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Preface

 

This preface introduces the Arm® C/C++ Compiler Reference Guide.

It contains the following:
• About this book on page 8.
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 About this book

 Using this book

This book is organized into the following chapters:

Chapter 1 Getting started
Arm C/C++ Compiler is an auto-vectorizing compiler for the 64-bit Armv8-A architecture. This
getting started tutorial shows you how to install, compile C/C++ code, use different optimization
levels, and generate an executable.

Chapter 2 Compiler options
Command-line options supported by armclang and armclangc++ within Arm C/C++ Compiler.

Chapter 3 Coding best practice
Discusses best practices when writing C/C++ code for Arm C/C++ Compiler.

Chapter 4 Standards support
The support status of Arm C/C++ Compiler with the OpenMP standards.

Chapter 5 Optimization remarks
Describes how to enable and use optimization remarks with Arm C/C++ Compiler.

Chapter 6 Vector math routines
Describes how to use the libsimdmath library which contains the SIMD implementation of the
routines provided by libm.

 Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

 Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

 Preface
 About this book
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SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Feedback

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Arm C/C++ Compiler Reference Guide.
• The number 101458_1930_00_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
 Note 

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Other information

• Arm® Developer.
• Arm® Information Center.
• Arm® Technical Support Knowledge Articles.
• Technical Support.
• Arm® Glossary.

 Preface
 About this book
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Chapter 1
Getting started

Arm C/C++ Compiler is an auto-vectorizing compiler for the 64-bit Armv8-A architecture. This getting
started tutorial shows you how to install, compile C/C++ code, use different optimization levels, and
generate an executable.

The Arm C/C++ Compiler tool chain for the 64-bit Armv8-A architectureenables you to compile C/C++
code for Armv8-A compatible platforms, with an advanced auto-vectorizer capable of taking advantage
of SIMD features.

It contains the following sections:
• 1.1 Getting started with Arm® C/C++ Compiler on page 1-11.
• 1.2 Using the compiler on page 1-13.
• 1.3 Compile and run a simple ‘Hello World’ program on page 1-15.
• 1.4 Generate executable binaries from C and C++ code on page 1-16.
• 1.5 Generate assembly code from C and C++ code on page 1-17.
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1.1 Getting started with Arm® C/C++ Compiler
This tutorial shows how to compile and generate executables that will run on any 64-bit Armv8-A
architecture.

Installation

Refer to Help and tutorials for details on how to perform the installation on Linux.

Environment Configuration
 Note 

Full instructions on configuring your environment for Arm C/C++ Compiler are included in the
installation guide.

Your administrator should have already installed Arm C/C++ Compiler and made the environment
module available.

To see which environment modules are available:

module avail

 Note 

You may need to configure the MODULEPATH environment variable to include the installation directory:

export MODULEPATH=$MODULEPATH:/opt/arm/modulefiles/

To configure your Linux environment to make Arm C/C++ Compiler available:

module load <architecture>/<linux_variant>/<linux_version>/suites/arm-compiler-for-hpc/
<version>

For example:

module load Generic-AArch64/SUSE/12/suites/arm-compiler-for-hpc/19.3

You can check your environment by examining the PATH variable. It should contain the
appropriate bin directory from /opt/arm, as installed in the previous section:

echo $PATH /opt/arm/arm-compiler-for-hpc-19.3_Generic-AArch64_SUSE-12_aarch64-linux/bin:...

You can also use the which command to check that the Arm C/C++ Compiler armclang command is
available:

which armclang /opt/arm/arm-compiler-for-hpc-19.3_Generic-AArch64_SUSE-12_aarch64-linux/bin/
armclang

 Note 

You might want to consider adding the module load command to your .profile to run it automatically
every time you log in.

Get help

For a list of all the supported options, use:

armclang --help

To see detailed descriptions of all supported options, use:

man armclang

1 Getting started
1.1 Getting started with Arm® C/C++ Compiler
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For a list of command-line options, see Compiler options on page 2-19.

If you have problems and would like to contact our support team, get in touch:

Contact Arm Support

Related references
Chapter 2 Compiler options on page 2-19
Related information
Coding best practice for auto-vectorization
Optimizing C/C++ code with Arm SIMD
Using pragmas to control auto-vectorization

1 Getting started
1.1 Getting started with Arm® C/C++ Compiler
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1.2 Using the compiler
Describes how to generate executable binaries, compile and link object files, and enable optimization
options.

To generate an executable binary, compile a program using:

armclang -o example1 example1.c

You can also specify multiple source files on a single line. Each source file is compiled individually and
then linked into a single executable binary:

armclang -o example1 example1a.c example1b.c

To compile each of your source files individually into an object file, specify the -c (compile-only)
option, and then pass the resulting object files into another invocation of armclang to link them into an
executable binary.

armclang -c -o example1a.o example1a.c
armclang -c -o example1b.o example1b.c
armclang -o example1 example1a.o example1b.o

To increase the optimization level, use the -Olevel option. The -O0 option is the lowest optimization
level, while -O3 is the highest. Arm C/C++ Compiler only performs auto-vectorization at -O2 and higher,
and uses -O0 as the default setting. The optimization flag can be specified when generating a binary, such
as:

armclang -O3 -o example1 example1.c

The optimization flag can also be specified when generating an object file:

armclang -O3 -c -o example1a.o example1a.c
armclang -O3 -c -o example1b.o example1b.c

 or when linking object files:

armclang -O3 -o example1 example1a.o example1b.o

Common compiler options

See armclang --help, Compiler options on page 2-19, and the LLVM documentation for more
information about all supported options.

-S

Outputs assembly code, rather than object code. Produces a text .s file containing annotated
assembly code.

-c

Performs the compilation step, but does not perform the link step. Produces an ELF object .o
file. To later link object files into an executable binary, run armclang again, passing in the
object files.

-o file

Specifies the name of the output file.

-march=name[+[no]feature]

Targets an architecture profile, generating generic code that runs on any processor of that
architecture. For example -march=armv8-a+sve.

-mcpu=native

Enables the compiler to automatically detect the CPU it is being run on and optimize
accordingly. This supports a range of Armv8-A based SoCs, including ThunderX2.

1 Getting started
1.2 Using the compiler
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-Olevel

Specifies the level of optimization to use when compiling source files. The default is -O0.

--help

Describes the most common options supported by Arm C/C++ Compiler. Also, use man
armclang to see more detailed descriptions of all the options.

--version

Displays version information.

1 Getting started
1.2 Using the compiler
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1.3 Compile and run a simple ‘Hello World’ program
This simple example illustrates how to compile and run a simple Hello World program.

1. Create a simple “Hello World” program and save it in a file. In our case, we have saved it in a file
named hello.c.

/* Hello World */
#include <stdio.h>
int main()
{
    printf("Hello World");
    return 0;
}

2. To generate an executable binary, compile your program with Arm C/C++ Compiler.

armclang -o hello hello.c

3. Now you can run the generated binary hello as shown below:

./hello

In the following sections we discuss the available compiler options in more detail and, towards the end of
this tutorial, illustrate using them with a more advanced example.

1 Getting started
1.3 Compile and run a simple ‘Hello World’ program
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1.4 Generate executable binaries from C and C++ code
To generate an executable binary, compile a program using:

armclang -o example1 example1.c

You can also specify multiple source files on a single line. Each source file is compiled individually and
then linked into a single executable binary:

armclang -o example1 example1a.c example1b.c

Compiling and linking object files as separate steps

To compile each of your source files individually into an object file, specify the -c (compile-only)
option, and then pass the resulting object files into another invocation of armclang to link them into an
executable binary.

armclang -c -o example1a.o example1a.c
armclang -c -o example1b.o example1b.c
armclang -o example1 example1a.o example1b.o

Increasing the optimization level

To increase the optimization level, use the -Olevel option. The -O0 option is the lowest optimization
level, while -O3 is the highest. Arm C/C++ Compiler only performs auto-vectorization at -O2 and higher,
and uses -O0 as the default setting. The optimization flag can be specified when generating a binary, such
as:

armclang -O3 -o example1 example1.c

The optimization flag can also be specified when generating an object file:

armclang -O3 -c -o example1a.o example1a.c
armclang -O3 -c -o example1b.o example1b.c

 or when linking object files:

armclang -O3 -o example1 example1a.o example1b.o

1 Getting started
1.4 Generate executable binaries from C and C++ code
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1.5 Generate assembly code from C and C++ code
Arm C/C++ Compiler can produce annotated assembly, and this is a good first step to see how the
compiler vectorizes loops.

 Note 

Different compiler options are required to make use of SVE functionality. If you are using SVE, please
refer to Compiling C/C++ code for Arm SVE architectures.

Example

The following C program subtracts corresponding elements in two arrays, writing the result to a third
array. The three arrays are declared using the restrict keyword, indicating to the compiler that they do
not overlap in memory.

// example1.c
#define ARRAYSIZE 1024
int a[ARRAYSIZE];
int b[ARRAYSIZE];
int c[ARRAYSIZE];
void subtract_arrays(int *restrict a, int *restrict b, int *restrict c)
{
    for (int i = 0; i < ARRAYSIZE; i++)
    {
        a[i] = b[i] - c[i];
    }
}
int main()
{
    subtract_arrays(a, b, c);
}

Compile the program as follows:

armclang -O1 -S -o example1.s example1.c

The flag -S is used to output assembly code.The output assembly code is saved as example1.s. The
section of the generated assembly language file containing the compiled subtract_arrays function
appears as follows:

subtract_arrays:                        // @subtract_arrays
// BB#0:
        mov     x8, xzr
.LBB0_1:                                // =>This Inner Loop Header: Depth=1
        ldr     w9, [x1, x8]
        ldr     w10, [x2, x8]
        sub     w9, w9, w10
        str     w9, [x0, x8]
        add     x8, x8, #4              // =4
        cmp     x8, #1, lsl #12         // =4096
        b.ne    .LBB0_1
// BB#2:
        ret

This code shows that the compiler has not performed any vectorization, because we specified the -O1
(low optimization) option. Array elements are iterated over one at a time. Each array element is a 32-bit
or 4-byte integer, so the loop increments by 4 each time. The loop stops when it reaches the end of the
array (1024 iterations * 4 bytes later).

Enable auto-vectorization

To enable auto-vectorization, increase the optimization level using the -Olevel option. The -O0 option is
the lowest optimization level, while -O3 is the highest. Arm C/C++ Compiler only performs auto-
vectorization at -O2 and higher:

armclang -O2 -S -o example1.s example1.c

1 Getting started
1.5 Generate assembly code from C and C++ code
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The output assembly code is saved as example1.s. The section of the generated assembly language file
containing the compiled subtract_arrays function appears as follows:

subtract_arrays:                        // @subtract_arrays
// BB#0:
        mov     x8, xzr
        add     x9, x0, #16             // =16
.LBB0_1:                                // =>This Inner Loop Header: Depth=1
        add     x10, x1, x8
        add     x11, x2, x8
        ldp     q0, q1, [x10]
        ldp     q2, q3, [x11]
        add     x10, x9, x8
        add     x8, x8, #32             // =32
        cmp     x8, #1, lsl #12         // =4096
        sub     v0.4s, v0.4s, v2.4s
        sub     v1.4s, v1.4s, v3.4s
        stp     q0, q1, [x10, #-16]
        b.ne    .LBB0_1
// BB#2:
        ret

This time, we can see that Arm C/C++ Compiler has done something different. SIMD (Single Instruction
Multiple Data) instructions and registers have been used to vectorize the code. Notice that the LDP
instruction is used to load array values into the 128-bit wide Q registers. Each vector instruction is
operating on four array elements at a time, and the code is using two sets of Q registers to double up and
operate on eight array elements in each iteration. Consequently each loop iteration moves through the
array by 32 bytes (2 sets * 4 elements * 4 bytes) at a time.

1 Getting started
1.5 Generate assembly code from C and C++ code
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Chapter 2
Compiler options

Command-line options supported by armclang and armclangc++ within Arm C/C++ Compiler.

The supported options are also available in the man pages in the tool. To view them, use:

man armclang

 Note 

For simplicity, we have shown usage with armclang. The options can also be used with armclang++,
unless otherwise stated.

It contains the following sections:
• 2.1 Using pragmas to control auto-vectorization on page 2-20.
• 2.2 File options on page 2-23.
• 2.3 Basic driver options on page 2-24.
• 2.4 Optimization options on page 2-25.
• 2.5 Workload compilation options on page 2-28.
• 2.6 Development options on page 2-29.
• 2.7 Warning options on page 2-30.
• 2.8 Pre-processor options on page 2-31.
• 2.9 Linker options on page 2-32.
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2.1 Using pragmas to control auto-vectorization
Arm C/C++ Compiler supports pragmas to both encourage and suppress auto-vectorization. These
pragmas make use of, and extend, the pragma clang loop directives.

For more information about the pragma clang loop directives, see .
 Note 

In all the following cases, the pragma only affects the loop statement immediately following it. If your
code contains multiple nested loops, you must insert a pragma before each one in order to affect all the
loops in the nest.

Encouraging auto-vectorization with pragmas

If SVE auto-vectorization is enabled with -O2 or above, then by default it examines all loops.

If static analysis of a loop indicates that it might contain dependencies that hinder parallelism, auto-
vectorization might not be performed. If you know that these dependencies do not hinder vectorization,
you can use the vectorize directive to indicate this to the compiler by placing the following line
immediately before the loop:

#pragma clang loop vectorize(assume_safety)

This pragma indicates to the compiler that the following loop contains no data dependencies between
loop iterations that would prevent vectorization. The compiler might be able to use this information to
vectorize a loop, where it would not typically be possible.

 Note 

Use of this pragma does not guarantee auto-vectorization. There might be other reasons why auto-
vectorization is not possible or worthwhile for a particular loop.

Ensure that you only use this pragma when it is safe to do so. Using this pragma when there are data
dependencies between loop iterations may result in incorrect behavior.

For example, consider the following loop, that processes an array indices. Each element in indices
specifies the index into a larger histogram array. The referenced element in the histogram array is
incremented.

void update(int *restrict histogram, int *restrict indices, int count)
{
  for (int i = 0; i < count; i++)
  {
    histogram[ indices[i] ]++;
  }
}

The compiler is unable to vectorize this loop, because the same index could appear more than once in the
indices array. Therefore a vectorized version of the algorithm would lose some of the increment
operations if two identical indices are processed in the same vector load/increment/store sequence.

However, if the programmer knows that the indices array only ever contains unique elements, then it is
useful to be able to force the compiler to vectorize this loop. This is accomplished by placing the pragma
before the loop:

void update_unique(int *restrict histogram, int *restrict indices, int count)
{
  #pragma clang loop vectorize(assume_safety)
  for (int i = 0; i < count; i++)
  {
    histogram[ indices[i] ]++;
  }
}

2 Compiler options
2.1 Using pragmas to control auto-vectorization
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Suppressing auto-vectorization with pragmas

If SVE auto-vectorization is not required for a specific loop, you can disable it or restrict it to only use
Arm SIMD (NEON) instructions.

You can suppress auto-vectorization on a specific loop by adding #pragma clang loop
vectorize(disable) immediately before the loop. In this example, a loop that would be trivially
vectorized by the compiler is ignored:

void combine_arrays(int *restrict a, int *restrict b, int count)
{
  #pragma clang loop vectorize(disable)
  for ( int i = 0; i < count; i++ )
  {
    a[i] = b[i] + 1;
  }
}

You can also suppress SVE instructions while allowing Arm NEON instructions by adding a
vectorize_style hint:

vectorize_style(fixed_width)

Prefer fixed-width vectorization, resulting in Arm NEON instructions. For a loop with
vectorize_style(fixed_width), the compiler prefers to generate Arm NEON instructions,
though SVE instructions may still be used with a fixed-width predicate (such as gather loads or
scatter stores).

vectorize_style(scaled_width)

Prefer scaled-width vectorization, resulting in SVE instructions. For a loop with
vectorize_style(scaled_width), the compiler prefers SVE instructions but can choose to
generate Arm NEON instructions or not vectorize at all. This is the default.

For example:

void combine_arrays(int *restrict a, int *restrict b, int count)
{
  #pragma clang loop vectorize(enable) vectorize_style(fixed_width)
  for ( int i = 0; i < count; i++ )
  {
    a[i] = b[i] + 1;
  }
}

Unrolling and interleaving with pragmas

To enable better use of processor resources, loops can be duplicated to reduce the loop iteration count
and increase the instruction-level parallelism (ILP). For scalar loops, the method is called unrolling. For
vectorizable loops, interleaving is performed.

Unrolling

Unrolling a scalar loop, for example:

for (int i = 0; i < 64; i++) {
  data[i] = input[i] * other[i];
}

by a factor of two, gives:

for (int i = 0; i < 32; i +=2) {
  data[i] = input[i] * other[i];
  data[i+1] = input[i+1] * other[i+1];
}

For this example, two is the unrolling factor (UF). To unroll to the internal limit, the following pragma is
inserted before the loop:

#pragma clang loop unroll(enable)
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To unroll to a user-defined UF, instead insert:

#pragma clang loop unroll_count(_value_)

Interleaving

To interleave, an interleaving factor (IF) is used instead of a UF. To accurately generate interleaved code,
the loop vectorizer models the cost on the register pressure and the generated code size. When a loop is
vectorized, the interleaved code can be more optimal than unrolled code.

Like the UF, the IF can be the internal limit or a user-defined integer. To interleave to the internal limit,
the following pragma is inserted before the loop:

#pragma clang loop interleave(enable)

To interleave to a user-defined IF, instead insert:

#pragma clang loop interleave_count(_value_)

 Note 

Interleaving performed on a scalar loop will not unroll the loop correctly.
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2.2 File options
Options that specify input or output files.

Table 2-1  Compiler file options

Option Description

-I<dir> Add directory to include search path.

Usage

armclang -I<dir>

-include <file> Include file before parsing.

Usage

armclang -include <file>

Or

armclang --include <file>

-o <file> Write output to <file>.

Usage

armclang -o <file>
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2.3 Basic driver options
Options that affect basic functionality of the armclang driver.

Table 2-2  Compiler basic driver options

Option Description

--gcc-toolchain=<arg> Use the gcc toolchain at the given directory.

Usage

armclang --gcc-toolchain=<arg>

-help

--help

Display available options.

Usage

armclang -help

armclang --help

--help-hidden Display hidden options. Only use these options if advised to do so by your Arm representative.

Usage

armclang --help-hidden

-v Show commands to run and use verbose output.

Usage

armclang -v

--version

--vsn Show the version number and some other basic information about the compiler.

Usage

armclang --version

armclang --vsn
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2.4 Optimization options
Options that control optimization behavior and performance.

Table 2-3  Compiler optimization options

Option Description

-O0 Minimum optimization for the performance of the compiled binary. Turns off most
optimizations. When debugging is enabled, this option generates code that directly
corresponds to the source code. Therefore, this might result in a significantly larger image.
This is the default optimization level.

Usage

armclang -O0

-O1 Restricted optimization. When debugging is enabled, this option gives the best debug view
for the trade-off between image size, performance, and debug.

Usage

armclang -O1

-O2 High optimization. When debugging is enabled, the debug view might be less satisfactory
because the mapping of object code to source code is not always clear. The compiler might
perform optimizations that cannot be described by debug information.

Usage

armclang -O2

-O3 Very high optimization. When debugging is enabled, this option typically gives a poor
debug view. Arm recommends debugging at lower optimization levels.

Usage

armclang -O3

-Ofast Enable all the optimizations from level 3, including those performed with the
‑ffp‑mode=fast armclang option.

This level also performs other aggressive optimizations that might violate strict compliance
with language standards.

Usage

armclang -Ofast

-ffast-math Allow aggressive, lossy floating-point optimizations.

Usage

armclang -ffast-math

-ffinite-math-only Enable optimizations that ignore the possibility of NaN and +/‑Inf.

Usage

armclang -ffinite-math-only
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Table 2-3  Compiler optimization options (continued)

Option Description

-ffp-contract={fast|on|off} Controls when the compiler is permitted to form fused floating-point operations (such as
FMAs).

fast: Always (default).

on: Only in the presence of the FP_CONTRACT pragma.

off: Never.

Usage

armclang -ffp-contract={fast|on|off}

-finline

-fno-inline

Enable or disable inlining (enabled by default).

Usage

armclang -finline

(enable)

armclang -fno-inline

(disable)

-fstrict-aliasing Tells the compiler to adhere to the aliasing rules defined in the source language.

In some circumstances, this flag allows the compiler to assume that pointers to different
types do not alias. Enabled by default when using -Ofast.

Usage

armclang -fstrict-aliasing

-funsafe-math-optimizations

-fno-
unsafe-math-optimizations

This option enables reassociation and reciprocal math optimizations, and does not honor
trapping nor signed zero.

Usage

armclang -funsafe-math-optimizations

(enable)

armclang-fno-unsafe-math-optimizations

(disable)

-fvectorize

-fno-vectorize

Enable/disable loop vectorization (enabled by default).

Usage

armclang -fvectorize

(enable)

armclang -fno-vectorize

(disable)
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Table 2-3  Compiler optimization options (continued)

Option Description

-mcpu=<arg> Select which CPU architecture to optimize for. Choose from:
• native: Auto-detect the CPU architecture from the build computer.
• cortex-a72: Optimize for Cortex-A72-based computers.
• thunderx2t99: Optimize for Cavium ThunderX2-based computers.
• generic: Generates portable output suitable for any Armv8-A computer.

Usage

armclang -mcpu=<arg>

-march=<arg> Specifies the name of the target architecture. Choose from:
• armv8-a: Armv8-A architecture.
• armv8-a+sve: Armv8-A SVE-enabled architecture.

 Note 

When linking to the SVE libary of Arm Performance Libraries, you must also include
the -armpl=sve option. For more information, see the Linker options on page 2-32
options.

Usage

armclang -march=<arg>
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2.5 Workload compilation options
Options that affect the way C language workloads compile.

Table 2-4  Compiler linker options

Option Description

-fsimdmath

-fno-simdmath

Enable use of vectorized libm library (libsimdmath) to aid vectorization of loops containing calls to libm.

Usage

armclang -fsimdmath

Or

armclang -fno-simdmath

-std=<arg>

--std=<arg>

Language standard to compile for. The list of valid standards depends on the input language, but adding -
std=<arg> to a build line will generate an error message listing valid choices.

Usage

armclang -std=<arg>

armclang --std=<arg>
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2.6 Development options
Options that support code development.

Table 2-5  Compiler development options

Option Description

-fcolor-diagnostics

-fno-color-
diagnostics

Use colors in diagnostics.

Usage

armclang -fcolor-diagnostics

Or

armclang -fno-color-diagnostics

-g

-g0 (default)

-gline-tables-only

-g, -g0, and -gline-tables-only control the generation of source-level debug information:
• -g enables debug generation.
• -g0 disables generation of debug and is the default setting.
• -gline-tables-only enables DWARF line information for location tracking only (not for

variable tracking).

 Note 

If more than one of these options are specified on the command line, the option specified last overrides
any before it.

Usage

armclang -g

Or

armclang -g0

Or

armclang -gline-tables-only
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2.7 Warning options
Options that control the behavior of warnings.

Table 2-6  Compiler warning options

Option Description

-W<warning>

-Wno-<warning>

Enable or disable the specified warning.

Usage

armclang -W<warning>

-Wall Enable all warnings.

Usage

armclang -Wall

-w Suppress all warnings.

Usage

armclang -w
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2.8 Pre-processor options
Options that control pre-processor behavior.

Table 2-7  Compiler pre-processing options

Option Description

-D <macro>=<value> Define <macro> to <value> (or 1 if <value> is omitted).

Usage

armclang -D<macro>=<value>

-U Undefine macro <macro>.

Usage

armclang -U<macro>
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2.9 Linker options
Options that control linking behavior and performance.

Table 2-8  Compiler linker options

Option Description

-Wl,<arg> Pass the comma separated arguments in <arg> to the linker.

Usage

armclang -Wl,<arg>, <arg2>...

-Xlinker <arg> Pass <arg> to the linker.

Usage

armclang -Xlinker <arg>
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Table 2-8  Compiler linker options (continued)

Option Description

-armpl Instructs the compiler to load the optimum version of Arm Performance Libraries for your target architecture and
implementation. This option also enables optimized versions of the C mathematical functions declared in the
math.h library, tuned scalar and vector implementations of Fortran math intrinsics, and auto-vectorization of
mathematical functions (disable this using -fno-simdmath).

Supported arguments are:

• sve: Use the SVE library from Arm Performance Libraries.
 Note 

-armpl=sve,<arg2>,<arg3> should be used in combination with -march=armv8-a+sve.

• lp64: Use 32-bit integers.
• ilp64: Use 64-bit integers. Inverse of lp64.
• sequential: Use the single-threaded implementation of Arm Performance Libraries.
• parallel: Use the OpenMP multi-threaded implementation of Arm Performance Libraries. Inverse of

sequential.

Separate multiple arguments using a comma, for example: -armpl=<arg1>,<arg2>.

Default behavior

The default behavior of the -armpl option is also determined by the specification (or not) of the -
fopenmpActions on page 2-20 option: if the -fopenmpActions on page 2-20 option is specified, parallel is
enabled by default. If -fopenmp is not specified, sequential is enabled by default.

In other words, when:
• Only specifying -armpl: -armpl=lp64,sequential.
• Specifying -armpl and -fopenmp: -armpl=lp64,parallel.

For more information on using -armpl, see the Library selection web page.

Usage

armclang code_with_math_routines.c -armpl{=<arg1>,<arg2>}

Examples

To specify a 64-bit integer OpenMP multi-threaded implementation for ThunderX2: armclang
code_with_math_routines.c -armpl=lp64,parallel -mcpu=thunderx2t99

To specify a 32-bit integer single-threaded implementation on Cortex-A72: armclang
code_with_math_routines.c -armpl=lp64,sequential -mcpu=cortex-a72

To use the serial, ilp64 ArmPL libraries, optimized for the CPU architecture of the build computer: armclang
code_with_math_routines.c -armpl=ilp64 -mcpu=native

To use the serial, ilp64 ArmPL SVE libraries, optimized for the SVE-enabled CPU architecture of the build
computer: armclang code_with_math_routines.c -armpl=sve,ilp64 -march=armv8-a+sve -
mcpu=native

To use the parallel, lp64 ArmPL libraries, with portable output suitable for any Armv8-A computer: armclang
code_with_math_routines.c -armpl -fopenmp -mcpu=generic

To use the parallel, lp64 ArmPL SVE libraries, with portable output suitable for any SVE-enabled Armv8-A
computer: armclang code_with_math_routines.c -armpl=sve -fopenmp -march=armv8-a+sve -
mcpu=generic

To use the parallel, ilp64 ArmPL libraries, optimized for Cortex-A72 based computers armclang
code_with_math_routines.c -armpl=parallel,ilp64 -mcpu=cortex-a72
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Table 2-8  Compiler linker options (continued)

Option Description

-l<library> Search for the library named <library> when linking.

-l<library> Search for the library named <library> when linking.

Usage

armclang -l<library>

-larmflang At link time, include this option to use the default Fortran libarmflang runtime library for both serial and parallel
(OpenMP) Fortran workloads.

 Note 

• This option is set by default when linking using armflang.
• You need to explicitly include this option if you are linking with armclang instead of armflang at link

time.
• This option only applies to link time operations.

Usage

armclang -larmflang

See notes in description.

-larmflang-
nomp

At link time, use this option to avoid linking against the OpenMP Fortran runtime library.
 Note 

• Enabled by default when compiling and linking using armflang with the -fno-openmp option.
• You need to explicitly include this option if you are linking with armclang instead of armflang at link

time.
• Should not be used when your code has been compiled with the -lomp or -fopenmp options.
• Use this option with care. When using this option, do not link to any OpenMP-utilizing Fortran runtime

libraries in your code.
• This option only applies to link time operations.

Usage

armclang -larmflang-nomp

See notes in description.
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Table 2-8  Compiler linker options (continued)

Option Description

-shared

--shared

Causes library dependencies to be resolved at runtime by the loader.

This is the inverse of ‑static. If both options are given, all but the last option will be ignored.

Usage

armclang -shared

Or

armclang --shared

-static

--static

Causes library dependencies to be resolved at link time.

This is the inverse of -shared. If both options are given, all but the last option is ignored.

Usage

armclang -static

Or

armclang --static

To link serial or parallel Fortran workloads using armclang instead of armflang, include the -
larmflang option to link with the default Fortran runtime library for serial and parallel Fortran
workloads. You also need to pass any options required to link using the required mathematical routines
for your code.

To statically link, in addition to passing -larmflang and the mathematical routine options, you also need
to pass:

• -static
• -lomp
• -lrt

To link serial or parallel Fortran workloads using armclang instead of armflang, without linking against
the OpenMP runtime libraries, instead pass -armflang-nomp, at link time. For example, pass:

• -larmflang-nomp
• Any mathematical routine options, for example: -lm or -lamath.

Again, to statically link, in addition to -larmflang-nomp and the mathematical routine options, you also
need to pass:
• -static
• -lrt

 Warning 

• Do not link against any OpenMP-utlizing Fortran runtime libraries when using this option.
• All lockings and thread local storage will be disabled.
• Arm does not recommend using the -larmflang-nomp option for typical workloads. Use this option

with caution..

 Note 

The -lompstub option (for linking against libompstub) might still be needed if you have imported
omp_lib in your Fortran code but not compiled with -fopenmp.
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Chapter 3
Coding best practice

Discusses best practices when writing C/C++ code for Arm C/C++ Compiler.

It contains the following sections:
• 3.1 Coding best practice for auto-vectorization on page 3-37.
• 3.2 Using pragmas to control auto-vectorization on page 3-38.
• 3.3 Optimizing C/C++ code with Arm SIMD (Neon) on page 3-41.
• 3.4 Note about building Position Independent Code (PIC) on AArch64 on page 3-42.
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3.1 Coding best practice for auto-vectorization
Describes some best practices to code for auto-vectorization.

To encourage the Arm C/C++ Compiler to produce optimal auto-vectorized output, code can be
structured and hints can be provided to inform the compiler of program features that it would otherwise
not be able to determine. This allows the compiler to produce optimal auto-vectorized output.

Use the restrict keyword if appropriate when using C/C++ code
The C99 restrict keyword (or the non-standard C/C++ __restrict__ keyword) indicates to the
compiler that a specified pointer does not alias with any other pointers for the lifetime of that pointer.
This guidance allows the compiler to vectorize loops more aggressively, since it becomes possible to
prove that loop iterations are independent and can be executed in parallel.

 Note 

C code may use either the restrict or __restrict__ keywords. C++ code must use only the
__restrict__ keyword.

If these keywords are used erroneously (that is, if another pointer is used to access the same memory)
then the behavior is undefined. It is possible that the results of optimized code will differ from that of its
unoptimized equivalent.

Use pragmas

The compiler supports pragmas that you can use to explicitly indicate that loop iterations are completely
independent from each other.

Use < to construct loops

Where possible, use < conditions rather than <= or != when constructing loops. This helps the compiler
to prove that a loop terminates before the index variable wraps.

The compiler might also be able to perform more loop optimizations if signed integers are used, because
the C standard allows for undefined behavior in the case of signed integer overflow. This is not the case
for unsigned integers.

Use the -ffast-math option if it is safe to do so

This can significantly improve the performance of generated code, but it does so at the expense of strict
compliance with IEEE and ISO standards for mathematical operations. Ensure that your algorithms are
tolerant of potential inaccuracies that could be introduced by the use of this option.
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3.2 Using pragmas to control auto-vectorization
Arm C/C++ Compiler supports pragmas to both encourage and suppress auto-vectorization. These
pragmas make use of, and extend, the pragma clang loop directives.

For more information about the pragma clang loop directives, see .
 Note 

In all the following cases, the pragma only affects the loop statement immediately following it. If your
code contains multiple nested loops, you must insert a pragma before each one in order to affect all the
loops in the nest.

Encouraging auto-vectorization with pragmas

If SVE auto-vectorization is enabled with -O2 or above, then by default it examines all loops.

If static analysis of a loop indicates that it might contain dependencies that hinder parallelism, auto-
vectorization might not be performed. If you know that these dependencies do not hinder vectorization,
you can use the vectorize directive to indicate this to the compiler by placing the following line
immediately before the loop:

#pragma clang loop vectorize(assume_safety)

This pragma indicates to the compiler that the following loop contains no data dependencies between
loop iterations that would prevent vectorization. The compiler might be able to use this information to
vectorize a loop, where it would not typically be possible.

 Note 

Use of this pragma does not guarantee auto-vectorization. There might be other reasons why auto-
vectorization is not possible or worthwhile for a particular loop.

Ensure that you only use this pragma when it is safe to do so. Using this pragma when there are data
dependencies between loop iterations may result in incorrect behavior.

For example, consider the following loop, that processes an array indices. Each element in indices
specifies the index into a larger histogram array. The referenced element in the histogram array is
incremented.

void update(int *restrict histogram, int *restrict indices, int count)
{
  for (int i = 0; i < count; i++)
  {
    histogram[ indices[i] ]++;
  }
}

The compiler is unable to vectorize this loop, because the same index could appear more than once in the
indices array. Therefore a vectorized version of the algorithm would lose some of the increment
operations if two identical indices are processed in the same vector load/increment/store sequence.

However, if the programmer knows that the indices array only ever contains unique elements, then it is
useful to be able to force the compiler to vectorize this loop. This is accomplished by placing the pragma
before the loop:

void update_unique(int *restrict histogram, int *restrict indices, int count)
{
  #pragma clang loop vectorize(assume_safety)
  for (int i = 0; i < count; i++)
  {
    histogram[ indices[i] ]++;
  }
}
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Suppressing auto-vectorization with pragmas

If SVE auto-vectorization is not required for a specific loop, you can disable it or restrict it to only use
Arm SIMD (NEON) instructions.

You can suppress auto-vectorization on a specific loop by adding #pragma clang loop
vectorize(disable) immediately before the loop. In this example, a loop that would be trivially
vectorized by the compiler is ignored:

void combine_arrays(int *restrict a, int *restrict b, int count)
{
  #pragma clang loop vectorize(disable)
  for ( int i = 0; i < count; i++ )
  {
    a[i] = b[i] + 1;
  }
}

You can also suppress SVE instructions while allowing Arm NEON instructions by adding a
vectorize_style hint:

vectorize_style(fixed_width)

Prefer fixed-width vectorization, resulting in Arm NEON instructions. For a loop with
vectorize_style(fixed_width), the compiler prefers to generate Arm NEON instructions,
though SVE instructions may still be used with a fixed-width predicate (such as gather loads or
scatter stores).

vectorize_style(scaled_width)

Prefer scaled-width vectorization, resulting in SVE instructions. For a loop with
vectorize_style(scaled_width), the compiler prefers SVE instructions but can choose to
generate Arm NEON instructions or not vectorize at all. This is the default.

For example:

void combine_arrays(int *restrict a, int *restrict b, int count)
{
  #pragma clang loop vectorize(enable) vectorize_style(fixed_width)
  for ( int i = 0; i < count; i++ )
  {
    a[i] = b[i] + 1;
  }
}

Unrolling and interleaving with pragmas

To enable better use of processor resources, loops can be duplicated to reduce the loop iteration count
and increase the instruction-level parallelism (ILP). For scalar loops, the method is called unrolling. For
vectorizable loops, interleaving is performed.

Unrolling

Unrolling a scalar loop, for example:

for (int i = 0; i < 64; i++) {
  data[i] = input[i] * other[i];
}

by a factor of two, gives:

for (int i = 0; i < 32; i +=2) {
  data[i] = input[i] * other[i];
  data[i+1] = input[i+1] * other[i+1];
}

For this example, two is the unrolling factor (UF). To unroll to the internal limit, the following pragma is
inserted before the loop:

#pragma clang loop unroll(enable)
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To unroll to a user-defined UF, instead insert:

#pragma clang loop unroll_count(_value_)

Interleaving

To interleave, an interleaving factor (IF) is used instead of a UF. To accurately generate interleaved code,
the loop vectorizer models the cost on the register pressure and the generated code size. When a loop is
vectorized, the interleaved code can be more optimal than unrolled code.

Like the UF, the IF can be the internal limit or a user-defined integer. To interleave to the internal limit,
the following pragma is inserted before the loop:

#pragma clang loop interleave(enable)

To interleave to a user-defined IF, instead insert:

#pragma clang loop interleave_count(_value_)

 Note 

Interleaving performed on a scalar loop will not unroll the loop correctly.
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3.3 Optimizing C/C++ code with Arm SIMD (Neon)
Describes how to optimize with SIMD (Neon) using Arm C/C++ Compiler.

The Arm SIMD (or Advanced SIMD) architecture, its associated implementations, and supporting
software, are commonly referred to as Neon technology. There are SIMD instruction sets for both
AArch32 (equivalent to the Armv7 instructions) and for AArch64. Both can be used to significantly
accelerate repetitive operations on the large data sets commonly encountered with High Performance
Computing applications.

Arm SIMD instructions perform “Packed SIMD” processing, packing multiple lanes of data into large
registers then performing the same operation across all data lanes.

For example, consider the following SIMD instruction:

ADD V0.2D, V1.2D, V2.2D

This instruction specifies that an addition (ADD) operation is performed on two 64-bit data lanes (2D). D
specifies the width of the data lane (doubleword, or 64 bits) and 2 specifies that two lanes are used (that
is the full 128-bit register). Each lane in V1 is added to the corresponding lane in V2 and the result stored
in V0. Each lane is added separately. There are no carries between the lanes.

Coding with SIMD
There are a number of different methods you can use to take advantage of SIMD instructions in your
code:
• Let the compiler auto-vectorize your code for you.

Arm C/C++ Compiler automatically vectorizes your code at higher optimization levels (-O2 and
higher). The compiler identifies appropriate vectorization opportunities in your code and uses SIMD
instructions where appropriate.

At optimization level -O1 you can use the -fvectorize option to enable auto-vectorization.

At the lowest optimization level -O0 auto-vectorization is never performed, even if you specify -
fvectorize.

• Use intrinsics directly in your C code.

Intrinsics are C or C++ pseudo-function calls that the compiler replaces with the appropriate SIMD
instructions. This lets you use the data types and operations available in the SIMD implementation,
while allowing the compiler to handle instruction scheduling and register allocation. These intrinsics
are defined in the language extensions document.

• Write SIMD assembly code.

Although it is technically possible to optimize SIMD assembly by hand, this can be very difficult
because the pipeline and memory access timings have complex inter-dependencies. Instead of hand-
written assembly, Arm strongly recommends the use of intrinsics.

3 Coding best practice
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3.4 Note about building Position Independent Code (PIC) on AArch64
Describes some considerations when building Position Independent Code (PIC) using Arm Compiler.

Issue
Failure can occur at the linking stage when building Position-Independent Code (PIC) on AArch64 using
the lower-case -fpic compiler flag with GCC compilers (gfortran, gcc, g++), in preference to using the
upper-case -fPIC flag.

 Note 

• This issue does not occur when using the -fpic flag with Arm Compiler (armclang/armclang++/
armflang), and it also does not occur on x86_64 because -fpic operates the same as -fPIC.

• PIC is code which is suitable for shared libraries.

Cause
Using the -fpic compiler flag with GCC compilers on AArch64 causes the compiler to generate one less
instruction per address computation in the code, and can provide code size and performance benefits.
However, it also sets a limit of 32k for the Global Offset Table (GOT), and the build can fail at the
executable linking stage because the GOT overflows.

 Note 

When building PIC with Arm C/C++ Compiler on AArch64, or building PIC on x86_64, -fpic does not
set a limit for the GOT, and this issue does not occur.

Solution
Consider using the -fPIC compiler flag with GCC compilers on AArch64, because it ensures that the
size of the GOT for a dynamically linked executable will be large enough to allow the entries to be
resolved by the dynamic loader.

 Note 

To increase code portability, Arm recommends using -fPIC when compiling with Arm Compiler.
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Chapter 4
Standards support

The support status of Arm C/C++ Compiler with the OpenMP standards.

It contains the following sections:
• 4.1 OpenMP 4.0 on page 4-44.
• 4.2 OpenMP 4.5 on page 4-45.
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4.1 OpenMP 4.0
Describes which OpenMP 4.0 features are supported by Arm C/C++ Compiler.

Table 4-1  Supported OpenMP 4.0 features

Open MP 4.0 Feature Support

C/C++ Array Sections Yes

Thread affinity policies Yes

“simd” construct Yes

“declare simd” construct No

Device constructs No

Task dependencies Yes

“taskgroup” construct Yes

User defined reductions Yes

Atomic capture swap Yes

Atomic seq_cst Yes

Cancellation Yes

OMP_DISPLAY_ENV Yes

4 Standards support
4.1 OpenMP 4.0
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4.2 OpenMP 4.5
Describes which OpenMP 4.5 features are supported by Arm C/C++ Compiler.

Table 4-2  Supported OpenMP 4.5 features

Open MP 4.5 Feature Support

doacross loop nests with ordered Yes

“linear” clause on loop construct Yes

“simdlen” clause on simd construct Yes

Task priorities Yes

“taskloop” construct Yes

Extensions to device support No

“if” clause for combined constructs Yes

“hint” clause for critical construct Yes

“source” and “sink” dependence types Yes

C++ Reference types in data sharing attribute clauses Yes

Reductions on C/C++ array sections Yes

“ref”, “val”, “uval” modifiers for linear clause. Yes

Thread affinity query functions Yes

Hints for lock API Yes

4 Standards support
4.2 OpenMP 4.5
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Chapter 5
Optimization remarks

Describes how to enable and use optimization remarks with Arm C/C++ Compiler.

It contains the following section:
• 5.1 Using Optimization remarks on page 5-47.
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5.1 Using Optimization remarks
This short tutorial describes how to enable and use optimization remarks with Arm C/C++ Compiler.

Overview

Optimization remarks provide you with information about the choices made by the compiler. They can
be used to see which code has been inlined or to understand why a loop has not been vectorized.

By default, Arm C/C++ Compiler prints compilation information to stderr. Using optimization remarks,
optimization information is printed to the terminal or can be piped to an output file.

Enabling optimization remarks

To enable optimization remarks, pass the following -Rpass options to armclang:

Table 5-1  Optimization remarks Rpass options

Flag Description

-Rpass=<regexp> Request information about what Arm C/C++ Compiler optimized.

-Rpass-analysis=<regexp> Request information about what Arm C/C++ Compiler optimized.

-Rpass-missed=<regexp> Request information about what Arm C/C++ Compiler optimized.

For each flag, replace <regexp> with an expression for the type of remarks you wish to view.

Recommended <regexp> queries are:
• -Rpass=\(loop-vectorize\|inline\)
• -Rpass-missed=\(loop-vectorize\|inline\)
• -Rpass-analysis=\(loop-vectorize\|inline\)

where loop-vectorize will filter remarks regarding vectorized loops, and inline for remarks regarding
inlining.

To search for all remarks, use the expression .*. However, use this expression with care because a lot of
information may be printed depending on the size of your code and the level of optimization performed.

C/C++ example using armclang

To pass the -Rpass and -Rpass-analysis flags to armclang, use:

armclang -O3 -Rpass=.* -Rpass-analysis=.* example.c

which can give the following example output in the terminal:

example.c:8:18: remark: hoisting zext [-Rpass=licm]
       for (int i=0;i<K; i++)
       ^
example.c:8:4: remark: vectorized loop (vectorization width: 4, interleaved count: 2) [-
Rpass=loop-vectorize]
       for (int i=0;i<K; i++)
       ^
example.c:7:1: remark: 28 instructions in function [-Rpass-analysis=asm-printer]
       void foo(int K) {
       ^

Piping optimization remarks to a file

To pipe loop vectorization optimization remarks to a file called vecreport.txt, use:

armclang -O3 -Rpass=loop-vectorize -Rpass-analysis=loop-vectorize -Rpass-missed=loop-
vectorize example.c 2> vecreport.txt

Related information
Arm C/C++ Compiler

5 Optimization remarks
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Chapter 6
Vector math routines

Describes how to use the libsimdmath library which contains the SIMD implementation of the routines
provided by libm.

It contains the following section:
• 6.1 Vector math routines in Arm® C/C++ Compiler on page 6-49.
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6.1 Vector math routines in Arm® C/C++ Compiler
Arm C/C++ Compiler supports the vectorization of loops within C and C++ workloads that invoke the
math routines from libm.

Any C loop-using functions from <math.h> (or from <cmath> in the case of C++) can be vectorized by
invoking the compiler with the option -fsimdmath, together with the usual options that are needed to
activate the auto-vectorizer (optimization level -O2 and above).

Examples

The following examples show loops with math function calls that can be vectorized by invoking the
compiler with:

armclang -fsimdmath -c -O2 source.c

C example with loop invoking sin:

/* C code example: source.c */
#include <math.h>
void do_something(double * a, double * b, unsigned N) {
  for (unsigned i = 0; i < N; ++i) {
    /* some computation */
    a[i] = sin(b[i]);
    /* some computation */
  }
}

C++ example with loop invoking std::pow:

// C++ code example: source.cpp
#include <cmath>
void do_something(float * a, float * b, unsigned N) {
  for (unsigned i = 0; i < N; ++i) {
    // some computation
    a[i] = std::pow(a[i], b[i]);
    // some computation
  }
}

How it works

Arm C/C++ Compiler contains libsimdmath, a library with SIMD implementations of the routines
provided by libm, along with a math.h file that declares the availability of these SIMD functions to the
compiler, using the OpenMP #pragma omp declare simd directive.

During loop vectorization, the compiler is aware of these vectorized routines, and can replace a call to a
scalar function (for example a double-precision call to sin) with a call to a libsimdmath function that
takes a vector of double precision arguments, and returns a result vector of doubles.

The libsimdmath library is built using code based on SLEEF, an open source math library available
from the SLEEF website.

A future release of Arm C/C++ Compiler will describe a workflow to allow users to declare and link
against their own vectorized routines, allowing them to be used in auto-vectorized code.

Limitations

This is an experimental feature which can lead to performance degradations in some cases. We encourage
users to test the applicability of this feature on their non-production code, and will address any possible
inefficiency in a future release.

Contact Arm Support

Related information
SLEEF website
Vector function ABI specification for AArch64

6 Vector math routines
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