
ARM® Compiler
Version 6.4

Migration and Compatibility Guide

Copyright © 2014-2016 ARM. All rights reserved.
ARM DUI0742E

ARM® Compiler
Migration and Compatibility Guide
Copyright © 2014-2016 ARM. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

A 14 March 2014 Non-Confidential ARM Compiler v6.00 Release

B 15 December 2014 Non-Confidential ARM Compiler v6.01 Release

C 30 June 2015 Non-Confidential ARM Compiler v6.02 Release

D 18 November 2015 Non-Confidential ARM Compiler v6.3 Release

E 24 February 2016 Non-Confidential ARM Compiler v6.4 Release

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of ARM. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is
not intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this
document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms.
This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective
owners. Please follow ARM’s trademark usage guidelines at http://www.arm.com/about/trademark-usage-guidelines.php

Copyright © [2014-2016], ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

 ARM® Compiler

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 2
Non-Confidential

http://www.arm.com/about/trademark-usage-guidelines.php

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Unrestricted Access is an ARM internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

http://www.arm.com

 ARM® Compiler

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 3
Non-Confidential

http://www.arm.com

Contents
ARM® Compiler Migration and Compatibility Guide

Preface
About this book 9

Chapter 1 Configuration and Support Information
1.1 Support level definitions 1-12
1.2 Compiler configuration information .. 1-15

Chapter 2 Command-line Options Comparison
2.1 Comparison of ARM Compiler 6 compiler command-line options and older versions of

ARM Compiler 2-17
2.2 Command-line options for preprocessing assembly source code 2-21

Chapter 3 Compiler Source Code Compatibility
3.1 Language extension compatibility: keywords 3-23
3.2 Language extension compatibility: attributes 3-24
3.3 Language extension compatibility: pragmas 3-25
3.4 Diagnostics for pragma compatibility 3-28
3.5 C and C++ implementation compatibility 3-30
3.6 Compatibility of C++ objects .. 3-32

Chapter 4 Migrating ARM syntax assembly code to GNU syntax
4.1 Overview of differences between ARM and GNU syntax assembly code 4-35
4.2 Comments 4-37
4.3 Labels .. 4-38

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 4
Non-Confidential

4.4 Numeric local labels 4-39
4.5 Functions 4-41
4.6 Sections 4-42
4.7 Symbol naming rules 4-43
4.8 Numeric literals .. 4-44
4.9 Operators 4-45
4.10 Alignment 4-46
4.11 PC-relative addressing 4-47
4.12 Conditional directives 4-48
4.13 Data definition directives 4-49
4.14 Instruction set directives .. 4-50
4.15 Miscellaneous directives .. 4-51
4.16 Symbol definition directives 4-52

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 5
Non-Confidential

List of Figures
ARM® Compiler Migration and Compatibility Guide

Figure 1-1 Integration boundaries in ARM Compiler 6. ... 1-13

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 6
Non-Confidential

List of Tables
ARM® Compiler Migration and Compatibility Guide

Table 1-1 FlexNet versions .. 1-15
Table 2-1 Comparison of ARM Compiler 6 compiler command-line options and older versions of ARM

Compiler .. 2-17
Table 3-1 Keyword language extensions that must be replaced ... 3-23
Table 3-2 Pragma language extensions that must be replaced .. 3-25
Table 3-3 Pragma diagnostics ... 3-28
Table 3-4 C and C++ implementation detail differences .. 3-30
Table 4-1 Operator translation ... 4-45
Table 4-2 Conditional directive translation ... 4-48
Table 4-3 Data definition directives translation .. 4-49
Table 4-4 Instruction set directives translation .. 4-50
Table 4-5 Miscellaneous directives translation .. 4-51
Table 4-6 Symbol definition directives translation ... 4-52

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 7
Non-Confidential

Preface

This preface introduces the ARM® Compiler Migration and Compatibility Guide.

It contains the following:
• About this book on page 9.

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 8
Non-Confidential

 About this book
The ARM® Compiler Migration and Compatibility Guide provides migration and compatibility
information for users moving from older versions of ARM Compiler to ARM Compiler 6.

 Using this book

This book is organized into the following chapters:

Chapter 1 Configuration and Support Information
Summarizes the support levels, and locales and FlexNet versions supported by the ARM®

compilation tools.

Chapter 2 Command-line Options Comparison
Compares ARM Compiler 6 command-line options to older versions of ARM Compiler.

Chapter 3 Compiler Source Code Compatibility
Provides details of source code compatibility between ARM Compiler 6 and older armcc
compiler versions.

Chapter 4 Migrating ARM syntax assembly code to GNU syntax
Describes how to migrate assembly code from the legacy ARM syntax (used by armasm) to GNU
syntax (used by armclang).

 Glossary

The ARM Glossary is a list of terms used in ARM documentation, together with definitions for those
terms. The ARM Glossary does not contain terms that are industry standard unless the ARM meaning
differs from the generally accepted meaning.

See the ARM Glossary for more information.

 Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
ARM glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Feedback

 Preface
 About this book

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 9
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title ARM® Compiler Migration and Compatibility Guide.
• The number ARM DUI0742E.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.
 Note

ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Other information

• ARM Information Center.
• ARM Technical Support Knowledge Articles.
• Support and Maintenance.
• ARM Glossary.

 Preface
 About this book

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 10
Non-Confidential

mailto:errata@arm.com
http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/topic/com.arm.doc.faqs
http://www.arm.com/support/services/support-maintenance.php
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Chapter 1
Configuration and Support Information

Summarizes the support levels, and locales and FlexNet versions supported by the ARM® compilation
tools.

It contains the following sections:
• 1.1 Support level definitions on page 1-12.
• 1.2 Compiler configuration information on page 1-15.

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 1-11
Non-Confidential

1.1 Support level definitions
Describes the levels of support for various ARM Compiler features.

ARM Compiler 6 is built on Clang and LLVM technology and as such, has more functionality than the
set of product features described in the documentation. The following definitions clarify the levels of
support and guarantees on functionality that are expected from these features.

ARM welcomes feedback regarding the use of all ARM Compiler 6 features, and endeavors to support
users to a level that is appropriate for that feature. You can contact support at http://www.arm.com/
support.

Identification in the documentation

All features that are documented in the ARM Compiler 6 documentation are product features, except
where explicitly stated. The limitations of non-product features are explicitly stated.

Product features
Product features are suitable for use in a production environment. The functionality is well-tested, and is
expected to be stable across feature and update releases.
• ARM endeavors to give advance notice of significant functionality changes to product features.
• If you have a support and maintenance contract, ARM provides full support for use of all product

features.
• ARM welcomes feedback on product features.
• Any issues with product features that ARM encounters or is made aware of are considered for fixing

in future versions of ARM Compiler.

In addition to fully supported product features, some product features are only alpha or beta quality.

Beta product features
Beta product features are implementation complete, but have not been sufficiently tested to be
regarded as suitable for use in production environments.
Beta product features are indicated with [BETA].
• ARM endeavors to document known limitations on beta product features.
• Beta product features are expected to eventually become product features in a future release

of ARM Compiler 6.
• ARM encourages the use of beta product features, and welcomes feedback on them.
• Any issues with beta product features that ARM encounters or is made aware of are

considered for fixing in future versions of ARM Compiler.

Alpha product features
Alpha product features are not implementation complete, and are subject to change in future
releases, therefore the stability level is lower than in beta product features.
Alpha product features are indicated with [ALPHA].
• ARM endeavors to document known limitations of alpha product features.
• ARM encourages the use of alpha product features, and welcomes feedback on them.
• Any issues with alpha product features that ARM encounters or is made aware of are

considered for fixing in future versions of ARM Compiler.

Community features

ARM Compiler 6 is built on LLVM technology and preserves the functionality of that technology where
possible. This means that there are additional features available in ARM Compiler that are not listed in
the documentation. These additional features are known as community features. For information on these
community features, see the documentation for the Clang/LLVM project.

1 Configuration and Support Information
1.1 Support level definitions

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 1-12
Non-Confidential

http://www.arm.com/support
http://www.arm.com/support
http://clang.llvm.org/docs/UsersManual.html

Where community features are referenced in the documentation, they are indicated with
[COMMUNITY].
• ARM makes no claims about the quality level or the degree of functionality of these features, except

when explicitly stated in this documentation.
• Functionality might change significantly between feature releases.
• ARM makes no guarantees that community features are going to remain functional across update

releases, although changes are expected to be unlikely.

Some community features might become product features in the future, but ARM provides no roadmap
for this. ARM is interested in understanding your use of these features, and welcomes feedback on them.
ARM supports customers using these features on a best-effort basis, unless the features are unsupported.
ARM accepts defect reports on these features, but does not guarantee that these issues are going to be
fixed in future releases.

Guidance on use of community features
There are several factors to consider when assessing the likelihood of a community feature being
functional:
• The following figure shows the structure of the ARM Compiler 6 toolchain:

armasm

armclang

ARM C library

ARM C++ library

armlink

LLVM Project
clang

AssemblyAssembly Source codeSource code AssemblyAssembly

Source code
headers

Source code
headers

ObjectsObjects ObjectsObjects ObjectsObjects

Scatter/Steering/
Symdefs file

Scatter/Steering/
Symdefs file

ImageImage

LLVM Project
libc++

Figure 1-1 Integration boundaries in ARM Compiler 6.

The dashed boxes are toolchain components, and any interaction between these components is an
integration boundary. Community features that span an integration boundary might have significant
limitations in functionality. The exception to this is if the interaction is codified in one of the
standards supported by ARM Compiler 6. See Application Binary Interface (ABI) for the ARM®

1 Configuration and Support Information
1.1 Support level definitions

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 1-13
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi/index.html

Architecture. Community features that do not span integration boundaries are more likely to work as
expected.

• Features primarily used when targeting hosted environments such as Linux or BSD, might have
significant limitations, or might not be applicable, when targeting bare-metal environments.

• The Clang implementations of compiler features, particularly those that have been present for a long
time in other toolchains, are likely to be mature. The functionality of new features, such as support
for new language features, is likely to be less mature and therefore more likely to have limited
functionality.

Unsupported features

With both the product and community feature categories, specific features and use-cases are known not
to function correctly, or are not intended for use with ARM Compiler 6.

Limitations of product features are stated in the documentation. ARM cannot provide an exhaustive list
of unsupported features or use-cases for community features. The known limitations on community
features are listed in Community features on page 1-12.

List of known unsupported features
The following is an incomplete list of unsupported features, and might change over time:
• The Clang option -stdlib=libstdc++ is not supported.
• The ARM Compiler 6 libc++ libraries do not support the Thread support library <thread>.
• Use of C11 library features is unsupported.
• Any community feature that exclusively pertains to non-ARM architectures is not supported by ARM

Compiler 6.

1 Configuration and Support Information
1.1 Support level definitions

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 1-14
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi/index.html

1.2 Compiler configuration information
Summarizes the locales and FlexNet versions supported by the ARM compilation tools.

FlexNet versions in the compilation tools

Different versions of ARM Compiler support different versions of FlexNet.

The FlexNet versions in the compilation tools are:

Table 1-1 FlexNet versions

Compilation tools version Windows Linux

ARM Compiler 6.01 and later 11.12.1.0 11.12.1.0

ARM Compiler 6.00 11.10.1.0 11.10.1.0

Locale support in the compilation tools

ARM Compiler only supports the English locale.

Related information
ARM DS-5 License Management Guide.

1 Configuration and Support Information
1.2 Compiler configuration information

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 1-15
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0577-/index.html

Chapter 2
Command-line Options Comparison

Compares ARM Compiler 6 command-line options to older versions of ARM Compiler.

It contains the following sections:
• 2.1 Comparison of ARM Compiler 6 compiler command-line options and older versions of ARM

Compiler on page 2-17.
• 2.2 Command-line options for preprocessing assembly source code on page 2-21.

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 2-16
Non-Confidential

2.1 Comparison of ARM Compiler 6 compiler command-line options and older
versions of ARM Compiler

ARM Compiler provides many command-line options, including most Clang command-line options as
well as several ARM-specific options.

 Note

This topic includes descriptions of [BETA] on page 1-12 and [COMMUNITY] on page 1-12 features.

The following table describes the most common ARM Compiler command-line options, and shows
equivalent options for ARM Compiler 6 and older versions of ARM Compiler.

Additional information about command-line options is available:
• The armclang Reference Guide provides more detail about a number of command-line options.
• For a full list of Clang command-line options, consult the Clang and LLVM documentation.

Table 2-1 Comparison of ARM Compiler 6 compiler command-line options and older versions of ARM Compiler

Older ARM Compiler option ARM Compiler 6
option

Description

--allow_fpreg_for_nonfpdata, --
no_allow_fpreg_for_nonfpdata

[COMMUNITY] -
mimplicit-float, -
mno-implicit-float

Enables or disables the use of VFP and SIMD registers and
data transfer instructions for non-VFP and non-SIMD data.

--apcs=/ropi [BETA] -fropi Enables or disables the generation of Read-Only Position-
Independent (ROPI) code.

--apcs=/rwpi [BETA] -frwpi Enables or disables the generation of Read/Write Position-
Independent (RWPI) code.

--arm -marm Targets the ARM instruction set. The compiler is permitted to
generate both ARM and Thumb code, but recognizes that
ARM code is preferred.

-c -c Performs the compilation step, but not the link step.

--c90 -xc -std=c90 Enables the compilation of C90 source code.

-xc is a positional argument and only affects subsequent
input files on the command line

--c99 -xc -std=c99 Enables the compilation of C99 source code.

-xc is a positional argument and only affects subsequent
input files on the command line

--cpp -xc++ -std=c++98 Enables the compilation of C++ source code.

-xc++ is a positional argument and only affects subsequent
input files on the command line

--cpu 8-A.32 --target=arm-arm-
none-eabi -
march=armv8-a

Targets ARMv8-A, AArch32 state.

--cpu 8-A.64 --target=aarch64-
arm-none-eabi

Targets ARMv8-A, AArch64 state. (Implies -
march=armv8-a if -mcpu is not specified.)

2 Command-line Options Comparison
2.1 Comparison of ARM Compiler 6 compiler command-line options and older versions of ARM Compiler

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 2-17
Non-Confidential

Table 2-1 Comparison of ARM Compiler 6 compiler command-line options and older versions of ARM Compiler (continued)

Older ARM Compiler option ARM Compiler 6
option

Description

--cpu 7-A --target=arm-arm-
none-eabi -
march=armv7-a

Targets ARMv7-A.

--cpu=Cortex-M4 --target=arm-arm-
none-eabi -
mcpu=cortex-m4

Targets the Cortex M4

--cpu=Cortex-A15 --target=arm-arm-
none-eabi -
mcpu=cortex-a15

Targets the Cortex A15 processor.

-D -D Defines a preprocessing macro.

-E -E Executes only the preprocessor step.

--fpmode=fast -ffast-math Performs aggressive floating-point optimizations at the cost
of IEEE compliance.

--fpu -mfpu Specifies the target FPU architecture.
 Note

--fpu=none checks the source code for floating-point
operations, and if any are found it produces an error. -
mfpu=none prevents the compiler from using hardware-
based floating-point functions. If the compiler encounters
floating-point types in the source code, it uses software-based
floating-point library functions.

-I -I Adds the specified directories to the list of places that are
searched to find included files.

--inline Default at -O2 and -O3. There is no equivalent of the --inline option. ARM
Compiler 6 automatically decides whether to inline functions
at optimization levels -O2 and -O3.

-L -Xlinker Specifies command-line options to pass to the linker when a
link step is being performed after compilation.

--licretry No equivalent. There is no equivalent of the --licretry option. The ARM
Compiler 6 tools automatically retry failed attempts to obtain
a license.

--list_macros -E -dM List all the macros that are defined at the end of the
translation unit, including the predefined macros

--lower_ropi, --no_lower_ropi [BETA] -fropi-
lowering, -fno-ropi-
lowering

Enables or disables less restrictive C when generating Read-
Only Position-Independent (ROPI) code.

 Note

In ARM Compiler 5, when--acps=/ropi is specified, --
lower_ropi is not switched on by default. In ARM
Compiler 6, when -fropi is specified, -fropi-lowering
is switched on by default.

2 Command-line Options Comparison
2.1 Comparison of ARM Compiler 6 compiler command-line options and older versions of ARM Compiler

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 2-18
Non-Confidential

Table 2-1 Comparison of ARM Compiler 6 compiler command-line options and older versions of ARM Compiler (continued)

Older ARM Compiler option ARM Compiler 6
option

Description

--lower_rwpi, --no_lower_rwpi [BETA] -frwpi-
lowering, -fno-rwpi-
lowering

Enables or disables less restrictive C when generating Read-
Write Position-Independent (RWPI) code.

-M -M Instructs the compiler to produce a list of makefile
dependency lines suitable for use by a make utility.

--depend -MF Specifies a filename for the makefile dependency rules.

--depend_format=unix_escaped Dependency file entries use UNIX-style path separators and
escapes spaces with \. This is the default in ARM Compiler 6.

--depend_target -MT Changes the target name for the makefile dependency rule.

--ignore_missing_headers -MG Prints dependency lines for header files even if the header
files are missing.

--phony_targets -MP Emits dummy makefile rules.

--md -MD Creates makefile dependency files, including the system
header files. In ARM Compiler 5, this is equivalent to --md
--depend_system_headers.

--md --no_depend_system_headers -MMD Creates makefile dependency files, without the system header
files.

--mm -MM Creates a single makefile dependency file, without the system
header files. In ARM Compiler 5, this is equivalent to -M --
no_depend_system_headers.

-o -o Specifies the name of the output file.

-Onum -Onum Specifies the level of optimization to be used when compiling
source files.

The default for older compiler versions is -O2. The default
for ARM Compiler 6 is -O0.

-Ospace -Oz / -Os Performs optimizations to reduce image size at the expense of
a possible increase in execution time.

-Otime Default. Performs optimizations to reduce execution time at the
expense of a possible increase in image size.

There is no equivalent of the -Otime option. ARM Compiler
6 optimizes for execution time by default, unless you specify
the -Os or -Oz options.

--preinclude -include Include the source code of a specified file at the beginning of
the compilation.

--relaxed_ref_def -fcommon Places zero-initialized definitions in a common block.

-S -S Outputs the disassembly of the machine code generated by
the compiler.

The output from this option differs between releases. Older
ARM Compiler versions produce output with armasm syntax
while ARM Compiler 6 produces output with GNU syntax.

2 Command-line Options Comparison
2.1 Comparison of ARM Compiler 6 compiler command-line options and older versions of ARM Compiler

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 2-19
Non-Confidential

Table 2-1 Comparison of ARM Compiler 6 compiler command-line options and older versions of ARM Compiler (continued)

Older ARM Compiler option ARM Compiler 6
option

Description

--show_cmdline -v Shows how the compiler processes the command line. The
commands are shown normalized, and the contents of any via
files are expanded.

--split_ldm -fno-ldm-stm Disables the generation of LDM and STM instructions.

Note that while the armcc --split_ldm option limits the
size of generated LDM/STM instructions, the armclang -
fno-ldm-stm option disables the generation of LDM and STM
instructions altogether.

--split_sections -ffunction-sections Generates one ELF section for each function in the source
file.

--thumb -mthumb Targets the Thumb instruction set.

--vectorize -fvectorize Enables the generation of Advanced SIMD vector
instructions directly from C or C++ code.

--via @file Reads an additional list of compiler options from a file.

--vsn --version Displays version information and license details.

Related information
The LLVM Compiler Infrastructure Project.

2 Command-line Options Comparison
2.1 Comparison of ARM Compiler 6 compiler command-line options and older versions of ARM Compiler

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 2-20
Non-Confidential

http://llvm.org/

2.2 Command-line options for preprocessing assembly source code
The functionality of the --cpreproc and --cpreproc_opts command-line options in the version of
armasm supplied with ARM Compiler 6 is different from the options used in earlier versions of armasm to
preprocess assembly source code.

If you are using armasm to assemble source code that requires the use of the preprocessor, you must use
both the --cpreproc and --cpreproc_opts options together. Also:
• As a minimum, you must include the armclang options --target and either -mcpu or -march in --

cpreproc_opts.
• The input assembly source must have an upper-case extension .S.

Example
The options to the preprocessor in this example are --cpreproc_opts=--target=arm-arm-none-eabi,
-mcpu=cortex-a9,-D,DEF1,-D,DEF2.

armasm --cpu=cortex-a9 --cpreproc --cpreproc_opts=--target=arm-arm-none-eabi, -mcpu=cortex-
a9,-D,DEF1,-D,DEF2 -I /path/to/includes1 -I /path/to/includes2 input.S

 Note

Ensure that you specify compatible architectures in the armclang options --target, -mcpu or -march,
and the armasm --cpu option.

Related information
--cpreproc assembler option.
--cpreproc_opts assembler option.
Specifying a target architecture, processor, and instruction set.
-march armclang option.
-mcpu armclang option.
--target armclang option.

2 Command-line Options Comparison
2.2 Command-line options for preprocessing assembly source code

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 2-21
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1361289821333.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1361289821693.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0773-/chr1382715495677.html/
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1411547793198.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1392632801932.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1383664654486.html

Chapter 3
Compiler Source Code Compatibility

Provides details of source code compatibility between ARM Compiler 6 and older armcc compiler
versions.

It contains the following sections:
• 3.1 Language extension compatibility: keywords on page 3-23.
• 3.2 Language extension compatibility: attributes on page 3-24.
• 3.3 Language extension compatibility: pragmas on page 3-25.
• 3.4 Diagnostics for pragma compatibility on page 3-28.
• 3.5 C and C++ implementation compatibility on page 3-30.
• 3.6 Compatibility of C++ objects on page 3-32.

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 3-22
Non-Confidential

3.1 Language extension compatibility: keywords
ARM Compiler 6 provides support for some keywords that were supported in older armcc compiler
versions. Other keywords are not supported, or must be replaced with alternatives.

The following table lists some of the commonly used keywords that are supported by older versions of
the compiler but are not supported by ARM Compiler 6. Replace any instances of these keywords in
your code with the recommended alternative.

 Note

This is not an exhaustive list of all unsupported keywords.

Table 3-1 Keyword language extensions that must be replaced

Keyword supported by older compiler versions Recommended ARM Compiler 6 alternative

__align(x) __attribute__((aligned(x)))

__clz Use an inline CLZ assembly instruction or equivalent routine.

__const __attribute__((const))

__forceinline __attribute__((always_inline))

__ldrex Use an inline LDREX assembly instruction.

__packed __attribute__((packed, aligned(1)))

__pure __attribute__((pure))

__rev Use an inline REV assembly instruction.

__sev Use an inline SEV assembly instruction.

__softfp __attribute__((__pcs__("aapcs")))

__strex Use an inline STREX assembly instruction.

__weak __attribute__((weak))

__wfe Use an inline WFE assembly instruction.

Related references
3.5 C and C++ implementation compatibility on page 3-30.
3.2 Language extension compatibility: attributes on page 3-24.
3.3 Language extension compatibility: pragmas on page 3-25.

3 Compiler Source Code Compatibility
3.1 Language extension compatibility: keywords

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 3-23
Non-Confidential

3.2 Language extension compatibility: attributes
ARM Compiler 6 provides support for some function, variable, and type attributes that were supported in
older armcc compiler versions. Other attributes are not supported.

The following attributes are supported by older compiler versions and ARM Compiler 6. These attributes
do not require modification in your code:
• __attribute__((aligned(x)))
• __attribute__((always_inline))
• __attribute__((const))
• __attribute__((deprecated))
• __attribute__((noinline))
• __declspec(noinline)
• __attribute__((nonnull))
• __attribute__((noreturn))
• __declspec(noreturn)
• __attribute__((nothrow))
• __declspec(nothrow)
• __attribute__((pcs("calling convention")))
• __attribute__((pure))
• __attribute__((section("name")))

 Note

Older compiler versions supported the zero_init attribute. ARM Compiler 6 does not support the
zero_init attribute, but if the section name starts with .bss., the variable is placed in a ZI section.

• __attribute__((unused))
• __attribute__((used))
• __attribute__((visibility))
• __attribute__((weak))
• __attribute__((weakref))

Related references
3.5 C and C++ implementation compatibility on page 3-30.
3.1 Language extension compatibility: keywords on page 3-23.
3.3 Language extension compatibility: pragmas on page 3-25.

3 Compiler Source Code Compatibility
3.2 Language extension compatibility: attributes

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 3-24
Non-Confidential

3.3 Language extension compatibility: pragmas
ARM Compiler 6 provides support for some pragmas that were supported in older armcc compiler
versions. Other pragmas are not supported, or must be replaced with alternatives.

The following table lists some of the commonly used pragmas that are supported by older versions of the
compiler but are not supported by ARM Compiler 6. Replace any instances of these pragmas in your
code with the recommended alternative.

Table 3-2 Pragma language extensions that must be replaced

Pragma supported by older armcc
compiler versions

Recommended ARM Compiler 6 alternative

#pragma import (symbol) asm(" .global symbol\n");

#pragma anon_unions

#pragma no_anon_unions

In C, anonymous structs and unions are a C11 extension which is enabled by default
in armclang. If you specify the -pedantic option, the compiler emits warnings
about extensions do not match the specified language standard. For example:

armclang --target=aarch64-arm-none-eabi -c -pedantic --std=c90
test.c
 test.c:3:5: warning: anonymous structs are a C11 extension [-
Wc11-extensions]

In C++, anonymous unions are part of the language standard, and are always
enabled. However, anonymous structs and classes are an extension. If you specify
the -pedantic option, the compiler emits warnings about anonymous structs and
classes. For example:

armclang --target=aarch64-arm-none-eabi -c -pedantic -xc++
test.c
 test.c:3:5: warning: anonymous structs are a GNU extension [-
Wgnu-anonymous-struct]

Introducing anonymous unions, struct and classes using a typedef is a separate
extension in armclang, which must be enabled using the -fms-extensions
option.

#pragma arm

#pragma thumb

armclang does not support switching instruction set in the middle of a file. You
can use the command line options -marm and -mthumb to specify the instruction
set of the whole file.

#pragma arm section armclang does not support setting the sections to be used for code, rodata, rwdata
and zidata for the rest of the file. However the
__attribute__((section("name"))) attribute can be used to set the section
of individual functions and variables.

3 Compiler Source Code Compatibility
3.3 Language extension compatibility: pragmas

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 3-25
Non-Confidential

Table 3-2 Pragma language extensions that must be replaced (continued)

Pragma supported by older armcc
compiler versions

Recommended ARM Compiler 6 alternative

#pragma diag_default

#pragma diag_suppress

#pragma diag_remark

#pragma diag_warning

#pragma diag_error

The following pragmas provide equivalent functionality for diag_suppress,
diag_warning, and diag_error:
• #pragma clang diagnostic ignored "-Wmultichar"
• #pragma clang diagnostic warning "-Wmultichar"
• #pragma clang diagnostic error "-Wmultichar"

Note that these pragmas use armclang diagnostic groups, which do not have a
precise mapping to armcc diagnostic tags.

armclang has no equivalent to diag_default or diag_remark.
diag_default can be replaced by wrapping the change of diagnostic level with
#pragma clang diagnostic push and #pragma clang diagnostic pop,
or by manually returning the diagnostic to the default level.

There is an additional diagnostic level supported in armclang, fatal, which causes
compilation to fail without processing the rest of the file. You can set this as
follows:

#pragma clang diagnostic fatal "-Wmultichar"

#pragma exceptions_unwind

#pragma no_exceptions_unwind

armclang does not support these pragmas.

Use the __attribute__((nothrow)) function attribute instead.

#pragma GCC system_header This pragma is supported by both armcc and armclang, but #pragma clang
system_header is the preferred spelling in armclang for new code.

#pragma hdrstop

#pragma no_pch

armclang does not support these pragmas.

#pragma
import(__use_no_semihosting)

#pragma
import(__use_no_semihosting_swi)

armclang does not support these pragmas. However, in C code, you can replace
these pragmas with asm(" .global __use_no_semihosting");

#pragma inline

#pragma no_inline

armclang does not support these pragmas. However, inlining can be disabled on a
per-function basis using the __attribute__((noinline)) function attribute.

The default behavior of both armcc and armclang is to inline functions when the
compiler considers this worthwhile, and this is the behavior selected by using
#pragma inline in armcc. To force a function to be inlined in armclang, use
the __attribute__((always_inline)) function attribute.

#pragma Onum

#pragma Ospace

#pragma Otime

armclang does not support changing optimization options within a file. Instead
these must be set on a per-file basis using command-line options.

#pragma pop

#pragma push

armclang does not support these pragmas.

If these are only used to control emission of diagnostics, #pragma clang
diagnostic push and #pragma clang diagnostic pop can be used to
achieve the same effect.

3 Compiler Source Code Compatibility
3.3 Language extension compatibility: pragmas

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 3-26
Non-Confidential

Table 3-2 Pragma language extensions that must be replaced (continued)

Pragma supported by older armcc
compiler versions

Recommended ARM Compiler 6 alternative

#pragma softfp_linkage armclang does not support this pragma. Instead, use the
__attribute__((pcs("aapcs"))) function attribute to set the calling
convention on a per-function basis, or use the -mfloat-abi=soft command-line
option to set the calling convention on a per-file basis.

#pragma no_softfp_linkage armclang does not support this pragma. Instead, use the
__attribute__((pcs("aapcs-vfp"))) function attribute to set the calling
convention on a per-function basis, or use the -mfloat-abi=hard command-line
option to set the calling convention on a per-file basis.

#pragma unroll[(n)]

#pragma unroll_completely

armclang supports these pragmas.
The default for #pragma unroll (that is, with no iteration count specified) differs
between armclang and armcc:
• With armclang, the default is to fully unroll a loop.
• With armcc, the default is #pragma unroll(4).

Related references
3.5 C and C++ implementation compatibility on page 3-30.
3.1 Language extension compatibility: keywords on page 3-23.
3.2 Language extension compatibility: attributes on page 3-24.
3.4 Diagnostics for pragma compatibility on page 3-28.

Related information
armclang Reference Guide: #pragma GCC system_header.
armclang Reference Guide: #pragma once.
armclang Reference Guide: #pragma pack(n).
armclang Reference Guide: #pragma weak symbol, #pragma weak symbol1 = symbol2.
armclang Reference Guide: #pragma unroll[(n)], #pragma unroll_completely.

3 Compiler Source Code Compatibility
3.3 Language extension compatibility: pragmas

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 3-27
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1383580039043.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1359124989221.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1384946440202.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1384947306700.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/chr1410944046234.html

3.4 Diagnostics for pragma compatibility
Older armcc compiler versions supported many pragmas which are not supported by armclang, but
which could change the semantics of code. When armclang encounters these pragmas, it generates
diagnostic messages.

The following table shows which diagnostics are generated for each pragma type, and the diagnostic
group to which that diagnostic belongs. armclang generates diagnostics as follows:
• Errors indicate use of an armcc pragma which could change the semantics of code.
• Warnings indicate use of any other armcc pragma which is ignored by armclang.
• Pragmas other than those listed are silently ignored.

Table 3-3 Pragma diagnostics

Pragma supported by older compiler versions Default diagnostic type Diagnostic group

#pragma anon_unions Warning armcc-pragma-anon-unions

#pragma no_anon_unions Warning armcc-pragma-anon-unions

#pragma arm Error armcc-pragma-arm

#pragma arm section [section_type_list] Error armcc-pragma-arm

#pragma diag_default tag[,tag,...] Error armcc-pragma-diag

#pragma diag_error tag[,tag,...] Error armcc-pragma-diag

#pragma diag_remark tag[,tag,...] Warning armcc-pragma-diag

#pragma diag_suppress tag[,tag,...] Warning armcc-pragma-diag

#pragma diag_warning tag[,tag,...] Warning armcc-pragma-diag

#pragma exceptions_unwind Error armcc-pragma-exceptions-unwind

#pragma no_exceptions_unwind Error armcc-pragma-exceptions-unwind

#pragma GCC system_header None -

#pragma hdrstop Warning armcc-pragma-hdrstop

#pragma import symbol_name Error armcc-pragma-import

#pragma inline Warning armcc-pragma-inline

#pragma no_inline Warning armcc-pragma-inline

#pragma no_pch Warning armcc-pragma-no-pch

#pragma Onum Warning armcc-pragma-optimization

#pragma once None -

#pragma Ospace Warning armcc-pragma-optimization

#pragma Otime Warning armcc-pragma-optimization

#pragma pack None -

#pragma pop Error armcc-pragma-push-pop

#pragma push Error armcc-pragma-push-pop

#pragma softfp_linkage Error armcc-pragma-softfp-linkage

#pragma no_softfp_linkage Error armcc-pragma-softfp-linkage

#pragma thumb Error armcc-pragma-thumb

3 Compiler Source Code Compatibility
3.4 Diagnostics for pragma compatibility

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 3-28
Non-Confidential

Table 3-3 Pragma diagnostics (continued)

Pragma supported by older compiler versions Default diagnostic type Diagnostic group

#pragma weak symbol None -

#pragma weak symbol1 = symbol2 None -

In addition to the above diagnostic groups, there are the following additional diagnostic groups:

armcc-pragmas
Contains all of the above diagnostic groups.

unknown-pragmas
Contains diagnostics about pragmas which are not known to armclang, and are not in the above
table.

pragmas
Contains all pragma-related diagnostics, including armcc-pragmas and unknown-pragmas.

Any non-fatal armclang diagnostic group can be ignored, upgraded, or downgraded using the following
command-line options:

Suppress a group of diagnostics:
-Wno-diag-group

Upgrade a group of diagnostics to warnings:
-Wdiag-group

Upgrade a group of diagnostics to errors:
-Werror=diag-group

Downgrade a group of diagnostics to warnings:
-Wno-error=diag-group

Related references
3.3 Language extension compatibility: pragmas on page 3-25.

3 Compiler Source Code Compatibility
3.4 Diagnostics for pragma compatibility

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 3-29
Non-Confidential

3.5 C and C++ implementation compatibility
ARM Compiler 6 C and C++ implementation details differ from previous compiler versions.

The following table describes the C and C++ implementation detail differences.

Table 3-4 C and C++ implementation detail differences

Feature Older versions of ARM Compiler ARM Compiler 6

Integer operations

Shifts int shifts > 0 && < 127

int left shifts > 31 == 0

int right shifts > 31 == 0 (for unsigned or
positive), -1 (for negative)

long long shifts > 0 && < 63

Warns when shift amount > width of type.

You can use the -Wshift-count-overflow option
to suppress this warning.

Integer division Checks that the sign of the remainder matches
the sign of the numerator

The sign of the remainder is not necessarily the same
as the sign of the numerator.

Floating-point operations

Default standard IEEE 754 standard, rounding to nearest
representable value, exceptions disabled by
default.

All facilities, operations, and representations
guaranteed by the IEEE standard are available in single
and double-precision. Modes of operation can be
selected dynamically at runtime.

This is equivalent to the --fpmode=ieee_full
option in older versions of ARM Compiler.

Unions, enums and structs

Enum packing Enums are implemented in the smallest integral
type of the correct sign to hold the range of the
enum values, unless --enum_is_int is
specified in C++ mode.

By default enums are implemented as int, with long
long used when required.

Signedness of plain bit-
fields

Unsigned.

Plain bit-fields declared without either the
signed or unsigned qualifiers default to
unsigned. The --signed_bitfields option
treats plain bit-fields as signed.

Signed.

Plain bit-fields declared without either the signed or
unsigned qualifiers default to signed. There is no
equivalent to either the --signed_bitfields or
--no_signed_bitfields options.

Misc C

sizeof(wchar_t) 2 bytes 4 bytes

Misc C++

C++ library Rogue Wave Standard C++ Library libc++
 Note

• There is limited compatibility between objects
created with ARM Compiler 6 and those created
with ARM Compiler 5.

3 Compiler Source Code Compatibility
3.5 C and C++ implementation compatibility

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 3-30
Non-Confidential

Table 3-4 C and C++ implementation detail differences (continued)

Feature Older versions of ARM Compiler ARM Compiler 6

Implicit inclusion If compilation requires a template definition
from a template declared in a header file xyz.h,
the compiler implicitly includes the file xyz.cc
or xyz.CC.

Not supported.

Alternative template
lookup algorithms

When performing referencing context lookups,
name lookup matches against names from the
instantiation context as well as from the template
definition context.

Not supported.

Exceptions Off by default, function unwinding on with
--exceptions by default.

On by default in C++ mode.

Related references
3.1 Language extension compatibility: keywords on page 3-23.
3.2 Language extension compatibility: attributes on page 3-24.
3.3 Language extension compatibility: pragmas on page 3-25.
3.6 Compatibility of C++ objects on page 3-32.

3 Compiler Source Code Compatibility
3.5 C and C++ implementation compatibility

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 3-31
Non-Confidential

3.6 Compatibility of C++ objects
The compatibility of C++ objects compiled with ARM Compiler 5 depends on the C++ libraries used.

Compatibility with objects compiled using Rogue Wave standard library headers

ARM Compiler 6 does not support binary compatibility with objects compiled using the Rogue Wave
standard library include files.

There are warnings at link time when objects are mixed. L6869W is reported if an object requests the
Rogue Wave standard library. L6870W is reported when using an object that is compiled with ARM
Compiler 5 with exceptions support.

The impact of mixing objects that have been compiled against different C++ standard library headers
might include:
• Undefined symbol errors.
• Increased code size.
• Possible runtime errors.

If you have ARM Compiler 6 objects that have been compiled with the legacy -stdlib=legacy_cpplib
option then these objects use the Rogue Wave standard library and therefore might be incompatible with
objects created using ARM Compiler 6.4 or later. To resolve these issues, you must recompile all object
files with ARM Compiler 6.4 or later.

Compatibility with C++ objects compiled using ARM Compiler 5

The choice of C++ libraries at link time must match the choice of C++ include files at compile time for
all input objects. ARM Compiler 5 objects that use the Rogue Wave C++ libraries are not compatible
with ARM Compiler 6 objects. ARM Compiler 5 objects that use C++ but do not make use of the Rogue
Wave header files can be compatible with ARM Compiler 6 objects that use libc++ but this is not
guaranteed.

ARM recommends using ARM Compiler 6 for building the object files.

Compatibility of arrays of objects compiled using ARM Compiler 5

ARM Compiler 6 is not compatible with objects from ARM Compiler 5 that use operator new[] and
delete[]. Undefined symbol errors result at link time because ARM Compiler 6 does not provide the
helper functions that ARM Compiler 5 depends on. For example:

class Foo
{
public:
 Foo() : x_(new int) { *x_ = 0; }
 void setX(int x) { *x_ = x; }
 ~Foo() { delete x_; }
private:
 int* x_;
};

void func(void)
{
 Foo* array;
 array = new Foo [10];
 array[0].setX(1);
 delete[] array;
}

Compiling this with ARM Compiler 5 compiler, armcc, and linking with ARM Compiler 6 linker,
armlink, generates linker errors.

armcc -c construct.cpp -Ospace -O1 --cpu=cortex-a9
armlink construct.o -o construct.axf

3 Compiler Source Code Compatibility
3.6 Compatibility of C++ objects

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 3-32
Non-Confidential

This generates the following linker errors:

Error: L6218E: Undefined symbol __aeabi_vec_delete (referred from construct.o).
Error: L6218E: Undefined symbol __aeabi_vec_new_cookie_nodtor (referred from construct.o).

To resolve these linker errors, you must use the ARM Compiler 6 compiler, armclang, to compile all
C++ files that use the new[] and delete[] operators.

 Note

You do not have to specify --stdlib=libc++ for armlink, because this is the default and only option in
ARM Compiler 6.4, and later.

Related information
armlink User Guide: --stdlib.
armclang Reference Guide: --stdlib.

3 Compiler Source Code Compatibility
3.6 Compatibility of C++ objects

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 3-33
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0803-/pge1431502971083.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0774-/sam1431332872862.html

Chapter 4
Migrating ARM syntax assembly code to GNU
syntax

Describes how to migrate assembly code from the legacy ARM syntax (used by armasm) to GNU syntax
(used by armclang).

It contains the following sections:
• 4.1 Overview of differences between ARM and GNU syntax assembly code on page 4-35.
• 4.2 Comments on page 4-37.
• 4.3 Labels on page 4-38.
• 4.4 Numeric local labels on page 4-39.
• 4.5 Functions on page 4-41.
• 4.6 Sections on page 4-42.
• 4.7 Symbol naming rules on page 4-43.
• 4.8 Numeric literals on page 4-44.
• 4.9 Operators on page 4-45.
• 4.10 Alignment on page 4-46.
• 4.11 PC-relative addressing on page 4-47.
• 4.12 Conditional directives on page 4-48.
• 4.13 Data definition directives on page 4-49.
• 4.14 Instruction set directives on page 4-50.
• 4.15 Miscellaneous directives on page 4-51.
• 4.16 Symbol definition directives on page 4-52.

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 4-34
Non-Confidential

4.1 Overview of differences between ARM and GNU syntax assembly code
armasm (for assembling legacy assembly code) uses ARM syntax assembly code.

armclang aims to be compatible with GNU syntax assembly code (that is, the assembly code syntax
supported by the GNU assembler, as).

If you have legacy assembly code that you want to assemble with armclang, you must convert that
assembly code from ARM syntax to GNU syntax.

The specific instructions in your assembly code will not change during this migration process (although
in some cases, the order of operands may change).

However, you need to make changes to the syntax of your assembly code. These changes include:
• The directives in your code.
• The format of labels, comments, and some types of literals.
• Some symbol names.
• The operators in your code.

The following examples show simple, equivalent, assembly code in both ARM and GNU syntax.

ARM syntax
; Simple ARM syntax example
;
; Iterate round a loop 10 times, adding 1 to a register each time.

 AREA ||.text||, CODE, READONLY, ALIGN=2

main PROC
 MOV w5,#0x64 ; W5 = 100
 MOV w4,#0 ; W4 = 0
 B test_loop ; branch to test_loop
loop
 ADD w5,w5,#1 ; Add 1 to W5
 ADD w4,w4,#1 ; Add 1 to W4
test_loop
 CMP w4,#0xa ; if W4 < 10, branch back to loop
 BLT loop
 ENDP

 END

GNU syntax
// Simple GNU syntax example 4.2 Comments on page 4-37
//
// Iterate round a loop 10 times, adding 1 to a register each time.

 .section .text,"x" // 4.6 Sections on page 4-42
 .balign 4

main: // 4.3 Labels on page 4-38
 MOV w5,#0x64 // W5 = 100 4.8 Numeric literals on page 4-44
 MOV w4,#0 // W4 = 0
 B test_loop // branch to test_loop
loop:
 ADD w5,w5,#1 // Add 1 to W5
 ADD w4,w4,#1 // Add 1 to W4
test_loop:
 CMP w4,#0xa // if W4 < 10, branch back to loop
 BLT loop
 .end // 4.15 Miscellaneous directives on page 4-51

Related references
4.2 Comments on page 4-37.
4.3 Labels on page 4-38.
4.4 Numeric local labels on page 4-39.
4.5 Functions on page 4-41.
4.6 Sections on page 4-42.

4 Migrating ARM syntax assembly code to GNU syntax
4.1 Overview of differences between ARM and GNU syntax assembly code

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 4-35
Non-Confidential

4.7 Symbol naming rules on page 4-43.
4.8 Numeric literals on page 4-44.
4.9 Operators on page 4-45.
4.10 Alignment on page 4-46.
4.11 PC-relative addressing on page 4-47.
4.12 Conditional directives on page 4-48.
4.13 Data definition directives on page 4-49.
4.14 Instruction set directives on page 4-50.
4.15 Miscellaneous directives on page 4-51.
4.16 Symbol definition directives on page 4-52.

4 Migrating ARM syntax assembly code to GNU syntax
4.1 Overview of differences between ARM and GNU syntax assembly code

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 4-36
Non-Confidential

4.2 Comments
A comment identifies text that the assembler ignores.

ARM syntax

A comment is the final part of a source line. The first semicolon on a line marks the beginning of a
comment except where the semicolon appears inside a string literal.

The end of the line is the end of the comment. A comment alone is a valid line.

For example:

; This whole line is a comment
; As is this line

myProc: PROC
 MOV r1, #16 ; Load R0 with 16

GNU syntax
GNU syntax assembly code provides two different methods for marking comments:
• The /* and */ markers identify multiline comments:

/* This is a comment
that spans multiple
lines */

• The // marker identifies the remainder of a line as a comment:

MOV R0,#16 // Load R0 with 16

Related information
GNU Binutils - Using as: Comments.
armasm User Guide: Syntax of source lines in assembly language.

4 Migrating ARM syntax assembly code to GNU syntax
4.2 Comments

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 4-37
Non-Confidential

https://sourceware.org/binutils/docs-2.24/as/Comments.html#Comments
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1359731141352.html

4.3 Labels
Labels are symbolic representations of addresses. You can use labels to mark specific addresses that you
want to refer to from other parts of the code.

ARM syntax

A label is written as a symbol beginning in the first column. A label can appear either in a line on its
own, or in a line with an instruction or directive. Whitespace separates the label from any following
instruction or directive:

 MOV R0,#16
loop SUB R0,R0,#1 ; "loop" is a label
 CMP R0,#0
 BGT loop

GNU syntax

A label is written as a symbol that either begins in the first column, or has nothing but whitespace
between the first column and the label. A label can appear either in a line on its own, or in a line with an
instruction or directive. A colon ":" follows the label (whitespace is allowed between the label and the
colon):

 MOV R0,#16
loop: // "loop" label on its own line
 SUB R0,R0,#1
 CMP R0,#0
 BGT loop

 MOV R0,#16
loop: SUB R0,R0,#1 // "loop" label in a line with an instruction
 CMP R0,#0
 BGT loop

Related references
4.4 Numeric local labels on page 4-39.

Related information
GNU Binutils - Using as: Labels.

4 Migrating ARM syntax assembly code to GNU syntax
4.3 Labels

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 4-38
Non-Confidential

https://sourceware.org/binutils/docs-2.24/as/Labels.html#Labels

4.4 Numeric local labels
Numeric local labels are a type of label that you refer to by a number rather than by name. Unlike other
labels, the same numeric local label can be used multiple times and the same number can be used for
more than one numeric local label.

ARM syntax

A numeric local label is a number in the range 0-99, optionally followed by a scope name corresponding
to a ROUT directive.

Numeric local labels follow the same syntax as all other labels.

Refer to numeric local labels using the following syntax:

%[F|B][A|T]n[routname]

Where:
• F and B instruct the assembler to search forwards and backwards respectively. By default, the

assembler searches backwards first, then forwards.
• A and T instruct the assembler to search all macro levels or only the current macro level respectively.

By default, the assembler searches all macros from the current level to the top level, but does not
search lower level macros.

• n is the number of the numeric local label in the range 0-99.
• routname is an optional scope label corresponding to a ROUT directive. If routname is specified in

either a label or a reference to a label, the assembler checks it against the name of the nearest
preceding ROUT directive. If it does not match, the assembler generates an error message and the
assembly fails.

For example, the following code implements an incrementing loop:

 MOV r4,#1 ; r4=1
1 ; Local label
 ADD r4,r4,#1 ; Increment r4
 CMP r4,#0x5 ; if r4 < 5...
 BLT %b1 ; ...branch backwards to local label "1"

Here is the same example using a ROUT directive to restrict the scope of the local label:

routA ROUT ; Start of "routA" scope
 MOV r4,#1 ; r4=1
1routA ; Local label
 ADD r4,r4,#1 ; Increment r4
 CMP r4,#0x9 ; if r4 < 9...
 BLT %b1routA ; ...branch backwards to local label "1routA"
routB ROUT ; Start of "routB" scope (and therefore end of "routA" scope)

GNU syntax

A numeric local label is a number in the range 0-99.

Numeric local labels follow the same syntax as all other labels.

Refer to numeric local labels using the following syntax:

n{f|b}

Where:

• n is the number of the numeric local label in the range 0-99.
• f and b instruct the assembler to search forwards and backwards respectively. There is no default.

You must specify one of f or b.

For example, the following code implements an incrementing loop:

 MOV r4,#1 // r4=1
1: // Local label
 ADD r4,r4,#1 // Increment r4

4 Migrating ARM syntax assembly code to GNU syntax
4.4 Numeric local labels

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 4-39
Non-Confidential

 CMP r4,#0x5 // if r4 < 5...
 BLT 1b // ...branch backwards to local label "1"

 Note

GNU syntax assembly code does not provide mechanisms for restricting the scope of local labels.

Related references
4.3 Labels on page 4-38.

Related information
GNU Binutils - Using as: Labels.
GNU Binutils - Using as: Local labels.
armasm User Guide: Labels.
armasm User Guide: Numeric local labels.
armasm User Guide: Syntax of numeric local labels.
armasm User Guide: ROUT.

4 Migrating ARM syntax assembly code to GNU syntax
4.4 Numeric local labels

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 4-40
Non-Confidential

https://sourceware.org/binutils/docs-2.24/as/Labels.html#Labels
https://sourceware.org/binutils/docs-2.24/as/Symbol-Names.html#Symbol-Names
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1359731174220.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1359731175576.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1359731175956.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1361290022581.html

4.5 Functions
Assemblers can identify the start of a function when producing DWARF call frame information for ELF.

ARM syntax

The FUNCTION directive marks the start of a function. PROC is a synonym for FUNCTION.

The ENDFUNC directive marks the end of a function. ENDP is a synonym for ENDFUNC.

For example:

myproc PROC
 ; Procedure body
 ENDP

GNU syntax

Use the .type directive to identify symbols as functions. For example:

 .type myproc, "function"
myproc:
 // Procedure body

GNU syntax assembly code provides the .func and .endfunc directives. However, these are not
supported by armclang. armclang uses the .size directive to set the symbol size:

 .type myproc, "function"
myproc:
 // Procedure body
.Lmyproc_end0:
 .size myproc, .Lmyproc_end0-myproc

 Note

Functions must be typed to link properly.

Related information
GNU Binutils - Using as: .type.
armasm User Guide: FUNCTION or PROC.
armasm User Guide: ENDFUNC or ENDP.

4 Migrating ARM syntax assembly code to GNU syntax
4.5 Functions

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 4-41
Non-Confidential

https://sourceware.org/binutils/docs-2.24/as/Type.html#Type
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1361290014133.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1361290014472.html

4.6 Sections
Sections are independent, named, indivisible chunks of code or data that are manipulated by the linker.

ARM syntax

The AREA directive instructs the assembler to assemble a new code or data section.

Section attributes within the AREA directive provide information about the section. Available section
attributes include the following:

• CODE specifies that the section contains machine instructions.
• READONLY specifies that the section must not be written to.
• ALIGN=n specifies that the section is aligned on a 2n byte boundary

For example:

AREA mysection, CODE, READONLY, ALIGN=3

 Note

The ALIGN attribute does not take the same values as the ALIGN directive. ALIGN=n (the AREA attribute)
aligns on a 2n byte boundary. ALIGN n (the ALIGN directive) aligns on an n-byte boundary.

GNU syntax

The .section directive instructs the assembler to assemble a new code or data section.

Flags provide information about the section. Available section flags include the following:
• x specifies that the section is executable.
• w specifies that the section is writable.

For example:

.section mysection,"x"

Not all ARM syntax AREA attributes map onto GNU syntax .section flags. For example, the ARM
syntax ALIGN attribute corresponds to the GNU syntax .balign directive, rather than a .section flag:

.section mysection,"x"

.balign 8

Related information
GNU Binutils - Using as: .section.
GNU Binutils - Using as: .align.
armasm User Guide: AREA.

4 Migrating ARM syntax assembly code to GNU syntax
4.6 Sections

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 4-42
Non-Confidential

https://sourceware.org/binutils/docs-2.24/as/Section.html#Section
https://sourceware.org/binutils/docs-2.24/as/Align.html#Align
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1361290002714.html

4.7 Symbol naming rules
ARM syntax assembly code and GNU syntax assembly code use similar, but different naming rules for
symbols.

Symbol naming rules which are common to both ARM syntax and GNU syntax include:

• Symbol names must be unique within their scope.
• Symbol names are case-sensitive, and all characters in the symbol name are significant.
• Symbols must not use the same name as built-in variable names or predefined symbol names.

Symbol naming rules which differ between ARM syntax and GNU syntax include:
• ARM syntax symbols must start with a letter or the underscore character "_".

GNU syntax symbols must start with a letter, the underscore character "_", or a period ".".
• ARM syntax symbols use double bars to delimit symbol names containing non-alphanumeric

characters (except for the underscore):

IMPORT ||Image$$ARM_LIB_STACKHEAP$$ZI$$Limit||

GNU syntax symbols do not require double bars:

.global Image$$ARM_LIB_STACKHEAP$$ZI$$Limit

Related information
GNU Binutils - Using as: Symbol Names.
armasm User Guide: Symbol naming rules.

4 Migrating ARM syntax assembly code to GNU syntax
4.7 Symbol naming rules

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 4-43
Non-Confidential

https://sourceware.org/binutils/docs/as/Symbol-Names.html#Symbol-Names
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1359731172471.html

4.8 Numeric literals
ARM syntax assembly and GNU syntax assembly provide different methods for specifying some types
of numeric literal.

Implicit shift operations

ARM syntax assembly allows immediate values with an implicit shift operation. For example, the MOVK
instruction takes a 16-bit operand with an optional left shift. armasm accepts the instruction MOVK x1,
#0x40000, converting the operand automatically to MOVK x1, #0x4, LSL #16.

GNU syntax assembly expects immediate values to be presented as encoded. The instruction MOVK x1,
#0x40000 results in the following message: error: immediate must be an integer in range [0,
65535].

Hexadecimal literals

ARM syntax assembly provides two methods for specifying hexadecimal literals, the prefixes "&" and
"0x".

For example, the following are equivalent:

ADD r1, #0xAF
ADD r1, #&AF

GNU syntax assembly only supports the "0x" prefix for specifying hexadecimal literals. Convert any "&"
prefixes to "0x".

n_base-n-digits format

ARM syntax assembly lets you specify numeric literals using the following format:

n_base-n-digits

For example:
• 2_1101 is the binary literal 1101 (13 in decimal).
• 8_27 is the octal literal 27 (23 in decimal).

GNU syntax assembly does not support the n_base-n-digits format. Convert all instances to a
supported numeric literal form.

For example, you could convert:

ADD r1, #2_1101

to:

ADD r1, #13

or:

ADD r1, #0xD

Related information
GNU Binutils - Using as: Integers.
armasm User Guide: Syntax of numeric literals.

4 Migrating ARM syntax assembly code to GNU syntax
4.8 Numeric literals

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 4-44
Non-Confidential

https://sourceware.org/binutils/docs-2.24/as/Integers.html#Integers
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1359731177483.html

4.9 Operators
ARM syntax assembly and GNU syntax assembly provide different methods for specifying some
operators.

The following table shows how to translate ARM syntax operators to GNU syntax operators.

Table 4-1 Operator translation

ARM syntax operator GNU syntax operator

:OR: |

:AND: &

:NOT: ~

:SHL: <<

:SHR: >>

:LOR: ||

:LAND: &&

Related information
GNU Binutils - Using as: Infix Operators.
armasm User Guide: Unary operators.
armasm User Guide: Shift operators.
armasm User Guide: Addition, subtraction, and logical operators.

4 Migrating ARM syntax assembly code to GNU syntax
4.9 Operators

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 4-45
Non-Confidential

https://sourceware.org/binutils/docs-2.24/as/Infix-Ops.html#Infix-Ops
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1359731178867.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1359731181541.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1359731181912.html

4.10 Alignment
Data and code must be aligned to appropriate boundaries.

For example, The T32 pseudo-instruction ADR can only load addresses that are word aligned, but a label
within T32 code might not be word aligned. You must use an alignment directive to ensure four-byte
alignment of an address within T32 code.

An alignment directive aligns the current location to a specified boundary by padding with zeros or NOP
instructions.

ARM syntax

ARM syntax assembly provides the ALIGN n directive, where n specifies the alignment boundary in
bytes. For example, the directive ALIGN 128 aligns addresses to 128-byte boundaries.

ARM syntax assembly also provides the PRESERVE8 directive. The PRESERVE8 directive specifies that the
current file preserves eight-byte alignment of the stack.

GNU syntax

GNU syntax assembly provides the .balign n directive, which uses the same format as ALIGN.

Convert all instances of ALIGN n to .balign n.
 Note

GNU syntax assembly also provides the .align n directive. However, the format of n varies from
system to system. The .balign directive provides the same alignment functionality as .align with a
consistent behavior across all architectures.

Convert all instances of PRESERVE8 to .eabi_attribute 25, 1.

Related information
GNU Binutils - Using as: ARM Machine Directives.
GNU Binutils - Using as: .align.
GNU Binutils - Using as: .balign.
armasm User Guide: REQUIRE8 and PRESERVE8.
armasm User Guide: ALIGN.

4 Migrating ARM syntax assembly code to GNU syntax
4.10 Alignment

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 4-46
Non-Confidential

https://sourceware.org/binutils/docs/as/ARM-Directives.html#ARM-Directives
https://sourceware.org/binutils/docs-2.24/as/Align.html#Align
https://sourceware.org/binutils/docs-2.24/as/Balign.html#Balign
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1361290021571.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1361290002364.html

4.11 PC-relative addressing
ARM syntax assembly and GNU syntax assembly provide different methods for performing PC-relative
addressing.

ARM syntax

ARM syntax assembly provides the symbol {pc} to let you use the address of the program counter.

For example:

ADRP x0, {pc}

GNU syntax

GNU syntax assembly does not support the {pc} symbol. Instead, it uses the special dot "." character, as
follows:

ADRP x0, .

Related information
GNU Binutils - Using as: The Special Dot Symbol.
armasm User Guide: Register-relative and PC-relative expressions.

4 Migrating ARM syntax assembly code to GNU syntax
4.11 PC-relative addressing

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 4-47
Non-Confidential

https://sourceware.org/binutils/docs-2.24/as/Dot.html#Dot
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1359731173886.html

4.12 Conditional directives
Conditional directives let you specify conditions that control whether or not to assemble a sequence of
assembly code.

The following table shows how to translate ARM syntax conditional directives to GNU syntax
directives:

Table 4-2 Conditional directive translation

ARM syntax directive GNU syntax directive

IF .if

IF :DEF: .ifdef

IF :LNOT::DEF: .ifndef

ELSE .else

ELSEIF .elseif

ENDIF .endif

Related information
GNU Binutils - Using as: .if.
GNU Binutils - Using as: .else.
GNU Binutils - Using as: .elseif.
GNU Binutils - Using as: .endif.
armasm User Guide: IF, ELSE, ENDIF, and ELIF.

4 Migrating ARM syntax assembly code to GNU syntax
4.12 Conditional directives

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 4-48
Non-Confidential

https://sourceware.org/binutils/docs-2.24/as/If.html#If
https://sourceware.org/binutils/docs-2.24/as/Else.html#Else
https://sourceware.org/binutils/docs-2.24/as/Elseif.html#Elseif
https://sourceware.org/binutils/docs-2.24/as/Endif.html#Endif
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1361290015842.html

4.13 Data definition directives
Data definition directives allocate memory, define data structures, and set initial contents of memory.

The following table shows how to translate ARM syntax data definition directives to GNU syntax
directives:

 Note

This list only contains examples of common data definition assembly directives. It is not exhaustive.

Table 4-3 Data definition directives translation

ARM syntax directive GNU syntax directive Description

DCB .byte Allocate one-byte blocks of memory, and specify the initial contents.

DCW .hword Allocate two-byte blocks of memory, and specify the initial contents.

DCD .word Allocate four-byte blocks of memory, and specify the initial contents.

DCQ .quad Allocate eight-byte blocks of memory, and specify the initial contents.

SPACE .space Allocate a zeroed block of memory.

Related information
GNU Binutils - Using as: .byte.
GNU Binutils - Using as: .word.
GNU Binutils - Using as: .hword.
GNU Binutils - Using as: .quad.
GNU Binutils - Using as: .space.

4 Migrating ARM syntax assembly code to GNU syntax
4.13 Data definition directives

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 4-49
Non-Confidential

https://sourceware.org/binutils/docs-2.24/as/Byte.html#Byte
https://sourceware.org/binutils/docs-2.24/as/Word.html#Word
https://sourceware.org/binutils/docs-2.24/as/hword.html#hword
https://sourceware.org/binutils/docs-2.24/as/Quad.html#Quad
https://sourceware.org/binutils/docs-2.24/as/Space.html#Space

4.14 Instruction set directives
Instruction set directives instruct the assembler to interpret subsequent instructions as either A32 or T32
instructions.

The following table shows how to translate ARM syntax instruction set directives to GNU syntax
directives:

Table 4-4 Instruction set directives translation

ARM syntax directive GNU syntax directive Description

ARM or CODE32 .arm or .code 32 Interpret subsequent instructions as A32 instructions.

THUMB or CODE16 .thumb or .code 16 Interpret subsequent instructions as T32 instructions.

Related information
GNU Binutils - Using as: ARM Machine Directives.
armasm User Guide: ARM or CODE32 directive.
armasm User Guide: CODE16 directive.
armasm User Guide: THUMB directive.

4 Migrating ARM syntax assembly code to GNU syntax
4.14 Instruction set directives

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 4-50
Non-Confidential

https://sourceware.org/binutils/docs-2.24/as/ARM-Directives.html#ARM-Directives
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/pge1424433214154.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/pge1424685902513.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/pge1424683933547.html

4.15 Miscellaneous directives
Miscellaneous directives perform a range of different functions.

The following table shows how to translate ARM syntax miscellaneous directives to GNU syntax
directives:

Table 4-5 Miscellaneous directives translation

ARM syntax
directive

GNU syntax directive Description

foo EQU 0x1C .equ foo, 0x1C Assigns a value to a symbol. Note the rearrangement of operands.

EXPORT
StartHere

GLOBAL
StartHere

.global StartHere

.type StartHere,
@function

Declares a symbol that can be used by the linker (that is, a symbol that is visible to
the linker).

armasm automatically determines the types of exported symbols. However,
armclang requires that you explicitly specify the types of exported symbols using
the .type directive.

If the .type directive is not specified, the linker outputs warnings of the form:

Warning: L6437W: Relocation #RELA:1 in test.o(.text) with
respect to symbol...

Warning: L6318W: test.o(.text) contains branch to a non-code
symbol symbol.

GET file

INCLUDE file

.include file Includes a file within the file being assembled.

IMPORT foo .global foo Provides the assembler with a name that is not defined in the current assembly.

INCBIN .incbin Partial support, armclang does not fully support .incbin.

INFO n,
"string"

.warning "string" The INFO directive supports diagnostic generation on either pass of the assembly
(specified by n). The .warning directive does not let you specify a particular
pass.

ENTRY armlink --
entry=location

The ENTRY directive declares an entry point to a program. armclang does not
provide an equivalent directive. Use armlink --entry=location to specify
the entry point directly to the linker, rather than defining it in the assembly code.

END .end Marks the end of the assembly file.

Related information
GNU Binutils - Using as: .type.
GNU Binutils - Using as: .warning.
GNU Binutils - Using as: .equ.
GNU Binutils - Using as: .global.
GNU Binutils - Using as: .include.
GNU Binutils - Using as: .incbin.
armasm User Guide: ENTRY.
armasm User Guide: END.
armasm User Guide: INFO.
armasm User Guide: EXPORT or GLOBAL.
armlink User Guide: --entry.

4 Migrating ARM syntax assembly code to GNU syntax
4.15 Miscellaneous directives

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 4-51
Non-Confidential

https://sourceware.org/binutils/docs-2.24/as/Type.html#Type
https://sourceware.org/binutils/docs/as/Warning.html
https://sourceware.org/binutils/docs/as/Equ.html#Equ
https://sourceware.org/binutils/docs/as/Global.html#Global
https://sourceware.org/binutils/docs/as/Include.html#Include
https://sourceware.org/binutils/docs/as/Incbin.html#Incbin
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1361290008613.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1361290008253.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1361290017432.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0801-/dom1361290009343.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0803-/pge1362075463332.html

4.16 Symbol definition directives
Symbol definition directives declare and set arithmetic, logical, or string variables.

The following table shows how to translate ARM syntax symbol definition directives to GNU syntax
directives:

 Note

This list only contains examples of common symbol definition directives. It is not exhaustive.

Table 4-6 Symbol definition directives translation

ARM syntax directive GNU syntax directive Description

LCLA var .set var, 0 Declare a local arithmetic variable, and initialize its value to 0.

LCLL var .set var, FALSE Declare a local logical variable, and initialize its value to FALSE.

LCLS var .set var, "" Declare a local string variable, and initialize its value to a null string.

GBLA var .global var

.set var, 0

Declare a global arithmetic variable, and initialize its value to 0.

GBLL var .global var

.set var, FALSE

Declare a global logical variable, and initialize its value to FALSE.

GBLS var .global var

.set var, ""

Declare a global string variable, and initialize its value to a null string.

var SETA expr .set var, expr Set the value of an arithmetic variable.

var SETL expr .set var, expr Set the value of a logical variable.

var SETS expr .set var, expr Set the value of a string variable.

foo RN 11 foo .reg r11 Define an alias foo for register R11.

foo QN q5.I32 foo .qn q5.i32 Define an I32-typed alias foo for the quad-precision register Q5.

foo DN d2.I32 foo .dn d2.i32 Define an I32-typed alias foo for the double-precision register D2.

Related information
GNU Binutils - Using as: ARM Machine Directives.
GNU Binutils - Using as: .global.
GNU Binutils - Using as: .set.

4 Migrating ARM syntax assembly code to GNU syntax
4.16 Symbol definition directives

ARM DUI0742E Copyright © 2014-2016 ARM. All rights reserved. 4-52
Non-Confidential

https://sourceware.org/binutils/docs-2.24/as/ARM-Directives.html#ARM-Directives
https://sourceware.org/binutils/docs/as/Global.html#Global
https://sourceware.org/binutils/docs-2.24/as/Set.html#Set

	ARM® Compiler Migration and Compatibility Guide
	Contents
	List of Figures
	List of Tables
	Preface
	About this book
	Using this book
	Glossary
	Typographic conventions
	Feedback
	Feedback on this product
	Feedback on content

	Other information

	1 : Configuration and Support Information
	1.1 : Support level definitions
	1.2 : Compiler configuration information

	2 : Command-line Options Comparison
	2.1 : Comparison of ARM Compiler 6 compiler command-line options and older versions of ARM Compiler
	2.2 : Command-line options for preprocessing assembly source code

	3 : Compiler Source Code Compatibility
	3.1 : Language extension compatibility: keywords
	3.2 : Language extension compatibility: attributes
	3.3 : Language extension compatibility: pragmas
	3.4 : Diagnostics for pragma compatibility
	3.5 : C and C++ implementation compatibility
	3.6 : Compatibility of C++ objects

	4 : Migrating ARM syntax assembly code to GNU syntax
	4.1 : Overview of differences between ARM and GNU syntax assembly code
	4.2 : Comments
	4.3 : Labels
	4.4 : Numeric local labels
	4.5 : Functions
	4.6 : Sections
	4.7 : Symbol naming rules
	4.8 : Numeric literals
	4.9 : Operators
	4.10 : Alignment
	4.11 : PC-relative addressing
	4.12 : Conditional directives
	4.13 : Data definition directives
	4.14 : Instruction set directives
	4.15 : Miscellaneous directives
	4.16 : Symbol definition directives

