
Cortex-R8 SystemC Cycle Model
Version 10.0

User Guide

Copyright © 2018 Arm Limited or its affiliates. All rights reserved.
101391_1000_00_en

Cortex-R8 SystemC Cycle Model
User Guide
Copyright © 2018 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

1000-00 29 August 2018 Non-Confidential First release

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/
trademarks.

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

 Cortex-R8 SystemC Cycle Model

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2
Non-Confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

http://www.arm.com

 Cortex-R8 SystemC Cycle Model

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3
Non-Confidential

http://www.arm.com

Contents
Cortex-R8 SystemC Cycle Model User Guide

Preface
About this book 7

Chapter 1 Introduction
1.1 Functionality of the SystemC Cycle Model .. 1-10
1.2 Prerequisites to using SystemC Cycle Models .. 1-11
1.3 Supported platforms, compilers, and simulators 1-12
1.4 Package contents .. 1-13

Chapter 2 Using SystemC Cycle Models
2.1 Connecting model ports 2-15
2.2 Resetting the SystemC Cycle Model 2-16
2.3 Setting model parameters 2-17
2.4 Dumping waveforms .. 2-18
2.5 Loading TCMs 2-19
2.6 Configuring PMU events .. 2-20
2.7 Configuring TARMAC trace 2-23
2.8 Working with the SCX framework .. 2-24
2.9 Using a SystemC model in your own design 2-25

Chapter 3 Working with SystemC CPAKs
3.1 Introduction to Arm® CPAKs 3-27
3.2 Getting started with CPAKs 3-28
3.3 Working with Cycle Models and CPAKs .. 3-30

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4
Non-Confidential

3.4 Building and running CPAK simulations 3-34

Chapter 4 Debugging SystemC Cycle Models with DS-5
4.1 Prerequisites to debugging .. 4-36
4.2 Supported debug features 4-37
4.3 Restrictions and limitations .. 4-39
4.4 Enabling DS-5 for use with SystemC Cycle Models .. 4-40
4.5 CADI RemoteConnection parameters 4-47
4.6 Multicore debugging 4-48
4.7 Changing the timeout setting 4-49

Chapter 5 SystemC Export API function reference
5.1 scx::scx_initialize 5-51
5.2 scx::scx_load_application .. 5-52
5.3 scx::scx_set_parameter 5-53
5.4 scx::scx_get_parameter 5-54
5.5 scx::scx_get_parameter_list .. 5-55
5.6 scx::scx_cpulimit .. 5-56
5.7 scx::scx_timelimit 5-57
5.8 scx::scx_parse_and_configure .. 5-58
5.9 scx::scx_print_statistics 5-62

Appendix A Migrating from previous SystemC Cycle Model versions
A.1 Migrating from previous versions Appx-A-64

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 5
Non-Confidential

Preface

This preface introduces the Cortex-R8 SystemC Cycle Model User Guide.

It contains the following:
• About this book on page 7.

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 6
Non-Confidential

 About this book
This guide describes how to integrate the Cortex®-R8 SystemC Cycle Model into a SystemC design and
simulation environment.

 Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
This section introduces the Arm Cortex®-R8 SystemC Cycle Model.

Chapter 2 Using SystemC Cycle Models
This section describes how to work with Arm SystemC Cycle Models, including connecting ports,
working with the API, and incorporating models in your design.

Chapter 3 Working with SystemC CPAKs
This section introduces SystemC CPAKs, describes how to modify the CPAK test bench, and
explains how to add a model to the CPAK.

Chapter 4 Debugging SystemC Cycle Models with DS-5
This section describes how to connect the Arm Development Studio 5 (DS-5) Debugger with Arm
Cortex-R8 SystemC Cycle Models in a CPAK system.

Chapter 5 SystemC Export API function reference
This section describes the functions of the SystemC eXport (SCX) API that are supported by
SystemC Cycle Models. Each description of a class or function includes the C++ declaration and
the use constraints.

Appendix A Migrating from previous SystemC Cycle Model versions
This section contains instructions specific to upgrading from a previous verison of SystemC Cycle
Models to version 10.0.

 Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

 Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

 Preface
 About this book

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 7
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Feedback

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Cortex-R8 SystemC Cycle Model User Guide.
• The number 101391_1000_00_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
 Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Other information

• Arm® Developer.
• Arm® Information Center.
• Arm® Technical Support Knowledge Articles.
• Technical Support.
• Arm® Glossary.

 Preface
 About this book

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 8
Non-Confidential

mailto:errata@arm.com
https://developer.arm.com/
http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/topic/com.arm.doc.faqs
http://www.arm.com/support/technical-support
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Chapter 1
Introduction

This section introduces the Arm Cortex®-R8 SystemC Cycle Model.

Arm SystemC Cycle Models are compiled directly from RTL code. The SystemC model wrapper is
provided in source form, which enables you to compile for any SystemC 2.3.1-compliant simulator. You
can use SystemC Cycle Models within an Arm Performance Analysis Kit (CPAK) or integrate them
directly into any IEEE 1666-compliant SystemC environment.

It contains the following sections:
• 1.1 Functionality of the SystemC Cycle Model on page 1-10.
• 1.2 Prerequisites to using SystemC Cycle Models on page 1-11.
• 1.3 Supported platforms, compilers, and simulators on page 1-12.
• 1.4 Package contents on page 1-13.

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 1-9
Non-Confidential

1.1 Functionality of the SystemC Cycle Model
The Arm Cortex-R8 SystemC Cycle Model simulates the Cortex-R8 MPCore processor.

Supported functionality
This section summarizes the functionality of the Cycle Model compared to that of the hardware and
describes the performance and accuracy of the Cycle Model. The Cycle Model supports:
• Configurations of up to four CPUs.
• Configurable number of interrupts (0 to 480 in increments of 32).
• Single or dual AXI master port.
• Access to Tightly Couple Memory (TCM) via slave port.
• Variable ICache and DCache sizes.
• Variable ITCM and DTCM sizes.
• Accelerator Coherency Port (ACP) and ACP bridge with configurable ID size.
• 12, 16, 20, or 24 Memory Protection Unit (MPU) regions.
• Floating Point Unit (FPU).
• ETM interface, including register slice between the processor and ETM interface.
• Fast Peripheral Port (FPP).
• Addition of one latency cycle to ITCM data read.
• Clock gating.

Unsupported hardware features
The following features of the Cortex-R8 hardware are not implemented in this release of the Cortex-R8
Cycle Model:
• Semihosting.
• Split-lock mode.
• Error Correcting Code (ECC) on RAM blocks and buses.
• Memory Built-In Self Test (MBIST) interface.
• Memory Reconstruction Port (MRP).
• Use of Synopsys DesignWare library blocks rather than the Arm equivalents.
• Configurable size for Branch Target Address Cache (BTAC). The default is 512.
• Configurable size of the PREDictor (PRED) RAM. The default is 4096.
• Support for additional signals to control power (required for UPF).

Additional features for Cycle Model usability
To enhance usability, the following features have been added to the Cycle Model, which do not exist in
the Cortex-R8 hardware:
• Waveform dumping, including dumping of TCM memories. See 2.4 Dumping waveforms

on page 2-18.
• Support for viewing register values. See 4.2.1 Supported registers on page 4-37 for a list of the

registers exposed on the Cycle Model.
• Support for debug view of internal and external memory contents. See 4.2.2 Supported memory views

on page 4-38 for information.
• Support for debug view of disassembly data. See your debugger documentation for information about

accesing disassembly data.

1 Introduction
1.1 Functionality of the SystemC Cycle Model

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 1-10
Non-Confidential

1.2 Prerequisites to using SystemC Cycle Models
Review the following prerequisites to using Arm SystemC Cycle Models:

• Cycle Model SystemC Runtime. The Cycle Model SystemC Runtime installer includes:
— Fast Models Runtime. This is required for functions related to setting parameters and debugging.
— Cycle Model Studio Runtime. This is required for simulation and recompilation.

See the Cycle Model SystemC Runtime Installation Guide (101146) for more information.
• You must have a SystemC environment configured. See the Cycle Model SystemC Runtime

Installation Guide (101146) for more information.
• CPAKs may have additional prerequisites. If you are running an Arm CPAK, see 3.1 Introduction to

Arm® CPAKs on page 3-27.

Arm recommends familiarity with the Fast Models SystemC Export feature with Multiple Instantiation
(MI) support. SystemC Cycle Models support a subset of the SystemC eXport (SCX) API functions
(these are provided by Fast Models Exported Virtual Subsystems (EVSs)). See the Fast Models User
Guide (100965) for more information.

 Note

If you are updating from a previous version of Arm SystemC Cycle Models, see A.1 Migrating from
previous versions on page Appx-A-64 for important migration tasks.

1 Introduction
1.2 Prerequisites to using SystemC Cycle Models

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 1-11
Non-Confidential

1.3 Supported platforms, compilers, and simulators
This section describes the requirements for running SystemC Cycle Models.

This section contains the following subsections:
• 1.3.1 Supported platforms on page 1-12.
• 1.3.2 Supported compilers on page 1-12.
• 1.3.3 Supported simulators on page 1-12.

1.3.1 Supported platforms

Arm SystemC Cycle Models are supported on Red Hat Enterprise Linux version 6.6 (64-bit) and above.

1.3.2 Supported compilers

The SystemC Cycle Models have been tested on Linux with GCC 4.8.3 and GCC 6.4.0.

The SystemC Cycle Models include C++11 code, therefore the GCC you are using must support this.

1.3.3 Supported simulators

Arm SystemC Cycle Models can be compiled for any SystemC 2.3.1-compliant simulator.

1 Introduction
1.3 Supported platforms, compilers, and simulators

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 1-12
Non-Confidential

1.4 Package contents
Each SystemC Cycle Model contains the following files:

componentResetModule.h
Reset module used to drive the SystemC pin-level wrapper for the Reset sequence of the IP.

component.xmlAnswers
Shows the configuration of the Cycle Model as built on Arm IP Exchange.

libcomponent.icm.so
RTL-based core of the Cycle Model. When you compile the system executable, this must be
included.

libcomponent.h
Base function header exposed by the core Cycle Model. This is required to access functions in
the core Cycle Model.

libcomponent.systemc.cpp and libcomponent.systemc.h
Pin-level SystemC wrapping header for the core Cycle Model. Compile this to generate a signal-
level, linked SystemC model.

libcomponent_icm.h
Header file for libcomponent.icm.so, which is the RTL-based core of the Cycle Model.

loadTCMUtil/*
Set of files that support direct loading of the TCM.

Makefile
Compiles the pin-level model into the shared libraries included with the installation.

component_tarmac.h
Cycle Model parameter definition to generate Tarmac traces.

component_params.cfg
Cycle Model-specific parameter definitions.

component_pmu.h
Cycle Model hardware profiling implementation to generate profiling events.

component.tlm.cpp and component.tlm.h
TLM wrappers.

univent_tarmac.cpp
Tarmac interface implementation. Hook into the pin level Cycle Model to generate Tarmac
traces.

univent_tarmac.h
Tarmac interface header which can be hooked into the pin level Cycle Model to generate Tarmac
traces.

univentUtil/*
Contains model-specific Tarmac libraries which are needed to compile the
univent_tarmac.cpp and univent_tarmac.h into the model.

1 Introduction
1.4 Package contents

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 1-13
Non-Confidential

Chapter 2
Using SystemC Cycle Models

This section describes how to work with Arm SystemC Cycle Models, including connecting ports,
working with the API, and incorporating models in your design.

It contains the following sections:
• 2.1 Connecting model ports on page 2-15.
• 2.2 Resetting the SystemC Cycle Model on page 2-16.
• 2.3 Setting model parameters on page 2-17.
• 2.4 Dumping waveforms on page 2-18.
• 2.5 Loading TCMs on page 2-19.
• 2.6 Configuring PMU events on page 2-20.
• 2.7 Configuring TARMAC trace on page 2-23.
• 2.8 Working with the SCX framework on page 2-24.
• 2.9 Using a SystemC model in your own design on page 2-25.

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-14
Non-Confidential

2.1 Connecting model ports
All pins must be bound to a signal.

For a list of the pins on the Cortex-R8 SystemC Cycle Model, refer to the model header file
Libmodel.Systemc.h, or the CM_IPXACT_model.xml file.

Certain pins are tied and cannot be modified. For a list of tied pins, see 2.1.1 Tied pins on page 2-15.

Refer to the SystemC documentation for information about native SystemC binding commands (sc_in,
sc_signal, etc.).

This section contains the following subsection:
• 2.1.1 Tied pins on page 2-15.

2.1.1 Tied pins

When making changes to the model pins, be aware that certain pins are tied high or low, and can not be
modified.

For a complete list of the pins on the Cortex-R8 SystemC Cycle Model, refer to the model header file
Libmodel.Systemc.h, or the CM_IPXACT_model.xml file. This list includes all pins, including those
listed below, which are tied and cannot be modified:
• DBGEN (high)
• DFTRAMHOLD (low)
• DFTRAMCLKENABLE (low)
• DFTSE (low)
• DFTTESTMODE (low)
• NIDEN (high)

2 Using SystemC Cycle Models
2.1 Connecting model ports

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-15
Non-Confidential

2.2 Resetting the SystemC Cycle Model
A default reset sequence is provided in source form in componentResetModule.h.

If necessary, you can modify this file as needed to work with your system, then recompile the model after
making your changes.

Ensure that the reset module is connected to the model.

Refer to the Technical Reference Manual for your IP for details about its reset sequence.

2 Using SystemC Cycle Models
2.2 Resetting the SystemC Cycle Model

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-16
Non-Confidential

2.3 Setting model parameters
This section describes how to see a list of the parameters on the Cortex-R8 SystemC Cycle Model, and
how to set them.

Initialization parameters

You can change initialization-time (Init) parameters either on the command line prior to simulation, or in
the test bench (system_test.cpp) prior to the start of simulation (sc_start. Ensure that you recompile
for the change to take effect. See 3.3 Working with Cycle Models and CPAKs on page 3-30 for
instructions.

Run-time parameters

For run-time parameters, change the parameter value on the command line and restart the simulation.

Available parameters
The following table describes the parameters supported by the model. This information is also available:
• In the component_params.cfg file included in your model installation.
• By entering ./system_test --list-params in the Systems directory of the CPAK.

See the Cortex®-R8 Technical Reference Manual (100400) for additional information about supported
parameter values.

See 4.5 CADI RemoteConnection parameters on page 4-47 for additional parameters related to
configuring CADI debug connections. These options do not appear in the component_params.cfg file.

2 Using SystemC Cycle Models
2.3 Setting model parameters

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-17
Non-Confidential

2.4 Dumping waveforms
This section describes how to configure waveform dumping.

To enable and disable waveform dumping using parameter values within the system executable code, set
the following parameters.

 Note

Setting WAVEFORM_TIMEUNIT and WAVEFORM_TYPE is optional; set them only if you want to change the
default settings. If you are changing them, call WAVEFORMS_ENABLED after setting WAVEFORM_TIMEUNIT
and WAVEFORM_TYPE.

Table 2-1 Waveform parameters

Parameter Available settings Default setting

WAVEFORM_TIMEUNIT Units defined by sc_time_unit(): SC_FS, SC_PS, SC_NS, SC_US, SC_MS, SC_SEC SC_PS

WAVEFORM_TYPE FSDB, VCD VCD

WAVEFORMS_ENABLED true, false false

For example:

scx::scx_set_parameter("sc-module-name.WAVEFORM_TIMEUNIT",sc_core::SC_NS);
scx::scx_set_parameter("sc-module-name.WAVEFORMS_TYPE","FSDB");
scx::scx_set_parameter("sc-module-name.WAVEFORMS_ENABLED",true);

sc-module-name is the name given to the model when it is instantiated in the system executable.

2 Using SystemC Cycle Models
2.4 Dumping waveforms

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-18
Non-Confidential

2.5 Loading TCMs
You can load the DTCMS and ITCMS memories by enabling the related parameters within the system
executable.

Set the following parameters:
 Note

The names of the data files to be loaded are defined by the data file parameters (CPUx_*_DAT_FILE). If
you want to customize the default values for the CPUx_*_DAT_FILE parameters, make these changes
before setting LOAD_DTCMS and LOAD_ITCMS.

Table 2-2 TCM parameters

Parameter Available settings Default setting

LOAD_DTCMS true, false false

LOAD_ITCMS true, false false

See 2.3 Setting model parameters on page 2-17 for the default filenames.

See also the files CortexR8_dtcm.h and CortexR8_itcm.h for more information.

2 Using SystemC Cycle Models
2.5 Loading TCMs

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-19
Non-Confidential

2.6 Configuring PMU events
SystemC Cycle Model Performance Monitoring Unit (PMU) events are stored in C++ variables.

By default, calculations of PMU events are disabled in the SystemC Cycle Model. You can enable PMU
events by setting a parameter value in the system executable code. Use the following parameters:

Table 2-3 PMU parameters

Parameter Available settings Default setting

PMU_ENABLED true, false false

For example:

scx::scx_set_parameter("sc-module-name.PMU_ENABLED",true);

sc-module-name is the name given to the model when it is instantiated in the system executable.

For information about C++ variable names for PMU events, refer to the file component_pmu.h located in
the CPAK directory MODELS/component/gcc483/SystemC.

This section contains the following subsection:
• 2.6.1 Supported hardware profiling events on page 2-20.

2.6.1 Supported hardware profiling events

The hardware profiling events supported by the Cortex-R8 SystemC Cycle Model are described in this
section.

Table 2-4 Instruction stream

Event name Description

0x00_SW_INCREMENT Software Increment

0x08_INST_ARCHITECTURALLY_EXEC
UTED

Instructions architecturally executed

0x09_EXC_TAKEN Exception taken

0x0A_EXC_RETURN Exception return architecturally executed

0x0B_CID_WRITE Counts the number of instructions
architecturally executed writing into the
ContextID Register

0x06_DATA_READ Data read architecturally executed

0x07_DATA_WRITE Data write architecturally executed

Table 2-5 Pipeline stream

Event name Description

0x0C_SW_PC_CHANGE Software change of the PC

0x0D_BR_IMMED Immediate branch architecturally executed

0x0E_BR_RETURN Procedure return (other than exception
returns) architecturally executed

2 Using SystemC Cycle Models
2.6 Configuring PMU events

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-20
Non-Confidential

Table 2-5 Pipeline stream (continued)

Event name Description

0x0F_UNALIGNED Unaligned load-store

0x10_BR_MIS_PRED Mispredicted or not predicted branch
speculatively executed

0x12_BR_PRED Predictable branch speculatively executed

0x80_STREX_PASS Exclusive instruction speculatively executed
- STREX pass

0x81_STREX_FAIL Exclusive instruction speculatively executed
- STREX fail

Table 2-6 I-Cache stream

Event name Description

0x01_I_CACHE_MISS Instruction cache miss

0x14_I_CACHE_ACCESS Level 1 instruction cache access

Table 2-7 D-Cache stream

Event name Description

0x03_D_CACHE_MISS Data cache miss

0x04_D_CACHE_ACCESS Data read or write operation that causes a
cache access at (at least) the lowest level of
data or unified cache

Table 2-8 Cycle stream

Event name Description

0x11_CPU_CYCLES Cycle

0x50_NUM_CYCLES_IRQs_INTERRUPT
ED

Number of cycles IRQs are interrupted

0x51_NUM_CYCLES_FIQs_INTERRUPT
ED

Number of cycles FIQs are interrupted

Table 2-9 Microarchitecture stream

Event name Description

0x90_DMB_STALL DMB stall

0x91_ITCM_ACCESS ITCM access

0x92_DTCM_ACCESS DTCM access

0x93_DATA_EVICTION Data eviction

0x94_SCU_COHERENCY SCU coherency operation (CCB request)

0x95_ICACHE_STALL Instruction cache dependent stall

0x96_DCACHE_STALL Data cache dependent stall

2 Using SystemC Cycle Models
2.6 Configuring PMU events

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-21
Non-Confidential

Table 2-9 Microarchitecture stream (continued)

Event name Description

0x97_NOCACHE_NOPERIPH_STALL Non-cacheable, no peripheral-dependent stall

0x98_NOCACHE_PERIPH_STALL Non-cacheable, peripheral-dependent stall

0x99_DCACHE_HI_PRIO_STALL Data cache high priority dependent stall

0x9A_FPP_ACCESS Access to AXI fast peripheral port (reads and
writes)

2 Using SystemC Cycle Models
2.6 Configuring PMU events

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-22
Non-Confidential

2.7 Configuring TARMAC trace
This section describes how to enable and disable TARMAC trace.

By default, TARMAC trace is disabled, and TARMAC buffers log file data. You can enable TARMAC
tracing by setting parameter values in the system executable code, and specify the number of instructions
after which to flush the log file.

 Note

If you are setting TARMAC_LOGFILE_NAME, call TARMAC_ENABLED after setting TARMAC_LOGFILE_NAME.

Table 2-10 TARMAC trace parameters

Parameter Description Available
settings

Default
setting

TARMAC_LOGFILE_NAME Sets TARMAC log file name. For multiple cores or clusters, use
the @CPUID@ string in the name to specify where to place the
CPU identification number.

string ""

TARMAC_ENABLED Enables or disables TARMAC logging. true, false false

TARMAC_FLUSH Flushes the Tarmac log file data after the specified number of
instructions.

integer 0

For example, for a Cortex-R8 design with two cores and one cluster:

scx::scx_set_parameter("r8.TARMAC_LOGFILE_NAME","tarmac.r8.@CPUID@.log");
scx::scx_set_parameter("r8.TARMAC_LOGFILE_ENABLED",true);

This creates the files tarmac.r8.0.log and tarmac.r8.1.log.

2 Using SystemC Cycle Models
2.7 Configuring TARMAC trace

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-23
Non-Confidential

2.8 Working with the SCX framework
Arm SystemC Cycle Models implement the SystemC Export (SCX) API provided by Fast Models
Exported Virtual Subsystems (EVSs).

SCX API overview

You can configure the parameters and other settings for your SystemC model using either native
SystemC signals or using the SCX API. The SCX API is fully described in the Fast Models User Guide
(100965), section 7.6 (SystemC Export API).

Arm recommends not mixing parameter sets through the SCX framework and parameter sets through
native SystemC signal writes, as this can produce unexpected results. For example, the following case
describes what would happen in a case where both are used in succession in a system:

scx::scx_set_parameter("CortexR8.ACLKENST",1); //Statement 1
CortexR8.ACLKENST.write(0); //Statement 2

Due to intrinsic SystemC properties, the value ultimately assigned to ACLKENST depends on the
previous value of the pin:
• If ACLKENST had an initial value of 0, the write(0) is ignored because that was the previous value,

and ACLKENST is assigned a value of 1. Because of the SystemC property of write, if the previous
value was 0, setParameter takes precedence.

• If ACLKENST had a value of 1, then the write takes precedence and the value is set to 0.

See Chapter 5 SystemC Export API function reference on page 5-50 for details about the functions
supported by SystemC Cycle Models.

2 Using SystemC Cycle Models
2.8 Working with the SCX framework

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-24
Non-Confidential

2.9 Using a SystemC model in your own design
This section describes how to integrate a SystemC model into IEEE-compliant SystemC environments,
including required header files and libraries, SCX library instantiation, and other ordering requirements
within the code.

Runtime-related include directories, libraries, and sources to build the SystemC Cycle
Model system on Linux

To include the required directories, libraries, and sources, do the following:

• Include the common makefile at $(CM_SYSC_HOME)/makefiles/cm_sysc_common.mak.
• Add the CM_SYSC_CXXFLAGS flag to the compile line.
• Add the following flags to the link line:

CM_SYSC_LDFLAGS

CM_SYSC_MODELS

FM_LIB

CM_SYSC_HOME differs based on whether you are using a CPAK system or a standalone Arm Cycle
Model:
• For CPAKs: CM_SYSC_HOME=CPAK_RELEASE_PACKAGE/MODELS/SystemCMisc/$CM_PLATFORM
• For standalone Cycle Models, you must also download the SystemC Cycle Models Runtime package

from Arm IP Exchange (see 1.2 Prerequisites to using SystemC Cycle Models on page 1-11). In this
case:

CM_SYSC_HOME=PATH_TO_UNZIPPED_CM_SYSC_RUNTIME_RELEASE_PACKAGE

Model-related build wrapper sources and library requirements

To compile the SystemC model wrapper into your design, the following build wrapper sources are
required:

• MODELS/component name/gcc483/SystemC/*.cpp

Library requirements are:
• MODELS/component_name/gcc483/SystemC/lib/libcomponent_name.icm.so

Libraries to run the virtual platform on Linux
The virtual platform might require specific libraries in addition to those required by the SystemC Cycle
Model system:
• MODELS/component name/gcc483/SystemC/lib/libmodel name.icm.so
• MODELS/component name/gcc483/SystemC/lib/libicm_runtime.so
• MODEL_DIR/$(CM_PLATFORM)/SystemC/univentUtil/lib/model_name_tarmac_dpi.so - For

TARMAC Trace functionality, you must link against this .so file.
• libprotobuf.so - This open-source library might be required by model_name_tarmac_dpi.so.
• libcarbon5.so - This file may already be present as it is provided with the Cycle Model Studio

runtime.

Adding a SystemC Cycle Model to your virtual platform

Adding the SystemC Cycle Model to your design requires modifications to the CPAK test bench. See
3.3 Working with Cycle Models and CPAKs on page 3-30 for information about these modifications.

Additional include directories and libraries to build the SystemC Cycle Model on Linux

The SystemC Cycle Model system requires the following additional include directories and libraries:

Required include directories:
• MODELS/component name/gccversion/SystemC

2 Using SystemC Cycle Models
2.9 Using a SystemC model in your own design

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-25
Non-Confidential

Chapter 3
Working with SystemC CPAKs

This section introduces SystemC CPAKs, describes how to modify the CPAK test bench, and explains
how to add a model to the CPAK.

It contains the following sections:
• 3.1 Introduction to Arm® CPAKs on page 3-27.
• 3.2 Getting started with CPAKs on page 3-28.
• 3.3 Working with Cycle Models and CPAKs on page 3-30.
• 3.4 Building and running CPAK simulations on page 3-34.

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-26
Non-Confidential

3.1 Introduction to Arm® CPAKs
Arm provides Performance Analysis Kits (CPAKs) that contain SystemC models, which demonstrate
how a working system is constructed. You can use an Arm CPAK as a starting point to develop and fine-
tune your custom system.

You can copy and migrate a SystemC Cycle Model that is part of a CPAK and build it into your own
custom system. Alternatively, you can modify an Arm CPAK system by adding your own SystemC
model classes to the Arm CPAK.
• If you want to include a different or additional SystemC Cycle Model in the CPAK, you need to

modify the CPAK testbench and corresponding build system to include, instantiate, and connect the
model. See 3.3 Working with Cycle Models and CPAKs on page 3-30 for details.

• If you want to run a CPAK without altering the system, you need to configure the parameters that
generate the performance data you are interested in and run the simulation. See Chapter 2 Using
SystemC Cycle Models on page 2-14 for details.

Visit Arm IP Exchange (http://armipexchange.com/cpaks) to download a SystemC CPAK.

Prerequisites

Arm CPAKs require the Cycle Model Studio runtime. Visit the Arm IP Exchange Support area (http://
armipexchange.com/websupport/support.aspx) to download the Cycle Model Studio runtime.

3 Working with SystemC CPAKs
3.1 Introduction to Arm® CPAKs

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-27
Non-Confidential

http://armipexchange.com/cpaks
http://armipexchange.com/websupport/support.aspx
http://armipexchange.com/websupport/support.aspx

3.2 Getting started with CPAKs
In this section, a Cortex-R8 SystemC CPAK is used to show the basics of working with Arm CPAKs.

CPAK components

The Cortex-R8 CPAK (R8_SysC) includes the Cortex-R8 core, and a bus, UART, and memory (not all
Cortex-R8 CPAKs follow this format). The CPAK test bench, Systems/system_test.cpp, defines the
default CPAK configuration in sc_main(). See the following diagram for a graphical representation of
its main components, port bindings, and memory map.

Figure 3-1 Cortex-R8 SystemC CPAK

CPAK directory structure
The following figure describes the general CPAK directory structure and summarizes its contents.

Figure 3-2 Cortex-R8 SystemC CPAK directory structure

1. The Applications directory contains source code, build files, and executable images for example
applications that execute on the processor.

2. The MODELS directory contains model libraries and SystemC wrapper source code for all the models
used to build a system.

3. The System directory contains top-level design files used to connect models. The system_test.cpp
file contains the sc_main function.

3 Working with SystemC CPAKs
3.2 Getting started with CPAKs

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-28
Non-Confidential

Testing CPAK operation
After you download a CPAK from Arm IP Exchange (http://armipexchange.com/cpaks):
1. Untar the .tgz file:

tar xzvf R8-SysC-V10.0.0-CMS10.0.0.tgz

2. Open and review the README.txt file located at the top of the CPAK directory structure. CPAK
readme files include instructions for setting up the environment, test applications that are available
with the CPAK, requirements and dependencies, and other IP-specific instructions.

3. As described in the README.txt file, perform make and makeclean to create the system_test
executable.

4. After you have verified that your environment meets the specified requirements, cd to the Systems
directory and run the example test bench system_test. The test bench starts the simulation, and
loads and runs the application specified by system_test.cpp. By default, system_test.cpp runs the
hello_world application located in the Applications directory:

$./system_test

SystemC 2.3.1-Accellera --- Jun 18 2015 09:17:13
Copyright (c) 1996-2014 by all Contributors,
ALL RIGHTS RESERVED

Loading: ../Applications/hello_world/armcc/elf/test.elf
[plover_tarmac] Detected capture module at 'PLOVERINTEGRATION.u_plover.u_noram0' (enabled)
[plover_tarmac] Sending stream to 'plover_tarmac_decode -f
tarmac.PLOVERINTEGRATION_u_plover_u_noram0.log'
[plover_tarmac] Detected capture module at 'PLOVERINTEGRATION.u_plover.u_noram2' (enabled)
[plover_tarmac] Sending stream to 'plover_tarmac_decode -f
tarmac.PLOVERINTEGRATION_u_plover_u_noram2.log'
[plover_tarmac] Detected capture module at 'PLOVERINTEGRATION.u_plover.u_noram3' (enabled)
[plover_tarmac] Sending stream to 'plover_tarmac_decode -f
tarmac.PLOVERINTEGRATION_u_plover_u_noram3.log'
[plover_tarmac] Detected capture module at
'PLOVERINTEGRATION.u_plover.u_noram1_wrapper.u_noram1' (enabled)
[plover_tarmac] Sending stream to 'plover_tarmac_decode -f
tarmac.PLOVERINTEGRATION_u_plover_u_noram1_wrapper_u_noram1.log'
Starting Simulation
<01><ff><01><ff><01><ff><01><ff><ff><01><01><ff>Hello World!
My name is Plover
I wish you a great day
** TEST PASSED OK **
<04>0x04 End Of Simulation message received by TrickBox
.
.
.

Next steps

This section provides suggested next steps you can take to learn about general CPAK capabilities and
usage.

Table 3-1 Getting started with CPAKs next steps

Task Reference section

Try single-stepping with a debugger. Chapter 4 Debugging SystemC Cycle Models with DS-5 on page 4-35 and DS-5
documentation.

Print out waveforms. 2.4 Dumping waveforms on page 2-18

Run a different application. 3.3.1 Application loading on page 3-30 and the CPAK README.txt file.

Modify a component. 3.3 Working with Cycle Models and CPAKs on page 3-30

3 Working with SystemC CPAKs
3.2 Getting started with CPAKs

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-29
Non-Confidential

http://armipexchange.com/cpaks

3.3 Working with Cycle Models and CPAKs
To make changes to the CPAK system, alter the CPAK test bench.

Each CPAK has its own test bench called system_test.cpp, which is located in the Systems directory
of your CPAK. This test bench:
• Instantiates the models
• Defines the connections between models
• Initializes model parameters
• Provides simulation controls (start, stop, run, specific number of cycles, etc.)

After altering the test bench as described in the following sections, recompile the system. Models are
recompiled automatically as part of the system-level recompile.

This section contains the following subsections:
• 3.3.1 Application loading on page 3-30.
• 3.3.2 Modifying the test bench for pin-level models on page 3-30.
• 3.3.3 Modifying the test bench for TLM models on page 3-32.

3.3.1 Application loading

Pin-level CPAKs and TLM-based CPAKs handle application loading differently.

Pin-level CPAK application loading

For Cortex-R8 CPAKs implemented through pin-level connections, the application to be loaded is
specified by the .hex file located in the Systems directory. The application is loaded into the CPAK upon
initialization of the BP140 memory. See the README.txt file for more information on changing the
application.

TLM-based CPAK application loading

For Cortex-R8 CPAKs implemented through TLM connections, the application is specified as a
command line argument and parsed during the call of the SCX scx_parse_and_configure() function.

3.3.2 Modifying the test bench for pin-level models

This section describes the areas of the CPAK test bench you might want to change.

 Note

See 3.3.1 Application loading on page 3-30 for information about how pin-level CPAKs handle
application loading.

Required includes

The test bench contains the SystemC wrapper files for any models in the system, the corresponding reset
module file for each model (for pin-level models only), and includes required by the Fast Models
runtime. Ensure you add these files for any new models added to your system. Here is an example of the
includes section of a CPAK test bench:

// Include the systemc wrapper files for the models
#include "libCortexR8.systemc.h" // CortexR8 CPU
#include "libNIC400.systemc.h" // NIC400 Interconnect
#include "libBP140.systemc.h" // BP140 Memory
#include "libBP140_TrickBox.systemc.h" // BP140_TrickBox UART

// Include the reset modules for the above models (pin-level models only)
#include "CortexR8ResetModule.h"
#include "NIC400ResetModule.h"
#include "BP140ResetModule.h"
#include "BP140_TrickBoxResetModule.h"
#include "../perf_common.h"

3 Working with SystemC CPAKs
3.3 Working with Cycle Models and CPAKs

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-30
Non-Confidential

#include <iostream>
#include <time.h>

// These includes are need by the SCX FastModel Runtime
#include <scx/scx.h>
#include <scx/scx_signal_sizer.h>
#include <scx_simcontroller.cpp>
#include <scx_scheduler_mapping.cpp>
#include <scx_report_handler.cpp>

Initialization of the simulation environment and model instantiation

The sc_main() section of the test bench must first initialize the SCX simulation environment. It must
state clocking specifications, then instantiate all IP and reset models (for pin-level models only) for any
models included in the system. For example:

int sc_main(int argc, char *argv[])
{
 // Debug initialization
 scx::scx_initialize("R8-SysC-Debug");

 // If you want to see messages about 'port not bound' change SC_DO_NOTHING to SC_DISPLAY.
 // If you want it to abort on a 'port not bound' error comment out the line below.
 sc_report_handler::set_actions(SC_ID_COMPLETE_BINDING_,SC_ERROR,SC_DO_NOTHING);

 // Clock Object
 sc_clock clk("clk", 1, SC_NS, 0.5);

// Instantiate IP
 CortexR8 core("cortexR8");
 NIC400 nic400("NIC400");
 BP140 bp140("BP140");
 BP140_TrickBox bp140_trickbox("BP140_TrickBox");
 ARM::Models::Cycle::ModelCortexR8::CortexR8ResetModule core_reset("core_reset");
 ARM::Models::Cycle::ModelNIC400::NIC400ResetModule nic400_reset("nic400_reset");
 ARM::Models::Cycle::ModelBP140::BP140ResetModule bp140_reset("bp140_reset");
 ARM::Models::Cycle::ModelBP140_TrickBox::BP140_TrickBoxResetModule
bp140_trickbox_reset("bp140_trickbox_reset");

Signal bindings
The test bench specifies all signal bindings, including those for reset modules.
• Declare bindings using an sc_signal call in the test bench file. The signal must be the same type and

width as the two ports being connected. If the ports are the same type but different widths, use
scx_signal_sizer instead of sc_signal. For example:

scx::scx_signal_sizer<sc_uint<13>, sc_uint<16> >ARIDsignal1;
core.ARIDM0.bind(ARIDsignal);
nic400.arid_s_axi_64.bind(ARIDsignal);

• Signals must be bound to both ports. For example:

sc_signal(bool) signal1;
Inst1.port1.bind(signal1);
sc_signal(bool) signal2;
Inst2.port1.bind(signal2);

Clock bindings

All models must be bound to the system clock; for example:

// Bind all the models to the system (cpu) clock
core.CLKIN.bind(cpu_clk);
mem.ACLK.bind(cpu_clk);
bus.mainclk.bind(cpu_clk);
uart.ACLK.bind(cpu_clk);
core_reset.clk.bind(cpu_clk);
bus_reset.clk.bind(cpu_clk);
bp140_reset.clk.bind(cpu_clk);
bp140_trickbox_reset.clk.bind(cpu_clk);

3 Working with SystemC CPAKs
3.3 Working with Cycle Models and CPAKs

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-31
Non-Confidential

Functions to generate performance data

The following example shows the use of SCX API functions to specify PMU and Tarmac output. See
Chapter 2 Using SystemC Cycle Models on page 2-14 for more information:

// Enable PMU and TARMAC for the CortexR8
scx::scx_set_parameter("cortexr8_core.PMU_ENABLED",true);
scx::scx_set_parameter("cortexr8_core.TARMAC_ENABLED",true);

Parsing of command line arguments

The test bench calls the SCX scx_parse_and_configure() function to parse any command line
arguments used by the SCX runtime:

scx::scx_parse_and_configure(argc, argv);

Simulation call

To simulate the system, the test bench calls sc_start():

sc_start();

Specify all includes, initializations, bindings, functions, and command line options before sc_start().

3.3.3 Modifying the test bench for TLM models

sc_main has the same basic flow for both pin-level and TLM models. One difference is that the TLM
models are connected using TLM sockets rather than pins. This section describes the TLM-specific
instructions.

 Note

See the file libcomponent.tlm.h in your installation directory for socket names.

 Note

See 3.3.1 Application loading on page 3-30 for information about how TLM-based CPAKs handle
application loading.

Required includes

The SystemC pin-level models are wrapped with TLM functionality. The test bench includes the
SystemC wrapper files for any models included in the system, and includes required by the Fast Models
runtime. Ensure you add these files for any new models added to your system. Here is an example of the
includes section of a CPAK test bench:

// Include the systemc wrapper files for the models

#include "models/SimpleMem.h"
#include "models/SimpleFlash.h"
#include "models/SimpleFlashImp.h"
#include "models/RAMBlock.h"
#include "models/SimpleBus.h"
#include "models/BasicUART.h"
#include "models/ElfLoader.h"
#include "libCORTEXR8.tlm.h" //
 Cortex-R8
 CPU
#include <tlm_utils/simple_initiator_socket.h>
#include "../perf_common.h"

#include <iostream>

// These includes are need by the SCX FastModel Runtime
#include <scx/scx.h>
#include <scx_simcontroller.cpp>
#include <scx_scheduler_mapping.cpp>

3 Working with SystemC CPAKs
3.3 Working with Cycle Models and CPAKs

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-32
Non-Confidential

#include <scx_report_handler.cpp>

Initialization of the simulation environment and model instantiation

The sc_main() section of the test bench must first initialize the SCX simulation environment. It states
clocking specifications, then instantiates any models included in the system. Ensure you instantiate any
new models added to your system. For example:

int sc_main(int argc, char *argv[])
{
// Debug initialization
 scx::scx_initialize("R8-SysC");

 // If you want to see messages about 'port not bound' change SC_DO_NOTHING to SC_DISPLAY.
 // If you want it to abort on a 'port not bound' error comment out the line below.
 sc_report_handler::set_actions(SC_ID_COMPLETE_BINDING_,SC_ERROR,SC_DO_NOTHING);

 // Clock Object
 sc_clock cpu_clk("clk", 1, SC_NS, 0.5);

 ARM::Models::Cycle::ModelCortexR8::CortexR8Imp core("CortexR8");

 // Main Memory
 ARM::Models::RAMBlock ram_block;
 ARM::Models::SimpleMemConfig simple_mem_params;
 simple_mem_params.delay = 1;
 simple_mem_params.ram_block = &ram_block;
 simple_mem_params.busWidthBits = 64;

 ARM::Models::SimpleMem simple_mem("RAM", simple_mem_params);
 ARM::Models::BasicUART uart("UART", std::cout, "UART: ");

 // BUS & its Mappings
 ARM::Models::SimpleBus bus("Interconnect", 1, 1, 64);
 bus.addMap(0, 0, 0xFFFFFFFF); // Main Memory

Port bindings

The test bench specifies all TLM port bindings. Signal bindings required for the system are also specified
in this area. Specify any additional TLM port bindings and signal bindings in this area:

// Core Main Memory Port Bindings
 core.iSkt_AXI3_Master_PORT0->bind(bus.tSkt);
 core.directIskt_AXI3_Master_PORT0.bind(simple_mem.directTskt);

// Core Low Latency Peripheral Port Bindings
 core.iSkt_AXI3_Master_PERI->bind(uart.tSkt);
 core.directIskt_AXI3_Master_PERI.bind(uart.directTskt);

// Bus iSkt[0] connected to Main Memory
 bus.iSkt[0]->bind(simple_mem.tSkt);

// Clock
 core.clk(cpu_clk);
 simple_mem.clock.bind(cpu_clk);
 uart.clock.bind(cpu_clk);
 bus.clock.bind(cpu_clk);

For information about signal bindings, clock bindings, performance data generation, command line
arguments, and simulation calls, use the instructions in 3.3.2 Modifying the test bench for pin-level
models on page 3-30.

3 Working with SystemC CPAKs
3.3 Working with Cycle Models and CPAKs

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-33
Non-Confidential

3.4 Building and running CPAK simulations
CPAKs include Makefiles for building its applications, models, and systems..

This section describes the available CPAK build, run, and simulation options. The instructions in this
section are for Arm SystemC CPAK systems only.

CPAKs come with sample applications and application build scripts; these are located in the CPAK_Name/
Applications directory.

The top-level CPAK Makefile is the command script for your build infrastructure. The Makefile
includes the following available targets:

make all
Builds the system.

make system
Takes the CPAK test bench (system_test.cpp) and the library files, and generates the
system_test binary. For more information about the test bench, see 3.3 Working with Cycle
Models and CPAKs on page 3-30.

make app-setup [APP=path]
where path is the path to the compiled application (.elf) file. This option sets up the particular
application the system uses during simulation.

make run [APP=path] [RUNLOG=file_name]
where path is the path to the compiled application (.elf) file and file_name is the name of the
file for log output. This option runs the simulation. If APP is not specified, it runs the default
application or the one that was last set up using app-setup.

make clean
Removes all the binaries and object files.

make help
Prints all available targets.

3 Working with SystemC CPAKs
3.4 Building and running CPAK simulations

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-34
Non-Confidential

Chapter 4
Debugging SystemC Cycle Models with DS-5

This section describes how to connect the Arm Development Studio 5 (DS-5) Debugger with Arm
Cortex-R8 SystemC Cycle Models in a CPAK system.

It contains the following sections:
• 4.1 Prerequisites to debugging on page 4-36.
• 4.2 Supported debug features on page 4-37.
• 4.3 Restrictions and limitations on page 4-39.
• 4.4 Enabling DS-5 for use with SystemC Cycle Models on page 4-40.
• 4.5 CADI RemoteConnection parameters on page 4-47.
• 4.6 Multicore debugging on page 4-48.
• 4.7 Changing the timeout setting on page 4-49.

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-35
Non-Confidential

4.1 Prerequisites to debugging
Arm DS-5 Development Studio is required before you begin. The instructions in this chapter have been
verified using DS-5 Version 5.28.1.

 Note

The Windows version of DS-5 is not supported for SystemC Cycle Models. Only the Linux 64-bit
version is supported.

• Download and install the Linux 64-bit version of DS-5 Development Studio (Ultimate Edition) from
https://developer.arm.com/products/software-development-tools/ds-5-development-studio/downloads.

In the DS-5 Arm License Manager dialog box (accessed from the Help menu), specify Arm DS-5
Ultimate Edition as the toolkit to use.

• See the Arm® DS-5 Getting Started Guide (100950) for DS-5 system requirements and installation
instructions.

4 Debugging SystemC Cycle Models with DS-5
4.1 Prerequisites to debugging

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-36
Non-Confidential

https://developer.arm.com/products/software-development-tools/ds-5-development-studio/downloads
https://developer.arm.com/docs/100950/latest

4.2 Supported debug features
This section describes DS-5 features that are supported on SystemC Cycle Models and debugging
features that have been added to SystemC Cycle Models.

 Note

CPUs are modeled as masters that issue debug access downstream to other components. Upstream debug
access into CPU models through slave ports is not supported.

DS-5 features
SystemC Cycle Models support the following DS-5 functionality:
• Debugging of multi-core and multi-cluster configurations.You can specify whether you want to debug

software running on multiple CPUs, or debug software on one CPU at a time. See the section
4.6 Multicore debugging on page 4-48 for more information.

• Debugging of Symmetric Multi Processing (SMP) systems.

See the Arm® DS-5 Debugger User Guide (100953) for more information about debugging multi-core,
multi-cluster, and SMP targets.

Support for memory and register views
The SystemC Cycle Model supports visibility into memory spaces and a subset of the registers. See:
• 4.2.1 Supported registers on page 4-37 for information about supported registers.
• 4.2.2 Supported memory views on page 4-38 for information about supported memory views.

 Note

Registers and memory spaces are exposed on the model. However, their visibility varies depending on
the debugger in use.

This section contains the following subsections:
• 4.2.1 Supported registers on page 4-37.
• 4.2.2 Supported memory views on page 4-38.

4.2.1 Supported registers

This section describes how to access the register views supported by the Cortex-R8 SystemC Cycle
Model.

 Note

Registers are exposed on the model. However, their visibility varies depending on the debugger in use.

The processor is a dual issue out-of-order completion machine. This means that while the processor is
running, it does not present a coherent programmer’s view state (a debuggable point); instructions in the
pipeline may be in different execution states.

 Note

Due to the speculative nature of the processor pipeline, values in the registerse are not guaranteed to be
accurate. In general, you can write to a register only at a debuggable point. If a value is written at any
other point, it might not propagate correctly.

To view a list of the registers that are viewable using a debugger, enter:

$./system_test --list-regs

For a description of these registers, see the Technical Reference Manual for your IP.

4 Debugging SystemC Cycle Models with DS-5
4.2 Supported debug features

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-37
Non-Confidential

4.2.2 Supported memory views

This section describes the memory views exposed by the Cycle Model.

 Note

Memory spaces are exposed on the model. However, their visibility varies depending on the debugger in
use.

Table 4-1 Memory views

Name Description

memory Unified memory view including TCMs, data cache, and downstream master AXI ports.

axi_m0 Downstream master AXI port m0 memory view.

axi_m1 Downstream master AXI port m1 memory view. Presence is configuration-dependent.

4 Debugging SystemC Cycle Models with DS-5
4.2 Supported debug features

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-38
Non-Confidential

4.3 Restrictions and limitations
This section describes the restrictions and limitations for debugging SystemC Cycle Models.

Be aware of the following limitations related to debugging SystemC Cycle Models with DS-5:
• The Windows version of DS-5 is not supported for SystemC Cycle Models. Only the Linux 64-bit

version is supported.
• Some multi-cluster systems may support cache coherency. Cycle Models in SystemC CPAKs do not

currently show a coherent debug view of memory shared across clusters.
• System reset is not supported through the debugger interface.
• sc_stop() function calls are not supported during simulation, because they could result in

termination of the debugger connection. A suggested workaround is to use an infinite loop at the end
of the software being simulated.

• For certain cores, breakpoints may be missed during debug if they exist within short loops. See
4.6 Multicore debugging on page 4-48 for workarounds.

4 Debugging SystemC Cycle Models with DS-5
4.3 Restrictions and limitations

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-39
Non-Confidential

4.4 Enabling DS-5 for use with SystemC Cycle Models
This section describes how to set up DS-5 to debug Cycle Models.

This section contains the following subsections:
• 4.4.1 Initial database configuration on page 4-40.
• 4.4.2 Starting the simulation and selecting the model for debug on page 4-40.
• 4.4.3 Specifying the application to debug on page 4-42.

4.4.1 Initial database configuration

This section describes how to set up the initial configuration database.

Create a configuration database as follows:
1. Launch DS-5.
2. From the main menu, select Window > Perspective > Open Perspective > Other. The Open

Perspective dialog box launches.
3. Select DS-5 Configuration and click OK. The Open Perspective dialog box closes.
4. From the DS-5 main menu, select File > New > Configuration Database. The New Configuration

Database dialog box launches.
5. In the Database Name field, enter a name for your database.
6. Click Finish. The new database appears in the DS-5 Project Explorer.

Start a SystemC Cycle Model simulation to begin debugging (see 4.4.2 Starting the simulation and
selecting the model for debug on page 4-40).

4.4.2 Starting the simulation and selecting the model for debug

This section describes starting the simulation and selecting the SystemC model for debug.

After the DS-5 Configuration database has been created (see 4.4.1 Initial database configuration
on page 4-40):
1. Start the SystemC simulation with the CADI server enabled:

./system_test -S

2. Starting from a clean workspace, launch DS-5.
3. In DS-5, right-click on the Configuration Database you created during initial configuration, and select

New > Model Configuration. The New Model dialog box appears.
4. In the Select the database panel, select the database in which to create the entry and click Next.

4 Debugging SystemC Cycle Models with DS-5
4.4 Enabling DS-5 for use with SystemC Cycle Models

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-40
Non-Confidential

Figure 4-1 Selecting the method of connecting to a model
5. In the Select Method for Connecting to Model: dialog, select Browse for model running on local

host and click Next.
6. In the Browse for model running on local host dialog, click Browse.

Figure 4-2 Selecting the method of connecting to a model

4 Debugging SystemC Cycle Models with DS-5
4.4 Enabling DS-5 for use with SystemC Cycle Models

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-41
Non-Confidential

Result: DS-5 searches for the SystemC simulation sessions running on the host, and displays
available simulations in the Model Browser dialog box.

7. Select the model for debug and click Select.
8. In the New Model dialog box, click Finish.

Result: DS-5 connects to the selected model and displays the cores available for debug.

4.4.3 Specifying the application to debug

This section describes how to launch a debug session.

1. In the DS-5 user interface, click Debug. This launches the Debug Configurations dialog box.
2. Under the Connections tab, check that the model you want is listed as a target. For example, in the

following figure, Cortex-A53_0 is the target:

Figure 4-3 Selecting the target
3. Under the Files tab, browse to the application you want to run. For example, in the following figure,

the application is a53x4c2-v8-linux.axf.

4 Debugging SystemC Cycle Models with DS-5
4.4 Enabling DS-5 for use with SystemC Cycle Models

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-42
Non-Confidential

Figure 4-4 Selecting the application
4. Click Apply.
5. Under the Debugger tab, check that Connect only is selected in the Run control panel:

4 Debugging SystemC Cycle Models with DS-5
4.4 Enabling DS-5 for use with SystemC Cycle Models

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-43
Non-Confidential

Figure 4-5 Selecting Connect only
6. Apply any changes and return to the Connection tab.
7. Select the core to debug:

4 Debugging SystemC Cycle Models with DS-5
4.4 Enabling DS-5 for use with SystemC Cycle Models

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-44
Non-Confidential

Figure 4-6 Selecting the core to debug
8. Click Debug. You are prompted to confirm the change to the debug perspective:

Figure 4-7 Confirming the perspective switch
9. Select Remember my decision to prevent subsequent prompts, and click Yes.

Result: The connected debug session launches in the DS-5 debug view:

4 Debugging SystemC Cycle Models with DS-5
4.4 Enabling DS-5 for use with SystemC Cycle Models

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-45
Non-Confidential

Figure 4-8 Connected debug session

4 Debugging SystemC Cycle Models with DS-5
4.4 Enabling DS-5 for use with SystemC Cycle Models

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-46
Non-Confidential

4.5 CADI RemoteConnection parameters
This section describes the parameters for CADI connections.

Each parameter is prefixed with REMOTE_CONNECTION.CADIServer; for example:

REMOTE_CONNECTION.CADIServer.range

 Note

The default value restricts connections to be from the localhost only. To enable remote connections,
specify an IP address to listen to, or specify 0.0.0.0 to listen to all adapters.

Table 4-2 CADIIPCRemoteConnection parameters

Name Type Default value Allowed
values

Runtime Description

enable_remote_cadi bool false true, false false Allow connections from remote hosts.

listen_address string "127.0.0.1" "" false If enable_remote_cadi is set, this parameter is
the network address the server listens on.

port int 0x7b8b 0x1 - 0xffff false If enable_remote_cadi is set, this parameter is
the TCP port the server listens on.

range int 0x0 0x0 - 0x64 false If the requested port is not available, search for the
next available port in the range [port:port+range].
Only try the specified port.

See 5.8 scx::scx_parse_and_configure on page 5-58 for information about CADI command-line options
used with scx::scx_parse_and_configure().

4 Debugging SystemC Cycle Models with DS-5
4.5 CADI RemoteConnection parameters

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-47
Non-Confidential

4.6 Multicore debugging
This section contains information about debugging in SystemC Cycle Model multi-core and multi-cluster
environments.

Multi-core, multi-cluster, and single-core debugging modes

For more information about debugging multi-core and multi-cluster targets, see the Arm® DS-5 Debugger
User Guide (100953).

In SystemC Cycle Model multi-core and multi-cluster environments, you can specify whether to debug
software running on multiple CPUs (this is the default), or whether to debug only on one CPU at a time.

To debug one CPU at a time, set the environment variable CM_SCX_DEBUG_ONE to 1 before running the
simulation. When debugging a single CPU, only the CPU that hits a breakpoint has an accurate debug
view. Impact on simulation performance in this mode is minimal, as only one CPU's pipeline is flushed.

To debug multiple CPUs, remove the environment variable CM_SCX_DEBUG_ONE.
 Note

When debugging multiple CPUs, be aware that the impact on simulation performance is higher than
when debugging one CPU at a time, because each of the core models performs additional debug logic to
read data from internal pipelines. All CPUs attempt to accurately reflect the debug view, monitoring all
CPU simulation stops, halts, single-steps, and breakpoints.

Timeouts and their effect on reliable debug views

This section describes how timeouts may interfere with reaching a debuggable point, and possible
workarounds for timeouts. A debuggable point is a point in the simulation where the model’s internal
state can be accurately represented using architectural registers. Cycle Models must be at a valid
debuggable point before they can provide a reliable debug view into registers and memory

If you issue a debugger halt, and one or more CPUs can not reach a debuggable point within the timeout
interval, the simulation halt request times out, resulting in a warning similar to the following:

Warning: stop at a debug point failed: Simulation suspended before these target(s)
could reach debug point: r8_core.cpu1;r8_core.cpu3;

In these cases, the debug view of the affected CPU may show inaccurate values, and register or memory
modifications are not allowed.

Scenarios that might cause a timeout include:

• Simulated software uses WFI (wait for interrupts) or WFE (wait for events), and after a single-step or
breakpoint hit on a different CPU, the interrupts or events do not occur within the timeout window.

• Breakpoints within loops are not reached (see 4.3 Restrictions and limitations on page 4-39). In these
cases, lengthening the loop by adding nops may allow the debugger to hit the breakpoint. For
example:

end:
 nop
 nop
 nop
 nop
 B end

Workarounds to avoid timeouts and view the content of such cores include:
• avoid using WFI/WFE in the simulated software
• avoid tight loops such as:

self: branch self

• Changing the timeout setting (see 4.7 Changing the timeout setting on page 4-49)

4 Debugging SystemC Cycle Models with DS-5
4.6 Multicore debugging

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-48
Non-Confidential

4.7 Changing the timeout setting
The timeout interval is counted by the simulation host. By default, the timeout interval is set to three
seconds.

To change the timeout interval, set the environment variable CM_SCX_STOP_TIMEOUT_SEC before starting
the simulation. For example, to set the timeout interval to five seconds using Linux bash shell:

export CM_SCX_STOP_TIMEOUT_SEC=5

The minimum interval allowed for this environment variable is one second.

4 Debugging SystemC Cycle Models with DS-5
4.7 Changing the timeout setting

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-49
Non-Confidential

Chapter 5
SystemC Export API function reference

This section describes the functions of the SystemC eXport (SCX) API that are supported by SystemC
Cycle Models. Each description of a class or function includes the C++ declaration and the use
constraints.

It contains the following sections:
• 5.1 scx::scx_initialize on page 5-51.
• 5.2 scx::scx_load_application on page 5-52.
• 5.3 scx::scx_set_parameter on page 5-53.
• 5.4 scx::scx_get_parameter on page 5-54.
• 5.5 scx::scx_get_parameter_list on page 5-55.
• 5.6 scx::scx_cpulimit on page 5-56.
• 5.7 scx::scx_timelimit on page 5-57.
• 5.8 scx::scx_parse_and_configure on page 5-58.
• 5.9 scx::scx_print_statistics on page 5-62.

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 5-50
Non-Confidential

5.1 scx::scx_initialize
This function initializes the simulation.

Initialize the simulation before constructing any exported subsystem.

void scx_initialize(const std::string &id,
 scx_simcontrol_if *ctrl = scx_get_default_simcontrol());

id
an identifier for this simulation.

ctrl
a pointer to the simulation controller implementation. It defaults to the one provided with Arm
models.

 Note

Arm recommends specifying a unique identifier across all simulations running on the same host.

5 SystemC Export API function reference
5.1 scx::scx_initialize

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 5-51
Non-Confidential

5.2 scx::scx_load_application
This function loads an application in the memory of an instance.

void scx_load_application(const std::string &instance,
 const std::string &application);

instance
the name of the instance to load into. The parameter instance must start with an EVS instance
name, or with "*" to load the application into the instance on all EVSs in the platform. To load
the same application on all cores of an SMP processor, specify "*" for the core instead of its
index, in parameter instance.

application
the application to load.

 Note

The loading of the application happens at start_of_simulation() call-back, at the earliest.

5 SystemC Export API function reference
5.2 scx::scx_load_application

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 5-52
Non-Confidential

5.3 scx::scx_set_parameter
This function sets the value of a parameter in components present in EVSs or in plug-ins.

• bool scx_set_parameter(const std::string &name, const std::string &value);

• template<class T>
bool scx_set_parameter(const std::string &name, T value);

name
the name of the parameter to change. The parameter name must start with an EVS instance name
for setting a parameter on this EVS, or with "*" for setting a parameter on all EVSs in the
platform, or with a plug-in prefix (defaults to "TRACE") for setting a plug-in parameter.

value
the value of the parameter.

This function returns true when the parameter exists, false otherwise.
 Note

• Changes made to parameters within System Canvas take precedence over changes made with
scx_set_parameter().

• You can set parameters during the construction phase, and before the elaboration phase. Calls to
scx_set_parameter() after the construction phase are ignored.

• You can change run-time parameters after the construction phase with the debug interface.
• Specify plug-ins before calling the platform parameter functions, so that the plug-ins load and their

parameters are available. Any plug-in that is specified after the first call to any platform parameter
function is ignored.

5 SystemC Export API function reference
5.3 scx::scx_set_parameter

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 5-53
Non-Confidential

5.4 scx::scx_get_parameter
This function retrieves the value of a parameter from components present in EVSs or from plug-ins.

• bool scx_get_parameter(const std::string &name, std::string &value);

• template<class T>
bool scx_get_parameter(const std::string &name, T &value);

• bool scx_get_parameter(const std::string &name, int &value);

• bool scx_get_parameter(const std::string &name, unsigned int &value);

• bool scx_get_parameter(const std::string &name, long &value);

• bool scx_get_parameter(const std::string &name, unsigned long &value);

• bool scx_get_parameter(const std::string &name, long long &value);

• bool scx_get_parameter(const std::string &name, unsigned long long &value);

• std::string scx_get_parameter(const std::string &name);

name
the name of the parameter to retrieve. The parameter name must start with an EVS instance
name for retrieving an EVS parameter or with a plug-in prefix (defaults to "TRACE") for
retrieving a plug-in parameter.

value
a reference to the value of the parameter.

The bool forms of the function return true when the parameter exists, false otherwise. The
std::string form returns the value of the parameter when it exists, empty string ("") otherwise.

 Note

Specify plug-ins before calling the platform parameter functions, so that the plug-ins load and their
parameters are available. Any plug-in that is specified after the first call to any platform parameter
function is ignored.

5 SystemC Export API function reference
5.4 scx::scx_get_parameter

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 5-54
Non-Confidential

5.5 scx::scx_get_parameter_list
This function retrieves a list of all parameters in all components present in all EVSs and from all plug-
ins.

std::map<std::string, std::string> scx_get_parameter_list();

The parameter names start with an EVS instance name for EVS parameters or with a plug-in prefix
(defaults to "TRACE") for plug-in parameters.

 Note

• Specify plug-ins before calling the platform parameter functions, so that the plug-ins load and their
parameters are available. Any plug-in that is specified after the first call to any platform parameter
function is ignored.

• If scx_set_parameter() is called after the simulation elaboration phase, the new value is not set in
the model, although it is returned by scx_get_parameter_list().

5 SystemC Export API function reference
5.5 scx::scx_get_parameter_list

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 5-55
Non-Confidential

5.6 scx::scx_cpulimit
Sets the maximum number of CPU (User + System) seconds to run, excluding startup and shutdown.

void scx_cpulimit(double t);

t

the number of seconds to run. Defaults to unlimited.

5 SystemC Export API function reference
5.6 scx::scx_cpulimit

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 5-56
Non-Confidential

5.7 scx::scx_timelimit
Sets the maximum number of seconds to run, excluding startup and shutdown.

void scx_timelimit(double t);

t

the number of seconds to run. Defaults to unlimited.

5 SystemC Export API function reference
5.7 scx::scx_timelimit

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 5-57
Non-Confidential

5.8 scx::scx_parse_and_configure
This function parses command-line options and configures the simulation accordingly.

void scx_parse_and_configure(int argc,
 char *argv[],
 const char *trailer = NULL,
 bool sig_handler = true);

argc
the number of command-line options listed with argv[].

argv
command-line options.

trailer
a string that follows the option list when printing help message (--help option).

sig_handler
whether to enable signal handler function, true to enable (default), false to disable.

This function calls std::exit(EXIT_SUCCESS) to exit. It calls std::exit(EXIT_FAILURE) if there was
an error in the parameter specification, or an invalid option was specified, or if the application or plug-in
was not found.

Options

The application must pass the values of the options from function sc_main() as arguments to this
function. The following options are supported:

--application, -a [INST=]FILE
This option specifies the application to load. The application to load must be the first argument on the
command line.

 Note

Use this option only for CPAKs with TLM models. For CPAKs with pin-level models, specifying --
application has no effect and results in multiple warnings. The application for CPAKs with pin-level
models is determined by the contents of the hex files in the CPAK Systems directory. See the CPAK
README.txt file for more information.

[INST=]
Specifies the core instance on which to load the application. This field is optional for Symmetric
Multiprocessor (SMP) cores.

FILE
Specifies the test case or application to be loaded.

The following example loads test0.elf on core 0, and test1.elf on core 1:

$./system_test -a CortexR8_core0=test0.elf -a CortexR8_core1=test1.elf -S -p

The following example for SMP cases loads test.elf on all cores:

$./system_test -a test.elf -S -p

--cadi-log, -L

This option logs all CADI calls to an XML log file. The simulation generates one XML log file per CPU
and outputs them to the CPAK Systems directory with the filename CADIlog-model_core.cpucpu-
process_ID.xml. A cluster-level XML log file is also generated and output to this location with the
filename CADIlog-model_core-process_ID.xml

For example:

$./system_test -L

5 SystemC Export API function reference
5.8 scx::scx_parse_and_configure

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 5-58
Non-Confidential

--cadi-server, -S FILE

This option instructs a CADI server to wait for a debugger to connect and receive commands (such as
run) before starting the simulation. If -S is not specified, the simulation starts immediately and
connection to a CADI client or debugger is not allowed.

FILE
Specifies the test case or application to be loaded.

For example:

$./system_test test.elf -S

--config-file, -f FILE

This option loads model parameters from the specified configuration file.

FILE
Name of the configuration file.

For example:

$./system_test --config-file R8_config.cfg

--cpulimit

Maximum number of CPU (User + System) seconds to run, excluding startup and shutdown. Defaults to
unlimited.

--help, -h
This option prints descriptions of available command line options.

 Note

Arm Models support the full set of options that are printed when you enter --help or -h. Currently, Arm
SystemC Cycle Models support a subset of these options. The options supported by this release of
SystemC Cycle Models are described in this section.

For example:

$./system_test --help

--list-params, -l

This option prints a list of model parameters to standard output.

For example:

$./system_test -l
.
.
.
[plover_tarmac] Sending stream to 'plover_tarmac_decode -f
tarmac.PLOVERINTEGRATION_u_plover_u_noram1_wrapper_u_noram1.log'
Starting Sim
Parameters:
instance.parameter=value #(type, mode) default = 'def value' : description :
[min..max]
#--
REMOTE_CONNECTION.CADIServer.enable_remote_cadi=0 # (bool , init-time) default =
'0' : Allow connections from remote hosts
REMOTE_CONNECTION.CADIServer.listen_address=127.0.0.1 # (string, init-time) default =
'127.0.0.1' : Network address the server should listen on if enable_remote_cadi is set
("127.0.0.1" by default)
REMOTE_CONNECTION.CADIServer.port=31627 # (int , init-time) default =
'0x7b8b' : TCP port the server should listen on if enable_remote_cadi is set (31627 by
default)
REMOTE_CONNECTION.CADIServer.range=0 # (int , init-time) default =
'0x0' : If requested port is not avaliable, search for next avaliable port in range:
[port:port+range] (0 by default, only try specified port)

5 SystemC Export API function reference
5.8 scx::scx_parse_and_configure

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 5-59
Non-Confidential

cortexr8_core.ACLKENSC=1 # (int , run-time) default =
'0x1' : ACLKENSC enable parameter
cortexr8_core.ACLKENST=1 # (int , run-time) default =
'0x1' : ACLKENST enable parameter
cortexr8_core.AFVALIDMD0=0 # (int , run-time) default =
'0x0' : Default value for AFVALIDMD0
cortexr8_core.AFVALIDMD1=0 # (int , run-time) default =
'0x0' : Default value for AFVALIDMD1
cortexr8_core.AFVALIDMD2=0 # (int , run-time) default =
'0x0' : Default value for AFVALIDMD2
cortexr8_core.AFVALIDMD3=0 # (int , run-time) default =
'0x0' : Default value for AFVALIDMD3
.
.
.

--list-regs

This option prints a list of model registers that are supported for viewing with a debugger. See also
4.2.1 Supported registers on page 4-37. See the Technical Reference Manual for your IP for register
descriptions.

For example:

$./system_test --list-regs

--quiet

Run quiet, suppress informational output.

--parameter, -C [INST.]PARAMETER=VALUE

This option sets the specified model parameter using the format : -C INST.PARAM=VALUE

[INST=]
Specifies the core instance. This field is optional for Symmetric Multiprocessor (SMP) cores.

PARAMETER
Specifies the parameter to set.

VALUE
Specifies the parameter value.

For example:

$./system_test -C cortexr8_core0.LOAD_DTCMS=true

--print-port-number, -p

This option causes the CADI server to print the TCP/IP port it is listening to.

For example:

$./system_test -S -p
.
.
.
Starting Sim
CADI server started listening to port 7001

Info: R8-MP4-SysC: CADI Debug Server started for ARM Models...

--stat

This option prints run statistics on simulation exit.

$./system_test -S --stat

After the simulation ends, statistics such as those shown in the following example are output:

--- R8-MP4-SysC statistics: ---
Simulated time : 0.000000s
User time : 0.028996s

5 SystemC Export API function reference
5.8 scx::scx_parse_and_configure

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 5-60
Non-Confidential

System time : 0.002999s
Wall time : 4.278761s
cortexr8_core.cpu0 : 0.00 KIPS (0 Inst)
cortexr8_core.cpu1 : 0.00 KIPS (0 Inst)
cortexr8_core.cpu2 : 0.00 KIPS (0 Inst)
cortexr8_core.cpu3 : 0.00 KIPS (0 Inst)

--timelimit, -T

Maximum number of seconds to run, excluding startup and shutdown. Defaults to unlimited.

5 SystemC Export API function reference
5.8 scx::scx_parse_and_configure

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 5-61
Non-Confidential

5.9 scx::scx_print_statistics
This function specifies whether to enable printing of simulation statistics at the end of the simulation.

void scx_print_statistics(bool print = true);

print
true to enable printing of simulation statistics, false otherwise.

 Note

• You cannot enable printing of statistics once simulation starts.
• The statistics include LISA reset() behavior run time and application load time. A long simulation

run compensates for this.

5 SystemC Export API function reference
5.9 scx::scx_print_statistics

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 5-62
Non-Confidential

Appendix A
Migrating from previous SystemC Cycle Model
versions

This section contains instructions specific to upgrading from a previous verison of SystemC Cycle
Models to version 10.0.

It contains the following section:
• A.1 Migrating from previous versions on page Appx-A-64.

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. Appx-A-63
Non-Confidential

A.1 Migrating from previous versions
Perform the actions in this section if you are upgrading to SystemC Cycle Models version 10.0 from a
previous version.

Make the following additions to the LD_LIBARY_PATH environment variable:
• Add MODELS/component name/gcc483/SystemC/lib. This addition is required because MODELS/

component name/gcc483/SystemC/lib/libcomponent.a has been replaced with
libmodelname.icm.so.

• Add runtime install_path/ARM/CycleModels/Runtime/cm_sysc/version/lib/Linux64_GCC-
x.y.

 Note

In this filepath, version is the latest Cycle Model SystemC Runtime version (not the model version),
and x.y is the GCC version.

This addition is required because the installation package includes a new library, runtime
install_path/ARM/CycleModels/Runtime/cm_sysc/version/lib/Linux64_GCC-x.y/
libicm_runtime.so, which you are required to link.

SystemC Cycle Models version 10.0 includes TLM socket name changes; for example, core.iSkt_M0
has changed to core.iSkt_ACE5_Master_M0. See the file libcomponent.tlm.h in your installation
directory for socket names.

A Migrating from previous SystemC Cycle Model versions
A.1 Migrating from previous versions

101391_1000_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. Appx-A-64
Non-Confidential

	Cortex-R8 SystemC Cycle Model User Guide
	Table of Contents
	Preface
	About this book
	Using this book
	Glossary
	Typographic conventions
	Feedback
	Feedback on this product
	Feedback on content

	Other information

	1 : Introduction
	1.1 : Functionality of the SystemC Cycle Model
	1.2 : Prerequisites to using SystemC Cycle Models
	1.3 : Supported platforms, compilers, and simulators
	1.3.1 : Supported platforms
	1.3.2 : Supported compilers
	1.3.3 : Supported simulators

	1.4 : Package contents

	2 : Using SystemC Cycle Models
	2.1 : Connecting model ports
	2.1.1 : Tied pins

	2.2 : Resetting the SystemC Cycle Model
	2.3 : Setting model parameters
	2.4 : Dumping waveforms
	2.5 : Loading TCMs
	2.6 : Configuring PMU events
	2.6.1 : Supported hardware profiling events

	2.7 : Configuring TARMAC trace
	2.8 : Working with the SCX framework
	2.9 : Using a SystemC model in your own design

	3 : Working with SystemC CPAKs
	3.1 : Introduction to Arm® CPAKs
	3.2 : Getting started with CPAKs
	3.3 : Working with Cycle Models and CPAKs
	3.3.1 : Application loading
	3.3.2 : Modifying the test bench for pin-level models
	3.3.3 : Modifying the test bench for TLM models

	3.4 : Building and running CPAK simulations

	4 : Debugging SystemC Cycle Models with DS-5
	4.1 : Prerequisites to debugging
	4.2 : Supported debug features
	4.2.1 : Supported registers
	4.2.2 : Supported memory views

	4.3 : Restrictions and limitations
	4.4 : Enabling DS-5 for use with SystemC Cycle Models
	4.4.1 : Initial database configuration
	4.4.2 : Starting the simulation and selecting the model for debug
	4.4.3 : Specifying the application to debug

	4.5 : CADI RemoteConnection parameters
	4.6 : Multicore debugging
	4.7 : Changing the timeout setting

	5 : SystemC Export API function reference
	5.1 : scx::scx_initialize
	5.2 : scx::scx_load_application
	5.3 : scx::scx_set_parameter
	5.4 : scx::scx_get_parameter
	5.5 : scx::scx_get_parameter_list
	5.6 : scx::scx_cpulimit
	5.7 : scx::scx_timelimit
	5.8 : scx::scx_parse_and_configure
	5.9 : scx::scx_print_statistics

	A : Migrating from previous SystemC Cycle Model versions
	A.1 : Migrating from previous versions

