ARM Architecture
Reference Manual

Security Extensions Supplement

ARM

Copyright © 2004, 2005 ARM Limited. All rights reserved.
ARM DDI 0309F

ARM Architecture Reference Manual

Copyright © 2004, 2005 ARM Limited. All rights reserved.
Release Information

The following changes have been made to this document.

Change History

Date Issue Change

July 2004 A Internal release only

July 2004 B First release

December 2004 C Second release

April 2005 E Updated to incorporate corrections to errata

November 2005 F Updated to incorporate corrections to errata. Non-confidential.

Proprietary Notice
ARM, the ARM Powered logo, Thumb, and StrongARM are registered trademarks of ARM Limited.

The ARM logo, AMBA, Angel, ARMulator, EmbeddedICE, ModelGen, Multi-ICE, PrimeCell, ARM7TDMI,
ARM7TDMI-S, ARM9TDMI, ARMYE-S, ETM7, ETM9, TDMI, STRONG, are trademarks of ARM Limited.

All other products or services mentioned herein may be trademarks of their respective owners.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith.

1. Subject to the provisions set out below, ARM hereby grants to you a perpetual, non-exclusive, nontransferable, royalty
free, worldwide licence to use this ARM Architecture Reference Manual for the purposes of developing; (i) software
applications or operating systems which are targeted to run on microprocessor cores distributed under licence from ARM;
(ii) tools which are designed to develop software programs which are targeted to run on microprocessor cores distributed
under licence from ARM; (iii) integrated circuits which incorporate a microprocessor core manufactured under licence
from ARM.

2. Except as expressly licensed in Clause 1 you acquire no right, title or interest in the ARM Architecture Reference
Manual, or any Intellectual Property therein. In no event shall the licences granted in Clause 1, be construed as granting
you expressly or by implication, estoppel or otherwise, licences to any ARM technology other than the ARM Architecture
Reference Manual. The licence grant in Clause 1 expressly excludes any rights for you to use or take into use any ARM
patents. No right is granted to you under the provisions of Clause 1 to; (i) use the ARM Architecture Reference Manual
for the purposes of developing or having developed microprocessor cores or models thereof which are compatible in
whole or part with either or both the instructions or programmer's models described in this ARM Architecture Reference
Manual; or (ii) develop or have developed models of any microprocessor cores designed by or for ARM; or (iii) distribute
in whole or in part this ARM Architecture Reference Manual to third parties without the express written permission of
ARM; or (iv) translate or have translated this ARM Architecture Reference Manual into any other languages.

3.THE ARM ARCHITECTURE REFERENCE MANUAL IS PROVIDED "AS IS" WITH NO WARRANTIES
EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF
SATISFACTORY QUALITY, NONINFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

4. No licence, express, implied or otherwise, is granted to LICENSEE, under the provisions of Clause 1, to use the ARM
tradename, in connection with the use of the ARM Architecture Reference Manual or any products based thereon.
Nothing in Clause 1 shall be construed as authority for you to make any representations on behalf of ARM in respect of
the ARM Architecture Reference Manual or any products based thereon.

Copyright © 2004, 2005 ARM limited
110 Fulbourn Road Cambridge, England CB1 9NJ

Restricted Rights Legend: Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19

The right to use and copy this document is subject to the licence set out above.

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. iii

Copyright © 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0309F

Contents

ARM Architecture Reference Manual Security
Extensions Supplement

Chapter 1

Chapter 2

Preface
About this Manual ... viii
Using this Manualocceiiiiiiiie e (¢
CONVENTIONS ..ottt e e s X
Further readingccooiiiii e Xii
FEEADACK ... s Xiii
Introduction
11 About the ARM Architecture Security Extensionscc.cceceenennee 1-2
1.2 Security state, Monitor mode, and the NS-bitccccoeccviiiiiiiinnns 1-3
1.3 NS aHMDULES ... 1-4
1.4 Exception handlingoooieiieiiiiiee e 1-6
1.5 Switching between Secure and Non-secure contextscccceecveenes 1-7
1.6 MEMOIY ACCESSESvviiiiieeiiiieeiiie ettt et 1-8
1.7 DEDUQG it 1-10

CPU Architecture

21 ProCessor MOAEScoviiiiiiiieeiiiee e 2-2
2.2 REGISIEIS .o s 2-4
23 Program Status Registerscceveeriiiiiiiie e 2-5

ARM DDI 0309F

Copyright © 2004, 2005 ARM Limited. All rights reserved. v

Contents

Chapter 3

Chapter 4

24 EXCeption MOdel ... 2-7
25 ARM iNStruction Seteeiiiiie e 2-19
2.6 Security Extensions and VFP supportcccooeiiiiiiiniiieneee e, 2-21

Memory and System Architecture

3.1 System CONtrol COPrOCESSONcocuuiiiuieiiiiiee et 3-2
3.2 Register 1, control registers ... 3-9
3.3 Access to registers in Monitor modecccccoiiiiiiiiiice 3-19
3.4 Memory management UNitcocceviiieiniien e 3-20
3.5 L1 CACNES ..o 3-30
3.6 Tightly coupled MEMOIYccoiiieiiiiie e 3-43
3.7 LT DMA e s 3-46

Debug Architecture

4.1 Overview of Security Extensions debugccoccceeviiiiniiiiiniiiinns 4-2
4.2 CP14 register 0, Debug ID Registerccocoooiiiiininiieieeecee 4-3
4.3 CP14 register 1, Debug Status and Control Registerccccovveeee 4-4
4.4 CP14 register 6, Watchpoint Fault Address Registerccceceeueee. 4-8
4.5 CP14 register 7, Vector Catch Registerccccocvevienieniiinecneenn 4-9
4.6 CP14 registers 80-95: Breakpoint Control Registerscccce..... 4-12
4.7 CP14 registers 112-127: Watchpoint Control Registers 4-13
4.8 External debug interfacecccoooiiiiiiiiii e 4-14
4.9 DebUg BVENT ... 4-17
410 Debug Stateovieeeee e 4-19
4.11 NON-INVASIVE DEDUQ ...c.ooiiiiiiieiiiiee e 4-24
Glossary

Vi

Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

Preface

This preface introduces the ARM Architecture Reference Manual, Security Extensions supplement. It
contains the following sections:

. About this manual on page viii
. Using this manual on page ix
. Conventions on page X

. Further reading on page xii

. Feedback on page xiii.

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. vii

Preface

About this manual

The purpose of this manual is to describe the Security Extensions to the ARM® architecture. It is a
supplement to the ARM Architecture Reference Manual (ARM DDI 0100), version F or later, and is intended
to be used with it.

It is assumed that the reader is familiar with the ARM Programmers’ Model (described in ARM Architecture
Reference Manual Part A, chapter 2), and the memory system architecture support (described in ARM
Architecture Reference Manual Part B). The System Coprocessor, Virtual Memory System Architecture,
and Cache chapters are particularly relevant.

Intended audience

This book is written for all developers designing:

. ARM processors with Security Extensions
. hardware using ARM processors with Security Extensions
. software for systems using ARM processors with Security Extensions.

viii

Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

Preface

Using this manual
This manual is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an introduction to the purpose of the ARM Architecture Security
Extensions, and an overview of how this purpose is achieved.

It also describes the relationship of Security Extensions with the memory system, memory
management, exception handling and system debug.
Chapter 2 CPU Architecture

Read this chapter for details of the changes to the Programmer's Model and instruction set.

Chapter 3 Memory and System Architecture
Read this chapter for details of the features added to the ARM Memory and System
architecture as part of Security Extensions.

Chapter 4 Debug Architecture

Read this chapter for details of the features added to the ARM Debug architecture as part of
Security Extensions.

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. ix

Preface

Conventions

This manual employs typographic and other conventions intended to improve its ease of use.

General typographic conventions

typewriter Is used for assembler syntax descriptions, pseudo-code descriptions of instructions,
and source code examples. In the cases of assembler syntax descriptions and
pseudo-code descriptions, see the additional conventions below.

The typewriter font is also used in the main text for instruction mnemonics and for
references to other items appearing in assembler syntax descriptions, pseudo-code
descriptions of instructions and source code examples.

italic Highlights important notes, introduces special terminology, and denotes internal
cross-references and citations.

bold Is used for emphasis in descriptive lists and elsewhere, where appropriate.
SMALL CAPITALS Are used for a few terms which have specific technical meanings. Their meanings
can be found in the Glossary.
Pseudo-code descriptions of instructions

A form of pseudo-code is used to provide precise descriptions of what instructions do. This pseudo-code is
written in a typewriter font, and uses the following conventions for clarity and brevity:

. Indentation is used to indicate structure. For example, the range of statements that a for statement
loops over, goes from the for statement to the next statement at the same or lower indentation level
as the for statement (both ends exclusive).

. Comments are bracketed by /= and =/, as in the C language.

. English text is occasionally used outside comments to describe functionality that is hard to describe
otherwise.

. All keywords and special functions used in the pseudo-code are described in the Glossary.

. Assignment and equality tests are distinguished by using = for an assignment and == for an equality

test, as in the C language.

Assembler syntax descriptions

This manual contains numerous syntax descriptions for assembler instructions and for components of
assembler instructions. These are shown in a typewriter font, and are as follows:

<> Any item bracketed by < and > is a short description of a type of value to be supplied by the
user in that position. A longer description of the item is normally supplied by subsequent
text. Such items often correspond to a similarly named field in an encoding diagram for an
instruction. When the correspondence simply requires the binary encoding of an integer

X Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

{1

spaces

+/-

Preface

value or register number to be substituted into the instruction encoding, it is not described
explicitly. For example, if the assembler syntax for an ARM instruction contains an item
<Rn> and the instruction encoding diagram contains a 4-bit field named Rn, the number of
the register specified in the assembler syntax is encoded in binary in the instruction field.

If the correspondence between the assembler syntax item and the instruction encoding is
more complex than simple binary encoding of an integer or register number, the item
description indicates how it is encoded.

Any item bracketed by { and } is optional. A description of the item and of how its presence
or absence is encoded in the instruction is normally supplied by subsequent text.

This indicates an alternative character string. For example, LDM|STM is either LDM or STM.

Single spaces are used for clarity, to separate items. When a space is obligatory in the
assembler syntax, two or more consecutive spaces are used.

This indicates an optional + or - sign. If neither is coded, + is assumed.

When used in a combination like <immed_8> = 4, this describes an immediate value which
must be a specified multiple of a value taken from a numeric range. In this instance, the
numeric range is 0 to 255 (the set of values that can be represented as an 8-bit immediate)
and the specified multiple is 4, so the value described must be a multiple of 4 in the range
4*0 = 0 to 4¥255 = 1020.

All other characters must be encoded precisely as they appear in the assembler syntax. Apart from { and },
the special characters described above do not appear in the basic forms of assembler instructions
documented in this manual. The { and } characters need to be encoded in a few places as part of a variable
item. When this happens, the long description of the variable item indicates how they must be used.

System and debug coprocessors

This document refers to registers in coprocessors 14 (debug) and 15 (system configuration and control)
using the following notation:

CP14r<n>
CP15r<n>

refers to the <n>th CP14 register
refers to the <n>th CP15 register.

ARM DDI 0309F

Copyright © 2004, 2005 ARM Limited. All rights reserved. Xi

Preface

Further reading
This section lists publications that provide additional information on the ARM family of processors.

ARM periodically provides updates and corrections to its documentation. See http://www.arm.com for
current errata sheets and addenda, and the ARM Frequently Asked Questions.
ARM publications

This book is a supplement to, and must be read in conjunction with, the ARM Architecture Reference Manual
(ARM DDI 0100), version F or later.

Xii Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

Feedback

ARM Limited welcomes feedback on its documentation.

Feedback on this book

If you notice any errors or omissions in this book, send email to errata@arm giving:

the document title

the document number

the page number(s) to which your comments apply
a concise explanation of the problem.

General suggestions for additions and improvements are also welcome.

Preface

ARM DDI 0309F

Copyright © 2004, 2005 ARM Limited. All rights reserved.

Xiii

Preface

Xiv Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

Chapter 1
Introduction

This chapter introduces the ARM® Architecture Security Extensions.

Note

The ARM Architecture Security Extension, its associated implementations and supporting software are
commonly referred to as TrustZone Technology.

This chapter contains the following sections:

. About the ARM Architecture Security Extensions on page 1-2

. Security state, Monitor mode, and the NS-bit on page 1-3

. NS attributes on page 1-4

. Exception handling on page 1-6

. Switching between Secure and Non-secure contexts on page 1-7
. Memory accesses on page 1-8

. Debug on page 1-10.

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 1-1

Introduction

1.1

About the ARM Architecture Security Extensions

ARM Architecture Security Extensions is an enhancement to the ARM architecture. It integrates hardware
security features to facilitate the development of secure applications.

Security Extensions is based on a small number of fundamental principles:

It defines a class of core state, that can be switched between Secure and Non-secure state. Most code
runs in Non-secure state. Only trusted code runs in Secure state.

It defines some memory as Secure memory. Secure memory can only be accessed by the core when
the core is in Secure state.

Entry into Secure state is strictly controlled.
Exit from Secure state can only occur at programmed points.
Debug is strictly controlled.

Reset enters Secure state.

Exceptions are generally handled in a similar way to other ARM architectures. However, support is provided
for some exceptions to be handled only by code running in Secure state.

Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

Introduction

1.2 Security state, Monitor mode, and the NS-bit

Security Extensions defines a processor mode, Monitor mode. Monitor mode is designed to provide a bridge
between code running in Non-secure state and code running in Secure state.

For all modes except Monitor mode, the security state (Secure or Non-secure) is controlled by the
Non-Secure bit, the NS-bit. The NS-bit is a bit in a register, the Secure Configuration Register (SCR). See
Secure Configuration Register on page 3-11 for details.

In Monitor mode, the security state is always Secure, regardless of the state of the NS-bit.

Figure 1-1 shows the normal routes of transfer of control between different modes and security states. The
dashed transfer marked MCR is a possible but not normally recommended route.

NS-bit = 1 NS-bit =0
} Monitor }
SMI
(or other
SMI mode
changing
method)
Supervisor Supervisor
FIQ FIQ
L |, IRQ el . _|IRQ [
Undef MCR Undef
Abort Abort
System System
Non-secure SPXM modes
Privileged
modes
User User
Non-secure Secure

Figure 1-1 Security state, Monitor Mode, and the NS-bit

SPXM modes means Secure Privileged modes, Excluding Monitor mode.

Note

It is important to distinguish Monitor mode (a processor mode) from Monitor debug-mode (a debug mode).

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 1-3

Introduction

1.3 NS attributes

This document refers to several attributes that specify whether particular resources are Secure or
Non-secure. In all cases, the value of the attribute has the following meanings:

0 Secure
1 Non-secure.

Primary NS attributes are architecturally defined state maintained in various system locations. These are
shown in Table 1-1.

Table 1-1 Primary NS attribute definitions

NS attribute Description Location
NS-bit Determines NS-state, except in Monitor mode. In Monitor mode, CP15 r1 SCR[O0]

controls whether the core accesses Secure or Non-secure resources.
NS-dma Used by L1 DMA requests. CP15 r1 NSAC[18]
NS-desc Security descriptor read by a page table walk. Page tables
NSTID Security identifier for TLB entry. Indicates whether Secure or TLB entries

Non-secure page tables used to create the entry.
NS-tag Security tag for cache line. Cache lines
NS-itcm Access control for Instruction (or unified) TCM. CP15 r9 ITCM-NSACIO0]
NS-dtcm Access control for Data TCM. CP15 r9 DTCM-NSAC[0]
NS-prot Security identifier for external memory and peripherals. Bus Interface Unit (BIU)

Derived NS attributes are defined by combinations of the primary attributes. These are shown in Table 1-2.

Table 1-2 Derived NS attribute definitions

NS attribute Definition Derivation
NS-state Current execution state of the core Secure if (NS-bit==0) or (mode==Monitor)
NS-req Security state of the memory access request NS-state for core requests (unless explicitly

stated differently), otherwise NS-dma

NS-attr Security attribute of the memory location if (MMU==0FF) then NS-req else if
(NS-state==0) then NS-desc else 1

1-4 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

Introduction

1.3.1 Notes

Some CP15 registers are banked, with both Secure and Non-secure versions.

— The NS-bit controls reads and writes to banked CP15 registers, for example for MRC and MCR
instructions.

— NS-req and NS-dma form part of a request to determine which banked CP15 registers are used,
for example during address translation.

NS-state can be stored or calculated from NS-bit and the mode.
NS-state and NS-bit can be different only in Monitor mode.

NS-state is visible for debug purposes. It is bit[18] in the CP14 r1 Debug Status and Control register
(DSCR).

NS-desc is defined as stored in all page tables, both Secure and Non-secure. However, it is IGNORED
for Non-secure page tables (because its value cannot be trusted).

NS-desc may be cached in a TLB entry along with the rest of the descriptor after it has been fetched
from a page table walk.

NS-attr is required to access the appropriate memory, Secure or Non-secure, at any level of
abstraction.

NSTID only applies to systems with a TLB.
NS-tag only applies to systems with caches.

NS-dma only applies to systems with one or more TCMs.

1.3.2 Secure and Non-secure worlds

NS-state describes the running state of the system. The resources available, both core and system, are
described as:

the Non-secure World when NS-state==1
the Secure World when NS-state==0.

ARM DDI 0309F

Copyright © 2004, 2005 ARM Limited. All rights reserved. 1-5

Introduction

1.4 Exception handling

On reset, Supervisor mode is entered with NS-state==0 and unrestricted access to the memory map.

Compatibility is a key feature of Security Extensions, allowing VMSAv6 compliant operating system ports

to run without change.

The changes to exception handling are as follows:

. There is a new Monitor mode exception.

. There are options to take certain aborts normally, or to switch to Monitor mode to handle them. The
options are configured by SCR[3:1] in CP15r1.

This applies to IRQ, FIQ, precise external aborts, and imprecise external aborts.

. There are options to prevent modification of the CPSR_A and CPSR_F bits by software when
NS-state==1. This is configurable by SCR[5:4] in CP15r1.

. For register definitions see Register I, control registers on page 3-9. For details of exception entry for
all modes see Exception model on page 2-7. Only Secure Privileged modes can modify the secure
control register (SCR) associated with these features.

1-6 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

1.5

Introduction

Switching between Secure and Non-secure contexts

Software running predominantly in Monitor mode is responsible for switching safely between operations in
Non-secure and Secure states. This software is called the secure monitor code.

It is the responsibility of the secure monitor code to stack and recover all register context associated with
the ARM programmers’ model during an NS-state transition.

Monitor mode has two banked general-purpose registers and a banked SPSR:
. R13_mon, the Stack Pointer (SP)

. R14_mon, the Link Register (LR)

. SPSR_mon, the Saved Program Status Register.

These registers can only be read or written in Monitor mode. In addition, the SRS instruction can only be
used with R13_mon when NS-state==0.

Note

Hardware is not responsible for guaranteeing safe context switching. It assumes that the code running in
Secure Privileged modes can be trusted.

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 1-7

Introduction

1.6 Memory accesses

This section describes the secure memory access model for data, instructions, and address translations. In
ARMVv6, an ARM memory access can be initiated from two sources:

Core Instruction Read or Data Read/Write, cache writebacks, and page table walks.

L1 DMA Background task to fill TCMs from external memory.

For each request, the access can be for External Memory or L1 Memory (Caches or TCMs).

1.6.1 Security of memory accesses

NS-attr indicates the security of memory accesses. Values of NS-attr depend on two primary NS attributes
and whether the MMU is enabled, as defined in Table 1-3.

Table 1-3 NS-attr values

NS-req Secure M-bita NS-desc NS-attr

Non-secure any any Non-secure
Secure MMU On Non-secure Non-secure
Secure MMU On Secure Secure
Secure MMU Off any Secure

a. Non-secure M-bit has no effect on NS-attr.

Note

For page table walks, NS-attr is defined to be NS-req of the transaction which caused the TLB miss and
associated page table walk.

1.6.2 Memory management

Memory management involves:

. Address Translation (stored as page tables in external memory) from virtual to physical address
space.
. Memory Attributes, for example sharing, caching and protection.

1-8 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

Introduction

Security Extensions adds an attribute to the VMSAv6 page tables. The attribute is called NS-desc, the
PTE-NS bit. For every memory access, an address translation is required when the MMU is on. This requires
one or more additional memory accesses from either:

External page table walk

A page table walk involves one or two memory accesses.
TLB A Translation Look-aside Buffer (TLB). This provides a cache of address translations.

There is no architectural requirement to implement a TLB. However, where a TLB exists, each entry must
be associated with an NSTID to identify whether it was created by a Secure or Non-secure page table. It
must also have information on the translated address:

NS-desc Raw value from Page Table. This cannot be trusted if NS-req==1.

If NS-desc is stored in TLB entries, it must be dynamically modified when it is read during a Non-secure
address translation.

1.6.3 Caches

Every cache line must include the NS-tag attribute. This can be considered as an additional address tag that
must match NS-attr for a cache hit.

1.6.4 TCMs and L1 DMA

For ARMV6, both instruction and data TCM regions can be assigned to either value of NS-state. The
architected DM A model that supports TCMs can be reserved exclusively for NS-state==0, or made available
to the Non-secure world. See section Tightly coupled memory on page 3-43 and LI DMA on page 3-46 for
more details.

The security access registers associated with these features can only be modified in Secure Privileged
modes.

1.6.5 External memory accesses

All memory must be partitioned into Secure and Non-secure regions. The partitioning can be static or
dynamic. It can be done at different levels of the memory hierarchy, with all resources beyond the chosen
point allocated to the prescribed region. All memory accesses must be checked against NS-attr. NS-attr is
exported to the rest of the system on external memory transactions as NS-prot. System infrastructures must
support NS-prot to ensure correctness in, for example, external memory, peripherals, system caches, and
page tables.

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 1-9

Introduction

1.7 Debug

ARM processors support two types of debug:
Invasive Debug of a halted system or running system, using watchpoints or breakpoints.

Non-invasive Data observation of running system, for example, trace, performance monitoring, or PC
sampling.

Debug and security have diametrically opposed objectives:

Security Aims to protect security critical data from being corrupted or leaked.
Debug Aims to reveal as much information as possible, using shortcuts not allowed in normal
operation.

Security Extensions debug is strictly controlled to avoid compromising security:
. The architecture allows debug in all Non-secure states.

. A system can be configured to enable or disable both types of debug in Secure states. This can be
done independently for User and Privileged modes.

System design must configure debug access appropriately for the security needs of the application.

1-10 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

Introduction

1.7.1 Invasive debug

Invasive debug supports:

. Halting debug-mode. The core can be stopped for examination, then restarted.
. Monitor debug-mode. The foreground task can be stopped and started, but background tasks are not
halted.

Invasive debug is controlled by the existing DBGEN input and two debug-enables for Security Extensions:

DBGEN input Debug Enable. Required in ARMv6.
SPIDEN input Secure Privileged Invasive Debug Enable.
SUIDEN bit Secure User Invasive Debug Enable. This bit is in the SDE register in CP15r1. See

Secure Debug Enable register on page 3-15 for details.

Table 1-4 shows a summary of invasive debug control.

Table 1-4 Invasive debug control

DBGEN2 SPIDEN SUIDEN Secure Privileged SecureUser AllNon-secure

modes mode modes
0 X X Disabled Disabled Disabled
1 0 0 Disabled Disabled Enabled
1 0 1 Disabled Enabled Enabled
1 1 Xb Enabled Enabled Enabled

a. This input is called DBGEN, not IDEN, for compatibility with previous ARM cores.
b. SPIDEN = 1 overrides SUIDEN = 0. This enables debug in Secure User mode.

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 1-11

Introduction

1.7.2 Non-invasive debug

Non-invasive debug allows data observation, but does not allow halting, or any alteration to state. This
allows for the following:

. Tracing, for example, ETM.
. Performance monitoring.

. External PC sampling.

Non-invasive debug is controlled by three debug-enables:

NIDEN input Non-Invasive Debug Enable. Optional input, recommended.
SPNIDEN input Secure Privileged Non-Invasive Debug Enable.

SUNIDEN bit Secure User Non-Invasive Debug Enable. This bit is in the SDE register in CP15r1.
See Secure Debug Enable register on page 3-15 for details.

Table 1-5 shows a summary of non-invasive debug control.

Table 1-5 Non-invasive debug control

NIDEN2 SPNIDEN SUNIDEN Secure Privileged SecureUser AllNon-secure

modes mode modes
0 X X Disabled Disabled Disabled
1 0 0 Disabled Disabled Enabled
1 0 1 Disabled Enabled Enabled
1 1 Xb Enabled Enabled Enabled

a. Optional input.
b. SPNIDEN = 1 overrides SUNIDEN = 0. This enables debug in Secure User mode.

1-12 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

Chapter 2
CPU Architecture

This chapter describes the changes to the CPU architecture introduced with Security Extensions. It contains
the following sections:

. Processor modes on page 2-2

. Registers on page 2-4

. Program Status Registers on page 2-5

. Exception model on page 2-7

. ARM instruction set on page 2-19

. Security Extensions and VFP support on page 2-21.

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 2-1

CPU Architecture

2.1 Processor modes
All the modes in earlier ARM® architectures exist in both Secure and Non-secure states (NS-state==0 and
NS-state==1). There is an additional mode, Monitor mode.
Table 2-1 shows the modes.
Table 2-1 Processor modes
Processor Mode Description
User usr Normal program execution mode
FIQ fiq Supports high-speed data transfer or channel process
IRQ irq Used for general-purpose interrupt handling
Supervisor sve Protected mode for the operating system
Abort abt Implements virtual memory or memory protection
Undefined und Supports software emulation of hardware coprocessors
System Sys Runs privileged operating system tasks
Monitor mon Runs the secure monitor kernel
Monitor mode is a Privileged mode. In Monitor mode, the processor is always in Secure state (NS-state = 0).
Monitor mode is entered when a software monitor interrupt (SMI) instruction is executed, or any of the
following exceptions is trapped in the secure monitor:
. FIQ
. IRQ
. external abort.
In Secure Privileged modes, it is also possible to change directly to Monitor mode by modifying the mode
bits in the CPSR, for details see PSR mode bits on page 2-5.
2-2 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

Table 2-2 shows the state and mode structure.

CPU Architecture

Table 2-2 Processor states and modes

Modes Privilege Processor state

NS-bit = 1 NS-bit=0
User User Non-secure state Secure state
FIQ Privileged Non-secure state Secure state
IRQ Privileged Non-secure state Secure state
Supervisor Privileged Non-secure state Secure state
Abort Privileged Non-secure state Secure state
Undefined Privileged Non-secure state Secure state
System Privileged Non-secure state Secure state
Monitor Privileged Secure state Secure state

ARM DDI 0309F

Copyright © 2004, 2005 ARM Limited. All rights reserved.

2-3

CPU Architecture

2.2 Registers

Security Extensions introduces two banked general-purpose registers and a banked SPSR. These three
registers are highlighted in Table 2-3.

Table 2-3 Register organization

User System Supervisor Abort Undefined Interrupt ::na;:'rupt Monitor

RO RO RO RO RO RO RO RO

R1 R1 R1 R1 R1 R1 R1 R1

R2 R2 R2 R2 R2 R2 R2 R2

R3 R3 R3 R3 R3 R3 R3 R3

R4 R4 R4 R4 R4 R4 R4 R4

RS RS RS RS RS RS RS RS

R6 R6 R6 R6 R6 R6 R6 R6

R7 R7 R7 R7 R7 R7 R7 R7

R8 RS RS RS RS RS R8_fiq RS

R9 R9 R9 R9 R9 R9 R9_fiq R9

R10 R10 R10 R10 R10 R10 R10_fiq R10

RI11 R11 R11 RI11 R11 R11 R11_fiq R11

R12 R12 R12 R12 R12 R12 R12_fiq R12

R13 R13 R13_svc R13_abt R13_und R13_irq R13_fiq R13_mon

R14 R14 R14_svc R14_abt R14_und R14_irq R14_fiq R14_mon

PC PC PC PC PC PC PC PC

CPSR CPSR CPSR CPSR CPSR CPSR CPSR CPSR
SPSR_svc SPSR_abt SPSR_und SPSR_irq SPSR_fiq SPSR_mon

2-4 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

2.3

2.3.1

CPU Architecture

Program Status Registers

The format of the CPSR and SPSRs is unchanged.

PSR mode bits

The encoding of the mode bits is shown in Table 2-4. Only the Monitor mode is specific to Security
Extensions.

Table 2-4 Mode encoding

M[4:0] Mode Accessible registers

0b10000 User PC, R14-R0O, CPSR

0b10001 FIQ PC, R14_fig-R8_fig, R7-R0, CPSR, SPSR_fiq
0b10010 IRQ PC, R14_irq, R13_irq, R12-R0, CPSR, SPSR_irq

0b10011 Supervisor PC, R14_svc, R13_sve, R12-R0, CPSR, SPSR_svc

0b10111 Abort PC, R14_abt, R13_abt, R12-R0, CPSR, SPSR_abt

0b11011 Undefined PC, R14_und, R13_und, R12-R0, CPSR, SPSR_und

Ob11111 System PC, R14-R0, CPSR

0b10110 Monitor PC, R14_mon, R13_mon, R12-R0O, CPSR, SPSR_mon

Updating PSR mode bits

Programs running in SPXM modes can switch to Monitor mode by:

. using a CPS instruction
. using an MSR instruction
. using an SMI, RFE, or LDMA instruction

. using a flag-setting data processing instruction (for example MOVS, ADDS, or SUBS) with Rd = R15.

If the core is in Secure or Non-secure User mode, an attempt to enter Monitor mode by changing the CPSR
directly using an MSR instruction is IGNORED. RFE is UNPREDICTABLE in User mode.

In Non-secure Privileged modes, an attempt to enter Monitor mode by changing the CPSR Mode into
Monitor Mode using a CPS, MSR, or RFE instruction is UNPREDICTABLE. The Mode field in the SPSR can be
changed to Monitor Mode using an MSR instruction. However, any instruction executed from a Non-secure
Privileged state, which copies the SPSR to CPSR when the SPSR mode field is set to Monitor mode is
UNPREDICTABLE.

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 2-5

CPU Architecture

23.2

2.3.3

Note

The UNPREDICTABLE behavior cannot introduce a security violation, and as a result cannot enter Monitor
mode or any secure state.

A program running in a Privileged mode, either in Secure state or Non-secure state, can switch to Monitor
mode by executing an SMI instruction. See SMI on page 2-20 for details.

A program running in User mode, either in Secure state or Non-secure state, can only switch to Monitor
mode by first switching into a Privileged mode using a SWI instruction.

PSR F and A bits (ARMv6 only)

The F bit in the CPSR cannot be changed in Non-secure state if the FW bit in the SCR (bit[4]) is 0.

The A bit in the CPSR cannot be changed in Non-secure state if the AW bit in the SCR (bit[5]) is 0.

See Secure Configuration Register on page 3-11 for details.

Note

The F bit and the A bit in the SPSR can be changed in Non-secure state even if the corresponding bits in the
SCR are 0. However, they are not copied into the CPSR if the corresponding bits in the SCR are 0.

PSR E bit (ARMv6 only)

The E bit in the CPSR is updated with the secure EE bit (CP15 r1 Control[25]) whenever the core switches
from Non-secure to Secure state.

When the core stays in the current state on an exception, The E bit in the CPSR is updated with the EE bit
of the current state.

2-6

Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

24

CPU Architecture

Exception model

Security Extensions introduces an additional type of exception, the Software Monitor exception. This
exception is generated by the SMI instruction.

IRQ, FIQ, or external abort exceptions can be configured to enter either Secure state or Non-secure state.
This is controlled by SCR bits[3:1]. See Secure Configuration Register on page 3-11 for details.

The base address of the exception vector tables varies according to the mode the processor is in when the
exception occurs. There are two banked registers for the base addresses, and a unique register for Monitor
mode. All three registers are in CP15. These are shown in Table 2-5.

Table 2-5 Exception vector registers

Register name Modes

Non_Secure_Base_Address Vector Base Address (VBARNs) All Non-secure states

Secure_Base_Address Vector Base Address (VBARg) All Secure states except Monitor mode

Monitor_Base_Address Monitor Vector Base Address (MVBAR) Monitor mode

See CP15 register 12, miscellaneous registers on page 3-27 for details.

High vectors can be enabled independently for the Secure and Non-secure states using the banked V-bit in
CP15r1 (bit[13]). If high vectors are enabled, the associated Non_Secure_Base_Address and/or the
Secure_Base_Address register are treated as being 0xFFFF0000, regardless of the value of these registers.

The sequence of operations when an exception occurs are generally the same as in implementations without
Security Extensions. The operation of each exception state, including any differences and additional steps,
is listed in the following subsections.

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 2-7

CPU Architecture

241 Reset

When Reset is de-asserted:

SCR[0] =0 /% NS-bit = @, Secure state =/
R14_svc = UNPREDICTABLE

SPSR_svc = UNPREDICTABLE

CPSR[4:0] = 0bl10011 /% Enter supervisor mode /

if Thumb-2 then
CPSR[5] = Secure TE-bit /+ Store value of Secure CP15rl1 Control[30] =/
/% Execute in ARM/Thumb =/

else
CPSR[5] =10 /% Execute in ARM state =/
CPSR[6] =1 /% Disable fast interrupts =/
CPSR[7] =1 + Disable interrupts «/
CPSR[8] =1 /% Disable imprecise aborts (from v6) =/
CPSR[9] = Secure EE bit /+ Store value of Secure CP15rl Control[25] (from v6) =/

CPSR[24] =10 /% Clear J bit (from v5TEJ) =/
if high vectors configured then

PC = OxFFFF0000
else

PC = 0x00000000

Operation is the same whether Reset is entered from Secure or Non-secure state.

2-8 Copyright © 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0309F

CPU Architecture

24.2 Undefined instruction
On an Undefined instruction in Non-secure state:

/% NS-bit UNCHANGED =/

R14_und = address of next instruction after the Undefined instruction
SPSR_und = CPSR
CPSR[4:0] = 0bl1011 /+ Enter Undefined mode x/
if Thumb-2 then
CPSR[5] = TE-bit /+ Store value of CP15rl Control[30] =/
/+ Execute in ARM/Thumb =/
else
CPSR[5] = @ /% Execute in ARM state =/
CPSR[7] =1 /+ Disable interrupts =/
CPSR[9] = EE bit /+ Store value of CP15rl Control[25] (from v6) =/
CPSR[24] =0 /% Clear J bit (from v5TE]) =/

if high vectors configured then
PC = OxFFFFo004

else
PC

Non_Secure_Base_Address + 0x00000004

The behavior in Secure state is identical to that in Non-secure state, except that:
. Secure_Base_Address is used instead of Non_Secure_Base_Address.

. If the exception occurs from Monitor mode, the value of NS-bit is changed to 0, that is Secure. See
Exceptions occurring in Monitor mode on page 2-18 for more details.

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 2-9

CPU Architecture

243 Software interrupt
On a SWI in Non-secure state:

/% NS-bit UNCHANGED =/

R14_svc = address of next instruction after the SWI instruction
SPSR_svc = CPSR
CPSR[4:0] = 0b10011 /% Enter supervisor mode /
if Thumb-2 then
CPSR[5] = TE-bit /+ Store value of CP15rl Control[30] =/
/% Execute in ARM/Thumb =/
else
CPSR[5] =10 /% Execute in ARM state =/
CPSR[7] =1 /+ Disable interrupts =/
CPSR[9] = EE bit /+ Store value of CP15rl Control[25] (from v6) =/
CPSR[24] =10 /% Clear J bit (from v5TE]) =/

if high vectors configured then
PC = OxFFFF0008
else
PC = Non_Secure_Base_Address + 0x00000008

The behavior in Secure state is identical to that in Non-secure state, except that:
o Secure_Base_Address is used instead of Non_Secure_Base_Address.

. If the exception occurs from Monitor mode, the value of NS-bit is changed to 0, that is Secure. See
Exceptions occurring in Monitor mode on page 2-18 for more details.

2-10 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

244 External prefetch abort

On an external prefetch abort in Non-secure state:

/% NS-bit UNCHANGED =/

if SCR[3] == 1 then /+ external prefetch trapped to Monitor mode =/
R14_mon = address of next instruction + 4
SPSR_mon = CPSR
CPSR[4:0] = 0b10110 /+ Enter Monitor mode x/
if Thumb-2 then
CPSR[5] = Secure TE-bit /« Store value of Secure CP15rl Control[30] =/
/+ Execute in ARM/Thumb =/
else
CPSR[5] = @ /+ Execute in ARM state x/
CPSR[6] =1 /+ Disable fast interrupts =/
CPSR[7] =1 /% Disable interrupts =/
CPSR[8] =1 /% Disable imprecise aborts (from v6) x/
CPSR[9] = Secure EE bit /x Store value of Secure CP15rl Control1[25] (from v6) =/
CPSR[24] =10 /% Clear J bit (from v5TE]) =/

PC = Monitor_Base_Address + 0x0000000C

else /% external prefetch trapped to Abort mode =/
R14_abt = address of next instruction + 4
SPSR_abt = CPSR
CPSR[4:0] = 0bl0111 /+ Enter Abort mode x/
if Thumb-2 then
CPSR[5] = TE-bit /+ Store value of CP15rl Control[30] +«/
/% Execute in ARM/Thumb =/
else
CPSR[5] = @ /+ Execute in ARM state =/
CPSR[7] =1 /+ Disable interrupts =/
if SCR[5] == 1 then [+ bit AW =/
CPSR[8] =1 /% Disable imprecise aborts (from v6) :/
/% else CPSR[8] = UNCHANGED =/
CPSR[9] = EE bit /+ Store value of CP15rl Control[25] (from v6) =/
CPSR[24] =0 /+ Clear J bit (from v5TEJ) =/
if high vectors configured then
PC = OxFFFFo0QC
else
PC = Non_Secure_Base_Address + 0x0000000C

The behavior in Secure state is identical to that in Non-secure state, except that:

Secure_Base_Address is used instead of Non_Secure_Base_Address

CPSR[8] (Abit) is updated regardless of bit[5] of the SCR.

CPU Architecture

If the exception occurs from Monitor mode, the value of NS-bit is changed to 0, that is Secure. See

Exceptions occurring in Monitor mode on page 2-18 for more details.

ARM DDI 0309F

Copyright © 2004, 2005 ARM Limited. All rights reserved.

CPU Architecture

245 Internal prefetch abort
On an internal prefetch abort in Non-secure state:

/% NS-bit UNCHANGED =/

R14_abt = address of next instruction + 4
SPSR_abt = CPSR
CPSR[4:0] = 0b10111 /+ Enter Abort mode =/
if Thumb-2 then
CPSR[5] = TE-bit /+ Store value of CP15rl Control[30] =/
/% Execute in ARM/Thumb =/
else
CPSR[5] = @ /% Execute in ARM state =/
CPSR[7] =1 /+ Disable interrupts =/
if SCR[5] == 1 then /% bit AW =/
CPSR[8] =1 /% Disable imprecise aborts (from v6) =/
/+ else CPSR[8] = UNCHANGED =/
CPSR[9] = EE bit /« Store value of CP15rl Control[25] (from v6) =/
CPSR[24] =10 /% Clear J bit (from v5TEJ) =/

if high vectors configured then
PC = OxFFFFo0QC
else
PC = Non_Secure_Base_Address + 0x0000000C

The behavior in Secure state is identical to that in Non-secure state, except that:
. Secure_Base_Address is used instead of Non_Secure_Base_Address
. CPSR[8] (Abit) is updated regardless of bit[5] of the SCR.

o If the exception occurs from Monitor mode, the value of NS-bit is changed to 0, that is Secure. See
Exceptions occurring in Monitor mode on page 2-18 for more details.

2-12 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

2.4.6 External data abort

CPU Architecture

On an external precise data abort, or an external imprecise abort with CPSR[8] = 0, in Non-secure state:

/% NS-bit UNCHANGED =/

if SCR[3] == 1 then /+ external aborts trapped to Monitor mode =/
R14_mon = address of next instruction + 8
SPSR_mon = CPSR
CPSR[4:0] = 0b10110 /+ Enter Monitor mode x/

if Thumb-2 then
CPSR[5] = Secure TE-bit /x Store value of Secure CP15rl Control1[30] =/
/% Execute in ARM/Thumb =/

else

CPSR[5] = @ /+ Execute in ARM state =/
CPSR[6] =1 /+ Disable fast interrupts =/
CPSR[7] =1 /+ Disable interrupts =/
CPSR[8] =1 /% Disable imprecise aborts (from v6) x/
CPSR[9] = Secure EE bit /x Store value of Secure CP15rl Control[25] (from v6) =/
CPSR[24] =10 /% Clear J bit (from v5TEJ) =/
PC = Monitor_Base_Address + 0x00000010

else /+ external aborts trapped to current state Abort mode =/

R14_abt = address of next instruction + 8
SPSR_abt = CPSR
CPSR[4:0] = 0blolll /+ Enter Abort mode x/
if Thumb-2 then

CPSR[5] = TE-bit /+ Store value of CP15rl1 Control[30] =/

/+ Execute in ARM/Thumb =/

else

CPSR[5] = @ /+ Execute in ARM state x/
CPSR[7] =1 /% Disable interrupts =/
if SCR[5] == 1 then /% bit AW =/

CPSR[8] =1 /% Disable imprecise aborts (from v6) x/

/+ else CPSR[8] = UNCHANGED :/

CPSR[9] = EE bit /+ Store value of CP15rl Control[25] (from v6) =/
CPSR[24] =0 /% Clear J bit (from v5TEJ]) =/

if high vectors configured then
PC = OxFFFF0010
else
PC = Non_Secure_Base_Address + 0x00000010
The behavior in Secure state is identical to that in Non-secure state, except that:
. Secure_Base_Address is used instead of Non_Secure_Base_Address

o CPSR[8] (Abit) is updated regardless of bit[5] of the SCR.

. If the exception occurs from Monitor mode, the value of NS-bit is changed to 0, that is Secure. See

Exceptions occurring in Monitor mode on page 2-18 for more details.

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved.

2-13

CPU Architecture

24.7 Internal data abort
On an internal data abort in Non-secure state:

/% NS-bit UNCHANGED =/

R14_abt = address of next instruction + 8
SPSR_abt = CPSR
CPSR[4:0] = 0bl0111 /+ Enter Abort mode =/
if Thumb-2 then
CPSR[5] = TE-bit /+ Store value of CP15rl Control[30] =/
/% Execute in ARM/Thumb =/
else
CPSR[5] = @ /% Execute in ARM state =/
CPSR[7] =1 /+ Disable interrupts =/
if SCR[5] == 1 then /% bit AW =/
CPSR[8] =1 /% Disable imprecise aborts (from v6) =/
/+ else CPSR[8] = UNCHANGED =/
CPSR[9] = EE bit /« Store value of CP15rl Control[25] (from v6) =/
CPSR[24] =10 /% Clear J bit (from v5TEJ) =/

if high vectors configured then
PC = OxFFFF0010
else
PC = Non_Secure_Base_Address + 0x00000010

The behavior in Secure state is identical to that in Non-secure state, except that:
. Secure_Base_Address is used instead of Non_Secure_Base_Address
. CPSR[8] (Abit) is updated regardless of bit[5] of the SCR.

o If the exception occurs from Monitor mode, the value of NS-bit is changed to 0, that is Secure. See
Exceptions occurring in Monitor mode on page 2-18 for more details.

2-14 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

248 Interrupt request
On an interrupt request (IRQ), with the I bit, CPSR[7] = 0, in Non-secure state:

/% NS-bit UNCHANGED =/

if SCR[1] == 1 then /+ IRQ trapped to Monitor mode +/
R14_mon = address of next instruction + 4
SPSR_mon = CPSR
CPSR[4:0] = 0b10110 /+ Enter Monitor mode x/

if Thumb-2 then
CPSR[5] = Secure TE-bit /* Store value of Secure CP15rl Control[30] =/
/+ Execute in ARM/Thumb =/

else

CPSR[5] = @ /+ Execute in ARM state =/
CPSR[6] =1 /+ Disable fast interrupts =/
CPSR[7] =1 /+ Disable interrupts =/
CPSR[8] =1 /% Disable imprecise aborts (from v6) x/
CPSR[9] = Secure EE bit /x Store value of Secure CP15rl Control[25] (from v6) =/
CPSR[24] =10 /% Clear J bit (from v5TEJ) =/
PC = Monitor_Base_Address + 0x00000018

else /+ IRQ trapped to current state IRQ mode =/

R14_irq = address of next instruction + 4
SPSR_irq = CPSR
CPSR[4:0] = 0b10010 /+ Enter IRQ mode =/
if Thumb-2 then

CPSR[5] = TE-bit /+ Store value of CP15rl Control[30] +«/

/% Execute in ARM/Thumb =/

else

CPSR[5] = @ /+ Execute in ARM state =/
CPSR[7] =1 /+ Disable interrupts =/
if SCR[5] == 1 then /% bit AW «/

CPSR[8] =1 /% Disable imprecise aborts (from v6) :/

/% else CPSR[8] = UNCHANGED =/

CPSR[9] = EE bit /+ Store value of CP15rl Control[25] (from v6) =/
CPSR[24] =0 /+ Clear J bit (from v5TEJ) =/
if VE == 0 then /% Core with VIC port only =/

if high vectors configured then
PC = OxFFFF0Q18
else
PC = Non_Secure_Base_Address + 0x00000018
else
PC = IMPLEMENTATION DEFINED

The behavior in Secure state is identical to that in Non-secure state, except that:
. Secure_Base_Address is used instead of Non_Secure_Base_Address

. CPSR[8] (Abit) is updated regardless of bit[5] of the SCR.

CPU Architecture

. If the exception occurs from Monitor mode, the value of NS-bit is changed to 0, that is Secure. See

Exceptions occurring in Monitor mode on page 2-18 for more details.

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved.

2-15

CPU Architecture

24.9 Fast interrupt request
On a fast interrupt request (FIQ), with the F bit, CPSR[6] = 0, in Non-secure state:

/+ NS-bit UNCHANGED #/

if SCR[2] == 1 then /+ FIQ trapped to Monitor mode +/
R14_mon = address of next instruction + 4
SPSR_mon = CPSR
CPSR[4:0] = 0b10110 /+ Enter Monitor mode x/

if Thumb-2 then
CPSR[5] = Secure TE-bit /« Store value of Secure CP15rl Control[30] =/
/% Execute in ARM/Thumb =/

else
CPSR[5] = @ /+ Execute in ARM state x/
CPSR[6] =1 /+ Disable fast interrupts =/
CPSR[7] =1 /+ Disable interrupts =/
CPSR[8] =1 /% Disable imprecise aborts (from v6) =/
CPSR[9] = Secure EE bit /« Store value of Secure CP15rl Control1[25] (from v6) =/
CPSR[24] =0 /% Clear J bit (from v5TEJ) =/
PC = Monitor_Base_Address + 0x0000001C
else /% FIQ trapped to FIQ mode +/

/% SCR[4] (FW) must be set =/
/% to avoid infinite Toop until FIQ asserted =/

R14_fiq = address of next instruction + 4
SPSR_fiq = CPSR
CPSR[4:0] = 0b10001 /% Enter FIQ mode =/
if Thumb-2 then
CPSR[5] = TE-bit /% Store value of CP15rl Control[30] =/
/+ Execute in ARM/Thumb =/
else
CPSR[5] = 0 /% Execute in ARM state */
if SCR[4] == 1 then /% bit FW =/
CPSR[6] =1 /+ Disable fast interrupts =/
/+ else CPSR[6] = UNCHANGED x/
CPSR[7] =1 /% Disable interrupts =/
if SCR[5] == 1 then /% bit AW =/
CPSR[8] =1 /% Disable imprecise aborts (from v6) =/
/% else CPSR[8] = UNCHANGED =/
CPSR[9] = EE bit /+ Store value of CP15rl Control[25] (from v6) =/
CPSR[24] =10 /% Clear J bit (from v5STEJ) =/
if VE == 0 then /+ Core with VIC port only =/

if high vectors configured then
PC = OxFFFF0Q1C
else
PC = Non_Secure_Base_Address + 0x0000001C
else
PC = IMPLEMENTATION DEFINED

The behavior in Secure state is identical to that in Non-secure state, except that:
. Secure_Base_Address is used instead of Non_Secure_Base_Address

. CPSR[6] (F bit) and CPSR[8] (Abit) are updated regardless of bits[5:4] of the SCR.

2-16 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

CPU Architecture

If the exception occurs from Monitor mode, the value of NS-bit is changed to 0, that is Secure. See
Exceptions occurring in Monitor mode on page 2-18 for more details.

ARM DDI 0309F

Copyright © 2004, 2005 ARM Limited. All rights reserved. 2-17

CPU Architecture

2.4.10

Software monitor exception

On an SMI in Secure or Non-secure state:

if (MonitorMode)
SCR[O] = @ /% NS-bit set to Secure x/

else

/% NS-bit UNCHANGED «/

if (UserMode) then /% Undefined instruction =/

(see Undefined instruction on page 2-9)

else
R14_mon = address of next instruction after SMI
SPSR_mon = CPSR
CPSR[4:0] = 0b10110 /+ Enter Monitor mode x/

if Thumb-2 then
CPSR[5] = Secure TE-bit /« Store value of Secure CP15rl Control[30] =/

/% Execute in ARM/Thumb /

else
CPSR[5] = @ /% Execute in ARM state x/
CPSR[6] =1 /+ Disable fast interrupts =/
CPSR[7] =1 /+ Disable interrupts =/
CPSR[8] =1 /% Disable imprecise aborts (from v6) =/
CPSR[9] = Secure EE bit /« Store value of CP15rl Control[25] (from v6) =/
CPSR[24] =10 /% Clear J bit (from v5TE]) =/

PC = Monitor_Base_Address + 0x00000008

24.1

2.4.12

/% SMI vectored to the SWI vector =/

Note

If the exception occurs from Monitor mode, the value of NS-bit is changed to 0, that is Secure. See
Exceptions occurring in Monitor mode for more details.

Exception priorities

Exception priorities are the same as in other ARM architectures. The SMI exception has the same priority
as BKPT, Undefined instruction, and SWI exceptions. That is, it has the lowest priority.

Exceptions occurring in Monitor mode

Except reset, the software model does not expect any other exception to occur in secure Monitor mode. Any
exception occurring in Monitor mode causes the NS-bit in the Secure Configuration register (SCR[0]) to
reset, forcing secure state entry for all exceptions. IRQ, FIQ, and external aborts will remain in Monitor
mode if the relevant SCR[3:1] bit is set, otherwise the exception is taken in IRQ, FIQ, or Abort mode
respectively.

2-18

Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

CPU Architecture

2.5 ARM instruction set

Security Extensions introduces one new ARM instruction, SMI, as defined in SM/ on page 2-20. In addition,
several other instructions are modified. Specifically, all instructions which directly manipulate the CSPR are
modified, that is, MSR, RFE, and CPS. In addition, all instructions which cause a copy of the SPSR to the CSPR
are also modified. These changes mean that any attempts to change into Monitor mode from a Non-secure
Privileged mode are UNPREDICTABLE.

The list of modified instructions is as follows:

. CPS

. LDM (3)

. MSR

. RFE

. SRS

. Flag setting data operations (includes MOV) which write to the PC, for example, ADDS PC,Rn,Rm.

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 2-19

CPU Architecture

2.5.1 SMI
31 28 27 20 19 8 7 6 5 4 3 0
cond 00010110 SBZ 01 11 imm4

The SMI (Software Monitor) instruction causes an SMI exception.

Syntax

SMI{<cond>} <imm4>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in the
ARM Architecture Reference Manual, Part A. If <cond> is omitted, the AL (always) condition
is used.

<imm4> Is a 4-bit immediate value. This is ignored by the ARM processor. It can be used by the SMI
exception handler (monitor code) to determine what service is being requested, but this is
not recommended (see Notes).

Exceptions

Software Monitor Interrupt, Undefined instruction.

Operation

See Software monitor exception on page 2-18.

Usage

Use the SMI instruction to request a secure monitor kernel service.

Notes

User mode The SMI instruction can only be executed in a Privileged mode. Attempting to execute an SMI
instruction in User mode causes an Undefined Instruction exception.

Use of the Immediate value
The SMI instruction from the non-secure world causes entry into the secure world. This
means that the code sequence for the secure world to read the instruction and determine the
imm4 value is very complicated, particularly in systems using virtual memory. It is
recommended that any arguments used to communicate which service is being requested are
passed using registers, rather than using immediate values.

2-20 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

CPU Architecture

2.6 Security Extensions and VFP support

None of the registers in VFP are banked in the Security Extensions.

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 2-21

CPU Architecture

2-22 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

Chapter 3
Memory and System Architecture

This chapter describes the changes to the memory and system architecture introduced with Security
Extensions. It contains the following sections:

. System control coprocessor on page 3-2
. Register 1, control registers on page 3-9
. Access to registers in Monitor mode on page 3-19
. Memory management unit on page 3-20

. LI caches on page 3-30
. Tightly coupled memory on page 3-43
. L1 DMA on page 3-46.

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved.

Memory and System Architecture

3.1 System control coprocessor

This section summarizes the CP15 register space, and the read/write permissions of CP15 registers that are

affected by Security Extensions. See the ARM Architecture Reference Manual for information about other

CP15 registers, for example, common CP15r0 and implementation-defined CP15r15.

Access to CP15 registers is only allowed in Privileged modes, with the following exceptions:

. the PrefetchFlush and data memory barrier (DMB, DWB/DSB) operations

. L1 DMA (ARMVv6 only) when configured for user access

. Smartcache operations (ARMV6 only).

The access permissions of IMPLEMENTATION DEFINED registers are IMPLEMENTATION DEFINED, but must not

introduce any scope for security violations into the processor.

All other accesses are UNDEFINED in User mode, in both Secure and Non-secure state (when NS-state = 0

and 1 respectively). Where privileged accesses are further restricted due to Security Extensions, this is noted

in the relevant sections.
3.141 Terminology for CP15 register selection

The following terminology is used to distinguish the application and the selection of CP15 registers:

CP15 access Reading or writing a CP15 register using an MRC, MCR, or MCRR instruction.

Selected by NS-bit. This allows Monitor mode to access both Secure and Non-secure CP15
registers.

CP15 usage Using a CP15 register internally, for example using the M-bit for MMU on/off control
during a memory access.Selected by NS-req. This maintains security of the original request
for memory access.

See NS attributes on page 1-4 for definitions of the NS attributes.

3-2 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

3.1.2

Memory and System Architecture

CP15 register space summary

Table 3-1 shows the primary allocation of the CP15 registers.

Table 3-1 Primary CP15 register mapping

Register Generic use

Specific uses

For details see:

0 ID codes (read-only) Processor ID, Cache, TCM, TLB type a
1 Control bits System Configuration Bits, Secure b
Configuration Register, Non-secure Access
Control Register
2 Memory protection and control ~ Page table control a
3 Memory protection and control ~ Domain access control a
4 RESERVED - a
5 Memory protection and control ~ Fault Status a
6 Memory protection and control ~ Fault Address a
7 Cache and write buffer Cache/write buffer control, VA to PA a
translation
8 Memory protection and control ~ TLB functions a
9 Cache and TCM control Cache lockdown, TCM region bits a
10 Memory protection and control ~ TLB lockdown a
11 DMA control Internal DMA control a
12 Miscellaneous Vector Base Address, Monitor Vector Base a
Address, Interrupt Status
13 Process ID FCSE ID, Process ID a
14 RESERVED - a
15 IMPLEMENTATION DEFINED IMPLEMENTATION DEFINED a

a. ARM Architecture Reference Manual
b. Register 1, control registers on page 3-9.

ARM DDI 0309F

Copyright © 2004, 2005 ARM Limited. All rights reserved.

Memory and System Architecture

3.13 Banked CP15 registers
Some CP15 registers are banked. Banked registers have two copies, one Secure and one Non-secure. The
NS-bit selects the Secure or Non-secure register. Table 3-2 shows which registers are banked, and what
accesses are permitted.
Table 3-2 Banked CP15 registers
CP15 Banked register Permitted accesses 2
Register 1 Control Read/write in privileged modes ®
Auxiliary control © Read/write in privileged modes
Register 2 TTBO (Translation Table Base 0) Read/write in privileged modes
TTB1 (Translation Table Base 1) 4 Read/write in privileged modes
TTBC (Translation Table Base Control) ¢ ~ Read/write in privileged modes
Register 3 DACR (Domain Access Control Register) ~ Read/write in privileged modes
Register 5 DFSR (Data Fault Status Register) Read/write in privileged modes
IFSR (Instruction Fault Status Register) Read/write in privileged modes
Register 6 DFAR (Data Fault Address Register) Read/write in privileged modes
IFAR (Instruction Fault Address Register) Read/write in privileged modes
Register 7 Cache dirty status 4 Read only in privileged modes
Physical address Read/write in privileged modes
Register 9 TCMSR (TCM Selection Register) Read/write in privileged modes

Register 10

Register 12

VBAR (Vector Base Address Register)

Read/write in privileged modes

Register 13

FCSE PID register

Context ID register (includes ASID)

Read/write in privileged modes

Read/write in privileged modes

/o op

Any attempt to execute an access that is not permitted results in an Undefined Instruction exception.
Some bits are common to the Secure and the Non-secure register, see Control register on page 3-9.
IMPLEMENTATION DEFINED.
ARMYV6 only.

Copyright © 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0309F

3.14 Res

Memory and System Architecture

tricted access CP15 registers

Some CP15 registers are only present in the Secure world. Read/write access permissions are:

Secure CP15 registers cannot be modified in Non-secure state. This applies to the Secure version of
banked registers, and to registers that only have a Secure version.

NSAC can be read in Non-secure Privileged modes, but not in Non-secure User mode. This enables
permissions to be read, for common CP15 registers that have configurable access.

Apart from NSAC, Secure CP15 registers cannot be read in any Non-secure state.

Table 3-3 Secure CP15 registers

CP15 Secure Register Permitted accesses 2
Register 1 NSAC (Non-Secure Access Control) Read/write in Secure Privileged modes
Read only in Non-secure Privileged modes
SCR (Secure Configuration Register) Read/write in Secure Privileged modes
SDE (Secure Debug Enable) Read/write in Secure Privileged modes
Register 6 WFAR (Watchpoint Fault Address Register) b Read/write in Secure Privileged modes
Register 9 DTCM-NSAC (Data TCM Non-Secure Access Read/write in Secure Privileged modes
Control)
ITCM-NSAC (Instruction or unified TCM Read/write in Secure Privileged modes

Non-Secure Access Control)

Register 12

MVBAR (Monitor Vector Base Address Register) Read/write in Secure Privileged modes

a. Any attempt to execute an access that is not permitted results in an Undefined Instruction exception.
b. Use deprecated.

Note

NSAC bits[15:14] are unused and SBZ. Access to CP15 and CP14 is not affected by NSAC.

Do not confuse the SCR (Secure Configuration Register) with the Secure version of the Control Register.
SCR is Secure only.

ARM DDI 0309F

Copyright © 2004, 2005 ARM Limited. All rights reserved. 3-5

Memory and System Architecture

3.15 Configurable access CP15 registers
Access to some CP15 registers is configurable. They can be configured to be accessible from Secure state
only, or from both Secure and Non-secure state. This is controlled by Access Control bits in the CP15r1
NSAC register, the CP15r9 ITCM-NSAC, and CP15r9 DTCM-NSAC registers.
Table 3-4 shows the configurable access CP15 registers. For all these registers:
. if the corresponding access control bit is 0, access is restricted to Secure Privileged modes
. if the corresponding access control bit is 1, access is allowed from all Privileged modes.
For registers with restricted access:
. if the entire register is controlled by a single NSAC bit, any access (read or write) is UNDEFINED
. if parts of the register are controlled by different access control bits, those parts are RAZ/WI.
Table 3-4 Configurable access CP15 registers
CP15 Common Register Controlled by
Register 1 Co-Processor Access Control NSAC[13:0]
Register 9 Data TCM Region DTCM-NSAC[0] 2
Instruction or unified TCM Region ITCM-NSAC[0] b
DCLR (Data Cache Lockdown Register) NSAC[16]
ICLR (Instruction Cache Lockdown Register) NSAC[16]
Register 10 TLB Lockdown NSAC[17]
Register 11 DMA Control NSACI[18] ¢
a. NS-dtcm.
b. NS-itcm.
c. NS-dma.
3-6 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

Memory and System Architecture

CP15SDISABLE input

An input is provided to disable write access to some of the Secure registers. This input is called
CP15SDISABLE. The interaction between CP1SSDISABLE and any IMPLEMENTATION DEFINED registers
iS IMPLEMENTATION DEFINED.

Table 3-5 and Table 3-6 on page 3-8 show the registers and operations affected.

The input must be cleared (CP1SSDISABLE = 0) on reset by the external system. This allows the Reset
code to set up the Security Extension configuration. When the input is set (CP1SSDISABLE = 1), any
attempt to write to the Secure register results in an Undefined instruction exception. The CP15SDISABLE
input does not affect reading Secure registers, or reading or writing Non-Secure registers.It is
IMPLEMENTATION DEFINED how the input is changed and when changes to this input are reflected in the core.
However, changes must be reflected as quickly as possible. The change must occur before completion of a
PrefetchFlush CP15 operation, issued after the change, is visible to the core with respect to instruction
execution boundaries. Software must perform a PrefetchFlush operation meeting the above conditions to
ensure all subsequent instructions are affected by the change to CP15SDISABLE.The assertion of
CP15SDISABLE enables key secure privileged features to be locked in a known good state, providing an
additional level of overall system security. ARM® expects control of this input to reside in the system, in a
system block dedicated to security.

Table 3-5 Secure registers affected by CP15SDISABLE

CP15 Register Register name Affected operation

1 Control register MCR p15, @, Rd, cl1, c0, @
2 Translation Table Base register O MCR p15, @, Rd, c2, c0, @
2 Translation Table Control register ~ MCR pl5, @, Rd, c2, c@, 2
3 Domain Access Control register MCR p15, @, Rd, c3, c0, @
12 Vector Base register MCR pl15, @, Rd, c12, c0, @
12 Monitor Base register MCR p15, @, Rd, c12, c0, 1
13 FCSE ID register MCR p15, 0, Rd, c13, c0, 0

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 3-7

Memory and System Architecture

Table 3-6 TCM related registers affected by CP15SDIABLE

CP15 r9 Register name Affected operation

Data TCM Region register 2 MCR p15, 0, Rd, 9, c1, @
Instruction or unified TCM Region register 2 MCR p15, @, Rd, <9, c1, 1
Data TCM Non-Secure Access Control register MCR pl15, @, Rd, c9, c1, 2

(DTCM-NSAC)

Instruction or unified TCM Non-Secure Access Control register ~ MCR p15, 0, Rd, c9, c1, 3
(ITCM-NSAC)

a. Region registers where the associated TCM-NSAC access bit is configured to restrict access to Secure
world.

3-8 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

3.2

Memory and System Architecture

Register 1, control registers

CP15 register 1 contains configuration control bits for the ARM processor. It contains six registers selected
by the opcode_1, opcode_2, and CRm fields.

Some registers are banked, because the configuration of the Non-secure and the Secure world can be
different.

Table 3-7 shows the arrangement of CP15 register 1.

Table 3-7 CP15 register 1

Opcode_1 Opcode_2 CRm Common register Non-secure registers Secure registers

0b0000 0b000 Co Control register Control register
0b0000 0b001 Co Auxiliary control Auxiliary control
register (v6 only) register (v6 only)
0b0000 0b010 Co Coprocessor access
control register (v6
only)
0b0000 0b000 C1 Secure configuration
register
0b0000 0b001 C1 Secure debug enable
register
0b0000 0b010 C1 Non-secure access
control register
3.2.1 Control register

The Control register is banked in the two states. However, some bits define a global configuration of the
system and are therefore shared between the Secure and Non-secure worlds.

The B, FI, L4, and RR bits are not banked and can only be modified in Secure Privileged modes. They are
read-only in Non-secure Privileged modes.

Note
Use of the B and L4 bits is deprecated.

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 3-9

Memory and System Architecture

3.2.2 Auxiliary Control register

The Auxiliary Control register is banked in the two states. However, the contents are IMPLEMENTATION
DEFINED.

Some bits might define a global configuration of the system. In this case they are shared between the Secure
and Non-secure worlds.

3-10 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

3.2.3

31

Memory and System Architecture

Secure Configuration Register

The Secure Configuration Register (SCR) defines the configuration of the current state. It specifies the state
of the core (Secure or Non-secure), and what mode the core branches to if an IRQ, FIQ or external abort
occurs. The register also defines whether or not the F and A bits in the CPSR can be modified when
NS-state==1.

The SCR is accessible in Secure Privileged modes only. An attempt to access this register in any other mode
results in an Undefined Instruction exception.

Changing from Secure to Non-secure state

It is recommended that the SCR is modified only in Monitor mode. Monitor mode is responsible for
switching between states.

To return to Non-secure state, set the NS-bit in the SCR and then execute a MOVS or SUBS instruction. All
implementations must ensure that any prefetched instructions following MOVS or SUBS (or equivalent)
instructions cannot be executed with the secure access permissions.

Caution

To avoid security holes, it is strongly recommended that:

. you do not use an MSR instruction to change from Secure to Non-secure state
. you do not alter the NS-bit in any mode except Monitor mode.

The usual mechanism for changing from Secure to Non-secure state is an exception return.

SCR-bit allocation

SBZ nET | AW | FW | EA |FIQ |IRQ| NS

The reset value of the SCR is 0x00000000.
Use the following instructions to alter or read the SCR:

MCR CP15, @, <Rd>, C1, C1, @ ; moves contents of <Rd> into SCR
MRC CP15, @, <Rd>, C1, C1, @ ; moves contents of SCR into <Rd>

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 3-11

Memory and System Architecture

NS-bit

The NS-bit (bit[0]), together with the mode bits in the CPSR, defines whether the core is in Secure state or
Non-secure state. This is shown in Table 3-8.

Table 3-8 Security state

NS-bit value Monitor mode All modes except Monitor mode

0 Secure state Secure state

1 Secure state Non-secure state

The value of the NS-bit also affects the accessibility of the banked CP15 registers in Monitor mode, see
Access to registers in Monitor mode on page 3-19.

EA, FIQ, and IRQ bits

These bits determine whether External Abort, FIQ, and IRQ exceptions are handled in Abort mode or
Monitor mode:

EA=0 Branch to Abort mode on an External Abort exception. This is the default.
EA=1 Branch to Monitor mode on an External Abort exception.

FIQ=0 Branch to FIQ mode on an FIQ exception. This is the default.

FIQ=1 Branch to Monitor mode on an FIQ exception.

IRQ=0 Branch to IRQ mode on an IRQ exception. This is the default.

IRQ=1 Branch to Monitor mode on an IRQ exception.

Whenever the core changes security state, the monitor code can change the value of these bits. This means
that the behavior of IRQ, FIQ and External Abort exceptions can be different in each state.

Note

In addition to determining the mode, these bits affect which exception base address is used. See Exception
model on page 2-7 for details.

3-12 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

Memory and System Architecture

nET-bit

The nET-bit controls an option to disable early termination. This mechanism can be used to disable data
dependent timing optimisations from multiplies and data operations. The details are IMPLEMENTATION
DEFINED. The feature is designed to provide system support against information leakage, leakage which
could be exploited by timing correlation types of attack.

nET== Enable early termination. Execution time of data operations can depend on the data values.

nET==1 Disable early termination. The number of cycles for data operations is forced to be
independent of the data values.

FW-bit

The FW-bit controls whether the Non-secure world can modify the F-bit in the CPSR:

FW=0 CPSR F-bit cannot be modified in Non-secure world. This is the default.

FW=1 CPSR F-bit can be modified in Non-secure world.

Note
Interrupts driven by secure peripherals are called Secure Interrupts. If the FW-bit is 0 and bit[2] of SCR (trap
FIQ to Monitor mode) is 1, FIQ exceptions can be used as Secure Interrupts. These enter Secure world in a
deterministic way.

Table 3-9 shows the options for the FW and FIQ bits, and their functions.

Table 3-9 FIQ configuration

FW (SCR[4]) FIQ (SCR[2]) Function

1 0 FIQs handled locally.

1 1 Use with care. Allows Non-secure world to deny service.
0 0 Do not use in Non-secure world. This is the Reset state.
0 1 FIQ can be configured as a Secure interrupt.

This feature is complementary to the Non-Maskable Fast Interrupt (NMFI) architecture feature. For a
description of NMFI behavior, and the implications of NMFI when used with SCR[4,2], see the NMFI
section in the chapter describing the ARM Programmers’ Model in the ARM Architecture Reference
Manual, Thumb-2 supplement.

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 3-13

Memory and System Architecture

AW-bit
The AW-bit controls whether the Non-secure world can modify the A-bit in the CPSR:
AW =0 CPSR A-bit cannot be modified in Non-secure world. This is the default.

AW =1 CPSR A-bit can be modified in Non-secure world.

Note

If the AW-bit is 0 and bit[3] of SCR (trap external aborts to Monitor mode) is 1, all security aborts from
peripherals can be treated in a safe manner in Monitor mode.

Table 3-10 shows the options for the AW and EA bits, and their functions.

Table 3-10 External abort configuration

AW (SCR[5]) EA (SCR[3]) Function

1 0 Aborts handled locally.

1 1 All external data aborts trapped to Monitor mode, but enables Non-secure world
to hide imprecise external data aborts from the Monitor.

0 0 Do not use in Non-secure world. This is the Reset state.
0 1 All external aborts, both precise and imprecise, reliably trapped to Monitor
mode.

3-14 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

3.24

31

Memory and System Architecture

Secure Debug Enable register

The Secure Debug Enable register (SDE) enables or disables both Invasive and Non-invasive debug for
Secure User mode. It is accessible in Secure Privileged modes only. See External debug interface on
page 4-14 for further information about the usage of the SUNIDEN and SUIDEN bits.

Secure Privileged mode debug is controlled by hardware only. See External debug interface on page 4-14
for details.

SDE-bit allocation

2 1 0

UNP/SBZ SUNIDEN | SUIDEN

The reset value of the SDE is UNDEFINED.
The meaning of the SUNIDEN and SUIDEN bits is as follows:
SUIDEN Invasive Secure User Debug Enable bit:

0 Invasive debug is not permitted in secure user mode.

1 Invasive debug is permitted in secure user mode.

SUNIDEN Non-Invasive Secure User Debug Enable bit:
0 Non-Invasive debug is not permitted in secure user mode.
1 Non-Invasive debug is permitted in secure user mode.

Use the following instructions to alter or read the SDE:

MCR CP15, @, <Rd>, C1, C1, 1; moves contents of <Rd> into SDE
MRC CP15, @, <Rd>, C1, C1, 1; moves contents of SDE into <Rd>

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 3-15

Memory and System Architecture

3.25 Non-Secure Access Control register

The Non-Secure Access Control register (NSAC) defines the Non-secure access permissions to the

following:

. COProcessors

. cache lockdown registers
. TLB lockdown registers

. internal DMA (ARMV6).

The NSAC is Read/Write in Secure Privileged modes and Read-Only in Non-secure Privileged modes.
Attempting to access this register in User mode (Secure or Non-secure), or writing it in Non-secure
Privileged modes, results in an Undefined Instruction exception.

NSAC-bit allocation

31 19 18 17 16 15 14 13 0

SBZ DMA |TL|CL | SBZ CP13-CPO

The reset value of the NSAC is UNDEFINED. Bits[31:19,15:14] are RESERVED.
Use the following instructions to alter or read the NSAC:

MCR CP15, @, <Rd>, C1, C1, 2 ; moves contents of <Rd> into NSAC

MRC CP15, @, <Rd>, C1, C1, 2 ; moves contents of NSAC into <Rd>
Coprocessor access control bits

Bits[13:0] control whether access to the corresponding coprocessor is permitted in Non-secure world.

For bit NV:
0 Specifies that Secure access only is permitted to coprocessor N. Any attempt to access
coprocessor N in Non-secure world results in an Undefined Instruction exception.
1 Specifies that Secure or Non-secure access is permitted to coprocessor N.
Note

When a coprocessor is defined as Secure, the Non-secure world cannot write the corresponding bits in
Coprocessor Access Control Register, and reads them as 0b00, access denied.

If these bits permit access, then the CP15 r1 (CPaccess) is checked for User/Privileged access.
Setting Bits [10] and [11] to different values will have UNPREDICTABLE effects if VFP is implemented.

For the bits which correspond to coprocessors which are not implemented, it is IMPLEMENTATION DEFINED
whether the bits behave as RAZ/WI, or can be written by Secure Privileged modes.

3-16 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

Memory and System Architecture

CL-bit
The CL-bit controls whether cache lockdown is permitted in Non-secure world:

0 Specifies that cache lockdown entries cannot be allocated in Non-secure world. See Cache
operations on page 3-32 for details.

1 Specifies that cache lockdown entries can be allocated in Secure or Non-secure world.

TL-bit

The TL-bit controls whether an instruction in Non-secure world can lock page tables in TLB lockdown
entries:

0 Specifies that TLB lockdown entries cannot be allocated in Non-secure world.

1 Specifies that TLB lockdown entries can be allocated in Secure or Non-secure world.

Note

Operations invalidate single entry or invalidate on ASID match can match a TLB lockdown entry. Invalidate
all operation only applies on unlocked entries. See the ARM Architecture Reference Manual for more
information on TLB lockdown entries.

DMA-bit
The DMA-bit controls whether access to DMA registers is permitted in Non-secure world:
0 Specifies that DMA registers cannot be used in Non-secure world.

1 Specifies that DMA registers can be accessed in Secure or Non-secure world.

Non-secure page tables are used for address translation when the DMA-bit==1.

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 3-17

Memory and System Architecture

3.2.6 Process ID registers

Register 13 holds the Context ID register and the FCSE PID register. They are both banked in Secure and
Non-secure world, as shown in Table 3-11. See the ARM Architecture Reference Manual for register format.

Table 3-11 Process ID registers

Opcode_1 Opcode_2 Non-secure register Secure register

0b0000 0b000 Non-secure FCSE PID register Secure FCSE PID register

0b0000 0b001 Non-secure Context ID register Secure Context ID register
Note

The use of the FCSE PID register is deprecated.

3.2.7 Register 15

Register 15 is IMPLEMENTATION DEFINED. The functions and access to this register can be restricted to
protect secure data according to the system requirement.

IMPLEMENTATION DEFINED registers might be used for non-architectural testing, profiling, or
micro-architecture specific support.

3-18 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

Memory and System Architecture

3.3 Access to registers in Monitor mode

When the processor is in Monitor mode, the core is in Secure state regardless of the value of the NS-bit in
the SCR. In Monitor mode, the NS-bit is used to define whether the Secure CP15 registers or Non-secure
CP15 registers are accessed for reading or writing. That is:

NS=0 Shared, restricted, and the secure banked registers accessed by CP15 register read/write
commands.
CP15 operations use the NS-state attribute to determine all resources used, that is, all CP15
based operations performed in Secure state.

NS=1 Shared and Non-secure banked registers accessed by CP15 register read/write commands.

CP15 operations use the NS-state attribute to determine all resources used, that is, all CP15
based operations performed in Secure state.

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 3-19

Memory and System Architecture

3.4 Memory management unit

The TLB entries are marked with an ID specific to Security Extensions, the Non-Secure Table ID (NSTID).
The NSTID determines whether the entry is associated with a Secure or a Non-secure page table.

When the CPU generates a memory access, the Memory Management Unit (MMU) performs a lookup for
a mapping for the requested virtual address, current ASID (or global mapping), and NSTID corresponding
to the current NS-state in the TLB.

If no matching TLB entry is found then a translation page table walk might be performed using the Secure
or Non-secure TTB registers, according to the state of the core. The NSTID of any new entry is updated with
the NS-req attribute.

If a matching TLB entry is found then the information it contains is used as described in the Virtual Memory
System Architecture chapter in the ARM Architecture Reference Manual, including the additional security
specific NS-desc attribute.

If no matching TLB entry is found, then one of the following occurs, depending on CP15 r2[5:4] (TTBC):
. a translation page table walk
. an abort.

The corresponding VMSA information is stored in any allocated entry.

3-20 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

Memory and System Architecture

3.4.1 L1 descriptors

A Security Extensions specific bit in L1 descriptors, the PTE-NS bit, specifies whether the translated
Physical Address targets Secure or Non-secure memory. This bit is used in Secure world only. It is ignored
in Non-secure world. Table 3-12 shows where the NS-bit is implemented.

Table 3-12 ARMv6 first level descriptor formats with subpages disabled

31 24 23 20 19 18 17 16 15 14 12 11 10 9 8 5 4 3 2 1 0
a Ignored 0[]0
b Coarse page table base address P | Domain |SBZ NS|SBZ |0 |1
c Section base address NS |0 |nG|S |APX| TEX | AP |P| Domain | XN |[C| B |10

d | Supersection base address | SBZ | NS | 1 [nG|S |[APX| TEX | AP |P| Domain | XN |C| B |1]0

e RESERVED 1)1

Translation fault.
Course page table.
Section (IMB).
Supersection (16MB).
RESERVED.

oo o

Note

The encoding of the PTE-NS bit is the same in ARMv6 first level descriptor formats with subpages enabled,
and in backward-compatible first-level descriptor format (ARMVS).

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 3-21

Memory and System Architecture

3.4.2 CP15 register 2, Translation Table Base

CP15 register 2 contains the Translation Table Base (TTB) registers for the Secure and the Non-secure page
tables. Table 3-13 shows these registers.

Table 3-13 TTB registers

Opcode_1 Opcode_2 Non-secure register

Secure register

0b0000 0b000 TTBONs TTBO
0b0000 0b001 TTBI1ns (ARMv6 only) TTB1 (ARMV6 only)
0b0000 0b010 TTBCxns (Control) (ARMvV6 only) TTBC (Control) (ARMvV6 only)
TTBC
31 6 5 4 3 2 0

UNP/SBZ

PD1 | PDO | SBZ N

Reset value = 0x00000000.

PD1 and PDO are Security Extensions specific bits that specify whether page table walks are enabled or

disabled.

N

PD0O=0

PD0O=1

PD1=0

PD1=1

Note

Defined in ARMv6.

A page table walk is performed on a TLB miss when TTBO is used. Privilege is Secure or

Non-secure according to the current world.

If a TLB miss occurs on a TTBO access, a page table walk is not performed, and a Section

Translation Fault is returned.

A page table walk is performed on a TLB miss when TTB1 is used. Privilege is Secure or

Non-secure according to the current world.

If a TLB miss occurs on a TTB1 access, a page table walk is not performed, and a Section

Translation Fault is returned.

Setting PDO == 0 or PD1 == 0 can result in a recursive entry into the abort handler, so effectively
deadlocking the system, if the mapping for the abort vectors is not guaranteed to be resident in the TLB (for
example, by the use of Lockdown within the TLB).

3-22

Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

Memory and System Architecture

3.43 CP15 register 3, Domain Access Control registers

CP15 register 3 contains the Domain Access Control Registers (DACRs). There are separate registers for
Secure and Non-secure worlds. Table 3-14 shows these registers.

Table 3-14 DACRs

Opcode_1 Opcode_2 Non-secure register Secure register

0b0000 0b000 DACRnNs DACR

The format is the same in both worlds, as defined in the ARM Architecture Reference Manual.

3.4.4 CP15 register 5, Fault Status Registers

CP15 register 5 contains the Data Fault Status Register (DFSR) and Instruction Fault Status Register
(IFSR). These are banked in Secure and Non-secure worlds. Table 3-15 shows these registers.

Table 3-15 DFS and IFS registers

Opcode_1 Opcode_2 Non-secure register Secure register

0b0000 0b000 DFSRnNs DFSR

0b0000 0b001 IFSRnNs IFSR

The format is the same in both worlds, as defined in the ARM Architecture Reference Manual.

FSR[12], added in conjunction with Security Extensions, is reserved for supporting additional status
information on external aborts:

FSR[12]==0 indicates a decode error returned
FSR[12]==1 indicates a slave error returned.

The recommended uses are as follows:

. use decode errors for non-existent memory

. use decode errors for attempted accesses to Secure memory when NS-state==

. use slave errors when the resource exists, but cannot be successfully read or written by the current
transaction.

. use FSR[12] = O for all other errors.

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 3-23

Memory and System Architecture

See Table 3-16 for recommended encodings, shown in priority order.

Table 3-16 Recommended Security Extensions FSR encodings

ol 1ol [VMSA PMSA Notes

0 0 0b0001 Alignment fault Alignment fault -

0 0 0b0000 - Background fault -

0 0 0b0100 ICache Maintenance - -
operation fault

0 0 0b1100 L1 translation external abort - DECERR

1 0 0b1100 LI translation external abort - SLVERR

0 0 0Ob1110 L2 translation external abort - DECERR

1 0 0Ob1110 L2 translation external abort - SLVERR

0 0 0b0101 Section Translation fault - -

0 0 0b0111 Page Translation fault - -

0 0 0b1001 Section Domain fault - -

0 0 0b1011 Page Domain fault - -

0 0 0b1101 Section Permission fault Permission fault -

0 0 Obl111 Page Permission fault - -

0 0 0b1000 Precise external abort Precise external abort DECERR

1 0 0b1000 Precise external abort Precise external abort SLVERR

0 1 0b1010 IMPLEMENTATION DEFINED IMPLEMENTATION DEFINED (Coprocessor abort)

0 1 0b0110 Imprecise external abort Imprecise external abort DECERR

1 1 0b0110 Imprecise external abort Imprecise external abort SLVERR

0 0 0b0110 Precise parity error Precise parity error -

0 1 0b1000 Imprecise parity error Imprecise parity error -

0 0 0b0010 Debug event Debug event -

3-24

Copyright © 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0309F

3.4.5

3.4.6

Memory and System Architecture

Note
When the SCR EA bit is set, a Monitor entry due to an external abort writes the Secure DFSR or IFSR.

CP15 register 6, Fault Address registers
CP15 register 6 contains the Fault Address registers. Table 3-17 shows these registers.

Separate Data and Instruction Fault Address Registers, DFAR and IFAR, are supported. These are banked
in the Secure and Non-secure worlds.

Table 3-17 DFA registers

Opcode_1 Opcode_2 Non-secure register Secure register

0b0000 0b000 DFARNs DFAR
0b0000 0b001 WFAR (use deprecated)
0b0000 0b010 IFARNs IFAR

Use of the WFAR in CP15 is deprecated. The function is moved to CP14. See CP14 register 6, Watchpoint
Fault Address Register on page 4-8 for details.

Note
When the SCR EA bit is set, a Monitor entry due to an external abort writes the Secure DFAR or IFAR.

CP15 register 8, TLB operations

CP15 register 8 provides the TLB operations. The TLB operations are write-only. See the ARM Architecture
Reference Manual for details.

Note

Invalidate operations have no effect if the NSTID for the entry does not correspond to the current core
security state.

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 3-25

Memory and System Architecture

3.4.7 CP15 register 10, TLB lockdown registers

CP15 register 10 contains the TLB lockdown register. See the ARM Architecture Reference Manual for
details of the register format.

If bit 17 (TL) of the NSAC is set, the TLB lockdown entries can be used in Non-secure world. Otherwise,
lockdown entries are reserved for use in Secure world only, and a Non-secure access to the TLB lockdown
register results in an Undefined Instruction exception.

The Non-secure world can program the lockdown register before the Secure world disables access to the
lockdown registers. In this case, the entries that the Non-secure world had locked are still locked. To avoid
this, when the Secure world restricts access to lockdown registers to Secure world only, it must flush
previous lockdown entries.

3-26 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

Memory and System Architecture

3.4.8 CP15 register 12, miscellaneous registers
CP15 register 12 contains the Vector Base Address Registers (VBAR) and Interrupt Status Register (ISR).
See Table 3-18 for details.
Table 3-18 CP15 register 12 registers
mmon Non- r .
Opcode_1 Opcode_2 CRm Co nmo ON-SECUre gecure register
register register
0b0000 0b000 Co VBARNs VBARg
0b0000 0b001 Cco Monitor VBAR (MVBAR)
0b0000 0b000 Cl ISR
Secure and Non-secure Vector Base Address Registers
The Vector Base Address Register (VBAR) is banked in the Secure and Non-secure worlds.
When an exception branches to a Secure Privileged mode, the core branches to:
Secure_Vector_Base_Address + Exception_Vector_Address.
‘When an exception branches to a Non-secure Privileged mode, the core branches to:
Non_Secure_Vector_Base_Address + Exception_Vector_Address.
If high vectors are enabled for the target security state, Vector_Base_Address is treated as being 0xFFFFo000,
regardless of the value of the VBAR.
Both VBARSs can only be accessed in Privileged modes. An attempt to access a VBAR in User mode results
in an Undefined Instruction exception. The NS-bit defines whether VBARg or VBARNs is accessed.
The secure Vector Base Address Register (VBARg) resets to 0, the non-secure version (VBARys) is
UNDEFINED. Base addresses must be programmed as part of the boot sequence. The 5 lowest bits are defined
by the exception offset (Exception_Vector_Address).
Use the following instructions to read or write the VBARs:
MCR CP15, @, <Rd>, C12, CO, @ ; moves contents of <Rd> into VBAR
MRC CP15, @, <Rd>, C12, C@, @ ; moves contents of VBAR into <Rd>
31 5 4 0
Vector_Base_Address SBZ

Reset value = 0x00000000 (VBARg only, VBARNs is UNDEFINED).

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 3-27

Memory and System Architecture

Monitor Vector Base Address Register

The Monitor Vector Base Address Register (MVBAR) exists only in the Secure world.
When an exception branches to Monitor mode, the core branches to:
Monitor_Base_Address + Exception_Vector_Address.

The MVBAR can only be accessed in Secure Privileged modes. An attempt to access the MVBAR in User
mode or any Non-secure state results in an Undefined Instruction exception.

The Monitor Vector Base Address Register (MVBAR) is UNDEFINED on reset. The base address must be
programmed as part of the boot sequence. The 5 lowest bits are defined by the exception offset
(Exception_Vector_Address).

Use the following instructions to read or write the MVBAR:

MCR CP15, @, <Rd>, C12, CO@, 1; moves contents of <Rd> into MVBAR
MRC CP15, @, <Rd>, C12, C0@, 1; moves contents of MVBAR into <Rd>

31 5 4 0

Monitor_Vector_Base_Address SBZ

Reset value = UNDEFINED.

3-28 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

Memory and System Architecture

Interrupt status Register

The Interrupt Status Register (ISR) shows whether there is a pending IRQ, FIQ or External Abort. The three
status bits are mapped in the same way as in the CPSR. This allows the same masks to be used to get the
value.

Use the following instructions to read the ISR:

MRC CP15, @, <Rd>, C12, C1, O ; moves contents of ISR into <Rd>

31 9 8 7 6 5 0

SBZ A|I|F SBZ

0 No pending FIQ.
1 Pending FIQ.
=0 No pending IRQ.
1 Pending IRQ.
=0 No pending external abort.
1 Pending external abort.

Note

The F and I bits directly reflect the state of the FIQ and IRQ inputs respectively. For external aborts, the A
bit is set when an external abort occurs and is automatically cleared when the abort is taken.

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 3-29

Memory and System Architecture

3.5 L1 caches
This section contains the following subsections:
. Virtual L1 caches
. Physical L1 caches
. CP15 register 7, cache management functions on page 3-31
. CP15 register 7, Virtual Address to Physical Address translation on page 3-35.
3.5.1 Virtual L1 caches
If the virtual to physical mapping in Secure and Non-secure worlds are different, virtually tagged L1 caches
need to be invalidated on each switch between Secure and Non-secure worlds. A data or unified cache must
be cleaned first if necessary.
Otherwise, the behavior of virtual L1 caches is unchanged.
3.5.2 Physical L1 caches
The entries in the L1 cache are marked with a Secure line tag. This tag defines the entries as containing
Secure or Non-secure data. A Secure entry contains Secure data. A Non-secure entry contains Non-secure
data.
This tag can be considered as an additional physical address bit when cache lookups are performed.
The Security Extensions L1 cache behaves as follows:
. The entries in the cache need not be cleaned or invalidated by software for different Secure and
Non-secure virtual to physical mappings.
. When the core is in Non-secure world, cache lookups are performed on lines tagged as Non-secure
(NS-tag=1). The NS-desc attribute in the corresponding L1 page table entry is ignored.
. When the core is in Secure world, cache lookups are performed on lines marked as Non-secure if
NS-attr==1.
. When the core is in Secure world, cache lookups are performed on lines marked as Secure if
NS-attr=0.
. Because NS-desc is allocated in L1 page table entries, the granularity of Secure and Non-secure
regions within a virtual address map is limited to 1MB. The physical mapping can still have a
granularity of 4KB.
. Apart from Invalidate All, every Clean, Invalidate, and Clean and Invalidate operation applies to
Non-secure entries when executed from the Non-secure world. Invalidate All applies to all entries for
Icache if CL =1. See Cache operations, Non-secure world on page 3-33 for details.
. Clean, Invalidate, and Clean and Invalidate operations apply to both Secure and Non-secure entries
when executed from the Secure world. See CP15 register 7, cache management functions on
page 3-31 for details.
3-30 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

Memory and System Architecture

. For caches with more than 4KB per way, VA[13:12] must be the same for all aliases used in both
Secure and Non-secure worlds.

In other respects, for example cache eviction rules, the behavior of Security Extensions L1 caches is the
same as ARMv6.

3.5.3 CP15 register 7, cache management functions
Table 3-19 shows the CP15 register 7 registers.

CP15 register 7 provides the cache and write buffer operations. In addition to these operations, virtual to
physical address features are provided, see CP15 register 7, Virtual Address to Physical Address translation
on page 3-35.

The existing ARMv6 support is all common to Secure and Non-secure worlds, except the cache dirty status
register.

Table 3-19 CP15 register 7 registers

Opcode_1 Opcode_.2 CRm Common register Non-secure Secure

register register
0b0000 0b000 CO0 Wait for interrupt - -
0b0000 0b000 C4 See CP15 register 7, Virtual Address to - -
Physical Address translation on
page 3-35
0b0000 0b001 C5 Invalidate entire instruction cache - -
0b0000 0b001 C5 Invalidate instruction cache line using - -
MVA
0b0000 0b010 C5 Invalidate instruction cache line using - -
index
0b0000 0b100 CS Flush prefetch buffer - -
0b0000 0b110 C5 Flush entire branch target cache - -
0b0000 Obl11 C5 Flush branch target cache entry - -
0b0000 0b000 C6 Invalidate entire data cache - -
0b0000 0b001 C6 Invalidate data cache line using MVA - -
0b0000 0b010 C6 Invalidate data cache line using index - -
0b0000 0b000 C7 Invalidate both caches - -

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 3-31

Memory and System Architecture

Table 3-19 CP15 register 7 registers (continued)

Opcode_ 1 Opcode_ 2 CRm Common register Non-secure Secure

register register
0b0000 Any C8 See CP15 register 7, Virtual Address to - -
Physical Address translation on
page 3-35
0b0000 0b000 C10 Clean entire data cache - -
0b0000 0b001 C10 Clean data cache line using MVA - -
0b0000 0b010 C10 Clean data cache line using index - -
0b0000 0b100 C10 DataSynchronizationBarrier - -
0b0000 0b101 C10 DataMemoryBarrier - -
0b0000 0b110 C10 - Cache dirty Cache dirty
status register status register
0b0000 0b100 C12 Block transfer status register - -
0b0000 0b101 C12 Stop prefetch range - -
0b0000 0b001 C13 Prefetch instruction cache line - -
0b0000 0b000 C14 Clean and Invalidate entire data cache - -
0b0000 0b001 C14 Clean and Invalidate data cache line - -
using MVA
0b0000 0b010 Cl14 Clean and Invalidate data cache line - -

using index

Cache operations

The operations are affected by the NS-tag attribute in the cache entries. The modifications are described in
the following sections:

. Cache operations, Non-secure world on page 3-33
. Cache operations, Secure world on page 3-34
. Cache dirty status register on page 3-34.

3-32 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

Memory and System Architecture

Cache operations, Non-secure world

In the Non-secure world, the Clean, Invalidate, and Clean and Invalidate operations only affect Non-secure
lines whatever the operations are (by set/way, by MVA or for all cache lines). Any attempt to access Secure
lines is ignored (for example, an attempt to invalidate a Secure line by set/way).

For the following operations, only Non-secure lines are affected:
— Clean All, Clean by set/way, Clean by MVA
— Clean and Invalidate All, Clean and Invalidate by set/way, Clean and Invalidate by MVA

Attempts to Clean or Clean and Invalidate Secure lines are IGNORED.

For Invalidate by set/way or by MVA, only Non-secure lines are affected. Attempts to Invalidate
Secure lines are IGNORED.

For Dcache, Invalidate All operations cause an Undefined Instruction exception. This prevents any
entries marked as Secure being invalidated. Otherwise, the Non-secure world could corrupt Secure
dirty data.

For Icache, Invalidate All operations cause an Undefined Instruction exception if lockdown entries
are reserved for the Secure world (CL = 0). Otherwise this operation affects all entries, Secure and
Non-secure.

Caution

Lockdown, Clean, Invalidate, and Clean and Invalidate operations apply whether the entry is locked or not.

ARM DDI 0309F

Copyright © 2004, 2005 ARM Limited. All rights reserved. 3-33

Memory and System Architecture

Cache operations, Secure world

In the Secure world, the Clean, Invalidate, and Clean and Invalidate operations can affect both Secure and
Non-secure lines:

o For Clean All, Invalidate All, and Clean and Invalidate All, operations, all lines are affected.

Caution

The programmer must ensure that removal of dirty or locked data, whether Secure or Non-secure,
does not cause a problem.

o For Clean by index, Invalidate by index, and Clean and Invalidate by index, the selected line is
affected regardless of the NS-tag.
. For Clean by MVA, Invalidate by MVA, and Clean and Invalidate by MVA:

— if the virtual address is marked as Non-secure in the page table (NS-attr==1), only Non-secure
entries are affected

— if the virtual address is marked as Secure in the page table (NS-attr==0), only Secure entries
are affected.

—— Caution

Clean, Invalidate, and Clean and Invalidate operations apply whether the entry is locked or not.

Cache dirty status register

The Cache Dirty Status Register (CDSR) is banked. This is because Non-secure Clean, Invalidate, and Clean
and Invalidate operations only clean or invalidate Non-secure lines. When Non-secure lines are all clean,
the Non-secure CDSR indicates no dirty lines, even if there are dirty Secure lines. The behavior of the

CDSRs is as follows:

o Non-secure Clean All, Invalidate All, and Clean and Invalidate All operations clear the Non-secure
CDSR.

o Secure Clean All, Invalidate All, and Clean and Invalidate All operations clear both the Secure CDSR

and the Non-secure CDSR.

o The Non-secure CDSR is set on stores to a Non-secure line (that is, when the core is in Non-secure
world, or is in Secure world and targets a Non-secure line) that write a dirty bit in the cache.

. The Secure CDSR is set on any stores that write a dirty bit in the cache.

3-34 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

3.5.4

Memory and System Architecture

CP15 register 7, Virtual Address to Physical Address translation

In addition to the existing cache and write buffer operations registers, CP15 register 7 contains Virtual
Address (VA) to Physical Address (PA) operation registers. Table 3-20 shows these registers.

Table 3-20 CP15 register 7 VA to PA translation registers

Opcode_1 Opcode_2 CRm Common register ::;?;f:fure Secure register

0b0000 0b000 C4 - PA register PA register

0b0000 0b000 C8 Current world, Privileged read - -

0b0000 0b001 C8 Current world, Privileged write - -

0b0000 0b010 C8 Current world, User read - -

0b0000 0b011 C8 Current world, User write - -

0b0000 0b100 C8 - - Other world, Privileged
read

0b0000 0b101 C8 - - Other world, Privileged
write

0b0000 0b110 C8 - - Other world, User read

0b0000 Obl111 C8 - - Other world, User write

ARM DDI 0309F

Copyright © 2004, 2005 ARM Limited. All rights reserved.

3-35

Memory and System Architecture

VA to PA translation in the current world

A write to the VA to PA translation register translates the VA provided by the general-purpose register <Rd>
and stores the corresponding PA in the PA register. The operation is performed with the current virtual
mapping, Secure or Non-secure.

If the MMU is disabled for the current world, the MMU returns the address and attributes in the same way
as described for a disabled MMU in the ARM Architecture Reference Manual.

The VA to PA translation can only be performed in current Privileged modes. All VA to PA translation
operations (CRm==8) are Write-Only operations. The PA result register can be read or written.

Examples of VA to PA operations:

MCR CP15, @, <Rd>, C7, C8, 3 ; VA(Rn) to PA with User Write permission
MRC CP15, @, <Rd>, C7, C4, 0 ; PA to Rn

Note

The VA transferred is the true VA, not the MVA. It is subject to the VA to MVA conversion of the FCSE
mechanism.

VA to PA translation in the other world

In the Secure world, a VA to PA translation in the other (Non-secure) world performs the translation as if
the current world was Non-secure. It uses the Non-secure translation resources (for example, TTBR-NS)
and Non-secure page table to translate the specified VA to a PA. The result of the operation is captured in
the Secure PA register, not the Non-secure PA register, even though the result is a Non-secure translation.

If the MMU is disabled for the other world, the MMU returns the address and attributes in the same way as
the MMU disabled behavior described in the ARM Architecture Reference Manual.

Other world always means Non-secure world, because the Non-secure world cannot access the Secure
world. If the Non-secure world attempts to run a VA to PA translation on the other world, an Undefined
Instruction exception is generated.

The VA to PA translation can only be performed in current privileged modes. All VA to PA translation
operations (CRm==8) are Write-Only operations. The PA result register can be read or written.

For these operations, NS-req=1.
Example of VA to PA operation:

MCR CP15, @, <Rd>, C7, C8, 4 ; VA(Rn) to PA with NS Privileged Read permission
MRC CP15, @, <Rd>, C7, C4, @ ; PA to Rn

Note

The VA transferred is the true VA, not the MVA. It is subject to the VA to MVA conversion of the FCSE
mechanism.

3-36

Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

Memory and System Architecture

VA to PA Translation when the MMU is Disabled

VA to PA operations occur even when the MMU on the relevant world is disabled. They report the flat
address mapping and the MMU-disabled value of the attributes and permissions for the data side accesses.
These include any MMU-disabled re-mapping specified by the TEX-remap facilities. The SuperSection bit
is 0 when the MMU is disabled.

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 3-37

Memory and System Architecture

PA register
The PA register (PAR) of the current world receives the PA during any VA to PA translation.

The PAR format depends on the value of bit[0]. Bit[0] specifies whether the operation has completed
successfully or not.

The VA to PA translation only generates an abort if the translation fails because an external abort occurred
on a page table walk request. In this case, the PAR is updated. The DFSR and DFAR of the world that the
abort is handled in are also updated. If the EA bit in the SCR is set, this abort is trapped to Monitor mode.

For all other cases where the VA to PA translation fails, only the PAR is updated with the FSR encoding and
bit[0] set. The DFSR and DFAR remain unchanged and no abort is generated.

Caution

If the EA bit is set (CP15r1 SCR[3]==1), the operation is being performed with NS-state = 1 (Non-secure)
and an external abort occurs during a page table walk associated with an address translation, PARyg (not
PARgs) and DFSRg/DFARg are updated with the external abort information.

If the translation has aborted, bits[6:1] give the encoding of the source of the abort:

31 7 6 1 0

UNP/SBZ FSR[12,10,3:0] 1

If the translation has completed successfully, the PAR has the following encoding:

31 121110 9 8 7 6 4 3 2 1 0

PA SBZ | NS |IMP| SH| Inner |Outer |SS|O0

To read or write the PAR, use the following instructions:

MCR CP15, @, <Rd>, C7, C4, @
MRC CP15, @, <Rd>, C7, C4, @

The PAR write instruction is provided to allow the PAR to be context switched.

The register provides the translated PA, and the following information from the page table:

NS Non-Secure.
IMP Implementation Defined.
SH Shareable attribute. In some cases this differs from the S bit in the page tables.
SS SuperSection. Used to encode supersections:
0b0 Page was not a supersection, that is, PAR[31:12] are PA[31:12], regardless of

the page size.

3-38 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

Memory and System Architecture

0Ob1 Page was part of a supersection, that is, PAR[31:12] contains:
{PA[31:24], PA[39:32], 0b0000}.

Inner[2:0], inner attributes
0b111 Write back, no write allocate.
0b110 Write through.
0b101 Write back, write allocate.
0b011 Device.
0b001 Strongly ordered.
0b000 Non-cacheable.

Other Inner encodings are RESERVED.

Outer[1:0], outer attributes

0b11 Write back, no allocate on write.
0b10 Write through, no allocate on write.
0b01 Write back, allocate on write.

0b00 Non-cacheable.

Implementations that do not support all attributes can report the behavior for those memory types that the
cache does support.

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 3-39

Memory and System Architecture

3.5.5 CP15 register 9, cache lockdown and cache behavior override registers

CP15 register 9 contains the Cache Lockdown Registers (CLRs) and Cache Behavior Override Register
(CBOR). Table 3-21 shows these registers.

Table 3-21 CP15 register 9, cache lockdown and cache behavior override registers

Opcode_1 Opcode_2 CRm Common register

0b0000 0b000 Co DCLR (Format C)
0b0000 0b001 Co ICLR (Format C)
0b0000 0b000 C8 CBOR 2

a. Some bits are only accessible in Secure state, see Cache
behavior override register on page 3-41.

Cache lockdown registers
The Data CLR (DCLR) and Instruction CLR (ICLR) are common to the Secure and the Non-secure worlds.

If the NSAC bit[16] (CL) is set, the Non-secure world can lock cache ways. Otherwise attempting to access
the CLRs in Non-secure state causes an Undefined Instruction exception.

The Non-secure world can program the CLRs and then let the Secure world disable access to the CLRs. In
this case, the entries that the Non-secure world locked are still locked. To avoid this, when the Secure world
restricts access to the CLRs to the Secure world, it must clean and invalidate any previously locked
(NS-tag=1) entries.

3-40 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

Memory and System Architecture

Cache behavior override register

It is sometimes necessary to ensure that the cache content is not modified when it is debugged, or when an
interruptible cache operation is being processed.

For example, Clean All , and Clean and Invalidate All operations in Non-secure world might not prevent
fast interrupts to the Secure side if the FW-bit in the SCR is clear. In this case, the Secure world can read or
write Non-secure locations in the cache. This can potentially cause the cache to contain valid or dirty
Non-secure entries once the Non-secure Clean All , and Clean and Invalidate All operation has completed.
To avoid such problems, the Secure world must not be allowed to allocate Non-secure entries into the cache
(it must disable linefill) and must treat all writes to Non-secure regions that hit in the cache as being
write-though.

Three bits for each world are provided to prevent cache refill and force write-through operations while
keeping the caches themselves enabled. The Non-Secure bits apply to Non-secure regions, and can be
accessed in the Secure or in the Non-secure world. The Secure bits apply to Secure regions, and can only be
accessed in Secure world .

The format of the Cache Behavior Override Register (CBOR) is as follows:

31 6 5 4 3 2 1 0

SBZ S_WT | S_IL S_DL [NS_WT| NS_IL | NS_DL

Reset value: 0x00000000.
To read or write the CBOR, use the following instructions:

MCR CP15, @, <Rd>, C9, C8, @
MRC CP15, @, <Rd>, C9, C8, @

Bits[5:3] are only accessible in Secure Privileged modes. In Non-secure Privileged modes, write has no
effect and reads read 0.

Any attempt to access the CBOR in User mode (Secure or Non-secure) results in an Undefined Instruction
exception.

The meanings of the bits in the CBOR are as follows:

S_WT 0 do not force Write-Through for regions marked Secure (NS-attr=0) and
Write-Back (normal operation)
1 force Write-Through for regions marked Secure (NS-attr=0) and Write-Back
S_IL 0 enable instruction cache linefill for regions marked Secure (normal operation)

disable instruction cache linefill for regions marked Secure

S_DL 0 enable data cache linefill for regions marked Secure (normal operation)

disable data cache linefill for regions marked Secure

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 3-41

Memory and System Architecture

NS_WT

NS_IL

NS_DL

0

<>

do not force Write-Through for regions marked Non-secure (NS-attr=1) and
Write-Back (normal operation)

force Write-Through for regions marked Non-secure (NS-attr=1) and
Write-Back

enable instruction cache linefill for regions marked Non-secure (normal
operation)

disable instruction cache linefill for regions marked Non-secure

enable data cache linefill for regions marked Non-secure (normal operation)

disable data cache linefill for regions marked Non-secure.

3-42

Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

Memory and System Architecture

3.6 Tightly coupled memory
This section applies only to ARMv6 systems.
ARMV6 defines a Tightly Coupled Memory (TCM) Status Register with up to four TCM Instruction
Regions, and up to four TCM data regions.
Each TCM region has its own Region register, defining:
. the base address of the region
. the size of the region
. whether the region is enabled or disabled
. whether the region behaves as smartcache or local RAM.
To ensure the security of the data in the TCM:
. The entries in the TCM regions do not need to be cleaned or invalidated by software for different
Secure and Non-secure virtual addresses.
. TCM regions containing Secure data are under control of the Secure kernel only.
. TCM regions controlled by Privileged modes in both worlds are visible:
— in Non-secure world
— in Secure world if the corresponding L1 TLB descriptor is marked as Non-secure
(NS-attr==1).
3.6.1 CP15 register 9: TCM regions, TCM selection, and region control registers
For each region, CP15 register 9 contains a TCM Region Register (TCMRR) and a TCM Non-Secure
Access Control Register (TCM-NSAC). The TCM Selection Register (TCMSR) indicates the number of the
TCM region that the TCMRR and the TCM-NSAC apply to.
Table 3-22 CP15 register 9: TCM regions, TCM selection, and region control registers
Opcode_1 Opcode_2 CRm °°'?‘m°" Nor_l-secure Secure register
register register
0b0000 0b000 C1 Data TCMRR
0b0000 0b001 Cl Instruction or
Unified TCMRR
0b0000 0b010 Cl Data TCM-NSAC
0b0000 0b011 C1 Instruction or Unified TCM-NSAC
0b0000 0b000 C2 TCMSR TCMSR

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 3-43

Memory and System Architecture

Instruction or Unified TCM-NSAC

The Instruction or unified TCM-NSAC ({I}TCM-NSAC) defines the accessibility of the associated
TCMRR, selected by the TCMSR. It also defines whether instructions stored in the TCM region are Secure
or Non-secure.

31 1 0
SBZ NS_access
Reset value: 0x00000000.
If NS_access = 0 (TCM with Secure data), a Non-secure access to the TCMRR causes an Undefined
Instruction exception.
To access the instruction TCM-NSAC, use one of the following instructions:
MCR CP15, @, Rd, C9, (1, 3
MRC CP15, @, Rd, C9, (1, 3
NS_access =0 The instruction TCMRR is accessible in Secure Privileged modes only. The data
stored in the TCM is Secure. The TCM is only visible in the Secure world, and only
if the page table is correctly marked as Secure (NS-attr==0).
NS_access =1 The instruction TCMRR is accessible in all Privileged modes. The data stored in the
TCM is Non-secure. The TCM is visible in the Non-secure world, and also in the
Secure world if the page table is correctly marked as Non-secure (NS-attr==1).
Table 3-23 shows when the TCM is visible, and what data is visible.
Table 3-24 on page 3-45 shows when control of the TCM is available.
Table 3-23 TCM region visibility
Core state NS_access NS-desc Region visibility Data visible
Secure 0 0 Visible Secure
Secure 0 1 Not visible -
Secure 1 0 Not visible -
Secure 1 1 Visible Non-secure
Non-secure 0 X Not visible -
Non-secure 1 X Visible Non-secure
3-44 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

Memory and System Architecture

Table 3-24 TCM region control

Core state NS_access Control

Secure X In Privileged modes only
Non-secure 0 No access
Non-secure 1 In Privileged modes only

Data TCM-NSAC

The Data TCM-NSAC (DTCM-NSAC) defines the accessibility of the associated TCMRR of the TCM
region selected by the TCMSR, and defines whether data stored in the TCM region is Secure or Non-secure.
The DTCM-NSAC can be accessed in Secure Privileged modes only. Attempting to access this register in
any other mode causes an Undefined Instruction exception.

31 1 0

SBZ NS_access

Reset value: 0x00000000.

If NS_access = 0 (TCM with Secure data), a Non-secure access to the TCM region register causes an
Undefined Instruction exception.

To access the DTCM-NSAC, use one of the following instructions:

MCR CP15, 1, Rd, C9, C1, 2
MRC CP15, 1, Rd, €9, (1, 2

NS_access =0 The data TCMRR is accessible in Secure Privileged modes only. The data stored in
the TCM is Secure. The TCM is only visible in the Secure world, and only if the
page table is correctly marked as Secure (NS-attr==0).

NS_access =1 The data TCMRR is accessible in all Privileged modes. The data stored in the TCM
is Non-secure. The TCM is visible in the Non-secure world, and also in the Secure
world if the page table is correctly marked as Secure (NS-attr==1).

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 3-45

Memory and System Architecture

3.7

L1 DMA

This section applies only to ARMv6 systems.

The ARMv6 L1 DMA mechanism can be used with both the Secure and Non-secure worlds. In the
Non-secure world, read and write access to these registers depends on bit[18] in the NSAC (NS-dma). Any
attempt to access these registers in Non-secure world when NS-dma==0 causes an Undefined Instruction
exception. See Non-Secure Access Control register on page 3-16 for additional information.

NS-dma defines the security status for a DMA access:

. NS-dma determines which set of page tables to use for address translation, and is compared with
NSTID for any associated TLB hits.

. When NS-dma==1, all memory and TCM accesses are restricted to the Non-secure world.
. When NS-dma==0:
— the secure page tables are used (NSTID = 0),

— the TCM and memory transfer addresses use their respective value of NS-attr to control the
access to the memory.

. NS-prot supports external accesses.

The DMA architecture supports generation of interrupts on error or on completion. Separate interrupts for
signaling the Secure or Non-secure world dependent on the value of NS-dma are supported. In addition,
external aborts are routed to a unique interrupt, DMAEXTERRIRQ. This allows control of when the abort
is handled by the core.

Note
DMAEXTERRIRQ is non-maskable. The IE-bit in the DMA control register is IGNORED.

The L1 DMA is controlled using CP15 r11. This register is common to the Secure and Non-secure worlds.

3-46

Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

Chapter 4
Debug Architecture

This chapter describes features added to the ARM® Debug architecture as part of Security Extensions. It
contains the following sections:

.

Overview of Security Extensions debug on page 4-2

CP14 register 0, Debug ID Register on page 4-3

CP14 register 1, Debug Status and Control Register on page 4-4
CP14 register 6, Watchpoint Fault Address Register on page 4-8
CP14 register 7, Vector Catch Register on page 4-9

CP14 registers 80-95: Breakpoint Control Registers on page 4-12
CP14 registers 112-127: Watchpoint Control Registers on page 4-13
External debug interface on page 4-14

Debug event on page 4-17

Debug state on page 4-19

Non-invasive Debug on page 4-24.

ARM DDI 0309F

Copyright © 2004, 2005 ARM Limited. All rights reserved.

4-1

Debug Architecture

4.1 Overview of Security Extensions debug
ARM processors with Security Extensions implement two types of debug support:
Invasive debug All debug features that allow modification of the processor state.
Non-invasive debug All debug features that allow data and program flow observation, especially trace

support.

Security Extensions debug allows you to disable invasive debug and non-invasive debug independently in
either:
. all Secure modes
. only in Secure Privileged modes.
This is controlled by the existing Debug Enable (DBGEN) input signal, together with three Security
Extensions specific input signals, Non-Invasive Debug Enable (NIDEN), Secure Privileged Invasive Debug
Enable (SPIDEN) and Secure Privileged Non-Invasive Debug Enable (SPNIDEN). See External debug
interface on page 4-14 for details.

4-2 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

Debug Architecture

4.2 CP14 register 0, Debug ID Register
The Debug ID Register (DIDR) provides information about the Debug Architecture Version.

Table 4-1 DIDR values

Core External

Bits . . Value Meaning
view view
19:16 R R 0x2 Debug Architecture Version v6.1
15:12 R R 0x1 Security Extension features implemented

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 4-3

Debug Architecture

4.3 CP14 register 1, Debug Status and Control Register
The Debug Status and Control Register (DSCR) contains status and configuration information about the
state of the debug system.
Security Extensions defines five additional bits, and alters the behavior of four others. Table 4-2 provides
an overview. The following sections provide details.
Table 4-2 New and altered bits in CP14 register 1
Bits New or C_ore E_xternal Reset Description
altered view view value
19 New R R 0 Imprecise Data Aborts ignored
18 New R R 0 Non-secure Status bit
17 New R R n/a Not Secure Privilege Non-Invasive Debug Enable (SPNIDEN)
16 New R R n/a Not Secure Privilege Invasive Debug Enable (SPIDEN)
11 Altered R RwW 0 Interrupts disable
8 New R RC 0 Sticky Undefined bit
7 Altered R RC 0 Sticky Imprecise Data Abort
6 Altered R RC 0 Sticky Precise Data Abort
5:2 Altered RW R - Method of Debug Entry
4.3.1 Imprecise Data Aborts Ignored
This bit indicates whether a DataSynchronizationBarrier (DSB) operation has occurred in Debug state:
0 No DSB operation has occurred since entering Debug state.
1 A DSB operation has occurred since entering Debug state.
Imprecise data aborts are not taken when this bit is set. See Imprecise data aborts in detail on page 4-23 for
further information.
4-4 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

4.3.2

4.3.3

4.3.4

4.3.5

Debug Architecture

Non-secure status bit
This bit indicates whether the processor is in Secure state or Non-secure state:

0 The processor is in Secure state. That is, either the CP15 NS-bit = 0 or the processor is in
Monitor mode.

1 The processor is in Non-secure state. That is, the CP15 NS-bit = 1 and the processor is not
in Monitor mode.

See NS-bit on page 3-12 for further information.

SPNIDEN

DSCR[17] reflects the inverse of the value on the SPNIDEN input:
0 The SPNIDEN input is HIGH.

1 The SPNIDEN input is LOW.

See SPNIDEN on page 4-15 for further information.

SPIDEN

DSCR[16] reflects the inverse of the value on the SPIDEN input:
0 The SPIDEN input is HIGH.

1 The SPIDEN input is LOW.

See SPIDEN on page 4-14 for further information.

Interrupts disable
This bit controls whether IRQ and FIQ input signals are permitted when Debug is enabled:
0 interrupts enabled

1 interrupts disabled.

This bit has no effect if DSCR[15:14] = 0b00 (Debug disabled) or if DBGEN is LOW.

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 4-5

Debug Architecture

4.3.6 Sticky Undefined bit
This bit indicates whether an Undefined Instruction exception has occurred, in Debug state, since an external
read to the DSCR:
0 No Undefined Instruction exception occurred since the last time this bit was cleared.
1 An Undefined Instruction exception occurred since the last time this bit was cleared.
Reads by an external debugger to the DSCR clear the Sticky Undefined bit.
Note
This bit is only set by Undefined Instruction exceptions that occur while the processor is in Debug state.
4.3.7 Sticky Imprecise Data abort
This bit is now set when the processor detects an Imprecise Data Abort returned by the memory system, only
if the processor is in Debug state.
In earlier versions of the ARM architecture, it is set when the processor takes an Imprecise Data Abort
exception, whether or not the processor is in Debug state.
This bit is cleared after reads.
4.3.8 Sticky Precise Data abort
This bit is now set by Precise Data Aborts, only if the processor is in Debug state.
In earlier versions of the ARM architecture, it is set by Precise Data Abort exception, whether or not the
processor is in Debug state.
4-6 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

4.3.9 Method of Debug Entry

Debug Architecture

Table 4-3 shows the meanings of the method of debug entry values.

Table 4-3 Meaning of method of debug entry values

Value

Description

0b0000

0b0001

A Debug state Entry Request command occurred.

Breakpoint occurred.

0b0010

Watchpoint occurred.

0b0011

BKPT instruction occurred.

0b0100

External Debug Request signal activation occurred.

0b0101

Vector catch occurred.

0b0110

0b0111

RESERVED. (Formerly D-side abort occurred.)

RESERVED. (Formerly I-side abort occurred.)

Oblxxx

RESERVED.

ARM DDI 0309F

Copyright © 2004, 2005 ARM Limited. All rights reserved. 4-7

Debug Architecture

4.4 CP14 register 6, Watchpoint Fault Address Register
The use of the Watchpoint Fault Address Register (WFAR) mapped in CP15 register 6 is UNPREDICTABLE
in Security Extensions. Use the Warchpoint Fault Address Register (WFAR) in CP14 instead. Table 4-4
shows the location of the WFAR in CP14.
Table 4-4 WFAR
Opcode_1 Opcode_2 CRn CRm Secure register
0b0000 0b000 CO0 Co WFAR
Use the following instructions to read or write the WFAR:
MCR CP14, 0, <Rd>, CO, C6, 0 ; moves contents of <Rd> into WFAR
MRC CP14, 0, <Rd>, CO, C6, 0@ ; moves contents of WFAR into <Rd>
The WFAR is accessible as follows:
External view No access.
Core view The WFAR is accessible in Privileged modes or in Debug state only.
4-8 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

Debug Architecture

4.5 CP14 register 7, Vector Catch Register
Table 4-5 shows the Vector Catch Register (VCR).
The table uses the following abbreviations:
VBAR Vector Base Address Register (Secure).
VBARnNs Vector Base Address Register (Non-secure).
MVBAR Monitor Vector Base Address Register.
If a bit in the VCR is set, when the corresponding vector is pre-fetched and the instruction is committed for
execution, either a Debug exception or a Debug State entry can be generated.
Note
Under this model, any kind of pre-fetch of an exception vector can trigger a vector trap, not just those due
to exception entries.
Catches due to bits[15:0] are only triggered in Secure world. Catches due to bits [31:25] are only triggered
in Non-secure world.
Bits[7:6,4:0] are mandatory. Bits[31,30,28:25,15,14,12,10] are optional for Security Extension compliant
cores.
Bits[28,27,12,4,3] do not generate a Debug exception in Privileged modes in Monitor debug-mode. This
avoids the processor entering an unrecoverable state.
Note
The VCR can only be accessed in Privileged modes or in Debug state.
Table 4-5 VCR
Read/writ ? o Vector tra High vector
Bits e P world Normal address 9
. valu enable address
attributes
0 RW 0 Reset - 0x00000000 0xFFFF0000
1 RW 0 Undefined Secure VBAR-+0x00000004 0xFFFF0004
2 RW 0 SW Secure VBAR-+0x00000008 0xFFFF0008
I
3 RW 0 Prefetch Secure VBAR-+0x0000000C 0xFFFF000C
abort

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 4-9

Debug Architecture

Table 4-5 VCR (continued)

. Rese
Read/writ t Vector tra High vector
Bits e P World Normal address g
. valu enable address
attributes e
4 RW 0 Data abort Secure VBAR+0x00000010 0xFFFF0010
5 DNM/RAZ - RESERVED - - -
6 RW 0 IR VE = Secure VBAR-+0x00000018 2 0xFFFF0018 a
Q 0
7 RW 0 FI VE = Secure VBAR-+0x0000001C b 0xFFFF001C b
Q 0
9:8 DNM/RAZ - RESERVED - - -
10 RW 0 SM Secure MVBAR+0x00000008 MVBAR+0x0000000
I 8
11 DNM/RAZ - RESERVED -
12 RW 0 Data abort Secure MVBAR+0x00000010 MVBAR+0x0000001
0
13 DNM/RAZ - RESERVED - - -
14 RW 0 IR Secure MVBAR+0x00000018 MVBAR+0x0000001
Q 8
15 RW 0 FI Secure MVBAR+0x0000001C MVBAR-+0x0000001
Q C
24:1 DNM/RAZ - RESERVED - - -
6
25 RW 0 Undefined Non-secur VBARps+0x00000004 0xFFFF0004
(S
26 RW 0 SW Non-secur VBARys+0x00000008 0xFFFF0008
1 e
27 RW 0 Prefetch Non-secur VBARpng+0x0000000C OxFFFFO00C
abort e
28 RW 0 Data abort Non-secur ~ VBARps+0x00000010 0xFFFF0010
(&
4-10 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

Debug Architecture

Table 4-5 VCR (continued)

Read/writ Rese
Bits e t Vector trap World Normal address High vector
. valu enable address
attributes e
29 DNM/RAZ - RESERVED - - -
30 RW 0 IR VE = Non-secur VBARpns+0x00000018 O0xFFFFO0018 ¢
Q 0 e c
31 RW 0 FI VE = Non-secur VBARys+0x0000001C OxFFFF001C d
Q 0 e d
a. If VE = 1, most recent Secure IRQ address
b. If VE = 1, most recent Secure FIQ address
c. If VE =1, most recent Non-secure IRQ address
d. If VE = 1, most recent Non-secure FIQ address

ARM DDI 0309F

Copyright © 2004, 2005 ARM Limited. All rights reserved.

Debug Architecture

4.6 CP14 registers 80-95: Breakpoint Control Registers

Security Extensions extends the Breakpoint Control Registers (BCRs) with two bits. Table 4-6 shows these
bits. For more details about existing bits in the BCRs, see the ARM Architecture Reference Manual.

Bits BCR[15:14] control whether breakpoints are conditional on the processor state (Secure or Non-secure).

Note

The BCRs can only be accessed in Privileged modes or in Debug state.

Table 4-6 BCR
Bits :ﬁ:dbﬁ’:;:e 5;?]? Values Meaning
15:14 RW 00 00 Breakpoint matches any virtual address
01 Breakpoint matches a Non-secure virtual address
10 Breakpoint matches a Secure virtual address
11 RESERVED

4-12 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

Debug Architecture

4.7 CP14 registers 112-127: Watchpoint Control Registers

Security Extensions extends the Watchpoint Control Registers (WCRs) with two bits. Table 4-7 shows these
bits. For more details about existing bits in the WCRs, see the ARM Architecture Reference Manual.

Bits WCR[15:14] control whether watchpoints are conditional on the processor state (Secure or

Non-secure).

Note

The WCRs can only be accessed in Privileged modes.

Table 4-7 WCR

. Read/write Reset
Bits . Values
attributes value

Meaning

15:14 RW 00 00
01

10

Watchpoint matches any virtual address
Watchpoint matches a Non-secure virtual address

Watchpoint matches a Secure virtual address

RESERVED

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 4-13

Debug Architecture

4.8

4.8.1

4.8.2

External debug interface

Security Extensions adds three signals to the existing debug interface:
NIDEN Non-Invasive Debug Enable

SPIDEN Secure Privileged Invasive Debug Enable

SPNIDEN Secure Privileged Non-Invasive Debug Enable.

Note
To prevent these bits being controlled from JTAG, they are not included in the boundary scan chain.

Note

For legacy systems, these input inputs must be tied high to enable debug.

NIDEN
The NIDEN input enables or disables non-invasive debug:

. If NIDEN is high, non-invasive debug is enabled in all Non-secure modes, and in any Secure modes
permitted by SPNIDEN and SUNIDEN.

. If NIDEN is low, non-invasive debug is not enabled in any mode. The state of SPNIDEN and
SUNIDEN have no effect.

See Secure Debug Enable register on page 3-15 for details of the SUNIDEN bit.

SPIDEN
The SPIDEN input enables or disables invasive debug in the Secure world:
. If SPIDEN is high, invasive debug is permitted in all Secure modes.

Note

In this case, invasive debug is permitted in Secure User mode, regardless of the value of the SUIDEN
bit.

. If SPIDEN is low, invasive debug is not permitted in Secure Privileged modes. Invasive debug is
permitted in Secure User mode according to the value of the SUIDEN bit.

See Secure Debug Enable register on page 3-15 for details of the SUIDEN bit.

Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

Debug Architecture

4.8.3 SPNIDEN
The SPNIDEN input enables or disables non-invasive debug in the Secure world:
. If SPNIDEN is high, non-invasive debug is permitted in all Secure modes.
Note
In this case, non-invasive debug is permitted in Secure User mode, regardless of the value of the
SUNIDEN bit.
. If SPNIDEN is low, non-invasive debug is not permitted in Secure Privileged modes. Non-invasive
debug is permitted in Secure User mode according to the value of the SUNIDEN bit.
See Secure Debug Enable register on page 3-15 for details of the SUNIDEN bit.
4.8.4 DBGEN, SPIDEN and SUIDEN
Table 4-8 shows the effects of the DBGEN and SPIDEN inputs, and the SUIDEN bit.
Table 4-8 DBGEN, SPIDEN and SUIDEN
DBGE DSCR[15:14 SPIDE SUIDE Invasive debug permitted
Debug mode .
N] N N in modes
0 XX a X X Disabled None
1 00 0 0 Not selected b Non-secure modes
1 00 0 1 Not selected b Non-secure modes, Secure User
1 00 1 X Not selected b Secure and Non-secure
1 10 1 X Monitor Secure and Non-secure
debug-mode
1 10 0 0 Monitor Non-secure modes
debug-mode
1 10 0 1 Monitor Non-secure, Secure User
debug-mode
1 X1 1 X Halting debug-mode Secure and Non-secure
1 X1 0 0 Halting debug-mode Non-secure modes
1 X1 0 1 Halting debug-mode ~ Non-secure, Secure User

a. DCSR[15:14] reads as 0b00.
b. When DBGEN==1 and DSCR[15:14]==0b00, some debug events are permitted. See Table 4-10 on page 4-18 for

details.

ARM DDI 0309F

Copyright © 2004, 2005 ARM Limited. All rights reserved. 4-15

Debug Architecture

4.8.5 NIDEN, SPNIDEN and SUNIDEN
Table 4-9 shows the effects of the NIDEN and SPNIDEN inputs, and the SUNIDEN bit.

Table 4-9 NIDEN, SPNIDEN and SUNIDEN

NIDEN SPNIDEN SUNIDEN Debug Non-invasive debug permitted modes

0 X X Disabled -

1 1 X Enabled All Secure and Non-secure modes
1 0 0 Enabled All Non-secure modes only

1 0 1 Enabled All Non-secure, Secure User only

4.8.6 Changing the Debug Enable signals

The behavior of the NIDEN, DBGEN, SPIDEN, and SPNIDEN control signals is mainly the responsibility
of the external debug interface. However, these signals can be changed while the processor is running, or
while the processor is in Debug state.

Software running on the processor can change the state of these signals as follows:

1. Execute an implementation specific sequence of instructions to change the signal value. For example,
this might be an instruction to write a value to a control register in a system peripheral.

2. If step 1 involves any memory operation, issue a DSB.

3. Poll the debug registers for the processor view of the signal values. This is required because the
system might not issue the signal change to the processor until several cycles after the DSB
completes.

4. Issue a PrefetchFlush.

The software cannot perform debug or analysis operations that rely on the new value until this procedure
has been completed. The same rules apply for instructions executed through the ITR while in Debug state.

The processor view of the SPIDEN and SPNIDEN signals can be polled through the DSCR.

The processor has no direct view of the DBGEN signal. However, if DBGEN is low, DSCR[15:14] reads
as 0b00. Software can determine DBGEN by reading DSCR[15:14] after writing a non-zero value to it.

4-16 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

4.9

Debug Architecture

Debug event

If any debug event occurs while the core is in a mode where invasive debug is not permitted, it is ignored.
This includes all the following debug events:

. breakpoint

. watchpoint

. vector catch

. external debug request signal activation

. debug state entry request command.
Note

If a BKPT instruction is executed while invasive debug is not permitted, the same sequence of actions is
taken as if Monitor debug-mode were selected. This is not affected by the actual configuration of Debug
mode (Halting or Monitor).

If invasive debug is enabled and permitted by DBGEN, SPIDEN, and SUIDEN, the following debug events
cause an entry to Debug state:

. external debug request signal activation

. debug state entry request command.
This occurs regardless of the configuration of debug mode.

When a debug event occurs and is not ignored, the following registers are updated:
. IFSR

. DFSR
. FAR
. WFAR.

See CP14 register 6, Watchpoint Fault Address Register on page 4-8 for details of the WFAR.

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 4-17

Debug Architecture

4.9.1 Action on EBDGRQ and Debug state Entry Request command
The processor enters Debug state if either of the following occurs:
. the external debug request signal (EDBGRQ) is activated, and debug is not disabled at the External
Debug interface
. a Debug state Entry Request (HALT) command is received, and debug is not disabled at the External
Debug interface.
These events are IGNORED if debug is disabled at the External Debug interface.
Table 4-10 shows the behavior of the processor on debug events.
Table 4-10 Processor behavior on debug events
Debug mode Action on Action on Action on Action on other
9 BKPT EDBGRQ HALT debug events
Debug disabled Exception Ignored Ignored Ignored
Not permitted Exception Ignored Pended 2 Ignored
Not selected Exception Debug state Debug state Ignored
entry entry
Monitor Exception Debug state Debug state Exception
debug-mode entry entry
Halting debug-mode Debug state Debug state Debug state Debug state entry
entry entry entry
a. The cores latches the debug entry request.
If the next debug mode change is to Not Selected, Monitor, or Halting debug mode, the core enters Debug state.
If the next debug mode change is to Debug disabled, the request is dropped.
4-18 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

Debug Architecture

410 Debug state
Security Extensions requires some changes to behavior in Debug state. These are described in the following
subsections.
4.10.1 Altering mode bits in Debug state
In Debug state, any instruction executed that updates the CPSR to a mode where invasive debug is not
permitted have that update ignored. Similarly, if privileged debug is not permitted in the current security
world, all privileged bits of the CPSR are read-only.
Table 4-11 shows which updates are permitted in Debug state.
Table 4-11 Permitted updates to the CPSR in Debug state
Mode No-stat :P'DE Update privileged CPSR bits 2 Modify M[4:0] to Monitor mode
User 0 0 Update ignored Update ignored
Privilege 0 0 Permitted Permitted
d
Any 1 0 Permitted Update ignored
Any X 1 Permitted Permitted
a. Other than changing M[4:0] to Monitor mode.
4.10.2 Altering the NS-bit
In Debug state, the NS-bit can be altered only:
. in Secure User mode if SPIDEN is asserted
. in a Secure Privileged mode, regardless of the state of SPIDEN.
This is the case even if invasive debug is permitted everywhere.
4.10.3 Privilege

The processor ignores any attempt to execute privileged instructions, other than CP14 debug instructions, if
all the following conditions are true:

. the processor is in Debug state
. the processor is in Secure User mode
. Debug is permitted in Non-secure state and in Secure User mode (SPIDEN = 0).

‘When the processor ignores an instruction in these circumstances, it sets DSCR[8], the sticky undefined bit.

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 4-19

Debug Architecture

4.10.4

Coprocessor instructions

Instructions that access CP14 are always permitted in Debug state, regardless of debug permissions and the
processor mode and security state.

For accesses to CP15 registers, the processor behaves as follows:

If the debugger is permitted to write to the M[4:0] bits of the CPSR to change to a Privileged mode,
then the debugger is permitted to access CP15 registers. There is no requirement to change to a
Privileged mode first.

Access to CP15 registers is limited to the same access granted to any Privileged mode.
Any attempt to perform accesses that are not permitted is treated as an Undefined exception.

Accesses to CP15 registers access the CP15 registers of the current World (Secure or Non-secure). If
the debugger requires access to Secure CP15 registers, it must change to Secure state.

This means, for example, that:

If debug is permitted everywhere, and the processor is stopped in any Secure mode (including Secure
User mode), then the processor has access to the Secure banked CP15 registers.

If the processor is stopped in any Non-secure mode (including Non-secure User mode), then the

processor is restricted to the following only:

— Any access to the Non-secure banked CP15 registers.

— Access to Non-banked CP15 registers accessible in Non-secure state. Some bits are read only,
in the same way as usual in Non-secure state.

If debug is permitted only in Non-secure state, the following conditions apply:

— the debugger cannot access Secure CP15 registers

— the debugger cannot write those bits in non-banked registers that are read-only in Non-secure
state.

4-20

Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

4.10.5

Debug Architecture

Instructions that modify the CPSR

With the exception of instructions that modify the CPSR, the processor can execute any ARM state
instruction in Debug state.

The only instruction that can modify the CPSR in Debug state is the MSR instruction. All other instructions
that normally update the CPSR are UNPREDICTABLE in Debug state. This affects the following instructions,
for example:

. BX

. BXJ

. CPS

. LDM (3)

. RFE

. SETEND

. data processing instructions that transfer the SPSR to the CPSR.

When not in Debug state, an MSR instruction that modifies the Execution State bits in the CPSR is
UNPREDICTABLE. However, in Debug state an MSR instruction does update the Execution State bits in the
CPSR. A direct modification of the Execution State bits in the CPSR by an MSR instruction must be followed
by an instruction memory barrier sequence.

If an MRS instruction reads the CPSR after an MSR writes the Execution State bits, and before any instruction
memory barrier sequence, the result is UNPREDICTABLE.

If the processor leaves Debug state after an MSR writes the Execution State bits, and before any instruction
memory barrier sequence, the behavior of the processor is UNPREDICTABLE.

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 4-21

Debug Architecture

4.10.6 Exceptions

Exceptions are handled as follows when the processor is in Debug state:

Reset

Prefetch abort

SWI
SMI
BKPT

Undefined

Precise data abort

Imprecise data abort

No change. The processor leaves Debug state.

No change. This exception cannot occur because no instructions are prefetched in
Debug state.

SWI exceptions are ignored in Debug state.
SMI exceptions are ignored in Debug state.
Breakpoints are ignored in Debug state.

When an Undefined Instruction exception occurs in Debug state, the core behaves

as follows:

. PC, CPSR, SPSR_und, R14_und, and DSCR[5:2] are unaltered

. the processor remains in Debug state

. DSCR[8] (sticky undefined bit) is set. See Sticky Undefined bit on page 4-6
for details.

When a Precise Data Abort occurs in Debug state, the core behaves as follows:

. PC, CPSR, SPSR_abt, R14_abt, and DSCR[5:2] are unaltered

. the processor remains in Debug state

DSCR[6] (sticky precise data abort bit) is set

. DFSR and FAR are set. It is IMPLEMENTATION DEFINED whether DFSR and
FAR are updated when the processor is in Secure User mode, and debug is
not permitted in Secure Privileged modes.

When an imprecise Data Abort occurs in Debug state, the core behaves as follows:
. the setting of the CPSR A bit is ignored

. PC, CPSR, SPSR_abt, R14_abt, and DSCR][5:2] are unaltered

. the processor remains in Debug state

. DSCR[7] (sticky imprecise data abort bit) is set

o If DSCR[19] is set, the imprecise data abort is not taken and DFSR is not set.

4-22 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

4.10.7

4.10.8

Debug Architecture

Imprecise data aborts in detail

On entry to Debug state:

1. DSCR[19] is normally O.

2. The debugger must issue a DSB operation to flush all pending memory operations to the system.

3. If any of these operations cause an imprecise data abort, the processor latches the abort and its type
until the processor leaves Debug state. The aborts are not taken immediately.

4. The processor sets DSCR[19].

After the processor sets DSCR[19], any memory accesses from Debug state that cause imprecise data aborts
set DSCR[7] (sticky imprecise data abort), but are otherwise discarded. The cause and type of the abort are
not recorded. This means that any abort that is still latched from the initial DSB that was completed on entry
to Debug state is not overwritten by any new abort.

After writes to memory by the debugger, it must issue a DSB operation to ensure that any imprecise data
aborts have been detected.

Before exit from Debug state, a debugger must issue a DSB operation.

On exit from Debug state, DSCR[19] is cleared by the processor.

If an imprecise data abort occurred between entry to Debug state and the processor setting DSCR[19]:
. If the A-bit is 1, the abort is pended until the A-bit is cleared.

. If the A-bit is 0, the abort is taken by the processor on exit from Debug state.

Imprecise data aborts and watchpoints

The Watchpoint exception has a higher priority than an Imprecise Data Abort. If a data access causes both
a watchpoint and an Imprecise Data Abort, the processor enters Debug state before taking the Imprecise
Data Abort. The abort is latched because the processor is in Debug state.

This ensures correct behavior where debug is not permitted in Privileged modes.

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. 4-23

Debug Architecture

4.11 Non-invasive Debug

Security Extensions requires some changes to non-invasive Debug. These are described in the following
subsections.

4.11.1 Performance Monitoring Unit

When the core is in Debug state, or in a mode where non-invasive debug is not permitted:

. events are not counted by the Performance Monitoring Unit
. events are not visible to the Trace device
. the cycle count register, CCNT, continues to count.

4.11.2 PC sample register

When the core is in Debug state, or in a mode where non-invasive debug is not permitted, the PC sample
register always reads OxFFFFFFFF.

4.11.3 Trace

When the core is in Debug state, or in a mode where non-invasive debug is not permitted, all instructions
and data transfers are ignored by the Trace device.

4-24 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

Glossary

Interrupt Status Register (ISR)
The ISR shows whether there is pending IRQ, FIQ or External Abort.

Monitor mode
An ARM mode that is responsible for switching the core between the Secure and Non-secure state. Do not
confuse Monitor mode with Monitor debug-mode.

Monitor Vector Base Address Register (MIVBAR)
The MVBAR exists only in the Secure world. When an exception branches to Monitor mode, the core
branches to:

Monitor_Base_Address + Exception_Vector_Address.

Non-Secure Access Control register (NSAC)
The NSAC defines the Non-secure access permissions to coprocessors, cache lockdown registers, TLB
lockdown registers, and internal DMA.

Non-secure interrupt
An interrupt generated by a non-secure peripheral.

NS-bit Bit[0] in the SCR is the Non-Secure bit. Controls whether the processor is in Secure (0) or Non-secure (1)
state, except that in Monitor mode the processor is in Secure state regardless of the value of the NS-bit.

NS-state
The processor is in Non-secure state if the NS-bit is 1, and the processor is in any mode other than Monitor
mode. The core cannot access the Secure world.

ARM DDI 0309F Copyright © 2004, 2005 ARM Limited. All rights reserved. Glossary-1

Glossary

Non-Secure Table ID (NSTID)
TLB entries are marked with an ID, the NSTID. The NSTID determines whether the entry corresponds to a
Secure or a Non-secure entry.

Non-secure world
All the hardware, both core and system, that is accessible when the core is in Non-secure state.

PA Physical Address.

PA Register (PAR)
The PAR of the current world receives the PA during any VA to PA translation.

Secure Configuration Register (SCR)
The SCR is a CP15 register. It defines the configuration of the current state. It specifies the state of the core
(Secure or Non-secure), and what mode the core branches to if an IRQ, FIQ or external abort occurs. It also
defines whether or not the I and A bits in the CPSR can be modified in Non-secure world.

It is accessible in Secure Privileged modes only.

Secure Debug Enable Register (SDE)
The SDE enables or disables both Invasive and Non-invasive debug. It is accessible in Secure Privileged
modes only.

Secure interrupt
An interrupt generated by a secure peripheral.

Secure state
The processor is in Secure state if the NS-bit is 0, or the processor is in Monitor mode. The core can access
both the Secure and Non-secure worlds.

Secure world
All the hardware, both core and system, that is only accessible when the core is in Secure state.

SMI Software Monitor Interrupt instruction. If executed in a Privileged mode, this instruction causes a Software
Monitor exception and enters Monitor mode. Otherwise, it causes an Undefined Instruction exception.

Software Monitor exception
A dedicated exception for the SMI instruction.

Thread ID
An identifier provided by a Non-secure OS to distinguish multiple threads of execution in the Secure world.

VA Virtual Address.

Vector Base Address Register (VBAR)
The VBAR is banked in the Secure and Non-secure worlds.When an exception branches to a Secure
Privileged mode, the core branches to:

Secure_Vector_Base_Address + Exception_Vector_Address
When an exception branches to a Non-secure Privileged mode, the core branches to:

Non_Secure_Vector_Base_Address + Exception_Vector_Address

Glossary-2 Copyright © 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0309F

	ARM Architecture Reference Manual Security Extensions Supplement
	Contents
	Preface
	About this manual
	Intended audience

	Using this manual
	Conventions
	General typographic conventions
	Pseudo-code descriptions of instructions
	Assembler syntax descriptions
	System and debug coprocessors

	Further reading
	ARM publications

	Feedback
	Feedback on this book

	Introduction
	1.1 About the ARM Architecture Security Extensions
	1.2 Security state, Monitor mode, and the NS-bit
	1.3 NS attributes
	1.3.1 Notes
	1.3.2 Secure and Non-secure worlds

	1.4 Exception handling
	1.5 Switching between Secure and Non-secure contexts
	1.6 Memory accesses
	1.6.1 Security of memory accesses
	1.6.2 Memory management
	1.6.3 Caches
	1.6.4 TCMs and L1 DMA
	1.6.5 External memory accesses

	1.7 Debug
	1.7.1 Invasive debug
	1.7.2 Non-invasive debug

	CPU Architecture
	2.1 Processor modes
	2.2 Registers
	2.3 Program Status Registers
	2.3.1 PSR mode bits
	2.3.2 PSR F and A bits (ARMv6 only)
	2.3.3 PSR E bit (ARMv6 only)

	2.4 Exception model
	2.4.1 Reset
	2.4.2 Undefined instruction
	2.4.3 Software interrupt
	2.4.4 External prefetch abort
	2.4.5 Internal prefetch abort
	2.4.6 External data abort
	2.4.7 Internal data abort
	2.4.8 Interrupt request
	2.4.9 Fast interrupt request
	2.4.10 Software monitor exception
	2.4.11 Exception priorities
	2.4.12 Exceptions occurring in Monitor mode

	2.5 ARM instruction set
	2.5.1 SMI

	2.6 Security Extensions and VFP support

	Memory and System Architecture
	3.1 System control coprocessor
	3.1.1 Terminology for CP15 register selection
	3.1.2 CP15 register space summary
	3.1.3 Banked CP15 registers
	3.1.4 Restricted access CP15 registers
	3.1.5 Configurable access CP15 registers
	3.1.6 CP15SDISABLE input

	3.2 Register 1, control registers
	3.2.1 Control register
	3.2.2 Auxiliary Control register
	3.2.3 Secure Configuration Register
	3.2.4 Secure Debug Enable register
	3.2.5 Non-Secure Access Control register
	3.2.6 Process ID registers
	3.2.7 Register 15

	3.3 Access to registers in Monitor mode
	3.4 Memory management unit
	3.4.1 L1 descriptors
	3.4.2 CP15 register 2, Translation Table Base
	3.4.3 CP15 register 3, Domain Access Control registers
	3.4.4 CP15 register 5, Fault Status Registers
	3.4.5 CP15 register 6, Fault Address registers
	3.4.6 CP15 register 8, TLB operations
	3.4.7 CP15 register 10, TLB lockdown registers
	3.4.8 CP15 register 12, miscellaneous registers

	3.5 L1 caches
	3.5.1 Virtual L1 caches
	3.5.2 Physical L1 caches
	3.5.3 CP15 register 7, cache management functions
	3.5.4 CP15 register 7, Virtual Address to Physical Address translation
	3.5.5 CP15 register 9, cache lockdown and cache behavior override registers

	3.6 Tightly coupled memory
	3.6.1 CP15 register 9: TCM regions, TCM selection, and region control registers

	3.7 L1 DMA

	Debug Architecture
	4.1 Overview of Security Extensions debug
	4.2 CP14 register 0, Debug ID Register
	4.3 CP14 register 1, Debug Status and Control Register
	4.3.1 Imprecise Data Aborts Ignored
	4.3.2 Non-secure status bit
	4.3.3 SPNIDEN
	4.3.4 SPIDEN
	4.3.5 Interrupts disable
	4.3.6 Sticky Undefined bit
	4.3.7 Sticky Imprecise Data abort
	4.3.8 Sticky Precise Data abort
	4.3.9 Method of Debug Entry

	4.4 CP14 register 6, Watchpoint Fault Address Register
	4.5 CP14 register 7, Vector Catch Register
	4.6 CP14 registers 80-95: Breakpoint Control Registers
	4.7 CP14 registers 112-127: Watchpoint Control Registers
	4.8 External debug interface
	4.8.1 NIDEN
	4.8.2 SPIDEN
	4.8.3 SPNIDEN
	4.8.4 DBGEN, SPIDEN and SUIDEN
	4.8.5 NIDEN, SPNIDEN and SUNIDEN
	4.8.6 Changing the Debug Enable signals

	4.9 Debug event
	4.9.1 Action on EBDGRQ and Debug state Entry Request command

	4.10 Debug state
	4.10.1 Altering mode bits in Debug state
	4.10.2 Altering the NS-bit
	4.10.3 Privilege
	4.10.4 Coprocessor instructions
	4.10.5 Instructions that modify the CPSR
	4.10.6 Exceptions
	4.10.7 Imprecise data aborts in detail
	4.10.8 Imprecise data aborts and watchpoints

	4.11 Non-invasive Debug
	4.11.1 Performance Monitoring Unit
	4.11.2 PC sample register
	4.11.3 Trace

	Glossary

