CoreLink GIC-400 Generic Interrupt
Controller

Revision: rOp0

Technical Reference Manual

ARM

Copyright © 2011 ARM. All rights reserved.
ARM DDI 0471A (ID070211)

CorelLink GIC-400 Generic Interrupt Controller
Technical Reference Manual

Copyright © 2011 ARM. All rights reserved.
Release Information

The Change history table lists the changes made to this book.

Change history

Date Issue Confidentiality = Change

23 June 2011 A Non-confidential First release for rOp0

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM® Limited in the EU and other
countries, except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may
be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith. However, all warranties implied or
expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for any loss or
damage arising from the use of any information in this document, or any error or omission in such information, or any
incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.
Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Product Status
The information in this document is final, that is for a developed product.
Web Address

http://www.arm.com

ARM DDI 0471A
ID070211

Copyright © 2011 ARM. All rights reserved. ii
Non-Confidential

Contents

CorelLink GIC-400 Generic Interrupt Controller
Technical Reference Manual

Chapter 1

Chapter 2

Chapter 3

Preface
ADOUL thiS DOOK ...t a e
FEEADACKeeeeieieeeee e
Introduction
1.1 ADOUL the GIC-400evriiiiiieieieieee eananaanees
1.2 COMPHANCE ..ot e e e et e e e e et e e e e eenbaeeaeeenes
1.3 191 (=T 7= Te Y= SRR
14 Configurable OPLIONSoo e
1.5 Product documentationueieeiiiiiiiiieeee e
1.6 ProdUCt FEVISIONS ...ttt e eeeaeeaes

Functional Description

21 Functional overview of the GIC-400cccoooiiiiiieeiiie e
22 Secure and Non-secure access to the GIC-400ccceviiiiieeiiieeeiieee e
2.3 Interrupt inputs to the GIC-400cccviieiiiie e
24 Maintenance interrupts in the GIC-400cceiiiiiiiiii i
25 Virtual interrupts in the GIC-400 ..o
26 Interrupt handling and prioritization in the GIC-400ccccoiiiiiiiiinieeeee,
2.7 Power Managemento
2.8 Behavior when the Distributor is disabledccoociiiiii

Programmers Model

3.1 About the GIC-400 programmers Modelccueeveieiiiiieeieciiiee e
3.2 GIC-400 regiSter MAP ...eieiiiceiiiie e ettt e ettt e e e e e e e e e e e s e e e e e e esbreeeeeeanes
3.3 Distributor register SUMMArYc.cooiiiiiiiiii e

ARM DDI 0471A
ID070211

Copyright © 2011 ARM. All rights reserved.
Non-Confidential

3.4 Distributor register descriptionsc...oiiiiiiii e 3-6

3.5 CPU interface register SUMMArYcoooiiiiiiiiiiiiiee e 3-10
3.6 CPU interface register descriptionsccccoociiiiiii i 3-11
3.7 GIC virtual interface control register SUMMAryccccocoviiieeiiiie e 3-12
3.8 GIC virtual interface control register descriptionscccocveiiiiiii e 3-13
3.9 GIC virtual CPU interface register Summaryccccccovoieiiiiie i 3-14
3.10 GIC virtual CPU interface register descriptionsccccccvvieiiiienici e 3-15
Appendix A Signal Descriptions
A1 Clock and reSet SINAISeveiiieeiie e A-2
A2 Configuration SIGN@Ioooiiiiiiee e e A-3
A.3 INTEITUPT SIGNAIS ..o e e e e e e e e e e e A-4
A4 AXI slave interface SIGNAISooiiiiiiiiii A-5
Appendix B Interrupt Signaling
B.1 Interrupt signaling in the GIC-400 with physical interrupts onlyc.ccccoveeeinieenn. B-2
B.2 Interrupt signaling in the GIC-400 with virtual interruptscccccoieiiiiiin e, B-4
Appendix C Revisions
ARM DDI 0471A Copyright © 2011 ARM. All rights reserved. iv

ID070211

Non-Confidential

Preface

This preface introduces the CoreLink GIC-400 Generic Interrupt Controller Technical
Reference Manual. It contains the following sections:

. About this book on page vi
. Feedback on page ix.

ARM DDI 0471A Copyright © 2011 ARM. All rights reserved.
ID070211 Non-Confidential

Preface

About this book

This technical reference manual is for the CoreLink GIC-400 Generic Interrupt Controller
(GIC-400). The GIC-400 is a configurable interrupt controller that supports virtualization and
that you can implement in single-processor or multiprocessor systems.

Product revision status

The rnpn identifier indicates the revision status of the product described in this book, where:
rn Identifies the major revision of the product.
pn Identifies the minor revision or modification status of the product.

Intended audience

This book is written for system designers, system integrators, and programmers who are
designing or programming a System-on-Chip (SoC) that uses the GIC-400.

Using this book
This book is organized into the following chapters:

Chapter 1 Introduction
Read this for an introduction to the GIC-400 and its features.

Chapter 2 Functional Description
Read this for a description of the major interfaces and the implementation-defined
behavior of the GIC-400.

Chapter 3 Programmers Model

Read this for a description of the memory map and registers.
Appendix A Signal Descriptions
Read this for a description of the input and output signals.

Appendix B Interrupt Signaling

Read this for examples of how the GIC-400 handles physical and virtual
interrupts.

Appendix C Revisions

Read this for a description of the technical changes between released issues of this
book.

Glossary

The ARM Glossary is a list of terms used in ARM documentation, together with definitions for
those terms. The ARM Glossary does not contain terms that are industry standard unless the
ARM meaning differs from the generally accepted meaning.

The ARM Glossary is available on the ARM Infocenter,
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html.
Conventions

Conventions that this book can use are described in:
. Typographical on page vii

ARM DDI 0471A Copyright © 2011 ARM. All rights reserved. Vi
ID070211 Non-Confidential

Preface

. Timing diagrams

. Signals on page viii.

Typographical

The typographical conventions are:

italic

bold

monospace

monospace

monospace italic

monospace bold

<and >

Colored text

Timing diagrams

Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

Highlights interface elements, such as menu names. Denotes signal
names. Also used for terms in descriptive lists, where appropriate.

Denotes text that you can enter at the keyboard, such as commands, file
and program names, and source code.

Denotes a permitted abbreviation for a command or option. You can enter
the underlined text instead of the full command or option name.

Denotes arguments to monospace text where the argument is to be
replaced by a specific value.

Denotes language keywords when used outside example code.
Enclose replaceable terms for assembler syntax where they appear in code

or code fragments. For example:
MRC pl5, @ <Rd>, <CRn>, <CRm>, <Opcode_2>

Indicates a link. This can be:
. a URL, for example, http://infocenter.arm.com

. a cross-reference, that includes the page number of the referenced
information if it is not on the current page, for example, Functional
overview of the GIC-400 on page 2-2.

The figure named Key to timing diagram conventions explains the components used in timing
diagrams. Variations, when they occur, have clear labels. You must not assume any timing
information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the
shaded area at that time. The actual level is unimportant and does not affect normal operation.

Clock
HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

LA

High impedance to stable bus

Key to timing diagram conventions

ARM DDI 0471A Copyright © 2011 ARM. All rights reserved. vii

ID070211

Non-Confidential

Additional reading

Preface

Signals
The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is
active-HIGH or active-LOW. Asserted means:

. HIGH for active-HIGH signals
. LOW for active-LOW signals.

Lower-case n At the start or end of a signal name denotes an active-LOW signal.

This section lists publications by ARM and by third parties.

See Infocenter, http://infocenter.arm.com, for access to ARM documentation.

ARM publications

This book contains information that is specific to this product. See the following documents for
other relevant information:

. ARM® Generic Interrupt Controller Architecture Specification (ARM THI 0048)
. ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition (ARM DDI 0406)
. AMBA® AXI Protocol Specification (ARM THI 0022).

Other publications

This section lists relevant documents published by third parties:
. JEDEC Standard Manufacturer's Identification Code, JEP106, http://www. jedec.org.

ARM DDI 0471A
ID070211

Copyright © 2011 ARM. All rights reserved. viii
Non-Confidential

Preface

Feedback

ARM welcomes feedback on this product and its documentation.

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

. The product name.
. The product revision or version.
. An explanation with as much information as you can provide. Include symptoms and

diagnostic procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

. the title

. the number, ARM DDI 0471A

. the page numbers to which your comments apply
. a concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

ARM DDI 0471A Copyright © 2011 ARM. All rights reserved. ix
ID070211 Non-Confidential

Chapter 1

Introduction

This chapter introduces the GIC-400. It contains the following sections:

About the GIC-400 on page 1-2
Compliance on page 1-4

Interfaces on page 1-5
Configurable options on page 1-6
Product documentation on page 1-7
Product revisions on page 1-8.

ARM DDI 0471A
ID070211

Copyright © 2011 ARM. All rights reserved.
Non-Confidential

1-1

Introduction

1.1 About the GIC-400

The GIC-400 is a high-performance, area-optimized interrupt controller with an Advanced
Microcontroller Bus Architecture (AMBA) Advanced eXtensible Interface (AXI) interface. It
detects, manages, and distributes interrupts in System on Chip (SoC) configurations. You can
configure the GIC-400 to provide the optimum features, performance, and gate count required
for your intended application. For a summary of the configurable features supported, see
Configurable options on page 1-6.

With the following software-configurable settings of the GIC-400, interrupts can be:
. enabled or disabled

. assigned to one of two groups, Group 0 or Group 1

. prioritized

. signaled to different processors in multiprocessor implementations
. either level-sensitive or edge-triggered.

The GIC-400 implements:

. The GIC Security Extensions, that support:

— Using Group 0 interrupts as Secure interrupts, and Group 1 interrupts as Non-secure
interrupts.

— Optionally, using the FIQ interrupt request to signal Secure interrupts to a connected
processor. The GIC-400 always signals Group 0 interrupts using the IRQ interrupt
request.

. The GIC Virtualization Extensions, that provide hardware support for managing
virtualized interrupts.

For more information about the GIC Security Extensions and GIC Virtualization Extensions,
see the ARM Generic Interrupt Controller Architecture Specification.

You can use the GIC-400 in a multiprocessor system with up to eight processors. The GIC-400
supports systems in which not every processor implements the ARM Security Extensions or the
ARM Virtualization Extensions. In such cases, each processor uses only the features it is aware
of. For information, see the ARM Generic Interrupt Controller Architecture Specification.

The GIC-400 implements the interrupt types:
. 16 Software Generated Interrupts (SGls)
. 6 external Private Peripheral Interrupts (PPIs) for each processor
Note
Some PPIs have specific purposes, see Interrupt inputs to the GIC-400 on page 2-8.

. 1 internal PPI for each processor

. A configurable number of Shared Peripheral Interrupt (SPIs), see Configurable options
on page 1-6.

The GIC-400 can assert the following signals to indicate pending interrupts to processors:
. Physical interrupts:

— nFIQCPU[NUM_CPUS-1:0]

— nIRQCPU[NUM_CPUS-1:0].
. Virtual interrupts, see Virtual interrupts in the GIC-400 on page 2-10:

— nVFIQCPU[NUM_CPUS-1:0]

— nVIRQCPU[NUM_CPUS-1:0].

ARM DDI 0471A
ID070211

Copyright © 2011 ARM. All rights reserved. 1-2
Non-Confidential

Introduction

Figure 1-1 gives an overview of the GIC-400 in a multiprocessor system. It shows the interrupts
that are sent to the GIC-400 from various sources and the key phases of interrupt-related
signaling in the SoC.

GIC-400 >
For each processor:
FIQ, IRQ, virtual FIQ and virtual IRQ
SGls . Processor
AXl interface
A
Interrupts Programming interface
Ll GPIO |« > AXI t_oAPB < >
bridge
|| UART |le—¢ | DRAM |[e—»| DMC |e p AN
o h | infrastructure
. Flash «—> SMC < >
b~ Peripheral memory

Figure 1-1 GIC-400 overview

The GIC-400 detects PPIs and SPIs from interrupt input signals. There is one signal for each
processor for every PPI interrupt ID. There is only one input signal for each SPI interrupt ID,
irrespective of the number of processors in the SoC. SGIs do not have input signals and are
generated in the GIC-400 using the AXI programming interface.

Note

The GIC-400 does not synchronize any inputs. Therefore, all input signals, including the SPI
and PPI inputs, must be synchronous to CLK.

The GIC-400 notifies each processor of the presence of an interrupt or virtual interrupt by using
interrupt output signals. There are also interrupt output signals to provide wakeup functionality
to a system power controller, see Power management on page 2-12.

Virtual interrupts are created and managed by special software that is executing on each
processor that is running virtual machines. Such hypervisors are not part of the GIC-400
architecture but are necessary for the operation of the interrupt controller. For an overview on
the hypervisor, see the ARM Generic Interrupt Controller Architecture Specification.

ARM DDI 0471A Copyright © 2011 ARM. All rights reserved. 1-3
ID070211 Non-Confidential

Introduction

1.2 Compliance

The GIC-400 is compliant with:

. the AMBA AXI4 protocol, see AMBA AXI Protocol Specification and AXI slave interface
signals on page A-5.

. Version 2 of the ARM GIC Architecture Specification, see the ARM Generic Interrupt
Controller Architecture Specification.
The GIC-400 implements the GICv2 Security Extensions.

ARM DDI 0471A Copyright © 2011 ARM. All rights reserved. 1-4
ID070211 Non-Confidential

1.3 Interfaces

Introduction

The GIC-400 provides an AMBA AXI4 slave interface. With this interface, you can program
the Distributor, including generating SGls, the CPU interfaces, and the virtual CPU interfaces.
For information, see AXI slave interface signals on page A-5.

The GIC-400 also supports a set of interrupt signals that it samples to generate PPIs and SPIs.
It also generates signals to the wakeup controller and to the processors to indicate that there are
valid pending interrupts in the physical and virtual CPU interfaces, see Interrupt signals on
page A-4.

ARM DDI 0471A
ID070211

Copyright © 2011 ARM. All rights reserved. 1-5
Non-Confidential

Introduction

1.4 Configurable options

Table 1-1 describes the parameters that you can configure in the GIC-400.

Table 1-1 GIC-400 parameters

Parameter Description

NUM_CPUS? Number of processors in the SoC, from 1 to 8.
This parameter determines the number of CPU interfaces and virtual CPU interfaces in the
GIC-400. There is one CPU interface and one virtual CPU interface for each processor in the
system.

NUM_SPISa Number of supported SPIs, from 0 to 480.

Supported values are multiples of 32, for example 0, 32, 64, 96 or 480.

NUM_RID_BITS

Width of the AXI ID signals for reads.
Value must be at least 1.
For more information, see AXI slave interface signals on page A-5.

NUM_WID_BITS

Width of the AXI ID signals for writes.
Value must be at least 1.
For more information, see AXI slave interface signals on page A-5.

a. The values of the NUM_SPIS and NUM_CPUS parameters determine the reset value for the Interrupt Controller Type
Register, GICD_TYPER. For information, see Distributor register summary on page 3-4.

ARM DDI 0471A
ID070211

Copyright © 2011 ARM. All rights reserved. 1-6
Non-Confidential

Introduction

1.5 Product documentation

This section describes the GIC-400 documentation, how it relates to the design flow, and the
relevant architectural standards and protocols.

Technical Reference Manual

The Technical Reference Manual (TRM) describes the functionality and the
effects of functional options on the behavior of the GIC-400. It is required at all
stages of the design flow. Some behavior described in the TRM might not be
relevant because of the way that the GIC-400 is implemented and integrated. If
you are programming the GIC-400 then contact:

. the implementer to determine the build configuration of the implementation
. the integrator to determine the signal configuration of the SoC that you are
using.

The TRM complements protocol specifications and relevant external standards.
It does not duplicate information from these sources.

ARM DDI 0471A
ID070211

Copyright © 2011 ARM. All rights reserved. 1-7
Non-Confidential

Introduction

1.6 Product revisions
This section describes the differences in functionality between the product revisions:

roOp0 First release.

ARM DDI 0471A Copyright © 2011 ARM. All rights reserved. 1-8
ID070211 Non-Confidential

Chapter 2

Functional Description

This chapter describes the GIC-400 operation. It contains the following sections:

Functional overview of the GIC-400 on page 2-2

Secure and Non-secure access to the GIC-400 on page 2-7
Interrupt inputs to the GIC-400 on page 2-8

Maintenance interrupts in the GIC-400 on page 2-9

Virtual interrupts in the GIC-400 on page 2-10

Interrupt handling and prioritization in the GIC-400 on page 2-11
Power management on page 2-12

Behavior when the Distributor is disabled on page 2-13.

ARM DDI 0471A
ID070211

Copyright © 2011 ARM. All rights reserved.
Non-Confidential

21

21

Functional Description

Functional overview of the GIC-400

The GIC-400 implements the partitioning that the ARM Generic Interrupt Controller
Architecture Specification describes. It consists of a Distributor and one CPU interface and
virtual CPU interface for each processor in the system.

The GIC-400 implements the optional GIC Virtualization Extensions enabling it to manage
virtual interrupts, provided that at least one processor in the system implements the hypervisor.
Although the hypervisor software translates physical interrupts into virtual interrupts and
handles complex cases, the GIC-400 often handles acknowledge and end of interrupt accesses
from the virtual machine in hardware. The hypervisor running on the processor and the virtual
interface control block in the GIC-400 form the virtual distributor. For information, see Virtual
CPU interfaces and virtual interface control registers on page 2-4.

Note
The hypervisor is not part of the GIC-400 architecture. It is software running on the processor
as Non-secure software, at privilege level PL2. It is supported by the ARMv7-A Architecture
Virtualization Extensions. For more information, see the ARM Architecture Reference Manual,

ARMv7-A and ARMv7-R edition.

Table 2-1 shows the main functional blocks of the GIC-400.

Table 2-1 GIC-400 partitioning

Functional block Reg!ster Instances Description
prefix
Clock and reset N/A N/A All configurations of the GIC-400 use a single clock input, CLK and a single
reset input, nRESET.
See Clock and reset signals on page A-2.
AXI4 interface N/A 1 Provides access to the GIC-400 registers that enable you to program the
GIC-400 and obtain status information.
See AXI slave interface signals on page A-5.
Distributor GICD _ 1 Detects and prioritizes interrupts, and forwards them to the target CPU
interfaces.
See Distributor on page 2-4.
CPU interface GICC_ 1 for each Performs priority masking and preemption handling of physical interrupts,
processorinthe signals them to the corresponding processor, and receives acknowledge and
SoC End of Interrupt (EOI) accesses from that processor.
See CPU interfaces on page 2-4.
Virtual interface GICH 1 set for each Allow the hypervisor to control the information presented to the virtual
control registers processorinthe machines by the virtual CPU interface.
SoC See Virtual interface control block on page 2-5.
Virtual CPU GICV_ 1 for each Performs priority masking and preemption handling of virtual interrupts,
interface processorinthe signals them to virtual machines, and receives acknowledge and EOI
SoC accesses from those virtual machines.
See Virtual CPU interfaces on page 2-5.
ARM DDI 0471A Copyright © 2011 ARM. All rights reserved. 2-2

ID070211

Non-Confidential

Functional Description

211 Clock and reset

21.2 AXIl4 interface

All configurations of the GIC-400 use a single clock input, CLK and a single reset input,
nRESET. For information, see Clock and reset signals on page A-2.

Note

Clock and reset signals apply to all interfaces on the GIC-400 and all interfaces must be
synchronous to this clock. Therefore, synchronizer cells might be required for certain inputs.

The GIC-400 uses an AMBA AXI4 slave interface.

There are no separate AXI clock and reset signals in the GIC-400. All interfaces are
synchronous to the master clock input.

Note

In many cases, the GIC-400 might be compatible with an AXI3 master. However, the AXI14
protocol does not support the AXI3 features of locked transactions and write-interleaving and
clarifies the meaning of the AWCACHE and the ARCACHE signals. Therefore, to ensure that
the GIC-400 is operating correctly, you must configure any AXI3 masters not to issue locked
transactions or interleave write data. You must also check that all interconnects obey the
restrictions set out by the AXI4 definitions of AWCACHE and the ARCACHE for the relevant
transaction type, which is typically expected to be Device Bufferable. For information on legacy
considerations in AXI4, see the AMBA AXI Protocol Specification.

The AWUSER and ARUSER signals are specific to the GIC-400. They indicate to the GIC-400
which processor is performing a request. Identifying the requestor is necessary to determine to
which CPU interface or virtual CPU interface an AXI access should be directed. Furthermore,
this is needed for some Distributor register accesses, such as the GICD_SGIR, as well.

The format of the AWUSER and ARUSER signals is a binary number from 0 to NUM_CPUS-1,
inclusive. The only strict requirement to generate the AWUSER and ARUSER signals is that
the chosen numbering scheme must represent a consistent mapping between the processors and
the range of legal encodings. Processors can discover their ID that the GIC-400 uses by reading
from the Interrupt Processor Targets Register(), GICD_ITARGETSRO.

Table 2-2 shows the AXI slave attributes and their values.

Table 2-2 AXI slave interface attributes

Attribute Value

Combined acceptance capability 1

Read acceptance capability 1
Read data reorder depth 1
Write acceptance capability 1
Write interleave depth? 1

a. AXI4 Does not support write
interleaving. Therefore, an AXI 3
master must be set not to interleave
writes.

ARM DDI 0471A
ID070211

Copyright © 2011 ARM. All rights reserved. 2-3
Non-Confidential

21.3 Distributor

Interrupts

Functional Description

The GIC-400 Distributor receives interrupts and presents the highest priority pending interrupt
to each CPU interface.

GIC-400 I I

Processor

Distributor

CPU interface Physical interrupts

v
\ 4

A

interface

AXI

Figure 2-1 Handling physical interrupts with the Distributor

Furthermore, the GIC-400 implements the Interrupt Group Registers, GICD_IGROUPRn, that
control whether each interrupt is configured as Group 0 or Group 1. The interrupt group affects
whether the interrupt can be forwarded to the CPU interfaces and it also has an impact on later
routing decisions in the CPU interfaces, potentially including whether it is signaled to the
processor as a FIQ or an IRQ exception request.

The Distributor provides 6 external PPI inputs and the internal virtual maintenance PPI for each
processor, and from 0 to 480 SPIs in multiples of 32. The PPIs are independent for each
processor and the Distributor only forwards them to the corresponding CPU interface. You can
program the Distributor to control the CPU interface to which it routes each SPI.

21.4 CPU interfaces

Each CPU interface signals interrupts to the corresponding processor and receives acknowledge
and EOI accesses from that processor. These AXI accesses convey the interrupt ID and other
information about the interrupt, and also trigger updates to the Distributor state.

The CPU interface only signals pending interrupts to the processor if the interrupt has sufficient
priority. Whether an interrupt has sufficient priority is determined by the configuration of the
CPU interface and the priority of certain active interrupts. For more information, see the ARM
Generic Interrupt Controller Architecture Specification.

2.1.5 Virtual CPU interfaces and virtual interface control registers

The GIC-400 implements the optional GIC Virtualization Extensions. A group of functional
components of the GIC-400 and some software in the processor form a virtual distributor that
has a role similar to the physical Distributor. Together, the hypervisor and the virtual interface
control registers form a virtual distributor:

1. The hypervisor creates virtual interrupts for the physical interrupts and assigns them a
priority.

2. Each set of virtual CPU interface control registers prioritizes the virtual interrupts and
forwards the highest priority pending interrupt to its corresponding virtual CPU interface.

ARM DDI 0471A
ID070211

Copyright © 2011 ARM. All rights reserved. 2-4
Non-Confidential

Functional Description

The hypervisor supports virtualization also by using address translation tables to trap accesses
that the virtual machines make to the virtual distributor. The hypervisor determines the effect of
these accesses and might typically update the virtual interface control registers as a result.

Figure 2-2 shows how the virtual distributor is implemented partly in the GIC-400, partly in the
processor and how it interacts with the Distributor and the virtual CPU interfaces in the
GIC-400. The GIC-400 implements the virtual interface control registers, namely the GICH
registers and the processor implements the hypervisor.

GIC-400 P
rocessor
Virtual distributor
I) 4
Virtual interface control &_ Generating virtual interrupts _ | _ ;Hypervisor
registers
v
Virtual CPU interface Virtual FIQs and IRQs
registers] I > |

Figure 2-2 Handling virtual interrupts with the virtual distributor

Virtual interface control block

The GIC-400 implements the virtual interface control block with all the management registers
and with four List registers. The List registers, GICH_LRO - GICH_LR3, are a subset of the
virtual interface control registers and define the active and pending virtual interrupts for the
virtual CPU interface. The management registers, for example the Virtual Machine Control
Register, GICH_VMCR, and Active Priorities Register, GICH_APR, enable the hypervisor to
manage other aspects of the corresponding virtual CPU interface, and permit it to save and
restore state when switching between virtual machines.

Virtual CPU interfaces

The virtual CPU interface registers are similar to the CPU interface registers. However, the
virtual CPU interfaces receive information from the virtual interface control registers, which are
managed by the hypervisor, rather than from the Distributor.

After receiving a physical interrupt or otherwise, if the hypervisor needs to signal a virtual
interrupt to the current virtual machine, it typically updates the virtual interface control
registers. These registers, specifically the List registers, GICH_LRn, hold a list of the virtual
interrupts destined for the current virtual machine. The signaling, acknowledgement and EOI
steps of the virtual interrupt processing can usually be handled in hardware by the virtual CPU
interface. Certain cases might require hypervisor intervention, for example if there are more
virtual interrupts than can be stored in the List registers. The virtual interface control registers
control when an internal PPI, known as the virtual maintenance interrupt, is generated. This
virtual maintenance interrupt, PPI ID 25, is designed to notify the hypervisor of events that it
must handle.

The address translation tables for the processor are normally configured so that accesses to the
CPU interface by a virtual machine are directed to the virtual CPU interface. This ensures that
the virtualization of the CPU interface is transparent to the virtual machine.

ARM DDI 0471A
ID070211

Copyright © 2011 ARM. All rights reserved. 2-5
Non-Confidential

Functional Description

Hypervisor

The hypervisor is not part of the GIC-400 but it is crucial for its operation. It is software
executing on each processor that is running virtual machines:

. It is responsible for translating physical interrupts to virtual interrupts and managing all
virtual interrupts by using the virtual interface control registers.

. It can also configure the virtual maintenance interrupt to signal situations when it must
manage the virtual interrupts.

. It typically sets the stage 2 Non-secure address translation tables so that the virtual
machines access the virtual CPU interfaces instead of the physical interfaces.

. The hypervisor is responsible for virtualizing accesses from the virtual machines to the
Distributor, typically by trapping the accesses and handling them in software.

For information, see the ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition.

Note

ARM processors support the use of a hypervisor when they implement the ARM Virtualization
Extensions. For information on extension versions and their dependencies on other ARM
processor extensions, see the ARM Architecture Reference Manual, ARMv7-A and ARMv7-R
edition.

ARM DDI 0471A
ID070211

Copyright © 2011 ARM. All rights reserved. 2-6
Non-Confidential

Functional Description

2.2 Secure and Non-secure access to the GIC-400
For information about Secure and Non-secure accesses to the GIC, and the implications for
processors that do not implement the ARM Security Extensions, see the ARM Generic Interrupt
Controller Architecture Specification.

ARM DDI 0471A Copyright © 2011 ARM. All rights reserved. 2-7

ID070211

Non-Confidential

23

2.31

2.3.2

Functional Description

Interrupt inputs to the GIC-400

This section describes the different types of interrupt that the GIC-400 handles. See also
Behavior when the Distributor is disabled on page 2-13.

SGls

SGIs are generated by writing to the Software Generated Interrupt Register, GICD_SGIR. Each
CPU interface can generate a maximum of 16 SGIs, ID0-ID15, for each target processor.

PPIs

A PPl is an interrupt that is specific to a single processor. All PPI signals are active-LOW
level-sensitive. Table 2-3 shows the PPIs that are available for each processor.

Table 2-3 PPI types

Interrupt ID Source

Description

31 Legacy IRQ signal When the power management bypass functionality is enabled in a CPU interface, the
legacy IRQ signal is driven on its nIRQCPU output. See Power management on
page 2-12.
This interrupt input also behaves like a normal PPI input at all times.
30 Non-secure physical timer This is the event generated by the Non-secure physical timer.
29 Secure physical timer This is the event generated by the Secure physical timer.
28 Legacy FIQ signal When the power management bypass functionality is enabled in a CPU interface, the
legacy FIQ signal is driven on its nFIQCPU output. See Power management on
page 2-12.
This interrupt input also behaves like a normal PPI input at all times.
27 Virtual timer This is the event generated by the virtual timer.
26 Hypervisor timer This is the event generated by the physical timer in Hyp mode.
25 Virtual maintenance interrupt This is a configurable event generated by the corresponding virtual CPU interface to
indicate a situation that might require hypervisor action.
2.3.3 SPIs
SPIs are triggered by events generated on associated interrupt input lines. The GIC-400 can
support up to 480 SPIs corresponding to the external IRQS[479:0] signal. The number of SPIs
available depends on the implemented configuration of the GIC-400. The permitted values are
0-480, in steps of 32. SPIs start at ID32.You can configure whether each SPI is edge-triggered
on a rising edge or is active-HIGH level-sensitive.
Note
All signals, including SPIs, must be synchronous to the clock in the GIC-400. Therefore, any
interrupt signals from an asynchronous source must be synchronized before they are connected
to the GIC-400.
2.3.4 Lockable SPIs (LSPIs)

The GIC-400 supports 31 LSPIs, as it is indicated by the LSPI field in the Interrupt Controller
Type Register, GICD_TYPER. For more information, see the ARM Generic Interrupt
Controller Architecture Specification.

ARM DDI 0471A

ID070211

Copyright © 2011 ARM. All rights reserved. 2-8
Non-Confidential

Functional Description

24 Maintenance interrupts in the GIC-400
See PPIs on page 2-8 and the ARM Generic Interrupt Controller Architecture Specification.
ARM DDI 0471A Copyright © 2011 ARM. All rights reserved. 2-9

ID070211

Non-Confidential

Functional Description

2.5 Virtual interrupts in the GIC-400

The GIC-400 supports interrupt virtualization to assert virtual interrupts to virtual machines
using the virtual CPU interfaces. Virtual interrupts can be created only if the processor has a
hypervisor to manage the virtual machines in the SoC and perform the translation from the
physical to virtual interrupt. For information, see the ARM Generic Interrupt Controller

Architecture Specification.

ARM DDI 0471A
ID070211

Copyright © 2011 ARM. All rights reserved. 2-10
Non-Confidential

Functional Description

2.6 Interrupt handling and prioritization in the GIC-400

In the GIC-400, the Distributor arbitrates physical interrupts and the virtual distributor arbitrates
virtual interrupts according to the same principles.

The GIC-400 implements the interrupt handling and prioritization of the ARM Generic Interrupt
Controller Architecture Specification. The following IMPLEMENTATION DEFINED properties are
particular to the GIC-400:

. The GIC-400 implements 32 priority levels in Secure state and 16 priority states in
Non-secure state.

. If two or more interrupts have the same priority level, the arbitration depends on the type
of the interrupts:

PPIL, SPI The Distributor issues the interrupt with the lowest ID.

SGI The Distributor issues the SGI with the lowest ID. In multiprocessor systems,
if a priority level conflict remains, the Distributor issues the SGI that was
generated by the processor with the lowest CPUID. Therefore, when a priority
level conflict occurs, an SGI request from processor 0 is given preference over
other SGIs with that same ID.

. Writing to the Interrupt Priority Registers, GICD IPRIORITYR, does not affect the
priority of an active interrupt.

ARM DDI 0471A
ID070211

Copyright © 2011 ARM. All rights reserved. 2-11
Non-Confidential

Functional Description

2.7 Power management

The GIC-400 implements the bypass functionality as specified by the GIC architecture
specification. This means that if a CPU interface processor output, such as one bit of nFIQCPU,
is disabled, the GIC-400 is bypassed unless the bypass functionality is itself disabled. Bypassing
means that the GIC-400 drives the corresponding legacy input on the processor interrupt output,
for instance one bit of nNLEGACYFIQ driving the same bit of nFIQCPU. This is the behavior
from reset.

The bypass functionality can be disabled so that when the CPU interface processor output is
disabled, the output signal is deasserted rather than bypassed. This is typically used when
powering down a processor to ensure that when the CPU interface is disabled, the legacy
interrupt inputs do not wake the processor. Bypassing can be disabled using the CPU Interface
Control Register, GICC_CTLR.

The GIC-400 supports wakeup events in systems that require power management. It signals
these wakeup events using nIRQOUT and nFIQOUT, which ignore the CPU interface enable
bits, unlike the processor output signals, nNIRQCPU and nFIQCPU. As a result, the wakeup
outputs are always enabled and so do not support bypass or bypass disable functionality.

For information about power management, wakeup signals and their relation to the processor
outputs, see the ARM Generic Interrupt Controller Architecture Specification.

ARM DDI 0471A
ID070211

Copyright © 2011 ARM. All rights reserved. 2-12
Non-Confidential

Functional Description

2.8 Behavior when the Distributor is disabled

If at least one of the GICD _CTLR.EnableGrp0 or GICD_CTLR.EnableGrp! bits is 0:

. an edge-triggered interrupt signal cannot set the interrupt to the pending state if the
interrupt is in a disabled group

. SGIs in a disabled group cannot be set pending using the GICD SGIR.

If either, but not both, of the GICD_CTLR.EnableGrp0 and GICD_CTLR.EnableGrp1 bits is
set to 1, and the highest priority pending interrupt is in the disabled group, the Distributor does
not forward any pending interrupts to the CPU interfaces. This applies in the following cases:

. GICD_CTLR.EnableGrp0 set to 0 and GICD_CTLR.EnableGrpl set to 1, and the highest
priority pending interrupt is in Group 0

. GICD_CTLR.EnableGrp0 setto 1 and GICD CTLR.EnableGrp1 set to 0, and the highest
priority pending interrupt is in Group 1.

This means that, in cases where there are Group 1 interrupts with a higher priority than some
Group 0 interrupts, it is possible for Non-secure software to deny service to Secure software, by
clearing the GICD_CTLR.EnableGrpl bit. To prevent this, ARM strongly recommends that all
Group 0 interrupts are assigned a higher priority than all Group 1 interrupts. In addition, to
prevent Secure software from denying service to Non-secure software, Secure software must
ensure that when GICD _CTLR.EnableGrpl is set to 1, either GICD_CTLR.EnableGrpO is also
set to 1, or there are no pending Group 0 interrupts.

For more information, see the ARM Generic Interrupt Controller Architecture Specification.

ARM DDI 0471A
ID070211

Copyright © 2011 ARM. All rights reserved. 2-13
Non-Confidential

Chapter 3

Programmers Model

This chapter describes the GIC-400 registers and provides information about programming the
device. It contains the following sections:

About the GIC-400 programmers model on page 3-2

GIC-400 register map on page 3-3

Distributor register summary on page 3-4

Distributor register descriptions on page 3-6

CPU interface register summary on page 3-10

CPU interface register descriptions on page 3-11

GIC virtual interface control register summary on page 3-12
GIC virtual interface control register descriptions on page 3-13
GIC virtual CPU interface register summary on page 3-14

GIC virtual CPU interface register descriptions on page 3-15.

ARM DDI 0471A
ID070211

Copyright © 2011 ARM. All rights reserved. 3-1
Non-Confidential

Programmers Model

3.1 About the GIC-400 programmers model

The GIC-400 implements the following registers:

Distributor registers, see Distributor register summary on page 3-4
CPU interface registers, see CPU interface register summary on page 3-10

GIC virtual interface control registers, see GIC virtual interface control register summary
on page 3-12

GIC virtual CPU interface registers, see GIC virtual CPU interface register summary on
page 3-14.

The following information applies to the GIC-400 registers:

The base address of the GIC-400 is not fixed, and can be different for a particular system
implementation. The offset of each register from the base address is fixed.

Access to reserved or unused address locations is RAZ/WI (Read-as-Zero, Writes
Ignored).

Unless otherwise stated in the accompanying text:

— do not modify reserved register bits

— ignore reserved register bits on reads

— all register bits are reset to 0 by a system or power-on reset.

The bus width of the GIC-400 is 32 bits. The ARM Generic Interrupt Controller
Architecture Specification defines the permitted sizes of access. When byte access is
permitted, halfword access is also permitted. Byte or halfword accesses to registers that
do not permit that access size return a SLVERR response if they are unsuccessful.

The GIC-400 only supports data in little-endian format.

This chapter describes the access types as follows:
RAZ/WI Read-as-Zero, Writes Ignored

RO Read only

RW Read and write

WO Write only.

ARM DDI 0471A
ID070211

Copyright © 2011 ARM. All rights reserved. 3-2
Non-Confidential

3.2 GIC-400 register map

Programmers Model

All of the GIC-400 registers have short names. In these names, the first three characters are GIC,
and the fourth character indicates the functional block of the GIC-400:

GICD_ Distributor

GICC_ CPU interfaces

GICH_ Virtual interface control blocks
GICV_ Virtual CPU interfaces.

The GIC-400 provides the following register aliases for the virtual interface control block:

. An alias that provides access to the virtual CPU interface of the accessing processor using
a single base address for all processors. This base address is at offset 0x4000.

. Aliases that permit any virtual CPU interface to be accessed explicitly from any other
processor, using a different base address for each processor. The starting base address is
at offset 0x5000, with address bits [11:9] as the CPU ID decode.

The GIC-400 registers are memory-mapped. Table 3-1 lists the address ranges.

Table 3-1 GIC-400 memory map

Address range

GIC-400 functional block

0x0000-0xQFFF

Reserved

0x1000-0x1FFF

Distributor

0x2000-0x3FFF

CPU interfaces

0x4000-0x4FFF

Virtual interface control block, for the processor that is performing the access

0x5000-0x5FFF

Virtual interface control block, for the processor selected by address bits [11:9]

0x5000-0x51FF Alias for Processor 0
0x5200-0x53FF Alias for Processor 1
0x5EQ0-0x5FFF Alias for Processor 7

0x6000-0x7FFF

Virtual CPU interfaces

3.21 GIC-400 register access and banking

For information on the register access and banking scheme, see the ARM Generic Interrupt
Controller Architecture Specification. The key characteristics of the scheme are:

. Some registers, such as the Distributor Control Register, GICD_CTLR, and the CPU
Interface Control Register, GICC_CTLR, are security Banked. This provides separate
Secure and Non-secure copies of the registers. Secure AXI accesses access Secure
registers, and Non-secure AXI accesses access Non-secure registers. Furthermore, when
the GIC-400 is implemented as part of a multiprocessor system, registers associated with
PPIs or SGIs are Banked to provide a separate copy for each connected processor.

. Some registers, such as the Interrupt Group Registers, GICD_IGROUPRn, are only
accessible by Secure accesses.

. Non-secure accesses to registers or parts of a register that are only accessible to Secure
accesses are RAZ/WTI for that part.

For more information, see the ARM Generic Interrupt Controller Architecture Specification.

ARM DDI 0471A
ID070211

Copyright © 2011 ARM. All rights reserved. 3-3

Non-Confidential

Programmers Model

3.3 Distributor register summary
Table 3-2 lists the Distributor registers in base offset order and provides a reference to the
register description that either this book or the ARM Generic Interrupt Controller Architecture
Specification describes.
Offsets that are not shown are reserved.
Table 3-2 Distributor register summary
Offset Namea? Type Reset Full nameb
0x000 GICD_CTLR RW 0x00000000° Distributor Control Register
0x004 GICD_TYPER RO Configuration-dependentd Interrupt Controller Type Register
0x008 GICD_IIDR RO 0x0200043B Distributor Implementer Identification Register,
GICD _IIDR on page 3-6
0x080-0x0BC ~ GICD_IGROUPRn RW 0x00000000 Interrupt Group Registers®
0x100 GICD_ISENABLERn RWf SGIs and PPIs: 0x0000FFFFe Interrupt Set-Enable Registers
0x104-0x13C SPIs: 0x00000000
0x180 GICD_ICENABLERn RWf 0x0000FFFFg Interrupt Clear-Enable Registers
0x184-0x1BC 0x00000000
0x200-0x23C GICD_ISPENDRn RW 0x00000000 Interrupt Set-Pending Registers
0x280-0x2BC GICD_ICPENDRn RW 0x00000000 Interrupt Clear-Pending Registers
0x300-0x33C GICD_ISACTIVERn RW 0x00000000 Interrupt Set-Active Registers
0x380-0x3BC GICD _ICACTIVERn RW 0x00000000 Interrupt Clear-Active Registers
0x400-0x5FC ~ GICD_IPRIORITYRn RW 0x00000000 Interrupt Priority Registers
0x800-0x81C GICD ITARGETSRn ROh - Interrupt Processor Targets Registerst
0x820-0x9FC RW 0x00000000
0xC00 GICD_ICFGRn RO SGIs: 0xAAAAAAAA Interrupt Configuration Registers, GICD_ICFGRn
on page 3-6
0xCo4 RO PPIs: 0x55540000
0xC08-0xC7C RWi SPIs: 0x55555555
0xD00 GICD_PPISR RO 0x00000000 Private Peripheral Interrupt Status Register,
GICD_PPISR on page 3-7
0xD@4-0xD3C GICD_SPISRn RO 0x00000000 Shared Peripheral Interrupt Status Registers,
GICD_SPISRn on page 3-7
0xF00 GICD_SGIR WO - Software Generated Interrupt Register
0xF10-0xF1C GICD_CPENDSGIRn RW 0x00000000 SGI Clear-Pending Registers
0xF20-0xF2C GICD_SPENDSGIRn RW 0x00000000 SGI Set-Pending Registers
0xFDO GICD_PIDR4 RO 0x00000004 Peripheral ID 4 Register
0xFD4 GICD_PIDR5 RO 0x00000000 Peripheral ID 5 Register
0xFD8 GICD_PIDR6 RO 0x00000000 Peripheral ID 6 Register
ARM DDI 0471A Copyright © 2011 ARM. All rights reserved. 3-4

ID070211

Non-Confidential

Programmers Model

Table 3-2 Distributor register summary (continued)

Offset Namea Type Reset Full nameb
0xFDC GICD_PIDR7 RO 0x00000000 Peripheral ID 7 Register
OxFEQ GICD_PIDRO RO 0x00000090 Peripheral ID 0 Register
OxFE4 GICD PIDRI1 RO 0x000000B4 Peripheral ID 1 Register
OXFE8 GICD_PIDR2 RO 0x00000028 Peripheral ID 2 Register
OxFEC GICD_PIDR3 RO 0x00000000 Peripheral ID 3 Register
0xFFo GICD_CIDRO RO 0x0000000D Component ID 0 Register
OxFF4 GICD_CIDRI1 RO 0x000000F0 Component ID 1 Register
OxFF8 GICD_CIDR2 RO 0x00000005 Component ID 2 Register
OxFFC GICD_CIDR3 RO 0x000000B1 Component ID 3 Register
a. n corresponds to the number of a CPU interface.
b. For the description of registers that are not specific to the GIC-400, see the ARM Generic Interrupt Controller Architecture Specification.
c. You cannot modify the EnableGrp0 bit if CFGSDISABLE is set.
d. The reset value depends on the configuration of the GIC-400. The configuration-dependent values are two fields of the Interrupt Controller

Type Register, GICD_TYPER:

LSPI, bits [15:11] 11111, see Lockable SPIs (LSPIs) on page 2-8.

SecurityExtn, bit [10] 1

CPUNumber, bits [7:5] Has the value of (NUM_CPUS-1), see Configurable options on page 1-6.
ITLinesNumber, bits [4:0] Has the value of NUM_SPIS/32, see Configurable options on page 1-6.

ITLinesNumber expresses that the GIC supports at most (ITLinesNumber+1)*32 interrupts, that is, the potentially
implemented interrupt IDs are 0 to ((ITLinesNumber+1)*32-1). This information can then be used by software to
restrict the range of interrupts that are accessed during interrupt discovery. In the GIC-400, all interrupts are
implemented except for the unused PPIs, IDs 16-24.

For NUM_SPIS=0, ITLinesNumber=0, which gives a maximum of 32 interrupts, with the ID range 0-31. So for this
example, IDs 0-15 (all SGIs) and 25-31 (some PPIs) are implemented.

For NUM_SPIS=64, ITLinesNumber=2, which gives a maximum of 96 interrupts, IDs 0-95. IDs 16-24 are
unimplemented in this example as well.

For information, see the ARM Generic Interrupt Controller Architecture Specification.
This register is only accessible from a Secure access.
Writes to bits corresponding to the SGIs are ignored.

The reset value for the register that contains the SGI and PPI interrupts is 0x0000FFFF because SGIs are always enabled. However, SGIs are
Group 0 on reset, so the reset value for Non-secure reads is 0x00000000.

The registers that contain the SGI and PPI interrupts are read-only and the value is the CPU number of the current access. It is encoded in
an 8-bit one-hot field, for each implemented interrupt, and zero for interrupts that are not implemented. For more information on CPU targets
field bit values, see the ARM Generic Interrupt Controller Architecture Specification.

In uniprocessor systems, these registers are RAZ/WI. For information, see the ARM Generic Interrupt Controller Architecture Specification.

The even bits of this register are RO, see Interrupt Configuration Registers, GICD _ICFGRn on page 3-6.

ARM DDI 0471A Copyright © 2011 ARM. All rights reserved.
ID070211 Non-Confidential

3-5

Programmers Model

3.4 Distributor register descriptions

This section only describes the Distributor registers whose implementation is specific to the
GIC-400. The ARM Generic Interrupt Controller Architecture Specification describes all the
other registers.

3.41 Distributor Implementer Identification Register, GICD_IIDR
The GICD_IIDR characteristics are:

Purpose Provides information about the implementer and revision of the
Distributor.

Usage constraints There are no usage constraints.
Configurations Always present in the GIC-400.
Attributes See the register summary in Table 3-2 on page 3-4.

Figure 3-1 shows the bit assignments.

31 24 23 2019 16 15 121 0

ProductID Reserved Variant Revision Implementer

Figure 3-1 GICD_IIDR bit assignments

Table 3-3 shows the bit assignments.

Table 3-3 GICD_IIDR bit assignments

Bits Name Description

[31:24] ProductID Indicates the product ID:

0x02 GIC-400
[23:20] - Reserved, RAZ
[19:16] Variant Indicates the major revision or variant of the product:
0x0 variant number
[15:12] Revision Indicates the minor revision of the product:
0x0 revision number
[11:0] Implementer Indicates the implementer:
0x43B ARM

3.4.2 Interrupt Configuration Registers, GICD_ICFGRn

For information on the Interrupt Configuration Registers, GICD_ICFGRn, see the ARM
Generic Interrupt Controller Architecture Specification.

Note
The GIC-400 also implements the legacy encoding of the even bits in the register, designated
Int_config[0] in the architecture specification.The Int_config[0] bits are always read-only and
are only provide support for legacy software. They must not be used by new software.

ARM DDI 0471A Copyright © 2011 ARM. All rights reserved. 3-6
ID070211 Non-Confidential

Programmers Model

3.4.3 Private Peripheral Interrupt Status Register, GICD_PPISR

The GICD_PPISR characteristics are:

Purpose

Enables a processor to access the status of the PPI inputs on the
Distributor.

Usage constraints A processor can only read the status of its own PPI and cannot read the

status of PPIs for other processors. Non-secure accesses can only read the
status of Group 1 interrupts.

Configurations Always present in the GIC-400.

Attributes See the register summary in Table 3-2 on page 3-4.

Figure 3-2 shows the bit assignments.

31 161514131211 10 9 8 0
Reserved Reserved
ID 31 status —! L—ID 25 status
ID 30 status ID 26 status
ID 29 status ID 27 status
ID 28 status

Figure 3-2 GICD_PPISR bit assignments

Table 3-4 shows the bit assignments.

Table 3-4 GICD_PPISR bit assignments

Bits Name Description
[31:16] - Reserved, RAZ.
[15:9] PPIstatus Asserted when the PPI inputs to the Distributor are active.
ID 31 nLEGACYIRQ signal
ID 30 Non-secure physical timer event
ID 29 Secure physical timer event
ID 28 nLEGACYFIQ signal
ID 27 Virtual timer event
ID 26 Hypervisor timer event
ID 25 Virtual maintenance interrupt.

Note

These bits return the actual status of the PPI signals. The first Interrupt Set-Pending Register,
GICD_ISPENDRO and Interrupt Clear-Pending Register, GICD_ICPENDRO, can also provide the PPI status
but because you can write to these registers, they might not contain the true status of the PPI input signals.

[8:0] - Reserved, RAZ.

3.4.4 Shared Peripheral Interrupt Status Registers, GICD_SPISRn

The GICD_SPISRn characteristics are:

Purpose

Enables a processor to access the status of the IRQS inputs on the
Distributor.

ARM DDI 0471A
ID070211

Copyright © 2011 ARM. All rights reserved. 3-7
Non-Confidential

313029 28

27 26252423222120191817161514131211109 8 7 6 56 4 3 2 1 O

Programmers Model

Usage constraints Non-secure accesses can only read the status of Group | interrupts.
Configurations Always present in the GIC-400.
Attributes See the register summary in Table 3-2 on page 3-4.

Figure 3-3 shows the bit assignments.

L—IRQS[n] status
IRQS[n+1] status
IRQS[n+2] status

IRQS[n+31] status

Figure 3-3 GICD_SPISRn bit assignments

Table 3-5 shows the bit assignments.

Table 3-5 GICD_SPISRn bit assignments

Bits Name

Function

[31:0] IRQS[N+31:N]

Returns the status of the IRQS inputs on the Distributor. For each bit:
0 IRQS is LOW
1 IRQS is HIGH.

Note

. The IRQS that a bit refers to depends on its bit position and the base address offset of the Shared
Peripheral Interrupt Status Registers, GICD_SPISRn.

. These bits return the actual status of the IRQS signals. The first Interrupt Set-Pending Register,
GICD_ISPENDRO and Interrupt Clear-Pending Register, GICD_ICPENDRO, can also provide
the IRQS status but because you can write to these registers, they might not contain the actual
status of the IRQS signals.

Figure 3-4 on page 3-9 shows the address map of the GICD_SPISRs.

ARM DDI 0471A
ID070211

Copyright © 2011 ARM. All rights reserved. 3-8
Non-Confidential

0x1D04

0x1D08

0x1DOC

0x1D3C

Programmers Model

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
GICD_SPISR[0] for IRQS[31:0]

18 R R T T A A 4 A
GICD_SPISR[1] for IRQS[63:32]

63l [[L L L] [s4fssfse
GICD_SPISR[2] for IRQS[95:64]
G 5
GICD_SPISR[14] for IRQS[479:448]
IR E NN
479 4i8

Figure 3-4 GICD_SPISR address map

The Distributor provides up to 15 registers to support 480 SPIs. If you configure the GIC-400
to use fewer than 480 SPIs, it reduces the number of registers accordingly. For locations where
interrupts are not implemented, the register is RAZ/WI.

ARM DDI 0471A
ID070211

Copyright © 2011 ARM. All rights reserved. 3-9
Non-Confidential

Programmers Model

3.5 CPU interface register summary

This section provides an overview of the CPU interface registers. Table 3-6 shows the CPU
interface registers and provides a reference to the register description that either this book or the
ARM Generic Interrupt Controller Architecture Specification describes.

Table 3-6 CPU interface register summary

Offset Name Type Reset Description2
0x0000 GICC_CTLR RW 0x00000000 CPU Interface Control Register
0x0004 GICC_PMR RW 0x00000000 Interrupt Priority Mask Register
0x0008 GICC_BPR RW 0x00000002> Binary Point Register
The minimum value of the Binary Point Register depends on
which security-banked copy is considered:
0x2 Secure copy
0x3 Non-secure copy
0x000C GICC IAR RO 0x000003FF Interrupt Acknowledge Register
0x0010 GICC_EOIR wO - End of Interrupt Register
0x0014 GICC_RPR RO 0x000000FF Running Priority Register
0x0018 GICC_HPPIR RO 0x000003FF Highest Priority Pending Interrupt Registerc
0x001C GICC_ABPR RW 0x00000003 Aliased Binary Point Registerd
The minimum value of the Aliased Binary Point Register is 0x3.
0x0020 GICC_AIAR RO 0x000003FF Aliased Interrupt Acknowledge Registerd
0x0024 GICC_AEOIR WO - Aliased End of Interrupt Registerd
0x0028 GICC_AHPPIR RO 0x000003FF Aliased Highest Priority Pending Interrupt Registered
0x00D0 GICC_APRO RW 0x00000000 Active Priority Register
0x00E0 GICC_NSAPRO RW 0x00000000 Non-Secure Active Priority Registerd
0x00FC GICC_IIDR RO 0x0202043B CPU Interface Identification Register, GICC _IIDR on page 3-11
0x1000 GICC _DIR WO - Deactivate Interrupt Register

a.

For the description of registers that are not specific to the GIC-400, see the ARM Generic Interrupt Controller Architecture
Specification.

This is the reset value for a Secure read. The Non-secure copy resets to 0x3.
This register returns the highest priority pending interrupt even when the appropriate GICC_CTLR.EnableGrp bit is set to 0.
This register is only accessible to Secure accesses.

ARM DDI 0471A
ID070211

Copyright © 2011 ARM. All rights reserved. 3-10
Non-Confidential

Programmers Model

3.6 CPU interface register descriptions

This section only describes the CPU interface register whose implementation is specific to the
GIC-400. The ARM Generic Interrupt Controller Architecture Specification describes all the

other registers.

3.6.1 CPU Interface ldentification Register, GICC_IIDR

The GICC _IIDR characteristics are:

Purpose

Usage constraints.
Configurations

Attributes

Provides information about the implementer and revision of the CPU
interface.

There are no usage constraints.
Always present in the GIC-400.

See the register summary in Table 3-2 on page 3-4.

Figure 3-5 shows the bit assignments.

31

2019 16 15 121 0

ProductID Revision Implementer

Architecture
version

Figure 3-5 GICC_IIDR bit assignments

Table 3-7 shows the bit assignments.

Table 3-7 GICC_IIDR bit assignments

Bit Name Function
[31:20] ProductID Identifies the product ID:
0x020 GIC-400
[19:16] Architecture version Identifies the architecture version of the GIC-400:
0x2 version 2.0
[15:12] Revision Identifies the revision number for the CPU interface. For the GIC-400:
0x0 revision 0
[11:0] Implementer Contains the JEP106 code of the company that implemented the CPU interface.

0x43B ARM

ARM DDI 0471A
ID070211

Copyright © 2011 ARM. All rights reserved. 3-11

Non-Confidential

3.7 GIC virtual interface control register summary

Programmers Model

The GIC virtual interface control registers are management registers. Software must ensure they
are accessible only by the hypervisor, for example by using suitable translation tables.

Table 3-8 shows the register map for the GIC virtual interface control registers.

Table 3-8 Virtual interface control register summary

Offset Name Type Reset Full name?

0x000 GICH_HCR RW 0x00000000 Hypervisor Control Register

0x004 GICH_VTR RO 0x90000003 VGIC Type Register, GICH_ VTR on page 3-13
0x008 GICH_VMCR RW 0x004C0000 Virtual Machine Control Register
0x010 GICH MISR RO 0x00000000 Maintenance Interrupt Status Register
0x020 GICH_EISRO RO 0x00000000 End of Interrupt Status Register

0x030 GICH_ELSRO RO 0x0000000F Empty List register Status Register
0x0F0 GICH_APRO RW 0x00000000 Active Priority Register

0x100 GICH_LRO RW 0x00000000 List Register 0

0x104 GICH_LR1 RW 0x00000000 List Register 1

0x108 GICH_LR2 RW 0x00000000 List Register 2

0x10C GICH_LR3 RW 0x00000000 List Register 3

a. For descriptions of registers that are not specific to the GIC-400, see the ARM Generic Interrupt
Controller Architecture Specification.

ARM DDI 0471A
ID070211

Copyright © 2011 ARM. All rights reserved. 3-12
Non-Confidential

Programmers Model

3.8 GIC virtual interface control register descriptions

This section only describes the virtual interface control register whose implementation is
specific to the GIC-400. The ARM Generic Interrupt Controller Architecture Specification

describes all the other registers.

3.8.1 VGIC Type Register, GICH_VTR

The GICH_VTR characteristics are:

Purpose Holds information about the number of priority bits, the number of
preemption bits, and the number of List Registers implemented.

Usage constraints There are no usage constraints.

Configurations Always present in the GIC-400 because it implements the GIC
Virtualization Extensions.

Attributes See the register summary in Table 3-6 on page 3-10.

Figure 3-6 shows the bit assignments.

31 2928 2625

PRIbits | PREbits

Reserved ListRegs

Figure 3-6 GICH_VTR bit assignments

Table 3-9 shows the bit assignments.

Table 3-9 GICH_VTR bit assignments

Bit Name Description

[31:29] PRIbits Indicates the number of priority bits implemented, minus one:
0x4 5 bits of priority and 32 priority levels

[28:26] PREbits Indicates the number of preemption bits implemented, minus one:
0x4 5 bits of preemption and 32 preemption levels

[25:6] - Reserved, RAZ.

[5:0] ListRegs Indicates the number of implemented List Registers, minus one:
0x3 4 List registers

ARM DDI 0471A Copyright © 2011 ARM. All rights reserved. 3-13

ID070211

Non-Confidential

3.9

Programmers Model

GIC virtual CPU interface register summary

Table 3-10 shows the register map for the GIC virtual CPU interface in the GIC-400.

Registers that this table does not describe are RAZ/WI.

Table 3-10 GIC virtual CPU interface register summary

Offset Name Type Reset Full name?

0x0000 GICV_CTLR RW 0x00000000 Virtual Machine Control Register

0x0004 GICV_PMR RW 0x00000000 VM Priority Mask Register

0x0008 GICV_BPR RW 0x00000002 VM Binary Point Register

0x000C GICV_IAR RO 0x000003FF VM Interrupt Acknowledge Register

0x0010 GICV_EOIR wO - VM End of Interrupt Register

0x0014 GICV_RPR RO 0x000000FF VM Running Priority Register

0x0018 GICV_HPPIR RO 0x000003FF VM Highest Priority Pending Interrupt Register?

0x001C GICV_ABPR RW 0x00000003 VM Aliased Binary Point Register

0x0020 GICV_AIAR RO 0x000003FF VM Aliased Interrupt Acknowledge Register

0x0024 GICV_AEOIR wO - VM Aliased End of Interrupt Register

0x0028 GICV_AHPPIR RO 0x000003FF VM Aliased Highest Priority Pending Interrupt Register?
0xeoD0 GICV_APRO RW 0x00000000 VM Active Priority Register

0x00FC GICV_IIDR RO 0x02020438B VM CPU Interface Identification Register, GICV _IIDR on page 3-15
0x1000 GICV_DIR WO - VM Deactivate Interrupt Register

a. For descriptions of registers that are not specific to the GIC-400, see the ARM Generic Interrupt Controller Architecture
Specification.

b. This register returns the highest priority pending interrupt even when the appropriate GICV_CTLR.EnableGrp bit is set to 0.

ARM DDI 0471A

ID070211

Copyright © 2011 ARM. All rights reserved.

3-14

Non-Confidential

Programmers Model

3.10 GIC virtual CPU interface register descriptions

This section only describes the virtual CPU interface registers whose implementation is specific
to the GIC-400. The ARM Generic Interrupt Controller Architecture Specification describes all
the other registers.

3.10.1 VM CPU Interface Identification Register, GICV_IIDR

The GICV_IIDR characteristics are:

Purpose Provides information about the implementer and revision of the virtual
CPU interface.

Usage constraints There are no usage constraints.

Configurations Always present in the GIC-400 because it implements the GIC
Virtualization Extensions.

Attributes See the register summary in Table 3-6 on page 3-10.

The bit assignments for the GICV_IIDR are identical to the corresponding register in the
Physical CPU interface, see CPU Interface ldentification Register, GICC IIDR on page 3-11.

ARM DDI 0471A
ID070211

Copyright © 2011 ARM. All rights reserved. 3-15
Non-Confidential

Appendix A

Signal Descriptions

This appendix describes the signals that the GIC-400 provides. It contains the following

sections:

Clock and reset signals on page A-2
Configuration signal on page A-3
Interrupt signals on page A-4

AXI slave interface signals on page A-5.

ARM DDI 0471A
ID070211

Copyright © 2011 ARM. All rights reserved.
Non-Confidential

A-1

Signal Descriptions

AA1 Clock and reset signals

Table A-1 shows the clock and reset signals.

Note

The GIC-400 does not synchronize any inputs, so all input signals, including the SPI and PPI
inputs, must be synchronous to CLK.

Table A-1 Clock and reset signals

Signal Direction Type Description
CLK Input Clock source Common clock signal for AXI and other interfaces.
nRESET Input Reset source Reset for the GIC-400.
DFTRSTDISABLE Input DEFT control logic Disables the external reset input for test mode.
DFTSE Input DFT control logic Scan enable. Disables clock gates for test mode.

ARM DDI 0471A Copyright © 2011 ARM. All rights reserved. A-2

ID070211 Non-Confidential

Signal Descriptions

A.2 Configuration signal
Table A-2 shows the configuration signal for the GIC-400.
Table A-2 Configuration signal

Signal Direction Type Description

CFGSDISABLE Input Security Prevents modification of certain Secure registers, including bits that correspond to
controller the Lockable SPIs. CFGSDISABLE is typically deasserted from reset until Secure
software has configured the GIC-400 and then subsequently asserted permanently

to provide extra security.

ARM DDI 0471A Copyright © 2011 ARM. All rights reserved. A-3
ID070211 Non-Confidential

A3

Interrupt signals

Table A-3 shows the interrupt signals in the GIC-400.

Signal Descriptions

Table A-3 Interrupt controller signals

Signala Direction Type Descriptionb
IRQS[NUM_SPIS-1:0] Input Interrupt source SPIs
nLEGACYIRQ[NUM_CPUS-1:0] Input Interrupt source PPI with interrupt ID 31
Legacy IRQ signal
nCNTPNSIRQ[NUM_CPUS-1:0] Input Interrupt source PPI with interrupt ID 30
Non-secure Physical Timer Event
nCNTPSIRQ[NUM_CPUS-1:0] Input Interrupt source PPI with interrupt ID 29
Secure Physical Timer Event
nLEGACYFIQ[NUM_CPUS-1:0] Input Interrupt source PPI with interrupt ID 28
Legacy FIQ signal
nCNTVIRQ[NUM_CPUS-1:0] Input Interrupt source PPI with interrupt ID 27
Virtual Timer Event
nCNTHPIRQ[NUM_CPUS-1:0] Input Interrupt source PPI with interrupt ID 26
Hypervisor Timer Event
nFIQCPU[NUM_CPUS-1:0] Output Interrupt controller ~ Non-virtual FIQ to processors
nIRQCPU[NUM_CPUS-1:0] Output Interrupt controller ~ Non-virtual IRQ to processors
nVFIQCPU[NUM_CPUS-1:0] Output Interrupt controller ~ Virtual FIQ to processors
nVIRQCPU[NUM_CPUS-1:0] Output Interrupt controller ~ Virtual IRQ to processors
nFIQOUT[NUM_CPUS-1:0] Output Interrupt controller ~ FIQ wakeup output
nIRQOUT[NUM_CPUS-1:0] Output Interrupt controller IRQ wakeup output

a. NUM_CPUS and NUM_SPIS are set during configuration of the GIC-400.
b. For information on the dedicated PPIs, see Interrupt inputs to the GIC-400 on page 2-8.

ARM DDI 0471A
ID070211

Copyright © 2011 ARM. All rights reserved.

Non-Confidential

Signal Descriptions

A.4 AXl slave interface signals

The GIC-400 provides a 32-bit wide AXI4 slave interface. For information, see the AMBA AXI
Protocol Specification.

AXI4 signals that are not implemented in the GIC-400 are not shown in the table.

Table A-4 GIC-400 implementation of AXI4 signals

AXI signal Direction Type GIC-400 implementation

Write address channel signals

AWADDR([14:0] Input AXI Non-standard width with respect to the AMBA AXI Protocol Specification.

AWIDINUM_WID BITS-1:0] Input AXI The value of NUM_WID_BITS depends on the AXI ID bits and is set
during configuration of the GIC-400.

AWLEN][7:0] Input AXI As in the AMBA AXI Protocol Specification.

AWSIZE[2:0] Input AXI As in the AMBA AXI Protocol Specification.

AWUSER]2:0] Input AXI Signal specific to the GIC-400 to identify the processor that initiated the
AXI transaction. For information, see AX74 interface on page 2-3.

AWBURST([1:0] Input AXI As in the AMBA AXI Protocol Specification

AWPROT]|2:0] Input AXI As in the AMBA AXI Protocol Specification

AWVALID Input AXI As in the AMBA AXI Protocol Specification

AWREADY Output AXI As in the AMBA AXI Protocol Specification

Write data channel signals

WDATA|31:0] Input AXI As in the AMBA AXI Protocol Specification
WSTRBJ[3:0] Input AXI As in the AMBA AXI Protocol Specification
WVALID Input AXI As in the AMBA AXI Protocol Specification
WREADY Output AXI As in the AMBA AXI Protocol Specification

Write response channel signals

BID[NUM_WID_ BITS-1:0] Output AXI The value of NUM_WID_BITS is set during configuration of the
GIC-400.

BRESP[1:0] Output AXI As in the AMBA AXI Protocol Specification

BVALID Output AXI As in the AMBA AXI Protocol Specification

BREADY Input AXI As in the AMBA AXI Protocol Specification

Read address channel signals

ARADDR[14:0] Input AXI Non-standard width with respect to the AMBA AXI Protocol Specification

ARID[NUM_RID_BITS-1:0] Input AXI The value of NUM_RID_BITS depends on the AXI ID bits and is set
during configuration of the GIC-400.

ARLEN]7:0] Input AXI As in the AMBA AXI Protocol Specification

ARSIZE[2:0] Input AXI As in the AMBA AXI Protocol Specification.

ARUSER|[2:0] Input AXI Signal specific to the GIC-400 to identify the processor that initiated the

AXI transaction. For information, see AX74 interface on page 2-3.

ARM DDI 0471A Copyright © 2011 ARM. All rights reserved. A-5
ID070211 Non-Confidential

Signal Descriptions

Table A-4 GIC-400 implementation of AXI4 signals (continued)

AXI signal Direction Type GIC-400 implementation
ARBURST][1:0] Input AXI As in the AMBA AXI Protocol Specification
ARPROT]|2:0] Input AXI As in the AMBA AXI Protocol Specification
ARVALID Input AXI As in the AMBA AXI Protocol Specification
ARREADY Output AXI As in the AMBA AXI Protocol Specification
Read data channel signals

RID[NUM_RID_ BITS-1:0] Output AXI The value of NUM_RID_BITS is set during configuration of the GIC-400.
RDATA[31:0] Output AXI As in the AMBA AXI Protocol Specification
RRESP[1:0] Output AXI As in the AMBA AXI Protocol Specification
RLAST Output AXI As in the AMBA AXI Protocol Specification
RVALID Output AXI As in the AMBA AXI Protocol Specification
RREADY Input AXI As in the AMBA AXI Protocol Specification

ARM DDI 0471A
ID070211

Copyright © 2011 ARM. All rights reserved.

Non-Confidential

Appendix B

Interrupt Signaling

This appendix describes how the GIC-400 signals interrupts to a processor. It contains the
following sections:

. Interrupt signaling in the GIC-400 with physical interrupts only on page B-2
. Interrupt signaling in the GIC-400 with virtual interrupts on page B-4.

ARM DDI 0471A
ID070211

Copyright © 2011 ARM. All rights reserved.
Non-Confidential

B-1

Interrupt Signaling

B.1 Interrupt signaling in the GIC-400 with physical interrupts only
Figure B-1 shows how the GIC-400 handles two physical interrupts of different priority.
In the example, interrupts N and M are:
. set to be level-sensitive
. SPIs, so they are signaled using the active-HIGH IRQS input
. target the same processor

. configured to be Group 0 and the GICC_CTLR of the target CPU interface has the FIQEn
bit set, so they are signaled to that CPU as FIQs.

TOT1 T17 T42 T58 T126 T145 T210
U U U UUUUUY JUUUUUUUY U UL
Input h ” ” ” ” ”
~ i5 i5 s is i5
{S‘tate idle i’((o (o pending » o (o act. and pend.
S iy iy f S iy
Inout x el)
N e ff\ 4 ‘14(({ \C)| f(gg [
State Nidle .’ pending active and pending) active ” idle|
)]))))) 2))
CPU
interface) 15 1§ 15 15]
register / / & ack-N / eoi-N Y HackM
RFIQCPUIN < ropl) \/—i 5 |
) 4{;}1} < t, >);

Figure B-1 Signaling physical interrupts

Note
The timings in Figure B-1 are for illustration only. They are typical values that are not
guaranteed and must not be relied upon.

For information on interrupt handling in general, see the ARM Generic Interrupt Controller
Architecture Specification.

In Figure B-1, at time:

T1 The Distributor detects the assertion of Group 0 interrupt M.
T2 The Distributor sets interrupt M to pending.
T17 The CPU interface asserts nFIQCPU[n].

The assertion of nFIQCPU[n] occurs some CLK cycles after interrupt M
becomes pending. In Figure B-1, the latency at the physical interface is to = 15
clock cycles.

ARM DDI 0471A Copyright © 2011 ARM. All rights reserved. B-2
ID070211 Non-Confidential

T42
T43

TS8

T61

T61-T131
T64

T126
T128
T131

T146

T211

T214

Interrupt Signaling

Note

The Distributor takes several cycles to calculate the highest priority pending
interrupt. If an interrupt becomes pending while the calculation is in progress, it
only affects the results of the next calculation. This means that the interrupt
latency might vary. Therefore, while t,y, is typically 12 cycles, it might often be
between 10 and 20 cycles.

The Distributor detects the assertion of a higher priority Group 0 interrupt, N.

The Distributor replaces interrupt M with interrupt N as the highest priority
pending interrupt and sets N to pending.

ton clock cycles after interrupt N became pending, the CPU interface asserts
nFIQCPU|n]. The state of nFIQCPU[n] is unchanged because nFIQCPU[n]
was asserted at T17.

The CPU interface updates the InterruptID field in the GICC IAR, to contain the
ID value for interrupt N.

The processor reads the GICC_IAR, acknowledging the highest priority pending
interrupt, N.

The Distributor sets interrupt N to active and pending.
The processor services interrupt N.

3 clock cycles after interrupt N has been acknowledged, the CPU interface
deasserts nFIQCPU|[n].

The peripheral deasserts interrupt N.
The pending state is removed from N.

The processor writes to the End of Interrupt Register, GICC_EOIR, with the ID
of interrupt N and the Distributor deactivates interrupt N.

tpn clock cycles after GICC_EOIR was written to for N, the Distributor forwards

the new highest priority pending interrupt, M, to the CPU interface, which asserts
nFIQCPU[n].

The processor reads the GICC_IAR, acknowledging the highest priority pending
interrupt, M, and the Distributor sets interrupt M to active and pending.

3 clock cycles after interrupt M has been acknowledged, the CPU interface
deasserts nFIQCPU[n].

ARM DDI 0471A
ID070211

Copyright © 2011 ARM. All rights reserved. B-3
Non-Confidential

Interrupt Signaling

B.2 Interrupt signaling in the GIC-400 with virtual interrupts

Under certain conditions the CPU interface signals Group 1 physical interrupts to the
hypervisor, which might create one virtual interrupt for each physical interrupt.Figure B-2
shows the scenario in which the hypervisor creates a virtual Group 0 interrupt for the physical
interrupt. Signaling of virtual interrupts with nVFIQCPU|n] is similar to signaling of physical
interrupts with nIRQCPU[n]. nVFIQCPU[n] remains asserted until the virtual machine
acknowledges the interrupt by reading the VM Interrupt Acknowledge Register, GICV_IAR.

In the example, interrupt N is:
. a physical interrupt
. set to be level-sensitive

. an SPI, so is signaled using the active-HIGH IRQS input

. configured to be Group 1, so it is signaled to the target processor as an IRQ.
Interrupt V:
. is a virtual interrupt on the virtual CPU interface of the same processor that handled the

physical interrupt

. has its state held in one of the List registers, GICH_LRn, where it is managed by the
hypervisor.

Note
The timings in Figure B-2 are for illustration only. They are typical values that are not
guaranteed and must not be relied upon. For information on the handling of virtual interrupts in
general, see the ARM Generic Interrupt Controller Architecture Specification.

TOT1 T17 T52 T76 T117 T125 T141 T163
Y) I) oy) Ty) T) Ty I{ }_JFUFIIU(TUUUL
Input P (
N —5 s s i i if X —
State idle § | pending active and pending y acfive idle
Y/ 1 1§ 1 1 ’) 1f
it §f f §f §f {f (
\% State . invalid)@ pending ., active invalid
iy)] 1)}))
CPU (
interface) 1 1)D) 1
register I if] ackN 15 \ § eg}lfl 1 \ §f §f
access
Virtual CPU
interface 15 15 15 §5 §5— 15 f
register \ 5 5 1 i} § 5~ 5 §
access \ ack-V eoi-V
n|RQCPU[n]) » 7 17 17 17 17
< tph>
f 1 1 f S
nVFIQCPU[n] L y \!/_‘
4 tv—» 17 17 * tv_>
Figure B-2 Signaling virtual interrupts
ARM DDI 0471A Copyright © 2011 ARM. All rights reserved. B-4

ID070211 Non-Confidential

Interrupt Signaling

In Figure B-2 on page B-4, at time:

T1
T2
T17

T53

T56

T76

T78

T118

T126

T127 - T163
T128

T141

T143
T164

The Distributor detects the assertion of Group 1 interrupt N.
The Distributor sets interrupt N to pending.

The Distributor updates the InterruptID field in the GICC_IAR, to contain the ID
value for N and the CPU interface asserts nIRQCPU[n].

The assertion of nNIRQCPU|[n] occurs some CLK cycles after interrupt N

becomes pending. In Figure B-2 on page B-4, the latency at the physical CPU
interface, tpy, is 15 clock cycles.

The hypervisor reads the Non-secure GICC_IAR to acknowledge the highest
priority pending physical interrupt, N. This changes the state of interrupt N to
active and pending.

3 clock cycles after N becomes active and pending, the CPU interface deasserts
nIRQCPU[n].

The hypervisor writes to an empty List register, which creates interrupt V, a
pending Group 0 hardware virtual interrupt with the PhysicallD field that
contains the ID of interrupt N.

The virtual CPU interface asserts nVFIQCPU[n].

The assertion of nVFIQCPU[n] occurs some CLK cycles after interrupt V
becomes pending. In Figure B-2 on page B-4, the latency at the virtual CPU
interface, ty, is 2 clock cycles.

The hypervisor writes to the End of Interrupt Register, GICC_EOIR, with the ID
of interrupt N.

Note

Since GICC_CTLR.EOImodeNS had been set to 1, the end-of-interrupt only
results in a priority drop so that physical interrupts with a lower priority than N’s
can be signaled to the processor. The state of interrupt N remains unchanged.

The virtual machine reads the GICC_IAR, acknowledging the highest priority
pending Group 0 virtual interrupt, V.

Interrupt V becomes active.
The virtual machine services interrupt V.

ty after V has been acknowledged, the virtual CPU interface deasserts
nVFIQCPU|n].

When the virtual machine has dealt with the event that had caused the interrupt,
the peripheral deasserts the interrupt signal.

After the deassertion of input N is detected, the pending state is removed from N.

The virtual machine writes to the VM End of Interrupt Register, GICV_EOIR,
with the ID of interrupt V.

This causes the deactivation of interrupt V and, because V is a hardware virtual
interrupt, also the deactivation of the associated physical interrupt, N.

ARM DDI 0471A
ID070211

Copyright © 2011 ARM. All rights reserved. B-5
Non-Confidential

Appendix C

This appendix describes the technical changes between released issues of this book.
Table C-1 Issue A
Change Location Affects
First release - -
ARM DDI 0471A Copyright © 2011 ARM. All rights reserved. C-1

ID070211 Non-Confidential

	CoreLink GIC-400 Generic Interrupt Controller Technical Reference Manual
	Contents
	Preface
	About this book
	Product revision status
	Intended audience
	Using this book
	Glossary
	Conventions
	Additional reading

	Feedback
	Feedback on this product
	Feedback on content

	Introduction
	1.1 About the GIC-400
	1.2 Compliance
	1.3 Interfaces
	1.4 Configurable options
	1.5 Product documentation
	1.6 Product revisions

	Functional Description
	2.1 Functional overview of the GIC-400
	2.1.1 Clock and reset
	2.1.2 AXI4 interface
	2.1.3 Distributor
	2.1.4 CPU interfaces
	2.1.5 Virtual CPU interfaces and virtual interface control registers

	2.2 Secure and Non-secure access to the GIC-400
	2.3 Interrupt inputs to the GIC-400
	2.3.1 SGIs
	2.3.2 PPIs
	2.3.3 SPIs
	2.3.4 Lockable SPIs (LSPIs)

	2.4 Maintenance interrupts in the GIC-400
	2.5 Virtual interrupts in the GIC-400
	2.6 Interrupt handling and prioritization in the GIC-400
	2.7 Power management
	2.8 Behavior when the Distributor is disabled

	Programmers Model
	3.1 About the GIC-400 programmers model
	3.2 GIC-400 register map
	3.2.1 GIC-400 register access and banking

	3.3 Distributor register summary
	3.4 Distributor register descriptions
	3.4.1 Distributor Implementer Identification Register, GICD_IIDR
	3.4.2 Interrupt Configuration Registers, GICD_ICFGRn
	3.4.3 Private Peripheral Interrupt Status Register, GICD_PPISR
	3.4.4 Shared Peripheral Interrupt Status Registers, GICD_SPISRn

	3.5 CPU interface register summary
	3.6 CPU interface register descriptions
	3.6.1 CPU Interface Identification Register, GICC_IIDR

	3.7 GIC virtual interface control register summary
	3.8 GIC virtual interface control register descriptions
	3.8.1 VGIC Type Register, GICH_VTR

	3.9 GIC virtual CPU interface register summary
	3.10 GIC virtual CPU interface register descriptions
	3.10.1 VM CPU Interface Identification Register, GICV_IIDR

	Signal Descriptions
	A.1 Clock and reset signals
	A.2 Configuration signal
	A.3 Interrupt signals
	A.4 AXI slave interface signals

	Interrupt Signaling
	B.1 Interrupt signaling in the GIC-400 with physical interrupts only
	B.2 Interrupt signaling in the GIC-400 with virtual interrupts

	Revisions

