC exception is taken to EL3.  The Secure Monitor software executing at EL3 performs the 

necessary context switching operations. 

5. Now that the PE is in Non-secure state, the interrupt is signaled as an IRQ and taken to Non-secure 

EL1 to be handled by the Rich OS. 

 

5.4 Running priority & preemption 

The PMR sets the minimum priority that an interrupt must have to be forwarded to a particular PE.  The 

GICv3 architecture has the concept of a running priority.  When a PE acknowledges an interrupt, its running 

priority becomes that of the interrupt.  The running priority returns to its former value when the PE writes to 

one of the EOI registers. 
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Figure 12 Running priority value over time 

The current running priority is reported in the Running Priority register in the CPU interface 

(ICC_RPR_EL1).   

The concept of running priority is important when considering preemption.  Preemption occurs when a high 

priority interrupt is signaled to a PE that is already handling a lower priority interrupt.  Preemption 

introduces some additional complexity for software, but it can prevent a low priority interrupt blocking the 

handling of a higher priority interrupt. 

 

 

Figure 13 Without preemption 

 

 

Figure 14 With preemption 

 



 

DAI 0492B Copyright  2015-2016  ARM Limited. All rights reserved. 25 
 Non-Confidential 

Figure 14 shows one level of preemption.  However, it is possible to have multiple levels of preemption.  

In some situations preemption might not be required or wanted.  The GICv3 architecture allows  the 

difference in priority required for preemption to be controlled through the Binary Point registers 

(ICC_BPRn_EL1). 

The Binary Point registers split the priority into two fields, group priority and subpriority: 

 

Figure 15 Eight bit priority value split between group priority and subpriority fields 

 

For preemption, only the group priority bits are considered.  The subpriority bits are ignored.   

For example, consider the following three interrupts: 

 

  INTID A has priority 0x10 

  INTID  B has priority 0x20 

  INTID  C has priority 0x21 

 

In this scenario it is decided that: 

 A can preempt B or C.   

 B cannot preempt C, because B and C have similar priorities.   

To achieve this the the split between Group and Subpriority could be set at N=4: 

 

Figure 16 Group priority/Subpriority example 

 

With this split, B and C are now considered to have the same priority for the purpose of preemption.  

However, A still has a higher priority so it can preempt either B or C. 

 

NOTE: Preemption requires that the interrupt handler, or handlers, are written to support nesting.  Details of 

this are outside of the scope of this document, and are not described here. 

5.5 End of interrupt 

When the interrupt has been handled, software must inform the interrupt controller that the interrupt has 

been handled so that the state machine can transition to the next state.  The GICv3 architecture treats this as 

two tasks: 

 

 Priority drop 

This means dropping the running priority back to the value that it had before the interrupt was taken. 

 Deactivation 

This means updating the state machine of the interrupt that is currently being handled.  Typically this 

will be a transition from the Active state to the Inactive state. 

 

http://armv8.arm.com/armv8-sysreg/latest/AArch64-icc_bpr0_el1.xml
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In the GICv3 architecture priority drop and deactivation can happen together or separately.  This is 

determined by the settings of ICC_CTLR_ELn.EOImode. 

 

 EOImode = 0  

A write to ICC_EOIR0_EL1 for Group 0 interrupts, or ICC_EOIR1_EL1 for Group 1 interrupts,  

performs both the priority drop and deactivation.  This is the model typically used for a simple bare 

metal environment. 

 EOImode = 1 

A write to ICC_EOIR_EL10 for Group 0 interrupts, or ICC_EOIR1_EL1 for Group 1 interrupts 

results in a priority drop.  A separate write to ICC_DIR_EL1 is required for deactivation.  This mode 

is often used for virtualization purposes. 

 

When writing these registers, software must write the INTID.   

5.6 Checking the current state of the system 

 

5.6.1 Highest priority pending interrupt and running priority 

As the names suggests, the Highest Priority Pending Interrupt registers (ICC_HPPIR0_EL1 & 

ICC_HPPIR1_EL1) report the INTID of the highest priority pending interrupt for this PE.  This might be 

different on different PEs, for example because of different routing settings for SPIs. 

Running priority was introduced in section 5.4, and is reported by the Running Priority register 

(ICC_RPR_EL1).   

5.6.2 State of individual INTIDs 

The Distributor provides registers that indicate the current state of each SPI.  Similarly the Redistributors 

provide registers that indicate the state of PPIs and SGIs for their connected PEs. 

These registers can also move an interrupt to a specific state.  This can be useful, for example, for testing 

that the configuration is correct without requiring the peripheral to assert the interrupt. 

There are separate registers to report the active state and the pending state.  Table 9 lists the active state 

registers.  The pending state registers have the same format. 
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Table 9 Active State registers 

Register Description 

GICD_ISACTIVERn Sets the active state for SPIs. 

One bit per INTID. 

Reads of a bit return the current state of the INTID: 

 1 – the INTID is active 

 0 – the INTID is not active 

  

Writing 1 to a bit activates the corresponding INTID. 

Writing 0 to a bit has not effect. 

GICD_ICACTIVERn Clears the active state for SPIs. 

One bit per INTID. 

Reads of a bit return the current state of the interrupt: 

 1 – the INTID is active 

 0 – the INTID is not active 

Writing 1 to a bit deactivates the corresponding INTID. 

Writing 0 to a bit has not effect. 

GICR_ISACTIVER0 Sets the active state for SGIs and PPIs. 

One bit INTID. (Covers INTIDs 0 to 31, which are private to each PE) 

Reads of a bit return the current state of the interrupt: 

 1 – the INTID is active 

 0 – the INTID is not active 

Writing 1 to a bit activates the corresponding INTID. 

Writing 0 to a bit has not effect. 

GICR_ICACTIVER0 Clears the active state for SGIs and PPIs. 

One bit INTID. (Covers INTIDs 0 to 31, which are private to each PE) 

Reads of a bit return the current state of the interrupt 

 1 – the INTID is active 

 0 – the INTID is not active 

Writing 1 to a bit deactivates the corresponding INTID. 

Writing 0 to a bit has not effect. 

 

NOTE:  GICD_ISACTIVER0 and GICD_ICACTIVER0 are treated as RES0 when affinity routing is 

enabled.  This is because GICD_ISACTIVER0 and GICD_ICACTIVER0 correspond to INTIDs 0 to 31, 

which are banked per-PE and reported through the Redistributor of each PE.   

 

NOTE: Software executing in Non- secure state cannot see the state of Group 0 or Secure Group 1 

interrupts, unless access is permitted by GICD_NASCRn or GICR_NASCRn. 
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6. Configuring LPIs 
LPIs are only supported when affinity routing is enabled, and they are configured differently compared to 

the other interrupt types. 

Configuring LPIs involves setting up the: 

 Redistributors. 

 The optional ITSs (Interrupt Translation Service). 

 

LPIs are always message–based interrupts, and they can be supported by an ITS.  An ITS is responsible for 

receiving interrupts from peripherals and forwarding them to the appropriate Redistributor as LPIs.  A 

system might include more than one ITS, in which case each ITS must be configured individually. 

A peripheral can also send the LPI directly to a Redistributor, bypassing the ITS.  However, the ITS 

provides a number of features to allow efficient handling of large numbers of interrupt sources. 

 

NOTE: Support for LPIs is optional, and is indicated by GICD_TYPER.LPIS.  If at least one ITS is 

present, it is IMPLEMENTATION DEFINED whether a peripheral can send LPIs directly to a Redistributor, 

bypassing the ITSs. 

6.1 ITS 

6.1.1 Operation of an ITS 

A peripheral generates an LPI by writing to GITS_TRANSLATER in the ITS.  The write provides the ITS 

with the following information: 

 EventID 

This is the value written to GITS_TRANSLATER.  The EventID idenitifies which interrupt the 

peripheral is sending.  The EventID might be the same as the INTID, or it might be translated by 

the ITS into the INTID. 

 DeviceID 

The DeviceID identifies the peripheral.  The manner in which a DeviceID is generated is  

IMPLEMENTATION DEFINED. For example,  the AXI User signals could be used. 

The ITS translates the EventID that is written to GITS_TRANSLATER by the peripheral to an INTID.    

How the EventID translates into an INTID is specific to each peripheral, which is why a DeviceID is 

required.   

LPI INTIDs are grouped together in collections.  All INTIDs in a collection are routed to the same 

Redistributor.  Software allocates LPI INTIDs to Collections, allowing it to efficiently move interrupts from 

one PE to another.   

An ITS uses three types of table to handle the translation and routing of LPIs.  These are: 

 Device Tables 

These map DeviceIDs to Interrupt Translation Tables. 

 Interrupt Translation Tables 

These contain the DeviceID specific mappings between EventID and INTID.  They also contain 

the Collection of which the INTID is a member. 

 Collection Tables 

These map collections to Redistributors.   
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Figure 17 An ITS forwarding an LPI to a Redistributor 

 

When a peripheral writes to GITS_TRANSLATER, the ITS: 

1. Uses the DeviceID to select the appropriate entry from the Device Table.  This entry identifies 

which Interrupt Translation Table to use. 

2. Uses the EventID to select the appropriate entry from the Interrupt Translation Table.  This entry 

provides the INTID, and the Collection ID. 

3. Uses the Collection ID to select the required entry in the Collection Table, which returns the 

routing information. 

4. Forwards the interrupt to the target Redistributor. 

 

NOTE: An ITS can optionally support a number of hardware collections.  Hardware collections are where 

the ITS holds the configuration internally, rather than storing it in memory.  GITS_TYPER.HCC reports 

the number of  hardware collections that are supported.   

 

6.1.2 The command queue 

An ITS is controlled using a command queue in memory.  The command queue is a circular buffer and it is 

defined by three registers. 

 GITS_CBASER 

This register specifies the base address and size of the command queue.  The command queue must 

be 64KB aligned, and the size must be a multiple of 4KB.  Each entry in the command queue is 32 

bytes.  GITS_CBASER also specifies the cacheability and shareability settings that the ITS uses 

when accessing the command queue. 

 GITS_CREADR 

This register points to the next command that the ITS will process.   

 GITS_CWRITER 

This register points to the entry in the queue where the next new command should be written. 

Figure 18 shows a simplified representation of a command queue. 
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Figure 18 ITS circular command queue 

The ARM
®

 Generic Interrupt Controller Architecture Specification GIC architecture version 3.0 and 4.0 

provides details of  all the commands supported by an ITS, and how these are encoded.   

6.1.3 Initial configuration of an ITS 

To configure an ITS at system start up, software must: 

1. Allocate memory for  the Device and Collection tables. 

The GITS_BASER[0..7] registers specify the base address and size of the ITS Device and 

Collection tables.  Software uses these registers to discover the number and type of tables that the 

ITS supports.  Software must then allocate the required memory, and set the GITS_BASERn 

registers to point to this allocated memory. 

2. Allocate memory for the command queue. 

Software must allocate the memory for the command queue and set GITS_CBASER and 

GITS_CWRITER to point to the start of this allocated memory. 

3. Enable the ITS. 

When the tables and command queue have been allocated, the ITS can be enabled.  This is done by 

setting the GITS_CTLR.Enable bit to 1. 

Once GITS_CTLR.Enable has been set, the GITS_BASERn and GITS_CBASER registers 

become read-only. 

6.1.4 The sizes and layout of Collection and Device tables 

The location and size of the Device and Collection tables is configured using the GITS_BASERn registers. 

Software must allocate sufficient memory for these tables, and configure the GITS_BASERn registers, 

before enabling the ITS. 

Software can allocate a flat (single level) table, or two-level tables.  This is specified by  

GITS_BASERn.Indirect. 

NOTE: Support for two-level tables is OPTIONAL.  If the ITS only supports flat tables, 

GITS_BASERn.Indirect is RAZ/WI.  

 Flat level tables 

With a flat table, a single contiguous block of memory is allocated to the ITS to record mappings.   

Software is required to fill the memory with 0s before enabling the ITS.  Thereafter the table is populated 

by the ITS as it processes commands from the command queue. 
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Figure 19 A flat Device or Collection table 

The size of the table scales with the width of DeviceID or Collection ID, as appropriate.  The required size 

can be calculated as follows: 

 

Size in bytes = 2
ID_width

 * entry_size  

 

Where entry_size is the number of bytes per table entry, and is reported by 

GITS_BASERn.Entry_Size. 

When configuring the GITS_BASERn registers, the size of the table is specified as a number of pages.  The 

size of a page is controlled by GITS_BASERn.Page_Size, and can be 4KB, 16KB or 64KB.  Therefore, 

the result of the formula given above must be rounded up to the next whole page size. 

For example, if a system implements an 8-bit DeviceID, the bytes per table entry is 8 and a 4K page size is 

used: 

 

2
8
 * 8 = 2048 bytes  =>  which rounded up to the next full page is 4K 

 Two-level tables 

With two-level tables, software allocates a single first level table, and a number of second level tables.   
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Figure 20 A two-level Device or Collection table 

The first level table is populated by software, with each entry either pointing at a second level table or 

marked as invalid.  The second level tables must be filled with 0s before they are allocated to the ITS, and 

are populated by the ITS as it processes commands from the command queue. 

While the ITS is enabled (GITS_CTLR.Enabled==1) software might allocate additional second level 

tables, and update the corresponding first level table entry to point at these additional tables.  Software must 

not remove allocations, or change existing allocations, while the ITS is enabled. 

The size of each second level table is one page.  As with the flat tables,  the page size is configured by 

GITS_BASERn.Page_Size.  It therefore contains (page_size / entry_size) entries. 
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Each first level table entry represents (page_size / entry_size) IDs, and can either point to a second level 

table or be marked as invalid.  Any ITS command that uses an ID which corresponds to an invalid entry will 

be discarded.   

The required size of the first level table can be calculated by: 

 

Size in bytes = (2
ID_width

  /  (page_size / entry_size))  *  8 

 

As with the single level tables, the size of the first level table is specified as a number of pages.  Therefore 

the result of the formula must be rounded up to the next whole page size. 

 

6.1.5 Adding a new command to the command queue 

To add a new command to the command queue, software must: 

1. Write the new command to the queue. 

GITS_CWRITER points to the next entry that does not contain a valid command in the command 

queue.  Software must write the command to this entry, and it must ensure global visibility. 

2. Update GITS_CWRITER 

Software must update GITS_CWRITER to the next entry that does not contain a new command.  

Updating GITS_CWRITER informs the ITS that a new command has been added. 

Software can add multiple commands to the queue at the same time, provided there are enough empty 

spaces in the command queue and that GITS_CWRITER is updated accordingly. 

3. Wait for the command to be read by the ITS 

Software can check whether the command has been read by the ITS by polling GITS_CREADR.  All 

commands have been read by the ITS when GITS_CWRITER.Offset == 

GITS_CREADR.Offset. 

Alternatively, an INT command can be added to generate an interrupt to signal that a group of 

commands has been read by the ITS. 

The ITS reads the commands from the command queue in order.  However, the effects that these 

commands have on the Redistributors might be visible out-of-order.  A SYNC command can ensure that 

the effects of previously issued commands are visible. 

 

NOTE: The command queue is full when GITS_CWRITER points at the location before GITS_CREADR.  

Software must check that there is sufficient space in the queue before attempting to add new commands. 

6.1.6 Mapping an interrupt to a Redistributor 

 Mapping a DeviceID to a translation table. 

Every peripheral that can send interrupts to an ITS has its own DeviceID.  Each DeviceID requires its own 

Interrupt Translation Table (ITT) to hold its EventID to INTID mappings.  Software must allocate memory 

for the ITT, and then use the MAPD command to map the DeviceID to the ITT. 

 

MAPD <DeviceID>, <ITT_Address>, <Size> 

 

 Mapping INTIDs to a collection, and collections to a Redistributor 

When the DeviceID of a peripheral has been mapped to an ITT, the different EventIDs it can send must be 

mapped to INTIDs, and these INTIDs must be mapped to collections.  Each collection is mapped to a target 

Redistributor. 

INTIDs can be mapped to a collection using the MAPTI and MAPI commands.  The MAPI command is 

used when the EventID and INTID are the same. 
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MAPI <DeviceID>, <EventID>, <Collection ID> 

 

The MAPTI command is used when the EventID and INTID are different. 

 

MAPTI <DeviceID>, <EventID>, <INTID>, <Collection ID> 

 

Collections are mapped to a Redistributor using the MAPC command: 

 

MAPC  <Collection ID>, <Target Redistributor> 

 

Idenitification of the target Redistributor depends on GITS_TYPER.PTA: 

 GITS_TYPER.PTA==0  

The Redistributor is specified by ID, which can be read from 

GICR_TYPER.Processor_Number. 

 GITS_TYPER.PTA==1  

The Redistributor is specified by physical address. 

 

 Example 

A timer has DeviceID 5 and uses a two bit EventID.  We want EventID 0 to be mapped to INTID 8725.  

The ITT allocated for the timer is at address 0x84500000. 

We decide to use collection number 3 and deliver the interrupt to the Redistributor at physical address 

0x78400000.  

The command sequence for this is: 

 

MAPD 5, 0x84500000, 2 Map DeviceID 5 to an ITT  

MAPTI 5, 0, 8725, 3 Map EventID 0 to INTID 8725 and collection 3 

MAPC  3, 0x78400000 Map collection 3 to Redistributor at address 0x78400000 

SYNC 0x78400000 

 

NOTE: The example assumes that none of the mappings have previously been set up, and that 

GITS_TYPER.PTA==1. 

 

6.1.7 Migrating interrupts between Redistributors 

There is more than one way to move  an interrupt from one Redistributor to another. 

• Remapping a collection  

Software can move all interrupts from one Redistributor  to a different Redistributor by rermapping the 

entire collection.  This is typically done when the PE attached to the Redistributor is powering down, 

and the interrupts must be moved to another Redistributor. This can be done using the following 

command sequence: 

 

MAPC <Collection ID>, <RDADDR2> Remap collection to new Redistributor 

SYNC <RDADDR2>    Ensure visibility of the mapping 

MOVALL <RDADDR1>, <RDADDR2>  Move pending state to new Redistributor 

SYNC <RDADDR1>    Ensure visibility of move 

In this command sequence RDADDR1 is the previously targeted Redistributor, and RDADDR2 is the 

new target Redistributor. 



 

34 Copyright  2015-2016 ARM Limited. All rights reserved. DAI 0492B 
 Non-Confidential 
 

 

If there were multiple Collections targeting RDADDR1, then we would need multiple MAPC commands, 

one for each collection.  This sequence assumes that all the collections are being remapped to the same 

new target Redistributor. 

 

• Mapping an interrupt to a different collection 

Individual interrupts can be remapped to a different collection.  This can be done using the following 

command sequence: 

MOVI <DeviceID>, <EventID>, <ID of new Collection> 

SYNC <RDADDR1> 

In this command sequence RDADDR1 is the Redistributor that is targeted by the collection to which the 

interrupt was originally assigned, before the interrupt was remapped. 

 

6.1.8 Removing interrupts mappings 

To remap or remove the mapping of an interrupts, software must: 

1. Disable the physical INTID to which interrupt is currently mapped.  This is done in the LPI 

configuration tables, see section 6.2.2. 

2. Issue a DISCARD command.  This removes the mapping of the interrupt and clears the pending state of 

the mapped INTID. 

3. Issue a SYNC command, and wait until the command has completed. 

After the command has completed, no more interrupts are delivered to the Redistributor to which the 

interrupts were previously mapped.  

 

6.1.9 Remapping or removing the mapping of devices 

To change or remove the mapping for devices software must: 

1. Follow the steps in 6.1.8 for each EventID of that peripheral that is currently mapped. 

2. Issue a MAPD command to remap the device.  Alternatively, a MAPD command with the valid bit 

cleared to 0 removes the mapping. 

3. Issue a SYNC command and wait until the command has completed. 

 

6.2 Redistributors 

The Redistributors hold the control, prioritization, and pending information for all physical LPIs, using 

tables held in memory.    

Configuration information for LPIs is stored in a table in memory.  This is the LPI Configuration tables, 

which is pointed to by GICR_PROPBASER. LPI configuration is global, that is, all Redistributors must see 

the same configuration.  Typically a system has a single LPI Configuration table that is shared by all 

Redistributors. 

Similarly, state information for LPIs is also stored in tables in memory. These are the LPI Pending tables, 

which are pointed to by GICR_PENDBASER.  Each Redistributor has its own LPI Pending table, and these 

tables are not shared between Redistributors. 
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Figure 21 LPI Configuration and LPI Pending tables 

 

6.2.1 Initial configuration of a Redistributor  

The steps to initialize the Redistributors in a system are: 

1. Allocate memory for the LPI Configuration table, and initialize the table with the appropriate 

configurations for each LPI. 

2. Set GICR_PROPBASER in each Redistributor to point at the LPI Configuration table. 

3. Allocate memory for the LPI Pending table of each Redistributor, and initialize the content of each 

table.  At system start-up, this typically means zeroing the memory, meaning that all LPI INTIDs 

are in the inactive state. 

4. Set GICR_PENDBASER in each Redistributor to point to the particular LPI Pending table 

associated with the Redistributor. 

5. Set GICR_CTLR.EnableLPIs to 1 in each Redistributor to enable LPIs. 

When GICR_CTLR.EnableLPIs has been set to 1, the GICR_PENDBASER and 

GICR_PROPBASER registers become read-only 

 LPI Configuration table 

The LPI Configuration table has one byte for each LPI INTID.  Figure 22 shows the format of these entries. 

Enable
027 1

RES0Priority
 

Figure 22 Format of an entry in the LPI Configuration table 

 

Although priority values are 8 bits for SPIs, PPIs and SGIs, there are only 6 bits in the table to record the 

priority of an LPI.  The lower two bits of the priority of an LPI are always treated as 0b00. 

There is no field for recording the security configuration. LPIs are always treated as Non-secure Group 1 

interrupts. 
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The size of the LPI Configuration table and the amount of memory that must be allocated depend on the 

number of LPIs.  The maximum number of INTIDs (SPIs, PPIs, SGIs and LPIs) that are supported by the 

GIC is indicated by  GICD_TYPER.IDbits.  The LPI Configuration table handles LPIs, which use 

INTIDs that are greater than 8191.  Therefore to support all the possible LPIs the LPI Configuration table 

size is calculated as follows: 

Size in bytes = 2GICD_TYPER.IDbits+1 – 8192 

 

However, it is possible  to support a smaller range of INTIDs.  GICR_PROPBASER also includes an 

IDbits fields, that indicates the number of INTIDs that are supported by the LPI Configuration table.  

This number must be equal to or smaller than the value in GICD_TYPER.  Software must allocate enough 

memory for this number of entries.  In this case the required size of the LPI Configuration table becomes: 

Size in bytes = 2GICR_PROPBASER.IDbits+1 – 8192 

 

The interrupt controller must be able to read the memory allocated for the LPI Configuration table.  

However, it never writes to this memory. 

 

 LPI Pending tables 

The states information for LPIs is stored in memory.  LPIs have two states, inactive and pending. 

 

 

Figure 23 State machine for LPIs 

 

Interrupts transition from pending to inactive when they have been acknowledged.   

Because there are only two states, there is only 1 bit for each LPI in the LPI Pending tables.  Therefore, to 

support all possible INTIDs in an implementation, the tables must be: 

 Size in bytes = (2GICD_TYPER.IDbits+1) / 8 

Unlike the LPI Configuration table, the size of the LPI Pending tables is not adjusted  to take account of 

LPIs starting at INTID 8192.  The first 1KB of the table (corresponding to the entries for INTIDs 0 to 8291) 

stores IMPLEMENTATION DEFINED state. 

As described in this section, it is possible to use a smaller range of INTIDs than is supported by hardware.  

GICR_PROPBASER.IDBits controls the size of the INTID range.  Therefore, it affects both the size of 

the LPI Configuration tables and the size of the LPI Pending table.  To support the configured INTID range, 

the required LPI Pending table size is: 

Size in bytes = (2GICR_PROPBASER.IDbits+1)/8 

The interrupt controller must be able to read and write the memory allocated for the LPI Pending table.  

Typically, a Redistributor will cache the highest priority pending interrupts internally, and write out state 

information to the LPI Pending table when there are too many pending interrupts to cache or when entering 

a low power state. 

6.2.2 Reconfiguring LPIs 

LPI configuration information is stored in a table in memory, not in registers.  Redistributors are allowed to 

cache the LPI configuration information.  This means that to reconfigure an LPI, software must: 



 

DAI 0492B Copyright  2015-2016  ARM Limited. All rights reserved. 37 
 Non-Confidential 

1. Update the entry in the LPI Configuration table. 

2. Ensure global visibility of the update or updates. 

3. Invalidate any caching of the configuration in the Redistributors. 

 

The invalidation of the cache in the Redistributor  is performed by issuing the ITS INV or INVALL 

commands.  The INV command invalidates the entry for a specific interrupt, so this command is typically 

used when reconfiguring a small number of LPIs.  The INVALL command invalidates entries for all 

interrupts in a specified collection.  For more information about ITS commands, see section 6.1.5. 

If an ITS is not implemented, software must write to GICR_INVLPIR or GICR_INVALLR in      any of 

Redistributors instead.  
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7. Sending and receiving SGIs 
Software Generated Interrupts, SGIs, are interrupts that software can trigger by writing to a register in the 

interrupt controller.   

7.1 Generating SGIs 

An SGI is generated by writing to one of the SGI registers in the CPU interface. 

 

Table 10 SGI registers that are used  when System register access is enabled  

System register 
interface 

Description 

ICC_SGI0R_EL1 Generates a Secure Group 0 interrupt 

ICC_SGI1R_EL1 Generates a Group 1 interrupt, for the  current 

Security state of the PE 

ICC_ASGI1R_EL1 Generates a Group 1 interrupt, for the other 

Security state of the PE 

 

The basic format of the SGI registers is shown in Figure 24. 

 

 

Figure 24 Format of the SGI registers, when SRE=1 

 

 Controlling the SGI ID 

The SGI ID field controls which INTID is generated.  As described in section 3.1.2, INTIDs 0-15 are used 

for SGIs. 

 

 Controlling the target 

The IRM (Interrupt Routing Mode) field in the SGI registers controls which PE or PEs an SGI is sent to.  

There are two options: 

 

 IRM  = 0 

The interrupt is sent to <aff3>.<aff2>.<aff1>.<Target List>, where <target list> is encoded as 1 bit 

for each affinity 0 node under <aff1>.  This means that the interrupt can be sent to a maximum of 

16 PEs, which might include the originating PE. 

 IRM  = 1 

The interrupt is sent to all connected PEs, except the originating PE (self). 

 

As described in section 3.3, the exact meaning of the hierarchal affinity fields depends on the particular 

design.  Typically, affinity level 1 identifies a multi-core processor and affinity level 0 a PE within that 

processor.   
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 Controlling the Security state and grouping 

The Security state and grouping of SGIs is controlled by: 

 The SGI register (ICC_SGI0R_EL1, ICC_SGI1R_EL1, or ICC_ASGIR_EL1) that is written 

by software on the originating PE. 

 The GICR_IGROUPR0 and GICR_IGRPMODR0 registers of the target PE or PEs. 

Software executing in Secure state can send both Secure and Non-secure SGIs.  Whether software executing 

in Non-secure state can generate Secure SGIs is controlled by GICR_NSACR.  This register can only be 

accessed by software executing in Secure state.  Table 11 shows how the Security state of the originating 

PE, the interrupt handling configuration of the PE which the interrupt is targetting, and the SGI register, 

affect  whether an interrupt is forwarded or not. 

 

Table 11 SGI security/group controls, when GICD_CTLR.DS=0 

Security state of 
sending PE 

SGI register written Configuration on 
receiving PE 

Forwarded? 

Secure EL3/EL1 ICC_SGI0R_EL1 Secure Group 0 Yes 

Secure Group 1 No 

Non-secure Group 1 No 

ICC_SGI1R_EL1 Secure Group 0 No (*) 

Secure Group 1 Yes 

Non-Secure Group 1 No 

ICC_ASGI1R_EL1 Secure Group 0 No 

Secure Group 1 No 

Non-secure Group 1 Yes 

Non-secure EL2/EL1 ICC_SGI0R_EL1 Secure Group 0 Configurable by GICR_NSACR (*) 

Secure Group 1 No 

Non-secure Group 1 No 

ICC_SGI1R_EL1 Secure Group 0 Configurable by GICR_NSACR (*) 

Secure Group 1 Configurable by GICR_NSACR 

Non-secure Group 1 Yes 

ICC_ASGI1R_EL1 Secure Group 0 Configurable by GICR_NSACR (*) 

Secure Group 1 Configurable by GICR_NSACR 

Non-secure Group 1 No 
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NOTE: Table 11 assumes that GICD_CTLR.DS==0. When GICD_CTLR.DS==1, the SGIs marked with 

(*) are also forwarded. 

7.2 GICv3 vs GICv2  

In GICv2, SGI INTIDs are banked by the originating PE and the target PE.  This means that a given PE 

could have the same SGI INTID pending a maximum of eight times, once from each PE in the system.  

In GICv3, SGIs are only banked by the target PE.  This means that a given PE can only have one instance of 

an SGI INTID pending. 

This difference is best illustrated with an example.  PEs A and B simultaneously send SGI INTID 5 to PE 

C.   

 

 

Figure 25 Multiple senders of the same ID example 

 

How many interrupts will C see? 

 GICv2: Two. 

It will see both the interrupts from A and B.  The order of the two interrupts is dependent on the 

individual design and the precise timing.   The two interrupts can be distinguished by the fact that 

the ID of the originating PE is prefixed to the INTID that is returned by GICC_IAR.   

 GICv3: One.   

Because the originating PE does not bank the SGI, the same interrupt cannot be pending on two 

PEs.  Therefore,  C only sees one interrupt, with ID 5 (no prefix). 

 

The example assumes that the two interrupts are sent simultaneously or almost simultaneously.  If C were 

able to acknowledge the first SGI before the second arrived, then C would see two interrupts in GICv3 as 

well. 

 

NOTE: During legacy operation, that is when GICD_CTLR.ARE=0, the behavior of SGIs is the same as in 

GICv2. 
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8. Virtualization 
ARMv8-A includes optional support for virtualization.  To complement this, GICv3 also supports 

virtualization.  Support for virtualization support in GICv3 adds: 

 Hardware virtualization of the CPU interface registers. 

 Virtual interrupts. 

 Maintenance interrupts. 

NOTE: The GIC architecture does not provide features for virtualizaing the Distributor, Redistributors or 

ITSs.  Virtualization of these interfaces must be handled by software.  This is outside the scope of this 

document and is not described here. 

8.1 Terminology 

Hypervisors create, control and schedule virtual machines (VM).  A virtual machine is functionally 

equivalent to a physical system, and contains one or more virtual processors.  Each of those virtual 

processors contain one or more virtual PEs (vPEs). 

 

  

Figure 26 Virtual machine, virtual processor and virtual PE 

 

Most of the controls that are discussed in this chapter work at the level of vPE. 

8.2 Interfaces 

The CPU Interface registers are split into three groups: 

 Physical CPU interface registers. 

 Virtualization control registers. 

 Virtual CPU interface registers. 

 

Figure 27 CPU interface registers with virtualization 

Physical CPU interface (ICC_*_ELn) 

The hypervisor software executing at EL2 uses the regular ICC_*_ELn registers to handle physical 

interrupts. 

Virtualization Control (ICH_*_EL2) 

The hypervisor has access to additional registers to control the virtualization features provided by the 

architecture.  These features are: 
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 Enabling/disabling the virtual CPU interface. 

 Accessing virtual register state to enable context switching. 

 Configuring maintenance interrupts. 

 Controlling virtual interrupts. 

These registers control the virtualization features of the physical PE from which they are accessed.  It is not 

possible to access the state of another PE.  That is, software on PE X cannot access state for PE Y. 

  

Virtual CPU interface (ICV_*_ELn) 

Software executing in a virtualizaed environment uses the ICV_*_EL1 registers to handle interrupts.  

These registers have the same format and function as the ICC_*_EL1 registers. 

The ICV and ICC registers have the same instruction encodings.  At EL2, EL3 and Secure EL1, the ICC 

registers are always accessed.  At Non-secure EL1, whether the ICC or the ICV registers are accessed is 

determined by the routing bits in HCR_EL2.   

The ICV registers are split into three groups: 

 Group 0 

Registers used for handling Group 0 interrupts, for example ICC_IAR0_EL1/ICC_IAR0_EL1. 

When HCR_EL2.FMO==1, ICV registers, instead of ICC registers, are accessed at Non-secure 

EL1. 

 Group 1 

Registers used for handling Group 1 interrupts, for example ICC_IAR1_EL1/ICC_IAR1_EL1. 

When HCR_EL2.IMO==1, ICV registers, instead of ICC registers,  are accessed at Non-secure 

EL1. 

 Common 

Registers used for handling both Group 0 and 1 interrupts, for example 

ICC_DIR_EL1/ICV_DIR_EL1 and ICC_PMR_EL1/ICV_PMR_EL1. 

When either HCR_EL2.IMO==1 or HCR_EL2.FMO==1,  ICV registers, instead of ICC registers,  

are accessed at Non-secure EL1. 

Figure 28 shows an example of how the same instruction can access either an ICC or ICV register 

based on the HCR_EL2 routing controls. 

 

 

Figure 28 Example of ICC/ICV register selection 

 

8.3 Managing virtual Interrupts 

A hypervisor executing at EL2 can generate virtual interrupts using the List registers, ICH_LRn_EL2.  

Each register represents one virtual interrupt, and  records: 
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 vINTID (virtual INTID) 

This is the INTID reported in the virtual environment. 

 State 

The state (Pending, Active, Active and Pending or Inactive) of the virtual interrupt.  The state 

machine is automatically updated as software in the virtual environment interacts with the GIC.  

For example, the hypervisor might create a new virtual interrupt, initially setting the state as 

pending.  When software on the vPE reads ICV_IARn_EL1, the state is updated to Active. 

 Group 

The virtual environment always behaves as if GICD_CTLR.DS==1.  Therefore virtual interrupts 

can be Group 0 or Group 1.  Group 0 interrupts are delivered as vFIQs.  Group 1 interrupts are 

delivered as vIRQs. 

 pINTID (physical INTID) 

A virtual interrupt can be optionally tagged with the INTID of a physical interrupt.  When the state 

machine of the vINTID is updated, so is that of the pINTID. 

 

8.3.1 Example of a physical interrupt being forwarded to a vPE 

Figure 29 shows an example sequence of a physical interrupt that is forwarded to a vPE. 

 

Figure 29 Example of forwarding a physical interrupt to a vPE 

 

1. A physical Non-secure Group 1 interrupt is forwarded to the physical CPU interface from 

the Redistributor.   

2. The physical CPU interface checks whether the physical interrupt can be forwarded to the 

PE.  This process is described in section 5.1.  In this instance, the checks pass and a physical 

exception is asserted. 

3. The interrupt is taken to EL2.  The hypervisor reads the IAR, which returns the pINTID.  

The pINTID is now in the Active state.  The hypervisor determines that the interrupt is to be 

forwarded to the currently running vPE.  The hypervisor writes the pINTID to ICC_EOIR1_EL1.  

With ICC_CTLR_EL1.EOImode==1, this only performs priority drop without deactiving the 

physical interrupt.  

4. The hypervisor writes one of the List register, in order to register a virtual interrupt as 

pending.  The List register entry specifies the vINTID that is to be sent and the original pINTID.   

The hypervisor then performs an exception return, returning execution to the vPE. 

5. The virtual CPU interface checks whether the virtual interrupt can be forwared to the vPE.  

These checks are the same as for physical interrupts, other than that they use the ICV registers.  In 

this instance, the checks pass and a virtual exception is asserted. 
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6. The virtual exception is taken to Non-secure EL1.  When software reads the IAR, the 

vINTID will be returned and the virtual interrupt is now in the Active state. 

7. The Guest OS handles the interrupt. When it has finished handling the interrupt, it writes 

the EOIR to perform a priority drop and deactivation.  As the List register recorded the pINTID, this 

deactivates both the vINTID and pINTID. 

8.4 Maintenance interrupts 

The CPU interface can be configured to generate physical interrupts if certain conditions are true in the 

virtual CPU interface.   

These interrupts are reported as a PPI, with INTID 25.  This interrupt is typically configured as Non-secure 

Group 1, and handled by the hypervisor software at EL2. 

The generation of maintenance interrupts is controlled by ICH_HCR_EL2, and the interrupts that are 

currently asserted are reported in ICH_MISR_EL2. 

 Example 

A maintenance interrupt can be generated if the vPE clears one of the Group enable bits in the virtual CPU 

interface.  On seeing this, a hypervisor could remove any List register entries for pending virtual interrupts 

belonging to the disabled group. 

8.5 Legacy virtual machines 

A hypervisor using the GICv3 system registers (ICC_SRE_EL2.SRE==1) can host VMs that use legacy 

operation (ICC_SRE_EL1(NS)==0).  In this case software running in the virtual environment uses the 

memory mapped GICV registers, as in GICv2. 

8.6 Context switching 

When context switching between vPEs, the hypervisor software saves off the state of one vPE and loads the 

context of another.  The state of the Virtual CPU interface forms part of the context of a vPE.  The Virtual 

CPU interface state consists of: 

 The state of the ICV registers. 

 The active virtual priorities. 

 Any pending, active or active and pending virtual interrupts.  

The state of the ICV registers can be accessed from EL2 using the ICH registers.  As an example, Figure 30 

shows how the fields in ICH_VMCR_EL2 map on to the ICV register state. 

 

 

Figure 30 Accessing ICV state from EL2 

 

The active virtual priorties must be saved and restored when switching vPEs.  The active priorities for the 

current vPE can be accessed via the ICV_APnR_EL2 registers. 

As described in section 8.3, virtual interrupts are managed via the List registers.  The state of these registers 

are specific to the current vPE.  Therefore these registers must be saved and restored on context switches.  
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9. GICv4: Direct Injection of Virtual LPIs 
GICv4 adds support for the direct injection of virtual LPIs (vLPIs).  This feature allows software to describe 

to the ITS how physical events (a combination of an EventID and a DeviceID) map to virtual interrupts.  If 

the vPE targeted by interrupt is running, the virtual interrupt can be forwarded without the need to first enter 

the hypervisor.  This can reduce the overhead associated with virtualized interrupts. 

9.1 Redistributors, vLPI state and configuration 

To support the direct injection of vLPIs, the Redistributors have two additional registers: 

 

 GICR_VPROPBASER 

This register sets the address of the virtual LPI Configuration table.  As with the physical LPI 

Configuration table, the virtual LPI Configuration table records the configuration of vLPIs.  The 

configuration of vLPIs is global to all vPEs in the same VM.  ARM expects that all vPEs in a VM 

will use the same copy of the virtual Configuration Table.  

 

 GICR_VPENDBASER 

This register sets the address of the virtual LPI Pending table (VPT).  As with the physical LPI 

Pending table, the VPT records the pending state of the vLPIs.  Each vPE has its own private 

VPT.   

 

9.1.1 Scheduled virtual PE 

Multiple vPEs might be hosted by a single physical PE, with the hypervisor context switching between 

them.  The currently running vPE is referred to to as being scheduled.  A vPE is defined as being scheduled 

when GICR_VPENDBASER is set to point at its VPT.   

Virtual interrupts for the scheduled vPE can be directly injected.  If the target vPE is not scheduled, the 

virtual interrupt is recorded as being pending in the appropriate VPT. 

When performing a context swith between vPEs, a hypervisor must update the Redistributor registers.  This 

means that the hypervisor must: 

 Clear GICR_VPENDBASER.Valid 

Clearing the Valid bit informs the Redistributor that a context switch is taking place.  The 

Redistributor will retrieve any pending virtual interrupts from the virtual CPU interface, and 

ensure that the VPT in memory is correct. 

 Poll GICR_VPENDBASER.Dirty until it reads 0 

The Dirty bit reports that the Redistributor has finished updating the VPT.  The new vPE cannot 

be scheduled until this bit reads 0. 

 Update GICR_VPROPBASER  

If switching between different vPEs of the same VM, this might not be necessary. 

 Update GICR_VPENDBASER, setting Valid==1 in the process 

Setting the Valid bit to 1 informs the Redistributor that the new vPE is now valid, and that virtual 

interrupts for that vPE can be forwarded to the virtual CPU interface. 

The first 1KB of a VPT is IMPLEMENTATION DEFINED. ARM expects an implementation will use this 

space to record information that makes parsing the VPT quicker on context switches.  When a vPE is 

scheduled, the Redistributor must be informed whether this region contains valid data.  Software indicates 

whether the space is valid or not using GICR_VPENDBASER.IDAI: 

 GICR_VPENDBASER.IDAI==1 (invalid) 

The reserved region is not valid, and the Redistributor must parse the entire VPT.  The IDAI bit 

must be set when: 

o A vPE is moved to a Redistributor that is connected to a different GIC implementation. 
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o A vPE is made schuled for the first time since the VPT was allocated, and at the time 

of allocation the entire table was not filled with zeros. 

 

 GICR_VPENDBASER.IDAI==0 (valid) 

The reserved region is valid, and the Redistributor can rely on the values stored there.  ARM 

expects this to be the most common case.  The IDAI bit can be cleared when: 

o A vPE is scheduled on the same Redistributor on which it was last scheduled. 

o A vPE is scheduled on a different Redistributor, but connected to the same GIC. 

o A vPE is scheduled for the first time since the VPT was allocated, and at the time of 

allocation the entire VPT was filled with zeros (meaning there are no pending 

interrupts). 

 NOTE: The restriction is that the VPT contained all zeros at the time of 

allocation, not that it contains all zeros when it is first scheduled.  If ITS 

mappings for the vPE exist, virtual interrupts might be set pending between 

creation and first residency. 

 

9.2 Operation of an ITS in GICv4 

GICv4 adds a number of new commands, and an additional table type, to the ITS.  This allows software to: 

 Map an EventID-DeviceID combination to a vINTID for a specific vPE. 

o Optionally a door-bell interrupt can be specified.  This is a pINTID that is generated if the vPE is 

not scheduled when the interrupt is generated. 

 Map a vPE to a physical Redistributor. 

Figure 31 shows the process that an ITS follows when forwarding a virtual interrupt. 

 

 

Figure 31 Using an ITS to directly inject virtual interrupts 

 



 

DAI 0492B Copyright  2015-2016  ARM Limited. All rights reserved. 47 
 Non-Confidential 

When a peripheral writes to GITS_TRANSLATER: 

1. The ITS uses the DeviceID to select the appropriate entry from the Device table.  This entry 

identifies the Interrupt translation table to use. 

2. The ITS uses the EventID to select the appropriate entry from the Interrupt translation table.  This 

will return either: 

a. A pINTID and Collection ID, as described in section 6.1.1. 

b. A vINTID and vPE ID, and optionally a pINTID  as a door-bell interrupt. 

3. The ITS uses the vPE ID to select the required entry in the vPE table and the vPE table returns the 

target Redistributor and the address of the VPT of the vPE. 

4. The ITS forwards the vINTID,  door-bell interrupt and VPT  address to the target Redistributor. 

5. The Redistributor compares the VPT address from the ITS against the current 

GICR_VPENDBASER: 

a. If the VPT address and current GICR_VPENDBASER match, the vPE is scheduled, and 

the vINTID is forwarded to the virtual CPU interface. 

b. If the VPT address and current GICR_VPENDBASER do not match, the vPE is not 

scheduled.  The vINTID is set as pending in the VPT.  If a door-bell interrupt was provided, the 

pINTID is forwarded to the physical CPU interface.   

9.3 Mapping a vPE and vINTID 

EventID DeviceID combinatons are mapped to a vINTID and vPE.  The VMAPI command is used when the 

EventID and vINTID are the same. 

 

VMAPI <DeviceID>, <EventID>, <Doorbell pINTID>, <vPE ID> 

 

The VMAPTI command is used when the EventID and vINTID are different. 

 

VMAPTI <DeviceID>, <EventID>, <vINTID>, <pINTID>, <vPE ID> 

 

In these commands: 

 <DeviceID> and <EventID> together identify the interrupt that is being remapped. 

 <vPE ID> is the ID of the vPE.  For systems that contain multiple ITSs, the same vPE ID must be 

assigned to a given vPE on all ITSs. 

 <pINTID> is the doorbell interrupt that must be generated if the vPE is not scheduled.  Specifying 

1023 means that there is no door-bell interrupt. 

 <vINTID> is the INTID of the virtual LPI.  For VMAPI, EventID and vINTID have the same value. 
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The ITS must be aware of which physical PE a vPE will be scheduled on when it is running.  The VMAPP 

command maps a vPE to a physical Redistributor: 

 

VMAPP  <vPE ID>, <RDADDR>, <VPT>, <VPT size> 

 

In this command: 

 <vPE ID> is the the ID of the vPE. 

 <RDADDR> is the target Redistributor. 

 <VPT>  and <VPT size> identify the virtual LPI Pending table of the vPE.  As described in section 

9.1.1, a vPE is scheduled when GICR_VPENDBASER points at its VPT.  When forwarding a 

virtual interrupt to a Redistributor, the ITS includes the VPT address.  This allows the 

Redistributor to check whether the vPE is scheduled on the PE, and if it is not scheduled, to update 

the VPT so that the interrupt is not lost. 

 Example 

A timer has DeviceID 5.  It generates two EventIDs, 0 and 1.  Both EventIDs are mapped to vINTIDs that 

belong to the vPE with vPE ID 6: 

 EventID 0 – vINTID 8725, door-bell pINTID 8192 

 EventID 1 – vINTID 9000, no door-bell interrupt 

vPE 6 is mapped to the Redistributor at address 0x78400000, and its VPT is at address 0x97500000.   

The command sequence for this is: 

VMAPTI 5, 0, 8725, 8192, 6   

VMAPTI 5, 1, 9000, 1023, 6   

VMAPP  6, 0x78400000, 0x97500000, 12  

VSYNC  6 

 

NOTE: The example assumes that GITS_TYPER.PTA==1, and that a MAPD command has previously 

been issued to map the ITT. 

 

9.4 Mapping a vPE to a different Redistributor 

If a hypervisor maps a vPE to a different physical PE, the ITS mappings must be updated so that virtual interrupts are 

sent to the correct physical PE.  The ITS mappings are updated using the VMOVP command, followed by VSYNC to 

synchronize the context. 

A system can include multiple ITSs.  Where more than one ITS has mappings for a vPE, any change must be applied 

to all ITSs that contain the original mappings.  GICv4 supports two models for doing this, and GITS_TYPER.VMOVP 

indicates which model is used. 

GITS_TYPER.VMOVP==0 

The VMOVP command must be issued on all ITSs with a mapping for the vPE.   

 

VMOVP <vPE ID>, <RDADDR>, <ITS List>, <Sequence Number> 

 

In this command: 

 <vPE ID> is the ID of the vPE. 

 <RDADDR> is the Redistributor that the vPE is being remapped to. 

 <ITS List> is a list of all the ITSs with mappings for the vPE.  This field is encoded as one per-bit ITS, 

where bit 0 maps to ITS 0.  The number of an ITS is reported by GITS_CTLR.ITS_Number. 
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 <Sequence Number> is the synchronization point.  Software must use the same value when issuing the  

VMOVP to the different ITSs, and must not re-use the same value until the commands have completed on all 

ITSs. 

GITS_TYPER.VMOVP==1 

The VMOVP command must be issued on only one ITS,  regardless of how many ITSs have mappings for the vPE.  

The hardware is required to propagate the change and handle synchronization.  This means that the ITS List and 

SequenceNumber fields are not required. 

 

VMOVP <vPE ID>, <RDADDR> 

 

9.5 Remapping or removing the mapping of vPEs/vINTIDs 

VMOVI remaps an EventID DeviceID combination to a different vINTID or vPE. 

 

VMOVI <DeviceID>, <EventID>, <vPE ID>, <Doorbell pINTID> 

 

In this command: 

 <DeviceID> and <EventID> together identify the interrupt that is being remapped. 

 <vPE ID> is the ID of the vPE that the interrupt is being moved to. 

 <Doorbell pINTID> is the Redistributor that the vPE is being remapped to. 

 

9.6 Changing vLPI configuration 

As with physical LPIs, a Redistributor is permitted to cache the configuration of vLPIs.  If the configuration of a vLPI 

is changed,  the cached copy must be invalidated.  There are two ITS commands available to do this. 

The INV command is typically used when changing the configuration of a single, or small number, of vLPIs.  A 

separate INV is required for each vLPI that is modified. 

The VINVALL command invalidates the configuration of all vLPIs that belong to a specified vPE.  This command is 

typically used when modifying a large number of vLPIs. 
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9.7 Mixing GICv3 and GICv4 

A mixture of GICv3 and GICv4 capable CPU interfaces might be connected to a single GIC.  Figure 32 shows an 

example of such a system. 

 

 

Figure 32 GICv4 interrupt controller, with GICv3 CPU interfaces attached 

 

Only CPU interfaces that implement GICv4 are capable of receiving directly injected virtual LPIs.  Scheduling a vPE, 

that is setting GICR_VPENDBASER.Valid==1, on a GICv3 CPU interface is UNPREDICTABLE.  Software can 

determine whether directly injected virtual interrupts are supported by reading ICH_VTR_EL2.nV4. 
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