
Arm C/C++ Compiler
Reference Guide

Version 19.0.0

Document Number 101458_1900_00

CONTENTS:

1 Getting started 3
1.1 Getting started with Arm C/C++ Compiler . 3

1.1.1 Installing Arm C/C++ Compiler . 3
1.1.2 Environment Configuration . 3
1.1.3 Compiling and running a simple ‘Hello World’ program 4
1.1.4 Generating executable binaries from C and C++ code . 4
1.1.5 Compiling and linking object files as separate steps . 5
1.1.6 Increasing the optimization level . 5
1.1.7 Compiling and optimizing using CPU auto-detection . 5
1.1.8 Advanced example: Generating Arm assembly code from C and C++ code 5
1.1.9 Example . 6
1.1.10 Enable auto-vectorization . 6
1.1.11 Common compiler options . 7
1.1.12 Get help . 8
1.1.13 Related information . 8

2 Compiler options 9
2.1 Actions . 9
2.2 File options . 9
2.3 Basic driver options . 10
2.4 Optimization options . 10
2.5 Workload compilation options . 12
2.6 Development options . 12
2.7 Warning options . 12
2.8 Pre-processor options . 12
2.9 Linker options . 13

3 Coding best practice 17
3.1 Coding best practice for auto-vectorization . 17

3.1.1 Use the restrict keyword if appropriate when using C/C++ code 17
3.1.2 Use pragmas . 17
3.1.3 Use < to construct loops . 17
3.1.4 Use the -ffast-math option if it is safe to do so . 18

3.2 Using pragmas to control auto-vectorization . 18
3.2.1 Encouraging auto-vectorization with pragmas . 18
3.2.2 Suppressing auto-vectorization with pragmas . 19
3.2.3 Unrolling and interleaving with pragmas . 19
3.2.4 Unrolling . 20
3.2.5 Interleaving . 20

3.3 Optimizing C/C++ code with Arm SIMD (NEON) . 20

i Document number 101458_1900_00

3.3.1 Coding with SIMD . 21
3.3.2 Related information . 21

3.4 Note about building Position Independent Code (PIC) on AArch64 21
3.4.1 Issue . 21
3.4.2 Cause . 22
3.4.3 Solution . 22

4 Standards support 23
4.1 OpenMP 4.0 . 23
4.2 OpenMP 4.5 . 23

5 Optimization remarks 25
5.1 Using Optimization remarks . 25

5.1.1 Overview . 25
5.1.2 Enabling optimization remarks . 25
5.1.3 C/C++ example using armclang . 26
5.1.4 Piping optimization remarks to a file . 26
5.1.5 Related information . 26

6 Vector math routines 27
6.1 Vector math routines in Arm C/C++ Compiler . 27

6.1.1 Examples . 27
6.1.2 How it works . 28
6.1.3 Limitations . 28
6.1.4 Related information . 28

Document number 101458_1900_00 ii

CONTENTS: Arm C/C++ Compiler Reference Guide

Release information

Table 1: Document history
Issue Date Confidentiality Change
1900_00 02/11/18 Non-confidential 19.0.0

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information
contained in this document may be protected by one or more patents or pending patent applications. No part of
this document may be reproduced in any form by any means without the express prior written permission of Arm.
No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this
document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit
others to use the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WAR-
RANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS
FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes
no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of,
third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAM-
AGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE,
OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIA-
BILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF Arm HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or
disclosure of this document complies fully with any relevant export laws and regulations to assure that this document or
any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in
reference to Arm’s customers is not intended to create or refer to any partnership relationship with any other company.
Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement
covering this document with Arm, then the signed written agreement prevails over and supersedes the conflicting
provisions of these terms. This document may be translated into other languages for convenience, and you agree that
if there is any conflict between the English version of this document and any translation, the terms of the English
version of the Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of Arm Limited or its affiliates in
the EU and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/about/
trademark-usage-guidelines.php

Copyright © [2016-2018], Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

1 Document number 101458_1900_00

http://www.arm.com/about/trademark-usage-guidelines.php
http://www.arm.com/about/trademark-usage-guidelines.php

Arm C/C++ Compiler Reference Guide CONTENTS:

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this
document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

http://www.arm.com

Document number 101458_1900_00 2

http://www.arm.com

CHAPTER

ONE

GETTING STARTED

Arm C/C++ Compiler is an auto-vectorizing compiler for the 64-bit Arm®v8-A architecture. This getting started
tutorial shows you how to install, compile C/C++ code, use different optimization levels, and generate an executable.

The Arm C/C++ Compiler tool chain for the 64-bit Arm®v8-A architectureenables you to compile C/C++ code for
Arm®v8-A compatible platforms, with an advanced auto-vectorizer capable of taking advantage of SIMD features.

1.1 Getting started with Arm C/C++ Compiler

Arm C/C++ Compiler is an auto-vectorizing compiler for the 64-bit Arm®v8-A architecture, with optional support
for the Scalable Vector Extension (SVE). This tutorial shows how to compile and generate executables that will run
on any 64-bit Arm®v8-A architecture.

1.1.1 Installing Arm C/C++ Compiler

Refer to Help and tutorials for details on how to perform the installation on Linux.

1.1.2 Environment Configuration

Note: Full instructions on configuring your environment for Arm C/C++ Compiler are included in the installation
guide.

Your administrator should have already installed Arm C/C++ Compiler and made the environment module available.

To see which environment modules are available:

module avail

Note: You may need to configure the MODULEPATH environment variable to include the installation directory:

export MODULEPATH=$MODULEPATH:/opt/arm/modulefiles/

To configure your Linux environment to make Arm C/C++ Compiler available:

module load <architecture>/<linux_variant>/<linux_version>/suites/arm-compiler-for-
→˓hpc/<version>

3 Document number 101458_1900_00

https://developer.arm.com/products/software-development-tools/hpc/documentation

Arm C/C++ Compiler Reference Guide Chapter 1. Getting started

For example:

module load Generic-AArch64/SUSE/12/suites/arm-compiler-for-hpc/19.0

You can check your environment by examining the PATH variable. It should contain the appropriate bin directory
from /opt/arm, as installed in the previous section:

echo $PATH /opt/arm/arm-compiler-for-hpc-19.0_Generic-AArch64_SUSE-12_aarch64-linux/
→˓bin:...

You can also use the which command to check that the Arm C/C++ Compiler armclang command is available:

which armclang /opt/arm/arm-compiler-for-hpc-19.0_Generic-AArch64_SUSE-12_aarch64-
→˓linux/bin/armclang

Note: You might want to consider adding the module load command to your .profile to run it automatically
every time you log in.

1.1.3 Compiling and running a simple ‘Hello World’ program

This simple example illustrates how to compile and run a simple Hello World program.

1. Create a simple “Hello World” program and save it in a file. In our case, we have saved it in a file named hello.c.

/* Hello World */
#include <stdio.h>
int main()
{

printf("Hello World");
return 0;

}

2. To generate an executable binary, compile your program with Arm C/C++ Compiler.

armclang -o hello hello.c

3. Now you can run the generated binary hello as shown below:

./hello

In the following sections we discuss the available compiler options in more detail and, towards the end of this tutorial,
illustrate using them with a more advanced example.

1.1.4 Generating executable binaries from C and C++ code

To generate an executable binary, compile a program using:

armclang -o example1 example1.c

You can also specify multiple source files on a single line. Each source file is compiled individually and then linked
into a single executable binary:

Document number 101458_1900_00 4

Chapter 1. Getting started Arm C/C++ Compiler Reference Guide

armclang -o example1 example1a.c example1b.c

1.1.5 Compiling and linking object files as separate steps

To compile each of your source files individually into an object file, specify the -c (compile-only) option, and then
pass the resulting object files into another invocation of armclang to link them into an executable binary.

armclang -c -o example1a.o example1a.c
armclang -c -o example1b.o example1b.c
armclang -o example1 example1a.o example1b.o

1.1.6 Increasing the optimization level

To increase the optimization level, use the -Olevel option. The -O0 option is the lowest optimization level, while
-O3 is the highest. Arm C/C++ Compiler only performs auto-vectorization at -O2 and higher, and uses -O0 as the
default setting. The optimization flag can be specified when generating a binary, such as:

armclang -O3 -o example1 example1.c

The optimization flag can also be specified when generating an object file:

armclang -O3 -c -o example1a.o example1a.c
armclang -O3 -c -o example1b.o example1b.c

or when linking object files:

armclang -O3 -o example1 example1a.o example1b.o

1.1.7 Compiling and optimizing using CPU auto-detection

Arm C/C++ Compiler supports the use of the -mcpu=native option, for example:

armclang -O3 -mcpu=native -o example1 example1.c

This option enables the compiler to automatically detect the architecture and processor type of the CPU it is being run
on, and optimize accordingly.

This option supports a range of Arm®v8-A based SoCs, including ThunderX2.

Note: The optimization performed according to the auto-detected architecture and processor is independent of the
optimization level denoted by the -Olevel option.

1.1.8 Advanced example: Generating Arm assembly code from C and C++ code

Arm C/C++ Compiler can produce annotated assembly, and this is a good first step to see how the compiler vectorizes
loops.

5 Document number 101458_1900_00

Arm C/C++ Compiler Reference Guide Chapter 1. Getting started

Note: Different compiler options are required to make use of SVE functionality. If you are using SVE, please refer
to Compiling C/C++ code for Arm SVE architectures.

1.1.9 Example

The following C program subtracts corresponding elements in two arrays, writing the result to a third array. The three
arrays are declared using the restrict keyword, indicating to the compiler that they do not overlap in memory.

// example1.c
#define ARRAYSIZE 1024
int a[ARRAYSIZE];
int b[ARRAYSIZE];
int c[ARRAYSIZE];
void subtract_arrays(int *restrict a, int *restrict b, int *restrict c)
{

for (int i = 0; i < ARRAYSIZE; i++)
{

a[i] = b[i] - c[i];
}

}
int main()
{

subtract_arrays(a, b, c);
}

Compile the program as follows:

armclang -O1 -S -o example1.s example1.c

The flag -S is used to output assembly code.The output assembly code is saved as example1.s. The section of the
generated assembly language file containing the compiled subtract_arrays function appears as follows:

subtract_arrays: // @subtract_arrays
// BB#0:

mov x8, xzr
.LBB0_1: // =>This Inner Loop Header: Depth=1

ldr w9, [x1, x8]
ldr w10, [x2, x8]
sub w9, w9, w10
str w9, [x0, x8]
add x8, x8, #4 // =4
cmp x8, #1, lsl #12 // =4096
b.ne .LBB0_1

// BB#2:
ret

This code shows that the compiler has not performed any vectorization, because we specified the -O1 (low optimiza-
tion) option. Array elements are iterated over one at a time. Each array element is a 32-bit or 4-byte integer, so the
loop increments by 4 each time. The loop stops when it reaches the end of the array (1024 iterations * 4 bytes later).

1.1.10 Enable auto-vectorization

To enable auto-vectorization, increase the optimization level using the -Olevel option. The -O0 option is the
lowest optimization level, while -O3 is the highest. Arm C/C++ Compiler only performs auto-vectorization at -O2

Document number 101458_1900_00 6

https://developer.arm.com/products/software-development-tools/hpc/documentation/compiling-c-code-for-arm-sve-architectures

Chapter 1. Getting started Arm C/C++ Compiler Reference Guide

and higher:

armclang -O2 -S -o example1.s example1.c

The output assembly code is saved as example1.s. The section of the generated assembly language file containing
the compiled subtract_arrays function appears as follows:

subtract_arrays: // @subtract_arrays
// BB#0:

mov x8, xzr
add x9, x0, #16 // =16

.LBB0_1: // =>This Inner Loop Header: Depth=1
add x10, x1, x8
add x11, x2, x8
ldp q0, q1, [x10]
ldp q2, q3, [x11]
add x10, x9, x8
add x8, x8, #32 // =32
cmp x8, #1, lsl #12 // =4096
sub v0.4s, v0.4s, v2.4s
sub v1.4s, v1.4s, v3.4s
stp q0, q1, [x10, #-16]
b.ne .LBB0_1

// BB#2:
ret

This time, we can see that Arm C/C++ Compiler has done something different. SIMD (Single Instruction Multiple
Data) instructions and registers have been used to vectorize the code. Notice that the LDP instruction is used to
load array values into the 128-bit wide Q registers. Each vector instruction is operating on four array elements at a
time, and the code is using two sets of Q registers to double up and operate on eight array elements in each iteration.
Consequently each loop iteration moves through the array by 32 bytes (2 sets * 4 elements * 4 bytes) at a time.

1.1.11 Common compiler options

See armclang --help, Compiler options, and the LLVM documentation for more information about all supported
options.

-S

Outputs assembly code, rather than object code. Produces a text .s file containing annotated assembly
code.

-c

Performs the compilation step, but does not perform the link step. Produces an ELF object .o file. To
later link object files into an executable binary, run armclang again, passing in the object files.

-o file

Specifies the name of the output file.

-march=name[+[no]feature]

Targets an architecture profile, generating generic code that runs on any processor of that architecture. For
example -march=armv8-a+sve.

-mcpu=native

Enables the compiler to automatically detect the CPU it is being run on and optimize accordingly. This
supports a range of Arm®v8-A based SoCs, including ThunderX2.

7 Document number 101458_1900_00

Arm C/C++ Compiler Reference Guide Chapter 1. Getting started

-Olevel

Specifies the level of optimization to use when compiling source files. The default is -O0.

--help

Describes the most common options supported by Arm C/C++ Compiler. Also, use man armclang to
see more detailed descriptions of all the options.

--version

Displays version information.

1.1.12 Get help

For a list of all the supported options, use:

armclang --help

To see detailed descriptions of all supported options, use:

man armclang

For a list of command-line options, see Compiler options.

If you have problems and would like to contact our support team, get in touch:

Contact Arm Support

1.1.13 Related information

• Coding best practice for auto-vectorization.

• Optimizing C/C++ code with Arm SIMD.

• Using pragmas to control auto-vectorization.

• Compiler options.

Document number 101458_1900_00 8

https://developer.arm.com/products/software-development-tools/hpc/get-support
https://developer.arm.com/products/software-development-tools/hpc/documentation/coding-best-practice-for-auto-vectorization
https://developer.arm.com/products/software-development-tools/hpc/documentation/optimizing-c-code-with-arm-simd
https://developer.arm.com/products/software-development-tools/hpc/documentation/using-pragmas-to-control-auto-vectorization

CHAPTER

TWO

COMPILER OPTIONS

Command-line options supported by armclang and armclangc++ within Arm C/C++ Compiler.

The supported options are also available in the man pages in the tool. To view them, use:

man armclang

2.1 Actions

Options that control what action to perform on the input.

Table 1: Compiler actions
Option Description Usage
-E Only run the preprocessor. armclang -E
-S Only run preprocess and compilation steps. armclang -S
-c Only run preprocess, compile, and assemble

steps.
armclang -c

-fopenmp Enable OpenMP, and link in the OpenMP li-
brary libomp.

armclang -fopenmp

-fsyntax-only Show syntax errors but do not perform any
compilation.

armclang -fsyntax-only

2.2 File options

Options that specify input or output files.

Table 2: Compiler file options
Option Description Usage
-I<dir> Add directory to include search path. armclang -I<dir>
-include<file>
--include<file>

Include file before parsing. armclang -include
<file>
armclang --include
<file>

-o<file> Write output to <file>. armclang -o <file>

9 Document number 101458_1900_00

Arm C/C++ Compiler Reference Guide Chapter 2. Compiler options

2.3 Basic driver options

Options that affect basic functionality of the armclang driver.

Table 3: Compiler basic driver options
Option Description Usage
--gcctoolchain=<arg> Use the gcc toolchain at the given

directory.
armclang
--gcc-toolchain=<arg>

-help
--help

Display available options. armclang -help
armclang --help

--help-hidden Display hidden options. Only use
these options if advised to do so by
your Arm representative.

armclang --help-hidden

-v Show commands to run and use
verbose output.

armclang -v

--version
--vsn

Show the version number and some
other basic information about the
compiler.

armclang --version
armclang --vsn

2.4 Optimization options

Options that control optimization behavior and performance.

Table 4: Compiler optimization options
Option Description Usage
-O0 Minimum optimization for the per-

formance of the compiled binary.
Turns off most optimizations.
When debugging is enabled, this
option generates code that directly
corresponds to the source code.
Therefore, this might result in a
significantly larger image.
This is the default optimization
level.

armclang -O0

-O1 Restricted optimization.
When debugging is enabled, this
option gives the best debug view
for the trade-off between image
size, performance, and debug.

armclang -O1

-O2 High optimization.
When debugging is enabled, the de-
bug view might be less satisfactory
because the mapping of object code
to source code is not always clear.
The compiler might perform opti-
mizations that cannot be described
by debug information.

armclang -O2

Continued on next page

Document number 101458_1900_00 10

Chapter 2. Compiler options Arm C/C++ Compiler Reference Guide

Table 4 – continued from previous page
Option Description Usage
-O3 Very high optimization.

When debugging is enabled, this
option typically gives a poor debug
view.
Arm recommends debugging at
lower optimization levels.

armclang -O3

-Ofast Enables all the optimizations from
level 3 including those performed
with the ffpmode=fast armclang
option. This level also performs
other aggressive optimizations that
might violate strict compliance
with language standards.

armclang -Ofast

-ffast-math Allow aggressive, lossy floating-
point optimizations.

armclang -ffast-math

-ffinite-math-only Enable optimizations that ignore
the possibility of NaN and +/Inf.

armclang
-ffinite-math-only

-ffp-contract={fast | on | off} Controls when the compiler is per-
mitted to form fused floating-point
operations (such as FMAs).
fast: Always, except when us-
ing -O0 to set the optimization
level to 0.
on: Only in the presence of the
FP_CONTRACT pragma (default).
Off: Never.

armclang
-ffp-contract={fast
on | off}

-finline
-fno-inline

Enable/disable inlining (enabled by
default).

armclang -finline (enable)
armclang -fno-inline (dis-
able)

-fstrict-aliasing Tells the compiler to adhere to the
aliasing rules defined in the source
language.
In some circumstances, this flag al-
lows the compiler to assume that
pointers to different types do not
alias. Enabled by default when us-
ing -Ofast.

armclang
-fstrict-aliasing

-funsafe-math-optimizations
-fno-unsafe-math-optimizations

This option enables reassociation
and reciprocal math optimizations,
and does not honor trapping nor
signed zero.

armclang -funsafe-math-
optimizations (enable)
armclang
-fno-unsafe-math-
optimizations (disable)

-fvectorize
-fno-vectorize

Enable/disable loop vectorization
(enabled when using -O2 to set the
optimization level to 2).

armclang -fvectorize (en-
able)
armclang -fno-vectorize
(disable)

-mcpu=<arg> Select which CPU architecture
to optimize for -mcpu=native
causes the compiler to auto-detect
the CPU architecture from the build
computer.

armclang -mcpu=<arg>

11 Document number 101458_1900_00

Arm C/C++ Compiler Reference Guide Chapter 2. Compiler options

2.5 Workload compilation options

Options that affect the way C language workloads compile.

Table 5: Compiler workload compilation options
Option Description Usage
-fsimdmath
-fno-simdmath

Enable use of vectorized libm library (libsimd-
math) to aid vectorization of loops containing
calls to libm.

armclang -fsimdmath
armclang -fno-simdmath

-std=<arg> Language standard to compile for. The list of
valid standards depends on the input language,
but adding std=<arg> to a build line will
generate an error message listing valid choices.

armclang -std=<arg>
armclang --std=<arg>

2.6 Development options

Options that support code development.

Table 6: Compiler development options
Option Description Usage
-fcolor-diagnostics
-fno-color-diagnostics

Use colors in diagnostics. armclang
-fcolor-diagnostics
armclang
-fno-color-diagnostics

-g Generate source-level debug infor-
mation.

armclang -g

2.7 Warning options

Options that control the behavior of warnings.

Table 7: Compiler warning options
Option Description Usage
-W<warning> Enable the specified warning. Similarly, warn-

ings can be disabled with -Wno-<warning>.
armclang -W<warning>

-Wall Enable all warnings. armclang -Wall
-w Suppress all warnings. armclang -w

2.8 Pre-processor options

Options that control pre-processor behavior.

Document number 101458_1900_00 12

Chapter 2. Compiler options Arm C/C++ Compiler Reference Guide

Table 8: Compiler pre-processor options
Option Description Usage
-D<macro>=<value> Define <macro> to <value> (or 1 if

<value> omitted).
armclang
-D<macro>=<value>

-U<macro> Undefine macro <macro>. armclang -U<macro>

2.9 Linker options

Options that control linking behavior and performance.

Table 9: Compiler linker options
Option Description Usage
-Wl,<arg>,<arg2>... Pass the comma separated arguments in <arg>

to the linker.
armclang -Wl,<arg>,
<arg2>...

-Xlinker <arg> Pass <arg> to the linker. armclang -Xlinker <arg>
-l<library> Search for the library named <library>

when linking.
armclang -l<library>

-larmflang At link time, use this option to use the default
Fortran libarmflang runtime library for both se-
rial and parallel (OpenMP) Fortran workloads.

Note:
• This option is set by default when linking

using armflang.
• You need to explicitly include this op-

tion if you are linking with armclang
instead of armflang at link time.

• This option only applies to link time op-
erations.

armclang -larmflang
See notes in description.

Continued on next page

13 Document number 101458_1900_00

Arm C/C++ Compiler Reference Guide Chapter 2. Compiler options

Table 9 – continued from previous page
Option Description Usage
-larmflang-nomp At link time, use this option to avoid linking

against the OpenMP Fortran runtime library.

Note:
• Enabled by default when compiling

and linking using armflang with the
-fno-openmp option.

• You need to explicitly include this op-
tion if you are linking with armclang
instead of armflang at link time.

• Should not be used when your code has
been compiled using armflang with
the -lomp or -fopenmp options.

• Use this option with care. When using
this option, do not link to any OpenMP-
utilizing Fortran runtime libraries in your
code.

• This option only applies to link time op-
erations.

armclang
-larmflang-nomp
See notes in description.

-shared
--shared

Causes library dependencies to be resolved at
runtime by the loader. This is the inverse of
static. If both options are given, all but the
last option will be ignored.

armclang -shared
armclang --shared

-static
--static

Causes library dependencies to be resolved at
link time. This is the inverse of shared. If
both options are given, all but the last option is
ignored.

armclang -static
armclang --static

To link serial or parallel Fortran workloads using armclang instead of armflang, include the -larmflang
option to link with the default Fortran runtime library for serial and parallel Fortran workloads. You also need to pass
any options required to link using the required mathematical routines for your code.

To statically link, in addition to passing -larmflang and the mathematical routine options, you also need to pass:

• -static

• -lomp

• -lrt

To link serial or parallel Fortran workloads using armclang‘ instead of armflang, without linking against the
OpenMP runtime libraries, instead pass -armflang-nomp, at link time. For example, pass:

• -larmflang-nomp

• Any mathematical routine options, for example: -lm or -lamath.

Again, to statically link, in addition to -larmflang-nomp and the mathematical routine options, you also need to
pass:

• -static

• -lrt

Document number 101458_1900_00 14

Chapter 2. Compiler options Arm C/C++ Compiler Reference Guide

Warning:

• Do not link against any OpenMP-utlizing Fortran runtime libraries when using this option.

• All lockings and thread local storage will be disabled.

• Arm does not recommend using the -larmflang-nomp option for typical workloads. Use this option
with caution..

Note: The -lompstub option (for linking against libompstub) might still be needed if you have imported omp_lib
in your Fortran code but not compiled with -fopenmp.

15 Document number 101458_1900_00

Arm C/C++ Compiler Reference Guide Chapter 2. Compiler options

Document number 101458_1900_00 16

CHAPTER

THREE

CODING BEST PRACTICE

Topics about best practice with writing C/C++ code for Arm C/C++ Compiler.

3.1 Coding best practice for auto-vectorization

To encourage the Arm C/C++ Compiler to produce optimal auto-vectorized output, code can be structured and hints
can be provided to inform the compiler of program features that it would otherwise not be able to determine. This
allows the compiler to produce optimal auto-vectorized output.

3.1.1 Use the restrict keyword if appropriate when using C/C++ code

The C99 restrict keyword (or the non-standard C/C++ __restrict__ keyword) indicates to the compiler that
a specified pointer does not alias with any other pointers for the lifetime of that pointer. This guidance allows the
compiler to vectorize loops more aggressively, since it becomes possible to prove that loop iterations are independent
and can be executed in parallel.

Note: C code may use either the restrict or __restrict__ keywords. C++ code must use only the
__restrict__ keyword.

If these keywords are used erroneously (that is, if another pointer is used to access the same memory) then the behavior
is undefined. It is possible that the results of optimized code will differ from that of its unoptimized equivalent.

3.1.2 Use pragmas

The compiler supports pragmas that you can use to explicitly indicate that loop iterations are completely independent
from each other.

3.1.3 Use < to construct loops

Where possible, use < conditions rather than <= or != when constructing loops. This helps the compiler to prove that
a loop terminates before the index variable wraps.

The compiler might also be able to perform more loop optimizations if signed integers are used, because the C standard
allows for undefined behavior in the case of signed integer overflow. This is not the case for unsigned integers.

17 Document number 101458_1900_00

https://developer.arm.com/products/software-development-tools/hpc/documentation/using-pragmas-to-control-auto-vectorization

Arm C/C++ Compiler Reference Guide Chapter 3. Coding best practice

3.1.4 Use the -ffast-math option if it is safe to do so

This can significantly improve the performance of generated code, but it does so at the expense of strict compliance
with IEEE and ISO standards for mathematical operations. Ensure that your algorithms are tolerant of potential
inaccuracies that could be introduced by the use of this option.

3.2 Using pragmas to control auto-vectorization

Arm C/C++ Compiler supports pragmas to both encourage and suppress auto-vectorization. These pragmas make use
of, and extend, the pragma clang loop directives.

For more information about the pragma clang loop directives, see Auto-Vectorization in LLVM, at llvm.org.

Note: In all the following cases, the pragma only affects the loop statement immediately following it. If your code
contains multiple nested loops, you must insert a pragma before each one in order to affect all the loops in the nest.

3.2.1 Encouraging auto-vectorization with pragmas

If SVE auto-vectorization is enabled with -O2 or above, then by default it examines all loops.

If static analysis of a loop indicates that it might contain dependencies that hinder parallelism, auto-vectorization might
not be performed. If you know that these dependencies do not hinder vectorization, you can use the vectorize
directive to indicate this to the compiler by placing the following line immediately before the loop:

This pragma indicates to the compiler that the following loop contains no data dependencies between loop iterations
that would prevent vectorization. The compiler might be able to use this information to vectorize a loop, where it
would not typically be possible.

Note: Use of this pragma does not guarantee auto-vectorization. There might be other reasons why auto-vectorization
is not possible or worthwhile for a particular loop.

Ensure that you only use this pragma when it is safe to do so. Using this pragma when there are data dependencies
between loop iterations may result in incorrect behavior.

For example, consider the following loop, that processes an array indices. Each element in indices specifies the
index into a larger histogram array. The referenced element in the histogram array is incremented.

void update(int *restrict histogram, int *restrict indices, int count)
{

for (int i = 0; i < count; i++)
{
histogram[indices[i]]++;

}
}

The compiler is unable to vectorize this loop, because the same index could appear more than once in the indices
array. Therefore a vectorized version of the algorithm would lose some of the increment operations if two identical
indices are processed in the same vector load/increment/store sequence.

However, if the programmer knows that the indices array only ever contains unique elements, then it is useful to be
able to force the compiler to vectorize this loop. This is accomplished by placing the pragma before the loop:

Document number 101458_1900_00 18

http://llvm.org/docs/Vectorizers.html#pragma-loop-hint-directives

Chapter 3. Coding best practice Arm C/C++ Compiler Reference Guide

void update_unique(int *restrict histogram, int *restrict indices, int count)
{

#pragma clang loop vectorize(assume_safety)
for (int i = 0; i < count; i++)
{
histogram[indices[i]]++;

}
}

3.2.2 Suppressing auto-vectorization with pragmas

If SVE auto-vectorization is not required for a specific loop, you can disable it or restrict it to only use Arm SIMD
(NEON) instructions.

You can suppress auto-vectorization on a specific loop by adding #pragma clang loop
vectorize(disable) immediately before the loop. In this example, a loop that would be trivially vector-
ized by the compiler is ignored:

void combine_arrays(int *restrict a, int *restrict b, int count)
{

#pragma clang loop vectorize(disable)
for (int i = 0; i < count; i++)
{
a[i] = b[i] + 1;

}
}

You can also suppress SVE instructions while allowing Arm NEON instructions by adding a vectorize_style
hint:

vectorize_style(fixed_width) Prefer fixed-width vectorization, resulting in Arm NEON instructions. For
a loop with vectorize_style(fixed_width), the compiler prefers to generate Arm NEON instructions,
though SVE instructions may still be used with a fixed-width predicate (such as gather loads or scatter stores).

vectorize_style(scaled_width) Prefer scaled-width vectorization, resulting in SVE instructions. For a
loop with vectorize_style(scaled_width), the compiler prefers SVE instructions but can choose to
generate Arm NEON instructions or not vectorize at all. This is the default.

For example:

void combine_arrays(int *restrict a, int *restrict b, int count)
{

#pragma clang loop vectorize(enable) vectorize_style(fixed_width)
for (int i = 0; i < count; i++)
{
a[i] = b[i] + 1;

}
}

3.2.3 Unrolling and interleaving with pragmas

To enable better use of processor resources, loops can be duplicated to reduce the loop iteration count and increase the
instruction-level parallelism (ILP). For scalar loops, the method is called unrolling. For vectorizable loops, interleaving
is performed.

19 Document number 101458_1900_00

Arm C/C++ Compiler Reference Guide Chapter 3. Coding best practice

3.2.4 Unrolling

Unrolling a scalar loop, for example:

for (int i = 0; i < 64; i++) {
data[i] = input[i] * other[i];

}

by a factor of two, gives:

for (int i = 0; i < 32; i +=2) {
data[i] = input[i] * other[i];
data[i+1] = input[i+1] * other[i+1];

}

For this example, two is the unrolling factor (UF). To unroll to the internal limit, the following pragma is inserted
before the loop:

#pragma clang loop unroll(enable)

To unroll to a user-defined UF, instead insert:

#pragma clang loop unroll_count(_value_)

3.2.5 Interleaving

To interleave, an interleaving factor (IF) is used instead of a UF. To accurately generate interleaved code, the loop
vectorizer models the cost on the register pressure and the generated code size. When a loop is vectorized, the
interleaved code can be more optimal than unrolled code.

Like the UF, the IF can be the internal limit or a user-defined integer. To interleave to the internal limit, the following
pragma is inserted before the loop:

#pragma clang loop interleave(enable)

To interleave to a user-defined IF, instead insert:

#pragma clang loop interleave_count(_value_)

Note: Interleaving performed on a scalar loop will not unroll the loop correctly.

3.3 Optimizing C/C++ code with Arm SIMD (NEON)

The Arm SIMD (or Advanced SIMD) architecture, its associated implementations, and supporting software, are com-
monly referred to as NEON technology. There are SIMD instruction sets for both AArch32 (equivalent to the Arm®v7
instructions) and for AArch64. Both can be used to significantly accelerate repetitive operations on the large data sets
commonly encountered with High Performance Computing applications.

Arm SIMD instructions perform “Packed SIMD” processing, packing multiple lanes of data into large registers then
performing the same operation across all data lanes.

For example, consider the following SIMD instruction:

Document number 101458_1900_00 20

Chapter 3. Coding best practice Arm C/C++ Compiler Reference Guide

ADD V0.2D, V1.2D, V2.2D

This instruction specifies that an addition (ADD) operation is performed on two 64-bit data lanes (2D). D specifies the
width of the data lane (doubleword, or 64 bits) and 2 specifies that two lanes are used (that is the full 128-bit register).
Each lane in V1 is added to the corresponding lane in V2 and the result stored in V0. Each lane is added separately.
There are no carries between the lanes.

3.3.1 Coding with SIMD

There are a number of different methods you can use to take advantage of SIMD instructions in your code:

• Let the compiler auto-vectorize your code for you.

Arm C/C++ Compiler automatically vectorizes your code at higher optimization levels (-O2 and higher). The
compiler identifies appropriate vectorization opportunities in your code and uses SIMD instructions where ap-
propriate.

At optimization level -O1 you can use the -fvectorize option to enable auto-vectorization.

At the lowest optimization level -O0 auto-vectorization is never performed, even if you specify -fvectorize.

• Use intrinsics directly in your C code.

Intrinsics are C or C++ pseudo-function calls that the compiler replaces with the appropriate SIMD instructions.
This lets you use the data types and operations available in the SIMD implementation, while allowing the
compiler to handle instruction scheduling and register allocation. These intrinsics are defined in the language
extensions document.

• Write SIMD assembly code.

Although it is technically possible to optimize SIMD assembly by hand, this can be very difficult because
the pipeline and memory access timings have complex inter-dependencies. Instead of hand-written assembly,
|gCompanyNameShort|strongly recommends the use of intrinsics.

3.3.2 Related information

Further information about NEON is available as follows:

• The Arm NEON Programmer’s Guide provides a guide for programmers to effectively use SIMD technology.

• The Arm Developer website provides an overview of NEON technology.

• The Arm Architecture Reference Manual Armv8, for Armv8-A architecture profile provides information about
the SIMD instructions.

• The Arm C Language Extensions document provides information about the available SIMD intrinsics.

3.4 Note about building Position Independent Code (PIC) on AArch64

3.4.1 Issue

Failure can occur at the linking stage when building Position-Independent Code (PIC) on AArch64 using the lower-
case -fpic compiler flag with GCC compilers (gfortran, gcc, g++), in preference to using the upper-case -fPIC
flag.

21 Document number 101458_1900_00

https://developer.arm.com/docs/ihi0053/latest
https://developer.arm.com/docs/ihi0053/latest
https://developer.arm.com/docs/den0018/latest
https://developer.arm.com
https://developer.arm.com/technologies/neon
https://developer.arm.com/products/architecture/a-profile/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ihi0053/latest

Arm C/C++ Compiler Reference Guide Chapter 3. Coding best practice

Note:

• This issue does not occur when using the -fpic flag with Arm C/C++ Compiler (armclang/armclang++),
and it also does not occur on x86_64 because -fpic operates the same as -fPIC.

• PIC is code which is suitable for shared libraries.

3.4.2 Cause

Using the -fpic compiler flag with GCC compilers on AArch64 causes the compiler to generate one less instruction
per address computation in the code, and can provide code size and performance benefits. However, it also sets a
limit of 32k for the Global Offset Table (GOT), and the build can fail at the executable linking stage because the GOT
overflows.

Note: When building PIC with Arm C/C++ Compiler on AArch64, or building PIC on x86_64, -fpic does not set
a limit for the GOT, and this issue does not occur.

3.4.3 Solution

Consider using the -fPIC compiler flag with GCC compilers on AArch64, because it ensures that the size of the GOT
for a dynamically linked executable will be large enough to allow the entries to be resolved by the dynamic loader.

Document number 101458_1900_00 22

CHAPTER

FOUR

STANDARDS SUPPORT

The support status of Arm C/C++ Compiler with the OpenMP standards.

4.1 OpenMP 4.0

The table describes which OpenMP 4.0 features are supported by Arm C/C++ Compiler.

OpenMP 4.0 Feature Support
C/C++ Array Sections Yes
Thread affinity policies Yes
“simd” construct Yes
“declare simd” construct No
Device constructs No
Task dependencies Yes
“taskgroup” construct Yes
User defined reductions Yes
Atomic capture swap Yes
Atomic seq_cst Yes
Cancellation Yes
OMP_DISPLAY_ENV Yes

4.2 OpenMP 4.5

The table describes which OpenMP 4.5 features are supported by Arm C/C++ Compiler.

23 Document number 101458_1900_00

Arm C/C++ Compiler Reference Guide Chapter 4. Standards support

OpenMP 4.5 Feature Support
doacross loop nests with ordered Yes
“linear” clause on loop construct Yes
“simdlen” clause on simd construct Yes
Task priorities Yes
“taskloop” construct Yes
Extensions to device support No
“if” clause for combined constructs Yes
“hint” clause for critical construct Yes
“source” and “sink” dependence types Yes
C++ Reference types in data sharing attribute clauses Yes
Reductions on C/C++ array sections Yes
“ref”, “val”, “uval” modifiers for linear clause Yes
Thread affinity query functions Yes
Hints for lock API Yes

Document number 101458_1900_00 24

CHAPTER

FIVE

OPTIMIZATION REMARKS

This short tutorial describes how to enable and use optimization remarks with Arm C/C++ Compiler.

5.1 Using Optimization remarks

This short tutorial describes how to enable and use optimization remarks with Arm C/C++ Compiler.

5.1.1 Overview

Optimization remarks provide you with information about the choices made by the compiler. They can be used to see
which code has been inlined or to understand why a loop has not been vectorized.

By default, Arm C/C++ Compiler prints compilation information to stderr. Using optimization remarks, optimization
information is printed to the terminal or can be piped to an output file.

5.1.2 Enabling optimization remarks

To enable optimization remarks, pass the following -Rpass options to armclang:

Flag Description
-Rpass=<regexp> Request information about what Arm C/C++ Compiler optimized
-Rpass-analysis=<regexp> Request information about what Arm C/C++ Compiler optimized
-Rpass-missed=<regexp> Request information about what Arm C/C++ Compiler optimized

For each flag, replace <regexp> with an expression for the type of remarks you wish to view.

Recommended <regexp> queries are:

• -Rpass=\(loop-vectorize\|inline\)

• -Rpass-missed=\(loop-vectorize\|inline\)

• -Rpass-analysis=\(loop-vectorize\|inline\)

where loop-vectorizewill filter remarks regarding vectorized loops, and inline for remarks regarding inlining.

To search for all remarks, use the expression .*. However, use this expression with care because a lot of information
may be printed depending on the size of your code and the level of optimization performed.

25 Document number 101458_1900_00

Arm C/C++ Compiler Reference Guide Chapter 5. Optimization remarks

5.1.3 C/C++ example using armclang

To pass the -Rpass and -Rpass-analysis flags to armclang, use:

armclang -O3 -Rpass=.* -Rpass-analysis=.* example.c

which can give the following example output in the terminal:

example.c:8:18: remark: hoisting zext [-Rpass=licm]
for (int i=0;i<K; i++)
^

example.c:8:4: remark: vectorized loop (vectorization width: 4, interleaved count: 2)
→˓[-Rpass=loop-vectorize]

for (int i=0;i<K; i++)
^

example.c:7:1: remark: 28 instructions in function [-Rpass-analysis=asm-printer]
void foo(int K) {
^

5.1.4 Piping optimization remarks to a file

To pipe loop vectorization optimization remarks to a file called vecreport.txt, use:

armclang -O3 -Rpass=loop-vectorize -Rpass-analysis=loop-vectorize -Rpass-missed=loop-
→˓vectorize example.c 2> vecreport.txt

5.1.5 Related information

• More about Arm C/C++ Compiler.

Document number 101458_1900_00 26

https://developer.arm.com/products/software-development-tools/hpc/arm-cpp-compiler

CHAPTER

SIX

VECTOR MATH ROUTINES

Describes how to use the libsimdmath library which contains the SIMD implementation of the routines provided
by libm.

6.1 Vector math routines in Arm C/C++ Compiler

Arm C/C++ Compiler supports the vectorization of loops within C and C++ workloads that invoke the math routines
from libm.

Any C loop using functions from <math.h> (or from <cmath> in the case of C++) can be vectorized by invoking the
compiler with the option -fsimdmath, together with the usual options that are needed to activate the auto-vectorizer
(optimization level -O2 and above).

6.1.1 Examples

The following examples show loops with math function calls that can be vectorized by invoking the compiler with:

armclang -fsimdmath -c -O2 source.c

C example with loop invoking sin

/* C code example: source.c */
#include <math.h>

void do_something(double * a, double * b, unsigned N) {
for (unsigned i = 0; i < N; ++i) {
/* some computation */
a[i] = sin(b[i]);
/* some computation */

}
}

C++ example with loop invoking std::pow

// C++ code example: source.cpp
#include <cmath>
void do_something(float * a, float * b, unsigned N) {

for (unsigned i = 0; i < N; ++i) {
// some computation
a[i] = std::pow(a[i], b[i]);
// some computation

}
}

27 Document number 101458_1900_00

https://developer.arm.com/products/software-development-tools/hpc/arm-cpp-compiler

Arm C/C++ Compiler Reference Guide Chapter 6. Vector math routines

6.1.2 How it works

Arm C/C++ Compiler contains libsimdmath, a library with SIMD implementations of the routines provided by
libm, along with a math.h file that declares the availability of these SIMD functions to the compiler, using the
OpenMP #pragma omp declare simd directive.

During loop vectorization, the compiler is aware of these vectorized routines, and can replace a call to a scalar function
(for example a double-precision call to sin) with a call to a libsimdmath function that takes a vector of double
precision arguments, and returns a result vector of doubles.

The libsimdmath library is built using code based on SLEEF, an open source math library available from
the SLEEF website.

A future release of Arm C/C++ Compiler will describe a workflow to allow users to declare and link against their own
vectorized routines, allowing them to be used in auto-vectorized code.

6.1.3 Limitations

This is an experimental feature which can lead to performance degradations in some cases. We encourage users to
test the applicability of this feature on their non-production code, and will address any possible inefficiency in a future
release.

Contact Arm Support

6.1.4 Related information

• Get the SLEEF library from the SLEEF website.

• Vector function ABI specification for AArch64.

• More about Arm C/C++ Compiler.

• Help and tutorials.

Document number 101458_1900_00 28

http://sleef.org/
https://developer.arm.com/products/software-development-tools/hpc/get-support
http://sleef.org/
https://developer.arm.com/products/software-development-tools/hpc/arm-compiler-for-hpc/vector-function-abi
https://developer.arm.com/products/software-development-tools/hpc/arm-cpp-compiler
https://developer.arm.com/products/software-development-tools/hpc/documentation

	Arm_CPP_Compiler_Reference_101458_1900_00_en_pre.pdf
	Getting started
	Getting started with Arm C/C++ Compiler
	Installing Arm C/C++ Compiler
	Environment Configuration
	Compiling and running a simple ‘Hello World’ program
	Generating executable binaries from C and C++ code
	Compiling and linking object files as separate steps
	Increasing the optimization level
	Compiling and optimizing using CPU auto-detection
	Advanced example: Generating Arm assembly code from C and C++ code
	Example
	Enable auto-vectorization
	Common compiler options
	Get help
	Related information

	Compiler options
	Actions
	File options
	Basic driver options
	Optimization options
	Workload compilation options
	Development options
	Warning options
	Pre-processor options
	Linker options

	Coding best practice
	Coding best practice for auto-vectorization
	Use the restrict keyword if appropriate when using C/C++ code
	Use pragmas
	Use < to construct loops
	Use the -ffast-math option if it is safe to do so

	Using pragmas to control auto-vectorization
	Encouraging auto-vectorization with pragmas
	Suppressing auto-vectorization with pragmas
	Unrolling and interleaving with pragmas
	Unrolling
	Interleaving

	Optimizing C/C++ code with Arm SIMD (NEON)
	Coding with SIMD
	Related information

	Note about building Position Independent Code (PIC) on AArch64
	Issue
	Cause
	Solution

	Standards support
	OpenMP 4.0
	OpenMP 4.5

	Optimization remarks
	Using Optimization remarks
	Overview
	Enabling optimization remarks
	C/C++ example using armclang
	Piping optimization remarks to a file
	Related information

	Vector math routines
	Vector math routines in Arm C/C++ Compiler
	Examples
	How it works
	Limitations
	Related information

