Cortex-R5 and Cortex-R5F

Revision: r1p1

Technical Reference Manual

ARM

Copyright © 2010-2011 ARM. All rights reserved.
ARM DDI 0460C (ID021511)

Cortex-R5 and Cortex-R5F
Technical Reference Manual

Copyright © 2010-2011 ARM. All rights reserved.
Release Information
The following changes have been made to this book.

Change history

Date Issue Confidentiality Change

03 August 2010 A Confidential First release for rOp0
29 October 2010 B Non-Confidential First release for r1p0
11 February 2011 C Non-Confidential First release for ripl

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM® in the EU and other countries,
except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the
trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith. However, all warranties implied or
expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for any loss or
damage arising from the use of any information in this document, or any error or omission in such information, or any
incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.
Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Product Status
The information in this document is final, that is for a developed product.
Web Address

http://waw.arm.com

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. ii
Non-Confidential

Contents

Cortex-R5 and Cortex-R5F Technical Reference

Manual
Preface
ADOUL thiS DOOK ...t e e e e e viii
FEEADACKoeeeiieii e Xii
Chapter 1 Introduction
1.1 ADOUL the PrOCESSOT ...t e e e e e e e eaaee s 1-2
1.2 (070] 0] o1 1F=T o [o1 =TSSP 1-3
1.3 FRATUIES ... e et e e e e e e e 1-4
1.4 191 (=T 5 7= Lo oY= RPN 1-5
1.5 Configurable OPLIONSeiiiiii e 1-6
1.6 BLIC=ES A (== 10U =Y 1-12
1.7 Product documentation, design flow, and architecturecccccoeiviiiiineenns 1-13
1.8 Changes from Previous VEISIONccccuieiiiiiiiiiiieeeeieee e e e st e e e e e e e e einreeee e 1-15
Chapter 2 Functional Description
2.1 ADbOUL the FUNCLIONSt e e e e e 2-2
2.2 {101 (=T 7= Te Y= U 2-10
2.3 ClockiNg @Nnd FESELSoiiiiiiiiiie e e e e e e e ee s 2-12
24 (@71 7= 1[0 o [T USSR 2-18
Chapter 3 Programmers Model
3.1 About the programmers MOAE|ceeiiiiiiiiiiii e 3-2
3.2 Modes of operation and eXeCULIONcc.eeeiiiiiiiiiie i 3-3
3.3 =T gL Y 4 To Yo 1= SRR URU 3-5
3.4 1070] 0 1=14 =1 Tor PSPPSR 3-6
3.5 Data SITUCLUIES ... e e e e e e e e e eaaaaans 3-8
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. iii

ID021511

Non-Confidential

Contents

3.6 REGISTIEIS ..ttt e et e e s e e e e 3-9
3.7 Program status registers ... 3-12
3.8 o CeT=T o) (o] o <P O PP POPPRPTRIN 3-17
3.9 Acceleration of execution enviroNMENtSccccviiiieiiiiiinn e 3-28
3.10 Unaligned and mixed-endian data access SUPPOItcoccvevirivieriiieeiniee e 3-29
3.1 Big-endian insStruction SUPPOIT ... 3-30
Chapter 4 System Control
41 About system CONtrol ... 4-2
4.2 REGISIEr SUMMANYeoiiiie et e e e e e 4-7
4.3 Register desCriptionscoiiiiie e 4-9
Chapter 5 Prefetch Unit
5.1 About the prefetch Unit ..o 5-2
5.2 Branch prediClion ... 5-3
53 RETUIN STACK ...eiiiiiiie e e et e e e e et e e e e e s enrbeeeeeeenees 5-5
54 Controlling instruction prefetch and program flow predictioncccciviiieenneen. 5-6
Chapter 6 Events and Performance Monitor
6.1 About the events
6.2 ADOUL the PMU ...ttt
6.3 Performance monitoring regiSterscccoiuieeiiie i 6-7
6.4 Event bus iNterfaceooooiiiie e 6-20
Chapter 7 Memory Protection Unit
71 ADOUL the MPU ..ot 7-2
7.2 LY gL Y 4 o 1= RPN 7-7
7.3 Region attribULESccouiiiiiii s 7-8
7.4 MPU interaction with memory SysStemcccccoiiiiiiiii e 7-9
7.5 IMPU FAUIES ..o ettt e an e b 7-10
7.6 MPU software-accessible registersococovviiiiiriiiiiie e 7-11
Chapter 8 Level One Memory System
8.1 About the L1 memory SYSIEM ... 8-2
8.2 About the error detection and correction schemesccccccooiiiiiiiie 8-4
8.3 = 10] L =T T | 11 o PP PR 8-7
8.4 ADOUL thE TCOMS ..ottt et e e e neeas 8-13
8.5 ADBOUL the CACRESoeiiiie e 8-18
8.6 Internal exclusive MONITOToo i 8-34
8.7 Memory types and L1 memory system behaviorccccocciiiiiiiie 8-35
8.8 Error detection @VENtS ... 8-36
Chapter 9 Level Two Interface
9.1 ADOUL the L2 INtEITACEoveeeieiie e 9-2
9.2 AXI MASLEr INEITACEeiiiiiiiieiee e e 9-4
9.3 AXI master interface transfers ... 9-7
9.4 AXI SIAVE INTEITACE ..eiiiiiiiiiee e e e e e 9-18
9.5 Enabling or disabling AXI slave aCCeSSEScccoiiiiiiiiieiiiiiiie e 9-21
9.6 Accessing RAMs using the AXI slave interfaceccccoociiiiiciiic i 9-21
9.7 Peripheral INtErfaCesc.uviiiiieie e 9-31
9.8 Accelerator Coherency Port interfaceccccceiiiciiiiii e 9-48
Chapter 10 Power Control
10.1 ADOUL POWET CONION ...ttt e e e e s e e e e e e snre e e e e e enees 10-2
10.2 POWEr MaNAGEMENTuiiiiii it e e et e e e e stae e e e e e snneeaeeaaes 10-3
Chapter 11 FPU Programmers Model
111 About the FPU programmers Modelcccueiieiiiiiiiiec e 11-2
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. iv

ID021511

Non-Confidential

Chapter 12

Chapter 13

Appendix A

Appendix B

Contents

11.2 GeNeral-purpoSe rEGISTEISouiiiiiiie e enes 11-4
11.3 SYSIEM FEGISIEIS ... et 11-5
114 MOdES Of OPEIALIONccooiiiiiiiie et e e e e s 11-12
11.5 Compliance with the IEEE 754 standardcccoooeiiiiiiiiiiecicc e 11-13
Debug

121 DEDbUQG SYSLEMS ...t e s 12-2
12.2 About the debug UNIt ..o e 12-3
12.3 Debug register interface ..o 12-5
124 Debug register desCriptionsoooiiiiiiiie e 12-10
12.5 Management registerso 12-33
12.6 DEDUG BVENLS ...ttt e e e e e e e e e e e 12-40
12.7 DEbUQG EXCEPLIONeiiiiiiiieie e 12-42
12.8 DEbUQG STAtE ... 12-45
12.9 Cache debUGooo i 12-50
12.10 External debug interfaceccooiiiioiiiee e 12-51
12.11 Using the debug functionalityc.cccooeiriiiiie e 12-54
12.12 Debugging systems with energy management capabilitiescc.ccccccecvvenenn. 12-70

Integration Test Registers

13.1 About Integration Test REQIStersc.oviiiiiiiiiiiiiecee e 13-2
13.2 Summary of the processor registers used for integration testingcccccceeveee. 13-3
13.3 Processor integration teStiNgooociiiiiiiiii 13-4

Signal Descriptions

A1 About the processor signal descriptionscccovieiiiiiiii e A-2
A2 GIODAI SIGNAIS ... e A-3
A3 Configuration SIGNAIScoeiiiie e e A-4
A4 Interrupt signals, including VIC interface signalsc.ccccevivieiiiiiieciie e A-8
A5 L2 interface SIgNAISccccuuiiiiieiiii e e A-9
A.6 TCM interface SigNalSccoocueiiiiiiiii e e A-22
AT Redundant CPU SIGNaAlSc.eoiiiiiiiiiiiie e A-25
A8 Debug interface SigNalsoooueeiiiiiii e A-26
A9 ETM interface Signalscccooooieoiiie e A-28
A.10 TESESIGNAIS e A-29
A.11 MBIST SIGNAIS ... e e e e e e e s e eatae e e e e s ennreeaeeanns A-30
AA12 Validation SIGNAISoooiiiiiii e A-31
A13 FPU SIGNAIS ...t A-32
A.14] o] [17] oo PSPPSR A-33
A15 POWET MOAES ...t A-34

Cycle Timings and Interlock Behavior

B.1 About cycle timings and interlock behavior ... B-3
B.2 Register interlock eXamples ... B-6
B.3 Data processing INSrUCLIONSuiiiiiiiiiiiiiieee e e e B-7
B.4 QADD, QDADD, QSUB, and QDSUB inStructionsccceeeeeiieiiiiiiieiiieeeeeeeees B-9
B.5 Media data-ProCeSSINGcccveiiiiiieiiiee et B-10
B.6 Sum of Absolute Differences (SAD)coicciiiiiiiiiiii e B-11
B.7 MUIEIPHES ..ttt ettt e ettt e e e e e ettt e e e e e nbeeeaaeaannneeaaaaanns B-12
B.8 D 1Yo 1O B-14
B.9 =] =T Lo 1= S OTR B-15
B.10 Processor state updating inStruCtionsccccoeeiiiiiie e B-16
B.11 Single load and store iNSrUCIONSooiiiiiiiie e B-17
B.12 Load and Store Double inStruCtionsooiiiiiiiiii i B-19
B.13 Load and Store Multiple inStructions ... B-20
B.14 RFE and SRS INSrUCHONScueieiiiieiiiii et B-23
B.15 Synchronization iNSrUCIONSc.uviiiiiii e B-24
B.16 Coprocessor iNSIIUCIONScociiiiiiiie e e e e B-25
B.17 SVC, BKPT, Undefined, and Prefetch Aborted instructionsccccccovvvvvivnnnnnnn. B-26
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. v
ID021511 Non-Confidential

Contents

B.18 Miscellaneous INSTIUCLIONSo.eiiiiiii e B-27
B.19 Floating-point register transfer instructionsccoccoiiii i, B-28
B.20 Floating-point load/store inStruCtionscoociiiiie i B-29
B.21 Floating-point single-precision data processing instructionscccccevieiinne. B-31
B.22 Floating-point double-precision data processing instructionscccocceeiieenee B-32
B.23 DUBI ISSUE ...ttt e e ettt e e e et e e e e e e e e e e e e e snneeeaaaens B-33
Appendix C ECC Schemes
CA ECC scheme selection guidelinesccoocueeiiiiiiiiiiic e C-2
Appendix D Memory Ordering
D.1 /110 Lo YA o] e (=Y [o [PPSR D-2
D.2 Virtual AXI peripheral interfacecccoeeiiiiiiiii e D-3
Appendix E Revisions
Glossary
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. Vi

ID021511

Non-Confidential

Preface

This preface introduces the Cortex-R5 and Cortex-R5F Technical Reference Manual. It contains
the following sections:

. About this book on page viii
. Feedback on page xii.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. vii
ID021511 Non-Confidential

Preface

About this book

This book is for the Cortex-R5 and Cortex-R5F processors.

Note

. The Cortex-R5F processor is a Cortex-R5 processor that includes the optional Floating
Point Unit (FPU) extension.

. In this book, references to the Cortex-R5 processor also apply to the Cortex-R5F
processor, unless the context makes it clear that this is not the case.

Product revision status

The rnpn identifier indicates the revision status of the product described in this book, where:
rn Identifies the major revision of the product.
pn Identifies the minor revision or modification status of the product.

Intended audience

This book is written for system designers, system integrators, and programmers who are
designing or programming a System-on-Chip (SoC) that uses the Cortex-R5 processor.

Using this book
This book is organized into the following chapters:

Chapter 1 Introduction
Read this for an introduction to the processor and descriptions of the major
functional blocks.

Chapter 2 Functional Description
Read this for a description of the functionality of the product.

Chapter 3 Programmers Model
Read this for a description of the processor registers and programming
information.

Chapter 4 System Control
Read this for a description of the system control coprocessor registers and
programming information.

Chapter 5 Prefetch Unit
Read this for a description of the functions of the Prefetch Unit (PFU), including
dynamic branch prediction and the return stack.

Chapter 6 Events and Performance Monitor
Read this for a description of the Performance Monitoring Unit (PMU) and the
event bus.

Chapter 7 Memory Protection Unit

Read this for a description of the Memory Protection Unit (MPU) and the access
permissions process.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. viii
ID021511 Non-Confidential

Conventions

Preface

Chapter 8 Level One Memory System

Read this for a description of the Level One (L1) memory system.

Chapter 9 Level Two Interface
Read this for a description of the features of the Level Two (L2) interface not
covered in the AMBA AXI Protocol Specification.

Chapter 10 Power Control

Read this for a description of the power control facilities.

Chapter 11 FPU Programmers Model
Read this for a description of the Floating Point Unit (FPU) support in the
Cortex-R5F processor.

Chapter 12 Debug
Read this for a description of the debug support.

Chapter 13 Integration Test Registers
Read this for a description of the Integration Test Registers, and of integration
testing of the processor with an ETM-RS trace macrocell.

Appendix A Signal Descriptions

Read this for a description of the inputs and outputs of the processor.

Appendix B Cycle Timings and Interlock Behavior
Read this for a description of the instruction cycle timing and instruction
interlocks.
Appendix C ECC Schemes
Read this for a description of how to select the Error Checking and Correction
(ECC) scheme depending on the Tightly-Coupled Memory (TCM) configuration.
Appendix D Memory Ordering
Read this for a description of the processor memory ordering and the virtual AXI
peripheral interface.
Appendix E Revisions
Read this for a description of the technical changes between released issues of this

book.

Glossary Read this for definitions of terms used in this book.

Conventions that this book can use are described in:
. Typographical

. Timing diagrams on page x

. Signals on page X.

Typographical

The typographical conventions are:

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. ix
Non-Confidential

bold

monospace

monospace

monospace italic

monospace bold

<and >

Timing diagrams

Preface

Highlights interface elements, such as menu names. Denotes signal
names. Also used for terms in descriptive lists, where appropriate.

Denotes text that you can enter at the keyboard, such as commands, file
and program names, and source code.

Denotes a permitted abbreviation for a command or option. You can enter
the underlined text instead of the full command or option name.

Denotes arguments to monospace text where the argument is to be
replaced by a specific value.

Denotes language keywords when used outside example code.

Enclose replaceable terms for assembler syntax where they appear in code
or code fragments. For example:

MRC pl15, @ <Rd>, <CRn>, <CRm>, <Opcode_2>

The figure named Key to timing diagram conventions explains the components used in timing
diagrams. Variations, when they occur, have clear labels. You must not assume any timing
information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the
shaded area at that time. The actual level is unimportant and does not affect normal operation.

Signals

Clock
HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus

T

Key to timing diagram conventions

The signal conventions are:

Signal level

Lower-case n

Lower-case m

The level of an asserted signal depends on whether the signal is
active-HIGH or active-LOW. Asserted means:

. HIGH for active-HIGH signals
. LOW for active-LOW signals.

At the start or end of a signal name denotes an active-LOW signal.

At the end of a signal name denotes a value that is 0 or 1, to indicate the
CPU to which the signal applies.

In a single processor system, m is always 0.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.

X

Non-Confidential

Additional reading

Preface

This section lists publications by ARM and by third parties.

See Infocenter, http://infocenter.arm.com, for access to ARM documentation.

See on ARM, http://onarm.com, for embedded software development resources.

ARM publications

This book contains information that is specific to this product. See the following documents for
other relevant information:

AMBA® AXI Protocol Specification (ARM THI 0022)

AMBA 3 APB Protocol Specification (ARM THI 0024)

AMBA 3 AHB-Lite Protocol Specification (ARM IHI 0033)

ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition (ARM DDI 0406)

ARM PrimeCell® Vectored Interrupt Controller (PL192) Technical Reference Manual
(ARM DDI 0273)

Cortex-R5 and Cortex-R5F Integration Manual (ARM DIT 0016)

Cortex-R5 and Cortex-R5F Configuration and Sign-off Guide (ARM DII 0255)
CoreSight™ DAP-Lite Technical Reference Manual (ARM DDI 0316)
CoreSight ETM-R5 Technical Reference Manual (ARM DII 0469)

RealView™ Compilation Tools Developer Guide (ARM DUI 0203)

Application Note 98, VFP Support Code (ARM DAI 0098)

ARM Synchronization Primitives (ARM DHT 0008).

Other publications

This section lists relevant documents published by third parties:

ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic

JEP106M, Standard Manufacturer s Identification Code, JEDEC Solid State Technology
Association.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. Xi
Non-Confidential

Preface

Feedback

ARM welcomes feedback on this product and its documentation.

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

. The product name.
. The product revision or version.
. An explanation with as much information as you can provide. Include symptoms and

diagnostic procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

. the title

. the number, ARM DDI 0460C

. the page numbers to which your comments apply
. a concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. xii
ID021511 Non-Confidential

Chapter 1
Introduction

This chapter introduces the processor and its features. It contains the following sections:

. About the processor on page 1-2
. Compliance on page 1-3

. Features on page 1-4

. Interfaces on page 1-5

. Configurable options on page 1-6
. Test features on page 1-12

. Product documentation, design flow, and architecture on page 1-13
. Changes from previous version on page 1-15.
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved.

ID021511 Non-Confidential

Introduction

1.1 About the processor

The Cortex-R5 processor is a mid-range CPU for use in deeply-embedded, real-time systems.
It implements the ARMv7-R architecture, and includes Thumb-2 technology for optimum code
density and processing throughput. The pipeline has a single Arithmetic Logic Unit (ALU), but
implements limited dual-issuing of instructions for efficient utilization of other resources such
as the register file. A hardware Accelerator Coherency Port (ACP) is provided to reduce the
requirement for slow software cache maintenance operations when sharing memory with other
masters.

Interrupt latency is kept low by interrupting and restarting load-store multiple instructions, and
by use of a dedicated peripheral port that enables low-latency access to an interrupt controller.
The processor has Tightly-Coupled Memory (TCM) ports for low-latency and deterministic
accesses to local RAM, in addition to caches for higher performance to general memory.

Error Checking and Correction (ECC) is used on the Cortex-R5 processor ports and in Level 1
(L1) memories to provide improved reliability and address safety-critical applications.

Many of the features, including the caches, TCM ports, and ECC are configurable so that a given
processor implementation can be tailored to the application for efficient area usage.

Figure 1-1 shows the processor in a typical system.

JTAG
—» DMA
i 4
Ps o[as]
- ACP-S || AXI-SO | AXI-S1
CoreSight Interrupts | Interrupt
debug sub-|« » Cortex-R5 processor group |« controller
system ACP-M | AXI-Mo | AXI-M1 [PPx0] PPX1 -
A
y A
Private peripherals
T T 11
RoM | | RAM Shared peripherals
Figure 1-1 Example Cortex-R5 system
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 1-2

ID021511

Non-Confidential

Introduction

1.2 Compliance

The processor implements the ARMv7-R architecture and ARMv7 debug architecture. In
addition, the Cortex-RSF processor implements the VFPv3-D16 architecture. This includes the
VFPv3 instruction set.

The Cortex-R5 processor complies with, or implements, the specifications described in:
. ARM architecture

. Trace macrocell
. Advanced Microcontroller Bus Architecture.
. Debug architecture.

This TRM complements architecture reference manuals, architecture specifications, protocol
specifications, and relevant external standards. It does not duplicate information from these
sources.

1.21 ARM architecture

The Cortex-R5 processor implements the ARMv7-R architecture profile that includes the
following architecture extensions:

. Advanced Single Instruction Multiple Data (SIMD) architecture extension for integer and
floating-point vector operations

. Vector Floating-Point version 3 (VFPv3) architecture extension for floating-point
computation that is fully compliant with the IEEE 754 standard

. Multiprocessing Extensions for multiprocessing functionality.

See the ARM Architecture Reference Manual.

1.2.2 Trace macrocell
The Cortex-R5 processor implements the ETM v3.3 architecture profile. See the CoreSight
ETM-R5 Technical Reference Manual.

1.2.3 Advanced Microcontroller Bus Architecture
This Cortex-R5 processor complies with the AMBA 3 protocol. See AMBA AXI Protocol
Specification and AMBA 3 APB Protocol Specification.

1.2.4 Debug architecture

The Cortex-A9 processor implements the ARMv7 Debug architecture that includes support for
Security Extensions and CoreSight. See the CoreSight Architecture Specification.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 1-3
ID021511 Non-Confidential

1.3 Features

Introduction

The features of the processor include:

an integer unit implementing the ARMv7-R instruction set

optional and separately licensable Floating Point Unit (FPU) implementing the VFPv3
instruction set, fully or as single-precision only

dynamic branch prediction with a global history buffer, and a 4-entry return stack

an L1 memory system with:

— optional TCM interfaces with optional support for ECC

— optional Harvard caches with optional support for parity or ECC
— optional ARMv7-R architecture Memory Protection Unit (MPU).

the ability to implement and use redundant CPU logic for fault detection

an L2 memory interface:
— 64-bit master AXI3 interface for accessing memory and shared peripherals

— optional 64-bit slave AXI3 interface to TCM memories and cache RAM blocks for
DMA of instructions or data and online RAM test

— 32-bit master AXI3 peripheral interface for accessing local peripherals
— optional 32-bit master AHB peripheral interface for accessing legacy peripherals

— optional ACP for hardware coherency between peripheral data transfers and data
cache.

a debug interface to a CoreSight Debug Access Port (DAP)
a trace interface to a CoreSight ETM-RS

a Performance Monitoring Unit (PMU)

low interrupt latency with restartable instructions
non-maskable interrupt

a Vectored Interrupt Controller (VIC) port

option to implement two CPUs within a group, sharing one ACP.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 1-4
Non-Confidential

1.4 Interfaces

Introduction

The processor has the following interfaces:

64-bit AXI-master interfaces, one per CPU, for instruction fetch and data access

32-bit AXI and AHB master interfaces, per CPU, for data accesses, particularly to
peripherals

64-bit AXI-slave interfaces, one per CPU, for external access to TCMs and cache RAMs
TCM interfaces, per CPU, for access to local memory containing instructions and data

ACP pass through interface, comprising AXI master and slave, up to 64 bits wide,
providing limited hardware coherency functions

VIC interfaces, one per CPU, for the connection of a PL192 VIC

configuration signals for customizing the behavior of the processor, particularly from
reset

interrupt and event outputs providing information about the behavior of the processor to
the wider system

32-bit APB slave interfaces and various debug handshake signals, one per CPU, for
connection to CoreSight components providing debug features

ETM interfaces, one per CPU, for connection to a CoreSight ETM-RS providing
instruction and data trace

Memory Built-In Self Test (MBIST) interfaces and scan signals, one per CPU, enabling
test during manufacture of local RAMs and logic.

All the processor AMBA interfaces conform to one of the following AMBA 3 specifications:

AMBA AXI Protocol Specification
AMBA AHB-Lite Protocol Specification
AMBA APB Protocol Specification.

The debug interfaces are CoreSight compliant, see the CoreSight Architecture Specification.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 1-5
Non-Confidential

1.5 Configurable options

Introduction

Table 1-1 shows the features of the processor that can be configured using either
build-configuration or pin-configuration. See Product documentation, design flow, and
architecture on page 1-13 for information about configuration of the processor. Many of these
features, if included, can also be enabled and disabled during software configuration. In a
twin-CPU configuration, some of the options can be configured separately for each CPU while
for other options both CPUs take the same value. Options that permit independent configuration
are highlighted with footnotes in Table 1-1 and Table 1-2 on page 1-9.

Table 1-1 Configurable options

Build-configuration

Feature Options Sub-options . h .
or pin-configuration
Number of CPUs? Single-CPU (no - Build
redundancy)
Redundant CPU - Build
Twin-CPU (no redundancy) - Build
Split/Lock Safety-mode (redundancy) Build and pin
Performance-mode (twin CPU)
Instruction cache No I-Cacheb - Build
I-Cache included® No error checking Build
Parity error checking
64-bit ECC error checking
4KB (4x1KB ways)P Build
8KB (4x2KB ways)b
16KB (4x4KB ways)b
32KB (4x8KB ways)b
64KB (4x16KB ways)b
Data cache No D-Cacheb - Build
D-Cache included® No error checkingb Build
Parity error checking
32-bit ECC error checking
4KB (4x1KB ways)b Build
8KB (4x2KB ways)b
16KB (4x4KB ways)b
32KB (4x8KB ways)b
64KB (4x16KB ways)P
ATCM No ATCM ports - Build and pin
One ATCM port No error checking Build
32-bit ECC error checking
64-bit ECC error checking
4KB, 8KB, 16KB, 32KB, 64KB, Pin
128KB, 256KB, 512KB, IMB, 2MB,
4MB, or SMBb
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 1-6

ID021511

Non-Confidential

Introduction

Table 1-1 Configurable options (continued)

Build-configuration

Feature Options Sub-options . h .
or pin-configuration
BTCM No BTCM ports - Build and pin
One BTCM port (BOTCM)® No error checking Build and pin¢
32-bit ECC error checking
64-bit ECC error checking
4KB, 8KB, 16KB, 32KB, 64KB, Pin
128KB, 256KB, 512KB, 1MB, 2MB,
4MB, or SMBP
Two BTCM ports (BOTCM No error checking Build and pin®
and BITCM)b 32-bit ECC error checking
64-bit ECC error checking
2x2KB, 2x4KB, 2x8KB, 2x16KB, Pin
2x32KB, 2x64KB, 2x128KB,
2x256KB, 2x512KB, 2x1MB, 2x2MB,
or 2x4MBP
Interleaved on 64-bit granularity in Pin
memory®
Adjacent in memory®
Instruction endianness Little-endian - Build
Pin-configured Little-endian Pin
Big-endian
Floating point (VFP) No FPUb - Build
FPU includedbd Full implementation
Single-precision only
MPU No MPUb - Build
MPU included® 12 MPU regions® Build
16 MPU regionsb
TCM bus parity No TCM address and control - Build
bus parity
TCM address and control -
bus parity generated
AXI bus ECC/parity on No AXI bus ECC/parity - Build
AXI-master, AXI-slave (if)
included) and ACP (if AXI'bus ECC/parity -
included) generated/ checked
Bus ECC/parity on AXI No peripheral port bus - Build
peripheral port and AHB ECC/parity
peripheral port (if included)
Peripheral port bus -
ECC/parity
generated/checked
Breakpoints 2-8 breakpoint register pairs - Build

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.
Non-Confidential

Introduction

Table 1-1 Configurable options (continued)

Build-configuration

Feature Options Sub-options . h .
or pin-configuration
Watchpoints 1-8 watchpoint registers - Build
ATCM at reset Disabled® - Pin
Enabledb ¢ Base address 0x@b Build and pin
Base address configured®
BTCM at reset Disabled® - Pin
Enabledbe Base address configured® Build and pin
Base address 0x0bf
Peripheral ID RevAnd field Any 4-bit value - Build
AXI slave interface No AXI-slaveb - Build
AXI-slave included® -
TCM Hard Error Cache No TCM Hard Error Cache - Build
TCM Hard Error Cache -
included &
Non-Maskable FIQ Interrupt ~ Disabled (FIQ can be - Pin
masked by software)
Enabled -
Parity typeh 0Odd parity - Pin
Even parity -
AXI coherency port (ACP) No ACP - Build
ACP included -
AHB peripheral port AXI peripheral port only - Build
AXI and AHB peripheral AHB peripheral port region size: 4KB, Build and pin
ports 8KB, 16KB, 32KB, 64KB, 128KB,
256KB, 512KB, IMB, 2MB, 4MB, or
8MB. 16MB, 32MB, 64MB, 128MB,
256MB, 512MB, 1GB, 2GB, 4GBP
AHB peripheral port base address: any
size-aligned addressb
AXI peripheral interface 4KB, 8KB, 16KB, 32KB, - Pin
region size 64KB, 128KB, 256KB,
512KB, IMB, 2MB, 4MB,
or SMB. 16MB, 32MB,
64MB, 128MB, 256MB,
512MB, 1GB, 2GB, 4GB
AXlperipheral interface base Any size-aligned addressb - Pin

address

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.
Non-Confidential

Introduction

Table 1-1 Configurable options (continued)

Build-configuration

Feature Options Sub-options . h .
or pin-configuration

Virtual AXI peripheral 4KB, 8KB, 16KB, 32KB, - Pin

interface region size 64KB, 128KB, 256KB,

512KB, IMB, 2MB, 4MB,
or 8MB. 16MB, 32MB,
64MB, 128MB, 256MB,
512MB, 1GB, 2GB, 4GBP

Virtual AXI peripheral Any size-aligned addressb - Pin
interface base address
Cortex-R5 group ID Any 4-bit value - Pin
a. See CPU configurations on page 1-10 for more information.
b. This option, or some aspects of it, can be configured separately for each CPU on a twin-CPU build.
c. The error scheme is a build option only. The number of BTCM ports (none, one, two) is set by both build and pin configuration.
d. Only available with the Cortex-RSF processor.
e. Only if the relevant TCM port(s) are included.
f. The BTCM base address must be size aligned, to the total size of BOTCM + BITCM.
g. Only if at least one TCM port is included and uses ECC error checking.
h. Only relevant if one of the caches includes parity checking, or AXI bus ECC or TCM bus parity is included.
Table 1-2 describes the various features that can be pin-configured to be either enabled or
disabled at reset. It also shows which CP15 register field provides software configuration of the
feature when the processor is out of reset. All of these fields exist in either the SCTLR, or one
of the auxiliary control registers.
Table 1-2 Configurable options at reset
Feature Options Register field
Exception endianness Little-endian/big-endian data for exception handling SCTLR.EE
Exception state ARM/Thumb state for exception handling SCTLR.TE
Exception vector table Base address for exception vectors: 0x00000000/0xFFFF00002 SCTLR.V
TCM error checking ATCM ECC check enableab ACTLR.ATCMPCEN
BTCM ECC check enabled, for BOTCM and BITCM togetherab ACTLR.BOTCMPCEN/
ACTLR.BITCMPCEN
TCM external errors ATCM external error enable? ACTLR.ATCMECEN
BTCM external error enable, for BOTCM and B1TCM independently ACTLR.BOTCMECEN/
ACTLR.BITCMECEN
TCM load/store-64 ATCM load/store-64 enableac ACTLR2. ATCMRMW
(read-modify-write) behavior
BTCM load/store-64 enableac ACTLR2.BTCMRMW
AXI peripheral interface Region enable? PPX.En
AHB peripheral interfaced Region enable? PPH.En

a. This can be configured separately for each CPU on a twin-CPU build.

b. Can only be enabled if the appropriate TCM is configured with the appropriate error checking scheme, and the appropriate number of
ports

c. Can only be enabled if the appropriate TCM is not configured with 32-bit ECC.

d. Can only be enabled if the AHB peripheral port is included.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 1-9
ID021511 Non-Confidential

Introduction

1.5.1 CPU configurations

A Cortex-RS5 processor group can consist of either one or two CPUs. The number of CPUs
included and the behavior of these CPUs within the group depends on the configuration used.
This section describes the CPU arrangements supported and the functionality of each
arrangement.

Single CPU

This configuration includes a single CPU.

Twin CPU

This configuration includes two individual and decoupled CPUs, and a single, optional ACP. It
offers higher performance than a standard single CPU configuration. Each CPU has its own
cache RAMs, debug logic and bus interfaces to the rest of the SoC. There is only one ACP port
in the group. Accesses on this port are kept coherent with both CPUs in the group. For more
information about ACP coherency, see Accelerator Coherency Port interface on page 9-48. The
CPUs do not interact within the processor group boundary but might interact elsewhere in the
SoC. Contact your system integrator for more information about programming a device that
includes a twin-CPU configuration.

You can configure some aspects of the two CPUs separately, for example cache size. See
Table 1-1 on page 1-6 for more information about which configuration options can be
configured independently.

There is no internal hardware to maintain coherency between the two CPUs in a twin CPU
Cortex-R5 group. Loss of coherency occurs if one CPU tries to access dirty data that is in the
cache of the other CPU. For example, if CPUO attempts to transfer a frame of data to CPU1,
using a write-back cacheable memory region, then the frame valid bit might miss in the CPUO
cache and be updated in level-2 memory, while some or all of the frame data can hit in the CPUOQ
cache and not be updated in level-2 memory. This represents a loss of coherency, because CPU1
can detect a valid frame but reads out-of-date frame data. For more information about
coherency, see Coherency on page 3-6.

Redundant CPU

In this configuration, there is a single functional CPU and an optional ACP. The configuration
also includes a second redundant copy of the majority of the CPU logic, and a redundant copy
of the ACP logic if an ACP is configured. The redundant logic is driven by the same inputs as
the functional logic. In particular, the redundant CPU logic shares the same cache RAMs as the
functional CPU. Therefore only one set of cache RAMs is required. The redundant logic
operates in lock-step with the CPU, but does not directly affect the processor behavior in any
way. The processor outputs to the rest of the system, and the CPU outputs to the cache RAMs,
are driven exclusively by the functional CPU.

Comparison logic can be included, during implementation, to compare the outputs of the
redundant logic and the functional logic. These comparators can detect a single fault that occurs
in either set of logic because of radiation or circuit failure. When used in conjunction with RAM
error detection schemes, the system can be protected from faults.

The input signals DCCMINP[7:0] and DCCMINP2[7:0] and the output signals
DCCMOUT|7:0] and DCCMOUT?2[7:0] enable the comparators to communicate with the rest
of the SoC.

ARM provides example comparison logic, but you can change this during implementation. If
you are implementing a Redundant CPU configuration, contact ARM for more information.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 1-10
Non-Confidential

Introduction

Split/Lock

Two CPUs are included in this configuration. If an ACP is configured, a functional ACP and a
redundant copy of the ACP logic is included. The processor group can operate in one of two
modes:

Split mode Operates as a twin-CPU configuration. Also known as performance mode.
Locked mode Operates as a redundant CPU configuration. Also known as safety mode.

Switching between these modes is only permitted while the processor group is held in power-on
reset. The input signals SLCLAMP and SLSPLIT are provided to enable the system to control
the mode of the processor group. For more information about how to effect a change in
processor mode, contact your system integrator.

If you are implementing a Split/Lock configuration, contact ARM for more information.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 1-11
Non-Confidential

Introduction

1.6 Test features

The processor is delivered as fully-synthesizable RTL and is a fully-static design. Scan-chains
and test wrappers for production test can be inserted into the design by the synthesis tools during
implementation. See the relevant reference methodology documentation for more information.

If the AXI-slave interface is included, production test of the processor cache and TCM RAMs
can be done through the dedicated, pipelined MBIST interface. This interface shares some of
the multiplexing present in the processor design.

In addition, you can use the AXI slave interface to read and write the cache RAMs and TCM.
You can use this feature to test the cache RAMs in a running system. This might be required in
a safety-critical system. The TCM can be read and written directly by the program running on
the processor. You can also use the AXI slave interface for swapping a test program in to the
TCMs for the processor to execute. See Accessing RAMs using the AXI slave interface on
page 9-21 for more information about how to access the RAMs using the AXI slave interface.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 1-12
ID021511 Non-Confidential

Introduction

1.7 Product documentation, design flow, and architecture

This section describes the Cortex-RS and Cortex-RS5F processor books and how they relate to
the design flow in:

. Documentation
. Design flow.
See Additional reading on page xi for more information about the books described in this

section. For information about the relevant architectural standards and protocols, see
Compliance on page 1-3.

1.71 Documentation
The Cortex-R5 processor documentation is as follows:

Technical Reference Manual

The Technical Reference Manual (TRM) describes the functionality and the
effects of functional options on the behavior of the Cortex-R5 processor. It is
required at all stages of the design flow. The choices made in the design flow can
mean that some behavior described in the TRM is not relevant. If you are
programming the Cortex-R5 processor then contact:

. the implementer to determine the build configuration of the implementation
. the integrator to determine the pin configuration of the device that you are
using.

Configuration and Sign-off Guide
The Configuration and Sign-off Guide (CSG) describes:

. the available build configuration options and related issues in selecting
them

. how to configure the Register Transfer Level (RTL) source files with the
build configuration options

. the processes to sign off the configured design.

The ARM product deliverables include reference scripts and information about
using them to implement your design. Reference methodology flows supplied by
ARM are example reference implementations. Contact your EDA vendor for
EDA tool support.

The CSG is a confidential book that is only available to licensees.

Integration Manual

The Integration Manual (IM) describes how to integrate the Cortex-R5 processor
into a SoC. It describes the pins that the integrator must tie off to configure the
macrocell for the required integration. Some of the integration is affected by the
configuration options used when implementing the Cortex-R5 processor.

The IM is a confidential book that is only available to licensees.

1.7.2 Design flow

The Cortex-R5 processor is delivered as synthesizable RTL. Before it can be used in a product,
it must go through the following process:
Implementation

The implementer configures and synthesizes the RTL to produce a hard
macrocell. This might include integrating RAMs into the design.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 1-13
ID021511 Non-Confidential

Introduction

Integration The integrator connects the implemented design into a SoC. This includes
connecting it to a memory system and peripherals.

Programming

This is the last process. The system programmer develops the software required
to configure and initialize the Cortex-R5 processor, and tests the required
application software.

Each process can be performed by a different party. Implementation and integration choices

affect the behavior and features of the Cortex-R5 processor. The implementer can implement a
macrocell that includes some of the SoC components in addition to the Cortex-RS processor. In
this situation, they must perform some of the integration before implementation. The integrator
of such a macrocell has fewer integration tasks to perform, and fewer option choices to make.

The operation of the final device depends on:

Build configuration

The implementer chooses the options that affect how the RTL source files are
pre-processed. These options usually include or exclude logic that affects one or
more of the area, maximum frequency, and features of the resulting macrocell.

For example, the BTCM interface can be configured to have zero, one (BOTCM)
or two (BOTCM and BITCM) ports. If one port is chosen, the logic for the second
port is excluded from the macrocell, although the pins remain, and the second port
(BITCM) cannot be used on that macrocell.

Configuration inputs

The integrator configures some features of the Cortex-R5 processor by tying
inputs to specific values. These configurations affect the start-up behavior before
any software configuration is made. They can also limit the options available to
the software.

For example, if the build configuration for the macrocell includes both BTCM
ports, the integrator can choose how many ports to actually use, and therefore
how many RAMs must be integrated with the macrocell. If the integrator only
wishes to use one BTCM port, they can connect RAM to the BOTCM port only,
and tie the ENTCM1IFm input to zero to indicate that the BITCM is not
available.

Software configuration

The programmer configures the Cortex-R5 processor by programming particular
values into registers. This affects the behavior of the Cortex-R5 processor.

For example, the enable bit in the BTCM Region Register controls whether or not
memory accesses are performed to the BTCM interface. However, the BTCM
cannot, and must not, be enabled if the build configuration does not include any
BTCM ports, or if the pin configuration indicates that no RAMs have been
integrated onto the BTCM ports.

Note

This manual refers to implementation-defined features that are applicable to build configuration
options. Reference to a feature that is included means that the appropriate build and pin
configuration options are selected. Reference to an enabled feature means one that has also been
configured by software.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 1-14
Non-Confidential

Introduction

1.8 Changes from previous version

This section describes the differences in functionality between product revisions:

rOp0
rOp0-rip0

rip0-ripl

First release.

Functional changes are:

. Adds option for single-precision only floating point support, in addition to
existing double-and-single-precision support.

— Configurable options. See Table 1-1 on page 1-6.

— FLOAT PRECISION bit in Build Options 1 register. See c¢/5, Build
Options 1 Register on page 4-79.

— VFP instructions undefined in single-precision. See VFP instructions
in a single-precision configuration on page 11-2.

— Change to MVFRO register to indicate double and single-precision
support. See Table 11-7 on page 11-10.

. Changes the behavior of the AXI slave port for instruction and data cache
accesses. See Cache RAM access on page 9-23.

. Adds the VIA&R MP extensions. See:
— ¢0, Multiprocessor Affinity Register on page 4-18
— ¢0, Cache Level ID Register on page 4-36

. SCTLR enables SWP and SWPB to be Undefined. See Table 4-24 on
page 4-39.

. Adds support for the ARM UDIV and SDIV instructions. See Instruction
Set Attributes Registers on page 4-27

. Adds ID values for r1p0. See Table 1-3 on page 1-15.

Functional changes are:
. Adds ID values for r1pl. See Table 1-3 on page 1-15.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 1-15
Non-Confidential

Chapter 2

Functional Description

This chapter describes the functionality of the Cortex-R5 processor. It contains the following
sections:

. About the functions on page 2-2
. Interfaces on page 2-10

. Clocking and resets on page 2-12
. Operation on page 2-18.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.
Non-Confidential

21

21

ATCM
B1TCM
BOTCM

Functional Description

About the functions

Figure 2-1 shows the structure of the processor. Figure 2-2 shows the structure of a CPU within
the processor

A A A
v Processor v
) 4
CPUO <> 1SCU l¢—> CPU1
A A A
v v v

Figure 2-1 Processor block diagram

ETM Debug
A A
CPU v v
ETM Debug
interface interface
Data *
> < P Processing [« >
Prefetch Unit Unit » LoaS/nSittore o
|-> D FPU >
Level one
memory system
L1 Memory L1
SCU
L 2 / instruction » Protection <« data cache |« E »
P N Tightly- cache control (4= Unit —» control
Coupled A A
< » Memory
y v
| (tem) '
| interface oou L1
7y instruction data
cache RAM cache RAM
Level two interface
L2 interface ~» |2 interface P | AXI
> AXI AXI > DI
» Port |« »
slave port » master port AHB
A A |
A 4 v

AXI slave bus AX| master bus

Figure 2-2 CPU block diagram

The PreFetch Unit (PFU) fetches instructions from the memory system, predicts branches, and
passes instructions to the Data Processing Unit (DPU). The DPU executes all instructions and
uses the Load/Store Unit (LSU) for data memory transfers. The PFU and LSU interface to the
L1 memory system that contains L1 instruction and data caches and the TCM interfaces. The
L1 caches in turn connect to the L2 memory system, and the LSU has a more direct connection
to the L2 memory system by means of the peripheral port. The L1 data cache interfaces to the
puSCU to perform cache maintenance as required for coherency with ACP transactions.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.
Non-Confidential

Functional Description

This section describes the main components of the processor:
. Data Processing Unit

. Load/Store Unit

. PreFetch Unit

. L1 memory system
. L2 AXI interfaces on page 2-5
. Dual-redundant core on page 2-6

. Split/lock on page 2-6

. Hard error features on page 2-6

. Debug on page 2-6

. System control coprocessor on page 2-7
. Interrupt handling on page 2-7

. Power management on page 2-8

211 Data Processing Unit

The DPU holds most of the program-visible state of the processor, such as general-purpose
registers, status registers and control registers. It decodes and executes instructions, operating
on data held in the registers in accordance with the ARM architecture. Instructions are fed to the
DPU from the PFU through a buffer. The DPU performs instructions that require data to be
transferred to or from the memory system by interfacing to the LSU. See Chapter 3
Programmers Model for more information.

Floating Point Unit

The Floating Point Unit (FPU) is an optional part of the DPU that includes the VFP register file
and status registers. It performs floating-point operations on the data held in the VFP register
file. See Chapter 11 FPU Programmers Model for more information.

21.2 Load/Store Unit

The LSU manages all load and store operations, interfacing with the DPU to the TCMs, caches,
peripheral ports, and L2 memory interfaces.

21.3 PreFetch Unit

The PFU obtains instructions from the instruction cache, the TCMs, or from external memory
and predicts the outcome of branches in the instruction stream. See Chapter 5 Prefetch Unit for
more information.

Branch prediction

The branch predictor is a global type that uses history registers and a 256-entry pattern history
table.

Return stack

The PFU includes a 4-entry return stack to accelerate returns from procedure calls.

214 L1 memory system

The processor L1 memory system includes the following features:
. separate instruction and data caches

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 2-3
ID021511 Non-Confidential

Functional Description

. flexible TCM interfaces
. 64-bit datapaths throughout the memory system

. MPU that supports configurable memory region sizes
. export of memory attributes for L2 memory system
. parity or ECC supported on local memories.

For more information of the blocks in the L1 memory system, see:
. Instruction and data caches

. Memory Protection Unit

. TCM interfaces

. Error correction and detection on page 2-5.

Instruction and data caches

You can configure the processor to include separate instruction and data caches. The caches
have the following features:

. Support for independent configuration of the instruction and data cache sizes between
4KB and 64KB.

. Pseudo-random cache replacement policy.

. 8-word cache line length. Cache lines can be either write-back or write-through,
determined by MPU region.

. Ability to disable each cache independently.

. Streaming of sequential data from LDM and LDRD operations, and sequential instruction
fetches.
. Critical word first filling of the cache on a cache miss.

. Implementation of all the cache RAM blocks and the associated tag and valid RAM
blocks using standard ASIC RAM compilers.

Memory Protection Unit

An optional MPU provides memory attributes for embedded control applications. You can
configure the MPU to have eight or twelve regions, each with a minimum resolution of 32 bytes.
MPU regions can overlap, and the highest numbered region has the highest priority.

The MPU checks for protection and memory attributes, and some of these can be passed to an
external L2 memory system.

For more information, see Chapter 7 Memory Protection Unit.

TCM interfaces

Because some applications do not cache well, there are two TCM interfaces that permit
connection to configurable memory blocks of Tightly-Coupled Memory (ATCM and BTCM).
These ensure high-speed access to code or data. As an option, the BTCM can have two memory
ports for increased bandwidth.

An ATCM typically holds interrupt or exception code that must be accessed at high speed,
without any potential delay resulting from a cache miss.

A BTCM typically holds a block of data for intensive processing, such as audio or video
processing.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 2-4
Non-Confidential

Functional Description

The TCMs are external to the processor. This provides flexibility in optimizing the TCM
subsystem for performance, power, and RAM type. The INITRAMAm and INITRAMBm
pins enable booting from the ATCM or BTCM, respectively. Both the ATCM and BTCM
support wait states.

For more information, see Chapter 8 Level One Memory System.

Error correction and detection

To increase the tolerance of the system to soft memory faults, you can configure the caches for
either:

. parity generation and error correction/detection
. ECC code generation, single-bit error correction, and two-bit error detection.

Similarly, you can configure the TCM interfaces for ECC code generation, single-bit error
correction, and two-bit error detection.

For more information, see Chapter 8 Level One Memory System.

21.5 L2 AXI interfaces

The L2 AXI interfaces enable the L1 memory system to have access to peripherals and to
external memory using an AXI master and AXI slave port and the peripheral ports. See
Chapter 9 Level Two Interface for more information.

AXI master interface

The AXI master interface provides a high bandwidth interface to second level caches, on-chip
RAM, peripherals, and interfaces to external memory. It consists of a single AXI port with a
64-bit read channel and a 64-bit write channel for instruction and data fetches.

The AXI master can run at the same frequency as the processor, or at a lower synchronous
frequency. If asynchronous clocking is required an external asynchronous AXI slice is required.

AXI slave interface

The AXI slave interface enables AXI masters, including the AXI master port of the processor,
to access data and instruction cache RAMs and TCMs on the AXI system bus. You can use this
for DMA into and out of the TCM RAMs and for software test of the TCM and cache RAMs.

The slave interface can run at the same frequency as the processor or at a lower, synchronous
frequency. If asynchronous clocking is required an external asynchronous AXI slice is required.

Bits in the Auxiliary Control Register and Slave Port Control Register can control access to the
AXI slave. Access to the TCM RAMs can be granted to any master, to only privileged masters,
or completely disabled. Access to the cache RAMs can be separately controlled in a similar way.

Peripheral interfaces

The peripheral interfaces provide low latency interfaces to on-chip RAM and peripherals for
non-cached data accesses only. They consist of a single 32-bit AXI port, accessed through two
interfaces, and a single 32-bit AHB port accessed through a single interface.

The peripheral interfaces can run at the same frequency as the processor, or at a lower
synchronous frequency. If asynchronous clocking is required, an external asynchronous AXI
slice and asynchronous AHB bridge is required.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 2-5
Non-Confidential

Functional Description

2.1.6 Dual-redundant core

2.1.7 Split/lock

The processor can be implemented with a second, redundant copy of most of the logic. This
second core shares the input pins and the cache RAMs of the master core, so only one set of
cache RAMs is required. The master core drives the output pins and the cache RAMs.

Comparison logic can be included during implementation that compares the outputs of the
redundant core with those of the master core. If a fault occurs in the logic of either core, because
of radiation or circuit failure, this is detected by the comparison logic. Used in conjunction with
the RAM error detection schemes, this can help protect the system from faults. The inputs
DCCMINP[7:0] and DCCMINP2[7:0] and the outputs DCCMOUT|7:0] and
DCCMOUT?2[7:0] enable the comparison logic inside the processor to communicate with the
rest of the system.

ARM provides example comparison logic, but you can change this during implementation. If
you are implementing a processor with dual-redundant cores, contact ARM for more
information. If you are integrating a Cortex-R5 macrocell with dual-redundant cores, contact the
implementer for more information.

The Cortex-R5 processor can be configured so that it can be switched, under reset, between a
twin-CPU performance mode and a dual-redundant safety mode. This feature imposes extra
constraints on the software usage model. Contact ARM for information on how it can be used.

2.1.8 Hard error features

219 Debug

The error correction features of the processor are targeted at soft errors. The processor contains
features that enable it to recover from a limited set of hard errors. Contact ARM for information
on hard error effects and these features.

Each CPU has a CoreSight compliant Advanced Peripheral Bus version 3 (APBv3) debug
interface. This permits system access to debug resources, for example, the setting of
watchpoints and breakpoints.

The processor provides extensive support for real-time debug and performance profiling.

The following sections give an overview of debug:
. System performance monitoring

. ETM interface

. Real-time debug facilities on page 2-7.

System performance monitoring

This is a group of counters that you can configure to monitor the operation of the processor and
memory system. For more information, see About the PMU on page 6-6.

ETM interface

The Embedded Trace Macrocell (ETM) interface enables you to connect an external ETM unit
to the processor for real-time code tracing of the core in an embedded system.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 2-6
Non-Confidential

Functional Description

The ETM interface collects various processor signals and drives these signals from the
processor. The interface is unidirectional and runs at the full speed of the processor. The ETM
interface connects directly to the external ETM unit without any additional glue logic. You can
disable the ETM interface for power saving. For more information, see the CoreSight ETM-R5
Technical Reference Manual.

Real-time debug facilities

Each CPU contains an EmbeddedICE logic unit to provide real-time debug facilities. It has:
. up to eight breakpoints

. up to eight watchpoints

. a Debug Communications Channel (DCC).

Note

The number of breakpoints and watchpoints is configured during implementation, see
Configurable options on page 1-6.

The EmbeddedICE logic monitors the internal address and data buses. You access the
EmbeddedICE logic through the memory-mapped APB interface.

The processor implements the ARMv7 Debug architecture, including the extensions of the
architecture to support CoreSight.

See Chapter 12 Debug for more information on debug.
The EmbeddedICE logic supports two modes of debug operation:

Halt mode On a debug event, such as a breakpoint or watchpoint, the debug logic stops the
processor and forces it into debug state. This enables you to examine the internal
state of the processor, and the external state of the system, independently from
other system activity. When the debugging process completes, the processor and
system state are restored, and normal program execution resumes.

Monitor debug mode

On a debug event, the processor generates a debug exception instead of entering
debug state, as in halt mode. The exception entry enables a debug monitor
program to debug the processor while enabling critical interrupt service routines
to operate on the processor. The debug monitor program can communicate with
the debug host over the DCC or any other communications interface in the
system.

2110 System control coprocessor

The system control coprocessor provides configuration and control of the memory system and
its associated functionality. Other system-level operations, such as cache maintenance
operations, are also managed through the system control coprocessor.

For more information, see System control and configuration on page 4-2.

2.1.11 Interrupt handling

Interrupt handling in the processor is compatible with previous ARM architectures, but has
several additional features to improve interrupt performance for real-time applications.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 2-7
ID021511 Non-Confidential

Functional Description

VIC port

The core has a dedicated port that enables an external interrupt controller, such as the ARM
PrimeCell Vectored Interrupt Controller (VIC), to supply a vector address along with an
Interrupt Request (IRQ) signal. This provides faster interrupt entry, but you can disable it for
compatibility with earlier interrupt controllers.

Note

If you do not have a VIC in your design, you must ensure the nIRQm and nFIQm signals are
asserted, held LOW, and remain LOW until the exception handler clears them.

Low interrupt latency

On receipt of an interrupt, the processor abandons any pending restartable memory operations.
Restartable memory operations are the multiword transfer instructions LDM, LDRD, STRD, STM, PUSH,
and POP that can access Normal memory.

To minimize the interrupt latency, ARM recommends that you do not perform:
. multiple accesses to areas of memory marked as Device or Strongly Ordered
. SWP operations to slow areas of memory.

Exception processing

The ARMv7-R architecture contains exception processing instructions to reduce interrupt
handler entry and exit time:

SRS Save return state to a specified stack frame.

RFE Return from exception using data from the stack.

CPS Change processor state, such as interrupt mask setting and clearing, and mode
changes.

2112 Power management
The processor includes several microarchitectural features to reduce energy consumption:

. Accurate branch and return prediction, reducing the number of incorrect instruction fetch
and decode operations.

. The caches use sequential access information to reduce the number of accesses to the tag
RAMs and to unmatched data RAMs.

. Extensive use of gated clocks and gates to disable inputs to unused functional blocks.
Because of this, only the logic actively in use to perform a calculation consumes any
dynamic power.

Each CPU supports four levels of power management:

Run mode This mode is the normal mode of operation where all of the functionality
of the CPU is available.

Standby mode This mode disables most of the clocks of the CPU, while keeping the
device powered up. This reduces the power drawn to the static leakage
current and the minimal clock power overhead required to enable the
device to wake up from the Standby mode.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 2-8
ID021511 Non-Confidential

Functional Description

Dormant mode The processor can be implemented in such a way as to support Dormant
mode. Dormant mode is a power saving mode in which the CPU logic, but
not the TCM and cache RAMs, is powered down. The CPU state, apart
from the cache and TCM state, is stored to memory before entry into
Dormant mode, and restored after exit.

Contact ARM for more information on preparing the Cortex-R5 processor
to support Dormant mode.

Shutdown mode This mode has the entire CPU powered down. All state, including cache
and TCM state, must be saved externally. After power-up, the assertion of
reset returns the CPU to the run state.

For more information on the power management features, see Chapter 10 Power Control.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 2-9
Non-Confidential

2.2

2.21

2.2.2

223

224

2.25

2.2.6

2.2.7

Functional Description

Interfaces

The processor has the following interfaces for external access:
. AXI master interface

. Peripheral interfaces

. AXI slave interface

. TCM interfaces

. ACP interface

. Interrupt and VIC interface

. Configuration interface

. Interrupt and event outputs on page 2-11
. APB Debug interface on page 2-11

. ETM interface on page 2-11

. Test interface on page 2-11.

AXI master interface

AXI master interface on page 9-4 describes the AXI master interface. AXI master port on
page A-9 and AXI master port error detection signals on page A-11 describe the associated
signals. The AMBA AXI Protocol Specification describes the AXI protocol.

Peripheral interfaces

Peripheral interfaces on page 9-31 describes the peripheral interfaces. AX7 peripheral port on
page A-18 to AHB peripheral port error detection signals on page A-21 describe the associated
signals. The AMBA AXI Protocol Specification and the AMBA 3 AHB-Lite Protocol
Specification describe the AXI and AHB-Lite protocols respectively.

AXl slave interface

AXI slave interface on page 9-18 describes the AXI slave interface. AX7 slave port on page A-12
and AXI slave port error detection signals on page A-14 describe the associated signals. The
AMBA AXI Protocol Specification describes the AXI protocol.

TCM interfaces
About the TCMs on page 8-13 describes the TCM interfaces. TCM interface signals on
page A-22 describes the associated signals.

ACP interface

Accelerator Coherency Port interface on page 9-48 describes the ACP interface. ACP slave port
on page A-15 to ACP master port error detection signals on page A-17 describe the associated
signals. The AMBA AXI Protocol Specification describes the AXI protocol.

Interrupt and VIC interface
Interrupts on page 3-19 describes the interrupts. Interrupt signals, including VIC interface
signals on page A-8 describes the associated signals.

Configuration interface

Configuration signals on page A-4 describes the configuration signals.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 2-10

ID021511

Non-Confidential

Functional Description

2.2.8 Interrupt and event outputs

Chapter 6 Events and Performance Monitor describes events and the interrupts they can
generate. Exceptions on page 11-14 describes the FPU exception outputs. Interrupt signals,
including VIC interface signals on page A-8, ETM interface signals on page A-28, Validation
signals on page A-31, and FPU signals on page A-32 describe the associated signals.

2.29 APB Debug interface

2.2.10 ETM interface

2.2.11 Test interface

AMBA APBV3 is used for debugging purposes. CoreSight is the ARM architecture for
multi-processor trace and debug. CoreSight defines what debug and trace components are
required and how they are connected. See the CoreSight Architecture Specification for more
information. Debug interface signals on page A-26 describes the debug APB interface signals.

Note

The APB debug interface can also connect to a DAP-Lite. For more information on the
DAP-Lite, see the CoreSight DAP-Lite Technical Reference Manual.

You can connect an ETM-RS to the processor through the ETM interface. The ETM-RS
provides instruction and data trace for the processor. The CoreSight ETM-R5 Technical
Reference Manual describes how the ETM-RS connects to the processor.

The ETM interface includes these signals:

. an instruction interface

. a data interface

. an event interface

. other connections to the ETM.

ETM interface signals on page A-28 describes the associated signals. Event bus interface on
page 6-20 describes the event bus.

The test interface provides support for test during manufacture of the processor using Memory
Built-In Self Test (MBIST). MBIST signals on page A-30 describes the test interface signals.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 2-11
Non-Confidential

Functional Description

23 Clocking and resets

Before you can run application software on the processor, it must be reset and initialized,
including loading the appropriate software-configuration. This section describes the signals for
clocking and resetting the processor. It contains the following sections:

. Resets
. Reset modes on page 2-13
. Clocking on page 2-16.

See Initialization on page 2-18 for information on software initialization.

231 Resets
Each Cortex-R5 CPU has the following inputs:
nRESETm Main CPU reset. Resets the non-debug CPU logic.

DBGRESETmn CPU debug reset. Resets core-domain debug logic. This includes
breakpoints, watchpoints and the DCC registers.

PRESETDBGmn CPU debug reset. Resets debug-domain debug logic and the APB interface
of the CPU.

Note

. For more information about the split between core-domain and debug-domain logic, see
the ARM Architecture Reference Manual.

. Cortex-R5 implements separate core and debug domains with the minimal architected set
of debug domain registers.

The Cortex-R5 processor group, containing one or two CPUs, has the following resets:

ACPRESETn ACP reset. Resets the ACP logic and both the ACP slave and master AXI
interfaces.

nSYSPORESET Power-on reset. Resets the entire processor group including all
implemented CPUs, debug logic and ACP. See Effects of resets on debug
registers on page 12-8.

The following input is related to the reset functionality:

nCPUHALTm This signal, when asserted, stops the CPU from fetching instructions out
of reset.

All these signals are active-LOW and are suitably synchronized within the processor. You must
take care when generating these reset signals, for example, to ensure that they are glitch-free.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 2-12
ID021511 Non-Confidential

2.3.2 Reset modes

Functional Description

The reset signals in the processor enable you to reset different parts of the design independently.
Table 2-1 shows the reset signals, and the combinations and possible applications that you can

use them in.
Table 2-1 Reset modes

Reset nRESETm DBG PRESET ACP nSYSPO nCPU Abplication

mode RESETmn DBGmn RESETn RESET HALTm ~PP

Power-on 0/x X X X 0 X Power-up reset, full-system reset.

reset Hard or cold reset.

CPUreset 0 1 1 X 1 X Watchdog reset, soft reset or warm
reset. Debug logic remains active to
permit debugging through reset.

CPU 0 0 1 X 1 X Reset of CPU, on wake-up from

power-up dormant or shutdown modes.

reset

Debug X 0 0 X 1 X Debugger and debug system reset.

reset

ACPreset x X X 0 1 X Coherent peripheral reset.

Normal 1 1 1 1 1 1 Normal run mode.

Halt 1 1 1 1 1 0 Halt mode with CPU not fetching

instructions, provided normal mode
has not been entered since last reset

All reset signals are synchronized within the processor. You do not have to synchronize either
edge of any of the reset signals. Unless otherwise stated, whenever nRESETm is asserted, it
must be held asserted for at least four CLKIN cycles to ensure correct reset operation.

Note

If you are implementing either a dual-redundant core or a Split/Lock configuration, contact
ARM for additional reset requirements.

This section of the manual describes:

. Power-on reset
. CPU reset on page 2-14
. Normal operation on page 2-15

. Halt operation on page 2-15.

Power-on reset

You must apply power-on or cold reset to the processor when power is first applied to the
system. A power-on reset must consist of one of the following:

. Assert nSYSPORESET and keep it asserted for at least four CLKIN cycles. See
Figure 2-3 on page 2-14.

ARM DDI 0460C

ID021511

Non-Confidential

Copyright © 2010-2011 ARM. All rights reserved.

2-13

Functional Description

CLKIN \ \ \ \ \
nSYSPORESET | [

Figure 2-3 Power-on Reset

. Assert nSSYSPORESET and nRESETm together, holding nRESETm asserted for at
least four CLKIN cycles. See Figure 2-4.

CLKIN \ \ \ \ \
nRESETm | [
—

nSYSPORESET

Figure 2-4 Power-on reset

The processor implements synchronizers for nSYSPORESET. You do not have to synchronize
either edge of nSYSPORESET.

After applying power-up reset to the processor, you must initialize various registers. See
Initialization on page 2-18 for more information.

CPU reset

A CPU or warm reset initializes the majority of the CPU logic, excluding the ACP and debug
logic. Typically, you use CPU reset to reset a system that has been operating for some time, for
example when a watchdog timer expires. The processor debug logic remains active, to permit
debugging of the reset handling software.

You can safely reset either or both of the CPUs independently of the ACP.

It you are implementing a twin-CPU configuration you must ensure that a given CPU is
quiescent before resetting it independently of the other CPU. A CPU is quiescent when all of
the following are true:

. either nWFEPIPESTOPPEDmM or nWFIPIPESTOPPEDm is LOW
. all transactions to the CPU from the system have completed
. the system cannot issue new stimulus to the CPU.

CPU power-up reset

You must apply a CPU power-up reset when the processor wakes up from either dormant or
shutdown mode. A CPU power-up reset must consist of the following:

. Assert nRESETm and DBGRESETnm together and keep them asserted for at least four
CLKIN cycles on wake-up from dormant or shutdown mode.

. Assert nRESETm only and keep it asserted for at least four CLKIN cycles on wake-up
from emulated dormant or emulated shutdown mode. The processor debug logic is kept
active to permit debugging of the wake-up software.

After applying power-up reset to a CPU, you must initialize various registers. See Initialization
on page 2-18 for more information.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 2-14
Non-Confidential

Functional Description

Debug Reset

A debug reset initializes all the debug and non-debug logic of the processor, excluding the ACP
logic. This reset causes a debugger to lose connection to the processor, and therefore ARM
recommends you should apply it only on request by the debugger, for example on detection of
a fatal error condition.

ACP reset

An ACP reset resets the internal ACP logic and the ACP master and slave AXI ports. You can
use ACP reset when the peripheral connected to the ACP port is reset. You must not assert ACP
reset independently of the CPU resets, unless the ACP is quiescent. The ACP is quiescent when
both of the following are true:

. ACPIDLE is asserted

. the system cannot issue new transactions to the ACP.

Normal operation

During normal operation, neither processor reset nor power-on reset is asserted. If the
EmbeddedICE-RT logic is not used, the value of PRESETDBGmn does not matter.

Halt operation

When nCPUHALTm is asserted, and nSYSPORESET and nRESETm are deasserted, the
CPU is out of reset, but the PFU is inhibited from fetching instructions. When the CPU is halted
in this way, you can, for example, use the AXI slave interface to store instructions in the TCMs
using DMA. You can then deassert nCPUHALTm and the PFU starts fetching the preloaded
instructions from TCMs. When the CPU has started to fetch, nCPUHALTm must not be
asserted again except when the CPU is reset.

Independent resets

When the Cortex-R5 processor is configured with an ACP, you can reset the CPU or CPUs
independently of the ACP. In a twin-CPU configuration it is possible to reset the CPUs
independently of each other. Each CPU and the ACP has its own AMBA ports, and in a typical
system some or all of these are ultimately connected to the same bus infrastructure. In such a
system, to preserve ongoing transactions from other masters, the bus infrastructure is not
normally reset when only one of the CPUs or the ACP is reset. To avoid loss of synchronization
between bus infrastructure that is not reset and logic that is reset, you must ensure that the logic
is quiescent before reset is applied to it. If reset is applied to the bus infrastructure at the same
time as the connected logic, the logic does not have to be quiescent.

A CPU is quiescent when:

. nWFEPIPESTOPPEDm or nWFIPIPESTOPPEDm is asserted
. all transactions to the CPU from the system have completed

. the system can send no new stimulus to the CPU.

The ACP is quiescent when:
. ACPIDLE is asserted
. the system can send no new transactions to the ACP.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 2-15
Non-Confidential

2.3.3 Clocking

Functional Description

The processor has a single clock input, CLKIN, that is used for the CPU or both CPUs in a
twin-CPU configuration. The same clock is used for the ACP ports and logic, and the
debug-APB interfaces.

The clock can be stopped indefinitely without loss of state.

The additional clock input, CLKIN2, is related to the dual-redundant core functionality, if
included. If you are integrating a Cortex-R5 processor with dual-redundant core, contact the
implementer of that macrocell for information about how to connect the clock inputs.

This section describes:
. AMBA interface clocking
. Clock gating.

AMBA interface clocking

The AXI master, AXI slave, ACP, debug-APB, and AXI and AHB peripheral ports must be
connected to the AMBA systems that are synchronous to the processor clock, CLKIN, even if
this might be at a lower frequency. This means that every rising edge on the AMBA system
clock must be synchronous to a rising edge on CLKIN.

The AXI master interface clock enable signal ACLKENMm, the AXI slave interface clock
enable signal ACLKENSm, ACP clock enable ACLKENC, debug-APB block enable
PCLKENDBGmMm, and AHB and AXI peripheral port clock enables ACLKENP and
HCLKENP respectively must be asserted on every CLKIN rising edge for which there is a
simultaneous rising edge on the AXI system clock.

Figure 2-5 shows an example in which the processor is clocked at 400MHz (CLKIN), while the
AXI system connected to the AXI master interface is clocked at 200MHz (ACLKM). The
ACLKENMmM clock indicates the relationship between the two clocks.

CLKIN ! | | | | |

ACLKM

ACLKENMm \\ N \\ N \\

Figure 2-5 AXI interface clocking

If the AMBA system connected to an interface is clocked at the same frequency as the processor,
then the corresponding clock enable signal must be tied HIGH.

Clock gating

In Standby Mode the CPU can gate its own clock to save power. See Chapter 10 Power Control
for more information about Standby Mode. You can use the nCLKSTOPPEDm output to gate
the clock to the TCMs when the CPU is gating its own clock in Standby mode. If you do, you
must design the logic so that the TCM clock starts running within three cycles of
nCLKSTOPPEDm going HIGH.

Figure 2-6 on page 2-17 shows an example of an ATCM access occurring immediately after
CPUO exits Standby Mode. nCLKSTOPPEDO indicates when the CPU internal clock, shown
as CPU_CLKQO, has been restarted. The clock to the ATCM, shown as ATCM_CLKO, has been
gated off in Standby Mode and is restarted by the third cycle in order to permit the ATCM to

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 2-16
Non-Confidential

respond to the access that CPUO presents by asserting ATCENO00. This example shows the

Functional Description

worst-case, that is, the earliest TCM access that the CPU can generate after exiting Standby

Mode.

CLKIN
nCLKSTOPPEDO \ / /

CPU_CLKO |\

L L

ATCENO00 "\

g\

ATCM_CLKO |\

e

Figure 2-6 Standby, wake-up

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.
Non-Confidential

2-17

24 Operation

2.41 Initialization

Functional Description

When you power-up the Cortex-R5 processor, you must first reset it, as described in Clocking
and resets on page 2-12. When it is out of reset, and no longer halted, it starts to fetch and
execute instructions from an address and according to the instruction set as described in Reset
on page 3-19. The processor initially fetches instructions from, and transfers data to and from
either the TCM interfaces or the level-2 memory interfaces.

The processor also responds to stimulus received on its interfaces, for example interrupts, or
transactions received on the AXI slave interface.

When the processor has started executing, but before you can run application software on the
processor, it must be initialized, including loading the appropriate software-configuration. This
section describes the steps that the software must take to initialize the processor after reset.

Most of the architectural registers in the processor, such as r0-r14, and s0-s31 and d0-d15 when
floating-point is included, are not reset. Because of this, you must initialize these for all modes
before they are used, using an immediate-MOV instruction, or a PC-relative load instruction.
The Current Program Status Register (CPSR) is given a known value on reset. This is described
in the ARM Architecture Reference Manual. The reset values for the CP15 registers are
described along with the registers in Chapter 4 System Control.

In addition, before you run the application, you might want to:

. program particular values into various registers, for example, stack pointers
. enable various processor features, for example, error correction
. program particular values into memory, for example, the TCMs.

Other initialization requirements are described in:
. MPU

. FPU

. Caches on page 2-19

. TCM on page 2-19.

MPU

If the processor has been built with an MPU, before you can use it you must:
. program and enable at least one of the regions
. enable the MPU in the SCTLR.

See c6, MPU memory region programming registers on page 4-53. Do not enable the MPU
unless at least one MPU region is programmed and active. If the MPU is enabled, before using
the TCM interfaces you must program MPU regions to cover the TCM regions to give access
permissions to them.

FPU

If the processor has been built with a Floating Point Unit (FPU) you must enable it before VFP
instructions can be executed:

. enable access to the FPU in the coprocessor access control register, see ¢/, Coprocessor
Access Control Register on page 4-47

. enable the FPU by setting the EN-bit in the FPEXC register, see Floating-Point Exception
Register, FPEXC on page 11-8.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 2-18
Non-Confidential

Functional Description

Note
Floating-point logic is only available with the Cortex-R5F processor.

Caches

If the processor has been built with instruction or data caches, these must be invalidated before
they are enabled, otherwise Unpredictable behavior can occur. See Cache operations on
page 4-59.

If you are using an error checking scheme in the cache, you must enable this by programming
the Auxiliary Control Register before invalidating the cache, to ensure that the correct error
code or parity bits are calculated when the cache is invalidated. See ¢/, Auxiliary Control
Register on page 4-41. An invalidate all operation never reports any ECC or parity errors.

If you are using the ACP, you must perform the data cache invalidation before initiating
coherent ACP transactions. Until then, you must not depend on the coherency maintenance
information signals.

TCM

The processor does not initialize the TCM RAMs. It is not essential to initialize all the memory
attached to the TCM interface but ARM recommends that you do. In addition, the main
application might require you to preload instructions or data into the TCM. This section
describes various ways that you can perform data preloading. You can also configure the
processor to use the TCMs from reset.

Preloading TCMs

You can write data to the TCMs using either store instructions or the AXI slave interface.
Depending on the method you choose, you might require:

. particular hardware on the SoC that you are using
. boot code
. a debugger connected to the processor.

Methods to preload TCMs include:

Memory copy with running boot code

The boot code includes a memory copy routine that reads data from a ROM, and
writes it into the appropriate TCM. You must enable the TCM to do this, and it
might be necessary to give the TCM one base address while the copy is occurring,
and a different base address when the application is being run.

Copy data from the debug communications channel

The boot code includes a routine to read data from the Debug Communications
Channel (DCC) and write it into the TCM. The debug host feeds the data for this
operation into the DCC by writing to the appropriate registers on the processor
APB debug port.

Execute code in debug halt state

The processor is put into debug halt state by the debug host, that then feeds
instructions into the processor through the Instruction Transfer Register
(DBGITR). The processor executes these instructions, that replace the boot code
in either of the previous two methods.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 2-19
Non-Confidential

Functional Description

DMA into TCM

The SoC includes a Direct Memory Access (DMA) device that reads data from a
ROM, and writes it to the TCMs through the AXI slave interface.

Write to TCM directly from debugger

A Debug Access Port (DAP) in the system is used to generate AMBA
transactions to write data into the TCMs through the AXI slave interface. This
DAP is controlled from the debug host through a JTAG chain.

Preloading TCMs with ECC

The error codes in the TCM RAM, if configured with an error scheme, are not initialized by the
processor. Before a RAM location is read with ECC checking enabled, the error codes must be
initialized. To calculate the error code correctly, the logic must have all the data in the data
chunk that those bits protect. Therefore, when the TCM is being initialized, the writes must be
of the same width and aligned to the data chunk that the error scheme protects.

You can initialize the TCM RAM with error checking turned on or off, according to the
following rules. See cl, Auxiliary Control Register on page 4-41. The error code written to the
TCM are valid for the data provided, even if the error checking is turned off.

If the slave port is used, write transactions must be used that write to the TCM memory as
follows:

. If the error scheme is 32-bit ECC, the write transaction must start at a 32-bit aligned
addresses and write a continuous block of memory, containing a multiple of 4 bytes. All
bytes in the block must be written, that is, have their byte lane strobe asserted.

. If the error scheme is 64-bit ECC, the write transaction must start at a 64-bit aligned
addresses and write a continuous block of memory, containing a multiple of 8 bytes. All
bytes in the block must be written, that is, have their byte lane strobe asserted.

If initialization is done by running code on the processor, this is best done by a loop of stores
that write to the whole of the TCM memory as follows:

. If the scheme is 32-bit ECC, use Store Word (STR), Store Two Words (STRD), or Store
Multiple Words (STM) instructions to 32-bit aligned addresses.

. If the scheme is 64-bit ECC, use STRD or STM that has an even number of registers in
the register list, with a 64-bit aligned starting address.

Note

You can use the alignment-checking features of the processor to ensure that memory accesses
are 32-bit aligned, but there is no checking for 64-bit alignment. If you are using STRD or STM,
an alignment fault is generated if the address is not 32-bit aligned. For the same behavior with
STR instructions, enable strict-alignment-checking by setting the A-bit in the SCTLR. See c/,
System Control Register on page 4-38.

If the error scheme is 64-bit ECC, a simpler way to initialize the TCM is:
. Ensure error checking is off.

. Turn on 64-bit store behavior using CP15. See c15, Secondary Auxiliary Control Register
on page 4-44.

. Write to the TCM using any store instructions, or any AXI write transactions. The
processor performs read-modify-write accesses to ensure that all writes are to 64-bit
aligned quantities, even though error checking is turned off.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 2-20
Non-Confidential

Functional Description

Note

You can enable error checking and 64-bit store behavior on a per-TCM interface basis.
References in this section, to these controls relate to whichever TCM is being initialized.

Using TCMs from reset

The processor can be pin-configured to enable the TCM interfaces from reset, and to select the
address at which each TCM appears from reset. See TCM initialization on page 8-15 for more
information. This enables you to configure the processor to boot from TCM but, to do this, the
TCM must first be preloaded with the boot code. The nCPUHALTm pin can be asserted while
the processor is in reset to stop the processor from fetching and executing instructions after
coming out of reset. While the processor is halted in this way, the TCMs can be preloaded with
the appropriate data. When the nCPUHALTm pin is deasserted, the processor starts fetching
instructions from the reset vector address in the normal way.

Note

When nCPUHALTm has been deasserted to start the processor fetching, nCPUHALTm must
not be asserted again except when the processor is under processor or power-on reset, that is,
nRESETm asserted. The processor does not halt if the nCPUHALTm pin is asserted while the
processor is running.

Peripheral Interfaces

The memory regions used by the peripheral interfaces are fixed during integration. Before you
access any peripherals that are in those regions, and attached to the peripheral ports, you must
enable the peripheral interfaces. The AXI peripheral interface and the AHB peripheral interface
can be enabled from reset by tying INITPPXm and INITPPHm HIGH respectively. If they are
not enabled at reset your software must enable them by writing to the appropriate CP15 region
register. See Peripheral interface region registers on page 4-84. The virtual AXI peripheral
interface can only be enabled by software.

Note

The virtual peripheral interface region is a sub-region of the AXI peripheral interface region. If
the AXI peripheral interface is enabled, but the virtual AXI peripheral interface is not, then all
accesses to this region of memory use the AXI peripheral port. Enabling the virtual AXI
peripheral interface affects only the ordering and ID behavior of the transactions, not the
physical port that they use.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 2-21
Non-Confidential

Chapter 3

Programmers Model

This chapter describes the processor registers and provides an overview for programming the

processor. It contains the following sections:

About the programmers model on page 3-2

Modes of operation and execution on page 3-3
Memory model on page 3-5

Coherency on page 3-6

Data structures on page 3-8

Registers on page 3-9

Program status registers on page 3-12

Exceptions on page 3-17

Acceleration of execution environments on page 3-28
Unaligned and mixed-endian data access support on page 3-29
Big-endian instruction support on page 3-30.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.
Non-Confidential

3-1

Programmers Model

3.1 About the programmers model

The processor implements the ARMv7-R architecture that provides:
. the 32-bit ARM instruction set

. the Thumb-2 technology introduced in ARMv6T2, that extends the Thumb instruction set
to a variable-length instruction set, that supports both 16-bit and 32-bit instructions.

For more information on the ARM and Thumb instruction sets, see the ARM Architecture
Reference Manual. This chapter describes some of the main features of the architecture but, for
a complete description, see the ARM Architecture Reference Manual.

This chapter also makes reference to older versions of the ARM architecture that the processor
does not implement. These references are included to contrast the behavior of the Cortex-R5
processor with other processors you might have used that implement an older version of the
architecture.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 3-2
Non-Confidential

Programmers Model

3.2 Modes of operation and execution

This section describes:
. Instruction set states
. Modes of operation

3.21 Instruction set states

The processor has two instruction set states:

ARM state The processor executes 32-bit, word-aligned ARM instructions in this
state.
Thumb state The processor executes 32-bit and 16-bit halfword-aligned Thumb

instructions in this state.

Note

Transition between ARM state and Thumb state does not affect the processor mode or the
register contents.

Switching state
The instruction set state of the processor can be switched between ARM state and Thumb state:

. Using the BX and BLX instructions, by a load to the PC, or with a data-processing instruction
that does not set flags, with the PC as the destination register. Switching state is described
in the ARM Architecture Reference Manual.

Note
When the BXJ instruction is used the processor invokes the BX instruction.

. Automatically on an exception. You can write an exception handler routine in ARM or
Thumb code. For more information, see Exceptions on page 3-17.
Interworking ARM and Thumb state

The processor enables you to mix ARM and Thumb code. For more information about
interworking ARM and Thumb, see the Real/View Compilation Tools Developer Guide.

3.2.2 Modes of operation

In each state there are seven modes of operation:

. User (USR) mode is the usual mode for the execution of ARM or Thumb programs. It is
used for executing most application programs.

. Fast interrupt (FIQ) mode is entered on taking a fast interrupt.

. Interrupt (IRQ) mode is entered on taking a normal interrupt.

. Supervisor (SVC) mode is a protected mode for the operating system and is entered on

taking a Supervisor Call (SVC), formerly SWI.

. Abort (ABT) mode is entered after a data or instruction abort.

. System (SYS) mode is a privileged user mode for the operating system.

. Undefined (UND) mode is entered when an Undefined Instruction exception occurs.
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 3-3

ID021511

Non-Confidential

Programmers Model

Modes other than User mode are collectively known as Privileged modes. Privileged modes are
used to service interrupts or exceptions, or access protected resources.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 3-4
Non-Confidential

Programmers Model

3.3 Memory model

The processor views memory as a linear collection of bytes numbered in ascending order from
zero. For example, bytes 0-3 hold the first stored word, and bytes 4-7 hold the second stored
word.

The processor can treat words of data in memory as being stored in either:
. Byte-invariant big-endian format
. Little-endian format.

Additionally, the processor supports mixed-endian and unaligned data accesses. For more
information, see the ARM Architecture Reference Manual.
3.3.1 Byte-invariant big-endian format

In byte-invariant big-endian (BE-8) format, the processor stores the most significant byte of a
word at the lowest-numbered byte, and the least significant byte at the highest-numbered byte.
Figure 3-1 shows byte-invariant big-endian (BE-8) format.

Memory Register
Address
A[31:0] U 0
31 2423 16 15 8 7 0
BO [msbyte BO B1 B2 B3

+1 B1

+2 B2

+3 B3 Isbyte

Figure 3-1 Byte-invariant big-endian (BE-8) format

3.3.2 Little-endian format

In little-endian format, the lowest-numbered byte in a word is the least significant byte of the
word and the highest-numbered byte is the most significant. Figure 3-2 shows little-endian

format.
Memory Register
Address
A[31:0] 7 0
31 2423 16 15 8 7 0
b0 |Isbyte b3 b2 b1 b0
+1 b1
+2 b2
+3 b3 msbyte
Figure 3-2 Little-endian format
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 3-5

ID021511 Non-Confidential

Programmers Model

3.4 Coherency

In a system with multiple bus masters, memory coherency problems can occur when the masters
access the same memory locations, if one or more of the masters has an associated cache. For
example if there are two masters, A and B, each with its own level-one cache, the following
problems can occur:

. Master A writes to a location in level-2 memory, but write-back caching is used so that
the new value resides in the cache belonging to master A. Subsequent reads of the same
address, by master B, access the old value held in the level-2 memory. This might continue
indefinitely.

. Master B reads a location in level-2 memory and caches the value read in its own cache.
Master A writes to the same location, as above except that the write data propagates to the
level-2 memory. If master B reads the same location it gets the old value held in its cache,
rather than the new value that master A wrote.

In a twin-CPU configuration of the Cortex-R5 processor, each CPU can have its own level-1
cache. The Cortex-RS processor might also be integrated into a system with other bus masters.
In both cases the coherency problems can occur.

There are a number of solutions to these problems, including:

Data is not shared

If the two masters never access the same data, there can be no coherency issues.

Data that is to be shared between masters is not cached

In the Cortex-R5 processor, data that is in a shared region is never cached in the
level-1 caches, even if the region is also cacheable. However, if a Cortex-R5 CPU
is connected to a level-2 cache, then data in a shared region might be cached in
its level-2 cache, leading to coherency problems, depending on how the level-2
cache is configured. See Region attributes on page 7-8 for information about
setting memory region attributes.

Data that is to be shared between masters is only cached in coherent caches

If all the bus masters use the same level-2 cache, and do not cache the data in their
level-1 cache, then the data stored in the level-2 cache is coherent.

Software coherency

Cache maintenance operations can be used to manipulate the caches so that
shared data is visible to other bus masters. In the first example, after master A
writes into its cache data that is to be shared by master B, it must also clean the
appropriate cache locations to ensure that the level-2 memory has been updated.
In the second example, after master A writes data to the level-2 memory, it must
cause master B to invalidate the appropriate cache locations in its cache so that
master B reads the new value from level-2 memory.

The requirement for cache-clean operations can be avoided by using
write-through caching, but invalidate operations are always required. In all cases,
barrier operations are required to ensure that the level-2 memory updates have
taken place before the cache maintenance operations are performed. Cortex-R5
cache maintenance operations are described in Cache operations on page 4-59.

Hardware coherency

Coherency logic, associated with the masters and their caches, performs the
appropriate cache manipulation operations to ensure coherency of data that is
shared between the masters. ARM multi-processing (MP) technology provides

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 3-6
ID021511 Non-Confidential

Programmers Model

hardware coherency between multiple CPUs and their associated caches within a
cluster, for data that is in a shared memory region. A twin-CPU Cortex-R5 group
is not an MP-cluster. No hardware coherency is provided between the two CPUs,
see CPU configurations on page 1-10 for more information. The Cortex-R5
processor does provide hardware coherency with an external master in limited
situations using the ACP. See Accelerator Coherency Port interface on page 9-48
for more information.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 3-7
Non-Confidential

3.5 Data structures

Programmers Model

The processor supports these data types:

doubleword, 64-bit
word, 32-bit
halfword, 16-bit
byte, 8-bit.

Note

When any of these types are described as unsigned, the N-bit data value represents a
non-negative integer in the range 0 to +2N-1, using normal binary format.

When any of these types are described as signed, the N-bit data value represents an integer
in the range -2N-1 to +2N-1-1, using two’s complement format.

For best performance you must align these data types in memory as follows:

doubleword quantities aligned to 8-byte boundaries, doubleword aligned
word quantities aligned to 4-byte boundaries, word aligned

halfword quantities aligned to 2-byte boundaries halfword aligned

byte quantities can be placed on any byte boundary.

The processor supports mixed-endian and unaligned access. For more information, see
Unaligned and mixed-endian data access support on page 3-29.

Note

You cannot use LDRD, LDM, STRD, or STM instructions to access 32-bit quantities if they are not
32-bit aligned.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 3-8
Non-Confidential

3.6

3.6.1

Registers

Programmers Model

The processor has a total of 37 program registers:
. 31 general-purpose 32-bit registers
. six 32-bit status registers.

These registers are not all accessible at the same time. The processor state and operating mode
determine the registers that are available to the programmer.

The register set

In the processor the same register set is used in both the ARM and Thumb states. Sixteen general
registers and one or two status registers are accessible at any time. In Privileged modes,
alternative mode-specific banked registers become available. Figure 3-3 on page 3-11 shows the
registers that are available in each mode.

The register set contains 16 directly-accessible registers, RO-R15. Another register, the Current
Program Status Register (CPSR), contains condition code flags, status bits, and current mode
bits. Registers RO-R12 are general-purpose registers that hold either data or address values.
Registers R13, R14, R15, and the CPSR have these special functions:

Stack pointer Software normally uses register R13 as a Stack Pointer (SP). The SRS and
RFE instructions use Register R13.

Link Register Register R14 is used as the subroutine Link Register (LR).

Register R14 receives the return address when a Branch with Link (BL or
BLX) instruction is executed.

You can use R14 as a general-purpose register at all other times. The
corresponding banked registers R14_svc,R14 irq,R14 fiq, R14 abt, and
R14 _und similarly hold the return values when interrupts and exceptions
are taken, or when BL or BLX instructions are executed within interrupt or
exception routines.

Program Counter Register R15 holds the PC:
. in ARM state this is word-aligned
. in Thumb state this is halfword-aligned.

Note
There are special cases for reading R15:

. reading the address of the current instruction plus, either:
— 4 in Thumb state
— 8in ARM state.

. reading 0x00000000 (zero).

There are special cases for writing R15:

. causing a branch to the address that was written to R15

. ignoring the value that was written to R15

. writing bits [31:28] of the value that was written to R15 to the
condition flags in the CPSR, and ignoring bits [27:0] (used for the
MRC instruction only).

You must not assume any of these special cases unless it is explicitly stated
in the instruction description. Instead, you must treat instructions with
register fields equal to R15 as Unpredictable.

ARM DDI 0460C

ID021511

Copyright © 2010-2011 ARM. All rights reserved. 3-9
Non-Confidential

Programmers Model

For more information, see the ARM Architecture Reference Manual.

In Privileged modes, another register, the Saved Program Status Register (SPSR), is accessible.
This contains the condition code flags, status bits, and current mode bits saved as a result of the
exception that caused entry to the current mode.

Banked registers have a mode identifier that indicates which mode they relate to. Table 3-1lists
these identifiers.

Table 3-1 Register mode identifiers

Mode Mode identifier

User usr2

Fast interrupt fiq

Interrupt irq
Supervisor sve
Abort abt
System usr?

Undefined und

a. The usr identifier is usually
omitted from register
names. It is only used in
descriptions where the User
or System mode register is
specifically accessed from
another operating mode.

FIQ mode has seven banked registers mapped to R§—R14 (R8 fig—R14 fiq). As a result, many
FIQ handlers do not have to save any registers.

The Supervisor, Abort, IRQ, and Undefined modes each have alternative mode-specific
registers mapped to R13 and R14, permitting a private stack pointer and link register for each
mode.

Figure 3-3 on page 3-11 shows the register set, and those registers that are banked.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 3-10
Non-Confidential

General registers and program counter

Programmers Model

System and User FIQ Supervisor Abort IRQ Undefined

RO RO RO RO RO RO

R1 R1 R1 R1 R1 R1

R2 R2 R2 R2 R2 R2

R3 R3 R3 R3 R3 R3

R4 R4 R4 R4 R4 R4

R5 R5 R5 R5 R5 R5

R6 R6 R6 R6 R6 R6

R7 R7 R7 R7 R7 R7

R8 R8_fiq RS R8 R8 RS

R9 R9_fiq R9 R9 R9 R9

R10 R10_fiq R10 R10 R10 R10

R11 R11_fiq R11 R11 R11 R11

R12 R12_fiq R12 R12 R12 R12

R13 R13_fiq R13_svc R13_abt R13_irq R13_und
R14 R14_fiq R14_svc R14_abt R14_irq R14_und
R15 R15 (PC) R15 (PC) R15 (PC) R15 (PC) R15 (PC)

Program status registers
| cPsR CPSR CPSR CPSR CPSR CPSR
SPSR_fiq SPSR_svc SPSR_abt SPSR_irq SPSR_und

B = banked register

Note

Figure 3-3 Register organization

For 16-bit Thumb instructions, the high registers, R8—R15, are not part of the standard register
set. You can use special variants of the MOV instruction to transfer a value from a low register, in
the range RO—R7, to a high register, and from a high register to a low register. The CMP instruction
enables you to compare high register values with low register values. The ADD instruction
enables you to add high register values to low register values. For more information, see the
ARM Architecture Reference Manual.

ARM DDI 0460C

ID021511

Copyright © 2010-2011 ARM. All rights reserved.

Non-Confidential

3-11

Programmers Model

3.7 Program status registers

The processor contains one CPSR and five SPSRs for exception handlers to use. The program
status registers:

. hold information about the most recently performed ALU operation
. control the enabling and disabling of interrupts
. set the processor operating mode.

Figure 3-4 shows the bit arrangement in the status registers.

3130 29 28 27 26 25 24 23 2019 16 15 109 8 7 6 5 4 0

N|z|c|v|a J| DNM GE[3:0] IT[7:2] E|A|I|F|T M[4:0]

|_ Greater than L Mode bits
or equal to Thumb state bit

Java state bit FIQ disable

IT[1:0] IRQ disable

Sticky overflow Asynchronous abort
Overflow disable bit
Carry/Borrow/Extend Data endianness bit
Zero

Negative/Less than

Figure 3-4 Program status register

The following sections explain the meanings of these bits:
. The N, Z, C, and V bits

. The Q bit on page 3-13

. The IT bits on page 3-13

. The J bit on page 3-14

. The DNM bits on page 3-14

. The GE bits on page 3-14

. The E bit on page 3-15

. The A bit on page 3-15

. The I and F bits on page 3-15

. The T bit on page 3-15

. The M bits on page 3-15

. Modification of PSR bits by MSR instructions on page 3-16.

3.71 TheN, Z, C, and V bits

The N, Z, C, and V bits are the condition code flags. You can optionally set them with arithmetic
and logical operations, and also with MSR instructions and MRC instructions to R15. The processor
tests these flags in accordance with an instruction's condition code to determine whether to
execute that instruction.

In ARM state, most instructions can execute conditionally on the state of the N, Z, C, and V bits.
The exceptions are:

. BKPT
. CPS
. LDC2
. MCR2
. MCRR2
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 3-12

ID021511 Non-Confidential

3.7.2

3.7.3

The Q bit

The IT bits

Programmers Model

. MRC2

. MRRC2
. PLD

. RFE

. SETEND
. SRS

. STC2.

In Thumb state, the processor can only execute the Branch instruction conditionally. Other
instructions can be made conditional by placing them in the If~Then (IT) block. For more
information about conditional execution in Thumb state, see the ARM Architecture Reference
Manual.

Certain multiply and fractional arithmetic instructions can set the Sticky Overflow, Q, flag:
e QADD

. QDADD
. QSuB

. QDSUB
. SMLAD
. SMLAxy
. SMLAWY
. SMLSD
. SMUAD
. SSAT

. SSAT16
. USAT

. USAT16.

The Q flag is sticky in that, when an instruction sets it, this bit remains set until an MSR instruction
writing to the CPSR explicitly clears it. Instructions cannot execute conditionally on the status
of the Q flag.

To determine the status of the Q flag you must read the PSR into a register and extract the Q flag
from this. For information of how the Q flag is set and cleared, see individual instruction
definitions in the ARM Architecture Reference Manual.

IT[7:5] encodes the base condition code for the current IT block, if any. It contains b000 when
no IT block is active.

IT[4:0] encodes the number of instructions that are to be conditionally executed, and whether
the condition for each is the base condition code or the inverse of the base condition code. It
contains b00000 when no IT block is active.

When an IT instruction is executed, these bits are set according to the condition in the
instruction, and the Then and Else (T and E) parameters in the instruction. During execution of
an IT block, IT[4:0] is shifted to:

. reduce the number of instructions to be conditionally executed by one
. move the next bit into position to form the least significant bit of the condition code.
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 3-13

ID021511

Non-Confidential

3.74

3.7.5

3.7.6

The J bit

The DNM bits

The GE bits

Programmers Model

For more information on the operation of the IT execution state bits, see the ARM Architecture
Reference Manual.

The J bit in the CPSR returns 0 when read.

Note

You cannot use an MSR to change the J bit in the CPSR.

Software must not modify the Do Not Modify (DNM) bits. These bits are:

Readable, to preserve the state of the processor, for example, during process context

switches.

Writable, to enable the processor to restore its state. To maintain compatibility with future
ARM processors, and as good practice, use a read-modify-write strategy when you

change the CPSR.

Some of the SIMD instructions set GE[3:0] as greater-than-or-equal bits for individual
halfwords or bytes of the result, as Table 3-2 shows.

Table 3-2 GE[3:0] settings

Instruction

GE[3]

A op B greater than
or equal to C

GE[2]

A op B greater than
or equal to C

GE[1]

A op B greater
than or equal to C

GE[0]

A op B greater
than or equal to C

Signed
SADD16
SSUB16

SADDSUBX

[31:16] + [31:16] > 0
[31:16] - [31:16] > 0

[31:16] + [15:0] = 0

[31:16] + [31:16] > 0
[31:16] - [31:16] = 0

[31:16] + [15:0] = 0

[15:0] +[15:0] = 0
[15:0] - [15:0] = 0

[15:0] - [31:16] > 0

[15:0] +[15:0] 2 0
[15:0] - [15:0] = 0

[15:0] - [31:16] > 0

SSUBADDX

[31:16] - [15:0] = 0

[31:16] - [15:0] 20

[15:0] +[31:16] = 0

[15:0] +[31:16] = 0

SADD8

[31:24] +[31:24] > 0

[23:16] +[23:16] > 0

[15:8] +[15:8] = 0

[7:0] + [7:0] > 0

SSUB8

[31:24] - [31:24] > 0

[23:16] - [23:16] = 0

[15:8] - [15:8] 2 0

[7:0] - [7:0] = 0

Unsigned

UADD16

[31:16] + [31:16] > 216

[31:16] + [31:16] > 216

[15:0] +[15:0] > 216

[15:0] +[15:0] > 216

USUB16

[31:16] - [31:16] 2 0

[31:16] - [31:16] 2 0

[15:0] - [15:0] > 0

[15:0] - [15:0] > 0

UADDSUBX

[31:16] +[15:0] > 216

[31:16] +[15:0] > 216

[15:0] - [31:16] 2 0

[15:0] - [31:16] 2 0

USUBADDX

UADD8

[31:16] - [15:0] 2 0

[31:24] +[31:24] > 28

[31:16] - [15:0] 2 0

[23:16] +[23:16] > 28

[15:0] +[31:16] > 216

[15:8] +[15:8] > 28

[15:0] + [31:16] 216

[7:0] + [7:0] = 28

USuB8

[31:24] - [31:24] > 0

[23:16] - [23:16] 2 0

[15:8] - [15:8] = 0

[7:0] - [7:0] > 0

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.

Non-Confidential

3-14

3.7.7 The E bit

3.7.8 The A bit

3.7.9 The | and F bits

3.710 The T bit

3.7.11 The M bits

Programmers Model

Note
GE bitis 1 if A op B > C, otherwise 0.

The SEL instruction uses GE[3:0] to select which source register supplies each byte of its result.
See the ARM Architecture Reference Manual for more information.

ARM and Thumb instructions are provided to set and clear the E bit. The E bit controls
load/store endianness. See the ARM Architecture Reference Manual for information on where
the E bit is used.

The A bit is set automatically by certain exceptions and is written by privileged software. It
disables asynchronous Data Aborts. For more information on how to use the A bit, see
Asynchronous abort masking on page 3-24.

The I and F bits are the interrupt disable bits:
. when the I bit is set, IRQ interrupts are disabled
. when the F bit is set, FIQ interrupts are disabled.

Software can use MSR, CPS, MOVS pc, SUBS pc, LDM .., {..pc}A, or RFE instructions to change the
values of the I and F bits. They are also set automatically by some exceptions.

When NMFIs are enabled, updates to the F bit are restricted. For more information see
Non-maskable fast interrupts on page 3-20.

The T bit reflects the instruction set state:

. when the T bit is set, the processor executes in Thumb state
. when the T bit is clear, the processor executes in ARM state.
Note

Never use an MSR instruction to force a change to the state of the T bit in the CPSR. The processor
ignores any attempt to modify the T bit using an MSR instruction.

M[4:0] are the mode bits. These bits determine the processor operating mode as Table 3-3
shows.

Table 3-3 PSR ode bit values

M[4:0] Mode

b10000 User

b10001 FIQ

b10010 IRQ

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 3-15
Non-Confidential

Programmers Model

Table 3-3 PSR ode bit values (continued)

M[4:0] Mode

b10011 Supervisor

b10111 Abort

bl11011 Undefined

b11111 System

Note

In Privileged mode an illegal value programmed into M[4:0] causes the processor to enter
System mode.

In User mode M[4:0] can be read. Writes to M[4:0] are ignored.

3.7.12 Modification of PSR bits by MSR instructions

In the ARMv7-R architecture each CPSR bit falls into one of these categories:

Bits that are freely modifiable from any mode, either directly by MSR instructions or by
other instructions whose side-effects include writing the specific bit or writing the entire
CPSR.

Bits in Figure 3-4 on page 3-12 that are in this category are N, Z, C, V, Q, GE[3:0], and E.

Bits that an MSR instruction must never modify, and so must only be written as a side-effect
of another instruction. If an MSR instruction tries to modify these bits, the results are
architecturally Unpredictable. In the processor these bits are not affected.

The bits in Figure 3-4 on page 3-12 that are in this category are the execution state bits
[26:24], [15:10], and [5].

Bits that can only be modified from Privileged modes, and that instructions completely
protect from modification while the processor is in User mode. Entering a processor
exception is the only way to modify these bits while the processor is in User mode, as
described in Exceptions on page 3-17.

Bits in Figure 3-4 on page 3-12 that are in this category are A, I, F, and M[4:0].

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 3-16
Non-Confidential

Programmers Model

3.8 Exceptions

Exceptions are taken whenever the normal flow of a program must temporarily halt, for
example, to service an interrupt from a peripheral. Before attempting to handle an exception, the
processor preserves the critical parts of the current processor state so that the original program
can resume when the handler routine has finished.

This section provides information of the processor exception handling:
. Exception entry and exit summary

. Reset on page 3-19

. Interrupts on page 3-19

. Aborts on page 3-23

. Supervisor call instruction on page 3-25
. Undefined Instruction on page 3-26
. Breakpoint instruction on page 3-26
. Exception vectors on page 3-27.
Note

When the processor is in debug halt state, and an exception occurs, it is handled differently to
normal. See Exceptions in debug state on page 12-48 for more information

3.8.1 Exception entry and exit summary

Table 3-4 summarizes the PC value preserved in the relevant R14 on exception entry, and the
recommended instruction for exiting the exception handler.

Table 3-4 Exception entry and exit

Exception Recommended return

Previous state

or ent instruction Notes
b ARMR14_x Thumb R14_x

SV(Ca MOVS PC, R14_svc IA+4 IA+2 Where the IA is the address of the SVC or
Undefined Instruction.

UNDEF Variesb 1A+4 TIA+2

PABT SUBS PC, R14_abt, #4 IA+4 IA+4 Where the IA is the address of instruction that had
the Prefetch Abort.

FIQ SUBS PC, R14_fiq, #4 1A+ 4 1A+4 Where the IA is the address of the instruction that

. was not executed because the FIQ or IRQ took

IRQ SUBS PC, Rl4_irqg, #4 1A +4 IA+4 priority.

DABT SUBS PC, R14_abt, #8 TIA +38 TIA +8 Where the IA is the address of the Load or Store
instruction that generated the Data Abort.

RESET NA - - The value saved in R14_svc on reset is
Unpredictable.

BKPT SUBS PC, R14_abt, #4 IA+4 IA+4 Software breakpoint.

a. Formerly SWIL

b. The return instruction you must use after an Undefined Instruction exception has been handled depends on whether you want to retry the
undefined instruction or not and, if not, on the size of the Undefined instruction.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 3-17
Non-Confidential

Programmers Model

Taking an exception

When taking an exception the processor:

1.

6.

Preserves the address of the next instruction in the appropriate R14(LR). When the

exception is taken from:

ARM state
The processor writes the address of the instruction into the LR, offset by a value
(current IA + 4 or IA + 8 depending on the exception) that causes the program
to resume from the correct place on return.

Thumb state
The processor writes the address of the instruction into the LR, offset by a value
(current IA + 2, TA + 4 or IA + 8 depending on the exception) that causes the
program to resume from the correct place on return.

Copies the CPSR into the appropriate SPSR. Depending on the exception type, the
processor might modify the IT execution state bits of the CPSR prior to this operation to
facilitate a return from the exception.

Forces the CPSR mode bits to a value that depends on the exception and clears the IT
execution state bits in the CPSR.

Sets the E bit based on the state of the EE bit in the SCTLR, see ¢/, System Control
Register on page 4-38.

The T bit is set based on the state of the TE bit in the SCTLR, see ¢/, System Control
Register on page 4-38.

Forces the PC to fetch the next instruction from the relevant exception vector.

The processor can also set the interrupt disable flags to prevent otherwise unmanageable nesting
of exceptions.

Leaving an exception

When an exception has completed, the exception handler must move the LR, minus an offset,
to the PC. The offset varies according to the type of exception, as Table 3-4 on page 3-17 shows.

Typically the return instruction is an arithmetic or logical operation with the S bit set and Rd =
R15, so the processor copies the SPSR back to the CPSR. Alternatively, an LDM .., {..pc}A or
RFE instruction can perform a similar operation if the return state has been pushed onto a stack.

Note

The action of restoring the CPSR from the SPSR:

Automatically restores the T, E, A, I, and F bits to the value they held immediately prior
to the exception.

Normally resets the IT execution state bits to the values held immediately prior to the
exception. If the exception handler wants to return to the following instruction, these bits
might require to be manually advanced to avoid applying the incorrect condition codes to
that instruction. For more information about the IT instruction elements and Undefined
instructions, and an example of the exception handler code, see the ARM Architecture
Reference Manual.

Because SVC handlers are always expected to return after the SVC instruction, the IT
execution state bits are automatically advanced when an exception is taken prior to
copying the CPSR into the SPSR.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 3-18
Non-Confidential

3.8.2 Reset

3.8.3 Interrupts

Programmers Model

When the nRESETm signal is driven LOW a reset occurs, and the processor abandons the
executing instruction.

When nRESETm and nCPUHALTm are driven HIGH again the processor:

1. Forces CPSR M[4:0] to b10011 (Supervisor mode) and sets the A, I, and F bits in the
CPSR. The E bit is set based on the state of the CFGEE pin. Other bits in the CPSR are
indeterminate.

2. Forces the PC to fetch the next instruction from the reset vector address.

3. Reverts to ARM state or Thumb state depending on the state of the TEINIT pin, and
resumes execution.

After reset, all register values except the PC and CPSR are indeterminate.

See Resets on page 2-12 for more information on the reset behavior for the processor.

The processor has two interrupt inputs, for normal interrupts (nIRQm) and fast interrupts
(nFIQm). Each interrupt pin, when asserted and not masked, causes the processor to take the
appropriate type of interrupt exception. See Exceptions on page 3-17 for more information. The
CPSR.F and CPSR.I bits control masking of fast and normal interrupts respectively.

A number of features exist to improve the interrupt latency, that is, the time taken between the
assertion of the interrupt input and the execution of the interrupt handler. By default, the
processor uses the Low Interrupt Latency (LIL) behaviors introduced in version 6 and later of
the ARM architecture. The processor also has a port for connection of a Vectored Interrupt
Controller (VIC), and supports Non-Maskable Fast Interrupts (NMFI).

The following subsections describe interrupts:

. Interrupt request

. Fast interrupt request on page 3-20

. Non-maskable fast interrupts on page 3-20
. Low interrupt latency on page 3-20

. Interrupt controller on page 3-21.

Interrupt request

The IRQ exception is a normal interrupt caused by a LOW level on the nIRQm input. An IRQ
has a lower priority than an FIQ, and is masked on entry to an FIQ sequence. You must ensure
that the nIRQm input is held LOW until the processor acknowledges the interrupt request,
either from the VIC interface or the software handler.

Irrespective of whether the exception is taken from ARM state or Thumb state, an IRQ handler
returns from the interrupt by executing:

SUBS PC, R14_irq, #4

You can disable IRQ exceptions within a Privileged mode by setting the CPSR.I bit to b1. See
Program status registers on page 3-12. IRQ interrupts are automatically disabled when an IRQ
occurs, by setting the CPSR.I bit. You can use nested interrupts but it is up to you to save any
corruptible registers and to re-enable IRQs by clearing the CPSR.I bit.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 3-19
Non-Confidential

Programmers Model

Fast interrupt request

The Fast Interrupt Request (F1IQ) reduces the execution time of the exception handler relative
to a normal interrupt. FIQ mode has eight private registers to reduce, or even remove the
requirement for register saving (minimizing the overhead of context switching).

An FIQ is externally generated by taking the nFIQm input signal LOW. You must ensure that
the nFIQm input is held LOW until the processor acknowledges the interrupt request from the
software handler.

Irrespective of whether exception entry is from ARM state or Thumb state, an FIQ handler
returns from the interrupt by executing:

SUBS PC, R14_fiq, #4

If Non-Maskable Fast Interrupts (NMFIs) are not enabled, you can mask FIQ exceptions by
setting the CPSR.F bit to bl. For more information see:

. Program status registers on page 3-12
. Non-maskable fast interrupts.

FIQ and IRQ interrupts are automatically masked by setting the CPSR.F and CPSR.I bits when
an FIQ occurs. You can use nested interrupts but it is up to you to save any corruptible registers
and to re-enable interrupts.

Non-maskable fast interrupts

When NMFI behavior is enabled, FIQ interrupts cannot be masked by software. Enabling NMFI
behavior ensures that when the FIQ mask, that is, the CPSR.F bit, has been cleared by the reset
handler, fast interrupts are always taken as quickly as possible, except during handling of a fast
interrupt. This makes the fast interrupt suitable for signaling critical events. NMFI behavior is
controlled by a configuration input signal CFGNMFIm, that is asserted HIGH to enable NMFI
operation. There is no software control of NMFI.

Software can detect whether NMFI operation is enabled by reading the NMFI bit of the SCTLR:
NMFI==0 Software can mask FIQs by setting the CPSR.F bit to b1.
NMFI==1 Software cannot mask FIQs.

For more information see c/, System Control Register on page 4-38.

When the NMFI bit in the SCTLR is bl:

. an instruction writing b0 to the CPSR.F bit clears it to b0

. an instruction writing b1 to the CPSR.F bit leaves it unchanged

. the CPSR.F bit can be set to bl only by an FIQ or reset exception entry.

Low interrupt latency

Low Interrupt Latency (LIL) is a set of behaviors that reduce the interrupt latency for the
processor, and is enabled by default. That is, the FI bit [21] in the SCTLR is Read-as-One.

LIL behavior enables accesses to Normal memory, including multiword accesses and external
accesses, to be abandoned part-way through execution so that the processor can react to a
pending interrupt faster than would otherwise be the case. When an instruction is abandoned in
this way, the processor behaves as if the instruction was not executed at all. If, after handling the
interrupt, the interrupt handler returns to the program in the normal way using instruction SUBS
pc, rl4, #4,the abandoned instruction is re-executed. This means that some of the memory
accesses generated by the instruction are performed twice.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 3-20
Non-Confidential

Programmers Model

Memory that is marked as Strongly Ordered or Device type is typically sensitive to the number
of reads or writes performed. Because of this, instructions that access Strongly Ordered or
Device memory are never abandoned when they have started accessing memory. These
instructions always complete either all or none of their memory accesses. The same is true of all
accesses to the AXI peripheral port, regardless of the memory type. Therefore, to minimize the
interrupt latency, you must avoid the use of multiword load/store instructions to memory
locations that are marked as Strongly Ordered or Device or are in the AXI or virtual AXI
peripheral interface.

Interrupt controller

The processor includes a VIC port for connection of a Vectored Interrupt Controller (VIC). An
interrupt controller is a peripheral that handles multiple interrupt sources. Features usually
found in an interrupt controller are:

. multiple interrupt request inputs, one for each interrupt source, and one or more
amalgamated interrupt request outputs to the processor

. the ability to mask out particular interrupt requests
. prioritization of interrupt sources for interrupt nesting.

In a system with an interrupt controller with these features, software is still required to:

. determine from the interrupt controller which interrupt source is requesting service
. determine where the service routine for that interrupt source is loaded
. mask or clear that interrupt source, before re-enabling processor interrupts to permit

another interrupt to be taken.

A VIC does all these in hardware to reduce the interrupt latency. It supplies the starting address
of the service routine corresponding to the highest priority asserted interrupt source directly to
the processor. When the processor has accepted this address, it masks the interrupt so that the
processor can re-enable interrupts without clearing the source. The PL192 VIC is an Advanced
Microcontroller Bus Architecture (AMBA) compliant, System-on-Chip (SoC) peripheral that is
developed, tested, and licensed by ARM.

You can use the VIC port to connect a PL192 VIC to the processor. See the ARM PrimeCell
Vectored Interrupt Controller (PL192) Technical Reference Manual for more information about
the PL192 VIC. You can enable the VIC port by setting the VE bit in the SCTLR. When the VIC
port is enabled and an IRQ occurs, the processor performs an handshake over the VIC interface
to obtain the address of the handling routine for the IRQ.

Interrupt entry flowchart

Figure 3-5 on page 3-22 is a flowchart for processor interrupt recognition. It shows all the
necessary decisions and actions for a complete interrupt entry.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 3-21
ID021511 Non-Confidential

Programmers Model

(Start)

»
'y

IVE || VIC
handshake < 7y
complete

FALSE
TRUE FALSE
[Start handshake with VIC |
!(nFIQ||F) FALSE | SPSR_iri =CPSR |
| LR_irq = RA+4 |
TRUE v
A 4 | CPSR[4:0] = IRQ mode |
| SPSR._fig=CPSR | 3
v | CPSR[5] = TE |
| LR_fig = RA+4 | ¥
| CPSR[7] =1 |

v
| CPSR[4:0] = FIQ mode |
v

| CPSR[5] = TE |

v
| CPSR[7] = 1, CPSR[6] = 1 |

FALSE

provide handler

TRUE address?
TRUE FALSE TRUE
v v v
PC[31:0] = PC[31:0] = PC[31:0] = PC[31:0] = PCR1 ?g;l d'l%”g'e\r/fgdress
OXFFFFO01C 0x0000001C OXFFFF0018 0x00000018 P Y
Acknowledge address to VIC

Figure 3-5 Interrupt entry sequence

For information on the I and F bits that Figure 3-5 shows, see Program status registers on
page 3-12. For information on the V and VE bits that Figure 3-5 shows, see ¢/, System Control
Register on page 4-38.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.
Non-Confidential

3-22

3.8.4 Aborts

Programmers Model

When the processor memory system cannot complete a memory access successfully, an abort is
generated. Aborts can occur for a number of reasons, for example:

. a permission fault indicated by the MPU
. an error response to a transaction on the AMBA memory bus
. an error detected in the data by the ECC checking logic.

An error occurring on an instruction fetch generates a prefetch abort. Errors occurring on data
accesses generate data aborts. Aborts are also categorized as being either synchronous,
previously known as precise, or asynchronous, previously known as imprecise.

When a prefetch or data abort occurs, the processor takes the appropriate type of exception. See
Exception entry and exit summary on page 3-17 for more information. Additional information
about the type of abort is stored in registers, and signaled as events. See Fault handling on
page 8-7 for more information about the types of fault that can cause an abort and the
information that the processor provides about these faults.

Prefetch aborts

When a Prefetch Abort (PABT) occurs, the processor marks the prefetched instruction as
invalid, but does not take the exception until the instruction is to be executed. If the instruction
is not executed, for example because a branch occurs while it is in the pipeline, the abort does
not take place.

All prefetch aborts are synchronous.

Data aborts

An error occurring on a data memory access can generate a data abort. If the instruction
generating the memory access is not executed, for example, because it fails its condition codes,
or is interrupted, the data abort does not take place.

A Data Abort (DABT) can be either synchronous or asynchronous, depending on the type of
fault that caused it.

The Cortex-R5 processor implements the base restored Data Abort model, as opposed to a base
updated Data Abort model.

With the base restored Data Abort model, when a Data Abort exception occurs during the
execution of a memory access instruction, the processor hardware always restores the base
register to the value it contained before the instruction was executed. For more information, see
the ARM Architecture Reference Manual.

Synchronous aborts

A synchronous abort, also known as a precise abort, is one for which the exception is guaranteed
to be taken on the instruction that generated the aborting memory access. The abort handler can
use the value in the Link Register (r14_abt) to determine which instruction generated the abort,
and the value in the Saved Program Status Register (SPSR_abt) to determine the state of the
processor when the abort occurred.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 3-23
Non-Confidential

Programmers Model

Asynchronous aborts

An asynchronous abort, also known as an imprecise abort, is one for which the exception is
taken on a later instruction than the instruction that generated the aborting memory access. The
abort handler cannot determine which instruction generated the abort, or the state of the
processor when the abort occurred. Therefore, asynchronous aborts are normally fatal.

Asynchronous aborts can be generated by store instructions to Normal-type or Device-type
memory. When the store instruction is committed, the data is normally written into a buffer that
holds the data until the memory system has sufficient bandwidth to perform the write access.
This gives read accesses higher priority. The write data can be held in the buffer for a long
period, during which many other instructions can complete. If an error occurs when the write is
finally performed, this generates an asynchronous abort.

Asynchronous abort masking

The nature of asynchronous aborts means that they can occur while the processor is handling a
different abort. If an asynchronous abort generates a new exception in such a situation, the
r14_abt and SPSR_abt values are overwritten. If this occurs before the data is pushed to the
stack in memory, the state information about the first abort is lost. To prevent this from
happening, the CPSR contains a mask bit to indicate that an asynchronous abort cannot be
accepted, the A-bit. When the A-bit is set, any asynchronous abort that occurs is held pending
by the processor until the A-bit is cleared, when the exception is actually taken. The A-bit is
automatically set when abort, IRQ or FIQ exceptions are taken, and on reset. You must only
clear the A-bit in an abort handler after the state information has either been stacked to memory,
or is no longer required.

Only one pending asynchronous abort of each asynchronous abort type is supported. The
processor supports the following pending asynchronous aborts:

. AXI-master port external error.

If a subsequent external error is signaled while another one is pending, the later one is
ignored and only one abort is taken.

. One TCM write external error for each TCM port.

. Cache write parity or ECC error.

If a subsequent cache parity or ECC error is signaled while another one is pending, the
later one is normally ignored and only one abort is taken. However, if the pending error
was correctable, and the later one is not correctable, the pending error is ignored, and one
abort is taken for the error that cannot be corrected.

. AXI peripheral port external error from either main or virtual interface access.

If a subsequent AXI peripheral port error is signalled while another one is pending, the
later one is ignored and only one abort is taken.

. AHB peripheral port external error.

Memory barriers

When a store instruction, or series of instructions has been executed to normal-type or
device-type memory, it is sometimes necessary to determine whether any errors occurred
because of these instructions. Because most of these errors are reported asynchronously, they
might not generate an abort exception until some time after the instructions are executed. To
ensure that all possible errors have been reported, you must execute a DSB instruction. Abort
exceptions are only taken because of these errors if they are not masked, that is, the CPSR A-bit
is clear. If the A-bit is set, the aborts are held pending.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 3-24
Non-Confidential

Programmers Model

Aborts in Strongly Ordered and Device memory

When a memory access generates an abort, the instruction generating that access is abandoned,
even if it has not completed all its memory accesses, and the abort exception is taken. The abort
handler can then do one of the following:

. fix the error and return to the instruction that was abandoned, to re-execute it

. perform the appropriate data transfers on behalf of the aborted instruction and return to
the instruction after the abandoned instruction

. treat the error as fatal and terminate the process.

If the abort handler returns to the abandoned instruction, some of the memory accesses
generated are repeated. The effect is that multiword load/store instructions can access the same
memory location twice. The first access occurs before the abort is detected, and the second when
the instruction is restarted.

In Strongly Ordered or Device type memory, repeating memory accesses might have
unacceptable side-effects. Therefore, if the abort handler can fix the error and re-execute the
aborted instruction, you must ensure that for all memory errors on multiword load/store
instructions, either:

. all side effects of repeating accesses are inconsequential

. the error must either occur on the first word accessed or not at all.
The instructions that this rule applies to are:

. All forms of ARM instructions LDM, and LDRD, all forms of STM, STRD including VFP
variants, and unaligned LDR, STR, LDRH, and STRH

. Thumb instructions LDMIA, LDRD, SDRD, PUSH, POP, and STMIA including VFP variants, and
unaligned LDR, STR, LDRH, and STRH.

Abort handler

If you configure the processor with parity or ECC on the caches or the TCMs, and the abort
handler is in one of these memories, then it is possible for a parity or ECC error to occur in the
abort handler. If the error is not recoverable, then a synchronous abort occurs and the processor
loops until the next interrupt. The LR and SPSR values for the original abort are also lost.
Therefore, you must construct software that ensures that no synchronous aborts occur when in
the abort handler. This means the abort handler must be in external memory and not cached.

3.8.5 Supervisor call instruction

You can use the SuperVisor Call (SVC) instruction (formerly SWI) to enter Supervisor mode,
usually to request a particular supervisor function. The SVC handler reads the opcode to extract
the SVC function number. A SVC handler returns by executing the following instruction,
irrespective of the processor operating state:

MOVS PC, R14_svc
This action restores the PC and CPSR, and returns to the instruction following the SVC.

IRQs are disabled when a software interrupt occurs.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 3-25
ID021511 Non-Confidential

Programmers Model

The processor modifies the IT execution state bits on exception entry so that the values that the
processor writes into the SPSR are correct for the instruction following the SVC. This means
that the SVC handler does not have to perform any special action to accommodate the IT
instruction. For more information on the IT instruction, see the ARM Architecture Reference
Manual.

3.8.6 Undefined Instruction

The processor takes the Undefined Instruction exception when:

a double-precision VFP operation is attempted when only single-precision support is
implemented

a VFP operation is attempted when the VFP is not enabled

Software can use this mechanism to extend the ARM instruction set by emulating Undefined
coprocessor instructions. Undefined Instruction exceptions also occur when a UDIV or SDIV
instruction is executed, the value in Rm is zero, and the DZ bit in the SCTLR is set.

If the handler is required to return after the instruction that caused the Undefined Instruction
exception, it must:

Advance the IT execution state bits in the SPSR before restoring SPSR to CPSR. This is
so that the correct condition codes are applied to the next instruction on return. The
pseudo-code for advancing the IT bits is:
Mask = SPSR[11,10,26,25];
if (Mask !'= 0) {
Mask = Mask << 1;
SPSR[12,11,10,26,25] = Mask;
}
if (Mask[3:0] == 0) {
SPSR[15:12] = 0;
}

Obtain the instruction that caused the Undefined Instruction exception and return
correctly after it. Exception handlers must also be aware of the potential for both 16-bit
and 32-bit instructions in Thumb state.

After testing the SPSR and determining the instruction was executed in Thumb state, the
Undefined handler must use the following pseudo-code or equivalent to obtain this
information:
addr = R14_undef - 2
instr = Memory[addr,2]
if (instr >> 11) > 28 { /+ 32-bit instruction =/

instr = (instr << 16) | Memory[addr+2,2]

if (emulating, so return after instruction wanted) }

R14_undef += 2 //
Y/
}
After this, instr holds the instruction (in the range 0x0000-0xE7FF for a 16-bit instruction,
0xE8000000-0xFFFFFFFF for a 32-bit instruction), and the exception can be returned from
using a MOVS PC, R14 to return after it.

IRQs are disabled when an Undefined Instruction trap occurs. For more information about
Undefined instructions, see the ARM Architecture Reference Manual.

3.8.7 Breakpoint instruction

A breakpoint (BKPT) instruction operates as though the instruction causes a Prefetch Abort.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 3-26
Non-Confidential

Programmers Model

A breakpoint instruction does not cause the processor to take the Prefetch Abort exception until
the instruction is to be executed. If the instruction is not executed, for example because a branch
occurs while it is in the pipeline, the breakpoint does not take place.

After dealing with the breakpoint, the handler executes the following instruction irrespective of
the processor operating state:

SUBS PC, R14_abt, #4

This action restores both the PC and the CPSR, and retries the breakpointed instruction.

Note

If the ETM-RS is configured into Halt debug-mode, a breakpoint instruction causes the
processor to enter debug state. See Halting debug-mode debugging on page 12-3.

3.8.8 Exception vectors

You can configure the location of the exception vector addresses by setting the V bit in CP15 cl
System Control Register to enable HIVECS, as Table 3-5 shows.

Table 3-5 Configuration of exception vector address locations

Value of V bit

Exception vector
base location

0

0x00000000

1 (HIVECS) OXFFFF0000

Table 3-6 shows the exception vector addresses and entry conditions for the different exception

types.

Table 3-6 Exception vectors

Exception \(/)(::stztrfbr:g:e Mode on entry A bitonentry F biton entry | bit on entry
Reset 0x00 Supervisor Set Set Set
Undefined Instruction 0x04 Undefined Unchanged Unchanged Set
Software interrupt 0x08 Supervisor Unchanged Unchanged Set
Abort (prefetch) 0x0C Abort Set Unchanged Set
Abort (data) 0x10 Abort Set Unchanged Set
IRQ 0x18 1IRQ Set Unchanged Set
FIQ 0x1C FIQ Set Set Set

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.

Non-Confidential

3-27

Programmers Model

3.9 Acceleration of execution environments

Because the ARMv7-R architecture requires Jazelle® software compatibility, three Jazelle
registers are implemented in the processor.

Table 3-7 shows the Jazelle register instruction summary and the response to the instructions.

Table 3-7 Jazelle register instruction summary

Register Instruction Response
Jazelle ID MRC p14, 7, <Rd>, c0, c0, 0 Read as zero
MCR pl4, 7, <Rd>, c0, c0, 0 Ignore writes
Jazelle main configuration ~ MRC pl4, 7, <Rd>, c2, c0, 0 Read as zero
MCR pl4, 7, <Rd>, c2, c0, @ Ignore writes
Jazelle OS control MRC pl4, 7, <Rd>, c1, c0, @ Read as zero
MCR pl4, 7, <Rd>, cl, <0, 0 Ignore writes

Note

Because no hardware acceleration is present in the processor, when the BXJ instruction is used,
the BX instruction is invoked.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 3-28
ID021511 Non-Confidential

Programmers Model

3.10 Unaligned and mixed-endian data access support

The processor supports unaligned memory accesses. Unaligned memory accesses was
introduced with ARMv6. Bit [22] of c1, Control Register is always 1.

The processor supports byte-invariant big-endianness BE-8 and little-endianness LE. The
processor does not support word-invariant big-endianness BE-32. Bit [7] of c1, Control Register
is always 0.

For more information on unaligned and mixed-endian data access support, see the ARM
Architecture Reference Manual.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 3-29
ID021511 Non-Confidential

Programmers Model

3.11 Big-endian instruction support

The processor supports little-endian or big-endian instruction format, and is dependent on the
setting of the CFGIE pin. This is reflected in bit [31] of the SCTLR. For more information, see
cl, System Control Register on page 4-38.

Note

The facility to use big-endian or little-endian instruction format is an implementation option,
and you can therefore remove it in specific implementations. If this facility is not present, the
CFGIE pin is still reflected in the SCTLR but the instruction format is always little-endian. The
Build Options Register indicates whether the processor has been built with instruction
endianness control. See Build Options Registers on page 4-79.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 3-30
ID021511 Non-Confidential

Chapter 4
System Control

This chapter describes the system control registers, their structure, operation, and how to use them.
It contains the following sections:

. About system control on page 4-2
. Register summary on page 4-7
. Register descriptions on page 4-9.
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 4-1

ID021511 Non-Confidential

System Control

4.1 About system control

This section gives an overview of the system control coprocessor. For more information of the
registers in the system control coprocessor, see Register descriptions on page 4-9.

The system control coprocessor, CP15, controls and provides status information for the
functions implemented in the processor. The main functions of the system control coprocessor

are:

. overall system control and configuration

. cache configuration and management

. Memory Protection Unit (MPU) configuration and management
. system performance monitoring.

The system control coprocessor does not exist in a distinct physical block of logic.

411 System control and configuration

The system control and configuration registers provide overall management of:

. memory functionality

. interrupt behavior

. exception handling

. program flow prediction

. coprocessor access rights for CP0-CP13, including the VFP, CP10-11.

The system control and configuration registers also provide the processor ID and information
on configured options.

The system control and configuration registers consist of 18 read-only registers and seven
read/write registers. Figure 4-1 shows the arrangement of registers in this functional group.

CRn Opcode_1 CRm Opcode_2

c0 0 c0 00— Main ID Register
5—» Multiprocessor Affinity Register
c1——{0, 1} Processor Feature Registers 0, 1
2—» Debug Feature Register 0
3—> Auxiliary Feature Register 0
{47} Memory Model Feature Registers 0 - 3
c2——{0-5}—» Instruction Set Attributes Registers 0 - 5
1 c0 T—> Auxiliary ID Register
c1 0 c0 0—>» System Control Register
|:1—> Auxiliary Control Register
2—Pp Coprocessor Access Register
c13 0 c0 00— FCSE PID Register
|—1—> Context ID Register
c15 0 c0 00— Secondary Auxiliary Control Register
|—02— 00— Build Options Register 1
E1—> Build Options Register 2
T—> Pin Options Register

|:| Read-only |:| Read/write |:|Write-only Accessible in User mode

Figure 4-1 System control and configuration registers

Some of the functionality depends on how you set external signals at reset.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 4-2
ID021511 Non-Confidential

4.1.2

41.3

MPU control and configuration

The MPU control and configuration registers:

. control program access to memory

. designate areas of memory as either:

— Normal, Non-cacheable

— Normal, Cacheable

— Device

— Strongly Ordered.

. detect MPU faults and external aborts.

System Control

The MPU control and configuration registers consist of one read-only register and 11 read/write
registers. Figure 4-2 shows the arrangement of registers in this functional group.

CRn Opcode_1 CRm Opcode_2
c0 0 c0 4—p
c5 0 c0 0—»

|_1 —

—c1— 0—>»

N

c6 0 c0 0—>
|_2_>

—c1 0—»

I B—

——4—>

—Cc2———0—

c15 0 c3 00—

|:| Read-only |:| Read/write |:| Write-only

Cache control and configuration

MPU Type Register

Data Fault Status Register
Instruction Fault Status Register
Auxilary Data Fault Status Register
Auxilary Instruction Fault Status Register
Data Fault Address Register
Instruction Fault Address Register
Region Base Register

Region Size and Enable Register
Region Access Control Register
Memory Region Number Register
Correctable Fault Location Register

Accessible in User mode

Figure 4-2 MPU control and configuration registers

The cache control and configuration registers:

. provide information on the size and architecture of the instruction and data caches

. control cache maintenance operations that include clean and invalidate caches, drain and
flush buffers, and address translation

. override cache behavior during debug or interruptible cache operations.

The cache control and configuration registers consist of three read-only registers, one read/write
register, and a number of write-only registers. Figure 4-3 on page 4-4 shows the arrangement of
the registers in this functional group.

ARM DDI 0460C

ID021511

Non-Confidential

Copyright © 2010-2011 ARM. All rights reserved.

4-3

System Control

CRn Opcode_1 CRm Opcode 2

c0 0 c0 1—» Cache Type Register
1 c0 00— Current Cache Size Identification Register
|—1—> Current Cache Level Identification Register
2 c0 0—> Cache Size Selection Register
c7 0 T—> Cache Operations Registers t
c15 0 c5 00— Invalidate all Data Cache Register

|:| Read-only |:| Read/write |:|Write-only Accessible in User mode
1 See description of cache operations

1 See description of cache operations for for operations with User mode access

implemented CRm and Opcode_2 values

Figure 4-3 Cache control and configuration registers

41.4 Interface control and configuration

The interface control and configuration registers:

. indicate the size, number and status of the TCM regions

. define and enable TCM regions.

. indicate the size and address of the peripheral interface regions
. enable the peripheral interface regions

. control AXI-slave interface permissions

The interface control and configuration registers consist of two read-only registers and six
read/write registers. Figure 4-4 shows the arrangement of registers.

CRn Opcode_1 CRm Opcode_2

c0 0 c0 2—p TCM Type Register
c9 0 c1 00— BTCM Region Register
L |—1—> ATCM Region Register
c2———0—» TCM Selection Register
c!1 0 c0 00— Slave Port Control Register
c15 0 c0 1—> AXI peripheral interface region register
i:Z—» Virtual AXI peripheral interface region register
3—> AHB peripheral interface region register

|:| Read-only |:| Read/write |:|Write-only Accessible in User mode

Figure 4-4 TCM control and configuration registers

4.1.5 System performance monitor

The performance monitor registers:
. control the monitoring operation
. count events.

The system performance monitor consists of 12 read/write registers. Figure 4-5 on page 4-5
shows the arrangement of registers in this functional group.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 4-4
ID021511 Non-Confidential

System Control

CRn Opcode_1 CRm Opcode_2

c9 0 c12 0—» Performance Monitor Control Register 1

—1— Count Enable Set Register 1
——2— Count Enable Clear Register t
——3—» Overflow Flag Status Register 1
——4—» Software Increment Register t
——5—» Performance Counter Selection Register t

0 c13 00— Cycle Count Register 1
——1— Event Select Register
L—2—» Performance Count Register 1

0 c14 00— User Enable Register
——1—> Interrupt Enable Set Register
——2—P Interrupt Enable Clear Register

|:| Read-only |:| Read/write |:|Write-only Accessible in User mode
1 If enabled in User
Enable Register

Figure 4-5 System performance monitor registers

System performance monitoring counts system events, such as cache misses, pipeline stalls, and
other related features to enable system developers to profile the performance of their systems.
It can generate interrupts when the number of events reaches a given value.

For more information on the programmers model of the performance counters, see the ARM
Architecture Reference Manual. See Chapter 6 Events and Performance Monitor for more
information on the registers.

41.6 System validation

The system validation registers extend the use of the system performance monitor registers to
provide some functions for validation. You must not use them for other purposes. The system
validation registers schedule and clear:

. resets

. interrupts

. fast interrupts

. external debug requests.

The system validation registers consist of nine read/write registers and one write-only register.
Figure 4-6 shows the arrangement of registers.

CRn Opcode_1 CRm Opcode_2

c15 0 c1 0—>» nVAL IRQ Enable Set Register
——1—> nVAL FIQ Enable Set Register 1
——2— nVAL Reset Enable Set Register t
——3—> nVAL Debug Request Enable Set Register t
——A4—p nVAL IRQ Enable Clear Register t
——5—>» nVAL FIQ Enable Clear Register t
——6— nVAL Reset Enable Clear Register
—— 77— nVAL Debug Request Enable Clear Register 1
0 c14 00— Cache size override register

|:| Read-only |:| Read/write |:|Write-only Accessible in User mode
T If enabled in User
Enable Register

Figure 4-6 System validation registers

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 4-5
ID021511 Non-Confidential

System Control

You can only change the cache size to a size supported by the cache RAMs implemented in your
design.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-6
Non-Confidential

System Control

4.2 Register summary

The system control coprocessor is a set of registers that you can write to and read from. Some
of the registers permit more than one type of operation. The functional groups for the registers

are:

. System control and configuration on page 4-2

. MPU control and configuration on page 4-3

. Cache control and configuration on page 4-3

. Interface control and configuration on page 4-4
. System performance monitor on page 4-4

. System validation on page 4-5.

Table 4-1 shows the overall functionality for the system control coprocessor, provided through
the registers. The registers are listed in their functional groups.

Table 4-2 on page 4-9 lists the registers in the system control processor, in register order, and
gives the reset value for each register.

Table 4-1 System control coprocessor register functions

Function Register/operation Reference to description

System identification, Control cl, System Control Register on page 4-38

control and configuration -
Auxiliary control cl, Auxiliary Control Register on page 4-41
Coprocessor Access Control cl, Coprocessor Access Control Register on page 4-47

Secondary Auxiliary Control Register ¢35, Secondary Auxiliary Control Register on page 4-44

Main ID?2 c0, Main ID Register on page 4-14
Auxiliary ID Register c0, Auxiliary ID Register on page 4-37
Product Feature IDs The Processor Feature Registers on page 4-19

c0, Debug Feature Register 0 on page 4-21

c0, Auxiliary Feature Register 0 on page 4-22
Memory Model Feature Registers on page 4-22
Instruction Set Attributes Registers on page 4-27

Multiprocessor ID c0, Multiprocessor Affinity Register on page 4-18
Context ID cl3, Context ID Register on page 4-66

FCSE PID c13, FCSE PID Register on page 4-66

Pin Options Register Pin Options Register on page 4-83

Build Options Registers cl5, Build Options I Register on page 4-79

c15, Build Options 2 Register on page 4-80

Software compatibility Thread And Process ID c13, Thread and Process ID Registers on page 4-67

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 4-7
ID021511 Non-Confidential

System Control

Table 4-1 System control coprocessor register functions (continued)

Function Register/operation Reference to description
MPU control and Data Fault Status ¢35, Data Fault Status Register on page 4-49
configuration

Cache control and
configuration

Interface control and
configuration

System performance
monitoring

Validation

Auxiliary Fault Status

¢S, Auxiliary Fault Status Registers on page 4-51

Instruction Fault Status

¢S, Instruction Fault Status Register on page 4-50

Instruction Fault Address

¢6, Instruction Fault Address Register on page 4-53

Data Fault Address ¢6, Data Fault Address Register on page 4-53

MPU Type c0, MPU Type Register on page 4-17

Region Base Address c6, MPU Region Base Address Registers on page 4-54
Region Size and Enable c6, MPU Region Size and Enable Registers on page 4-55

Region Access Control

c6, MPU Region Access Control Registers on page 4-56

Memory Region Number

c6, MPU Region Number Register on page 4-59

Correctable Fault Location Register

Cache Type

Correctable Fault Location Register on page 4-77

c0, Cache Type Register on page 4-15

Current Cache Size Identification

c0, Cache Size ID Register on page 4-34

Current Cache Level

c0, Cache Level ID Register on page 4-36

Cache Size Selection

c0, Cache Size Selection Register on page 4-37

¢7, Cache Operations

c15, Invalidate all data cache

TCM Status

Cache operations on page 4-59

c0, TCM Type Register on page 4-16

Region

c9, BTCM Region Register on page 4-63
c9, ATCM Region Register on page 4-64
c9, TCM Selection Register on page 4-65

Slave Port Control

cll, Slave Port Control Register on page 4-65

Peripheral Port Region Registers.

Performance monitoring

System validation

Peripheral interface region registers on page 4-84

Chapter 6 Events and Performance Monitor

Validation Registers on page 4-68

a. Known as the ID Code Register on previous designs. Returns the device ID code.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-8
Non-Confidential

System Control

4.3 Register descriptions

4.31 Register allocation

This section describes all of the registers in the system control coprocessor. The section presents
a summary of the registers and descriptions in register order of CRn, Opcode 1, CRm,
Opcode 2.

For more information on using the system control coprocessor and the general method of how
to access CP15 registers, see the ARM Architecture Reference Manual.

Table 4-2 shows a summary of address allocation and reset values for the registers in the system
control coprocessor where:

CRn is the register number within CP15
Opl is the Opcode 1 value for the register
CRm is the operational register

Op2 is the Opcode 2 value for the register.

Table 4-2 Summary of CP15 registers and operations

CRn Op1 CRm Op2 Register or operation Type Reset value Page
c0 0 c0 {0,3,6-7} MainID Read-only Ox41xFC15x2 page 4-14
1 Cache Type Read-only 0x8003C003 page 4-15
2 TCM Type Read-only 0x00010001 page 4-16
4 MPU Type Read-only -b page 4-17
5 Multiprocessor Affinity Read-only -d page 4-18
cl 0 Processor Feature 0 Read-only 0x00000131 page 4-19
1 Processor Feature 1 Read-only 0x00000001 page 4-20
2 Debug Feature 0 Read-only 0x00010400 page 4-21
3 Auxiliary Feature 0 Read-only 0x00000000 page 4-22
4 Memory Model Feature 0 Read-only 0x00210030 page 4-22
5 Memory Model Feature 1 Read-only 0x00000000 page 4-23
6 Memory Model Feature 2 Read-only 0x01200000 page 4-24
7 Memory Model Feature 3 Read-only 0x00000211 page 4-26
c2 0 Instruction Set Attributes 0 Read-only 0x01101111 page 4-27
c2 1 Instruction Set Attributes 1 Read-only 0x13112111 page 4-28
2 Instruction Set Attributes 2 Read-only 0x21232131 page 4-30
3 Instruction Set Attributes 3 Read-only 0x01112131 page 4-31
4 Instruction Set Attributes 4 Read-only 0x00010142 page 4-33
5 Instruction Set Attributes 5 Read-only 0x00000000 page 4-34
6-7 Reserved, Read As Zero (RAZ) Read-only 0x00000000 page 4-34
c3-c7 0-7 Reserved, RAZ Read-only 0x00000000 -
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 4-9

ID021511

Non-Confidential

System Control

Table 4-2 Summary of CP15 registers and operations (continued)

CRn Op1 CRm Op2 Register or operation Type Reset value Page
c8-cl5 0-7 Undefined - - -
1 c0 0 Current Cache Size ID Read-only -cd page 4-34
1 Current Cache Level ID Read-only -c page 4-36
2-6 Undefined - - -
7 Auxiliary ID Read-only 0x00000000 page 4-37
cl-cl5 0-7 Undefined - - -
2 c0 0 Cache Size Selection Read/write Unpredictable page 4-37
cl 0 c0 0 System Control Read/write -d page 4-38
1 Auxiliary Control Read/write -d page 4-41
2 Coprocessor Access Read/write 0x00000000 page 4-47
3-7 Undefined - - -
cl-cl5 0-7
c2-c4 0 c0-cl5 0-7
c5 0 c0 0 Data Fault Status Read/write Unpredictable page 4-49
1 Instruction Fault Status Read/write Unpredictable page 4-50
2-7 Undefined - - -
cl 0 Auxiliary Data Fault Status Read/write Unpredictable page 4-51
cl 1 Auxiliary Instruction Fault Status Read/write Unpredictable page 4-51
2-7 Undefined - - -
c2-cl5 0-7
co 0 c0 0 Data Fault Address Read/write Unpredictable page 4-53
1 Undefined - - -
2 Instruction Fault Address Read/write Unpredictable page 4-53
3-7 Undefined - - -
cl 0 MPU Region Base Address Read/write 0x00000000 page 4-54
1 Undefined - - -
2 MPU Region Size and Enable Read/write 0x00000000 page 4-55
3 Undefined - - -
4 MPU Region Access Control Read/write 0x00000000 page 4-56
5-7 Undefined - - -
c2 0 MPU Memory Region Number Read/write 0x00000000 page 4-59
1-7 Undefined - - -

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.

Non-Confidential

4-10

System Control

Table 4-2 Summary of CP15 registers and operations (continued)

CRn Op1 CRm Op2 Register or operation Type Reset value Page
c3-cl5 1-7
c7 0 c0 0-3 Undefined - - -
4 NOP, previously Wait For Interrupt Write-only - page 4-59
5-7 Undefined - - -
cl-c4 0-7
c5 0 Invalidate entire instruction cache Write-only - page 4-61
c5 1 Invalidate instruction cache line by Write-only - page 4-61
address to Point-of-Unification.
2-3 Undefined - - -
4 Instruction Synchronization Barrier Write-only - page 4-61
5 Undefined - - -
6 Invalidate entire branch predictor array ~ Write-only - page 4-61
(NOP)
7 Invalidate address from branch predictor ~ Write-only - page 4-61
array (NOP)
c6 0 Undefined - - -
1 Invalidate data cache line by physical Write-only - page 4-61
address
2 Invalidate data cache line by Set/Way Write-only - page 4-61
3-7 Undefined - - -
c7-9 0-7
cl0 0
1 Clean data cache line by physical Write-only - page 4-61
address
2 Clean data cache line by Set/Way Write-only - page 4-61
3 Undefined - - -
4 Data Synchronization Barrier Write-only - page 4-62
5 Data Memory Barrier Write-only - page 4-62
6-7 Undefined - - -
cll 0
cll 1 Clean data cache line by physical Write-only - page 4-61
address to Point-of-Unification
2-7 Undefined - - -
cl2 0-7

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.

Non-Confidential

4-11

System Control

Table 4-2 Summary of CP15 registers and operations (continued)

CRn Op1 CRm Op2 Register or operation Type Reset value Page
cl3 0
1 NOP Write-only - -
2-7 Undefined - - -
cl4 0
1 Clean and invalidate data cache line by =~ Write-only - page 4-61
physical address to Point-of-Unification
cl4 2 Clean and invalidate data cache line by =~ Write-only - page 4-61
Set/Way
3-7 Undefined - - -
cl5 0-7
c8 0 c0-c15 0-7 Undefined - - -
c9 0 c0 0-7 Undefined - - -
cl 0 BTCM Region Read/write -d page 4-63
1 ATCM Region Read/write -d page 4-63
2-7 Undefined - - -
c2 0 TCM selection Read/write 0x00000000 page 4-65
1-7 Undefined - - -
c3-cll 0-7
cl2 0 Performance Monitor Control Read/write 0x41151800 page 6-7
1 Count Enable Set Read/write Unpredictable page 6-8
2 Count Enable Clear Read/write Unpredictable page 6-9
3 Overflow Flag Status Read/write Unpredictable page 6-11
4 Software Increment Write-only - page 6-12
cl2 5 Performance Counter Selection Read/write Unpredictable page 6-12
6-7 Undefined - - -
cl3 0 Cycle Count Read/write 0x00000000 page 6-13
1 Event Select Read/write Unpredictable page 6-14
2 Performance Monitor Count Read/write 0x00000000 page 6-16
3-7 Undefined - - -
cl4 0 User Enable Read/write 0x00000000 page 6-16
1 Interrupt Enable Set Read/write Unpredictable page 6-17
cl4 2 Interrupt Enable Clear Read/write Unpredictable page 6-18
3-7 Undefined - - -

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.
Non-Confidential

4-12

System Control

Table 4-2 Summary of CP15 registers and operations (continued)

CRn Op1 CRm Op2 Register or operation Type Reset value Page
cls 0-7
cl0 0 c0-c15 0-7 Undefined - - -
cll 0 c0 0 Slave Port Control Read/write 0x00000000 page 4-65
c0 1-7 Undefined - - -
cl-cl5 0-7
cl2 0 c0-c15 0-7
cl3 0 c0 0 FCSE PID RAZ,ignore 0x00000000 page 4-66
writes
1 Context ID Read/write 0x00000000 page 4-66
2 User read/write Thread and Process ID ~ Read/write 0x00000000 page 4-67
3 User Read-only Thread and Process ID Read/write 0x00000000 page 4-67
4 Privileged Only Thread and Process ID Read/write 0x00000000 page 4-67
5-7 Undefined - - -
cl-cl5 0-7 Undefined - - -
cl4 0 c0-cl5 0-7
cl5 0 c0 0 Secondary Auxiliary Control Read/write -d page 4-44
1 Normal AXI Peripheral Interface Read/write -d page 4-84
Region
2 Virtual AXI Peripheral Interface Region =~ Read/write 0 page 4-84
3 AHB Peripheral Interface Region Read/write -d page 4-84
4-7 Undefined - - -
cl 0 nVAL IRQ Enable Set Read/write Unpredictable page 4-68
1 nVAL FIQ Enable Set Read/write Unpredictable page 4-69
2 nVAL Reset Enable Set Read/write Unpredictable page 4-70
3 nVAL Debug Request Enable Set Read/write Unpredictable page 4-71
4 nVAL IRQ Enable Clear Read/write Unpredictable page 4-72
5 nVAL FIQ Enable Clear Read/write Unpredictable page 4-73
6 nVAL Reset Enable Clear Read/write Unpredictable page 4-74
7 nVAL Debug Request Enable Clear Read/write Unpredictable page 4-75
c2 0 Build Options 1 Read-only -d page 4-79
1 Build Options 2 Read-only -d page 4-80
2-6 Undefined - - -
7 Pin Options Read-only -d page 4-83

ARM DDI 0460C

ID021511

Copyright © 2010-2011 ARM. All rights reserved.

Non-Confidential

4-13

System Control

Table 4-2 Summary of CP15 registers and operations (continued)

CRn Op1 CRm Op2 Register or operation Type Reset value Page

c3 0 Correctable Fault Location Read/write Unpredictable page 4-77

c3 1-7 Undefined - - -

c4 0-7

c5 0 Invalidate all data cache Write-only - page 4-61
1-7 Undefined - - -

c6-¢c13 0-7

cl4 0 Cache Size Override Write-only - page 4-76
1-7 Undefined - - -

cls 0-7

e o oe

The value of bits [23:20,3:0] of the MIDR depend on product revision. See the register description for more information.
Reset value depends on number of MPU regions.

Reset value depends on which caches are implemented and their sizes.

See register description for more information.

4.3.2 c0, Main ID Register

The MIDR characteristics are:
Purpose Returns the device ID code that contains information about the processor

Usage constraints The MIDR is:

. a read-only register

. accessible in Privileged mode only.
Configurations Available in all processor configurations.
Attributes See Table 4-3 on page 4-15.

Figure 4-7 shows the shows the MIDR bit assignments.

31 24 23 2019 16 15 4 3 0

Implementor Variant [Architecture Primary part number Revision

Figure 4-7 MIDR bit assignments

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-14
Non-Confidential

System Control

Table 4-3 shows the MIDR bit assignments.

Table 4-3 MIDR bit assignments

Bits Name Function

[31:24] Implementer Indicates implementer.
0x41 = ARM Limited.

[23:20] Variant Identifies the major revision of the processor. This is the major revision number 7 in the rn part of
the rnpn description of the product revision status.

[19:16] Architecture Indicates the architecture version.
0xF = see feature registers.

[15:4] Primary part number Indicates processor part number.
0xC15 = Cortex-R5.

[3:0] Revision Identifies the minor revision of the processor. This is the minor revision number # in the pn part of
the rnpn description of the product revision status.

Note
If an MRC instruction is executed with CRn = c0, Opcode 1 =0, CRm = c0, and an Opcode 2
value corresponding to an unimplemented or reserved ID register, the system control
coprocessor returns the value of the MIDR.

To access the MIDR, read CP15 with:
MRC p15, 0, <Rd>, c@, c@, 0 ; Read MIDR
For more information on the processor features, see The Processor Feature Registers on
page 4-19.
4.3.3 c0, Cache Type Register
The CTR characteristics are:

Purpose Determines the instruction and data minimum line length in bytes, to
enable a range of addresses to be invalidated.

Usage constraints The CTR is:

. a read-only register

. accessible in Privileged mode only.
Configurations Available in all processor configurations.
Attributes See Table 4-4 on page 4-16.

Figure 4-8 shows the CTR bit assignments.

31 28 27 24 23 2019 161514 13 4 3 0

Reserved CWG ERG DMinLine |1]1 Reserved IMinLine

Figure 4-8 CTR bit assignments

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 4-15
ID021511 Non-Confidential

System Control

Table 4-4 shows the CTR bit assignments.

Table 4-4 CTR bit assignments

Bits Name Function
[31:28] - Always b1000.
[27:24] CWG Cache Write-back Granule
0x0 = No information provided. See maximum cache line size in c0, Cache Size ID Register on page 4-34.
[23:20] ERG Exclusives Reservation Granule
0x@ = No information provided.
[19:16] DMinLine Indicates log2 of the number of words in the smallest cache line of the data and unified caches controlled
by the processor:
0x3 = Eight words in an L1 data cache line.
[15:14] - Always 0x3.
[13:4] - Always 0x000.
[3: 0] IMinLine Indicates log2 of the number of words in the smallest cache line of the instruction caches controlled by the
processor:
0x3 - Eight words in an L1 instruction cache line.
To access the CTR, read CP15 with:
MRC p15, @, <Rd>, c@, c@, 1 ; Read CTR
4.3.4 c0, TCM Type Register

The TCMTR characteristics are:

Purpose Informs the processor of the number of ATCMs and BTCMs in the system
Usage constraints The TCMTR is:
. a read-only register
. accessible in Privileged mode only.
Configurations Auvailable in all processor configurations.
Attributes See Table 4-5 on page 4-17.

Figure 4-9 shows the TCMTR bit assignments.

313029 28 1918 1615 3 2 0

ofo|o Reserved BTCM Reserved ATCM

Figure 4-9 TCMTR bit assignments

ARM DDI 0460C

ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-16
Non-Confidential

Table 4-5 shows the TCMTR bit assignments.

System Control

Table 4-5 TCMTR bit assignments

Bits Name Function
[31:29] - Always 0, indicating v6 format TCMTR.
[28:19] - SBZ.

[18:16] BTCM

Specifies the number of BTCMs implemented. This is always set to b001 because the processor has one BTCM.

[15:3] -

SBZ.

[2:0] ATCM

Specifies the number of ATCMs implemented. Always set to b001. The processor has one ATCM.

To access the TCMTR, read CP15 with:

MRC p15, @, <Rd>, c@, c@, 2 ; Returns TCMTR

Note

. The ATCM and BTCM fields in the TCMTR occupy the same space respectively as the

ITCM and DTCM fields as defined by the ARM architecture. These fields, and the
corresponding TCM interfaces, can be considered equivalent to those defined in the

architecture.

. The ARM architecture requires only the ITCM to be accessible from both instruction and
data sides. In the Cortex-RS5 processor, both ATCM and BTCM are accessible from both

instruction and data sides.

4.3.5 c0, MPU Type Register

The MPUIR characteristics are:

Purpose Holds the value for the number of instruction and data memory regions

implemented in the processor.

Usage constraints The MPUIR is:

. a read-only register

. accessible in Privileged mode only.
Configurations Auvailable in all processor configurations.
Attributes See Table 4-6 on page 4-18.

Figure 4-10 shows the MPUIR bit assignments.

31

16

Reserved

DRegion

Reserved

Figure 4-10 MPUIR bit assignments

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.
Non-Confidential

4-17

System Control

Table 4-6 shows the MPUIR bit assignments.

Table 4-6 MPUIR bit assignments

Bits Name

Function

[31:16] -

[15:8] DRegion

SBZ.

Specifies the number of unified MPU regions. Set to 0, 12, or 16 data MPU regions.

[7:1] -

SBZ.

(0] S

Specifies the type of MPU regions, unified or separate, in the processor.
Always set to 0, the processor has unified memory regions.

To access the MPUIR, read CP15 with:

MRC p15, 0, <Rd>,

c0, c0, 4 ; Read MPUIR

4.3.6 c0, Multiprocessor Affinity Register

The MPIDR characteristics are:

Purpose

Usage constraints

Configurations
Attributes

Figure 4-11 shows

3130 29

Enables CPUs to be recognized and characterized within a twin-CPU
system.

The MPIDR is:
. a read-only register
. accessible in Privileged mode only.

Available in all processor configurations.
See Table 4-7.

the MPIDR bit assignments.

2423 16 8 7 0

Reserved Affinity Level 2 Affinity Level 1 Affinity Level O

(- Multiprocessor extensions

Figure 4-11 MPIDR bit assignments

Table 4-7 shows the MPIDR bit assignments.

Table 4-7 MPIDR bit assignments

Bits Name Description
[31:30] - Multiprocessing extensions:
0b00 = no multiprocessing extensions, applies to Cortex-RS, rOp0
0b11 = processor is part of a uniprocessor system, applies to Cortex-R5, from r1p0.
[29:24] - SBZ.
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 4-18

ID021511

Non-Confidential

System Control

Table 4-7 MPIDR bit assignments (continued)

Bits Name Description

[23:16] Aff2 oxe0.

[15:8] Affl Processor groups within a system. Read GROUPID input.

[7:0] Aff0 Processors within a group:
0x0 = CPUO
0x1 = CPUl, if implemented.

To access the MPIDR, read CP15 with:
MRC p15, 0, <Rt>, c0, c@, 5 ; Read MPIDR

4.3.7 The Processor Feature Registers

There are two Processor Feature Registers, PFR0O and PFR1. This section describes:
. c0, Processor Feature Register ()
. c0, Processor Feature Register 1 on page 4-20.

c0, Processor Feature Register 0

The PFRO characteristics are:

Purpose Provides information about the execution state support and programmers
model for the processor.

Usage constraints PFRO is:

. a read-only register

. accessible in Privileged mode only.
Configurations Available in all processor configurations.
Attributes See Table 4-8.

Figure 4-12 shows the PFRO bit assignments.

31 16 15 1221 8 7 4 3 0

Reserved State3 State2 State1 State0

Figure 4-12 PFRO bit assignments
Table 4-8 shows the PFRO bit assignments.

Table 4-8 PFRO bit assignments

Bits Name Function
[31:16] - SBZ.
[15:12] State3 Indicates support for Thumb Execution Environment (ThumbEE).

0x@ = no support.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 4-19
ID021511 Non-Confidential

System Control

Table 4-8 PFRO bit assignments (continued)

Bits Name Function

[11:8] State2 Indicates support for acceleration of execution environments in hardware or software.
0x1 = the processor supports acceleration of execution environments in software.

[7:4] Statel Indicates type of Thumb encoding that the processor supports.
0x3 = the processor supports Thumb encoding with all Thumb instructions.

[3:0] State0 Indicates support for ARM instruction set.
0x1 = the processor supports ARM instructions.

To access PFRO read CP15 with:
MRC p15, 0, <Rd>, c@, cl, @ ; Read PFRO

c0, Processor Feature Register 1
The PFR1 characteristics are:

Purpose Provides information about the execution state support and programmers
model for the processor.

Usage constraints PFRI is:

. a read-only register

. accessible in Privileged mode only.
Configurations Available in all processor configurations.
Attributes See Table 4-9.

Figure 4-13 shows the PFR1 bit assignments.

31 121 8 7 4 3 0

Reserved

Microcontroller programmers model—,
Security extension
ARMv4 programmers model

Figure 4-13 PFR1 bit assignments
Table 4-9 shows the PFR1 bit assignments.

Table 4-9 PFR1 bit assignments

Bits Name Function
[31:12] - SBZ.
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 4-20

ID021511 Non-Confidential

System Control

Table 4-9 PFR1 bit assignments (continued)

Bits Name

Function

[11:8] Microcontroller programmers model Indicates support for Microcontroller programmers model:

0x0 = no support.

[7:4] Security extension Indicates support for Security Extensions architecture:
0x@ = no support.
[3:0] ARMvV4 programmers model Indicates support for standard ARMv4 programmers model:

0x1 = the processor supports the ARMv4 model.

To access the PFR1 read CP15 with:

MRC p15, 0, <Rd>, c@, cl, 1 ; Read PFR1

4.3.8 c0, Debug Feature Register 0

Microcontroller debug model — memory mapped—I
Trace debug model — memory mapped

Trace debug model — coprocessor
Core debug model — memory mapped
Secure debug model

The ID_DFRO characteristics are:

Purpose

Usage constraints

Configurations

Attributes

Provides information about the debug system for the processor.

ID_DFRO is:

a read-only register
accessible in Privileged mode only.

Available in all processor configurations.

See Table 4-10.

Figure 4-14 shows the ID_DFRO bit assignments.

31

24

23 2019 16 15 121 8 7 4 3 0

Reserved

Core debug model — coprocessor

Figure 4-14 ID_DFRO bit assignments

Table 4-10 shows the ID_DFRO bit assignments.

Table 4-10 ID_DFRO bit assignments

Bits Name Function
[31:24] - SBZ.
[23:20] Microcontroller Debug Indicates support for the microcontroller debug model - memory mapped:
model - memory mapped gxg = no support.
[19:16] Trace debug model - Indicates support for the trace debug model - memory mapped:
memory mapped 0x1 = trace supported, memory mapped access.
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 4-21

ID021511

Non-Confidential

System Control

Table 4-10 ID_DFRO bit assignments (continued)

Bits Name Function

[15:12] Trace debug model - Indicates support for the trace debug model - coprocessor:
coprocessor 0x0 = no support.

[11:8] Core debug model - Indicates the type of embedded processor debug model that the processor supports:
memory mapped 0x4 = ARMv7 based model - memory mapped.

[7:4] Secure debug model Indicates the type of secure debug model that the processor supports:

0x0 = no support.

[3:0] Core debug model - Indicates the type of applications processor debug model that the processor supports:

coprocessor 0x0 = no support.

To access the ID_DFRO read CP15 with:

MRC p15, @, <Rd>, c@, cl, 2 ; Read ID_DFRO

4.3.9 c0, Auxiliary Feature Register 0

The ID_AFRO characteristics are:

Purpose

Provides additional information about the features of the processor.

Usage constraints The ID AFRO is:

Configurations

Attributes

. a read-only register
. accessible in Privileged mode only.

Auvailable in all processor configurations.

In this processor, the ID_AFRO reads as 0x00000000.

To access the ID_AFRO read CP15 with:

MRC p15, 0, <Rd

>, €0, cl1, 3 ; Read ID_AFRO

4.3.10 Memory Model Feature Registers

There are four Memory Model Feature Registers, MMFRO to MMFR3. They are described in
the following subsections:

. c0, Memory Model Feature Register ()

. c0, Memory Model Feature Register 1 on page 4-23

. c0, Memory Model Feature Register 2 on page 4-24
. c0, Memory Model Feature Register 3, MMFR3 on page 4-26.

c0, Memory Model Feature Register 0

The ID_MMFRO characteristics are:

Purpose

The ID_ MMFRO provides information about the memory model, memory
management, and cache support operations of the processor.

Usage constraints The ID MMFRO is:

. a read-only register
. accessible in Privileged mode only.
Configurations Available in all processor configurations.
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 4-22

ID021511

Non-Confidential

System Control

Attributes See Table 4-11.

Figure 4-15 shows the ID MMFRO bit assignments.

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0
Innerm(_)_st FCSE Aux_lllary TCM Shareability Outermc_)_st PMSA VMSA
shareability Registers support levels shareability

Figure 4-15 ID_MMFRO bit assignments

Table 4-11 shows the ID. MMFRO bit assignments.

Table 4-11 ID_MMFRO bit assignments

Bits Name Function
[31:28] Innermost shareability Indicates the innermost shareability domain implemented.
RAZ/Unknown because only one shareability domain is implemented, see [15:12].
[27:24] FCSE Indicates support for Fast Context Switch Extension (FCSE).
0x@ = no support.
[23:20] Auxiliary Registers Indicates support for the auxiliary registers.
0x2 = the processor supports the Auxiliary Instruction and Data Fault Status Registers (AIFSR
and ADFSR) and the Auxiliary Control Register.
[19:16] TCM support Indicates support for TCM and associated DMA.
0x1 = implementation defined.
[15:12] Shareability levels Indicates the number of shareability levels implemented.
0x0 = one level of shareability implemented
[11:8] Outermost shareability Indicates the outermost shareability domain implemented.
0x0 = implemented as non-cacheable
[7:4] PMSA Indicates support for Physical Memory System Architecture (PMSA).
0x3 = the processor supports PMSAv7 (subsection support).
[3:0] VMSA Indicates support for Virtual Memory System Architecture (VMSA).

0x@ = no support.

To access the ID. MMFRO read CP15 with:

MRC p15, @, <Rd>, c@, cl, 4 ; Read ID_MMFRO

c0, Memory Model Feature Register 1

The ID_MMFRI1 Register characteristics are:

Purpose

Provides information about the memory model, memory management,
and cache support of the processor.

Usage constraints The ID MMFRI is:

. a read-only register
. accessible in Privileged mode only.
Configurations Available in all processor configurations.
Attributes See Table 4-12 on page 4-24.
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 4-23

ID021511

Non-Confidential

System Control

Figure 4-16 shows the ID. MMFRI1 bit assignments.

31

28 27 24 23 2019 16 15 121 8 7 4 3 0

Branch predictor—,

L1 test clean operationsJ

L1 cache maintenance operations (unified)
L1 cache maintenance operations (Harvard)
L1 cache line maintenance operations - Set and Way (unified)
L1 cache line maintenance operations - Set and Way (Harvard)
L1 cache line maintenance operations - MVA (unified)

L1 cache line maintenance operations - MVA (Harvard)

Figure 4-16 ID_MMFR1 bit assignments

Table 4-12 shows the ID_ MMFR1 bit assignments.

Table 4-12 ID_MMFR1 bit assignments

Bits Name Function
[31:28] Branch predictor Indicates Branch Predictor management requirements.
0x0 = no MMU present.
[27:24] L1 test clean operations Indicates support for test and clean operations on data cache, Harvard or unified architecture.
0x@ = no support.
[23:20] L1 cache maintenance Indicates support for L1 cache, entire cache maintenance operations, unified architecture.
operations (unified) 0x0 = no support.
[19:16] L1 cache maintenance Indicates support for L1 cache, entire cache maintenance operations, Harvard architecture.
operations (Harvard) 0x0 = no support.
[15:12] L1 cache line maintenance Indicates support for L1 cache line maintenance operations by Set and Way, unified
operations - Set and Way architecture.
(unified) 0x0 = no support.
[11:8] L1 cache line maintenance Indicates support for L1 cache line maintenance operations by Set and Way, Harvard
operations - Set and Way architecture.
(Harvard) 0x0 = no support.
[7:4] L1 cache line maintenance Indicates support for L1 cache line maintenance operations by address, unified architecture.
operations - MVA (unified) gxg = no support.
[3:0] L1 cache line maintenance Indicates support for L1 cache line maintenance operations by address, Harvard architecture.

operations - MVA
(Harvard)

0x0 = no support.

To access the ID MMFRI1 read CP15 with:

MRC p15, 0, <Rd>, c@, cl, 5 ; Read ID_MMFR1

c0, Memory Model Feature Register 2

The ID_MMFR?2 characteristics are:

Purpose

The ID_MMFR?2 provides information about the memory model, memory
management, and cache support operations of the processor.

ARM DDI 0460C

ID021511

Copyright © 2010-2011 ARM. All rights reserved.
Non-Confidential

4-24

System Control

Usage constraints The ID MMFR2 is:

. a read-only register
. accessible in Privileged mode only.
Configurations Available in all processor configurations.

Attributes

See Table 4-13.

Figure 4-17 shows the ID MMFR2 bit assignments.

31 28 27 24 23 2019 16 15 1211 8 7 4 3 0
Hardware WEI Memgry
access flag barrier

TLB maintenance operations (unified)—,
TLB maintenance operations (Harvard)

L1 cache maintenance range operations (Harvard)
L1 background prefetch cache operations
L1 foreground prefetch cache operations

Figure 4-17 ID_MMFR2 bit assignments

Table 4-13 shows the ID MMFR?2 bit assignments.

Table 4-13 ID_MMFR2 bit assignments

Bits Name

Function

[31:28] Hardware access flag

Indicates support for Hardware Access Flag.
0x0@ = no support.

[27:24] WFI

Indicates support for Wait-For-Interrupt stalling.
0x1 = the processor supports Wait-For-Interrupt.

[23:20] Memory barrier

Indicates support for memory barrier operations.
0x2, = he processor supports:

. DSB (formerly DWB)

. ISB (formerly Prefetch Flush)

. DMB.

[19:16] TLB maintenance
operations (unified)

Indicates support for TLB maintenance operations, unified architecture.
0x@ = no support.

[15:12] TLB maintenance
operations (Harvard)

[11:8] L1 cache maintenance
range operations (Harvard)

Indicates support for TLB maintenance operations, Harvard architecture.
0x@ = no support.

Indicates support for cache maintenance range operations, Harvard architecture.
0x0 = no support.

[7:4] L1 background prefetch
cache operations

Indicates support for background prefetch cache range operations, Harvard architecture.
0x@ = no support.

[3:0] L1 foreground prefetch
cache operations

Indicates support for foreground prefetch cache range operations, Harvard architecture.
0x0@ = no support.

To access the ID MMFR2 read CP15 with:

MRC p15, @, <Rd>, c@, cl, 6 ; Read ID_MMFR2

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-25
Non-Confidential

System Control

c0, Memory Model Feature Register 3, MMFR3

The ID_MMFR3 characteristics are:

Purpose

Provides information about the two cache line maintenance operations for
the processor.

Usage constraints The ID MMFR3 is:

. a read-only register
. accessible in Privileged mode only.
Configurations Available in all processor configurations.

Attributes

See Table 4-14.

Figure 4-18 shows the ID_ MMFR3 bit assignments.

31

28 27 24 23 2019 16 15 121 8 7 4 3 0

Reserved Reserved

Supersection support—,
Coherent walk

Hierarchical cache maintenance operations by Set and Way
Hierarchical cache maintenance operations by MVA

Maintenance broadcast
Branch predictor maintenance operations

Figure 4-18 ID_MMFR3 bit assignments

Table 4-14 shows the ID MMFR3 bit assignments.

Table 4-14 ID_MMFR3 bit assignments

Bits Name Function

[31:28] Supersection support RAZ because this is a PMSA implementation.

[27:24] - SBZ

[23:20] Coherent walk RAZ because this is a PMSA implementation.

[19:16] - SBZ

[15:12] Maintenance broadcast Indicates whether cache maintenance operations are broadcast.

0x0 = cache maintenance operations only affect local structures.

ARM DDI 0460C

ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-26
Non-Confidential

System Control

Table 4-14 ID_MMFR3 bit assignments (continued)

Bits Name Function
[11:8] Branch predictor maintenance Indicates support for branch predictor maintenance operations in systems with
operations hierarchical cache maintenance operations.
0x2 = supports invalidate entire branch predictor array and invalidate branch predictor
by MVA2,
[7:4] Hierarchical cache maintenance Indicates support for hierarchical cache maintenance operations by Set and Way.
operations by Set and Way 0x1 = the processor supports invalidate cache, clean and invalidate, and clean by Set and
Way.
[3:0] Hierarchical cache maintenance Indicates support for hierarchical cache maintenance operations by address.

operations by MVA

0x1 = the processor supports:

Invalidate data cache by address

Clean data cache by address

Clean and invalidate data cache by address
Invalidate instruction cache by address
Invalidate all instruction cache entries.

a. Both of these operations are NOP on Cortex-R5.

4.3.11

To access the ID_ MMFR3 read CP15 with:

MRC p15, @, <Rd>, c@, cl, 7 ; Read ID_MMFR3

Instruction Set Attributes Registers

There are eight Instruction Set Attributes Registers, ID_ISARO to ID_ISAR?7, but three of these
are unused. This section describes:

. c0, Instruction Set Attributes Register ()

. c0, Instruction Set Attributes Register 1 on page 4-28

. c0, Instruction Set Attributes Register 2 on page 4-30

. c0, Instruction Set Attributes Register 3 on page 4-31

. c0, Instruction Set Attributes Register 4 on page 4-33

. c0, Instruction Set Attributes Register 5 on page 4-34.

. c0, Instruction Set Attributes Registers 6-7 on page 4-34.

c0, Instruction Set Attributes Register 0

The ID_ISARO characteristics are:

Purpose

Usage constraints

Configurations

Attributes

Provides information about the instruction set that the processor supports,
beyond the basic set.

The ID_ISARO is:
. a read-only register
. accessible in Privileged mode only.

Available in all processor configurations.

See Table 4-15 on page 4-28.

Figure 4-19 on page 4-28 shows the ID_ISARO bit assignments.

ARM DDI 0460C

ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-27

Non-Confidential

31

System Control

28 27 24 23 2019 16 15 121 8 7 4 3 0

Reserved

Divide instructions—,

Debug instructions

Coprocessor instructions
Compare and branch instructions
Bitfield instructions

Bit count instructions

Atomic instructions

Figure 4-19 ID_ISARO bit assignments

Table 4-15 shows the ID_ISARO bit assignments.

Table 4-15 ID_ISARO bit assignments

Bits Name Function
[31:28] - SBZ
[27:24] Divide instructions Indicates support for divide instructions.
0x1 = Support for UDIV and SDIV in the Thumb ISA. Applies to Cortex-RS, rOp0.
0x2 = Support for UDIV and SDIV in the ARM and Thumb ISA. Applies from Cortex-R5, r1p0.
[23:20] Debug instructions Indicates support for debug instructions.
0x1 = the processor supports BKPT.
[19:16] Coprocessor instructions Indicates support for coprocessor instructions other than separately attributed feature registers,
such as CP15 registers and VFP.
0x0 = no support.
[15:12] Compare and branch Indicates support for combined compare and branch instructions.
instructions 0x1 = the processor supports combined compare and branch instructions, CBNZ and CBZ.
[11:8] Bitfield instructions Indicates support for bitfield instructions.
0x1 = the processor supports bitfield instructions, BFC, BFI, SBFX, and UBFX.
[7:4] Bit counting instructions Indicates support for bit counting instructions.
0x1 = the processor supports CLZ.
[3:0] Atomic instructions Indicates support for atomic load and store instructions.

0x1 = the processor supports SWP and SWPB.

To access the ID_ISARO, read CP15 with:

MRC p15, @, <Rd>, c0@, c2, 0 ; Read ID_ISARQ

c0, Instruction Set Attributes Register 1

The ID_ISARI characteristics are:

Purpose Provides information about the instruction set that the processor supports

beyond the basic set.

Usage constraints The ID ISARI is:

. a read-only register
. accessible in Privileged mode only.
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 4-28

ID021511

Non-Confidential

System Control

Configurations Available in all processor configurations.
Attributes See Table 4-16.

Figure 4-20 shows the ID_ISARI1 bit assignments.

31 28 27 24 23 2019 16 15 121 8 7 4 3 0

Jazelle instructions —,

Interworking instructions
Immediate instructions
ITE instructions

Extend instructions
Exception 2 instructions
Exception 1 instructions
Endian instructions

Figure 4-20 ID_ISAR1 bit assignments
Table 4-16 shows the ID_ISAR1 bit assignments.

Table 4-16 ID_ISAR1 bit assignments

Bits Name Function
[31:28] Jazelle Indicates support for Jazelle instructions.
instructions 0x1 = the processor supports:
. BXJ instruction
. J bit in PSRs.
For more information see Program status registers on page 3-12 and Acceleration of execution
environments on page 3-28.
[27:24] Interworking Indicates support for interworking instructions.
instructions 0x3 = the processor supports:
. BX, and T bit in PSRs
. BLX, and PC loads have BX behavior.
. Data-processing instructions in the ARM instruction set with the PC as the destination and the S bit
clear have BX-like behavior.
[23:20] Immediate Indicates support for immediate instructions.
instructions 0x1 = the processor supports:
. the MOVT instruction
. MOV instruction encodings with 16-bit immediates
. Thumb ADD and SUB instructions with 12-bit immediates.
[19:16] ITE Indicates support for if then instructions.
instructions 0x1 = the processor supports IT instructions.
[15:12] Extend Indicates support for sign or zero extend instructions.
instructions 0x2 = the processor supports:
. SXTB, SXTBL6, SXTH, UXTB, UXTB16, and UXTH
. SXTAB, SXTABL6, SXTAH, UXTAB, UXTABL6, and UXTAH.
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 4-29
ID021511 Non-Confidential

System Control

Table 4-16 ID_ISAR1 bit assignments (continued)

Bits Name

Function

[11:8] Exception 2
instructions

Indicates support for exception 2 instructions.
0x1 = the processor supports RFE, SRS, and CPS.

[7:4] Exception 1
instructions

Indicates support for exception 1 instructions.
0x1 = the processor supports LDM (exception return), LDM (user registers), and STM (user registers).

[3:0] Endian
instructions

Indicates support for endianness control instructions.
0x1 = the processor supports SETEND and E bit in PSRs.

Reversal instructions —
PSR instructions
Unsigned multiply instructions

Signed multiply instructions

Memory hint instructions

To access the ID_ISARI read CP15 with:
MRC p15, @, <Rd>, c@, c2, 1 ; Read ID_ISARL

c0, Instruction Set Attributes Register 2

The ID_ISAR2 is:
. a read-only register
. accessible in Privileged mode only.

The ID_ISAR2 characteristics are:

Purpose The ID_ISAR2 provides information about the instruction set that the
processor supports beyond the basic set.

Usage constraints The ID ISAR2 is:

. a read-only register

. accessible in Privileged mode only.
Configurations Available in all processor configurations.
Attributes See Table 4-17 on page 4-31.

Figure 4-21 shows the ID_ISAR?2 bit assignments.

31 28 27 24 23 2019 16 15 1211 8 7 4 3 0

Multiply instructions
Interruptible instructions

Load/store instructions

Figure 4-21 ID_ISAR2 bit assignments

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-30
Non-Confidential

System Control

Table 4-17 shows the ID_ISAR2 bit assignments.

Table 4-17 ID_ISAR2 bit assignments

Bits Name Function
[31:28] Reversal Indicates support for reversal instructions.
instructions 0x2 = the processor supports REV, REV16, REVSH, and RBIT.
[27:24] PSR Indicates support for PSR instructions.
instructions 0x1 = the processor supports MRS and MSR, and the exception return forms of data-processing
instructions.
[23:20] Unsigned Indicates support for advanced unsigned multiply instructions.
Tnultipl}'/ 0x2 = the processor supports:
mnstructions « UMULL and UMLAL
. UMAAL.
[19:16] Signed Indicates support for advanced signed multiply instructions.
%nultipl}./ 0x3 = the processor supports:
mnstructions « SMULL and SMLAL
. SMLABB, SMLABT, SMLALBB,SMLALBT, SMLALTB, SMLALTT, SMLATB, SMLATT, SMLAWB, SMLAWT, SMULBB, SMULBT,
SMULTB, SMULTT, SMULWB, SMULWT, and Q flag in PSRs
. SMLAD, SMLADX, SMLALD, SMLALDX, SMLSD, SMLSDX, SMLSLD, SMLSLDX, SMMLA, SMMLAR, SMMLS, SMMLSR,
SMPUL, SMPULR, SMUAD, SMUADX, SMUSD, and SMUSDX.
[15:12] Multiply Indicates support for multiply instructions.
instructions 0x2 = the processor supports MUL, MLA, and MLS.
[11:8] Interruptible Indicates support for multi-access interruptible instructions.
instructions 0x1 = the processor supports restartable LDM and STM.
[7:4] Memory hint Indicates support for memory hint instructions.
instructions 0x3 = the processor supports PLD and PLI. Applies to Cortex-R5, rOp0
0x4 = the processor supports PLD, PLI and PLDW. Applies from Cortex-RS, r1p0
[3:0] Load/store Indicates support for additional load and store instructions.
instructions

0x1 = the processor supports LDRD and STRD.

To access the ID_ISAR2 read CP15 with:
MRC p15, @, <Rd>, c@, c2, 2 ; Read ID_ISAR2

c0, Instruction Set Attributes Register 3
The ID_ISAR3 characteristics are:

Purpose Provides information about the instruction set that the processor supports
beyond the basic set.

Usage constraints The ID ISAR3 is:

. a read-only registers

. accessible in Privileged mode only.
Configurations Available in all processor configurations.
Attributes See Table 4-18 on page 4-32.

Figure 4-22 on page 4-32 shows the ID_ISAR3 bit assignments.

ARM DDI 0460C

ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-31
Non-Confidential

ThumbEE extension— J
True NOP instructions
Thumb copy instructions

Table branch instructions
Synchronization primitive instructions

System Control

31 28 27 24 23 2019 16 15 121 8 7 4 3 0

Saturate instructions

SVC instructions
SIMD instructions

Figure 4-22 ID_ISARS3 bit assignments

Table 4-18 shows the ID_ISAR3 bit assignments.

Table 4-18 ID_ISARS bit assignments

Bits Name Function
[31:28] ThumbEE Indicates support for ThumbEE Execution Environment extension.
extension 9x0 = no support.
[27:24] True NOP Indicates support for true NOP instructions.
instructions 0x1 = the processor supports NOP16, NOP32 and various NOP compatible hints in both the ARM and
Thumb instruction sets.
[23:20] Thumb copy Indicates support for Thumb copy instructions.
instructions 0x1 = the processor supports Thumb MOV(3) low register = low register.
[19:16] Table branch Indicates support for table branch instructions.
instructions 0x1 = the processor supports table branch instructions, TBB and TBH.
[15:12] Synchronization Indicates support for synchronization primitive instructions.
primitiv.e 0x2 = the processor supports:
mnstructions - LDREX and STREX
. LDREXB, LDREXH, LDREXD, STREXB, STREXH, STREXD, and CLREX.
[11:8] SVC instructions Indicates support for SVC (formerly SWI) instructions.
0x1 = the processor supports SVC.
[7:4] SIMD Indicates support for Single Instruction Multiple Data (SIMD) instructions.
instructions 0x3 = the processor supports:
PKHBT, PKHTB, QADD16, QADDS, QASX, QSUB16, QSUBS, QSAX, SADD16, SADDS, SASX, SEL, SHADD16, SHADDS,
SHASX, SHSUB16, SHSUBS, SHSAX, SSAT, SSAT16, SSUB16, SSUB8, SSAX, SXTAB16, SXTB16, UADD16, UADDS, UASX,
UHADD16, UHADDS, UASX, UHSUB16, UHSUBS, USAX, UQADD16, UQADDS, UQASX, UQSUB16, UQSUBS, UQSAX, USADS,
USADA8, USAT, USAT16, USUB16, USUB8, USAX, UXTAB16, UXTB16, and the GE[3:0] bits in the PSRs.
[3:0] Saturate Indicates support for saturate instructions.
instructions

0x1 = the processor supports QADD, QDADD, QDSUB, QSUB and Q flag in PSRs.

To access the ID_ISAR3 read CP15 with:

MRC p15, @, <Rd>, c@, c2, 3 ; Read ID_ISAR3

ARM DDI 0460C

ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-32

Non-Confidential

System Control

c0, Instruction Set Attributes Register 4

The ID_ISAR4 characteristics are:

Purpose Provides information about the instruction set that the processor supports

beyond the basic set.

Usage constraints The ID ISAR4 is:

. a read-only register
. accessible in Privileged mode only.
Configurations Available in all processor configurations.
Attributes See Table 4-19.
Figure 4-23 shows the ID_ISAR4 bit assignments.
31 28 27 24 23 2019 1615 121 8 7 4 3 0

SWP_frac—,
PSR_M_instrs

Exclusive instructions
Barrier instructions

I—Unprivileged instructions
With shift instructions

Write-back instructions

SMC instructions

Figure 4-23 ID_ISAR4 bit assignments

Table 4-19 shows the ID_ISAR4 bit assignments.

Table 4-19 ID_ISAR4 bit assignments

Bits Name Function
[31:28] SWP_frac RAZ because SWP/SWPB instruction support is indicated in ID_ISARO.
[27:24] PSR M instrs Indicates support for M-profile instructions for modifying the PSRs.
0x0@ = no support.
[23:20] Exclusive instructions Indicates support for Exclusive instructions.
0x0 = Only supports synchronization primitive instructions as indicated by bits [15:12] in the
ISAR3 register. See c0, Instruction Set Attributes Register 3 on page 4-31 for more
information.
[19:16] Barrier instructions Indicates support for Barrier instructions.
0x1 = the processor supports DMB, DSB, and ISB instructions.
[15:12] SMC instructions Indicates support for Secure Monitor Call (SMC) (formerly SMI) instructions.
0x0 = no support.
[11:8] Write-back instructions Indicates support for write-back instructions.
0x1 = supports all the writeback addressing modes defined in ARMv7.
[7:4] With shift instructions Indicates support for with-shift instructions.
0x4 = the processor supports:
. the full range of constant shift options, on load/store and other instructions
. register-controlled shift options.
[3:0] Unprivileged instructions Indicates support for Unprivileged instructions.

0x2 = the processor supports LDR{SB|B|SH|H}T and STR{B|H}T.

ARM DDI 0460C

ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-33
Non-Confidential

System Control

To access the ID_ISAR4 read CP15 with:

MRC p15, @, <Rd>, c@, c2, 4 ; Read ID_ISAR4

c0, Instruction Set Attributes Register 5
The ID_ISARS characteristics are:
Purpose Provides additional information about the properties of the processor.

Usage constraints 1D ISARS is:

. a read-only register

. accessible in Privileged mode only.
Configurations Available in all processor configurations.
Attributes In the processor, ID_ISARS is read as 0x00000000.

To access the ID_ISARS, read CP15 with:

MRC p15, @, <Rd>, c@, c2, 5 ; Read Instruction Set Attribute Register 5

c0, Instruction Set Attributes Registers 6-7

ID ISAR6 and ID ISAR?Y are not implemented, and their positions in the register map are
Reserved. They correspond to CP15 accesses with:

MRC p15, @, <Rd>, c0@, c2, 6 ; Read ID_ISAR6
MRC p15, 0, <Rd>, c@, c2, 7 ; Read ID_ISAR7

These registers are read-only, and are accessible in Privileged mode only.

4.3.12 c0, Cache Size ID Register
The CCSIDR Register characteristics are:

Purpose Provides information about the size and behavior of the instruction or data
cache. Architecturally, there can be up to eight levels of cache, containing
instruction, data, or unified caches. This processor contains L1 instruction
and data caches only. The CSSELR determines which CCSIDR to select,
see c0, Cache Size Selection Register on page 4-37.

Usage constraints The CCSIDR is:

. a read-only register

. accessible in Privileged mode only.
Configurations Auvailable in all processor configurations.
Attributes See Table 4-20 on page 4-35.

Figure 4-24 shows the CCSIDR bit assignments.

313029 28 27 1312 2 0
WIW([R[W e Line
TielAalA NumSets Associativity Size

Figure 4-24 CCSIDR bit assignments

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 4-34
ID021511 Non-Confidential

System Control

Table 4-20 shows the CCSIDR bit assignments.

Table 4-20 CCSIDR bit assignments

Bits Name Function

[31] WT Indicates support available for write-through:
1 = write-through support available2

[30] WB Indicates support available for write-back:

1 = write-back support available?

[29] RA Indicates support available for read allocation:

1 =read allocation support available2

[28] WA Indicates support available for write allocation:

1 = write allocation support available?

[27:13] NumSets Indicates the number of sets as

(number of sets) - 12

[12:3] Associativity Indicates the number of ways as

(number of ways) - 12

[2:0] LineSize Indicates the number of words in each cache line?

a. See Table 4-21 for valid bit field encodings.

The LineSize field is encoded as 2 less than log(2) of the number of words in the cache line. For
example, a value of 0x0 indicates there are four words in a cache line, that is the minimum size
for the cache. A value of 0x1 indicates there are eight words in a cache line.

Table 4-21 shows the individual bit field and complete register encodings for the CCSIDR. Use
this to match the cache size and level of cache set by the Current Cache Size Selection Register
(CSSR). See c0, Cache Size Selection Register on page 4-37.

Table 4-21 Bit field and register encodings for CCSIDR

Complete Register bit field encoding
Size register
encoding WT WB RA WA NumSets Associativity LineSize

4KB 0xFO0@3E019 1 1 1 1 0x001F 0x3 0x1
8KB 0xF007E019 1 1 1 1 0x003F
16KB 0xFOOFEQ19 1 1 1 1 0x007F
32KB 0xFO1FEQ19 1 1 1 1 0x0Q0FF
64KB 0xFO3FEQ19 1 1 1 1 0x0Q1FF

To access the CCSIDR read CP15 with:

MRC p15, 1, <Rd>, c@, c@, 0 ; Read CCSIDR

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 4-35
ID021511 Non-Confidential

System Control

4.3.13 c0, Cache Level ID Register

The CLIDR Register characteristics are:

Purpose . Indicates the cache levels that are implemented. Architecturally,
there can be a different number of cache levels on the instruction and
data side.

. Captures the point-of-coherency.
. Captures the point-of-unification.

Usage constraints The CLIDR is:

. a read-only register

. accessible in Privileged mode only.
Configurations Auvailable in all processor configurations.
Attributes See Table 4-22.

Figure 4-25 shows the CLIDR bit assignments.

313029 2726 2423 2120 1817 1514 121110 8 6 5 3 2 0

LoU LoC LoUIS | CL7 CL6 CL5 CL4 CL3 CL2 CL1

I— Reserved

Figure 4-25 CLIDR Register bit assignments
Table 4-22 shows the CLIDR bit assignments.

Table 4-22 CLIDR Register bit assignments

Bits Name Function
[31:30] - SBZ
[29:27] LoU Level of Unification.

0b001 = level 2, if either cache is implemented
0b000 = level 1, if neither instruction nor data cache is implemented.

[26:24] LoC Level of Coherency.
0b001 = level 2, if either cache is implemented
0b000 = level 1, if neither instruction nor data cache is implemented.

[23:21] LoUIS Level of Unification Inner Shareable
0b000 = MP extensions are not implemented.
0b001 = Level 2

[20:18] CL7 0b000 = no cache at CL 7.
[17:15] CL6 0b000 = no cache at CL 6.
[14:12] CLS5 0b000 = no cache at CL 5.
[11:9] CL4 0b000 = no cache at CL 4.
[8:6] CL3 0b000 = no cache at CL 3.
[5:3] CL2 0b000 = no cache at CL 2.
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 4-36

ID021511 Non-Confidential

System Control

Table 4-22 CLIDR Register bit assignments (continued)

Bits Name Function
[2] CL1 RAZ. Indicates no unified cache at CL1.
[1] CL1 0b001 = data cache is implemented

0b000 = no data cache is implemented.

[0] CL1 0b001 = an instruction cache is implemented
0b000 = no instruction cache is implemented.

To access the CLIDR, read CP15 with:
MRC p15, 1, <Rd>, c@, c@, 1 ; Read CLIDR

4.3.14 0, Auxiliary ID Register

The AIDR is:
. a read-only register
. accessible in Privileged mode only.

The AIDR characteristics are:
Purpose Provides additional information about the processor.

Usage constraints The AIDR is:

. a read-only register

. accessible in Privileged mode only.
Configurations Available in all processor configurations.
Attributes In this processor, the AIDR reads as 0x00000000.

To access the AIDR read CP15 with:

MRC p15, 1, <Rd>, 0, c@, 7 ; Read AIDR

4.3.15 c0, Cache Size Selection Register
The CSSELR characteristics are:
Purpose Holds the value that the processor uses to select the CSSELR to use.

Usage constraints The CSSELR is:

. a read/write register

. accessible in Privileged mode only.
Configurations Auvailable in all processor configurations.
Attributes See Table 4-23 on page 4-38.

Figure 4-26 on page 4-38 shows the CSSELR bit assignments.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 4-37
ID021511 Non-Confidential

31

System Control

4 3 10

Reserved Level

InD J

Figure 4-26 CSSELR bit assignments

Table 4-23 shows the CSSELR bit assignments.

Table 4-23 CSSELR bit assignments

Bits Name Function
[31:4] - SBZ.
[3:1] Level Identifies which cache level to select.

b000 = Level 1 cache
This field is read only, writes are ignored.

[0] InD Identifies instruction or data cache to use.
1 = instruction
0 = data.
To access the CCSIDRSs read or write CP15 with:
MRC p15, 2, <Rd>, c@, c@, 0 ; Read CSSELR
MCR p15, 2, <Rd>, c@, c@, O ; Write CSSELR
4.3.16 c1, System Control Register
The SCTLR characteristics are:
Purpose Provides control and configuration information for:

memory alignment, endianness, protection, and fault behavior
MPU and cache enables and cache replacement strategy
interrupts and the behavior of interrupt latency

the location for exception vectors

program flow prediction.

Usage constraints The SCTLR is:

a read/write register
accessible in Privileged mode only.

Attempts to read or write the SCTLR from User mode result in an
Undefined Instruction exception.

Configurations Available in all processor configurations.

Attributes See Table 4-24 on page 4-39.

Figure 4-27 on page 4-39 shows the SCTLR bit assignments.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 4-38

ID021511

Non-Confidential

System Control

3130 29 28 27 26 25 24 23 2221 20 19 18 17 16 15 14 13 12 11 10 7 6 3210

SBO |1 v|i|z SBZ SBO |C|A|M
IEj L_sw
TE RR
AFE SBZ
TRE SBO
NMFI BR
SBZ SBO
EE DZ
VE SBz

Fl

Figure 4-27 SCTLR bit assignments

Table 4-24 shows the SCTLR bit assignments.

Table 4-24 SCTLR bit assignments

Bits

Name

Function

[31]

[30]

IE

TE

Identifies little or big instruction endianness in use:

0 = little-endianness

1 = big-endianness.

The primary input CFGIE defines the value. This bit is read-only.

Thumb exception enable:

0 = enable ARM exception generation

1 = enable Thumb exception generation.

The primary input TEINIT defines the reset value.

[29]
(28]

[27]

AFE

TRE

NMFI

Access Flag Enable. On the processor this bit is SBZ.
TEX Remap Enable. On the processor this bit is SBZ.

NMFI, non-maskable fast interrupt enable:

0 = Software can disable FIQs

1 = Software cannot disable FIQs.

This bit is read-only. The configuration input CFGNMFIm defines its value.

EE

SBZ.

Determines how the E bit in the CPSR is set on an exception:
0 =CPSR E bit is set to 0 on an exception

1 =CPSR E bit is set to 1 on an exception.

The primary input CFGEE defines the reset value.

VE

Configures vectored interrupt:

0 = exception vector address for IRQ is 0x00000018 or OxFFFF018. See V bit.
1 = VIC controller provides handler address for IRQ.

The reset value of this bit is 0.

SBO.

Fast Interrupts enable.
On the processor Fast Interrupts are always enabled. This bit is SBO.

SBZ.

ARM DDI 0460C

ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-39
Non-Confidential

System Control

Table 4-24 SCTLR bit assignments (continued)

Name

Function

DZ

Divide by zero:

0 = do not generate an Undefined Instruction exception
1 = generate an Undefined Instruction exception.

The reset value of this bit is 0.

(18]
[17]

BR

SBO.

MPU background region enable.

SBO.

SBZ.

[13]

RR

Round-robin bit, controls replacement strategy for instruction and data caches:
0 = random replacement strategy
1 = round-robin replacement strategy.

The reset value of this bit is 0. The processor always uses a random replacement strategy, regardless of the state
of this bit.

Determines the location of exception vectors:

0 =normal exception vectors selected, address range = 0x00000000-0x0000001C

1 = high exception vectors (HIVECS) selected, address range = 0xFFFF0000-0xFFFFoQ1C.
The primary input VINITHIm defines the reset value.

[12]

Enables L1 instruction cache:

0 = instruction caching disabled. This is the reset value.

1 = instruction caching enabled.

If no instruction cache is implemented, then this bit is SBZ.

(11]

Branch prediction enable bit.

The processor supports branch prediction. This bit is SBO. The ACTLR can control branch prediction, see c/,
Auxiliary Control Register on page 4-41.

SW

Enables SWP and SWPB instructions
0 = SWP and SWPB are Undefined
1 = SWP and SWPB are executed with full locking support on the bus

The reset value of this bit is 0.2

SBZ.

SBO.

Enables L1 data cache:

0 = data caching disabled. This is the reset value.

1 = data caching enabled.

If no data cache is implemented, then this bit is SBZ.

Enables strict alignment of data to detect alignment faults in data accesses:
0 = strict alignment fault checking disabled. This is the reset value.
1 = strict alignment fault checking enabled.

Enables the MPU:

0 =MPU disabled. This is the reset value.
1 = MPU enabled.

If no MPU is implemented, this bit is SBZ.

ARM DDI 0460C

ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-40
Non-Confidential

System Control

a. Unless explicitly enabled, SWP and SWPB are Undefined

To use the SCTLR, ARM recommends that you use a read-modify-write technique. To access
the SCTLR, read or write CP15 with:

MRC p15, 0, <Rd>, cl, c@, @ ; Read SCTLR
MCR p15, @, <Rd>, cl, c@, 0 ; Write SCTLR

Attempts to read or write the SCTLR from User mode results in an Undefined Instruction
exception.

4.3.17 c1, Auxiliary Control Register

DICDI

DIB2DI
DIB1DI

DIADI
B1TCMPCEN
BOTCMPCEN
ATCMPCEN
AXISCEN
AXISCUEN
DILSM
DEOLP
DBHE
FRCDIS
Reserved

3130292827 26252423222120191817161514131211109 8 7 6 5 3210

The ACTLR characteristics are:

Purpose Controls:
. branch prediction
. performance features
. error and parity logic.

Usage constraints The ACTLR is:
. A read/write register.
. Accessible in Privileged mode only.

. ARM recommends that any instruction that changes bits [31:28] or
[7] is followed by an ISB instruction to ensure that the changes have
taken effect before any dependent instructions are executed.

Configurations Auvailable in all processor configurations.
Attributes See Table 4-25 on page 4-42.

Figure 4-28 shows the ACTLR bit assignments.

BP CEC

L ATCMECEN
BOTCMECEN
B1TCMECEN

DILS
sMOV
FDSnS

FWT

FORA

DNCH

ERPEG

DLFO

DBWR
RSDIS

Figure 4-28 ACTLR bit assignments

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-41
Non-Confidential

System Control

Table 4-25 shows the ACTLR bit assignments.

Table 4-25 ACTLR bit assignments

Bits

Name

Function

(31]

DICDI?

Case C dual issue control:
0 = Enabled. This is the reset value.
1 = Disabled.

DIB2DI?

Case B2 dual issue control:
0 = Enabled. This is the reset value.
1 = Disabled.

(29]

DIB1DI#

Case B1 dual issue control:
0 = Enabled. This is the reset value.
1 = Disabled.

(28]

DIADI?

Case A dual issue control:
0 = Enabled. This is the reset value.
1 = Disabled.

(27]

BITCMPCEN

BITCM ECC check enable:

0 = Disabled

1 = Enabled.

The primary input PARECCENRAMmM|2]b defines the reset value.

If the BTCM is configured with ECC, you must always set this bit to the same value as BOTCMPCEN.

BOTCMPCEN

BOTCM ECC check enable:

0 = Disabled

1 = Enabled.

The primary input PARECCENRAMmM[1]b defines the reset value.

If the BTCM is configured with ECC, you must always set this bit to the same value as BITCMPCEN.

ATCMPCEN

ATCM ECC check enable:

0 = Disabled

1 = Enabled.

The primary input PARECCENRAMmMm[0] defines the reset value.

[24]

[23]

AXISCEN

AXISCUEN

AXI slave cache RAM access enable:
0 = Disabled. This is the reset value.
1 = Enabled.

Note

When AXI slave cache access is enabled, the caches are disabled and the processor cannot run any cache
maintenance operations. If the processor attempts a cache maintenance operation, an Undefined
Instruction exception is taken.

AXT slave cache RAM non-privileged access enable:
0 = Disabled. This is the reset value.
1 = Enabled.

[22]

DILSM

Disable Low Interrupt Latency (LIL) on load/store multiples:
0 = Enable LIL on load/store multiples. This is the reset value.
1 = Disable LIL on all load/store multiples.

ARM DDI 0460C

ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-42
Non-Confidential

System Control

Table 4-25 ACTLR bit assignments (continued)

Name

Function

DEOLP

Disable end of loop prediction:
0 = Enable loop prediction. This is the reset value.
1 = Disable loop prediction.

(20]

DBHE

Disable Branch History (BH) extension:
0 = Enable the extension. This is the reset value.
1 = Disable the extension.

FRCDIS

Fetch rate control disable:
0 = Normal fetch rate control operation. This is the reset value.
1 = Fetch rate control disabled.

SBZ.

RSDIS

Return stack disable:
0 = Normal return stack operation. This is the reset value.
1 = Return stack disabled.

[16:15]

BP

This field controls the branch prediction policy:

b00 = Normal operation. This is the reset value.

b01 = Branch always taken and history table updates disabled.

b10 = Branch always not taken and history table updates disabled.
b1l = Reserved. Behavior is Unpredictable if this field is set to b11.

DBWR

Disable write burst in the AXI master:
0 = Normal operation. This is the reset value.
1 = Disable write burst optimization.

[13]

DLFO

Disable linefill optimization in the AXI master:
0 = Normal operation. This is the reset value.
1 = Limits the number of outstanding data linefills to two.

ERPEG¢

Enable random parity error generation:
0 = Random parity error generation disabled. This is the reset value.
1 = Enable random parity error generation in the cache RAMs.

Note

This bit controls error generation logic during system validation. A synthesized ASIC typically does not
have such models and this bit is therefore redundant for ASICs.

[11]

DNCH

Disable data forwarding for Non-cacheable accesses in the AXI master:
0 = Normal operation. This is the reset value.
1 = Disable data forwarding for Non-cacheable accesses.

(10]

FORA

Force outer read allocate (ORA) for outer write allocate (OWA) regions:
0 = No forcing of ORA. This is the reset value.
1 = ORA forced for OWA regions.

FWT

Force write-through (WT) for write-back (WB) regions:
0 = No forcing of WT. This is the reset value.
1= WT forced for WB regions.

ARM DDI 0460C

ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-43
Non-Confidential

System Control

Table 4-25 ACTLR bit assignments (continued)

Bits

Name

Function

FDSnS

Force D-side to not-shared when MPU is off:
0 = Normal operation. This is the reset value.
1 = D-side normal Non-cacheable forced to Non-shared when MPU is off.

sMOV

sMOV of a divide does not complete out of order. No other instruction is issued until the divide is finished.
0 = Normal operation. This is the reset value.
1 =sMOV out of order disabled.

DILS

Disable low interrupt latency on all load/store instructions.
0 = Enable LIL on all load/store instructions. This is the reset value.
1 = Disable LIL on all load/store instructions.

[5:3]

CEC

Cache error control for cache parity and ECC errors.

See Table 8-2 on page 8-21 and Table 8-3 on page 8-22 for more information about how these bits are
used. The reset value is b100.

BITCMECEN

B1TCM external error enable:

0 = Disabled

1 = Enabled.

The primary input ERRENRAMmMm|[2] defines the reset value.

BOTCMECEN

BOTCM external error enable:

0 = Disabled

1 = Enabled.

The primary input ERRENRAMmMm([1] defines the reset value.

ATCMECEN

ATCM external error enable:

0 = Disabled

1 = Enabled.

The primary input ERRENRAMmMm|[0] defines the reset value.

a. See Dual issue on page B-33
b. See Configuration signals on page A-4.

C.

4.3.18

This bit is only supported if parity error generation is implemented in your design.

To access the ACTLR, read or write CP15 with:

MRC p15, 0, <Rd>, cl, c@, 1 ; Read ACTLR
MCR p15, @, <Rd>, cl, c@, 1 ; Write ACTLR

c15, Secondary Auxiliary Control Register

The Secondary Auxiliary Control Register characteristics are:

Purpose Controls:
. branch prediction
. performance features
. error and parity logic.

Usage constraints The Secondary Auxiliary Control Register is:

. A read/write register.
. Accessible in Privileged mode only.
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 4-44

ID021511

Non-Confidential

System Control

. ARM recommends that any instruction that changes bits [20:16] is
followed by an ISB instruction to ensure that the changes have taken
effect before any dependent instructions are executed.

Configurations Auvailable in all processor configurations.
Attributes See Table 4-26.

Figure 4-29 shows the Secondary Auxiliary Control Register bit assignments.

31 23222120191817 161514131211 10 9 8 7 4 3210
Reserved
DCHE ——— I_‘—ATCMRMW
DR2B BTCMRMW
DF6DI ATCMECC
DF2DI BOTCMECC
DDI Reserved
DOODPFP IDC
DOOFMACS DzC
Reserved I0C
IXC UFC
OFC

Figure 4-29 Secondary Auxiliary Control Register bit assignments

Table 4-26 shows the Secondary Auxiliary Control Register bit assignments.

Table 4-26 Secondary Auxiliary Control Register bit assignments

Bits Name

Function

[31:23] -

[22] DCHE

[21] DR2BY

SBZ.

Disable hard-error support in the caches.2

0 = Enabled. The cache logic recovers from some hard errors.

1 = Disabled. Most hard errors in the caches are fatal. This is the reset value.
See Hard errors on page 8-5 for more information.

Enable random 2-bit error generation in cache RAMs. This bit has no effect unless ECC is configured, see
Configurable options on page 1-6.

0 = Disabled. This is the reset value.

1 = Enabled.

Note

This bit controls error generation logic during system validation. A synthesized ASIC typically does not
have such models and this bit is therefore redundant for ASICs.

[20] DF6DI

[19] DF2DI

F6 dual issue control.c
0 = Enabled. This is the reset value.
1 = Disabled.

F2 1d/F2_st/F2D dual issue control.c
0 = Enabled. This is the reset value.
1 = Disabled.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-45
Non-Confidential

System Control

Table 4-26 Secondary Auxiliary Control Register bit assignments (continued)

Name

Function

DDI

F1/F3/F4dual issue control.c
0 = Enabled. This is the reset value.
1 = Disabled.

[17]

DOODPFP

Out-of-order double-precision floating point instruction control.©
0 = Enabled. This is the reset value.
1 = Disabled.

[16]

[15:14]

DOOFMACS

Out-of-order FMACS control.c
0 = Enabled. This is the reset value.
1 = Disabled.

SBZ.

[13]

IXC

Floating-point inexact exception output mask.c

0 = Mask floating-point inexact exception output. The output FPIXCm is forced to zero. This is the reset
value.

1 = Propagate floating point inexact exception flag FPSCR. IXC to output FPIXCm.

[12]

OFC

Floating-point overflow exception output mask.c

0 = Mask floating-point overflow exception output. The output FPOFCm is forced to zero. This is the reset
value.

1 = Propagate floating-point overflow exception flag FPSCR.OFC to output FPOFCm.

[11]

UFC

Floating-point underflow exception output mask.c

0 = Mask floating-point underflow exception output. The output FPUFCm is forced to zero. This is the
reset value.

1 = Propagate floating-point underflow exception flag FPSCR.UFC to output FPUFCm.

[10]

10C

DzC

Floating-point invalid operation exception output mask.c

0 =Mask floating-point invalid operation exception output. The output FPIOCm is forced to zero. This is
the reset value.

1 = Propagate floating-point invalid operation exception flag FPSCR.IOC to output FPIOCm.

Floating-point divide-by-zero exception output mask.c

0 = Mask floating-point divide-by-zero exception output. The output FPDZCm is forced to zero. This is
the reset value.

1 = Propagate floating-point divide-by-zero exception flag FPSCR.DZC to output FPDZCm.

[7:4]

IDC

Floating-point input denormal exception output mask.¢

0 = Mask floating-point input denormal exception output. The output FPIDCm is forced to zero. This is
the reset value.

1 = Propagate floating-point input denormal exception flag FPSCR. IDC to output FPIDCm.

SBZ.

BTCMECC

Correction for internal ECC logic on BTCM ports.d
0 = Enabled. This is the reset value.
1 = Disabled.

ARM DDI 0460C

ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-46
Non-Confidential

System Control

Table 4-26 Secondary Auxiliary Control Register bit assignments (continued)

Bits Name Function
[2] ATCMECC Correction for internal ECC logic on ATCM port.4
0 = Enabled. This is the reset value.
1 = Disabled.
[1] BTCMRMW Enables 64-bit stores for the BTCMs. When enabled, the processor uses read-modify-write to ensure that
all reads and writes presented on the BTCM ports are 64 bits wide.®
0 = Disabled
1 = Enabled.
The primary input RMWENRAMmM([1] defines the reset value.
[0] ATCMRMW Enables 64-bit stores for the ATCM. When enabled, the processor uses read-modify-write to ensure that all
reads and writes presented on the ATCM port are 64 bits wide.©
0 = Disabled
1 = Enabled.

The primary input RMWENRAMmMm[0] defines the reset value.

This bit is RAZ if both caches have neither ECC nor parity.

This bit is only supported if parity error generation is implemented in your design.

This bit has no effect unless the Floating Point Unit (FPU) has been configured, see Configurable options on page 1-6.

This bit has no effect unless TCM ECC logic has been configured for the respective TCM interface, see Configurable options on page 1-6.
This feature is not available when the TCM interface has been built with 32-bit ECC.

o a0 op

To access the Secondary Auxiliary Control Register, read or write CP15 with:

MRC p15, @, <Rd>, c15, c@, @ ; Read Secondary Auxiliary Control Register
MCR pl5, 0, <Rd>, c15, c@, @ ; Write Secondary Auxiliary Control Register

4.3.19 c1, Coprocessor Access Control Register
The CPACR characteristics are:
Purpose Sets access rights for coprocessors.

Usage constraints The CPACR is:

. A read/write register.
. Accessible in Privileged mode only.
. Because this processor does not support coprocessors CP0O through

CP9, CP12, and CP13, bits [27:24] and [19:0] in this register are
read-as-zero and ignore writes.

. CPACR has no effect on access to CP14, the debug control
coprocessor, or CP15, the system control coprocessor. The only
other coprocessor that the Cortex-R5SF CPU includes is the FPU,
CP10, and CP11. This register enables software to determine if the

FPU exists in the CPU.
Configurations Available in all processor configurations.
Attributes See Table 4-27 on page 4-48.

Figure 4-30 on page 4-48 shows the CPACR bit assignments.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 4-47
ID021511 Non-Confidential

3130292827 26252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

System Control

cp13|cp12|cp11|cp10| cp9 | cp8 | cp7 | cpb | cp5 | cpd | cp3 | cp2 | cp1 | cpO

|—Reserved
D32DIS

ASEDIS

Figure 4-30 CPACR bit assignments

Table 4-27 shows the CPACR bit assignments.

Table 4-27 CPACR bit assignments

Bits Name Function
[31] ASEDIS Advanced-SIMD disable. Read only.
0 =FPU is not configured
1 =FPU is configured, Advanced SIMD is not available.
[30] D32DIS D16-D31 disable. Read only.
0 =FPU is not configured
1 =FPU is configured, VFP registers D16-D32 are not available.
[29:28] - Read as Zero.
[27:26] cpl3 Read as Zero.
[25:24] cpl2
[23:22] cpll Defines access permissions for the FPU.
[2122] epl0 If the FPU is not included for this processor, these bits are RAZ/WI.
’ P If the FPU is included, both cp10 and cpl1 must be programmed to the same value:
b00 = Access denied. Attempts to access generates an Undefined Instruction exception. This is the
reset value.
b01 = Privileged mode access only
b10 = Reserved
bl1 = Privileged and User mode access.
[19:18] ¢p9 Read as Zero.
[17:16] cp8
[15:14] cp7
[13:12] cpb6
[11:10] cp5
[9:8] cp4
[7:6] cp3
[5:4] cp2
[3:2] cpl
[1:0] cp0

To access the CPACR, read or write CP15 with:

MRC p15, 0, <Rd>, cl, c@, 2 ; Read CPACR

ARM DDI 0460C

ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-48
Non-Confidential

System Control

MCR p15, @, <Rd>, cl1, c@, 2 ; Write CPACR

4.3.20 Fault Status and Address Registers

The processor reports the status and address of faults that occur during its operation. For both
data and instruction faults there are two Fault Status Registers (FSRs) and one Fault Address
Register (FAR).

Fields within the Data and Instruction FSRs indicate the priority and source of a fault and the
validity of the address in the corresponding FAR. Table 4-28 shows this encoding for the FSRs.

Table 4-28 Fault Status Register encodings

Priority Sources FSR[10,3:0] FAR

Highest Alignment 0b00001 Valid
Background 0b00000 Valid
Permission 0b01101 Valid
Synchronous External Abort 0b01000 Valid
Asynchronous External Abort 0b10110 Unpredictable
Synchronous Parity or ECC Error 0b11001 Valid
Asynchronous Parity or ECC Error ~ 0b11000 Unpredictable

Lowest Debug Event 0b00010 Unchanged

All other encodings for these FSR bits are Reserved.

c5, Data Fault Status Register

The DFSR is:
. a read/write register
. accessible in Privileged mode only.

The DFSR characteristics are:
Purpose Holds status information regarding the source of the last data abort.

Usage constraints The DFSR is:

. a read/write register

. accessible in Privileged mode only.
Configurations Available in all processor configurations.
Attributes See Table 4-29 on page 4-50.

Figure 4-31 shows the DFSR bit assignments.

31 13121110 9 8 7 4 3 0

Reserved S({0|0| Domain Status
L_RwW
SD

Figure 4-31 DFSR bit assignments

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 4-49
ID021511 Non-Confidential

System Control

Table 4-29 shows the DFSR bit assignments.

Table 4-29 DFSR bit assignments

Bits

Name

Function

[31:13]

[12]

SD

SBZ.

Distinguishes between an AXI Decode or Slave error on an external abort. This bit is only valid for external
aborts. For all other aborts types of abort, this bit is set to zero:

0 = AXI Decode error (DECERR), or AHB error, caused the abort

1 = AXI Slave error (SLVERR), or unsupported exclusive access, for example exclusive access using the AHB
peripheral port, caused the abort.

RW

Indicates whether a read or write access caused an abort:
0 = read access caused the abort
1 = write access caused the abort.

Domain

Part of the Status field.
Always read as 0. Writes ignored.

SBZ. This is because domains are not implemented in this processor.

Status

Indicates the type of fault generated. To determine the data fault, you must use bit [12] and bit [10] in
conjunction with bits [3:0].

a. For more information on how these bits are used in reporting faults, see Table 4-28 on page 4-49.

To use the DFSR read or write CP15 with:

MRC p15, @, <Rd>, c5, c@, 0 ; Read DFSR
MCR p15, @, <Rd>, c5, c@, @ ; Write DFSR

c5, Instruction Fault Status Register
The IFSR characteristics are:
Purpose Holds status information regarding the source of the last instruction abort.

Usage constraints The IFSR is:

. a read/write register

. accessible in Privileged mode only.
Configurations Auvailable in all processor configurations.
Attributes See Table 4-30 on page 4-51.

Figure 4-32 shows the IFSR bit assignments.

31 13121110 9 8 7 4 3 0

Reserved S Domain Status

|— Reserved
Reserved

SD

Figure 4-32 IFSR bit assignments

ARM DDI 0460C

ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-50
Non-Confidential

System Control

Table 4-30 shows the IFSR bit assignments.

Table 4-30 IFSR bit assignments

Bits Name Function

[31:13] - SBZ.

[12] SD Distinguishes between an AXI Decode or Slave error on an external abort. This bit is only valid for external
aborts. For all other aborts types of abort, this bit is set to zero:
0 = AXI Decode error (DECERR) caused the abort
1 = AXI Slave error (SLVERR) caused the abort.

[11] - SBZ.

[10]2 S Part of the Status field.

[9:8] - SBZ.

[7:4] Domain SBZ. This is because domains are not implemented in this processor.

[3:0]2 Status Indicates the type of fault generated. To determine the instruction fault, bit [12] and bit [10] must be used in

conjunction with bits [3:0].

a.

For more information on how these bits are used in reporting faults, see Table 4-28 on page 4-49.

To access the IFSR read or write CP15 with:
MRC p15, @, <Rd>, c5, c0, 1 ; Read IFSR
MCR p15, 0, <Rd>, c5, c@, 1 ; Write IFSR
c5, Auxiliary Fault Status Registers

There are two auxiliary fault status registers:
. the Auxiliary Data Fault Status Register (ADFSR)
. the Auxiliary Instruction Fault Status Register (AIFSR).

The auxiliary fault status registers characteristics are:

Purpose Provide additional information about data and instruction parity, ECC, and
external TCM errors.

Usage constraints The auxiliary fault status registers are:

. Read/write registers.
. Accessible in Privileged mode only.
. The contents of an auxiliary fault status register are only valid when

the corresponding Data or Instruction Fault Status Register indicates
that a parity or ECC error has occurred. At other times the contents
of the auxiliary fault status registers are Unpredictable.

Configurations Available in all processor configurations.
Attributes See Table 4-31 on page 4-52.

Figure 4-33 on page 4-52 shows the auxiliary fault status registers bit assignments.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-51
Non-Confidential

System Control

31 28 27 24 2322212019 14 13 5 4 0
Reserved Reserved Index Reserved
CacheWay — | | - SideExt
Side Recoverable error

Figure 4-33 Auxiliary fault status registers bit assignments
Table 4-31 shows the auxiliary fault status registers bit assignments.

Table 4-31 ADFSR and AIFSR bit assignments

Bits Name Function
[31:28] - SBZ.
[27:24] CacheWay? The value returned in this field indicates the cache way or ways in which the error occurred.
[23:22] Side The value returned in this field indicates the source of the error. See Table 4-32 for the encodings.
[21] Recoverable The value returned in this field indicates if the error is recoverable.

error 0 = Unrecoverable error.

1 =Recoverable error. This includes all correctable parity/ECC errors and recoverable TCM external errors.

[20] SideExt The value returned in this field indicates the source of the error. See Table 4-32 for the encodings.
[19:14] - SBZ.
[13:5] Indexb This field returns the index value for the access giving the error.
[4:0] - SBZ.

a. This field is only valid for data cache store parity/ECC errors, otherwise it is Unpredictable.
b. This field is only valid for data cache store parity/ECC errors. On the AIFSR, and for TCM accesses, this field SBZ.

Table 4-32 shows the encodings for the SideExt and Side bits.

Table 4-32 SideExt and Side bit encodings

Bit values
Meaning
SideExt Side
0 00 Cache/AXIM
0 01 ATCM
0 10 BTCM
0 11 Reserved
1 00
1 01 AXT peripheral port, including virtual interface
1 10 AHB peripheral port
1 11 Reserved

To access the auxiliary fault status registers, read or write CP15 with:

MRC pl5, @, <Rd>, c5, c1, @ ; Read Auxiliary Data Fault Status Register
MCR pl15, @, <Rd>, c5, cl, @ ; Write Auxiliary Data Fault Status Register

ARM DDI 0460C

ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-52
Non-Confidential

System Control

MRC p15, @, <Rd>, c5, c1, 1 ; Read Auxiliary Instruction Fault Status Register
MCR pl15, @, <Rd>, c5, c1, 1 ; Write Auxiliary Instruction Fault Status Register

c6, Data Fault Address Register
The DFAR characteristics are:
Purpose Holds the address of the fault when a synchronous abort occurs.

Usage constraints The DFAR is:

. a read/write register
. accessible in Privileged mode only.

Configurations Available in all processor configurations.

Attributes The DFAR bits [31:0] contain the address where the synchronous abort
occurred.

To access the DFAR read or write CP15 with:

MRC p15, @, <Rd>, c6, c@, 0 ; Read DFAR
MCR p15, 0, <Rd>, c6, c@, O ; Write DFAR

A write to this register sets the DFAR to the value of the data written. This is useful for a
debugger to restore the value of the DFAR.

The processor also updates the DFAR on debug exception entry because of watchpoints. See
Effect of debug exceptions on CP15 registers and DBGWFAR on page 12-43 for more
information.

c6, Instruction Fault Address Register

The IFAR characteristics are:

Purpose Holds the address of the instruction that caused a prefetch abort.

Usage constraints The IFAR is:

. a read/write register
. accessible in Privileged mode only.
Configurations Available in all processor configurations.
Attributes The IFAR bits [31:0] contain the Instruction Fault address.

To access the IFAR read or write CP15 with:

MRC p15, @, <Rd>, c6, c@, 2 ; Read IFAR
MCR p15, 0, <Rd>, c6, c@, 2 ; Write IFAR

A write to this register sets the IFAR to the value of the data written. This is useful for a
debugger to restore the value of the IFAR.

4.3.21 c6, MPU memory region programming registers

The MPU memory region programming registers program the MPU regions.

There is one register that specifies which one of the sets of region registers is to be accessed.
See c6, MPU Region Number Register on page 4-59. Each region has its own registers to
specify:

. region base address

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-53
Non-Confidential

System Control

. region size and enable
. region access control.

You can implement the processor with 12 or 16 regions, or without an MPU entirely. If you
implement the processor without an MPU, then there are no regions and no region programming
registers.

Note
. When the MPU is enabled:

— The MPU determines the access permissions for all accesses to memory, including
the TCMs. Therefore, you must ensure that the memory regions in the MPU are
programmed to cover the complete TCM address space with the appropriate access
permissions. You must define at least one of the regions in the MPU.

— An access to an undefined area of memory normally generates a background fault.
. For the TCM space the processor uses the access permissions but ignores the region
attributes from MPU.

CP15, c9 sets the location of the TCM base address. For more information see c9, BTCM
Region Register on page 4-63 and c9, ATCM Region Register on page 4-64.

c6, MPU Region Base Address Registers
The MPU Region Base Address Register characteristics are:

Purpose Describes the base address of the region specified by the Memory Region
Number Register.

Usage constraints The MPU Region Base Address Registers are:

. 32-bit read/write registers

. accessible in Privileged mode only.

. The region base address must always align to the region size.
Configurations Use these registers if the processor is configured with an MPU.
Attributes See Table 4-33.

Figure 4-34 shows the MPU Region Base Address Registers bit assignments.

31 5 4 0

Base address Reserved

Figure 4-34 MPU Region Base Address Registers bit assignments
Table 4-33 shows the MPU Region Base Address Registers bit assignments.

Table 4-33 MPU Region Base Address Registers bit assignments

Bits Name Function

[31:5] Base address Defines bits [31:5] of the base address of a region

[4:0] - SBZ

To access an MPU Region Base Address Register, read or write CP15 with:

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 4-54
ID021511 Non-Confidential

System Control

MRC pl15, @, <Rd>, c6, cl, @ ; Read MPU Region Base Address Register
MCR pl15, @, <Rd>, c6, cl, @ ; Write MPU Region Base Address Register

c6, MPU Region Size and Enable Registers

The MPU Region Size and Enable Register characteristics are:

Purpose . Specifies the size of the region specified by the Memory Region
Number Register.
. Identifies the address ranges that are used for a particular region.
. Enables or disables the region, and its sub-regions, specified by the

Memory Region Number Register.

Usage constraints The MPU Region Size and Enable Registers are:

. 32-bit read/write registers

. accessible in Privileged mode only.
Configurations Use these registers if the processor is configured with an MPU.
Attributes See Table 4-34.

Figure 4-35 shows the MPU Region Size and Enable Registers bit assignments.

31 16 15 87 6 5 10

Reserved Sub-region disable Region size

Reserved —!
Enable

Figure 4-35 MPU Region Size and Enable Registers bit assignments
Table 4-34 shows the MPU Region Size and Enable Registers bit assignments.

Table 4-34 Region Size Register bit assignments

Bits Name Function
[31:16] - SBZ.
[15:8] Sub-region disable Each bit position represents a sub-region, 0-72.

Bit [8] corresponds to sub-region 0

Bit [15] corresponds to sub-region 7

The meaning of each bit is:

0 = address range is part of this region

1 = address range is not part of this region.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-55
Non-Confidential

System Control

Table 4-34 Region Size Register bit assignments (continued)

Bits Name Function
- SBZ.

[5:1] Region size Defines the region size: b01100 = 8KB b10110 = 8MB
b00000 - b00011=Unpredictable b01101 = 16KB b10111 = 16MB
b00100 = 32 bytes b01110 = 32KB b11000 = 32MB
b00101 = 64 bytes b01111 = 64KB b11001 = 64MB
b00110 = 128 bytes b10000=128KB bl11010=128MB
b00111 = 256 bytes b10001 =256KB bl11011 =256MB
b01000 = 512 bytes b10010=512KB b11100=512MB
b01001 = 1IKB b10011 = IMB b11101 = 1GB
b01010 = 2KB b10100 = 2MB b11110=2GB
b01011 =4KB b10101 = 4MB bl1111 =4GB.

(0]

Enable

Enables or disables a memory region:
0 = Memory region disabled. Memory regions are disabled on reset.

1 = Memory region enabled. A memory region must be enabled before it is
used.

a.

Sub-region 0 covers the least significant addresses in the region, while sub-region 7 covers the most significant
addresses in the region. For more information, see Subregions on page 7-3.

To access an MPU Region Size and Enable Register, read or write CP15 with:

MRC pl15, @, <Rd>, c6, cl, 2 ; Read Data MPU Region Size and Enable Register
MCR p15, 0, <Rd>, c6, cl, 2 ; Write Data MPU Region Size and Enable Register

Writing a region size that is outside the range results in Unpredictable behavior.

c6, MPU Region Access Control Registers

The MPU Region Access Control Register characteristics are:

Purpose

Usage constraints

Configurations

Attributes

Holds the region attributes and access permissions for the region specified
by the Memory Region Number Register.

The MPU Region Access Control Registers are:
. read/write registers
. accessible in Privileged mode only.

Use these registers if the processor is configured with an MPU.

See Table 4-35 on page 4-57.

Figure 4-36 shows the MPU Region Access Control Registers bit assignments.

31

13 1211 10 8 7 6 5 3210

Reserved XN AP TEX |S|C|B

I— Reserved J

Figure 4-36 MPU Region Access Control Register bit assignments

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-56

Non-Confidential

Table 4-35 shows the MPU Region Access Control Registers bit assignments.

System Control

Table 4-35 MPU Region Access Control Register bit assignments

Bits

Name

Function

[31:13] -

[12]

SBZ.

Execute Never. Determines if a region of memory is executable:

0 = all instruction fetches enabled
1 = no instruction fetches enabled.

[11]

Reserved.

[10:8]

AP

Access permission. Defines the data access permissions. For more information on AP bit values,

see Table 4-38 on page 4-58.

SBZ.

TEX

Type extension. Defines the type extension attribute?.

Share. Determines if the memory region is Shared or Non-shared:

0 = Non-shared.
1 = Shared.

This bit only applies to Normal, not Device or Strongly Ordered memory.

C

B

C bita:

B bita:

. For more information on this region attribute, see Table 4-36.

Table 4-36 shows the encoding for the TEX[2:0], C, and B regions.

Table 4-36 TEX[2:0], C, and B encodings

TEX[2:0] B Description Memory Type Shareable?
000 0 Strongly-ordered. Strongly-ordered ~ Shareable
000 1 Shareable Device. Device Shareable
000 0 Outer and Inner write-through, no write-allocate. Normal S bita

000 1 Outer and Inner write-back, no write-allocate. Normal S bita

001 0 Outer and Inner Non-cacheable. Normal S bita

001 1 Reserved. - -

001 0

001 1 Outer and Inner write-back, write-allocate. Normal S bita

010 0 Non-shareable Device. Device Non-shareable
010 1 Reserved. - -

010 X Reserved. - -

011 X Reserved. - -

1BB A Cacheable memory: ~ AAb = Inner policy Normal S bita

BBb = Quter policy

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.
Non-Confidential

4-57

System Control

a. Region is Shareable if S == 1, and Non-shareable if S == 0.
b. Table 4-37 shows the encoding for these bits.

When TEX[2] == 1, the memory region is Cacheable memory, and the rest of the encoding
defines the Inner and Outer cache policies:

TEX[1:0] defines the Outer cache policy
C,B defines the Inner cache policy

The same encoding is used for the Outer and Inner cache policies. Table 4-37 shows the
encoding.

Table 4-37 Inner and Outer cache policy encoding

Memory attribute encoding Cache policy

00 Non-cacheable

01 Write-back, write-allocate

10 Write-through, no write-allocate
11 Write-back, no write-allocate

Table 4-38 shows the AP bit values that determine the permissions for Privileged and User data
access.

Table 4-38 Access data permission bit encoding

AP bit values Privileged permissions User permissions Description

b000 No access No access All accesses generate a permission fault

b001 Read/write No access Privileged access only

b010 Read/write Read-only Writes in User mode generate permission faults
b011 Read/write Read/write Full access

b100 UNP UNP Reserved

b101 Read-only No access Privileged read-only

b110 Read-only Read-only Privileged/User read-only

bl11l UNP UNP Reserved

To access the MPU Region Access Control Registers read or write CP15 with:

MRC pl15, @, <Rd>, c6, cl, 4 ; Read MPU Region Access Control Register
MCR pl5, @, <Rd>, c6, cl, 4 ; Write MPU Region Access Control Register

To execute instructions in User and Privileged modes:
. the region must have read access as defined by the AP bits
. the XN bit must be set to 0.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-58
Non-Confidential

System Control

c6, MPU Region Number Register
The RGNRs characteristics are:

Purpose Multiple registers with one register for each memory region implemented.
The value contained in the RGNR determines which of the multiple
registers is accessed.

Usage constraints The RGNRs are:

. Read/write register.
. Accessible in Privileged mode only.
. Writing this register with a value greater than or equal to the number

of regions from the MPUIR is Unpredictable. Associated MPU
Region Register accesses are also Unpredictable.

Configurations Use this register if the processor is configured with an MPU.
Attributes See Table 4-39.

Figure 4-37 shows the bit assignments.

31 4 3 0

Reserved Region

Figure 4-37 RGNR bit assignments
Table 4-39 shows the bit assignments.

Table 4-39 RGNR bit assignments

Bits Name Function
[31:4] - SBZ.
[3:0] Region Defines the group of registers to be accessed. Read the MPUIR to determine the number of

supported regions, see c0, MPU Type Register on page 4-17.

To access the RGNR, read or write CP15 with:

MRC p15, @, <Rd>, c6, c2, @ ; Read RGNR
MCR p15, @, <Rd>, c6, c2, O ; Write RGNR

4.3.22 Cache operations

The purpose of ¢7 is to manage the associated caches. The maintenance operations are formed
into two management groups:

. Set and Way:
— clean
— invalidate
— clean and invalidate.

. Address, usually labelled MVA for Modified Virtual Address, but on this processor all
addresses are identical:

— clean
— invalidate
— clean and invalidate.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-59
Non-Confidential

System Control

In addition, the maintenance operations use these definitions:

Point of Coherency (PoC)

A point where all instruction and data walks are transparent to any processor in
the system.

Point of Unification (PoU)

A point where instruction and data become unified and self-modifying code can
function.

Figure 4-38 shows the arrangement of the functions in this group that operate with the MCR and
MRC instructions.

Note

The following operations, as Figure 4-38 shows, are implemented as No Operation, NOP, on the
processor:

. Wait For Interrupt, CRm= c0, Opcode 2 =4

. Invalidate all branch predictors Inner Shareable, CRm= c1, Opcode 2 = 6

. Invalidate Entire Branch Predictor Array, CRm= c5, Opcode 2 = 6

. Invalidate Branch Predictor Array Line using MVA, CRm= c5, Opcode 2 =7

The Wait For Interrupt (WFI) instruction provides the Wait For Interrupt function. For more
information see the ARM Architecture Reference Manual.

CRn Opcode_1 CRm Opcode_2

c7

c15

0————F—c0———4—>» sBZ | NOP, was Wait For Interrupt

—c1 00—] ICIALLUIS, Invalidate all instruction caches to PoU Inner Shareable
6—p] BPIALLIS, Invalidate all branch predictors Inner Shareable

—c5————0—>{ SBz | ICIALLU, Invalidate All Instruction Caches

——1—» MVA | ICIMVAU, Invalidate Instruction Cache Line by MVA to PoU

——4—>» SBZ | CP15ISB, Instruction Synchronization Barrier operation

——6—» SBZ | BPIALL, Invalidate all branch predictors

—T7—> BPIMVA, Invalidate MVA from branch predictors

—c6—|:1—> MVA | DCIMVAC, Invalidate d?ta' cache line by MVA to PoC
2—>»{ Way | DCISW, Invalidate data cache line by set/way

—c10———1——»| MVA | DCCMVAC, Clean data’ cache line by MVA to PoC

——2—»f way | DCCSW, Clean data’ cache line by set/way

4—> SBZ | CP15DSB, Data Synchronization Barrier operation

5—» SBZ | CP15DMB, Data Memory Barrier operation

—c11 1—»{ MVA | DCCMVAU, Clean data’ cache line by MVA to PoU

—c13 1—>»{ NOP | Privileged only

—c14—|:1—> MVA | DCCIMVAC, Clean and invalidate d?ta' cache line by MVA to PoC
2—>»{ Way | DCCISW, Clean and invalidate data cache line by set/way

0 c5 0—»{ SBZ | Invalidate all Data Caches

Write-only Accessible in User mode
SBZ |Should Be Zero

MVA | Using MVA

Way |Using Set and Way

" data or unified PoU: Paint of Unification PoC: Point of Coherency
I Implemented only as part of the Multiprocessing Extensions

Figure 4-38 Cache operations

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-60
Non-Confidential

System Control

In addition to the register c7 cache management functions in this processor, an Invalidate all
data caches operation is provided as a c15 operation. For convenience, this c15 operation is also
described in this section.

Note

. Writing ¢7 with a combination of CRm and Opcode_2 not listed in Figure 4-38 on
page 4-60 results in an Undefined Instruction exception.

. In this processor, reading from c7 causes an Undefined Instruction exception.

. All accesses to ¢7 can only be executed in a Privileged mode of operation, except for the
Instruction Synchronization Barrier, Data Synchronization Barrier, and Data Memory
Barrier operations. These can be performed in User mode. Attempting to execute a
Privileged instruction in User mode results in an Undefined Instruction exception.

. This processor does not contain an address-based branch predictor array.

Invalidate and clean operations

The terms that describe the invalidate, clean, and prefetch operations are defined in the ARM
Architecture Reference Manual.

You can perform invalidate and clean operations on:
. single cache lines

. entire caches.

Set and Way format

Figure 4-39 shows the Set and Way bit assignments.

313029 S+5 S+4 5 4 0

Way Reserved Set Reserved

Figure 4-39 c7 Set and Way bit assignments

Table 4-40 shows the Set and Way bit assignments.

Table 4-40 c7 Set and Way bit assignments

Bits Name Function
[31:30] Way Indicates the cache way to invalidate or clean.
[29:8+5] - SBZ.
[S+4:5] Set Indicates the cache set to invalidate or clean. Because the cache sizes are configurable, the width
of the Set field is unique to the cache size. See Table 4-41 on page 4-62.
[4:0] - SBZ.
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 4-61

ID021511

Non-Confidential

System Control

Table 4-41 shows the cache sizes and the resultant bit range for Set.

Table 4-41 Widths of the set field for L1 cache sizes

Size Set
4KB [9:5]
8KB [10:5]
16KB [11:5]
32KB [12:5]
64KB [13:5]

See c0, Cache Type Register on page 4-15 for more information on cache sizes.

Address format

Figure 4-40 shows the invalidate and clean operations bit assignments.

31 5 4 0

Address Reserved

Figure 4-40 Invalidate and clean operations bit assignments
Table 4-42 shows the invalidate and clean operations bit assignments.

Table 4-42 Invalidate and clean operations bit assignments

Bits Name Function

[31:5] Address Specifies the address to invalidate or clean

[4:0] Reserved SBZ

Data Synchronization Barrier operation

The purpose of the Data Synchronization Barrier operation is to ensure that all outstanding
explicit memory transactions complete before any following instructions begin. This ensures
that data in memory is up to date before the processor executes any more instructions.

The Data Synchronization Barrier Register is:
. a write-only operation
. accessible in both User and Privileged mode.

To access the Data Synchronization Barrier operation, write CP15 with:
MCR p15, @, <Rd>, c7, c10, 4 ; Data Synchronization Barrier operation

For more information about memory barriers, see the ARM Architecture Reference Manual.

Data Memory Barrier operation

The purpose of the Data Memory Barrier operation is to ensure that all outstanding explicit
memory transactions complete before any following explicit memory transactions begin. This
ensures that data in memory is up to date before any memory transaction that depends on it.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-62
Non-Confidential

System Control

The Data Memory Barrier operation is:
. write-only
. accessible in User and Privileged mode.

To access the Data Memory Barrier operation write CP15 with:
MCR pl5, @, <Rd>, c7, c10,5 ; Data Memory Barrier Operation

For more information about memory barriers, see the ARM Architecture Reference Manual.

4.3.23 c9, BTCM Region Register

The BTCM Region Register characteristics are:

Purpose . Holds the base address and size of the BTCM.
. Determines if the BTCM is enabled.

Usage constraints The BTCM Region Register is:

. a read/write register

. accessible in Privileged mode only.
Configurations Available in all processor configurations.
Attributes See Table 4-43.

Figure 4-41 shows the BTCM Region Register bit assignments.

31 121 76 210

Base address Reserved Size

Reserved J
Enable

Figure 4-41 BTCM Region Register bit assignments

Table 4-43 shows the BTCM Region Register bit assignments.

Table 4-43 BTCM Region Register bit assignments

Bits Name

Function

[31:12] Base
address

Base address. Defines the base address of the BTCM. The base address must be aligned to the size of the
BTCM. Any bits in the range [(logo(RAMSize)-1):12] are ignored.

Atreset, if LOCZRAMAm is set to:
0 =The initial base address is 0x0.
1 =The initial base address is implementation-defined. See Configurable options on page 1-6.

7 -

UNP on reads, SBZ on writes.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-63
Non-Confidential

System Control

Table 4-43 BTCM Region Register bit assignments (continued)

Bits Name Function

[6:2] Size Size. Indicates the size of the BTCM on reads. On writes this field is ignored. See About the TCMs on
page 8-13.
b00000 = 0KB, no TCM b00110 = 32KB b01010 = 512kB
b00011 =4KB b00111 = 64KB b01011 = 1MB
b00100 = 8KB b01000 = 128KB b01100 =2MB
b00101 = 16KB b01001 = 256KB b01101 = 4MB

b01110 = 8MB

[] - SBZ.

[0] Enable Enables or disables the BTCM.
0 = Disabled

1 = Enabled. The reset value of this field is determined by the INITRAMBm input pin.
This bit is RAZ if the processor has been implemented or integrated without a BTCM.

To access the BTCM Region Register, read or write CP15 with:

MRC pl5, @, <Rd>, 9, cl, @ ; Read BTCM Region Register

MCR pl15, @, <Rd>, c9, cl, @ ; Write BTCM Region Register
4.3.24 c9, ATCM Region Register

The ATCM Region Register characteristics are:

Purpose . Holds the base address and size of the ATCM.
. Determines if the ATCM is enabled.

Usage constraints The ATCM Region Register is:

. a read/write register

. accessible in Privileged mode only.
Configurations Available in all processor configurations.
Attributes See Table 4-44 on page 4-65.

Figure 4-42 shows the ATCM Region Register bit assignments.

31 1211 76 210

Base address Reserved Size

Reserved J
Enable

Figure 4-42 ATCM Region Register bit assignments

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 4-64
ID021511 Non-Confidential

System Control

Table 4-44 shows the ATCM Region Register bit assignments.

Table 4-44 ATCM Region Register bit assignments

Bits Name Function
[31:12] Base Base address. Defines the base address of the ATCM. The base address must be aligned to the size of the
address ATCM. Any bits in the range [(log2(RAMSize)-1):12] are ignored.
At reset, if LOCZRAMAm is set to:
0 = The initial base address is implementation-defined. See Configurable options on page 1-6
1 = The initial base address is 0x@.
[11:7] - UNP on reads, SBZ on writes.
[6:2] Size Size. Indicates the size of the ATCM on reads. On writes this field is ignored. See About the TCMs on
page 8-13.
b00000 = 0KB, no TCM b00110 = 32KB b01010 = 512kB
b00011 =4KB b00111 = 64KB b01011 = 1MB
b00100 = 8KB b01000 = 128KB b01100 =2MB
b00101 = 16KB b01001 = 256KB b01101 =4MB
b01110 = 8MB.
[1] - SBZ.
[0] Enable Enables or disables the ATCM.

0 = Disabled.
1 = Enabled. The reset value of this field is determined by the INITRAMAm input pin.
This bit is RAZ if the processor has been implemented or integrated without an ATCM.

To access the ATCM Region Register, read or write CP15 with:

MRC pl5, @, <Rd>, 9, cl, 1 ; Read ATCM Region Register
MCR p15, @, <Rd>, c9, cl, 1 ; Write ATCM Region Register

4.3.25 c9, TCM Selection Register

The TCM Selection Register determines the TCM region register that the processor writes to.
The processor only supports one TCM region for each TCM interface, and the TCM Selection
Register Reads-As-Zero and ignores writes. It is only accessible in Privileged mode.

4.3.26 c11, Slave Port Control Register

The Slave Port Control Register characteristics are:

Purpose . Enables or disables TCM access to the AXI slave port in Privileged
or User mode.
. Enables access to the cache RAMs through the AXI slave port. See
cl, Auxiliary Control Register on page 4-41.

Usage constraints The Slave Port Control Register is:

. a read/write register

. accessible in Privileged mode only.
Configurations Available in all processor configurations.
Attributes See Table 4-45 on page 4-66.

Figure 4-43 on page 4-66 shows the Slave Port Control Register bit assignments.

ARM DDI 0460C

ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-65
Non-Confidential

System Control

31 210

Privileged access —I
AXl slave enable

Figure 4-43 Slave Port Control Register bit assignments

Reserved

Table 4-45 shows the Slave Port Control Register bit assignments

Table 4-45 Slave Port Control Register bit assignments

Bits Name Function
[31:2] - RAZ/UNP.
[1] Privileged access Defines level of access for TCM accesses:

0 = Non-privileged and privileged access, reset value
1 = Privileged access only.

[0] AXI slave enable Enables or disables the AXI slave port for TCM accesses:
0 = Enables AXI slave port, reset value
1 = Disables AXI slave port.

To access the Slave Port Control Register, read or write CP15 with:

MRC pl5, @, <Rd>, cll, c@, @ ; Read Slave Port Control Register
MCR pl15, @, <Rd>, cll, c@, @ ; Write Slave Port Control Register

4.3.27 c13, FCSE PID Register

This processor does not support Fast Context Switch Extension (FCSE).

The FCSE Process IDentifier (PID) Register is accessible in Privileged mode only. This register
reads as zero and ignores writes.

4.3.28 c13, Context ID Register

The CONTEXTIDR characteristics are:

Purpose . Holds a process IDentification (ID) value for the running process.

. The Embedded Trace Macrocell (ETM) and the debug logic use this
register. The ETM can broadcast its value to indicate the process that
is running. You must program each process with a unique number.

. Enables process dependent breakpoints and instructions.

Usage constraints The CONTEXTIDR is:

. a read/write register
. accessible in Privileged mode only.
Configurations Available in all processor configurations.
Attributes The CONTEXTIDR, bits [31:0] contain the process ID number.

To use the CONTEXTIDR, read or write CP15 with:
MRC p15, 0, <Rd>, c13, c@, 1 ; Read CONTEXTIDR

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-66
Non-Confidential

System Control

MCR p15, 0, <Rd>, c13, c@, 1 ; Write CONTEXTIDR

4.3.29 c13, Thread and Process ID Registers

The Thread and Process ID Registers provide locations to store the IDs of software threads and
processes for Operating System (OS) management purposes.

The Thread and Process ID Registers are:
. three read/write registers:
— User read/write Thread and Process ID Register
— User read-only Thread and Process ID Register
— Privileged-only Thread and Process ID Register.
. each accessible in different modes:
— The User read/write register can be read and written in User and Privileged modes.

— The User read-only register can only be read in User mode, but can be read and
written in Privileged modes.

— The Privileged-only register can be read and written in Privileged modes only.

To access the Thread and Process ID registers, read or write CP15 with:

MRC pl5, @, <Rd>, c13, c@, 2 ; Read User read/write Thread and Proc. ID Register
MCR pl5, @, <Rd>, c13, c@, 2 ; Write User read/write Thread and Proc. ID Register
MRC p15, 0, <Rd>, c13, c@, 3 ; Read User Read Only Thread and Proc. ID Register

MCR p15, 0, <Rd>, c13, c@, 3 ; Write User Read Only Thread and Proc. ID Register
MRC pl5, @, <Rd>, c13, c@, 4 ; Read Privileged Only Thread and Proc. ID Register
MCR p15, @, <Rd>, c13, c@, 4 ; Write Privileged Only Thread and Proc. ID Register

Reading or writing the Thread and Process ID registers has no effect on processor state or
operation. These registers provide OS support, and the OS must manage them.

You must clear the contents of all Thread and Process ID registers on process switches to
prevent data leaking from one process to another. This is important to ensure the security of data.
The reset value of these registers is 0.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 4-67
ID021511 Non-Confidential

System Control

4.3.30 Validation Registers

The processor implements a set of validation registers. This section describes:
. cl5, nVAL IRQ Enable Set Register

. cl5, nVAL FIQ Enable Set Register on page 4-69

. cl5, nVAL Reset Enable Set Register on page 4-70

. cl5, VAL Debug Request Enable Set Register on page 4-71

. cl5, VAL IRQ Enable Clear Register on page 4-72

. cl5, nVAL FIQ Enable Clear Register on page 4-73

. cl5, nVAL Reset Enable Clear Register on page 4-74

. cl5, VAL Debug Request Enable Clear Register on page 4-75

. cl5, Cache Size Override Register on page 4-76.

c15, nVAL IRQ Enable Set Register
The nVAL IRQ Enable Set Register characteristics are:

Purpose Enables any of the PMXEVCNTR Registers,
PMXEVCNTRO-PMXEVCNTR2, and CCNT, to generate an interrupt
request on overflow. If enabled, the interrupt request is signaled by
nVALIRQm being asserted LOW.

Usage constraints The nVAL IRQ Enable Set Register is:
. A read/write register.

. Always accessible in Privileged mode. The PMUSERENR Register
determines access in User mode, see c9, User Enable Register on

page 6-16.
Configurations Available in all processor configurations.
Attributes See Table 4-46.

Figure 4-44 shows the nVAL IRQ Enable Set Register bit assignments.

31 3210

C Reserved

L Cycle count overflow IRQ request enable) P2 |
Performance monitor counter P1

overflow IRQ request enables PO

Figure 4-44 nVAL IRQ Enable Set Register bit assignments

Table 4-46 shows the nVAL IRQ Enable Set Register bit assignments.

Table 4-46 nVAL IRQ Enable Set Register bit assignments

Bits Name Function

[31] C CCNT overflow IRQ request

[30:3] Reserved UNP or SBZP

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-68
Non-Confidential

System Control

Table 4-46 nVAL IRQ Enable Set Register bit assignments (continued)

Bits Name Function

[2] P2 PMXEVCNTR2 overflow IRQ request
[1] P1 PMXEVCNTRI1 overflow IRQ request
[0] PO PMXEVCNTRO overflow IRQ request

To access the nVAL IRQ Enable Set Register, read or write CP15 with:

MRC pl15, @, <Rd>, c15, cl, @ ; Read nVAL IRQ Enable Set Register
MCR p15, @, <Rd>, c15, c1, @ ; Write nVAL IRQ Enable Set Register

On reads, this register returns the current setting. On writes, interrupt requests can be enabled
by writing a 1 to the appropriate bits. If an interrupt request has been enabled it is disabled by
writing to the nVAL IRQ Enable Clear Register, see c/5, VAL IRQ Enable Clear Register on
page 4-72.

If one or more of the IRQ request fields (P2, P1, PO, and C) is enabled, and the corresponding
counter overflows, then an IRQ request is indicated by nVALIRQm being asserted LOW. This
signal might be passed to a system interrupt controller.

¢15, nVAL FIQ Enable Set Register
The nVAL FIQ Enable Set Register are:

Purpose Enables any of the PMXEVCNTR Registers,
PMXEVCNTRO-PMXEVCNTR2, and CCNT, to generate an fast
interrupt request on overflow. If enabled, the interrupt request is signaled
by nVALFIQm being asserted LOW.

Usage constraints The nVAL FIQ Enable Set Register is:
. A read/write register.

. Always accessible in Privileged mode. The PMUSERENR Register
determines access in User mode, see c9, User Enable Register on

page 6-16.
Configurations Available in all processor configurations.
Attributes See Table 4-47 on page 4-70.

Figure 4-45 shows the nVAL FIQ Enable Set Register bit assignments.

31 3210

C Reserved

L Cycle count overflow FIQ request enable) P2 _
Performance monitor counter P1

overflow FIQ request enables PO

Figure 4-45 nVAL FIQ Enable Set Register bit assignments

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-69
Non-Confidential

System Control

Table 4-47 shows the nVAL FIQ Enable Set Register bit assignments

Table 4-47 nVAL FIQ Enable Set Register bit assignments

Bits Name Function

[31] C CCNT overflow FIQ request

[30:3] Reserved UNP or SBZP

[2] P2 PMXEVCNTR2 overflow FIQ request
[1] P1 PMXEVCNTRI1 overflow FIQ request
[0] PO PMXEVCNTRO overflow FIQ request

To access the FIQ Enable Set Register, read or write CP15 with:

MRC pl15, @, <Rd>, c15, c1, 1 ; Read FIQ Enable Set Register
MCR pl5, @, <Rd>, c15, c1, 1 ; Write FIQ Enable Set Register

On reads, this register returns the current setting. On writes, interrupt requests can be enabled
by writing a 1 to the appropriate bits. If an interrupt request has been enabled it is disabled by
writing to the FIQ Enable Clear Register, see ¢35, nVAL FIQ Enable Clear Register on

page 4-73.

If one or more of the FIQ request fields (P2, P1, PO, and C) is enabled, and the corresponding
counter overflows, then an FIQ request is indicated by nVALFIQm being asserted LOW. This
signal can be passed to a system interrupt controller.

¢15, nVAL Reset Enable Set Register
The nVAL Reset Enable Set Register is:
. A read/write register.

. Always accessible in Privileged mode. The PMUSERENR Register determines access in
User mode, see c9, User Enable Register on page 6-16.

The nVAL Reset Enable Set Register characteristics are:

Purpose Enables any of the PMXEVCNTR Registers,
PMXEVCNTRO-PMXEVCNTR?2, and CCNT, to generate a reset request
on overflow. If enabled, the reset request is signaled by nVALRESETm
being asserted LOW.

Usage constraints The nVAL Reset Enable Set Register is:

. A read/write register.

. Always accessible in Privileged mode. The PMUSERENR Register
determines access in User mode, see c9, User Enable Register on

page 6-16.
Configurations Available in all processor configurations.
Attributes See Table 4-48 on page 4-71.

Figure 4-46 on page 4-71 shows the nVAL Reset Enable Set Register bit assignments.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-70
Non-Confidential

System Control

31 3210

C Reserved

L Cycle count overflow reset request enable) P2 I
Performance monitor counter P1

overflow reset request enables PO

Figure 4-46 nVAL Reset Enable Set Register bit assignments
Table 4-48 shows the nVAL Reset Enable Set Register bit assignments.

Table 4-48 nVAL Reset Enable Set Register bit assignments

Bits Name Function

[31] C CCNT overflow reset request

[30:3] - UNP or SBZP

[2] P2 PMXEVCNTR?2 overflow reset request
[1] P1 PMXEVCNTRI1 overflow reset request
[0] PO PMXEVCNTRO overflow reset request

To access the nVAL Reset Enable Set Register, read or write CP15 with:

MRC p15, @, <Rd>, c15, cl, 2 ; Read nVAL Reset Enable Set Register
MCR pl5, @, <Rd>, c15, cl, 2 ; Write nVAL Reset Enable Set Register

On reads, this register returns the current setting. On writes, reset requests can be enabled by
writing a 1 to the appropriate bits. If a reset request has been enabled, it is disabled by writing
to the nVAL Reset Enable Clear Register. See c15, nVAL Reset Enable Clear Register on
page 4-74.

If one or more of the reset request fields (P2, P1, PO, and C) is enabled, and the corresponding
counter overflows, then a reset request is indicated by n'VALRESETm being asserted LOW.
This signal can be passed to a system reset controller.

c15, VAL Debug Request Enable Set Register
The VAL Debug Request Enable Set Register characteristics are:

Purpose Enables any of the PMXEVCNTR Registers,
PMXEVCNTRO-PMXEVCNTR2, and CCNT, to generate a debug
request on overflow. If enabled, the debug request is signaled by
VALEDBGRQm being asserted HIGH.

Usage constraints The VAL Debug Request Enable Set Register is:

. A read/write register.

. Always accessible in Privileged mode. The PMUSERENR Register
determines access in User mode, see c9, User Enable Register on

page 6-16.
Configurations Available in all processor configurations.
Attributes See Table 4-49 on page 4-72.

Figure 4-47 on page 4-72 shows the VAL Debug Request Enable Set Register bit assignments.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-71
Non-Confidential

System Control

31 3210

C Reserved

L Cycle count overflow debug request enable . P2 —
Performance monitor counter P1

overflow debug request enables PO

Figure 4-47 VAL Debug Request Enable Set Register bit assignments
Table 4-49 shows the VAL Debug Request Enable Set Register bit assignments.

Table 4-49 VAL Debug Request Enable Set Register bit assignments

Bits Name Function

[31] C CCNT overflow debug request

[30:3] - UNP or SBZP

[2] P2 PMXEVCNTR?2 overflow debug request
[1] Pl PMXEVCNTRI1 overflow debug request
[0] PO PMXEVCNTRO overflow debug request

To access the VAL Debug Request Enable Set Register, read or write CP15 with:

MRC p15, @, <Rd>, c15, cl, 3 ; Read VAL Debug Request Enable Set Register
MCR pl5, @, <Rd>, c15, c1, 3 ; Write VAL Debug Request Enable Set Register

On reads, this register returns the current setting. On writes, debug requests can be enabled by
writing a 1 to the appropriate bits. If a debug request has been enabled, it is disabled by writing
to the VAL Debug Request Enable Clear Register. See c¢15, VAL Debug Request Enable Clear
Register on page 4-75.

If one or more of the reset request fields (P2, P1, PO, and C) is enabled, and the corresponding
counter overflows, then a debug reset request is indicated by VALEDBGRQm being asserted
HIGH. This signal can be passed to an external debugger.

¢15, VAL IRQ Enable Clear Register
The VAL IRQ Enable Clear Register characteristics are:

Purpose Disables overflow IRQ requests from any of the PMXEVCNTR Registers,
PMXEVCNTRO-PMXEVCNTR2, and CCNT, for which they have been
enabled.

Usage constraints The VAL IRQ Enable Clear Register is:
. A read/write register.

. Always accessible in Privileged mode. The PMUSERENR Register
determines access in User mode, see c9, User Enable Register on

page 6-16.
Configurations Available in all processor configurations.
Attributes See Table 4-50 on page 4-73.

Figure 4-48 on page 4-73 shows the VAL IRQ Enable Clear Register bit assignments.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-72
Non-Confidential

31

System Control

3210

C

Reserved

. P2 _
Cycle count overflow Performance monitor counter P1

IRQ request disable overflow IRQ request disables

PO

Figure 4-48 VAL IRQ Enable Clear Register bit assignments

Table 4-50 shows the VAL IRQ Enable Clear Register bit assignments.

Table 4-50 VAL IRQ Enable Clear Register bit assignments

Bits Name Function

[31] C CCNT overflow IRQ request

[30:3] - UNP or SBZP

[2] P2 PMXEVCNTR?2 overflow IRQ request
[1] P1 PMXEVCNTRI1 overflow IRQ request
[0] PO PMXEVCNTRO overflow IRQ request

To access the VAL IRQ Enable Clear Register, read or write CP15 with:

MRC p15, @, <Rd>, c15, cl1, 4 ; Read VAL IRQ Enable Clear Register
MCR pl5, 0, <Rd>, c15, cl, 4 ; Write VAL IRQ Enable Clear Register

On reads, this register returns the current setting. On writes, overflow interrupt requests that are
currently enabled can be disabled by writing a 1 to the appropriate bits.

For more information of how to enable IRQ requests on counter overflows, and how the requests
are signaled, see c15, nVAL IRQ Enable Set Register on page 4-68.

¢15, nVAL FIQ Enable Clear Register

The nVAL FIQ Enable Clear Register characteristics are:

Purpose

Usage constraints

Configurations

Attributes

Disables overflow FIQ requests from any of the PMXEVCNTR Registers,
PMXEVCNTRO-PMXEVCNTR2, and CCNT, that are enabled.

The nVAL FIQ Enable Clear Register is:
. A read/write register.

. Always accessible in Privileged mode. The PMUSERENR Register
determines access in User mode, see c9, User Enable Register on
page 6-16.

Available in all processor configurations.

See Table 4-51 on page 4-74.

Figure 4-49 on page 4-74 shows the nVAL FIQ Enable Clear Register bit assignments.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-73

Non-Confidential

31

System Control

3210

C

Reserved

. P2 _
Cycle count overflow Performance monitor counter P1

FIQ request disable overflow FIQ request disables

PO

Figure 4-49 nVAL FIQ Enable Clear Register bit assignments

Table 4-51 shows the nVAL FIQ Enable Clear Register bit assignments

Table 4-51 nVAL FIQ Enable Clear Register bit assignments

Bits Name Function

[31] C CCNT overflow FIQ request

[30:3] - UNP or SBZP

[2] P2 PMXEVCNTR?2 overflow FIQ request
[1] P1 PMXEVCNTRI1 overflow FIQ request
[0] PO PMXEVCNTRO overflow FIQ request

To access the FIQ Enable Clear Register, read or write CP15 with:

MRC p15, @, <Rd>, c15, c1, 5 ; Read FIQ Enable Clear Register
MCR pl5, @, <Rd>, c15, cl, 5 ; Write FIQ Enable Clear Register

On reads, this register returns the current setting. On writes, overflow interrupt requests that are
enabled can be disabled by writing a 1 to the appropriate bits.

For information on how to enable FIQ requests on counter overflows, and how the requests are
signaled, see c15, nVAL FIQ Enable Set Register on page 4-69.

¢15, nVAL Reset Enable Clear Register

The nVAL Reset Enable Clear Register characteristics are:

Purpose

Usage constraints

Configurations

Attributes

Disables overflow reset requests from any of the PMXEVCNTR
Registers, PMXEVCNTRO-PMXEVCNTR?2, and CCNT, that are
enabled.

The nVAL Reset Enable Clear Register is:

. A read/write register.

. Always accessible in Privileged mode. The PMUSERENR Register
determines access in User mode, see c9, User Enable Register on
page 6-16.

Available in all processor configurations.

See Table 4-52 on page 4-75.

Figure 4-50 on page 4-75 shows the nVAL Reset Enable Clear Register bit assignments.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-74

Non-Confidential

System Control

31 3210
C Reserved
. P2 _
Cycle count overflow Performance monitor counter overflow
: . P1
reset request disable reset request disables PO

Figure 4-50 nVAL Reset Enable Clear Register bit assignments
Table 4-52 shows the nVAL Reset Enable Clear Register bit assignments.

Table 4-52 nVAL Reset Enable Clear Register bit assignments

Bits Name Function

[31] C CCNT overflow reset request

[30:3] - UNP or SBZP

[2] P2 PMXEVCNTR?2 overflow reset request
[1] P1 PMXEVCNTRI1 overflow reset request
[0] PO PMXEVCNTRO overflow reset request

To access the nVAL Reset Enable Clear Register, read or write CP15 with:

MRC p15, @, <Rd>, c15, cl, 6 ; Read nVAL Reset Enable Clear Register
MCR pl5, @, <Rd>, c15, cl, 6 ; Write nVAL Reset Enable Clear Register

On reads, this register returns the current setting. On writes, overflow reset requests that are
enabled can be disabled by writing a 1 to the appropriate bits.

For more information of how to enable reset requests on counter overflows, and how the
requests are signaled, see c15, nVAL Reset Enable Set Register on page 4-70.

c15, VAL Debug Request Enable Clear Register
The VAL Debug Request Enable Clear Register characteristics are:

Purpose Disables overflow debug requests from any of the PMXEVCNTR
Registers, PMXEVCNTRO-PMXEVCNTR?2, and CCNT, that are
enabled.

Usage constraints The VAL Debug Request Enable Clear Register is:

. A read/write register.

. Always accessible in Privileged mode. The PMUSERENR Register
determines access in User mode, see c9, User Enable Register on

page 6-16.
Configurations Available in all processor configurations.
Attributes See Table 4-53 on page 4-76.

Figure 4-51 on page 4-76 shows the VAL Debug Request Enable Clear Register bit
assignments.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-75
Non-Confidential

System Control

debug request disable

31 3210
C Reserved
. P2 _
Cycle count overflow Performance monitor counter overflow P1
debug request disables PO

Figure 4-51 VAL Debug Request Enable Clear Register bit assignments

Table 4-53 shows the VAL Debug Request Enable Clear Register bit assignments.

Table 4-53 VAL Debug Request Enable Clear Register bit assignments

Bits Name

Function

CCNT overflow debug request

UNP or SBZP

PMXEVCNTR?2 overflow debug request

PMXEVCNTRI overflow debug request

k1] C
[30:3] -
2] P2
[] Pl
[0] PO

PMXEVCNTRO overflow debug request

To access the VAL Debug Request Enable Clear Register, read or write CP15 with:

MRC p15, @, <Rd>, c15, cl, 7 ; Read VAL Debug Request Enable Clear Register
MCR pl5, 0, <Rd>, c15, cl, 7 ; Write VAL Debug Request Enable Clear Register

On reads, this register returns the current setting. On writes, overflow debug requests that are
enabled can be disabled by writing a 1 to the appropriate bits.

For more information of how to enable debug requests on counter overflows, and how the
requests are signaled, see c¢15, VAL Debug Request Enable Set Register on page 4-71.

c15, Cache Size Override Register

The Cache Size Override Register characteristics are:

Purpose

Usage constraints

Overwrites the caches size fields in the main register. This enables you to
choose a smaller instruction and data cache size than is implemented.

The Cache Size Override Register is:

. a write-only register

. only accessible in Privileged mode.
Configurations Auvailable in all processor configurations.
Attributes See Table 4-54 on page 4-77.

Figure 4-52 shows the Cache Size Override Register bit assignments.

31

16 15

Reserved

Dcache Icache

Figure 4-52 Cache Size Override Register bit assignments

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.

Non-Confidential

4-76

System Control

Table 4-54 shows the Cache Size Override Register bit assignments.

Table 4-54 Cache Size Override Register bit assignments

Bits Name Function

[31:8] - SBZ.

[7:4] Dcache Defines the data cache size. See Table 4-55.

[3:0] Icache Defines the instruction cache size. See Table 4-55.

Table 4-55 shows the encodings for the instruction and data cache sizes.

Table 4-55 Instruction and data cache size encodings

Encoding Cache size

b0000 4kB
b0001 8kB
b0011 16kB
b0111 32kB
bl111 64kB

To access the Cache Size Override Register, write CP15 with:

MCR pl5, 0, <Rd>, c15, cl4, 0 ; Write Cache Size Override Register

Note

The VAL Cache Size Override Register can only be used to select cache sizes for which the
appropriate RAM has been integrated. Larger cache sizes require deeper data and tag RAMs,
and smaller cache sizes require wider tag RAMs. Therefore, it is unlikely that you can change
the cache size using this register except using a simulation model of the cache RAMs. ARM
recommends that you read the CCSIDR to check the actual cache sizes after writing to the Cache
Size Override Register.

4.3.31 Correctable Fault Location Register
The CFLR characteristics are:

Purpose Indicates the location of the last correctable error that occurred during
cache or TCM operations.

Usage constraints The CFLR is:

. a read/write register
. accessible in Privileged mode only.
. not updated on:

— speculative accesses, for example, an instruction fetch for an
instruction that is not executed because of a previous branch.

— aTCM external error or external retry request.
. updated on:

— parity or ECC errors in the instruction cache

— single-bit ECC errors in the data cache

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 4-77
ID021511 Non-Confidential

System Control

— parity or multi-bit errors in the data cache when write-through
behavior is forced

— single-bit TCM ECC errors.

. updated by the processor, regardless of whether an abort is taken or
an access is retried in response to the error.

Configurations Available in all processor configurations.
Attributes See Table 4-56.

Every correctable error that causes a CFLR update also has an associated event. See Table 6-1
on page 6-2 for the events that are related to CFLR updates. If two correctable errors occur
simultaneously, for example an AXI slave error and an LSU or PFU error, the LSU or PFU write
takes priority. If multiple errors occur, the value in the CFLR reflects the location of the latest
event.

The same register is updated by all correctable errors. You can read bits [25:24] to determine
whether the error was from a cache or TCM access.

Figure 4-53 shows the CFLR bit assignments, when it indicates a correctable cache error.

313029 26 25 24 23 14 13 5 4 210

Way Side Reserved Index Type

I— Reserved Reserved —,

Figure 4-53 Correctable Fault Location Register - cache, bit assignments

Table 4-56 shows the CFLR bit assignments, when it indicates a correctable cache error.,

Table 4-56 Correctable Fault Location Register - cache, bit assignments

Bits Name Function

[31:30] - RAZ.

[29:26] Way Indicates the Way of the error.

[25:24] Side Indicates the source of the error. For cache errors, this value is always 0b0e.
[23:14] - RAZ.

[13:5] Index Indicates the index of the location where the error occurred.

[4:2] - RAZ.

[1:0] Type Indicates the type of access that caused the error:

0b00 = Instruction cache
0b01 = Data cache
0b11 = ACP.

Figure 4-54 on page 4-79 shows the CFLR bit assignments, when it indicates a correctable TCM
error.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 4-78
ID021511 Non-Confidential

System Control

31 26 2524 23 22 3210
Reserved Side Address[22:3] Type
Reserved | Reserved |

Figure 4-54 Correctable Fault Location Register - TCM, bit assignments

Table 4-57 shows the CFLR bit assignments, when it indicates a correctable TCM error.

Table 4-57 Correctable Fault Location Register - TCM, bit assignments

Bits Name Function

[31:26] - RAZ.

[25:24] Side Indicates the source of the error:
0b01 = ATCM
0b10 = BTCM.

[23] - RAZ.

[22:3] Address Indicates the address in the TCM where the error occurred.

2] - RAZ.

[1:0] Type Indicates the type of access that caused the error:
0b00 = Instruction
0b01 = Data
0b10 = AXT slave.

To access the Correctable Fault Location Register, read or write CP15 with:

MRC p15, @, <Rd>, c15, c3, 0 ; Read CFLR
MCR p15, 0, <Rd>, c15, c3, @ ; Write CFLR

4.3.32 Build Options Registers

Note
In a twin-CPU system, some options can be configured independently for each CPU. For these
options, the Options Register reflects the options for the CPU containing the register. Other
options are shared, and the options register contains the same value for both CPUs.

c15, Build Options 1 Register
The Build Options 1 Register characteristics are:
Purpose Reflects the build configuration options used to build the processor.

Usage constraints The Build Options 1 Register is:

. a read-only register
. accessible in Privileged mode only
. pin-configuration options are shown in a separate register, see Pin

Options Register on page 4-83.

Configurations Auvailable in all processor configurations.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-79
Non-Confidential

System Control

Attributes See Table 4-58.

Figure 4-55 shows the Build Options 1 Register bit assignments.

31 11 10 210

TCM_HI_INIT_ADDR Reserved

FLOAT_PRECISION -
PP_BUS_ECC

Figure 4-55 Build Options 1 Register bit assignments
Table 4-58 shows the Build Options 1 Register bit assignments.

Table 4-58 Build Options 1 Register bit assignments

Bits Name Function

[31:12] TCM_HI INIT ADDR Default high address for the TCM.

[1:2] - SBZ.

[1] FLOAT PRECISION Indicates whether double-precision floating point is implemented:
0 = Double-precision FP implemented, or no FPU implemented
1 = No double-precision FP implemented.

[0] PP _BUS ECC Indicates whether the peripheral ports were built with bus-ECC:
0 = bus-ECC not included on peripheral ports
1 = bus-ECC included on peripheral ports.

To access the Build Options 1 Register, read CP15 with:

MRC pl15, @, <Rd>, c15, c2, @ ; Read Build Options 1 Register

c15, Build Options 2 Register
The Build Options 2 Register characteristics are:
Purpose Reflects the build configuration options used to build the processor.

Usage constraints The Build Options 2 Register is:

. a read-only register
. accessible in Privileged mode only.
. pin-configuration options are shown in a separate register, see Pin

Options Register on page 4-83.
Configurations Available in all processor configurations.
Attributes See Table 4-58.

Table 4-59 on page 4-81 shows the bit arrangement for the Build Options 2 Register.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 4-80
ID021511 Non-Confidential

System Control

31302928272625242322212019 1716 14131211109 8 7 6 5 4 3 2 0

NUM_cPuU-
LOCK_STEP
NO_ICACHE

NO_DCACHE
ATCM_ES
BTCM_ES

NO_IE
NO_FPU
MPU_REGIONS

BREAK_POINTS
WATCH_POINTS
NO_A_TCM_INF
NO_BO_TCM_INF
NO_B1_TCM_INF
TCMBUSPARITY

NO_AXIS—
ICACHE_ES

DCACHE_ES
NO_HARD_ERROR_CACHE
AXI_BUS_ECC

SL

AHB_PP

MICRO_SCU

Figure 4-56 Build Options 2 Register bit assignments
Table 4-59 shows how the bit values correspond with the Build Options 2 Register.

Table 4-59 Build Options 2 Register bit assignments

Bits Name Function

[31] NUM_CPU Indicates the number of CPUs:
0 = single CPU
1 =twin CPU.

[30] LOCK_STEP Indicates whether the CPU has redundant logic running in lock step for checking
purposes:

0 = no redundant logic
1 = redundant logic included.

[29] NO_ICACHE Indicates whether the CPU contains instruction cache:
0 = CPU contains instruction cache
1 = CPU does not contain instruction cache.

[28] NO_DCACHE Indicates whether the CPU contains data cache:
0 = CPU contains data cache
1 = CPU does not contain data cache.

[27:26] ATCM_ES Indicates whether an error scheme is implemented on the ATCM interface:
00 = no error scheme
10 = 32-bit error detection and correction
11 = 64-bit error detection and correction.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 4-81
ID021511 Non-Confidential

System Control

Table 4-59 Build Options 2 Register bit assignments (continued)

Bits

Name

Function

[25:24]

BTCM ES

Indicates whether an error scheme is implemented on the BTCM interface(s):
00 = no error scheme

10 = 32-bit error detection and correction

11 = 64-bit error detection and correction.

(23]

NO_IE

Indicates whether the processor supports big-endian instructions:
0 = processor supports big-endian instructions
1 = processor does not support big-endian instructions.

[22]

NO_FPU

Indicates whether the CPU contains a floating point unit:
0 = CPU contains a floating point unit
1 = CPU does not contain a floating point unit.

[21:20]

MPU_REGIONS

Indicates the number of regions in the included CPU MPU:
0b00 = no regions, the MPU has not been included

0b10 = MPU included, with 12 regions

0b11 = MPU included, with 16 regions.

[19:17]

BREAK_POINTS

Indicates the number of break points implemented in each CPU in the processor, minus 1.

[16:14]

WATCH_POINTS

Indicates the number of watch points implemented in each CPU in the processor, minus 1.

[13]

NO_A_TCM_INF

Indicates whether the CPUs contain ATCM ports
0 = CPUs contain ATCM ports
1 = CPUs do not contain ATCM ports.

[12]

NO B0 TCM_INF

Indicates whether the CPUs contain BOTCM ports:
0 = CPUs contain BOTCM ports
1 = CPUs do not contain BOTCM ports.

NO_BI_TCM_INF

Indicates whether the CPUs contain BITCM ports:
0 = CPUs contain BITCM ports
1 = CPUs do not contain BITCM ports.

(10]

TCMBUSPARITY

Indicates whether the processor contains TCM address bus parity logic:
0 = processor does not contain TCM address bus parity logic
1 = processor contains TCM address bus parity logic.

NO_SLAVE

Indicates whether the CPU contains an AXI slave port:
0 = CPU contains an AXI slave port
1 = CPU does not contain an AXI slave port.

[8:7]

ICACHE ES

Indicates whether an error scheme is implemented for the instruction cache:
0b00 = no error scheme

0b01 = 8-bit parity error detection

Ob11 = 64-bit error detection and correction.

If the CPU does not contain an I-Cache, these bits are set to 0b00.

[6:5]

DCACHE ES

Indicates whether an error scheme is implemented for the data cache:
0b00 = no error scheme

0b01 = 8-bit parity error detection

0b10 = 32-bit error detection and correction.

If the CPU does not contain a D-Cache, these bits are set to 0b00.

ARM DDI 0460C

ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-82

Non-Confidential

System Control

Table 4-59 Build Options 2 Register bit assignments (continued)

Bits

Name

Function

NO_HARD ERROR_CACHE

Indicates whether the processor contains cache for corrected TCM errors:
0 = processor contains TCM error cache
1 = processor does not contain TCM error cache.

AXI_BUS_ECC

Indicates whether the processor contains AXI bus ECC logic.
0 = processor does not contain AXI bus ECC logic
1 = processor contains AXI bus ECC logic.

SL

Indicates whether the processor has been built with split/lock logic:
0 = no split/lock logic
1 = split/lock logic included.

AHB_PP

Indicates whether the CPU contain AHB peripheral interfaces:
0 = CPUs do not have AHB peripheral interfaces
1 = CPUs have AHB peripheral interfaces.

MICRO_SCU

Indicates whether the processor contains an ACP interface:
0 = processor does not contain ACP logic
1 = processor does contain ACP logic.

4.3.33

To access the Build Options 2 Register, read CP15 with:

MRC p15, @, <Rd>, c15, c2, 1 ; Read Build Options 2 Register

Pin Options Register

The Pin Options Register characteristics are:

Purpose

Describes the value of any pins that control processor options, that are not
visible because they:

. are exposed in registers
. control the initial value of control registers, and are visible in that
way.

Usage constraints The Pin Options Register is:

. a read-only register
. accessible in Privileged modes only.
Configurations Available in all processor configurations.

Attributes

See Table 4-60 on page 4-84.

Figure 4-57 on page 4-84 shows the Pin Options Register bit assignments.

ARM DDI 0460C

ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-83

Non-Confidential

System Control

Reserved 0|0f0]0]0

DBGNOCLKSTOP -
INTSYNCEN
IRQADDRVSYNCEN

SLBTCMSB
PARITYLEVEL

Figure 4-57 Pin Options Register bit assignments
Table 4-60 shows the Pin Options Register bit assignments.

Table 4-60 Pin Options Register bit assignments

Bit Name Function

[31:5] - SBZ

[4] DBGNOCLKSTOP Read the value of the DBGNOCLKSTOP pin
[3] INTSYNCEN Read the value of the INTSYNCEN pin

[2] IRQADDRVSYNCEN Read the value of the IRQADDRVSYNCEN pin
[1] SLBTCMSB Read the value of the SLBTCMSBm pin

[0] PARITYLEVEL Read the value of the PARITYLEVEL pin

To access the Pin Options Register, read CP15 with:

MRC pl5, @, <Rd>, c15, c2, 7 ; Read Pin Options Register

4.3.34 Peripheral interface region registers

There are three peripheral interface region registers, one for each of the:
. AHB peripheral interface

. LLPP Normal AXI

. LLPP Virtual AXI.

The Peripheral Interface Region Register characteristics are:

Purpose Describe the size and base of the interface, and contain an enable bit for
the interface

Usage constraints The Peripheral Interface Region Registers are:
. Read/write registers.
. Accessible in Privileged mode only.

. The enable bits for the LLPP Normal AXI and AHB peripheral
interface region registers are initialized immediately after reset,
from the values on the INITPPXm and INITPPHm pins.

. The LLPP Virtual AXI region register enable resets to zero.
Configurations Available in all processor configurations.
Attributes See Table 4-61 on page 4-85.

Figure 4-58 on page 4-85 shows the Peripheral Interface Region Register bit assignments.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 4-84
ID021511 Non-Confidential

31

System Control

1211 76 210

BaseAddress Reserved Size En

Reserved

Figure 4-58 Peripheral Interface Region Register bit assignments

Table 4-61 shows the Peripheral Interface Region Register bit assignments.

Table 4-61 Peripheral Interface Region Register bit assignments

Bit Name Type Function
[31:12] BaseAddress RO The base address of the interface, given as bits [31:12] of the address of the
interface in the memory map. This value is configured during integration.
[11:7] - RO Reserved.
[6:2] Size RO Returns the size of the interface configured during integration:
0b00000 =no PP present
0b00011 =4KB
0b10111 = 4GB
[1] - RO Reserved.
[0] En RW Interface enable bit:

0 = Disabled

1 = Enabled. The reset value of this bit is:

. for LLPP Normal AXI, determined by INITPPXm

. for LLPP Virtual AXI, always 0

. for AHB peripheral interface, determined by INITPPHm.

To access the Peripheral Interface Region Registers, read CP15 with:

MRC pl15, @, <Rt>, c15, c@, 1; Read LLPP Normal AXI region register
MRC pl15, @, <Rt>, c15, c@, 2; Read LLPP Virtual AXI region register
MRC p15, @, <Rt>, c15, c@, 3; Read AHB peripheral interface region register

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 4-85

Non-Confidential

Chapter 5
Prefetch Unit

This chapter describes how the PreFetch Unit (PFU), in conjunction with the DPU, uses program
flow prediction to locate branches in the instruction stream and the strategies used to determine if
a branch is likely to be taken or not. It contains the following sections:

. About the prefetch unit on page 5-2
. Branch prediction on page 5-3

. Return stack on page 5-5
. Controlling instruction prefetch and program flow prediction on page 5-6.
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 5-1

ID021511 Non-Confidential

Prefetch Unit

5.1 About the prefetch unit

The purpose of the PFU is to:

. perform speculative fetch of instructions ahead of the DPU by predicting the outcome of
branch instructions

. format instruction data in a way that aids the DPU in efficient execution.

The PFU fetches instructions from the memory system under the control of the DPU, and the
internal coprocessors CP14 and CP15. In ARM state the memory system can supply up to two
instructions per cycle. In Thumb state the memory system can supply up to four instructions per
cycle.

The PFU buffers up to three instruction data fetches in its FIFO. There is an additional FIFO
between the PFU and the DPU that can normally buffer up to eight instructions. This reduces or
eliminates stall cycles after a branch instruction. This increases the performance of the
processor.

Program flow prediction occurs in the PFU by:

. predicting the outcome of conditional branches using the branch predictor and, for direct
branches, calculating their destination address using the offset encoded in the instruction

. predicting the destination of procedure returns using the return stack.
The DPU resolves the program flow predictions that the PFU makes.

The PFU fetches the instruction stream as dictated by:

. the Program Counter

. the branch predictor

. procedure returns signaled by the return stack

. exceptions including aborts and interrupts signaled by the DPU
. correction of mispredicted branches as indicated by the DPU.

The PFU starts instruction fetches at a rate that is determined dynamically using a prediction
scheme that aims to ensure that the pipeline is kept fed with instructions, without over-fetching
instructions that are not used. Fetching of unused instructions consumes extra power and can
impact performance.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 5-2
Non-Confidential

Prefetch Unit

5.2 Branch prediction

The PFU normally fetches instructions from sequential addresses. If a branch instruction is
fetched, the next instruction to be fetched can only be determined with certainty after the
instruction has completed execution at the end of the pipeline in the DPU. If the branch is taken,
the next instruction to be executed is not sequential. The sequential instructions that the PFU
has fetched while the branch instruction was executing must be flushed from the pipeline and
the correct instruction fetched. This has the effect of reducing the performance of the processor.

The PFU can detect branches in the Pd-stage of the pipeline, predict whether or not the branch
is taken, and determine or predict the target address for a taken branch. This enables the PFU to
start fetching instructions at the destination of a taken branch before the branch has completed
execution in the DPU. The branch instruction is still executed in the DPU to determine the
accuracy of the prediction. If the branch was mispredicted, the pipeline must be flushed and the
correct instruction fetched. In general, more branches are correctly predicted than mispredicted
so fewer pipeline flushes occur and the performance of the processor is enhanced.

Two major classes of branch are addressed in the processor prediction scheme:

1. Direct branches, including B, BL, (ZB, and BLX immediate, where the target address is a
fixed offset, encoded in the instruction, from the program counter. If such an instruction
has been fetched, and the program counter is known, predicting the destination of the
branch only involves predicting whether the instruction passes or fails its condition code,
that is, whether the branch is taken or not taken.

2. Indirect branches such as load and Branch and eXchange (BX), instructions that write to
the PC, that can be identified as a likely return from a procedure call. Two identifiable
cases are:

. loads to the PC from an address derived from R13
. BX from RO-R14.

In these cases, if the calling operation can also be identified, the likely return address can
be stored in the return stack. Typical calling operations are BL and BLX instructions.

Note

Unconditional instructions of either class of program flow are always executed, and do not
affect prediction history. Unconditional return stack operations always affect the return stack.

This section describes:
. Branch predictor
. Incorrect predictions and correction on page 5-4.

5.21 Branch predictor

Branch prediction in the processor is dynamic and is based around a global history prediction
scheme. In addition, there is extra logic to handle predictions that thrash and to predict the end
of long loops.

The global history scheme is an adaptive predictor that learns the behavior of branches during
execution, identifying them based on the historical pattern of behavior of the preceding
branches. For each pattern of branch behavior, the history table holds a 2-bit hint value. The
2-bit hint indicates if the next branch must be predicted taken or predicted not-taken based on
the behavior of previous branches. The history table contains 256 entries.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 5-3
Non-Confidential

Prefetch Unit

For loops beyond a certain number of iterations, the branch history is not large enough to learn
the history and predict the loop exit. The PFU includes logic to count the number of iterations
(up to 31) of a loop, and thereby predict the not-taken branch that exits the loop. If the number
of iterations taken exceeds 31, the loop branch is never predicted as not-taken.

If multiple branch histories index into the same hint value, this can cause thrashing in the history
table and reduce accuracy of the branch predictor. Logic in the branch predictor detects these
cases and provides some hysteresis for the hint value.

For direct branches, the target address is calculated statically from the instruction encoding and
the program counter. For indirect branches, the hint value predicts if the branch is taken or
not-taken, and the return stack can sometimes be used to predict the target address. When the
destination of a branch cannot be calculated statically, or popped from the return stack, PFU
assumes the branch to be not-taken.

The PFU updates the history for each occurrence of a branch when the DPU indicates how the
branch was resolved.

5.2.2 Incorrect predictions and correction

The DPU resolves branches that the dynamic branch predictor predicts at the Wr-stage of the
pipeline, see Figure 2-1 on page 2-2. A misprediction causes the PFU to flush the pipeline and
fetch the correct instruction stream.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 5-4
Non-Confidential

5.3 Return stack

Prefetch Unit

The call-return stack predicts procedural returns that are program flow changes such as loads,
and branch register. The dynamic branch predictor determines if conditional procedure returns
are predicted as taken or not-taken, as described in Branch prediction on page 5-3. The return
stack predicts the target address for unconditional procedure returns, and conditional procedure
returns that have been predicted as taken by the branch predictor.

The return stack consists of a 4-entry circular buffer. When the PFU detects a taken procedure
call instruction, the PFU pushes the return address onto the return stack. The instructions that
the PFU recognizes as procedure calls are, in both the ARM and Thumb instruction sets:

. BL immediate
. BLX immediate
. BLX Rm.

When the return stack detects a taken return instruction, the PFU issues an instruction fetch from
the location at the top of the return stack, and pops the return stack. The instructions that the
PFU recognizes as procedure returns are, in both the ARM and Thumb instruction sets:

. LDM Rn{!}, {..,pc}

. POP {..,pc}

. LDMIB Rn{!}, {..,pc}
. LDMDA Rn{!}, {..,pc}
. LDMDB Rn{!}, {..,pc}
. LDR pc, [spl, #4

. BX Rm.

Return stack mispredictions can exist when:
. The prediction that a conditional return passed or failed its condition code is not correct.
. The return address of an unconditional or predicted-taken return is not correct.

The return stack has no underflow or overflow detection. Either scenario is likely to cause a
misprediction.

Note
The MOV PC, LR instruction is not decoded and is not predicted as a return.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 5-5
Non-Confidential

Prefetch Unit

5.4 Controlling instruction prefetch and program flow prediction

In the Cortex-R5 processor, the Z-bit, bit [11] of the SCTLR, does not control the program flow
prediction. The Z-bit is read-as-one, writes-ignored and instead a number of control bits in the
Auxiliary Control Register control the program flow and prefetch features. To disable the
program flow prediction, you must disable the return stack and set the branch prediction policy
to always not-taken. See ¢/, Auxiliary Control Register on page 4-41.

The fetch rate predictor can be disabled by setting FRCDIC in the Auxiliary Control Register.
When the predictor is disabled, the PFU fetches instructions at the fastest rate possible.

The dynamic branch predictor is controlled with the BP field in the Auxiliary Control Register.
In normal operation the branch prediction is taken from the global history table. You can also
force the prediction to be always taken, or always not-taken. When the prediction is forced to a
fixed direction, the processor does not update the global history table, and the historic pattern
of branches is frozen. You can also disable the loop prediction logic and the logic for preventing
thrashing, by setting DEOLP and DBHE respectively.

You can disable the return stack by setting RSDIS in the Auxiliary Control Register. When
disabled, pushes onto the stack caused by call instructions are disabled and the stack pointer is
frozen.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 5-6
Non-Confidential

Chapter 6
Events and Performance Monitor

This chapter describes the Performance Monitoring Unit (PMU) and event bus interface. It
contains the following sections:

. About the events on page 6-2
. About the PMU on page 6-6

. Performance monitoring registers on page 6-7
. Event bus interface on page 6-20.
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 6-1

ID021511 Non-Confidential

Events and Performance Monitor

6.1 About the events

The processor includes logic to detect various events that can occur, for example, a cache miss.
These events provide useful information about the behavior of the processor that you can use

when debugging or profiling code.

The events are made visible on an output event bus, EVNTBUSm, and can be counted using
registers in the Performance Monitoring Unit (PMU). See Event bus interface on page 6-20 for
more information about the event bus, and About the PMU on page 6-6 for more information
about the PMU. Table 6-1 lists the events that are generated, along with the bit position of each
event on the event bus, and the numbers that the PMU uses to refer the events. Event reference
numbers that are not listed are Reserved. See Error detection events on page 8-36 for more

information on the CFLR related events.

Table 6-1 Event bus interface bit functions

EVNTBUSmM Descriotion CFLR Event Ref.
bit position P update Value
- Software increment. The register is incremented only on writes to the Software - 0x00
Increment Register. See c9, Software Increment Register on page 6-12.
[0] Instruction cache miss. - 0x01
Each instruction fetch from normal Cacheable memory that causes a refill from the level
2 memory system generates this event. Accesses that do not cause a new cache refill, but
are satisfied from refilling data of a previous miss are not counted. Where instruction
fetches consist of multiple instructions, these accesses count as single events. CP15
cache maintenance operations do not count as events.
[1] Data cache miss. - 0x03
Each data read from or write to normal Cacheable memory that causes a refill from the
level 2 memory system generates this event. Accesses that do not cause a new cache
refill, but are satisfied from refilling data of a previous miss are not counted. Each access
to a cache line to normal Cacheable memory that causes a new linefill is counted,
including the multiple transactions of an LDM and STM. Write-through writes that hit in the
cache do not cause a linefill and so are not counted. CP15 cache maintenance operations
do not count as events.
[2] Data cache access. - 0x04
Each access to a cache line is counted including the multiple transactions of an LDM, STM,
or other operations. CP15 cache maintenance operations do not count as events.
[3] Data Read architecturally executed. - 0x06
This event occurs for every instruction that explicitly reads data, including SWP.
[4] Data Write architecturally executed. - 0x07
This event occurs for every instruction that explicitly writes data, including SWP.
[5] Instruction architecturally executed?. - 0x08
[6] Dual-issued pair of instructions architecturally executed. - 0x5e
[7] Exception taken. - 0x09
This event occurs on each exception taken.
[8] Exception return architecturally executed. - 0x0A
This event occurs on every exception return, for example, “RFE, MOVS PC, LDM Rn,
{..,PC}A".
[9] Change to Context ID executed. - 0x0B
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 6-2

ID021511

Non-Confidential

Events and Performance Monitor

Table 6-1 Event bus interface bit functions (continued)

EVNTBUSmM Description CFLR Event Ref.
bit position P update Value
[10] Software change of PC, except by an exception, architecturally executed. - 0xec
[11] B immediate, BL immediate or BLX immediate instruction architecturally executed (taken - 0x0D
or not taken).
[12] Procedure return architecturally executed, other than exception returns, for example, BZ - 0X0E
Rm, "LDM Rn, {..,PC}".
MOV PC, LR does not generate this event, because it is not predicted as a return.
[13] Unaligned access architecturally executed. - 0x0F
This event occurs for each instruction that was to an unaligned address that either
triggered an alignment fault, or would have done so if the SCTLR A-bit had been set.
[14] Branch mispredicted or not predicted. - 0x10
This event occurs for every pipeline flush caused by a branch.
- Cycle count. - 0x11
[15] Branches or other change in program flow that could have been predicted by the branch - 0x12
prediction resources of the processor.
[16] Stall because instruction buffer cannot deliver an instruction. - 0x40
This can indicate an instruction cache miss. This event occurs every cycle where the
condition is present.
[17] Stall because of a data dependency between instructions. - 0x41
This event occurs every cycle where the condition is present.
[18] Data cache write-back. - 0x42
This event occurs once for each line that is written back from the cache.
[19] External memory request. - 0x43
Examples of this are cache refill, Non-cacheable accesses, write-through writes, cache
line evictions (write-back).
[20] Stall because of LSU being busy. - 0x44
This event takes place each clock cycle where the condition is met. A high incidence of
this event indicates the pipeline is often waiting for transactions to complete on the
external bus.
[21] Store buffer was forced to drain completely. - 0x45
Examples of this for Cortex-RS are DMB, Strongly Ordered memory access, or similar
events.
- The number of cycles FIQ interrupts are disabled. - 0x46
- The number of cycles IRQ interrupts are disabled. - 0x47
- ETMEXTOUTm][O0]. - 0x48
- ETMEXTOUTm[1]. - 0x49
[22] Instruction cache tag RAM parity or correctable ECC error. Yes 0x4A
[23] Instruction cache data RAM parity or correctable ECC error. Yes 0x4B
[24] Data cache tag or dirty RAM parity error or correctable ECC error, from data-side or Yes 0x4C
ACP.
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 6-3

ID021511

Non-Confidential

Events and Performance Monitor

Table 6-1 Event bus interface bit functions (continued)

E_VNTB_U_Sm Description CFLR Event Ref.
bit position update Value
[25] Data cache data RAM parity error or correctable ECC error. Yes 0x4D
[26] TCM fatal ECC error reported from the prefetch unit. - 0x4E
[27] TCM fatal ECC error reported from the load/store unit. - 0x4F
- Store buffer merge. - 0x50
- LSU stall caused by full store buffer. - 0x51
- LSU stall caused by store queue full. - 0x52
- Integer divide instruction, SDIV or UDIV, executed. - 0x53
- Stall cycle caused by integer divide. - 0x54
- PLD instruction that initiates a linefill. - 0x55
- PLD instruction that did not initiate a linefill because of a resource shortage. - 0x56
- Non-cacheable access on AXI master bus. - 0x57
[28] Instruction cache access. - 0x58
This is an analog to event 0x04.
- Store buffer operation has detected that two slots have data in same cache line but with - 0x59
different attributes.
[29] Dual issue case A (branch). - 0x5A
[30] Dual issue case B1, B2, F2 (load/store), F2D. - 0x58
[31] Dual issue other case. - 0x5C
[32] Double-precision floating point arithmetic or conversion instruction executed. - 0x5D
[33] Data cache data RAM fatal ECC error. - 0x60
[34] Data cache tag/dirty RAM fatal ECC error, from data-side or ACP. - 0x61
[35] Processor livelock because of hard errors or exception at exception vector. - 0x62
[36] Unused. - 0x63
[37] ATCM multi-bit ECC error. - 0x64
[38] BOTCM multi-bit ECC error. - 0x65
[39] B1TCM multi-bit ECC error. - 0x66
[40] ATCM single-bit ECC error. - 0x67
[41] BOTCM single-bit ECC error. - 0x68
[42] BI1TCM single-bit ECC error. - 0x69
[43] TCM correctable ECC error reported by load/store unit. Yes 0x6A
[44] TCM correctable ECC error reported by prefetch unit. Yes 0x6B
[45] TCM fatal ECC error reported by AXI slave interface. - 0x6C
[46] TCM correctable ECC error reported by AXI slave interface. Yes 0x6D
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 6-4

ID021511

Non-Confidential

Events and Performance Monitor

Table 6-1 Event bus interface bit functions (continued)

EVNTBUSmM Description CFLR Event Ref.
bit position P update Value
- All correctable eventsb, OR of: Yes 0x6E

0x4A ICache tag

0x4B ICache data

0x4C DCache tag/dirty

0x4D DCache data

0x6A LSU TCM

0x6B PFU TCM

0x6D AXI-S TCM

0x70 bus-ECC
- All fatal events?, OR of: - 0x6F

0x60 DCache tag

0x61 DCache tag/dirty

0x4E PFU TCM

0x4F LSU TCM

0x6C AXI-S TCM

0x71 bus -ECC
[47] All correctable bus faultsb - 0x70
[48] All fatal bus faultsb - ox71
[49] ACP D-Cache access, lookup or invalidate. - 0x72
[50] ACP D-Cache invalidate. - 0x73
- Cycle count - OXFF
[51]-[54] Unused - -

a. If one of the event counters is configured to count this event, then the counter increases by two when a dual-issued pair of instructions are
architecturally executed. The EVNTBUSm|5] signal is asserted for one cycle only in the same situation - use EVNTBUSm[6] to distinguish
this situation.

b. This event is signalled when any one of a number of events occur. It is formed as a logical OR of the constituent events. This means that if
two or more of the constituent events occur at the same time, the composite event is only signaled once and the event counter, if configured
to count this event, is only incremented by one.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 6-5
ID021511 Non-Confidential

Events and Performance Monitor

6.2 About the PMU

The PMU consists of three event counting registers, one cycle counting register and 12 CP15
registers, for controlling and interrogating the counters. The performance monitoring registers
are always accessible in Privileged mode. You can use the User Enable (PMUSERENR)
Register to make all of the performance monitoring registers, except for the Interrupt Enable
Set (PMINTENSET), and Interrupt Enable Clear (PMINTENCLR) Registers, accessible in
User mode.

All three event counters are read and written through the same CP15 register. The Performance
Counter Selection (PMSELR) Register determines which counter is read or written. The three
Event Selection registers, one per counter, are read and written through one CP15 register in the
same way.

Using the control registers, you can enable or disable each of the event counters individually,
and read and reset the overflow flag for each counter. Any or all of the counters can be enabled
to assert an interrupt request output, nPMUIRQm, on overflow.

When the processor is in Debug halt state:

. the PMU does not count events

. events are not visible on the ETM interface

. the Cycle CouNT (PMCCNTR) register is halted.

For more information on Debug halt state see Chapter 12 Debug.

The PMU only counts events when non-invasive debug is enabled, that is, when either
DBGENmMm or NIDENm inputs are asserted. The Cycle Count (PMCCNTR) Register is always
enabled regardless of whether non-invasive debug is enabled, unless the DP bit of the PMCR
register is set. See c9, Performance Monitor Control Register on page 6-7.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 6-6
Non-Confidential

Events and Performance Monitor

6.3 Performance monitoring registers

The performance monitoring registers are described in:

c9, Performance Monitor Control Register

c9, Count Enable Set Register on page 6-8

c9, Count Enable Clear Register on page 6-9

c9, Overflow Flag Status Register on page 6-11
c9, Software Increment Register on page 6-12

¢9, Performance Counter Selection Register on page 6-12
c9, Cycle Count Register on page 6-13

c9, Event Type Selection Register on page 6-14
c9, Event Count Registers on page 6-16

c9, User Enable Register on page 6-16

¢9, Interrupt Enable Set Register on page 6-17
c9, Interrupt Enable Clear Register on page 6-18.

6.3.1 c9, Performance Monitor Control Register

The PMCR Register characteristics are:

Purpose Controls the operation of the three count registers, and the PMCCNTR

Register.

Usage constraints The PMCR Register is:

. a read/write register
. accessible in:
— Privileged mode

— User mode only when the PMUSERENR.EN bit is set to 1,
see c9, User Enable Register on page 6-16.

Configurations Available in all processor configurations.

Attributes See Table 6-2 on page 6-8.

Figure 6-1 shows the bit assignments.

31

24 23 16 15 1110 6 543210

IMP IDCODE N Reserved X|D[C|P|E

Figure 6-1 PMCR Register bit assignments

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 6-7
Non-Confidential

Events and Performance Monitor

Table 6-2 shows the bit assignments.

Table 6-2 PMCR Register bit assignments

Bits

Name

Function

[31:24]

IMP

Implementer code:
0x41 = ARM

[23:16]

IDCODE

Identification code:
0x15 = Cortex-R5

[15:11]

Specifies the number of counters implemented:
0x3 = three counters implemented

[10: 6]
[5]

Reserved

DpP

RAZ on reads, Should Be Zero or Preserved (SBZP) on writes

Disable PMCCNTR when prohibited, that is, when non-invasive debug is not enabled:
0 = Count is enabled in prohibited regions. This is the reset value.
1 = Count is disabled in prohibited regions.

Enable export of the events to the event bus for an external monitoring block, for example the
ETM, to trace events:

0 = Export disabled. This is the reset value.
1 = Export enabled.

(3]

Cycle count divider:
0 = Counts every processor clock cycle. This is the reset value.
1 = Counts every 64th processor clock cycle.

Cycle counter reset:
Write one to this bit to reset the cycle counter, PMCCNTR, to zero.
This bit Reads-As-Zero.

(1]

Event counter reset:
Write one to this bit to reset all event counters to zero.
This bit Reads-As-Zero.

Enable:
0 = Disable all counters, including PMCCNTR. This is the reset value.
1 = Enable all counters including PMCCNTR.

The PMCR Register is always accessible in Privileged mode. To access the register, read or
write CP15 with:

MRC pl5, 0, <Rd>, 9, cl12, 0 ; Read PMCR Register
MCR p15, @, <Rd>, c9, cl12, @ ; Write PMCR Register

6.3.2 9, Count Enable Set Register

The PMCNTENSET Register characteristics are:

Purpose Enables the Event Count Registers.

Usage constraints The PMCNTENSET Register is:

. accessible in:
— Privileged mode

— User mode only when the PMUSERENR.EN bit is set to 1,
see c9, User Enable Register on page 6-16.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 6-8
Non-Confidential

Events and Performance Monitor

. The values in this register are ignored unless the E bit, bit [0], is set
in the PMCR Register, see c9, Performance Monitor Control
Register on page 6-7.

Configurations Auvailable in all processor configurations.
Attributes See Table 6-3.

Figure 6-2 shows the bit assignments.

31 3210

C Reserved

L Cycle count enable . P2 |
Performance monitor P1

counter enables
PO

Figure 6-2 PMCNTENSET Register bit assignments
Table 6-3 shows the bit assignments.

Table 6-3 PMCNTENSET Register bit assignments

Bits Name Function

[31] C Cycle counter enable

[30:3] Reserved UNP on reads, SBZP on writes

[2] P2 Counter 2 enable
[1] P1 Counter 1 enable
[0] PO Counter 0 enable

To access the PMCNTENSET Register, read or write CP15 with:

MRC p15, @, <Rd>, c9, cl12, 1 ; Read PMCNTENSET Register
MCR p15, @, <Rd>, 9, cl12, 1 ; Write PMCNTENSET Register

When reading this register, any enable that reads as 0 indicates the corresponding counter is
disabled. Any enable that reads as 1 indicates the corresponding counter is enabled.

Writing a 1 to a particular count enable bit enables that counter. Writing a 0 to a count enable
bit has no effect. You must use the Count Enable Clear Register to disable the counters. All
counters are disabled at reset.

The PMCNTENSET Register retains its value when the enable bit of the PMCR is clear, even
though its settings are ignored.
6.3.3 c9, Count Enable Clear Register
The PMCNTENCLR Register characteristics are:
Purpose Disables any of the Event Count Registers.

Usage constraints The PMCNTENCLR Register is:
. accessible in:

— Privileged mode

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 6-9
ID021511 Non-Confidential

Events and Performance Monitor

— User mode only when the PMUSERENR.EN bit is set to 1,
see c9, User Enable Register on page 6-16.

Configurations Auvailable in all processor configurations.
Attributes See Table 6-4.

Figure 6-3 shows the bit assignments.

31 3210

C Reserved

L Cycle count disable . P2 |
Performance monitor P1

counter disables
PO

Figure 6-3 PMCNTENCLR Register bit assignments
Table 6-4 shows the bit assignments.

Table 6-4 PMCNTENCLR Register bit assignments

Bits Name Function

[31] C Cycle counter disable:

[30:3] Reserved UNP on reads, SBZP on writes

[2] P2 Counter 2 enable
[1] P1 Counter 1 enable
[0] PO Counter 0 enable

To access the PMCNTENCLR Register, read or write CP15 with:

MRC p15, @, <Rd>, 9, cl12, 2 ; Read PMCNTENCLR Register
MCR p15, @, <Rd>, 9, cl12, 2 ; Write PMCNTENCLR Register

When reading this register, any enable that reads as 0 indicates the corresponding counter is
disabled. Any enable that reads as 1 indicates the corresponding counter is enabled.

When writing this register, any enable written with a value of 0 is ignored, that is, not updated.
Any enable written with a value of 1 clears the counter enable. You must use the Count Enable
Set Register to enable the counters. All counters are disabled at reset.

Writing to bits in this register disables individual counters, and clears the corresponding bits in
the PMCNTENSET Register, see ¢9, Count Enable Set Register on page 6-8.

You can use the enable, EN, bit [0] of the PMCR Register to disable all performance counters
including PMCCNTR, see c¢9, Performance Monitor Control Register on page 6-7.

The PMCNTENCLR and PMCNTENSET Registers retain their values when the enable bit of
the PMCR is clear, even though their settings are ignored. The PMCNTENCLR Register can be
used to clear the enabled flags for individual counters even when all counters are disabled in the
PMCR Register.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 6-10
Non-Confidential

Events and Performance Monitor

6.3.4 c9, Overflow Flag Status Register

The PMOVSR Register characteristics are:

Purpose Indicates if event counters have overflowed. All overflow flags are reset
to zero.

Usage constraints The PMOVSR Register is accessible in:
. Privileged mode

. User mode only when the PMUSERENR.EN bit is set to 1, see c9,
User Enable Register on page 6-16.

Configurations Available in all processor configurations.
Attributes See Table 6-5.

Figure 6-4 shows the bit assignments.

31 3210

C Reserved

L Cycle count overflow . P2 |
Performance monitor counter P1

overflow flags
PO

Figure 6-4 PMOVSR Register bit assignments
Table 6-5 shows the bit assignments.

Table 6-5 PMOVSR Register bit assignments

Bits Name Function

[31] Cycle counter overflow Cycle counter overflow flag
[30:3] Reserved UNP on reads, SBZP on writes
[2] P2 Counter 2 overflow flag

[1] P1 Counter 1 overflow flag

[0] PO Counter 0 overflow flag

To access the PMOVSR Register, read or write CP15 with:

MRC pl5, @, <Rd>, 9, cl12, 3 ; Read PMOVSR Register
MCR pl15, @, <Rd>, c9, cl12, 3 ; Write PMOVSR Register

If an overflow flag is set to 1 in the PMOVSR register it remains set until one of the following
happens:

. writing 1 to the flag bit in the PMOVSR Register clears the flag

. the processor is reset.

The following operations do not clear the overflow flags:

. disabling the overflowed counter in the PMCNTENCLR Register
. disabling all counters in the PMCR Register

. resetting the overflowed counter using the PMCR Register.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 6-11
Non-Confidential

Events and Performance Monitor

6.3.5 c9, Software Increment Register
The PMSWINC Register characteristics are:
Purpose Increments the count of an Event Count Register.

Usage constraints The PMSWINC Register is:
. A write-only register that Reads-As-Zero
. Accessible in:
— Privileged mode

— User mode only when the PMUSERENR.EN bit is set to 1,
see c9, User Enable Register on page 6-16.

. You must only use the PMSWINC Register to increment Event
Count Registers when the counter event is set to 0x00, software
count, in the Event Select Register, see c¢9, Event Type Selection
Register on page 6-14.

If you attempt to use the PMSWINC Register to increment an Event
Count Register when the counter event is set to a value other than
0x00 the result is Unpredictable.

Configurations Available in all processor configurations.
Attributes See Table 6-6.

Figure 6-5 shows the bit assignments.

31 3210

. P2 I
Performance monitor counters
. . P1
software increment bits

PO

Reserved

Figure 6-5 PMSWINC Register bit assignments

Table 6-6 shows the bit assignments.

Table 6-6 PMSWINC Register bit assignments

Bits Name Function

[31:3] Reserved RAZ onreads, SBZP on writes

[2] P2 Increment Counter 2
[1] P1 Increment Counter 1
[0] PO Increment Counter 0

To access the PMSWINC Register, write CP15 with:

MCR pl5, 0, <Rd>, 9, cl12, 4 ; Write PMSWINC Register

6.3.6 c9, Performance Counter Selection Register
The PMSELR Register characteristics are:

Purpose . selects an Event Count Register.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 6-12
ID021511 Non-Confidential

Events and Performance Monitor

. determines which count register is accessed or controlled by
accesses to the Event Selection Register and the Event Count
Register.

Usage constraints The PMSELR Register is:
. A read/write register.
. Accessible in:
— Privileged mode

— User mode only when the PMUSERENR.EN bit is set to 1,
see c9, User Enable Register on page 6-16.

Configurations Auvailable in all processor configurations.
Attributes See Table 6-7.

Figure 6-6 shows the bit assignments.

31 5 4 0

Reserved SEL

Figure 6-6 PMSELR Register bit assignments
Table 6-7 shows the bit assignments.

Table 6-7 PMSELR Register bit assignments

Bits Name Function

[31:5] Reserved RAZ on reads, SBZP on writes

[4:0] SEL Counter select:
b00000 = selects counter 0
b00001 = selects counter 1
b00010 = selects counter 2.

Any values programmed in the PMSELR Register other than those specified in Table 6-7 are
Unpredictable.

To access the PMSELR Register, read or write CP15 with:

MRC pl15, @, <Rd>, c9, cl12, 5 ; Read PMSELR Register
MCR p15, @, <Rd>, 9, cl12, 5 ; Write PMSELR Register

6.3.7 ¢9, Cycle Count Register

The PMCCNTR Register characteristics are:
Purpose Counts clock cycles.

Usage constraints The PMCCNTR Register:
. Is a 32-bit read/write register.
. Is accessible in:
— Privileged mode

— User mode only when the PMUSERENR.EN bit is set to 1,
see c9, User Enable Register on page 6-16.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 6-13
Non-Confidential

Events and Performance Monitor

. Must be disabled before software can write to it. Any attempt by
software to write to this register when enabled is Unpredictable.

Configurations Auvailable in all processor configurations.
To access the PMCCNTR read or write CP15 with:

MRC pl15, @, <Rd>, c9, c13, @ ; Read PMCCNTR Register
MCR p15, 0, <Rd>, 9, c13, @ ; Write PMCCNTR Register

6.3.8 c9, Event Type Selection Register

There are three Event Type Select Registers in the processor, PMXEVTYPERO to
PMXEVTYPER?2, each corresponding to one of the Performance Monitor Count
(PMXEVCNTR) Registers, PMXEVCNTRO to PMXEVCNTR2. The register to be accessed is
determined by the value in the PMSELR.

The PMXEVTYPER Register characteristics are:
Purpose Selects the events you want a PMXEVCNTR Register to count.

Usage constraints The PMXEVTYPER Register is:
. A read/write register
. Accessible in:
— Privileged mode

— User mode only when the PMUSERENR.EN bit is set to 1,
see c9, User Enable Register on page 6-16.

Configurations Available in all processor configurations.
Attributes See Table 6-8.

Figure 6-7 shows the bit assignments.

31 8 7 0

Reserved SEL

Figure 6-7 PMXEVTYPERX Register bit assignments
Table 6-8 shows the bit assignments.

Table 6-8 PMXEVTYPERX Register bit functions

Bits Name Function
[31:8] - RAZ or SBZP.
[7:0] SEL Event number selected, see Table 6-1 on page 6-2 for values.

The reset value of this field is Unpredictable.

To access the PMXEVTYPERx Register, read or write CP15 with:

MRC p15, @, <Rd>, 9, c13, 1 ; Read PMXEVTYPERX Register
MCR p15, 0, <Rd>, 9, c13, 1 ; Write PMXEVTYPERX Register

The absolute counts of events recorded might vary because of pipeline effects. This has
negligible effect except in cases where the counters are enabled for a very short time.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 6-14
Non-Confidential

Events and Performance Monitor

In addition to the counters within the processor, most of the events that Table 6-1 on page 6-2
shows are available to the ETM unit or other external trace hardware to enable monitoring of
the events. For information on how to monitor these events, see the CoreSight ETM-R5

Technical Reference Manual.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 6-15
Non-Confidential

Events and Performance Monitor

6.3.9 c9, Event Count Registers

There are three Event Count Registers (PMXEVCNTRO-PMXEVCNTR2) in the processor.
Each PMXEVCNTR Register, as selected by the PMSELR Register, counts instances of an
event selected by the corresponding PMXEVTYPER Register. The register to be accessed is
determined by the value in the PMSELR.

Each PMXEVCNTR Register is:
. A 32-bit read/write register.

. Accessible in:
— Privileged mode

— User mode only when the PMUSERENR.EN bit is set to 1, see c9, User Enable
Register.

To access the current Event Count Registers, read or write CP15 with:

MRC pl5, @, <Rd>, 9, c13, 2 ; Read current PMNx Register

MCR pl15, @, <Rd>, c9, c13, 2 ; Write current PMNx Register
6.3.10 c9, User Enable Register

The PMUSERENR Register characteristics are:

Purpose Enables User mode to have access to:
. the performance monitor registers, see Performance monitoring
registers on page 6-7
. the validation registers, see Validation Registers on page 4-68.

Usage constraints The PMUSERENR Register:

. is a read/write register
. is writable only in Privileged mode, readable in any processor mode
. does not provide access to the registers that control interrupt
generation.
Configurations Available in all processor configurations.
Attributes See Table 6-9 on page 6-17.

Figure 6-8 shows the bit assignments.

31 10

Reserved

EN—,

Figure 6-8 PMUSERENR Register bit assignments

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 6-16
ID021511 Non-Confidential

Events and Performance Monitor

Table 6-9 shows the bit assignments.

Table 6-9 PMUSERENR Register bit assignments

Bits Name Function

[31:1] Reserved RAZ or SBZP.

[0] EN User mode access to performance monitor and validation registers:
0 = Disabled. This is the reset value.
1 = Enabled.

If the EN bit in the PMUSERENR Register is not set, any attempt to access a performance
monitor register or a validation register from User mode causes an Undefined Instruction
exception.

Note

For more information on access permissions to the performance monitor registers and validation
registers, see the ARM Architecture Reference Manual.

To access the PMUSERENR Register, read or write CP15 with:

MRC pl15, @, <Rd>, c9, cl4, @ ; Read PMUSERENR Register
MCR p15, @, <Rd>, c9, cl4, @ ; Write PMUSERENR Register

6.3.11 c9, Interrupt Enable Set Register

The PMINTENSET Register characteristics are:

Purpose Determines if any of the PMXEVCNTR Registers,
PMXEVCNTRO-PMXEVCNTR2 and PMCCNTR, generate an interrupt
request on overflow.

Usage constraints The PMINTENSET Register is:

. a read/write register

. accessible in Privileged mode only.
Configurations Available in all processor configurations.
Attributes See Table 6-10 on page 6-18.

Figure 6-9 shows the bit assignments.

31 3210

C Reserved

L Cycle count overflow interrupt enable . P2 —
Performance monitor counter P1

overflow interrupt enables PO

Figure 6-9 PMINTENSET Register bit assignments

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 6-17
Non-Confidential

Events and Performance Monitor

Table 6-10 shows the bit assignments.

Table 6-10 PMINTENSET Register bit assignments

Bits Name Function

[31] C PMCCNTR overflow interrupt

[30:3] Reserved UNP on reads, SBZP on write

[2] P2 PMXEVCNTR?2 overflow interrupt
[1] Pl PMXEVCNTRI1 overflow interrupt
[0] PO PMXEVCNTRO overflow interrupt

Reading this register returns the current setting, with a 1 in one of the counter bits indicating that
interrupts are enabled for that counter. Writing a 1 to a particular interrupt bit enables interrupt
generation on overflow of that counter. Writing a 0 has no effect. You can only disable interrupts
by writing to the PMINTENCLR Register.

To access the Interrupt Enable Set Register, read or write CP15 with:

MRC p15, @, <Rd>, c9, cl4, 1 ; Read PMINTENSET Register
MCR p15, @, <Rd>, 9, cl4, 1 ; Write PMINTENSET Register

If this unit generates an interrupt, the processor asserts the pin nPMUIRQm. You can route this
pin to an external interrupt controller for prioritization and masking. This is the only mechanism
that signals this interrupt to the processor.

Note

ARM expects that the Performance Monitor interrupt request signal, nPMUIRQm, connects to
a system interrupt controller.

6.3.12 c9, Interrupt Enable Clear Register
The PMINTENCLR Register characteristics are:

Purpose Determines if any of the PMXEVCNTR Registers,
PMXEVCNTRO-PMXEVCNTR2 and PMCCNTR, generate an interrupt
request on overflow.

Usage constraints The PMINTENCLR Register is:

. a read/write register

. accessible in Privileged mode only.
Configurations Available in all processor configurations.
Attributes See Table 6-11 on page 6-19.

Figure 6-10 on page 6-19 shows the bit assignments.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 6-18
ID021511 Non-Confidential

31

Events and Performance Monitor

3210

C

Reserved

L Cycle count overflow interrupt disable

) P2 I
Performance monitor counter P1

overflow interrupt disables

Figure 6-10 PMINTENCLR Register bit assignments

Table 6-11 shows the bit assignments.

Table 6-11 PMINTENCLR Register bit assignments

Bits Name

Function

31] C

[30:3] Reserved

PMCCNTR overflow interrupt

UNP on reads, SBZP on writes

2] P2

PMXEVCNTR?2 overflow interrupt

[] Pl

PMXEVCNTRI overflow interrupt

[0] PO

PMXEVCNTRO overflow interrupt

Reading this register returns the current setting, with a 1 in one of the counter bits indicating that
interrupts are enabled for that counter. Writing a 1 to a particular interrupt disable bit disables
interrupt generation on overflow of that counter. Writing a 0 has no effect. You can only enable

interrupt requests by writing to the PMINTENSET Register.

To access the PMINTENCLR Register, read or write CP15 with:

MRC pl15, @, <Rd>, c9, cl4, 2 ; Read PMINTENCLR Register
MCR pl15, @, <Rd>, 9, cl4, 2 ; Write PMINTENCLR Register

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All
Non-Confidential

rights reserved.

6-19

Events and Performance Monitor

6.4 Event bus interface

The event bus, EVNTBUS, is used to signal when an event has occurred. The event bus
includes most, but not all, of the events that can be counted by the performance monitoring unit.
Each individual event is assigned to an individual bit of this bus, and this bit is asserted for one
cycle each time the event occurs.

The event bus only signals events when it is enabled. Set the X bit in the Performance Monitor
Control Register to enable the event bus. See c¢9, Performance Monitor Control Register on
page 6-7.

See Table 6-1 on page 6-2 to see which bit of the event bus each event is signaled on.

Note

If an event is being counted in the PMU, the count might not be incremented in exactly the same
cycle that the event is signaled on the event bus.

6.4.1 Use of the event bus and counters

The event bus is designed to be connected to the ETM-RS5, that enables processor events to
trigger tracing for debug purposes. You can also connect it to event counting registers external
to the processor, or to an interrupt generator.

Because each EVNTBUSm pin is only asserted for one cycle for each occurrence of the event,
it is possible to create composite events by ORing various EVNTBUSm pins together. A
composite event signal like this is asserted when any of the included events occur although, if
multiple events occur in the same cycle, the composite event only occurs once.

The processor also has two event input pins, ETMEXTOUTm|[1:0]. This bus is normally
intended for connection to the ETM, and enables the Cortex-RS performance monitor to count
events generated by the ETM. These inputs can alternatively be used for composite events
generated external to the processor.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 6-20
Non-Confidential

Chapter 7

Memory Protection Unit

This chapter describes the Memory Protection Unit (MPU). It contains the following sections:

About the MPU on page 7-2

Memory types on page 7-7

Region attributes on page 7-8

MPU interaction with memory system on page 7-9
MPU faults on page 7-10

MPU software-accessible registers on page 7-11.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.
Non-Confidential

7-1

71

Memory Protection Unit

About the MPU

The MPU works with the L1 memory system to control accesses to and from L1 and external
memory. For a full architectural description of the MPU, see the ARM Architecture Reference
Manual.

The MPU enables you to partition memory into regions and set individual protection attributes
for each region. The MPU supports zero, 12, or 16 memory regions.

Note

If the MPU has zero regions, you cannot enable or program the MPU. Attributes are only
determined from the default memory map when zero regions are implemented.

Each region is programmed with a base address and size, and the regions can be overlapped to
enable efficient programming of the memory map. To support overlapping, the regions are
assigned priorities, with region 0 having the lowest priority and region 15 having the highest.
The MPU returns access permissions and attributes for the highest priority enabled region where
the address hits.

The MPU is programmed using CP15 registers c1 and c6, see MPU control and configuration

on page 4-3. Memory region control read and write access is permitted only from Privileged

modes.

Table 7-1 shows the default memory map.

Table 7-1 Default memory map

Instruction memory type

Data memory type

Address Execute Never
range Instruction Instruction Data cache Data cache
cache enabled cache disabled enabled disabled
OXFFFFFFFF Normal Normal Strongly Ordered Strongly Instruction execution
Non-cacheableonly =~ Non-cacheable only Ordered only permitted if
0xF0000000 i HIVECS is TRUE if HIVECS is TRUE HIVECS is TRUE
OXEFFFFFFF - - Strongly Ordered Strongly Execute Never
Ordered
0xC0000000
OXBFFFFFFF - - Shared Device Shared Execute Never
Device
0xA0000000
OX9FFFFFFF - - Non-shared Non-shared Execute Never
Device Device
0x80000000
Ox7FFFFFFF Normal, Cacheable, = Normal, Normal, Normal, Instruction execution
Non-shared Non-cacheable, Non-cacheable, Non-cacheable, permitted
0x60000000 Non-shared Shared Shared
OX5FFFFFF Normal, Cacheable, Normal, Normal, Normal, Instruction execution
~— Non-shared Non-cacheable, WT Cacheable, Non-cacheable, permitted
0x40000000 Non-shared Non-shared Shared
0x3FFFFFFF Normal, Cacheable, = Normal, Normal, Normal, Instruction execution
~—— Non-shared Non-cacheable, WBWA Cacheable, Non-cacheable, permitted
0x00000000 Non-shared Non-shared Shared

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.

Non-Confidential

Memory Protection Unit

This section describes:

. Memory regions

. Overlapping regions on page 7-4

. Background regions on page 7-6

. TCM regions on page 7-6

. Peripheral port regions on page 7-6.

711 Memory regions

Before the MPU is enabled, you must program at least one valid protection region. If you do not
do this, the processor enters a state that only reset can recover.

When the MPU is disabled, no access permission checks are performed, and memory attributes
are assigned according to the default memory map. See Table 7-1 on page 7-2.

For more information on how to enable or disable the MPU, see MPU interaction with memory
system on page 7-9.

Depending on the implementation, the MPU has a maximum of 12 or 16 regions. Using CP15
register c6 you can specify the following for each region:

. region base address

. region size

. subregion enables

. region attributes

. region access permissions
. region enable.

Region base address

The base address defines the start of the memory region. You must align this to a region-sized
boundary. For example, if a region size of 8KB is programmed for a given region, the base
address must be a multiple of 8KB.

Note
If the region is not aligned correctly, this results in Unpredictable behavior.

Region size

The region size is specified as a 5-bit value, encoding a range of values from 32 bytes, a
cache-line length, to 4GB. Table 4-34 on page 4-55 shows the encoding.

Subregions

Each region can be split into eight equal sized non-overlapping subregions. An access to a
memory address in a disabled subregion does not use the attributes and permissions defined for
that region. Instead, it uses the attributes and permissions of a lower priority region or generates
a background fault if no other regions overlap at that address. This enables increased protection
and memory attribute granularity.

All region sizes between 256 bytes and 4GB support eight subregions. Region sizes below 256
bytes do not support subregions, and the subregion disable field is SBZ/UNP for regions of less
than 256 bytes in size.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 7-3
Non-Confidential

Memory Protection Unit

Region attributes

Each region has a number of attributes associated with it. These control how a memory access
is performed when the processor accesses an address that falls within a given region. The
attributes are:

. Memory type, one of:

— Strongly Ordered
— Device
— Normal

. Shared or Non-shared

. Non-cacheable

. Write-through Cacheable
. Write-back Cacheable

. Read allocation

. Write allocation.

See Memory types on page 7-7 for more information about memory types, and Region attributes
on page 7-8 for a description of how to assign types and attributes to a region.

Region access permissions

Each region can be given no access, read-only access, or read/write access permissions for
Privileged or all modes. In addition, each region can be marked as eXecute Never (XN) to
prevent instructions being fetched from that region.

For example, if a User mode application attempts to access a Privileged mode access only region
a permission fault occurs.

The ARM architecture uses constants known as inline literals to perform address calculations.
The assembler and compiler automatically generate these constants and they are stored inline

with the instruction code. To ensure correct operation, only a memory region that has permission
for data read access can execute instructions. For more information, see the ARM Architecture
Reference Manual. For information about how to program access permissions, see Table 4-38
on page 4-58.

Instructions cannot be executed from regions with Device or Strongly-Ordered memory type
attributes.

7.1.2 Overlapping regions

You can program the MPU with two or more overlapping regions. For overlapping regions, a
fixed priority scheme determines attributes and permissions for memory access to the
overlapping region. Attributes and permissions for region 15 take highest priority, those for
region 0 take lowest priority. For example:

Region 2 Is 4KB in size, starting from address 0x3000. Privileged mode has full
access, and User mode has read-only access.

Region 1 Is 16KB in size, starting from address 0x0000. Both Privileged and User
modes have full access.

When the processor performs a data write to address 0x3010 while in User mode, the address
falls into both region 1 and region 2, as Figure 7-1 on page 7-5 shows. Because these regions
have different permissions, the permissions associated with region 2 are applied. Because User
mode is read access only for this region, a permission fault occurs, causing a data abort.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 7-4
Non-Confidential

Memory Protection Unit

0x4000 N
0x3010 ————» I Region 2
0x3000
Region 1
0x0000 v

Figure 7-1 Overlapping memory regions

Example of using regions that overlap
You can use overlapping regions for stack protection. For example:
. allocate to region 1 the appropriate size for all stacks

. allocate to region 2 the minimum region size, 32 bytes, and position it at the end of the
stack for the current process

. set the region 2 access permissions to No Access.

If the current process overflows the stack it uses, a write access to region 2 by the processor
causes the MPU to raise a permission fault.

0x4000 A

Region 1

0x0000 v < Region 2

Figure 7-2 Overlay for stack protection

Example of using subregions
You can use subregions for stack protection. For example:
. Allocate to region 1 the appropriate size for all stacks.

. Set the least-significant subregion disable bit. That is, set the subregion disable field, bits
[15:8], of the CP15 MPU Region Size Register to 0x01.

If the current process overflows the stack it uses, a write access by the processor to the disabled
subregion causes the MPU to raise a background fault.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 7-5
ID021511 Non-Confidential

713

71.4

7.1.5

Memory Protection Unit

0x4000 T
Stack
0x0800
,L <+— Guard region
0x0000

Figure 7-3 Overlapping subregion of memory

Background regions

TCM regions

Overlapping regions increase the flexibility of how the regions can be mapped onto physical
memory devices in the system. You can also use the overlapping properties to specify a
background region. For example, you might have a number of physical memory areas sparsely
distributed across the 4GB address space. If a programming error occurs, the processor might
issue an address that does not fall into any defined region.

If the address that the processor issues falls outside any of the defined regions and the MPU is
enabled, the MPU is hard-wired to abort the access. That is, all accesses for an address that is
not mapped to a region in the MPU generate a background fault. You can override this behavior
by programming region 0 as a 4GB background region. In this way, if the address does not fall
into any of the other 11 regions, the attributes and access permissions you specified for region
0 control the access.

In Privileged modes, you can also override this behavior by setting the BR bit, bit [17], of the
SCTLR. This causes Privileged accesses that fall outside any of the defined regions to use the
default memory map.

Any memory address that you configure to be accessed using a TCM interface is given Normal,
Non-shared type attributes, regardless of the attributes of any MPU region that the address also
belongs to. Access permissions for an address in a TCM region are preserved from the MPU

region that the address also belongs to. For more information, see About the TCMs on page 8-13.

Peripheral port regions

Any memory address accessed using one of the peripheral port interfaces is considered to be
non-cacheable and eXecute-Never (XN), regardless of the attributes of any MPU region that the
address also belongs to. The memory type and other access permissions for such a region are
inherited from the MPU region that the address also belongs to. See Peripheral interface
attributes and permissions on page 9-34.

ARM DDI 0460C

ID021511

Copyright © 2010-2011 ARM. All rights reserved. 7-6
Non-Confidential

Memory Protection Unit

7.2 Memory types

The ARM architecture defines a set of memory types with characteristics that are suited to
particular devices. There are three mutually exclusive memory type attributes:

. Strongly Ordered
. Device
. Normal.

MPU memory regions can each be assigned a memory type attribute. Table 7-2 shows a
summary of the memory types.

Table 7-2 Memory attributes summary

Memory type Shared or

attribute Non-shared Description
Strongly Ordered - All memory accesses to Strongly Ordered memory occur in program
order. All Strongly Ordered accesses are assumed to be shared.
Device Shared For memory-mapped peripherals that several processors share.
Non-shared For memory-mapped peripherals that only a single processor uses.
Normal Shared For normal memory that is shared between several processors.
Non-shared For normal memory that only a single processor uses.
Note

The processor’s L1 cache does not cache shared normal regions.

For more information on memory attributes and types, memory barriers, and ordering
requirements for memory accesses, see the ARM Architecture Reference Manual.

7.21 Using memory types

All of the processor interfaces to the external memory system have associated store buffers that
help to improve the throughput of accesses to Normal type memory. See Store buffer on

page 8-18 and Peripheral interfaces on page 9-31 for more information. Because of the
ordering rules that they must follow, accesses to other types of memory typically have a lower
throughput or higher latency than accesses to Normal memory. In particular:

. reads from Device memory must first drain the relevant store buffer of all writes to Device
memory and wait for all Device writes to the relevant interface that have been posted onto
the bus to complete

. all accesses to Strongly Ordered memory must first drain the store buffer completely and
wait for all writes that have been posted onto the buses to complete.

Similarly, when it is accessing Strongly Ordered or Device type memory, the processor's
response to interrupts must be modified, and the interrupt response latency is longer. See Low
interrupt latency on page 3-20 for more information.

To ensure optimum performance, you must understand the architectural semantics of the
different memory types. Use Device memory type for appropriate memory regions, typically
peripherals, and only use Strongly Ordered memory type for memory regions where it is
essential.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 7-7
Non-Confidential

Memory Protection Unit

7.3 Region attributes

Each region has a number of attributes associated with it. These control how a memory access
is performed when the processor accesses an address that falls within a given region. The
attributes are:

. Memory type, see Memory types on page 7-7, one of:

— Strongly Ordered
— Device
— Normal.

. Shared or Non-shared

. Non-cacheable

. Write-through cacheable
. Write-back cacheable

. Read allocation

. Write allocation.

The Region Access Control Registers use five bits to encode the memory region type. These are
the TEX[2:0], C and B bits. Table 4-36 on page 4-57 shows the mapping of these bits to memory
region attributes.

Note

In earlier versions of the architecture, the TEX, C, and B bits were known as the Type Extension,
Cacheable and Bufferable bits. These names no longer adequately describe the function of the
B, C, and TEX bits.

All memory attributes that are Cacheable, write-back or write-through, are also implicitly
read-allocate. Table 4-36 on page 4-57 shows which attributes are write-allocate.

In addition, the Region Access Control Registers contain the shared bit, S. This bit only applies
to Normal memory, and determines whether the memory region is Shared (1) or Non-shared (0).

When the processor performs a memory access through its AXI bus master interface:
. the Inner attributes are indicated on the A¥*INNERMm signals.
. the Outer attributes are indicated on the A*CACHEMm signals.

For the encodings, see Table 9-2 on page 9-6.

Similarly, for memory accesses performed through the AXI peripheral port, the Outer attributes
are indicated on the A*CACHEPMm signals.

For more information on region attributes, see the ARM Architecture Reference Manual.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 7-8
ID021511 Non-Confidential

Memory Protection Unit

7.4 MPU interaction with memory system

This section describes how to enable and disable the MPU. After you enable or disable the
MPU, the pipeline must be flushed using ISB and DSB instructions to ensure that all subsequent
instruction fetches and data accesses see the effect of turning on or off the MPU.

Before you enable or disable the MPU you must:

1. Program all relevant CP15 registers. This includes setting up at least one memory region
that covers the executing code, and that the attributes and permissions of that region are
the same as the attributes and permissions of the region in the default memory map that
covers the code, and that the region is executable in Privileged mode.

2. Clean and invalidate the data caches.
3. Disable caches.
4. Invalidate the instruction cache.

The following code is an example of enabling the MPU:

MRC p15, 0, R1, c1, c0, @ ; read CP15 register 1
ORR R1, R1, #0x1

DSB

MCR pl5, 0, R1, c1, c0, 0 ; enable MPU

ISB

Fetch from programmed memory map
Fetch from programmed memory map
Fetch from programmed memory map
Fetch from programmed memory map

The following code is an example of disabling the MPU:

MRC p15, 0, R1, c1, c0, 0 ; read CP15 register 1
BIC R1, R1, #0x1

DSB

MCR p15, 0, R1, c1, c0, 0 ; disable MPU

ISB

Fetch from default memory map
Fetch from default memory map
Fetch from default memory map
Fetch from default memory map

Table 7-1 on page 7-2 shows the default memory map.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 7-9
Non-Confidential

7.5 MPU faults

Memory Protection Unit

The MPU can generate three types of fault:
. Background fault

. Permission fault

. Alignment fault.

When a fault occurs, the memory access or instruction fetch is synchronously aborted, and a
prefetch abort or data abort exception is taken as appropriate. No memory accesses are
performed on the AXI bus master interface or peripheral ports. For more information about fault
handling, see Fault handling on page 8-7.

7.51 Background fault

A background fault is generated when the MPU is enabled and a memory access is made to an
address that is not within an enabled subregion of an MPU region. A background fault does not
occur if the background region is enabled and the access is Privileged. See Background regions
on page 7-6.

7.5.2 Permission fault

A permission fault is generated when a memory access does not meet the requirements of the
permissions defined for the memory region that it accesses. See Region access permissions on
page 7-4.

7.5.3 Alignment fault

An alignment fault is generated if a data access is performed to an address that is not aligned for
the size of the access, and strict alignment is required for the access. A number of instructions
that access memory, for example, LDM and STC, require strict alignment. See the ARM
Architecture Reference Manual for more information. In addition, strict alignment can be
required for all data accesses by setting the A-bit inthe SCTLR. See c1, System Control Register
on page 4-38.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 7-10
Non-Confidential

Memory Protection Unit

7.6 MPU software-accessible registers
Figure 4-2 on page 4-3 shows the CP15 registers that control the MPU.

When the MPU is not present, the c6, MPU memory region programming registers on page 4-53
read as zero and ignore writes in Privileged mode. No Undefined Instruction exceptions are
taken.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 7-11
ID021511 Non-Confidential

Chapter 8

Level One Memory System

This chapter describes the processor Level one (L1) memory system. It contains the following

sections:

About the L1 memory system on page §-2

About the error detection and correction schemes on page 8-4
Fault handling on page 8-7

About the TCMs on page 8-13

About the caches on page 8-18

Internal exclusive monitor on page 8-34

Memory types and L1 memory system behavior on page 8-35
Error detection events on page 8-36.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.
Non-Confidential

8-1

Level One Memory System

8.1 About the L1 memory system

The processor L1 memory system can be configured during implementation and integration. It
can consist of:

. separate instruction and data caches
. multiple Tightly-Coupled Memory (TCM) areas
. a Memory Protection Unit (MPU).

The instruction-side and data-side can each optionally have their own L1 caches. The cache
architecture is Harvard, that is, only instructions can be fetched from the I-Cache, and only data
can be fetched from the D-Cache. In parallel with each of the caches are two areas of dedicated
RAM accessible to both the instruction and data sides. These are regions of TCM. You can
implement one TCM using the ATCM interface and up to two TCMs using the BTCM interface.
Figure 8-1 on page 8-3 shows this.

Memory accesses, required for fetching instructions and for data transfer instructions, are
performed to the appropriate TCM if the address is in an enabled TCM region. Remaining
instruction accesses and remaining data accesses that are not in a peripheral interface region are
looked up in the appropriate L1 cache if they are cacheable. Accesses that are not serviced by
the L1 memory system are passed to the L2 memory system through the AXI-master interface
or one of the peripheral interfaces. See Chapter 9 Level Two Interface for more information
about the L2 memory system.

Each TCM and cache can be configured at implementation time to have an error detection and
correction scheme to protect the data stored in the memory from errors. Each TCM interface
also has support for logic external to the processor to tell the processor that an error has
occurred.

The MPU handles accesses to both the instruction and data sides. The MPU is responsible for
protection checking, address access permissions, and memory attributes for all accesses. Some
of these attributes can be passed to the L2 memory system through the AXI master or peripheral
ports. See Chapter 7 Memory Protection Unit for more information about the MPU.

The L1 memory system includes a monitor for exclusive accesses. Exclusive load and store
instructions, for example LDREX and STREX, can be used with the appropriate memory monitoring
to provide inter-process or inter-processor synchronization and semaphores. See the ARM
Architecture Reference Manual for more information. The internal monitor can handle some
exclusive monitoring internally to the processor, see Internal exclusive monitor on page 8-34 for
more information.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 8-2
Non-Confidential

Level One Memory System

AXI masters
Level 2 memory system
Cortex-R5 CPU \ 4
LSU AXl slave PFU
Interconnect
y y A 4
/ v \ \ 4 \ 4 \ 4 y \ 4 Level 1
AXI |AXIvirtual| AHB D-cache I-cache ATCM BTCM memory
; : h control control : ; system
peripheral | peripheral | peripheral interface interface
interface | interface | interface »| B1 RAM
» B0 RAM
AXI AHB
peripheral | peripheral o
port port » ARAM
P |-cache
» RAMs
» D-cache
» RAMs
AXI
—p master |
interface
v v v Level 2 memory system

Peripherals/ memory

Peripherals/ memory

Figure 8-1 Memory system block diagram

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.

Non-Confidential

8-3

Level One Memory System

8.2 About the error detection and correction schemes

In silicon devices, stray radiation and other effects can cause the data stored in a RAM to be
corrupted. The TCMs and caches on a Cortex-R5 processor can be configured to detect and
correct errors that can occur in the RAMs. Extra, redundant data is computed by the processor
and stored in the RAMs alongside the real data. When the processor reads data from the RAMs,
it checks that the redundant data is consistent with the real data and can either signal an error,
or attempt to correct the error.

A number of different error schemes are available, and are described in:
. Parity

. 64-bit ECC on page 8-5

. 32-bit ECC on page 8-5.

Each has different properties in terms of the number of errors that can be detected, and corrected,
and the amount of extra RAM required to store the redundant data. Because different logic is
required for each scheme, the scheme must be chosen in the build-configuration, although you
can enable or disable, or change the behavior of the error schemes using software-configuration.
This section describes the generic properties of each of the schemes. See Appendix C ECC
Schemes for more information about the advantages and disadvantages of each scheme to the
implementer. Operation of the error schemes for the caches is described in Cache error
detection and correction on page 8-20, and for the TCMs in TCM internal error detection and
correction on page 8-14.

The error schemes are each described in terms of their operation on a doubleword, 64 bits, of

data, because this is the amount of data that the processor L1 memory system can transfer each
cycle. The tag and dirty RAMs associated with the caches are different sizes, but the principles
are the same. An error is considered to be a single bit of data that has been inverted relative to
its correct value.

Figure 8-2 shows the error schemes. The shaded areas represent bits with errors.

Parity: one error per
byte detected

64-bit ECC: one error
per doubleword
corrected

64-bit ECC: two errors
per doubleword
detected

32-bit ECC: one error
per word corrected

32-bit ECC: two errors
per word detected

8.2.1 Parity

Figure 8-2 Error detection and correction schemes

For each byte, a parity bit is computed and stored with that byte. This requires eight bits of
parity, or redundant data per doubleword. With a parity scheme, a single error in a byte or its
parity bit can be detected, but not corrected. This means that, provided they are all in different
bytes, eight errors can be detected per doubleword. However, if there are two errors in any
individual byte, this cannot be detected. Odd or even parity can be used, and this can be
pin-configured during integration.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 8-4
Non-Confidential

Level One Memory System

8.2.2 Error checking and correction

The processor supports Error Checking and Correction (ECC) schemes for either 64-bits or
32-bits of data, and these have similar properties, although though the size of the data chunk that
the ECC scheme applies to is different. For each data chunk, either 32-bits or 64-bits, aligned,
a number of redundant code bits are computed and stored with the data. This enables the
processor to detect up to two errors in the data chunk or its code bits, and correct any single error
in the data chunk or its associated code bits. This is sometimes referred to as a
Single-Error-Correction, Double-Error-Detection (SEC-DED) ECC scheme.

If there are more than two errors in a data chunk and its associated code bits, they might or might
not be detected. The error scheme might interpret such a condition as a single-error and make
an unsuccessful attempt at a correction.

64-bit ECC

Eight code bits are computed for each 64 bits of data. The scheme can correct any single error
occurring in any doubleword, and detect any two errors occurring in any doubleword.

32-bit ECC

Seven code bits are computed for each 32 bits of data, so 14 bits of redundant data are required
for each doubleword. The scheme can correct two errors per doubleword, if they are in different
words. Four errors can be detected per doubleword, if there are two in each word.

8.2.3 Read-Modify-Write

8.2.4 Hard errors

The smallest unit of data that the processor can write is a byte. However, both the ECC schemes
are computed on data chucks that are larger than this. To write any data to a RAM protected with
ECC requires the error code for that data to be recomputed and rewritten. If the entire data chunk
is not written, for example, a halfword, 16-bits, is written to address 0x4 of a RAM with a 32-bit
error scheme, the error code must be computed partly from the data being written, and partly

from data already stored in the RAM. In this example, the halfword in the RAM at address 0x6.

To compute the error code for such a write, the processor must first read data from the RAM,
then merge the data to be written with it, to compute the error code, then write the data to the
RAM, along with the new error code. This process is referred to as read-modify-write.

The errors described in this chapter are all assumed to be soft errors, that is, one or more bits of
the data stored in a RAM chunk are inverted. A new value can still be written to the RAM and
read back correctly, unless another soft error occurs in the meantime.

If the error in the memory is a hard error, that is, a physical failure of the RAM circuit so that a
bit can never be read or written reliably, the processor might not be able to correct and recover
from the error. The processor contains features that enable it to recover from some hard errors.
If you are implementing the processor and require these features, contact ARM to discuss the
features and your requirements.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 8-5
Non-Confidential

Level One Memory System

8.2.5 Error correction

When a correctable error is detected in data that has been read from a RAM, the processor has
various ways of generating the correct data, that follow two schemes:

Correct inline

The error code bits are used to correct the data read from the RAM, and this data
is used. This is the simplest way of correcting the data.

Correct-and-retry

The error code bits are used to correct the data, and this data is then written back
to the RAM. The processor then repeats the read access by re-executing the
instruction that caused the read, and reads the corrected data from the RAM if no
more errors have occurred. This takes more clock cycles, at least nine, in the event
of an error, but has the side-effect of correcting the data in the RAM so that the
errors in the data cannot become worse.

Note

Because RAM errors generally occur infrequently, the extra cycles required to
perform correct-and-retry do not have a significant impact on average
performance.

The correction method that the processor uses depends on the individual error. The processor
uses correct inline error correction when it detects a correctable error on a TCM read made by
the AXI-slave interface. The processor uses correct-and-retry correction when it detects a
correctable ECC error on a TCM read made by the instruction-side or data-side.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 8-6
Non-Confidential

8.3 Fault handling

8.3.1 Faults

Faults can occur on instruction fetches for the following reasons:

MPU background fault

MPU permission fault

External AXI slave error (SLVERR)
External AXI decode error (DECERR)
Cache parity or ECC error

TCM ECC error

TCM external error

TCM external retry request
Breakpoints, and vector capture events.

Faults can occur on data accesses for the following reasons:

MPU background fault

MPU permission fault

MPU alignment fault

External AXI slave error (SLVERR)
External AXI decode error (DECERR)
External AHB error

Cache parity or ECC error

TCM ECC error

TCM external error

TCM external retry request
Watchpoints.

Fault handling is described in:

Faults

Fault status information on page 8-9

Correctable Fault Location Register on page 8-10
Usage models on page 8-10.

The classes of fault that can occur are:

MPU faults

External faults on page 8-8

Cache and TCM parity and ECC errors on page 8-8
TCM external faults on page 8-8

Debug events on page 8-9

Synchronous and asynchronous aborts on page 8-9.

MPU faults

Level One Memory System

The MPU can generate an abort for various reasons. See MPU faults on page 7-10 for more

information. MPU faults are always synchronous, and take priority over other types of abort. If
an MPU fault occurs on an access that is not in the TCM, and is to one of the peripheral ports,
is Non-cacheable, or has generated a cache-miss, the AXI/AHB transactions for that access are
not performed.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.
Non-Confidential

8-7

Level One Memory System

External faults

A memory access performed through the AXI master interface or the AXI peripheral port can
generate two different types of error response, a slave error (SLVERR) or decode error
(DECERR). These are known as external errors, because they are generated by the AXI system
outside the processor. Synchronous aborts are generated for instruction fetches, data loads,
exclusive stores, and data stores to strongly-ordered-type memory. Non-exclusive stores to
normal-type or device-type memory generate asynchronous aborts.

Note

. An AXI slave that cannot handle exclusive transactions returns OKAY in response to an
exclusive read. This is also treated as an external error, and the processor behaves as if the
response was SLVERR.

. Exclusive doubleword transactions to shared memory on the AXI peripheral port or
exclusive transactions to shared memory on the AHB peripheral port are aborted. They
are treated as synchronous external errors, and the processor behaves as if the response
was SLVERR.

. An AHB peripheral port slave response of ERROR is treated by the processor as a
response of SLVERR.

Cache and TCM parity and ECC errors

If the processor has been configured with the appropriate build options, it can detect data errors
occurring in the cache and TCM RAMs using parity or ECC logic. For more information on
cache errors, see Handling cache parity errors on page 8-21 and Handling cache ECC errors
on page 8-22. For more information on TCM errors, see About the error detection and
correction schemes on page 8-4. Depending on the software configuration of the processor,
these errors are either ignored, generate an abort, are automatically corrected without generating
an abort, or are corrected and generate an abort. If the processor is in debug-halt-state, an error
that is otherwise automatically corrected generates an abort.

Parity and ECC errors can only occur on reads, although these reads might be a side-effect of
store instructions. Aborts generated by loads are always synchronous. Aborts generated by store
instructions to the TCM are also always synchronous, while those to the cache are always
asynchronous. These errors can also occur on some cache-maintenance operations, see Errors
on cache maintenance operations on page 8-23, and generate asynchronous aborts.

Many of the parity and ECC errors are also signaled by the generation of events. See Chapter 6
Events and Performance Monitor. Some of these events are generated when the error is

detected, regardless of whether or not an abort is taken. Aborts are only taken when a memory
access with an error is committed. Others are signaled when and only when the abort is taken.

Any parity or ECC error that can be corrected by the processor is considered to be a correctable
fault, regardless of whether or not the processor is configured to correct the fault.

TCM external faults

The TCM port includes signals that can be used to signal an error on a TCM transaction. If
enabled, this causes the processor to take the appropriate type of abort for instruction and data
accesses, or to generate a SLVERR response to an AXI-slave transaction. Write transactions
always generate asynchronous aborts, while read transactions always generate synchronous
aborts.

An error signaled on a read transaction can also signal a retry request, that requests that the
processor retry the same operation rather than take an exception.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 8-8
Non-Confidential

Level One Memory System

A retry request from the TCM port is considered to be a recoverable error. All correctable ECC
faults are also considered to be recoverable.

Debug events

The debug logic in the processor can be configured to generate breakpoints or vector capture
events on instruction fetches, and watchpoints on data accesses. If the processor is

software-configured for monitor-mode debugging, an abort is taken when one of these events
occurs, or when a BKPT instruction is executed. For more information, see Chapter 12 Debug.

Synchronous and asynchronous aborts

See Aborts on page 3-23 for more information about the differences between synchronous and
asynchronous aborts.

8.3.2 Fault status information

When an abort occurs, information about the cause of the fault is recorded in a number of
registers, depending on the type of abort:

. Abort exceptions
. Synchronous abort exceptions on page 8-10
. Asynchronous abort exceptions on page 8-10.

Abort exceptions
The following registers are updated when any abort exception is taken:

Link Register

The r14_abt register is updated to provide information about the address of the
instruction that the exception was taken on, in a similar way to other types of
exception. See Exceptions on page 3-17 for more information. This information
can be used to resume program execution after the abort has been handled.

Note

When a prefetch abort has occurred, ARM recommends that you do not use the
link register value for determining the aborting address, because 32-bit Thumb
instructions do not have to be word aligned and can cause an abort on either
halfword. This applies even if all of the code in the system does not use the extra
32-bit Thumb instructions introduced in ARMv6T2, because the earlier BL and
BLX instructions are both 32 bits long. Use the Fault Address Register instead, as
described in this section.

Saved Program Status Register

The SPSR_abt register is updated to record the state and mode of the processor
when the exception was taken, in a similar way to other types of exception. See
Exceptions on page 3-17 for more information.

Fault Status Register

There are two fault status registers, one for prefetch aborts (IFSR) and one for
data aborts (DFSR). These record the type of abort that occurred, and whether it
occurred on a read or a write. In particular, this enables the abort handler to
distinguish between synchronous aborts, asynchronous aborts, and debug events.
See Fault Status and Address Registers on page 4-49 for more information about
the format of this register and the encodings used.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 8-9
ID021511 Non-Confidential

Level One Memory System

Synchronous abort exceptions
The following registers are updated when a synchronous abort exception is taken:

Fault Address Register

There are two fault address registers, one for prefetch aborts (IFAR) and one for
data aborts (DFAR). These indicate the address of the memory access that caused
the fault. See Fault Status and Address Registers on page 4-49.

Auxiliary Fault Status Register

There are two auxiliary fault status registers, one for prefetch aborts (AIFSR) and
one for data aborts (ADFSR). These record additional information about the
nature and location of the fault, including whether it was a recoverable error or
not, whether it occurred in the cache, AXI-master interface, AXI peripheral port,
AHB peripheral port, ATCM or BTCM and, if appropriate, which cache way the
error occurred in. The cache index is not recorded on a synchronous abort,
because this information can be derived from the fault address. See Fault Status
and Address Registers on page 4-49.

Asynchronous abort exceptions
The following register is updated when an asynchronous abort exception is taken:

Auxiliary Data Fault Status Register

The ADFSR is updated to indicate whether or not the fault was recoverable,
whether it occurred in the cache, AXI-master interface, AXI peripheral port, AHB
peripheral port, ATCM or BTCM and, if appropriate, which cache set and way the
error occurred in. Because the DFAR is not updated on asynchronous aborts,
asynchronous aborts cannot normally be located, except when the error occurred
in the cache.

The effect of debug events on these registers is described in Debug exception on page 12-42.

8.3.3 Correctable Fault Location Register

8.3.4 Usage models

Correctable faults are normally automatically corrected by the processor but, depending on the
configuration and on the access that generated the fault, an exception might not be generated,

and the fault status registers might not be updated. In all cases, information about the location
of the fault is recorded in the Correctable Fault Location Register (CFLR).

The CFLR also records information about ACP D-Cache lookups that cause a correctable error.

All correctable faults are recorded in the same register, regardless of whether it was an
instruction-fetch, a data-access, an AXI-slave access, or an ACP coherency maintenance
operation that generated the fault, and whether the fault occurred in the ATCM, BTCM or cache.
The CFLR contains information to identify what sort of access generated the fault, and which
device it occurred in. See Correctable Fault Location Register on page 4-77 for more
information about the format of this register. Each time the CFLR is updated, the information
already in the CFLR is discarded and therefore the CFLR can only contain information about
the most recent correctable fault.

This section describes some ways in which errors can be handled in a system. Exactly how you
program the processor to handle errors depends on the configuration of your processor and
system, and what you are trying to achieve.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 8-10
Non-Confidential

Level One Memory System

If an abort exception is taken, the abort handler reads the information in the link register, SPSR,
and fault status registers to determine the type of abort. Some types of abort are fatal to the
system, and others can be fixed, and program execution resumed. For example, an MPU
background fault might indicate a stack overflow, and be rectified by allocating more stack and
reprogramming the MPU to reflect this. Alternatively, an asynchronous external abort might
indicate that a software error meant that a store instruction occurred to an unmapped memory
address. Such an abort is fatal to the system or process because no information is recorded about
the address the error occurred on, or the instruction that caused the error.

Table 8-1 shows which types of abort are typically fatal because either the location of the error
is not recorded or the error is unrecoverable. Some aborts that are marked as not fatal might turn
out to be fatal in some systems when the cause of the error has been determined. For example,
an MPU background fault might indicate a stack overflow, that can be rectified, or it might
indicate that, because of a bug, the software has accessed a nonexistent memory location, that
can be fatal. These cases can be distinguished by determining the location where the error
occurred. If an error is unrecoverable, that is, it is not a correctable parity or ECC error, and it
is not a TCM external retry request, it is normally fatal regardless of whether or not the location
of the error is recorded. When an abort is taken on an external TCM, parity, or ECC error, the
appropriate Auxiliary Fault Status Register records whether the error was recoverable. See Fault
Status and Address Registers on page 4-49.

Table 8-1 Types of aborts

Type Conditions Source Synchronous Fatal
MPU fault Access not permitted by MPU?2 MPU Yes No
Synchronous External Load using L2 memory interface AXI, AHB Yes No
Asynchronous External Store to Normal or Device memory using L2 AXI, AHB No Yes

memory interface

Synchronous Parity/ECC Cache Load from cacheb Cache Yes Maybe®
Synchronous ECC TCM Load/store from/to TCMd TCM Yes Maybec¢
Synchronous TCM external error ~ Load/store from/to TCM¢ TCM Yes Yes
Asynchronous Parity/ECC Cache Store to cache or cache maintenance operation® Cache No Maybec
Asynchronous TCM external error Store to TCMe¢ TCM No Yes

a. See MPU faults on page 7-10 for more information about the types of MPU fault.

b. See Cache error detection and correction on page 8-20 for more information about parity/ECC errors from the cache.

c. These types of error can be correctable or uncorrectable. Uncorrectable errors are typically fatal. Correctable errors are automatically
corrected by the hardware and might not cause the abort handler to be called. See Cache error detection and correction on page 8-20 and
TCM internal error detection and correction on page 8-14.

d. See TCM internal error detection and correction on page 8-14 for more information about ECC errors from the TCM.

e. Aborts generated by external TCM errors are always unrecoverable, and therefore fatal, see External TCM errors on page 8-16 for more
information about external errors from the TCM.

Correctable errors

In a system in which the processor is configured to automatically correct ECC errors without
taking an abort exception, you can still configure it to respond to such errors. Connect the event
output or outputs that indicate a correctable error to an interrupt controller. When such an event
occurs, the interrupt input to the processor is set, and the processor takes an interrupt exception.
When your interrupt handler has identified the source of the interrupt as a correctable error, it
can read the CFLR to determine where the ECC error occurred. You can examine this
information to identify trends in such errors. By masking the interrupt when necessary, your

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 8-11
Non-Confidential

Level One Memory System

software can ensure that when critical code is executing, the processor corrects the error
automatically, but delays examining information about the error until after the critical code has
completed.

When the processor is in debug halt-state, any correctable error is corrected as appropriate, but
the memory access is not repeated to fetch the correct data, therefore the instruction generating
the error does not complete successfully. Instead, the sticky synchronous abort flag in the
DBGDSCR is set. See CP14 cl, Debug Status and Control Register on page 12-14.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 8-12
Non-Confidential

Level One Memory System

8.4 About the TCMs

The processor has two TCM interfaces to support the connection of local memories. The ATCM
interface has one TCM port. The BTCM interface can support one or two TCM ports. Each
TCM port is a physical connection on the processor that is suitable for connection to SRAM
with minimal glue logic. These ports are optimized for low latency memory.

The TCM ports are designed to be connected to RAM, or RAM-like memory, that is,
Normal-type memory. The processor can issue speculative read accesses on these interfaces,
and interrupt store instructions that have issued some but not all of their write accesses.
Therefore, both read and write accesses through the TCM interfaces can be repeated. This
means that the TCM ports are generally not suitable for read- or write-sensitive devices such as
FIFOs. ROM can be connected to the TCM ports, but normally only if ECC is not used. See
Hard errors on page 8-5. If the access is speculative, the processor ignores any error or retry
signaled on the TCM port.

The TCM ports also have wait and error signals to support slow memories and external error
detection and correction. For more information, see External TCM errors on page 8-16.

The PFU can read data using the TCM interfaces. The LSU and AXI slave can each read and
write data using the TCM interfaces.

Each TCM interface has a dedicated base address that you can place anywhere in the physical
address map, and must not be backed by memory implemented externally. The ATCM and
BTCM interfaces must have separate base addresses and must not overlap.

This section describes:

. TCM attributes and permissions
. ATCM and BTCM configuration on page 8-14
. TCM internal error detection and correction on page 8-14

. TCM arbitration on page 8-15

. TCM initialization on page 8-15

. TCM port protocol on page 8-16

. External TCM errors on page 8-16

. AXI slave interfaces for TCMs on page 8-17.

8.4.1 TCM attributes and permissions

Accesses to the TCMs from the LSU and PFU are checked against the MPU for access
permission. Memory access attributes and permissions are not exported on this interface. Reads
that generate an MPU fault are broadcast on the TCM interface but the abort is taken before the
data is used, ensuring protection is maintained.

TCMs always behave as Non-cacheable Non-shared Normal memory, irrespective of the
memory type attributes defined in the MPU for a memory region containing addresses held in
the TCM. Access permissions for TCM accesses are the same as the permission attributes that
the MPU assigns to the same address. See Chapter 7 Memory Protection Unit for more
information about memory attributes, types, and permissions.

Note

Any address in an MPU region with device or strongly-ordered memory type attributes is
implicitly given execute-never (XN) permissions. If such an address is also in a TCM region,
XN permissions are applied to TCM accesses to that address. None of the other device or
strongly-ordered behaviors apply to an address in a TCM region.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 8-13
Non-Confidential

Level One Memory System

8.4.2 ATCM and BTCM configuration

The TCM interfaces are configured during implementation and integration.

You can configure the ATCM interface to be removed, and not included in the processor design.
If implemented, the ATCM can have only a single port.

You can configure the BTCM interface to:

. be removed, and not included in the processor design

. have a single BTCM port

. have two banked BTCM ports, interleaved on either:
— Bit [3] of the address

— The most significant bit of the BTCM interface address. This depends on the size of
the BTCM.

During implementation, you can configure the ATCM and/or the BTCM to use an
error-protection scheme to protect the data stored in the TCM, see TCM internal error detection
and correction.

The size of each TCM interface is configured during integration. The permissible TCM sizes
are:

. 0KB

. 4KB

. 8KB

. 16KB

. 32KB

. 64KB
. 128KB
. 256KB
. 512KB
. IMB

. 2MB

. 4MB

. 8MB.

If the BTCM interface has two ports, the size of the RAM attached to each port is half the total
size for the BTCM interface.

The size of the TCM interfaces is visible to software in the TCM Region Registers, see c9,
BTCM Region Register on page 4-63 and c9, ATCM Region Register on page 4-64. All TCM
interface build configuration options can be read from the Build Options Registers, see ¢/,
Build Options 1 Register on page 4-79 and c15, Build Options 2 Register on page 4-80.

8.4.3 TCM internal error detection and correction

Each TCM interface can be configured with either 32-bit ECC, or 64-bit ECC error schemes.
Both the BTCM ports must have the same error scheme. This section describes these error
schemes.

If a TCM interface has been built with either 32-bit or 64-bit ECC error checking, you can
enable this by setting the appropriate bits in the Auxiliary Control Register. See ¢/, Auxiliary
Control Register on page 4-41. On the BTCM interface, ECC checking can only be enabled for
both ports or neither port. You can pin-configure the processor to set the enable bits and
therefore enable ECC checking on reset, by tying off the PARECCENRAMmM input as
required.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 8-14
Non-Confidential

Level One Memory System

When a fatal error, that is, a 2-bit ECC error, is detected on a TCM read, an error is generated.
Instruction and data reads generate the appropriate type of synchronous abort, and the
AXI-slave interface returns a SLVERR response to the AXI system.

When a correctable error, that is, a 1-bit ECC error, is detected on a TCM read made by the
AXI-slave interface, the processor corrects the data inline before returning to the system.

When a correctable ECC error is detected on a TCM read made by the instruction-side or
data-side, the processor normally generates the correct data and writes it back to the TCM. In
the meantime, the processor retries the read to fetch the correct instruction or data. By setting
the appropriate bits in the Secondary Auxiliary Control Register, you can disable this behavior.
See c15, Secondary Auxiliary Control Register on page 4-44. Instead of correcting the error in
the TCM, the processor generates the appropriate type of synchronous abort.

All ECC code generation and ECC checking must be performed on a complete data chunk,
either 32-bits or 64-bits depending on the configuration. If a read access smaller than the data
chunk is required, the whole chunk is read. If a write smaller than the data chunk is required, the
processor must perform read-modify-write to generate the correct data and ECC code, but it
only does this when ECC error checking is enabled. The data read as part of the
read-modify-write sequence is checked for ECC errors, and the errors are handled in the same
way as for any other TCM read. The ECC code is generated and written to the TCM for every
write, regardless of whether error checking is enabled or not, but the code is only correct if the
write was of a complete data chunk or if the processor performed read-modify-write to generate
the complete data chunk. All data and instruction aborts generated by the ECC logic are
indicated in the appropriate FSR as being a synchronous parity error.

8.4.4 TCM arbitration

Each TCM port receives requests from the LSU, PFU, and AXI slave. In most cases, the LSU
has the highest priority, followed by the PFU, with the AXI slave having lowest priority.

When a higher-priority device is accessing a TCM port, an access from a lower-priority device
must stall.

When either the LSU or the AXI slave interface is performing a read-modify-write operation on
a TCM port, various internal data hazards exist for either the AXI-slave interface or the LSU.
In these cases, additional stall cycles are generated, beyond those normally required for
arbitration. For optimum performance of the processor when configured with ECC, ensure that
all write bursts to the TCM from the AXI slave interface write an entire data chunk, that is,
32-bits or 64-bits, naturally aligned, depending on the error scheme.

8.4.5 TCM initialization

You can enable the processor to boot from the ATCM or the BTCM. The INITRAMAm and
INITRAMBmMm pins, when tied HIGH, enable the ATCM and the BTCM respectively on leaving
reset. The LOCZRAMAm pin forces one of the TCMs to have its base address at 0x0. If
LOCZRAMAm is tied HIGH, the initial base address of the ATCM is 0x0, otherwise the initial
base address of the BTCM is 0x0. In both cases, the initial base address of the other TCM is
implementation-defined, see Configurable options on page 1-6.

The ATCM Region Register and BTCM Region Register respectively determine the base
address for the ATCM and BTCM. For information on how to read the TCM region registers,
see c9, BTCM Region Register on page 4-63 or c9, ATCM Region Register on page 4-64 as
appropriate. For information about pre-loading data into the TCMs, see TCM on page 2-19.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 8-15
Non-Confidential

Level One Memory System

8.4.6 TCM port protocol

Each TCM port operates independently to read and write data to and from the memory attached
to it. Information about which memory location is to be accessed is passed on the TCM port
along with write data and associated error code, if appropriate. In addition, the TCM port
provides information about whether the access results from an instruction fetch from the PFU,
a data access from the LSU, or a DMA transfer from the AXI slave interface. Each TCM port
can also be configured to have an associated parity bit, computed from the address and control
signals for that port.

Read data and associated error code or parity bits are read back from the TCM port. In addition,
the TCM memory controller can indicate that the processor must wait one or more cycles before
reading the response, or signal that an error has occurred and must be either aborted or retried.
For more information about TCM errors, see External TCM errors.

8.4.7 External TCM errors

Each TCM port has a number of features that support the integration of a TCM RAM with an
error checking scheme implemented in the RAM controller logic outside of the processor, that
is, by the integrator.

Errors can be signaled to each TCM port if the external error checking scheme detects one and,
if enabled, the processor generates an instruction or data abort or an AXI error response as
appropriate. On a TCM read from either the instruction-side or data-side, the TCM controller
can indicate that the read must be retried instead of generating an abort.

You can enable external errors for each TCM port individually by setting the appropriate bits in
the Auxiliary Control Register. See ¢/, Auxiliary Control Register on page 4-41. If external
errors are not enabled for a TCM port, the processor ignores any error signaled on that port. You
can pin-configure the processor to set the enable bits, and therefore enable external error
checking on reset, by tying off the ERRENRAMm input as required.

In addition, an external error detection scheme might require that data is read and written in
particular sized chunks. The load/store-64 feature, when enabled for a particular TCM interface,
causes all loads and stores to the TCM ports to be of 64-bits of data. This feature is also known
as Read-Modify-Write (RMW), because it causes the processor to generate read-modify-write
sequences for any store of less than 64-bits. You can enable RMW behavior for each TCM
interface individually by setting the appropriate bits in the Secondary Auxiliary Control
Register. See c1, Auxiliary Control Register on page 4-41. You can pin-configure the processor
to set the enable bits and therefore RMW behavior on reset, by tying off the RMWENRAMm
input as required.

Note

The load/store-64 feature is not available on any TCM interface that has been configured with
32-bit ECC.

The error inputs on each TCM port can also be used to signal other types of error, for example,
when an address accessed is out of range for the RAM attached to the TCM port. Errors signaled
on writes from the data-side generate an asynchronous abort. All other aborts generated by
external errors are synchronous. The type of abort is shown in the appropriate FSR as either
synchronous or asynchronous parity error.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 8-16
Non-Confidential

Level One Memory System

8.4.8 AXIl slave interfaces for TCMs

The processor has a 64-bit AXI slave interface that provides access to the TCM interfaces from
the AXI bus. This interface is included by default, but can be excluded during configuration of
the processor.

You can use the slave interface for access to the TCM memories. This also enables you to
construct a system with a consistent view of memory. That is, the TCMs can be available at the
same address to the processor and to the system bus.

The AXI slave interface accesses have lower priority than the LSU or PFU accesses.

The MPU does not check accesses from the AXI slave. You can configure the processor to
enable privileged or nonprivileged access to the TCM interfaces from the AXI slave port.

The AXI slave interface does not support locked and exclusive accesses. This means that AXI
masters, other than the processor, cannot safely use semaphores in the TCMs. Although the
Cortex-R5 processor can use semaphores in the TCMs for inter-process synchronization, you
must not use the AXI-slave interface to write to TCM semaphores. The processor has no logic
to preserve its own exclusivity against such writes.

For more information on the AXI slave interface, see AXI slave interface on page 9-18.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 8-17
Non-Confidential

Level One Memory System

8.5 About the caches

8.5.1 Store buffer

The L1 memory system can be configured to include instruction and data caches of varying
sizes. You can configure whether each cache controller is included and, if it is, configure the size
of each cache independently. The cached instructions or data are fetched from external memory
using the AXI-master L2 memory interface. The cache controllers use RAMs that are integrated
into the Cortex-RS5 processor during implementation.

Any access that is not for a TCM or peripheral port is handled by the appropriate cache
controller. If the access is to non-shared Cacheable memory, and the cache is enabled, a lookup
is performed in the cache and, if found in the cache, that is, a cache hit, the data is fetched from
or written into the cache. When the cache is not enabled and for Non-cacheable or shared
memory, the accesses are performed using the AXI-master interface.

Both caches allocate a memory location to a cache line on a cache miss because of a read, that
is, all Cacheable locations are Read-Allocate (RA). In addition, the data cache can allocate on a
write access if the memory location is marked as Write-Allocate (WA). When a cache line is
allocated, the appropriate memory is fetched into a linefill buffer by the AXI-master interface
before being written to the cache. See Linefill buffers and the AXI master interface on page 9-5.
The linefill buffers always fetch the requested data first, return it, and then fetch the rest of the
cache line. This enables the data read to be used by the pipeline without waiting for the linefill
to complete and is known as critical word first and non-blocking behavior. If subsequent
instructions require data from the same cache line, this can also be returned when it has been
fetched without waiting for the linefill to complete, that is, the caches also support streaming. If
an error is reported to the AXI-master interface for a linefill, the linefill does not update the
cache RAMs, but an abort is only generated if the error was reported on the critical word.

If all the cache lines in a set are valid, to allocate a different address to the cache, the cache
controller must evict a line from the cache.

Writes accesses that hit in the cache are written into the cache RAMs. If the memory location is
marked as Write-Through (WT), the write is also performed on the AXI-master interface, so that
the data stored in the RAM remains coherent with the external memory system. If the memory
is Write-Back (WB), the cache line is marked as dirty, and the write is only performed on the
AXI-master interface when the line is evicted. When a dirty cache line is evicted, the data is
passed to the Eviction Buffer in the AXI-master interface to be written to the external memory
system. See Eviction buffer on page 9-6 for more information.

The cache controllers also manage the cache maintenance operations described in Cache
maintenance operations on page 8-19.

Each cache can also be configured with either parity or ECC error checking schemes. If an error
checking scheme is implemented and enabled, then the tags associated with each line, and data
read from the cache are checked whenever a lookup is performed in the cache. See Cache error
detection and correction on page 8-20 for more information.

For more information on the general rules about memory attributes and behavior, see the ARM
Architecture Reference Manual.

The cache controller includes a store buffer to hold data before it is written to the cache RAMs
or passed to the AXI master interface. The store buffer has four entries. Each entry can contain
up to 64 bits of data and a 32-bit address. All write requests from the data-side that are not to a
TCM or peripheral interface are stored in the store buffer.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 8-18
Non-Confidential

Level One Memory System

Store buffer merging

The store buffer has merging capabilities. If a previous write access has updated an entry, other
write accesses on the same line can merge into this entry. Merging is only possible for stores to
Normal memory.

Merging is possible between several entries that can be linked together if the data inside the
different entries belong to the same cache line.

No merging occurs for writes to Strongly Ordered or Device memory. The processor
automatically drains the store buffer as necessary before performing Strongly Ordered accesses
or Device reads.

Store buffer behavior
The store buffer directs write requests to the following blocks:

. Cache controller for Cacheable write hits:
The store buffer sends a cache lookup to check that the cache hits in the specified line, and
if so, the store buffer merges its data into the cache when the entry is drained.

. AXI master interface:

— For Non-cacheable stores or write-through Cacheable stores, a write access is
performed on the AXI master interface.

— For write-back, write-allocate stores that miss in the data cache, a linefill is started
using either of the two linefill buffers. When the linefill data is returned from the L2
memory system, the data in the store buffer is merged into the linefill buffer to be
subsequently written into the cache.

Store buffer draining

A store buffer entry is drained if:
. All bytes in the entry have been written. This might result from merging.

. The entry can be merged into a linefill buffer.
. The entry contains a store to Device or Strongly Ordered memory.
. The entry has been waiting for merge data for too long.

The store buffer is completely drained when:
. An explicit drain request is done for:
— system control coprocessor cache maintenance operations
— aDMB or DSB instruction
— aload or store to Strongly Ordered memory
— an exclusive load or store to Shared memory
— a SWP or SWPB to Non-cacheable memory.
. The store buffer is full or likely to become full.

The store buffer is drained of all stores to Device memory before a load is performed from
Device memory.

8.5.2 Cache maintenance operations

All cache maintenance operations are done through the system control coprocessor, CP15. The
system control coprocessor operations supported for the data cache are:

. Invalidate all

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 8-19
Non-Confidential

Level One Memory System

. Invalidate by address (MVA)

. Invalidate by Set/Way combination

. Clean by address (MVA)

. Clean by Set/Way combination

. Clean and Invalidate by address (MVA)

. Clean and Invalidate by Set/Way combination

. Data Memory Barrier (DMB) and Data Synchronization Barrier (DSB) operations.

The system control coprocessor operations supported for the instruction cache are:
. Invalidate all
. Invalidate by address.

For more information on cache operations, see Cache operations on page 4-59.

8.5.3 Cache error detection and correction

This section describes how the processor detects, handles, reports, and corrects cache memory
errors. Memory errors detected with parity or ECC have Fault Status Register (FSR) values to
distinguish them from other abort causes.

This section describes:

. Error build options

. Address decoder faults on page 8-21

. Handling cache parity errors on page 8-21
. Handling cache ECC errors on page 8-22

. Errors on instruction cache read on page 8-23

. Errors on data cache read on page 8-23

. Errors on data cache write on page 8-23

. Errors on evictions on page 8-23

. Errors on cache maintenance operations on page 8-23.

Error build options

The caches can detect and correct errors depending on the build options used in the
implementation. The build options for the instruction cache can be different to the data cache.

If the parity build option is enabled, the cache is protected by parity bits. For both the instruction
and data cache, the data RAMs include one parity bit per byte of data. The tag RAM contains
one parity bit to cover the tag and valid bit.

If the ECC build option is enabled:

. The instruction cache is protected by a 64-bit ECC scheme. The data RAMs include eight
bits of ECC code for every 64 bits of data. The tag RAMs include seven bits of ECC code
to cover the tag and valid bit.

. The data cache is protected by a 32-bit ECC scheme. The data RAMs include seven bits
of ECC code for every 32 bits of data. The tag RAMs include seven bits of ECC code to
cover the tag and valid bit. The dirty RAM includes four bits of ECC to cover the dirty bit
and the two outer attributes bits of each cache line.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 8-20
Non-Confidential

Level One Memory System

Address decoder faults

The error detection schemes described in this section provide protection against errors that
occur in the data stored in the cache RAMs. Each RAM normally includes a decoder that enables
access to that data and, if an error occurs in this logic, it is not normally detected by these error
detection schemes. The processor includes features that enable it to detect some address decoder
faults. If you are implementing the processor and require these features, contact ARM to discuss
the features and your requirements.

Handling cache parity errors

Table 8-2 shows the behavior of the processor on a cache parity error, depending on bits [5:3]
of the Auxiliary Control Register, see ¢/, Auxiliary Control Register on page 4-41.

Table 8-2 Cache parity error behavior

Value Behavior

b000 Generate abort on parity errors?, force write-through, enable hardware recovery
b001
b010

b011 Reserved

b100 Disable parity checking
b101 Do not generate abort on parity errors, force write-through, enable hardware recovery

bl110

blll Reserved

a. Parity errors caused by ACP coherency maintenance operations do not generate aborts

See Disabling or enabling error checking on page 8-32 for information on how to safely change
these bits.

Hardware recovery

When parity checking is enabled, hardware recovery is always enabled. Memory marked as
write-back write-allocate behaves as write-though. This ensures that cache lines can never be
dirty, therefore the error can always be recovered from by invalidating the cache line that
contains the parity error. The processor automatically performs this invalidation when an error
is detected. The correct data can then be re-read from the L2 memory system.

Parity aborts

If aborts on parity errors are enabled, software is notified of the error by a data abort or prefetch
abort. The error is still automatically corrected by the hardware even if an abort is generated.

If abort generation is not enabled, the hardware recovery including the access retry is invisible
to software. If required, software can use events and the Correctable Fault Location Register to
monitor the errors that are detected and corrected. See Error detection events on page 8-36 and
Correctable Fault Location Register on page 4-77.

Parity errors, caused by ACP coherency maintenance operations, never generate aborts.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 8-21
Non-Confidential

Level One Memory System

Handling cache ECC errors

Table 8-3 shows the behavior of the processor on a cache ECC error, depending on bits [5:3] of
the Auxiliary Control Register, see ¢/, Auxiliary Control Register on page 4-41.

Table 8-3 Cache ECC error behavior

Value Behavior

b000 Generate abort on ECC errors?, enable hardware recovery
b001
b010 Generate abort on ECC errors?, force write-through, enable hardware recovery

b011 Reserved
b100 Disable ECC checking

b101 Do not generate abort on ECC errors, enable hardware recovery

b110 Do not generate abort on ECC errors, force write-through, enable hardware recovery

bll1 Reserved

a. ECC errors caused by ACP coherency maintenance operations do not generate aborts

See Disabling or enabling error checking on page 8-32 for information on how to safely change
these bits.

When ECC checking is enabled, hardware recovery is always enabled. When an ECC error is
detected, the processor tries to evict the cache line containing the error. If the line is clean, it is
invalidated, and the correct data is reloaded from the L2 memory system. If the line is dirty, the
eviction writes the dirty data out to the L2 memory system, and in the process it corrects any
1-bit errors. The corrected data is then reloaded from the L2 memory system.

If a 2-bit error is detected in a dirty line, the error is not correctable. If the 2-bit error is in the
tag or dirty RAM, no data is written to the L2 memory system. If the 2-bit error is in the data
RAM, the cache line is written to the L2 memory system, but the AXI master port WSTRBMm
signal is LOW for the data that contains the error. If an uncorrectable error is detected, an abort
is always generated because data might have been lost. It is expected that such a situation can
be fatal to the software process running.

If one of the force write-though settings is enabled, memory marked as write-back write-allocate
behaves as write-though. This ensures that cache lines can never be dirty, therefore the error can
always be recovered from by invalidating the cache line that contains the ECC error.

You can recover from all detectable errors in the instruction cache, because the instruction cache
can never contain dirty data.

ECC aborts

If aborts on ECC errors are enabled, software is notified of the error by a data abort or prefetch
abort. The error is still automatically corrected by the hardware even if an abort is generated.

If abort generation is not enabled, the hardware recovery including the access retry of
correctable errors is invisible to software. If required, software can use events and the
Correctable Fault Location Register to monitor the errors that are detected and corrected. See
Error detection events on page 8-36 and Correctable Fault Location Register on page 4-77.

ECC errors, caused by ACP coherency maintenance operations, never generate aborts.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 8-22
Non-Confidential

Level One Memory System

Errors on instruction cache read

All parity or ECC errors detected on instruction cache reads are correctable. If aborts are
enabled, a synchronous prefetch abort exception occurs. The instruction FAR gives the address
that caused the error to be detected. The instruction FSR indicates a parity error on a read. The
auxiliary FSR indicates that the error was in the cache and which cache Way the error was in.

Errors on data cache read

If parity or ECC aborts are enabled, or an uncorrectable ECC error is detected, a synchronous
data abort exception occurs. The data FAR gives the address that caused the error to be detected.
The data FSR indicates a synchronous read parity error. The auxiliary FSR indicates that the
error was in the cache and which cache Way the error was in.

Errors on data cache write

If parity or ECC aborts are enabled, or an uncorrectable ECC error is detected, an asynchronous
data abort exception occurs. Because the abort is asynchronous, the data FAR is Unpredictable.
The data FSR indicates an asynchronous write parity error. The auxiliary FSR indicates that the
error was in the cache and which cache Way and Index the error was in.

In write-through cache regions the store that caused the error is written to external memory
using the L2 memory interface so data is not lost and the error is not fatal.

Errors on evictions

If the cache controller has determined a cache miss has occurred, it might have to do an eviction
before a linefill can take place. This can occur on reads, and on writes if write-allocation is
enabled for the region. Certain cache maintenance operations also generate evictions. If it is a
data-cache line that is dirty, an ECC error might be detected on the line being evicted:

. if the error is correctable, it is corrected inline before the data is written to the external
memory using the L2 memory interface

. if there is an uncorrectable error in the tag or dirty RAM, the write is not done and an
asynchronous abort occurs

. if there is an uncorrectable error in the data RAM, the AXI master port WSTRBMm
signal is deasserted for the words with an error, and an asynchronous abort occurs.

An asynchronous abort can also occur on a correctable error depending on the Auxiliary Control
Register bits [5:3], see c1, Auxiliary Control Register on page 4-41. Any detected error is
signaled with the appropriate event.

Note

When parity checking is enabled, force write-though is always enabled. Therefore the cache
lines can never be dirty, and so evictions are not required. Force write-through can also be
enabled with ECC checking.

Errors on cache maintenance operations

The following sections describe errors on cache maintenance operations:
. Invalidate all instruction cache on page §8-24

. Invalidate all data cache on page 8-24

. Invalidate instruction cache by address on page 8-24

. Invalidate data cache by address on page 8-24

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 8-23
Non-Confidential

Level One Memory System

. Invalidate data cache by set/way

. Clean data cache by address

. Clean data cache by set/way on page 8-25

. Clean and invalidate data cache by address on page 8-25
. Clean and invalidate data cache by set/way on page 8-25.

Invalidate all instruction cache

This operation ignores all errors in the cache and sets all instruction cache entries to invalid
regardless of error events. This operation cannot generate an asynchronous abort, and no error
events are signaled.

Invalidate all data cache

This operation ignores all errors in the cache and sets all data cache entries to invalid regardless
of errors. This operation cannot generate an asynchronous abort and no error events are
signaled.

Invalidate instruction cache by address

This operation requires a cache lookup. Any errors found in the set that was looked up are fixed
by invalidating that line and, if the address in question is found in the set, it is invalidated.

This operation cannot generate an asynchronous abort. Any detected error is signaled with the
appropriate event.

Invalidate data cache by address

This operation requires a cache lookup. Any correctable errors found in the set that was looked
up are fixed and, if the address in question is found in the set, it is invalidated.

Any uncorrectable errors cause an asynchronous abort. An asynchronous abort can also be
raised on a correctable error if aborts on RAM errors are enabled in the Auxiliary Control
Register.

Any detected error is signaled with the appropriate event.

Invalidate data cache by set/way
This operation does not require a cache lookup. It refers to a particular cache line.

The entry at the given set/way is marked as invalid regardless of any errors. This operation
cannot generate an asynchronous abort. Any detected error is signaled with the appropriate
event.

Clean data cache by address

This operation requires a cache lookup. Any correctable errors found in the set that was looked
up are fixed and, if the address in question is found in the set, the instruction carries on with the
clean operation. When the tag lookup is done, the dirty RAM is checked.

Note
When force write-through is enabled, the dirty bit is ignored.

If the tag or dirty RAM has an uncorrectable error, the data is not written to memory.

If the line is dirty, the data is written back to external memory. If the data has an uncorrectable
error, the words with the error have their WSTRBMm AXI signal deasserted. If there is a
correctable error, the line has the error corrected inline before it is written back to memory.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 8-24
Non-Confidential

Level One Memory System

Any uncorrectable errors cause an asynchronous abort. An asynchronous abort can also be
raised on a correctable error if aborts on RAM errors are enabled in the Auxiliary Control
Register.

Any detected error is signaled with the appropriate event.
Clean data cache by set/way
This operation does not require a cache lookup. It refers to a particular cache line.

The tag and dirty RAMs for the cache line are checked.

Note
When force write-through is enabled, the dirty bit is ignored.

If the tag or dirty RAM has an uncorrectable error, the data is not written to memory.

If the line is dirty, the data is written back to external memory. If the data has an uncorrectable
error, the words with the error have their WSTRBMm AXI signal deasserted. If there is a
correctable error, the line has the error corrected inline before it is written back to memory.

Any uncorrectable errors found cause an asynchronous abort. An asynchronous abort can also
be raised on a correctable error if aborts on RAM errors are enabled in the Auxiliary Control
Register.

Any detected error is signaled with the appropriate event.

Clean and invalidate data cache by address

This operation requires a cache lookup. Any correctable errors found in the set that was looked
up are fixed and, if the address in question is found in the set, the instruction carries on with the
clean and invalidate operation. When the tag lookup is done, the dirty RAM is checked.

Note
When force write-through is enabled, the dirty bit is ignored.

If the tag or dirty RAM has an uncorrectable error, the data is not written to memory.

If the line is dirty, the data is written back to external memory. If the data has an uncorrectable
error, the words with the error have their WSTRBMm AXI signal deasserted. If there is a
correctable error, the line has the error corrected inline before it is written back to memory.

Any uncorrectable errors found cause an asynchronous abort. An asynchronous abort can also
be raised on a correctable error if aborts on RAM errors are enabled in the Auxiliary Control
Register.

Any detected error is signaled with the appropriate event.
Clean and invalidate data cache by set/way
This operation does not require a cache lookup. It refers to a particular cache line.

The tag and dirty RAMs for the cache line are checked.

Note
When force write-through is enabled, the dirty bit is ignored.

If the tag or dirty RAM has an uncorrectable error, the data is not written to memory.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 8-25
Non-Confidential

Level One Memory System

If the line is dirty, the data is written back to external memory. If the data has an uncorrectable
error, the words with the error have their WSTRBMm AXI signal deasserted. If there is a
correctable error, the line has the error corrected inline before it is written back to memory.

Any uncorrectable errors found cause an asynchronous abort. An asynchronous abort can also
be raised on a correctable error if aborts on RAM errors are enabled in the Auxiliary Control
Register.

Any detected error is signaled with the appropriate event.

Errors on ACP coherency maintenance operations

Coherency maintenance operations are issued to the data cache controller when the ACP
processes coherent write transactions. See Accelerator Coherency Port interface on page 9-48
for more information on the ACP.

These operations require data cache lookups. Any correctable errors found in the set that was
looked up are fixed and, if the address is found in the set and not marked as dirty, it is
invalidated.

Any detected error is signaled with the appropriate event.

8.5.4 Cache RAM organization

This section describes RAM organization in the following sections:
. Tag RAM

. Dirty RAM on page 8-27

. Data RAM on page 8-28.

Tag RAM

The tag RAMs consist of four ways of up to 512 lines. The width of the RAM depends on the
build options selected, and the size of the cache. The following tables show the tag RAM bits:

. Table 8-4 shows the tag RAM bits when parity is implemented
. Table 8-5 shows the tag RAM bits when ECC is implemented
. Table 8-6 on page 8-27 shows the tag RAM bits when neither parity nor ECC is

implemented.
Table 8-4 Tag RAM bit descriptions, with parity
Bit in the tag cache line Description
Bit [23] Parity bit
Bit [22] Valid bit
Bits [21:0] Tag value
Table 8-5 Tag RAM bit descriptions, with ECC
Bit in the tag cache line Description
Bits [29:23] ECC code bits
Bit [22] Valid bit
Bits [21:0] Tag value
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 8-26

ID021511

Non-Confidential

Level One Memory System

Table 8-6 Tag RAM bit descriptions, no parity or ECC

Bit in the tag cache line Description

Bit [22] Valid bit

Bits [21:0] Tag value

A cache line is marked as valid by bit [22] of the tag RAM. Each valid bit is associated with a
whole cache line, so evictions always occur on the entire line.

Table 8-7 shows the tag RAM cache sizes and associated RAM organization, assuming no parity
or ECC. For parity, the width of the tag RAMs must be increased by one bit. For ECC, the width
of the tag RAMs must be increased by seven bits.

Table 8-7 Cache sizes and tag RAM organization

Cache size Tag RAM organization

4KB 4 banks 23 bits 32 lines
8KB 4 banks 22 bits 64 lines
16KB 4 banks 21 bits 128 lines
32KB 4 banks 20 bits 256 lines
64KB 4 banks 19 bits 512 lines

Dirty RAM

For the data cache only, the dirty RAM stores the following information:

. two bits for line outer attributes for evictions

. one line dirty bit

. four ECC code bits if the ECC build option is selected.

The dirty RAM array consists of one bank of up to 512 12-bit lines, 4 ways x 3 bits. If ECC is
enabled, the dirty RAM is 28 bits wide. Each line of dirty RAM contains all the information of
the four ways for a given index.

Each time a dirty bit is written, the outer bits of the line and, if implemented, the ECC code bits,
are also written. The dirty RAM is bit-enabled. Table 8-8 shows the organization of a dirty RAM
line.

Table 8-8 Organization of a dirty RAM line

Bit in the dirty cache line Description

Bits [6:3] ECC bits, if implemented

Bits [2:1] Outer attributes that are re-encoded on AWCACHEMm when an eviction is sent to the AXI bus:
01 =WB, WA
10=WT
11 = WB, no WA
00 = Non-cacheable.

Bit [0] Dirty bit

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 8-27

ID021511

Non-Confidential

RAM address

3

RAM address

3

Data RAM

Level One Memory System

Data RAM is organized as eight banks of 32-bit wide lines, or in the instruction cache as four
banks of 64-bit wide lines. This RAM organization means that it is possible to:

Perform a cache look-up with one RAM access, all banks selected together. This is done

for nonsequential read operations. Figure 8-3 shows this.

Select the appropriate bank RAM for sequential read operations. Figure 8-4 shows this.

Write a line to the eviction buffer in one cycle, a 256-bit read access.

Fill a line in one cycle from the linefill buffer, a 256-bit write access.

Figure 8-3 shows a cache look-up being performed on all banks with one RAM access.

Way 1 Way 1 Way 2 Way 2 Way 3 Way 3 Way 0 Way 0
Word 6 Word 7 Word 6 Word 7 Word 6 Word 7 Word 6 Word 7
Way 2 Way 2 Way 3 Way 3 Way 0 Way 0 Way 1 Way 1
Word 4 Word 5 Word 4 Word 5 Word 4 Word 5 Word 4 Word 5
Way 3 Way 3 Way 0 Way 0 Way 1 Way 1 Way 2 Way 2
Word 2 Word 3 Word 2 Word 3 Word 2 Word 3 Word 2 Word 3
Way 0 Way 0 BN Way 1 N Way 1 [| Way 2 Way 2 BN Way 3 Way 3
Word 0 Word 1 Word 0 Word 1 Word 0 Word 1 Word 0 Word 1
L Bank 0 Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 6 Bank 7 J
256-bit wide

Figure 8-3 Nonsequential read operation performed with one RAM access.

Figure 8-4 shows the appropriate bank RAM being selected for a sequential read operation.

Way 1 Way 1 Way 2 Way 2 Way 3 Way 3 Way 0 Way 0

Word 6 Word 7 Word 6 Word 7 Word 6 Word 7 / Word 6 Word 7
Way 2 Way 2 Way 3 Way 3 Way 0 Way 0 Way 1 Way 1

Word 4 Word 5 Word 4 Word 5 / Word 4 Word 5 Word 4 Word 5
Way 3 Way 3 Way 0 N Way 0 Way 1 Way 1 Way 2 Way 2
Word 2 Word 3 / Word 2 Word 3 Word 2 Word 3 Word 2 Word 3
Way 0 N Way 0 Way 1 Way 1 Way 2 Way 2 Way 3 Way 3
Word 0 Word 1 Word 0 Word 1 Word 0 Word 1 Word 0 Word 1
Bank 0 Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 6 Bank 7

Figure 8-4 Sequential read operation performed with one RAM access

The data RAM organization is optimized for 64-bit read operations, because with the same
address, two words on the same way can be selected.

Data RAM sizes depend on the build option selected, and are described in:

Data RAM sizes without parity or ECC implemented on page 8-29

Data RAM sizes with parity implemented on page 8-29
Data RAM sizes with ECC implemented on page 8-30.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.

Non-Confidential

8-28

Level One Memory System

Data RAM sizes without parity or ECC implemented

Table 8-9 shows the organization for instruction and data caches when neither parity nor ECC
is implemented.

Table 8-9 Instruction cache data RAM sizes, no parity or ECC

Cache size

Data RAMs

4KB, 4 1KB ways

8KB, 4 2KB ways

16KB, 4 4KB ways

32KB, 4 8KB ways

64KB, 4 16KB ways

4 banks 64 bits 128 lines or
8 banks 32 bits 128 lines

4 banks 64 bits 256 lines or
8 banks 32 bits 256 lines

4 banks 64 bits 512 lines or
8 banks 32 bits 512 lines

4 banks 64 bits 1024 lines or
8 banks 32 bits 1024 lines

4 banks 64 bits 2048 lines or
8 banks 32 bits 2048 lines

Table 8-10 Data cache data RAM sizes, no parity or ECC

Cache size

Data RAMs

4KB, 4 1KB ways

8 banks 32 bits 128 lines

8KB, 4 2KB ways

8 banks 32 bits 256 lines

16KB, 4 4KB ways

8 banks 32 bits 512 lines

32KB, 4 8KB ways

64KB, 4 16KB ways

8 banks 32 bits 1024 lines

8 banks 32 bits 2048 lines

Data RAM sizes with parity implemented

Table 8-11 shows the organization for instruction and data caches when parity is implemented.
For parity error detection, one bit is added per byte, so four bits are added for each RAM bank.

Table 8-11 Instruction cache data RAM sizes, with parity

Cache size

Data RAMs

4KB, 4 1KB ways

4 banks 72 bits 128 lines or
8 banks 36 bits 128 lines

8KB, 4 2KB ways

4 banks 72 bits 256 lines or
8 banks 36 bits 256 lines

16KB, 4 4KB ways

4 banks 72 bits 512 lines or
8 banks 36 bits 512 lines

32KB, 4 8KB ways

4 banks 72 bits 1024 lines or
8 banks 36 bits 1024 lines

64KB, 4 16KB ways

4 banks 72 bits 2048 lines or
8 banks 36 bits 2048 lines

ARM DDI 0460C

Copyright © 2010-2011 ARM. All rights reserved.
Non-Confidential

8-29

Table 8-12 Data cache d

Level One Memory System

ata RAM sizes, with parity

Cache size

Data RAMs

4KB, 4 1KB ways

8 banks 36 bits 128 lines

8KB, 4 2KB ways

8 banks 36 bits 256 lines

16KB, 4 4KB ways

8 banks 36 bits 512 lines

32KB, 4 8KB ways

8 banks 36 bits 1024 lines

64KB, 4 16KB ways

8 banks 36 bits 2048 lines

Table 8-13 shows the organization of the data cache RAM bits when parity is implemented.

Table 8-13 Data cache RAM bits, with parity

RAM bits

Description

Bit [35]

Parity bit for byte[31:24]

Bit [34]

Parity bit for byte[23:16]

Bit [33]

Parity bit for byte[15:8]

Bit [32]

Parity bit for byte[7:0]

Bits [31:0]

Data[31:0]

Parity bits are grouped together in bits[35:32] so that data and parity bits are easily
differentiated. With this design the parity bit is selected alongside the related data byte, so that

when data is updated, the parity bit is also updated.

Data RAM sizes with ECC implemented

Table 8-14 shows the organization for the instruction cache when ECC is implemented. For
ECC error detection, eight bits are added per 64 bits, so four bits are added for each RAM bank.

Table 8-14 Instruction cache data RAM sizes with ECC

Cache size

Data RAMs

4KB, 4 1KB ways

4 banks 72 bits 128 lines or
8 banks 36 bits 128 lines

8KB, 4 2KB ways

4 banks 72 bits 256 lines or
8 banks 36 bits 256 lines

16KB, 4 4KB ways

4 banks 72 bits 512 lines or
8 banks 36 bits 512 lines

32KB, 4 8KB ways

4 banks 72 bits 1024 lines or
8 banks 36 bits 1024 lines

64KB, 4 16KB ways

4 banks 72 bits 2048 lines or
8 banks 36 bits 2048 lines

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved.
ID021511 Non-Confidential

8-30

Level One Memory System

Table 8-15 shows the organization for the data cache when ECC is implemented. For ECC error
detection, seven bits are added per 32 bits, so seven bits are added for each RAM bank.

Table 8-15 Data cache data RAM sizes with ECC

Cache size Data RAMs

4KB, 4 1KB ways 8 banks 39 bits 128 lines

8KB, 4 2KB ways 8 banks 39 bits 256 lines

16KB, 4 4KB ways 8 banks 39 bits 512 lines

32KB, 4 8KB ways 8 banks 39 bits 1024 lines

64KB, 4 16KB ways 8 banks 39 bits 2048 lines

Table 8-16 shows the organization of the data cache RAM bits when ECC is implemented.

Table 8-16 Data cache RAM bits, with ECC

RAM bits Description

Bits [39:32] ECC code bits for data [31:0]

Bits [31:0] Data [31:0]

8.5.5 Cache interaction with memory system

This section describes how to enable or disable the cache RAMSs, and to enable or disable error
checking. After you enable or disable the instruction cache, you must issue an ISB instruction to
flush the pipeline. This ensures that all subsequent instruction fetches see the effect of enabling
or disabling the instruction cache.

After reset, you must invalidate each cache before enabling it.

When disabling the data cache, you must clean the entire cache to ensure that any dirty data is
flushed to L2 memory.

Before enabling the data cache, you must invalidate the entire data cache if L2 memory might
have changed since the cache was disabled.

Before enabling the instruction cache, you must invalidate the entire instruction cache if L2
memory might have changed since the cache was disabled.

See Enabling or disabling AXI slave accesses on page 9-21 and Accessing RAMSs using the AXIT
slave interface on page 9-21 for information about how to access the cache RAMs using the
AXI slave interface.

Disabling or enabling all of the caches

The following code is an example of enabling caches:

MRC p15, @, rl, cl, c@, @ ; Read System Control Register configuration data

ORR rl1, rl, #0x1 <<12 ; instruction cache enable
ORR rl1, rl, #0x1 <<2 ; data cache enable
DSB

MCR p15, @, r@, c15, c5, @ ; Invalidate entire data cache

MCR p15, @, r@, c7, c5, @ ; Invalidate entire instruction cache
MCR pl5, 0, rl, cl, c@, @ ; enabled cache RAMs

ISB

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 8-31
Non-Confidential

Level One Memory System

The following code is an example of disabling the caches:

MRC p15, 0, rl, cl, c@, @ ; Read System Control Register configuration data

BIC rl, rl, #0x1 <<12 ; instruction cache disable
BIC r1, rl, #0x1 <<2 ; data cache disable

DSB

MCR p15, @, rl, cl, c@, 0 ; disabled cache RAMs

ISB

; Clean entire data cache. This routine depends on the data cache size. It can be
omitted if it is known that the data cache has no dirty data

Disabling or enabling instruction cache

The following code is an example of enabling the instruction cache:

MRC p15, 0, rl, cl, c@, @ ; Read System Control Register configuration data
ORR r1, rl, #0x1 <<12 ; instruction cache enable

MCR p15, @, r@, c7, c5, @ ; Invalidate entire instruction cache

MCR p15, @, rl, cl, c@, @ ; enabled instruction cache

ISB

The following code is an example of disabling the instruction cache:

MRC p15, @, R1, cl, c@, @ ; Read System Control Register configuration data

BIC r1, rl, #0x1 <<12 ; instruction cache enable
MCR p15, 0, rl, cl, c@, @ ; disabled instruction cache
ISB

Disabling or enabling data cache
The following code is an example of enabling the data cache:

MRC p15, 0, rl, cl, c@, @ ; Read System Control Register configuration data
ORR rl1, rl, #0x1 <<2

DSB

MCR p15, @, r@, c15, c5, @ ; Invalidate entire data cache

MCR p15, 0, rl, cl, c@, @ ; enabled data cache

The following code is an example of disabling the cache RAMs:

MRC p15, @, rl, cl, c@, @ ; Read System Control Register configuration data

BIC rl, rl, #0x1 <<2

DSB

MCR p15, @, rl, cl, c@, @ ; disabled data cache

; Clean entire data cache. This routine depends on the data cache size. It can be
omitted if it is known that the data cache has no dirty data.

Disabling or enabling error checking

Software must take care when changing the error checking bits in the Auxiliary Control
Register. If the bits are changed when the caches contain data, the parity or ECC bits in the
caches might not be correct for the new setting, resulting in unexpected errors and data loss.
Therefore the bits in the Auxiliary Control Register must only be changed when both caches are
turned off and the entire cache must be invalidated after the change.

The following code is the recommended sequence to perform the change:

MRC p15, 0, r@, cl, c@, @ ; Read System Control Register

BIC r@, r0, #0x1 << 2 ; Disable data cache bit
BIC r@, r@, #0x1 << 12 ; Disable instruction cache bit
DSB

MCR p15, @, r@, cl, c@, @ ; Write System Control Register
ISB ; Ensures following instructions are not executed from cache

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 8-32
Non-Confidential

Level One Memory System

; Clean entire data cache. This routine depends on the data cache size. It can be
omitted if it is known that the data cache has no dirty data, for example if the cache
has not been enabled yet.

MRC p15, @, rl, cl, c@0, 1 ; Read Auxiliary Control Register

; Change bits 5:3 as required

MCR p15, @, rl, cl, c@, 1 ; Write Auxiliary Control Register

MCR p15, 0, r@, cl5, c5, @ ; Invalidate entire data cache

MCR pl5, @, r@, c7, c5, @ ; Invalidate entire instruction cache

MRC p15, @, r@, cl, c@, @ ; Read System Control Register

ORR r@, r@, #0x1 << 2 ; Enable data cache bit
ORR r@, ro, #0x1 << 12 ; Enable instruction cache bit
DSB
MCR p15, @, r@, cl, c@, @ ; Write System Control Register
ISB
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 8-33

ID021511 Non-Confidential

Level One Memory System

8.6 Internal exclusive monitor

The processor L1 memory system has an internal exclusive monitor. This is a two state, open
and exclusive, state machine that manages load/store exclusive (LDREXB, LDREXH, LDREX, LDREXD,
STREXB, STREXH, STREX and STREXD) accesses and clear exclusive (CLREX) instructions. You can use
these instructions, operating in the L1 memory system, to construct semaphores and ensure
synchronization between different processes. By adding an external exclusive monitor, you can
also use these instructions in the L2 memory system to construct semaphores and ensure
synchronization between different processors. See the ARM Architecture Reference Manual for
more information about how these instructions work.

When a load-exclusive access is performed, the internal exclusive monitor moves to the
exclusive state. It moves back to the open state when a store exclusive access or clear exclusive
instruction is performed. The internal exclusive monitor holds exclusivity state for an individual
Cortex-R5 CPU only. It does not record the address of the memory that a load-exclusive access
was performed to and it does not observe accesses from the other CPU in a twin-CPU group.
Any store exclusive access performed when the state is open fails. If the state is exclusive, the
access passes if it is to non-shared memory but, if it is to shared memory, the access must be
performed as an exclusive using the L2 memory interface. Whether the shared store-exclusive
access passes or fails depends on the state of an external exclusive monitor that can track
accesses made by other processors in the system.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 8-34
Non-Confidential

Level One Memory System

8.7 Memory types and L1 memory system behavior

The behavior of the L1 memory system depends on the type attribute of the memory that is being
accessed:

Only Normal, non-shared memory regions can be cached in the RAMs. Caching only
takes place if the appropriate cache is enabled and the memory type is Cacheable.

The store buffer can merge any stores to Normal memory. See Store buffer on page 8-18
for more information.

Only Normal memory is considered restartable, that is, a multi-word transfer can be
abandoned part way through because of an interrupt, to be restarted after the interrupt has
been handled. See Interrupts on page 3-19 for more information about interrupt behavior.

Only the internal exclusive monitor is used for exclusive accesses to Non-shared memory.
Exclusive accesses to shared memory are checked using the internal monitor and also, if
necessary, any external monitor, using the L2 memory interface.

Accesses resulting from SWP and SWPB instructions to Normal, non-shared memory are not
marked as locked when performed using the L2 memory interface.

Note

Not all types of exclusive or swap access are permitted to peripheral interface regions. See
Semaphores on page 9-48.

Table 8-17 summarizes the processor memory types and associated behavior.

Table 8-17 Memory types and associated behavior

Memory type Canbecached Merging Restartable Internalexclusives Locked swaps
Normal Shared No Yes Yes Partially Yes
Non-shared Yes Yes Yes Yes No
Device Shared No No No Partially Yes
Non-shared No No No Yes Yes
Strongly Ordered ~ Shared No No No Partially Yes
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 8-35

ID021511

Non-Confidential

Level One Memory System

8.8 Error detection events

The processor generates a number of events related to the internal error detection and correction
schemes in the TCMs and caches. For more information, see Table 6-1 on page 6-2. This section
describes:

. TCM error events
d Instruction-cache error events
d Data-cache error events

. Events and the CFLR.

8.8.1 TCM error events

TCM ECC error events are only signaled for TCM reads, although this includes the
read-modify-write sequence performed for some stores. Most errors detected by the ECC logic
are signaled twice:

. once on a TCM-centric event

. once on a processor-centric event.

The TCM-centric events consist of two events per TCM port, one for fatal, that is, 2-bit ECC
errors and one for correctable, that is, 1-bit ECC errors. These events are generated three clock
cycles after the data read cycle. Consequently, these events are sometimes signaled on
speculative TCM reads, such as instructions that are prefetched but never executed because of
a branch earlier in the instruction sequence.

Note

When an external error is signaled on a TCM access, the TCM-centric events are still generated
as appropriate, based on the data returned, as if no external error had been signaled.

The processor-centric TCM events are only signaled for errors in data that would have otherwise
been used by the processor. Errors on speculative reads never generate these errors. They consist
of fatal and correctable events for:

. the prefetch unit, to signal errors on instruction fetches
. the load/store unit, to signal errors on data accesses
. the AXI slave interface, to signal errors on DMA accesses.

8.8.2 Instruction-cache error events

All parity and ECC errors are correctable in the [-Cache. Therefore there are only two events,
to indicate when an error is detected in a read from the tag RAM, or from the data RAM. These
events are only signaled for non-speculative instruction fetches and certain cache maintenance
operations. See Cache error detection and correction on page 8-20.

8.8.3 Data-cache error events

The D-Cache can generate fatal and correctable errors, and therefore has four events, one for

each type of error in the data RAM and in the tag or dirty RAMs. These events are only signaled
for non-speculative data accesses, cache line evictions, coherency maintenance operations, and
certain cache maintenance operations. See Cache error detection and correction on page 8-20.

8.8.4 Events and the CFLR

The Correctable Fault Location Register (CFLR) records the location of the last correctable
error detected on a non-speculative access or coherency maintenance operations. See
Correctable Fault Location Register on page 4-77 for more information. Every correctable error

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 8-36
Non-Confidential

Level One Memory System

that is recorded in the CFLR also generates an event. See Table 6-1 on page 6-2 to see which
events are CFLR-related. For correctable cache errors, the CLFR does not record whether the
error occurred in the data RAM or tag/dirty RAM. This distinction is only made by the events.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 8-37
ID021511 Non-Confidential

Chapter 9

Level Two Interface

This chapter describes the features of the Level two (L2) interface not covered in the AMBA AXI
Protocol Specification. It contains the following sections:

About the L2 interface on page 9-2

AXI master interface on page 9-4

AXI master interface transfers on page 9-7

AXI slave interface on page 9-18

Enabling or disabling AXI slave accesses on page 9-21
Accessing RAMs using the AXI slave interface on page 9-21
Peripheral interfaces on page 9-31

Accelerator Coherency Port interface on page 9-48.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.
Non-Confidential

9-1

Level Two Interface

9.1 About the L2 interface

9.1.1 Bus ECC

This section describes the processor L2 interface. The L2 interface consists of:

. AXI master interface
. AXI slave interface
. three peripheral interfaces

. ACP interface.

The processor is designed for use in larger chip designs using the Advanced Microcontroller Bus
Architecture (AMBA) AXI and AHB protocols. Instruction fetches and data accesses that the
L1 memory system does not service, and peripheral accesses, are performed through the
AXI-master interface or one of the peripheral interfaces. See:

. AXI master interface on page 9-4 for more information about the AXI master interface

. AXI peripheral port transfers on page 9-35 for more information about the AXI peripheral
interface

. AHB peripheral port transfers on page 9-42 for more information about the AHB
peripheral interface.

External AXI masters, that can include the processor itself, can use the AXI slave interface to
access the processor RAMs. You can use the AXI slave interface for DMA access into and out
of the TCMs or to perform software test of the cache RAMs. See AXI slave interface on

page 9-18.

The ACP interface enables the Cortex-R5 processor to observe memory transactions that other
AXI masters perform, and keep the L1 caches coherent with those transactions. See Accelerator
Coherency Port interface on page 9-48 for more information about the ACP interface.

You can configure all of the ports associated with the L2 interfaces with bus-ECC. The bus-ECC
feature uses additional signals to communicate redundant information, enabling the detection or
correction of errors that occur on the bus signals. See Bus ECC for more information.

You can configure a Cortex-R5 processor with bus ECC to protect the integrity of AMBA bus
signals. The bus ECC feature of the Low Latency Peripheral Port is configured separately from
the other bus interfaces.

Bus ECC uses both parity and Single Error Correct Double Error Detect (SEC-DED) Error
Correcting Codes (ECC). The Cortex-R5 processor computes and checks parity bits as odd or
even, depending on the value of the PARITYLEVEL primary input, except for AXI handshake
signals that have fixed, odd parity.

ECC and parity errors, detected by the Cortex-R5 processor, do not directly cause aborts,
exceptions or otherwise affect the CPU operation. Instead, event primary outputs notify the
system of correctable or fatal errors. The CPU treats all bus control and response signals as
correct, even if parity errors are reported. It is possible that fatal, that is double-bit, ECC errors
might cause more data corruption. This can result in the CPU operating on corrupted data, or
behaving unpredictably, based on corrupted control or response signals.

Bus ECC functionality checks for errors on every bus transfer the CPU performs. This can
include speculative accesses for which data is later discarded. The CPU:

. reports bus faults for all transfers whose data it uses
. never reports bus data faults for transfers where the bus master sees an error response.
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 9-2

ID021511

Non-Confidential

Level Two Interface

AXI Interfaces
The Cortex-R5 processor uses the following scheme to protect AXI signals:
. Fixed, odd parity on channel VALID and READY signals.

. Parity on address and control payload signals. Each parity bit protects a maximum of eight
payload bits.

. SEC-DED ECC to protect read and write data payload.

AHB Interfaces
The Cortex-R5 processor uses the following scheme to protect AHB signals:

. Parity on address and control signals. Each parity bit protects a maximum of eight payload
bits

. SEC-DED ECC to protect data payload.

Debug APB Interface

Bus ECC is not available for this interface.

Notifications
The Cortex-R5 bus ECC feature provides the following notifications:

. Correctable errors on read data received by the AXI Master and Peripheral Port, through
primary outputs.

. Correctable errors on write data received by the AXI Slave through a primary output.

. Logical address of transfers with correctable errors on master ports, to doubleword
granularity.

. Memory chip select and logical address of transfers with correctable errors on the AXI

Slave, to doubleword granularity.
. Fatal errors on AXI ports using one primary output bit per channel per port.
. Fatal errors on the AHB Peripheral Port through a primary output.

. A correctable bus fault event in the event bus, EVNTBUSmM. See About the events on
page 6-2.

. A fatal bus fault event in the event bus, EVNTBUSm. See About the events on page 6-2.

. Increments to correctable and fatal bus fault event counters for the Performance
Monitoring Unit (PMU). See About the events on page 6-2.

Concurrent Bus Fault Events

The Cortex-R5 event bus and PMU logic monitors bus fault events on all Cortex-R5 AXI and
AHB interfaces simultaneously. It merges bus faults that occur in the same CPU clock cycle, on
different bus interfaces. For example, if correctable errors occur on both the AXI master and
AXI slave, in the same CPU clock cycle, only one event is logged.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 9-3
Non-Confidential

Level Two Interface

Bus Master Correctable Error Address Reporting

The Cortex-R5 processor has one primary output for reporting the logical address of a transfer
with a correctable error, on the AXI master port, or the AXI and AHB Peripheral Ports.
Concurrent correctable bus faults on the AXI master and the Peripheral Port cause the address
to be reported for the AXI master only. Correctable errors do not occur concurrently on the AHB
and AXI Peripheral Ports, see Peripheral interfaces on page 9-31 for more information about
the Cortex-R5 Peripheral Port.

9.2 AXI master interface

The processor has a single AXI master interface, with one port that is used for:
. I _Cache linefills

. D _Cache linefills and evictions

. Non-cacheable (NC) Normal-type memory instruction fetches

. NC Normal-type memory data accesses

. Device and Strongly-ordered type data accesses, normally to peripherals.

The port is 64 bits wide, and conforms to the AXI3 standard as described in the AMBA AXT
Protocol Specification. Within the AXI standard, the master port uses a number of extension
signals to indicate inner memory attributes and, if configured with bus-ECC, parity or ECC
information. See AXI extensions on page 9-6 for more information about attribute encodings and
Bus ECC on page 9-2 for more information about bus-ECC.

The master interface can run at the same frequency as the processor or at a lower synchronous
frequency. See AMBA interface clocking on page 2-16 for more information.

Note

References in this section to an AXI slave refer to the AXI slave in the external system that is
connected to the Cortex-R5 AXI master port. This is not necessarily the Cortex-R5 AXI slave
port.

The following sections describe the attributes of the AXI master interface, and provide
information about the types of burst generated:

. Identifiers for AXI bus accesses on page 9-5

. Write response on page 9-5

. Linefill buffers and the AXI master interface on page 9-5

. Eviction buffer on page 9-6

. AXI extensions on page 9-6.

. Memory system implications for AXI accesses on page 9-7.

Table 9-1 shows the AXI master interface attributes.

Table 9-1 AXI master interface attributes

Attribute Value Comments
Write issuing capability 4 Made up of four outstanding writes that can be evictions, single writes, or write bursts.2
Read issuing capability 7 Made up of five linefills on the data side, one NC read on the data side, and one read on the

instruction side, that can be NC or linefill.

Combined issuing capability

11a -

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 9-4
Non-Confidential

Level Two Interface

Table 9-1 AXI master interface attributes (continued)

Attribute Value Comments

Write ID capability 2 -

Write interleave capability 1 The AXI master interface presents all write data in order.

Read ID capability 7 Made up of five linefills on the data side, one NC read on the data side, and one linefill or

NC read on the instruction side.

a. When there are three outstanding write transactions, only data is issued for the fourth. Only three outstanding write addresses are issued.

9.2.1 Identifiers for AXI bus accesses
Accesses on the AXI bus use ID values as follows:

Outstanding write/read access on different IDs

This means, for example, that a Non-cacheable (NC) read and linefills can be
outstanding on the AXI bus simultaneously as long as the IDs are different.

At the same time, there can be:

. up to seven outstanding reads, each with one of seven different ID values,
that consists of:

— adata side read NC access, RID0

— an instruction side read NC access or an instruction side read
Cacheable access, RID1

— five outstanding data side linefills on the AXI bus, RID3 - RID7.
. up to two IDs on outstanding writes, that consist of:

— single or burst NC writes or write-through (WT) writes, WIDO

— evictions, WID1.

Outstanding write accesses with the same ID

When the address and data of the first write are both put on AXI bus, another write
request with same ID can be sent when the address or data channel is released.
For example, the new address can be sent with the same ID, before the target
accepts the data of the first write.

Note
. The AXI master does not generate two outstanding read accesses with the same ID.
. The AXI master does not interleave write data from two different bursts, even if the bursts
have different IDs.

9.2.2 Write response
The AXI master requires that the slave does not return a write response until it has received both
the write data and the write address.

9.2.3 Linefill buffers and the AXI master interface

On the data side there are two LineFill Buffers (LFBs), LFBO and LFB1. Each request from the
data cache controller or from the STore Buffer (STB) can be allocated to either LFBO or LFBI.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 9-5
ID021511 Non-Confidential

Level Two Interface

On the instruction side, there is one LFB. This is the Instruction LFB (ILFB), that treats
instruction linefill requests or Non-cacheable instruction reads in the same way.

The linefill buffers:

. get returned data from the AXI bus for linefill requests

. get returned data from the AXI bus for any Non-cacheable LDR or LDMs

. get data from the STB to write as a burst on the AXI bus (LFBO and LFB1 only).

Single writes do not use LFBs.

The LFBs are 256 bits wide so that an entire cache line can be written to the cache RAMs in one
cycle. While the LFB is being filled from L2 memory, its bytes can be merged with write data
from the STB.

9.24 Eviction buffer

As soon as a linefill is requested, the selected evicted cache line is loaded into the EViction
Buffer (EVB). The EVB forwards this information to the AXI bus when possible.

The EVB has a structure of 256 bits for data and 32 bits for the address. See Cache line
write-back (eviction) on page 9-12 for more information about the AXI transaction generated.

The EVB is removed if cache RAMs are not implemented for the processor.

9.2.5 AXIl extensions

The Cortex-R5 AXI master interface uses the ARCACHEMm, AWCACHEMm, AXI signals
and the ARSHAREMm, AWSHAREMm, ARINNERMm, and AWINNERMm extension
signals to indicate the memory attributes of the transfer, as returned by the MPU. Table 9-2
shows the encodings used for these signals. ARCACHEMm and AWCACHEMm of the
master interface are generated from the memory type and outer region attributes.
ARINNERMm and AWINNERMm are generated from the memory type and inner region
attributes. ARSHAREMm and AWSHAREMm are asserted for transactions to shared
memory regions.

Table 9-2 ARCACHEMm, AWCACHEMm, ARINNERMm, and AWINNERMm encodings

Encoding?2 Meaning

b0000 Strongly Ordered

b0001 Device

b0011 Non-cacheable

b0110 Cacheable, write-through, allocate on reads only
bO111 Cacheable, write-back, allocate on reads only
bll11 Cacheable write-back, allocate on reads and writes

a. All encodings not shown in the table are reserved.

Additional AXI extension signals on all the AXI master channels are used for bus-ECC and
parity information.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 9-6
ID021511 Non-Confidential

Level Two Interface

9.2.6 Memory system implications for AXI accesses

The attributes of the memory being accessed can affect an AXI access. The L1 memory system
can cache any Normal memory address that is marked as either:

. Cacheable, write-back, read- and write-allocate, non-shared

. Cacheable, write-through, read-allocate only, non-shared.

However, Device and Strongly Ordered memory is always Non-cacheable. Also, any unaligned
access to Device or Strongly Ordered memory generates an alignment fault and therefore does
not cause any AXI transfer. This means that the access examples given in this chapter never
show unaligned accesses to Device or Strongly Ordered memory.

9.3 AXI master interface transfers

The processor conforms to the AXI3 specification, but it does not generate all the AXI
transaction types that the specification permits. This section describes the types of AXI
transaction that the Cortex-R5 AXI master does not generate. If you are designing an AXI slave
to work only with the Cortex-R5 processor, and there are no other AXI masters in your system,
you can take advantage of these restrictions and the interface attributes, described in Table 9-1
on page 9-4, to simplify the slave.

This section also contains tables that show some examples of the types of AXI burst that the
processor generates. However, because a particular type of transaction is not shown here does
not mean that the processor does not generate such a transaction.

Note

An AXI slave device connected to the Cortex-R5 AXI master port must be capable of handling
every kind of transaction permitted by the AXI specification, except where there is an explicit
statement in this chapter that such a transaction is not generated. You must not infer any
additional restrictions from the example tables given. Restrictions described here apply to the
rOp0 to rlplrevisions of the processor, but might not be true for future revisions.

Load and store instructions to Non-cacheable memory might not result in an AXI transfer
because the data might either be retrieved from, or merged into the internal store data buffers.
The exceptions to this are loads or stores to Strongly Ordered or Device memory. These always
result in AXI transfers. See Strongly Ordered and Device transactions on page 9-8.

Restrictions on AXI transfers on page 9-8 describes restrictions on the type of transfers that the
Cortex-R5 AXI master interface generates. If a CPUm exists and is powered up, the buffered
write response and read data channel ready signals, BREADYMm and RREADYMm, are
always asserted. They are, however, deasserted when the CPU enters Dormant or Shutdown
mode. You must not make any other assumptions about the AXI handshaking signals, except
that they conform to the AMBA AXI Protocol Specification.

The following sections give examples of transfers generated by the AXI master interface:

. Restrictions on AXI transfers on page 9-8
. Strongly Ordered and Device transactions on page 9-8
. Linefills on page 9-12
. Cache line write-back (eviction) on page 9-12
. Non-cacheable reads on page 9-12
. Non-cacheable or write-through writes on page 9-14
. AXI transaction splitting on page 9-15
. Normal write merging on page 9-16.
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 9-7

ID021511

Non-Confidential

Level Two Interface

9.3.1 Restrictions on AXI transfers

The Cortex-R5 AXI master interface applies the following restrictions to the AXI transactions
it generates:

. A burst never transfers more than 32 bytes.

. The burst length is never more than 8 transfers.

. No transaction ever crosses a 32-byte boundary in memory. See AXI transaction splitting
on page 9-15.

. FIXED bursts are never used.

. The write address channel always issues INCR type bursts, and never WRAP or FIXED.

. WRAP type read bursts, see Linefills on page 9-12:
— are used only for linefills (reads) of Cacheable Normal non-shared memory
— always have a size of 64 bits, and a length of 4 transfers
— always have a start address that is 64-bit aligned.

. If the transfer size is 8 bits or 16 bits then the burst length is always 1 transfer.
. The transfer size is never greater than 64 bits, because it is a 64-bit AXI bus.

. Instruction fetches, identified by ARPROT2], are always a 64 bit transfer size, and never
locked or exclusive.

. Transactions to Device and Strongly Ordered memory are always to addresses that are
aligned for the transfer size. See Strongly Ordered and Device transactions.

. Exclusive and Locked accesses are always to addresses that are aligned for the transfer
size.

. Write data is never interleaved.

. In addition to these restrictions, there are various limitations to the ID values that the AXI

master interface uses. See Identifiers for AXI bus accesses on page 9-5.

9.3.2 Strongly Ordered and Device transactions

A load or store instruction to or from Strongly Ordered or Device memory always generates
AXI transactions of the same size as implied by the instruction. All accesses using LDM, STM, LDRD,
or STRD instructions to Strongly Ordered or Device memory occur as 32-bit transfers.

LDRB

Table 9-3 shows the values of ARADDRMm, ARBURSTMm, ARSIZEMm, and
ARLENMm for a Non-cacheable LDRB from bytes 0-7 in Strongly Ordered or Device memory.

Table 9-3 Non-cacheable LDRB

Address[2:0] ARADDRMm ARBURSTMm ARSIZEMm ARLENMm

0x0 (byte 0) 0x00 Incr 8-bit 1 data transfer
0x1 (byte 1) 0x01 Incr 8-bit 1 data transfer
0x2 (byte 2) 0x02 Incr 8-bit 1 data transfer
0x3 (byte 3) 0x03 Incr 8-bit 1 data transfer
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 9-8

ID021511

Non-Confidential

Level Two Interface

Table 9-3 Non-cacheable LDRB (continued)

Address[2:0] ARADDRMm ARBURSTMm ARSIZEMm ARLENMm

0x4 (byte 4) 0x04 Incr 8-bit 1 data transfer
0x5 (byte 5) 0x05 Incr 8-bit 1 data transfer
0x6 (byte 6) 0x06 Incr 8-bit 1 data transfer
0x7 (byte 7) 0x07 Incr 8-bit 1 data transfer

LDRH

Table 9-4 shows the values of ARADDRMm, ARBURSTMm, ARSIZEMm, and
ARLENMm for a Non-cacheable LDRH from halfwords 0-3 in Strongly Ordered or Device

memory.
Table 9-4 LDRH from Strongly Ordered or Device memory
Address[2:0] ARADDRMm ARBURSTMm ARSIZEMm ARLENMm
0x0 (halfword 0) 0x00 Incr 16-bit 1 data transfer
0x2 (halfword 1) 0x02 Incr 16-bit 1 data transfer
0x4 (halfword 2) 0x04 Incr 16-bit 1 data transfer
0x6 (halfword 3) 0x06 Incr 16-bit 1 data transfer
Note

A load of a halfword from Strongly Ordered or Device memory addresses 0x1, @x3, 0x5, or 0x7
generates an alignment fault.

LDR or LDM that transfers one register

Table 9-5 shows the values of ARADDRMm, ARBURSTMm, ARSIZEMm, and
ARLENMm for a Non-cacheable LDR or an LDM that transfers one register, (an LDM1) in Strongly
Ordered or Device memory.

Table 9-5 LDR or LDM1 from Strongly Ordered or Device memory

Address[2:0] ARADDRMm ARBURSTMm ARSIZEMm ARLENMm

0x0 (word 0) 0x00 Incr 32-bit 1 data transfer

0x4 (word 1) 0x04 Incr 32-bit 1 data transfer

Note

A load of a word from Strongly Ordered or Device memory addresses 0x1, 0x2, 0x3, 0x5, 0x6, or
0x7 generates an alignment fault.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 9-9
ID021511 Non-Confidential

Level Two Interface

LDM that transfers five registers

Table 9-6 shows the values of ARADDRMm, ARBURSTMm, ARSIZEMm, and
ARLENMm for a Non-cacheable LDM that transfers five registers (an LDM5) in Strongly Ordered
or Device memory.

Table 9-6 LDMS5, Strongly Ordered or Device memory

Address[3:0] ARADDRMm ARBURSTMm ARSIZEMm ARLENMm

0x0 (word 0) 0x00 Incr 32-bit 5 data transfers

0x4 (word 1) 0x04 Incr 32-bit 5 data transfers

0x8 (word 2) 0x08 Incr 32-bit 5 data transfers

0xC (word 3) 0x0C Incr 32-bit 5 data transfers
Note

A load-multiple from address 0x1, 0x2, 0x3, 0x5, 0x6, 0x7, 0x9, OxA, 0xB, 0xD, OxE, or OxF generates
an alignment fault.

STRB

Table 9-7 shows the values of AWADDRMm, AWBURSTMm, AWSIZEMm, and
AWLENMmM for an STRB to Strongly Ordered or Device memory over the AXI master port.

Table 9-7 STRB to Strongly Ordered or Device memory

Address[2:0] AWADDRMm AWBURSTMm AWSIZEMm AWLENMm WSTRBMm

0x0 (byte 0) 0x00 Incr 8-bit 1 data transfer ~ b00000001
ox1 (byte 1) 0x01 Incr 8-bit 1 data transfer ~ b00000010
ox2 (byte 2) 0x02 Incr 8-bit 1 data transfer ~ b00000100
0x3 (byte 3) 0x03 Incr 8-bit 1 data transfer b00001000
0x4 (byte 4) 0x04 Incr 8-bit 1 data transfer ~ b00010000
0x5 (byte 5) 0x05 Incr 8-bit 1 data transfer ~ b00100000
0x6 (byte 6) 0x06 Incr 8-bit 1 data transfer ~ b01000000
ox7 (byte 7) 0x07 Incr 8-bit 1 data transfer ~ b10000000
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 9-10

ID021511 Non-Confidential

STRH

Level Two Interface

Table 9-8 shows the values of AWADDRMm, AWBURSTMm, AWSIZEMm, and
AWLENMm for an STRH over the AXI master port to Strongly Ordered or Device memory.

Table 9-8 STRH to Strongly Ordered or Device memory

Address[2:0]1 AWADDRMm AWBURSTMm AWSIZEMm AWLENMm WSTRBMm
0x0 (halfword 0) 0x00 Incr 16-bit 1 data transfer ~ b00000011
0x2 (halfword 1) 0x02 Incr 16-bit 1 data transfer ~ b00001100
0x4 (halfword 2) 0x04 Incr 16-bit 1 data transfer ~ b00110000
0x6 (halfword 3) 0x06 Incr 16-bit 1 data transfer b11000000

Note

A store of a halfword to Strongly Ordered or Device memory addresses 0x1, 0x3, 0x5, or 0x7
generates an alignment fault.

STR or STM of one register

Table 9-9 shows the values of AWADDRMm, AWBURSTMm, AWSIZEMm, and
AWLENMmMm for an STR or an STM that transfers one register (an STM1) over the AXI master port
to Strongly Ordered or Device memory.

Table 9-9 STR or STM1 to Strongly Ordered or Device memory

Address[2:0] AWADDRMm AWBURSTMm AWSIZEMm AWLENMm WSTRBMm

0x0 (word0) 0x00 Incr 32-bit 1 data transfer b00001111
0x4 (word 1) 0x04 Incr 32-bit 1 data transfer b11110000
Note

A store of a word to Strongly Ordered or Device memory addresses 0x1, 0x2, 0x3, 0x5, 0x6, or
0x7 generates an alignment fault.

STM of seven registers

Table 9-10 shows the values of AWADDRMm, AWBURSTMm, AWSIZEMm, and
AWLENMm for an STM that writes seven registers (an STM7) over the AXI master port to
Strongly Ordered or Device memory.

Table 9-10 STM7 to Strongly Ordered or Device memory to word 0 or 1

Address[4:0] AWADDRMm AWBURSTMm AWSIZEMm AWLENMmM First WSTRBMm

0x00 (word 0) 0x00 Incr 32-bit 7 data transfers b00001111
0x04 (word 1) 0x04 Incr 32-bit 7 data transfers b11110000
Note

A store-multiple to address 0x1, 0x2, 0x3, 0x5, 0x6, or 0x7 generates an alignment fault.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 9-11
Non-Confidential

Level Two Interface

9.3.3 Linefills

Loads and instruction fetches from Normal, Cacheable memory that do not hit in the cache
generate a cache linefill when the appropriate cache is enabled. Table 9-11 shows the values of
ARADDRMm, ARBURSTMm, ARSIZEMm, and ARLENMm for cache linefills.

Table 9-11 Linefill behavior on the AXI interface

Address[4:0]2 ARADDRMm ARBURSTMm ARSIZEMm ARLENMm

0x00-0x07 0x00 Wrap 64-bit 4 data transfers
0x08-0x0F 0x08 Wrap 64-bit 4 data transfers
0x10-0x17 0x10 Wrap 64-Dbit 4 data transfers
0x18-0x1F 0x18 Wrap 64-bit 4 data transfers

a. These are the bottom five bits of the address of the access that cause the linefill, that is, the
address of the critical word.

9.3.4 Cache line write-back (eviction)

When a valid and dirty cache line is evicted from the d-cache, a write-back of the data must
occur. Table 9-12 shows the values of AWADDRMm, AWBURSTMm, AWSIZEMm, and
AWLENMmM for cache line write-backs, over the AXI master interface.

Table 9-12 Cache line write-back

AWADDRMmM[4:0] AWBURSTMm AWSIZEMm AWLENMmM

0x00 Incr 64-bit 4 data transfers

9.3.5 Non-cacheable reads

Load instructions accessing Non-cacheable Normal memory generate AXI bursts that are not
necessarily the same size or length as the instruction implies. In addition, if the data to be read
is contained in the store buffer, the instruction might not generate an AXI read transaction at all.

The tables in this section give examples of the types of AXI transaction that might result from
various load instructions, accessing various addresses in Non-cacheable Normal memory. They
are provided as examples only, and are not an exhaustive description of the AXI transactions.
Depending on the state of the processor, and the timing of the accesses, the actual bursts
generated might have a different size and length to the examples shown, even for the same
instruction.

Table 9-13 shows possible values of ARADDRMm, ARBURSTMm, ARSIZEMm, and
ARLENMm for an LDRH from bytes 0-7 in Non-cacheable Normal memory.

Table 9-13 LDRH from Non-cacheable Normal memory

Address[2:0] ARADDRMm ARBURSTMm ARSIZEMm ARLENMm

0x0 (byte 0) 0x00 Incr 16-bit 1 data transfer
0x1 (byte 1) 0x00 Incr 32-bit 1 data transfer
0x2 (byte 2) 0x00 Incr 64-bit 1 data transfer
0x3 (byte 3) 0x03 Incr 32-bit 2 data transfers
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 9-12

ID021511 Non-Confidential

Level Two Interface

Table 9-13 LDRH from Non-cacheable Normal memory (continued)

Address[2:0] ARADDRMm ARBURSTMm ARSIZEMm ARLENMm

0x4 (byte 4) 0x04 Incr 16-bit 1 data transfer
0x5 (byte 5) 0x04 Incr 32-bit 1 data transfer
0x6 (byte 6) 0x06 Incr 16-bit 1 data transfer
0x7 (byte 7) 0x07 Incr 32-bit 2 data transfers

Table 9-14 shows possible values of ARADDRMm, ARBURSTMm, ARSIZEMm, and
ARLENMm for a Non-cacheable LDR or an LDM that transfers one register, an LDM1.

Table 9-14 LDR or LDM1 from Non-cacheable Normal memory

Address[2:0] ARADDRMm ARBURSTMm ARSIZEMm ARLENMm
0x0 (byte 0) (word 0) 0x00 Incr 32-bit 1 data transfer
ox1 (byte 1) 0x01 Incr 64-bit 1 data transfer
0x2 (byte 2) 0x00 Incr 64-bit 1 data transfer
0x3 (byte 3) 0x00 Incr 64-bit 2 data transfers
0x4 (byte 4) (word 1) 0x04 Incr 32-bit 1 data transfer
0x5 (byte 5) 0x05 Incr 32-bit 2 data transfers
0x6 (byte 6) 0x06 Incr 16-bit 1 data transfer
0x08 Incr 16-bit 1 data transfer
ox7 (byte 7) 0x04 Incr 32-bit 2 data transfers

Table 9-15 show possible values of ARADDRMm, ARBURSTMm, ARSIZEMm, and
ARLENMm for a Non-cacheable LDM that transfers five registers (an LDMS).

Table 9-15 LDM5, Non-cacheable Normal memory or cache disabled

Address[4:0]1 ARADDRMm ARBURSTMm ARSIZEMm ARLENMm

0x00 (word 0) 0x00 Incr 64-bit 3 data transfers
0x04 (word 1) 0x04 Incr 64-bit 3 data transfers
0x08 (word 2) 0x08 Incr 64-bit 3 data transfers
0x0C (word 3) 0x0C Incr 64-bit 3 data transfers
0x10 (word 4) 0x10 Incr 64-bit 2 data transfers
0x00 Incr 32-bit 1 data transfer
0x14 (word 5) 0x14 Incr 64-bit 2 data transfers
0x00 Incr 64-bit 1 data transfer
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 9-13

ID021511 Non-Confidential

Level Two Interface

Table 9-15 LDM5, Non-cacheable Normal memory or cache disabled (continued)

Address[4:0] ARADDRMm ARBURSTMm ARSIZEMm ARLENMm

0x18 (word 6) 0x18 Incr 64-bit 1 data transfer
0x00 Incr 64-bit 2 data transfers

0x1C (word 7) 0x1C Incr 32-bit 1 data transfer
0x00 Incr 64-bit 2 data transfers

9.3.6 Non-cacheable or write-through writes

Store instructions to Non-cacheable or write-through Normal memory generate AXI bursts that
are not necessarily the same size or length as the instruction implies. The AXI master port
asserts byte-lane-strobes, WSTRBMm|[7:0], to ensure that only the bytes that were written by
the instruction are updated.

The tables in this section give examples of the types of AXI transaction that might result from
various store instructions, accessing various addresses in Non-cacheable Normal memory. They
are provided as examples only, and are not an exhaustive description of the AXI transactions.
Depending on the state of the processor, and the timing of the accesses, the actual bursts
generated might have a different size and length to the examples shown, even for the same
instruction.

In addition, write operations to Normal memory can be merged to create more complex AXI
transactions. See Normal write merging on page 9-16 for examples.

Table 9-16 shows possible values of AWADDRMm, AWBURSTMm, AWSIZEMm, and
AWLENMm for an STRH to Normal memory.

Table 9-16 STRH to Cacheable write-through or Non-cacheable Normal memory

Address[2:0] AWADDRMm AWBURSTMm AWSIZEMm AWLENMm WSTRBMm

0x0 (byte 0) 0x00 Incr 32-bit 1 data transfer ~ b00000011
ox1 (byte 1) 0x00 Incr 32-bit 1 data transfer ~ 00000110
ox2 (byte 2) 0x02 Incr 64-bit 1 data transfer ~ b00001100
0x3 (byte 3) 0x03 Incr 32-bit 2 data transfers b00001000
b00010000

0x4 (byte 4) 0x04 Incr 16-bit 1 data transfer ~ b00110000
ox5 (byte 5) 0x05 Incr 32-bit 1 data transfer ~ 01100000
ox6 (byte 6) 0x06 Incr 16-bit 1 data transfer ~ b11000000
ox7 (byte 7) 0x07 Incr 8-bit 1 data transfer ~ b10000000
0x08 Incr 8-bit 1 data transfer ~ b00000001

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 9-14

ID021511 Non-Confidential

Level Two Interface

Table 9-17 shows possible values of AWADDRMm, AWBURSTMm, AWSIZEMm, and
AWLENMm for an STR or an STM that transfers one register, an STM1, to Normal memory through
the AXI master port.

Table 9-17 STR or STM1 to Cacheable write-through or Non-cacheable Normal memory

Address[2:0] AWADDRMm AWBURSTMm AWSIZEMm AWLENMm WSTRBMm
0x0 (byte 0) (word 0) 0x00 Incr 32-bit 1 data transfer ~ b00001111
0x1 (byte 1) 0x01 Incr 64-bit 1 data transfer ~ b00011110
0x2 (byte 2) 0x00 Incr 64-bit 1 data transfer ~ b00111100
0x3 (byte 3) 0x03 Incr 64-bit 2 data transfers b01111000
b00000000
0x4 (byte 4) (word 1) 0x04 Incr 32-bit 1 data transfer ~ b11110000
0x5 (byte 5) 0x05 Incr 32-bit 2 data transfers b11100000
b00000001
0x6 (byte 6) 0x06 Incr 16-bit 1 data transfer ~ b11000000
0x08 Incr 16-bit 1 data transfer ~ b00000011
0x7 (byte 7) 0x04 Incr 32-bit 2 data transfers b10000000
b00000111

9.3.7 AXl transaction splitting

The processor splits AXI bursts when it accesses addresses across a cache line boundary, that
is, a 32-byte boundary. An instruction that accesses memory across one or two 32-byte
boundaries generates two or three AXI bursts respectively. The following examples show this
behavior. They are provided as examples only, and are not an exhaustive description of the AXI
transactions. Depending on the state of the processor, and the timing of the accesses, the actual
bursts generated might have a different size and length to the examples shown, even for the same
instruction.

For example, LDMIA R10, {R0-R5} loads six words from memory. The number of AXI
transactions generated by this instruction depends on the base address, R10:

. If all six words are in the same cache line, there is a single AXI transaction. For example,
for LDMIA R10, {RO-R5} with R10 = 0x1008, the interface might generate a burst of three,
64-bit read transfers, as shown in Table 9-18.

Table 9-18 AXI transaction splitting, all six words in same cache line

ARADDRMm ARBURSTMm ARSIZEMm ARLENMm

0x1008 Incr 64-bit 3 data transfers

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 9-15
ID021511 Non-Confidential

Level Two Interface

. If the data comes from two cache lines, then there are two AXI transactions. For example,
for LDMIA R10, {R@-RS5} with R10 = 0x1010, the interface might generate one burst of two
64-bit reads, and one burst of a single 64-bit read, as shown in Table 9-19.

Table 9-19 AXI transaction splitting, data in two cache lines

ARADDRMm ARBURSTMm ARSIZEMm ARLENMm

0x1010 Incr 64-bit 2 data transfers

0x1020 Incr 64-bit 1 data transfer

Table 9-20 shows possible values of ARADDRMm, ARBURSTMm, ARSIZEMm, and
ARLENMm for an LDR or LDM1 to Non-cacheable Normal memory that crosses a cache line
boundary.

Table 9-20 Non-cacheable LDR or LDM1 crossing a cache line boundary

Address[4:0] ARADDRMm ARBURSTMm ARSIZEMm ARLENMm

0x1D (byte 29) 0x1C Incr 32-bit 1 data transfer
0x00 Incr 32-bit 1 data transfer
0x1E (byte 30) 0x1E Incr 16-bit 1 data transfer
0x00 Incr 64-bit 1 data transfer
Ox1F (byte 31) Ox1F Incr 8-bit 1 data transfer
0x00 Incr 32-bit 1 data transfer

Table 9-21 shows possible values of ARADDRMm, ARBURSTMm, ARSIZEMm, and
ARLENMm for an STRH to Non-cacheable Normal memory that crosses a cache line boundary.

Table 9-21 Cacheable write-through or Non-cacheable STRH crossing a cache line
boundary

Address[4:0] AWADDRMm AWBURSTMm AWSIZEMm AWLENMm WSTRBMm

0x1F (byte 31) Ox1F Incr 8-bit 1 data transfer b10000000

0x00 Incr 16-bit 1 data transfer ~ b00000001

9.3.8 Normal write merging

A store instruction to Non-cacheable, or write-through Normal memory might not result in an
AXI transfer because of the merging of store data in the internal buffers.

The STB can detect when it contains more than one write request to the same cache line for
write-through Cacheable or Non-cacheable Normal memory. This means it can combine the
data from more than one instruction into a single write burst to improve the efficiency of the
AXI port. If the AXI master receives several write requests that do not form a single contiguous
burst it can choose to output a single burst, with the WSTRBW signal low for the bytes that do
not have any data.

For write accesses to Normal memory, the STB can perform writes out of order, if there are no
address dependencies. It can do this to best use its ability to merge accesses.

The instruction sequence in Example 9-1 on page 9-17 shows the merging of writes.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 9-16
Non-Confidential

Level Two Interface

Example 9-1 Write merging

MOV ro, #0x4000

STRH rl, [r0, #0x18]; Store a halfword at 0x4018
STR r2, [r0, #0xC] ; Store a word at 0x400C
STMIA r@, {r4-r7} ; Store four words at 0x4000
STRB r3, [r@, #0x1D]; Store a byte at 0x401D

If the memory at address 0x4000 is marked as Strongly Ordered or Device type memory, the AXI
transactions shown in Table 9-22 are generated.

Table 9-22 AXI transactions for Strongly Ordered or Device type memory

AWADDRMm AWBURSTMm AWSIZEMm AWLENMm WSTRBMm

0x4018 Incr 16-bit 1 data transfer 0b00000011
0x400C Incr 32-bit 1 data transfer 0b11110000
0x4000 Incr 32-bit 4 data transfers 0b00001111
0b11110000
0b00001111
0b11110000
0x401D Incr 8-bit 1 data transfer 0b00100000

In Example 9-1, each store instruction produces an AXI burst of the same size as the data written
by the instruction.

Table 9-23 shows a possible resulting transaction if the same memory is marked as
Non-cacheable Normal, or Cacheable write-through.

Table 9-23 AXI transactions for Non-cacheable Normal or Cacheable write-through
memory

AWADDRMm AWBURSTMm AWSIZEMm AWLENMm WSTRBMm

0x4000 Incr 64-bit 4 data transfers Ob11111111
Obl1111111
0b00000000
0b00100011

In this example:

. The store buffer has merged the STRB and STRH writes into one buffer entry, and therefore
a single AXI transfer, the fourth in the burst.

. The writes, that occupy three buffer entries, have been merged into a single AXI burst of
four transfers.

. The write generated by the STR instruction has not occurred, because it was overwritten by
the STM instruction.

. The write transfers have occurred out of order with respect to the original program order.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 9-17
Non-Confidential

Level Two Interface

The transactions shown in Table 9-23 on page 9-17 show this behavior. They are provided as
examples only, and are not an exhaustive description of the AXI transactions. Depending on the
state of the processor, and the timing of the accesses, the actual bursts generated might have a
different size and length to the examples shown, even for the same instruction.

If the same memory is marked as write-back Cacheable, and the addresses are allocated into a
cache line, no AXI write transactions occur until the cache line is evicted and performs a
write-back transaction. See Cache line write-back (eviction) on page 9-12.

9.4 AXI slave interface

The processor has a single AXI slave interface, with one port. The port is 64 bits wide and
conforms to the AXI3 standard as described in the AMBA AXI Protocol Specification. Within
the AXI standard, the slave port uses the extension signals AWCSELSm and ARCSELSm each
as four separate chip select input signals to enable access to:

. BTCM
. ATCM
. instruction cache RAMs

. data cache RAMs.

The external AXI system must generate the chip select signals. The slave interface routes the
access to the required RAM.

If the processor is configured with bus-ECC, extension signals are also used for parity and ECC
information. See Bus ECC on page 9-2 for more information about bus-ECC.

The slave interface can run at the same frequency as the processor or at a lower, synchronous
frequency. See AMBA interface clocking on page 2-16 for more information. If asynchronous
clocking is required, then an external asynchronous AXI register slice is required.

The AXI slave provides access to the TCMs and competes for access to the TCMs with the LSU
and PFU. Both the LSU and PFU normally have a higher priority than the AXI slave.

If two BTCM ports are used, you can configure these to interleave in the address map, so any
AXI slave access that is denied access to the BTCM on the first cycle of the access gains access
on the second cycle when the LSU is using the other port, and can continue in lock-step with the
LSU, assuming both are accessing sequential data. Accesses to the ATCM are more likely to
encounter a conflict because there is only one port on the interface.

Memory BIST ports are routed through the AXI slave interface logic, to access the RAMs.
Memory BIST access is assumed only to occur when no other accesses are taking place, and
takes highest priority.

9.4.1 AXI slave interface for cache RAMs

Note

You must not use the AXI slave to access the cache RAMs at the same time as the ACP. Ensure
the ACP is idle before initiating AXI slave transactions to the cache RAM:s.

You can use the AXI slave for software testing of the cache RAMs in functional mode. When
the AXI slave is enabled to access the RAMs, the processor considers the caches as cache-off,
so that the instruction and data requests cannot interact with AXI slave requests. In this state,
only AXI slave requests can access the cache RAM and instruction and data requests from the
processor are considered as non-cacheable and do not perform any lookup in the caches.

The AXI slave interface accesses each cache RAM individually.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 9-18
Non-Confidential

Level Two Interface

On the instruction cache side the AXI slave can access:
. data cache RAMs, data and parity or ECC code bits
. tag RAMs, tag and valid, and parity or ECC code bits.

On the data cache side, the AXI slave can access:

. data cache RAMs, data and parity or ECC code bits

. tag RAMs, tag and valid, and parity or ECC code bits
. dirty RAM, dirty bit and attributes, and ECC code bits.

A simple decode of four address bits and four way address bits determines which of the data,
tag, or dirty RAMs is accessed within the caches. The AXI access is given a SLVERR error
response when access to nonexistent cache RAM is indicated.

94.2 TCMECC support

The TCMs can support ECC, as described in TCM internal error detection and correction on
page 8-14. If a write transaction is issued to the AXI slave, the slave interface calculates the
required ECC bits to store to the TCM. If the write data width is smaller than the ECC chunk
size then a read-modify-write sequence is automatically performed by the AXI slave.

Note
It is important to ensure that all writes to TCMs that do not contain the correct ECC bits for their
data, such as uninitialized RAMs, are performed with a size of at least the ECC chunk size or
with error checking disabled.

If a read transaction is issued to the AXI slave, the slave interface reads the ECC bits and, if
error checking is enabled for the appropriate TCM, checks the data for errors. If the interface
detects a correctable error, it corrects it inline and returns the correct data on the AXI bus. It does
not update the data in the TCM to correct it. If the interface detects an uncorrectable error, it
generates a SLVERR error response to the AXI transaction.

9.4.3 External TCM errors

If an error response is given to a TCM access from the AXI slave interface, and external errors
are enabled for the appropriate TCM port, the AXI slave returns a SLVERR response to the AXI
transaction.

The AXI slave ignores late-error and retry responses from the TCM.

9.4.4 Cache parity and ECC support

When the caches support parity or ECC, the AXI slave interface permits direct read and write
access to the parity or ECC code bits. No errors are detected automatically, and on writes the
AXI slave does not automatically generate the correct parity or ECC code values.

Note

The AXI slave interface provides read/write access to the cache RAMs for functional test. It is
not suitable for preloading the caches.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 9-19
ID021511 Non-Confidential

Level Two Interface

9.4.5 AXI slave control

By default, both privileged and non-privileged accesses can be made to the Cortex-R5 TCM
RAMs through the AXI slave port. To disable non-privileged accesses, you can set bit [1] in the
Slave Port Control Register. You can disable all slave accesses by setting bit [0] of the register.
See cl1, Slave Port Control Register on page 4-65.

Access to the cache RAMs can only be made when bit [24] of the Auxiliary Control Register is
set. By default, only privileged accesses can be made to the cache RAMs, but you can enable
non-privileged accesses by setting bit [23] of the Auxiliary Control Register. When cache RAM
access is enabled, both caches are treated as if they were not enabled. See c/, Auxiliary Control
Register on page 4-41.

The AXI access is given a SLVERR error response when access is not permitted.

9.4.6 AXI slave characteristics

This section describes the capabilities of the AXI slave interface, and the attributes of its AXI
port. You must not make any other assumptions about the behavior of the AXI slave port except
that it conforms to the AMBA AXI 3 Protocol Specification.

. The AXI slave interface supports merging of data within bursts. When handling an AXI
burst of data less than 64-bits wide, the AXI slave interface attempts to perform the
minimum number of TCM or cache accesses required to read or write the data. When an
ECC error scheme is in use, this sometimes reduces the number of read-modify-write
sequences that the AXI slave must perform.

. The AXI slave interface does not support:

— Security Extensions, all accesses are secure, so AXPROT](1] is not used

— data and instruction transaction signaling, so AXPROT][2] is not used

— memory type and cacheability, so AXCACHE is not used

— atomic accesses. The AXI slave accepts locked transactions but makes no use of the
locking information, that is, AXLOCK.

. The AXI slave interface has no exclusive access monitor. If there are any exclusive
accesses, the AXI slave interface responds with an OKAY response.

. The width of the ID signals for the AXI slave port is 8 bits.

You must avoid building the processor into an AXI system that requires more than 8 bits
of ID. The number of bits of ID required by a system can often be reduced by compressing
the encoding to remove unused values. The AXI master port does not use all possible
values. See Identifiers for AXI bus accesses on page 9-5 for more information.

Table 9-24 shows the AXI slave port attributes.

Table 9-24 AXI slave interface attributes

Attribute

Value Comments

Combined acceptance capability 7 -

Write interleave depth 1 All write data must be presented to the AXI slave interface in order
Read data reorder depth 1 The AXI slave interface returns all read data in order, even if the bursts
have different IDs

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 9-20
Non-Confidential

Level Two Interface

9.5 Enabling or disabling AXI slave accesses

This section describes how to enable or disable AXI slave accesses to the cache RAMs. When
caches are accessible by the AXI slave interface, the caches are considered to be cache-off from
the processor. You must ensure that the ACP is idle so that it does not generate any cache RAM
accesses. After turning the interface on or off, an ISB instruction must flush the pipeline so that
all subsequent instruction fetches return valid data.

The following code is an example of enabling AXI slave accesses to the cache RAMs:

MRC pl5, @, R1, c1, c@, 1 ; Read Auxiliary Control Register

ORR R1, R1, #0x1 <<24

; Ensure ACP is idle, that is. cannot access the cache and that no new ACP transactions
; can be generated

DSB

MCR p15, @, R1, cl, c@, 1 ; enabled AXI slave accesses to the cache RAMs

ISB

; Clean entire data cache. This routine depends on the data cache size. It can be
; omitted if it is known that the data cache has no dirty data

Fetch from uncached memory

Fetch from uncached memory

Fetch from uncached memory

Fetch from uncached memory

The following code is an example of disabling AXI slave accesses to the cache RAMs. No cache
invalidation is performed because it is assumed that, after accessing the cache RAMs, the AXI
slave interface restored the previously valid data to them.

MRC p15, 0, R1, c1, c0, 1 ; Read Auxiliary Control Register

BIC R1, R1, #0x1 <<24

DSB

MCR p15, 0, R1, c1, c0, 1 ; disabled AXI slave accesses to the cache RAMs
ISB

; Re-enable ACP transactions
Fetch from cached memory
Fetch from cached memory
Fetch from cached memory
Fetch from cached memory

9.6 Accessing RAMs using the AXI slave interface
This section describes how to access the TCM and cache RAMs using the AXI slave interface.

Table 9-25 shows the bits of the ARCSELSm or AWCSELSm inputs, that determine the target
of a transaction. Each signal is a one-hot 4-bit input, with each bit corresponding to a particular

RAM or group of RAMs.
Table 9-25 RAM region decode

AxCSELSm bit One-hot RAM select
[3] Data cache RAMs
[2] Instruction cache RAMs
[1] BOTCM and BITCM
[0] ATCM

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 9-21

ID021511 Non-Confidential

9.6.1

Level Two Interface

The remaining addressing information is encoded in ARADDRSm|[22:0] for reads and
AWADDRSmM[22:0] for writes. The AXI-slave interface does not use the other bits of the
address, ARADDRSm[31:23] and AWADDRSm|[31:23], except for the purposes of bus-ECC.
For more information see:

. TCM RAM access

. Cache RAM access on page 9-23.

Note

Because AWCSELSm and AWADDRSm are similar to ARCSELSm and ARADDRSm, the
following sections describe their common features as AXCSELSm and AxADDRSm, noting
any differences between them.

TCM RAM access

AxADDRSm[22:3] indicates the address of the doubleword within the TCM that you want to
access. If you are accessing a TCM that is smaller than the maximum 8MB, then it is possible
to describe an address that is outside of the physical size of the TCM. This is not permitted and
results in a SLVERR error response.

Table 9-26 shows the decode of the AXCSELSm[3:0] signal, and the state of the address signals
for accessing different TCM RAMs. The table also shows the SLBTCMSBm configuration
input signal that determines which address bit is used to select between the banks of a
dual-banked BTCM.

Table 9-27 shows the most significant bit of the address for the different TCM RAM sizes. For
split BTCMs, the TCM size is defined to be the total size of both the BOTCM and BITCM
combined. In this situation, the particular BTCM accessed is dependent on either
AXADDRSm[MSB], if the input SLBTCMSBm is high, or AXADDRSm[3] otherwise. For
example, if there are split BTCMs and SLBTCMSBm is LOW and AXxXADDRSm([3] is HIGH,
the access goes to the BITCM.

Table 9-26 TCM chip-select decode

AxCSELSmM[3:0] BTCM ports SLBTCMSBm AxADDRSm[3] AxADDRSmM[MSB] RAM selected

0001 - - - - ATCM
0010 1 - - - BTCM
0010 2 0 0 - BOTCM
0010 2 0 1 - BITCM
0010 2 1 - 0 BOTCM
0010 2 1 - 1 BITCM

Table 9-27 MSB bit for the different TCM RAM sizes

TCM size AxADDRSmM[MSB]

4KB [11]
8KB [12]
16KB [13]
32KB [14]
ARM DDI 0460C Copyright © 2010-2011 ARM. Al rights reserved. 9-22

ID021511

Non-Confidential

Level Two Interface

Table 9-27 MSB bit for the different TCM RAM sizes (continued)

TCM size AxADDRSmM[MSB]

64KB [15]
128KB [16]
256KB [17]
512KB [18]
IMB [19]
2MB [20]
4MB [21]
8MB [22]

An access to the TCM RAMs is given a SLVERR error response if:

. It is outside the physical size of the targeted TCM RAM, that is, bits of
AXADDRSmM[22:MSB+1] are non-zero.

. There is no TCM present. The mapping of bus addresses to AXCSELSm and
AXADDRSmM is determined when the processor is integrated. You must understand this
mapping to use of the AXI-slave interface within your system.

9.6.2 Cache RAM access

This section contains the following:

. Memory map when accessing the cache RAMs

. D Cache data RAM single bank accesses on page 9-27
. 1 _Cache Data RAM access on page 9-28

. D _Cache data RAM double bank accesses on page 9-28
. Tag RAM access on page 9-30

. Dirty RAM access on page 9-30.

Memory map when accessing the cache RAMs

The memory map is divided into 2 regions:
. RAM-Access region
. TRANSFER and AUX register access region

The TRANSFER register enables an AXI master to construct a single RAM access from
multiple sub-word accesses, that might be required if the master data width is less than the RAM
data width.

The AUX register provides access to Data RAM ECC and parity data, if implemented.

The RAM-Access region initiates all AXI-slave RAM accesses. Reads from this region return
data and update the TRANSFER and AUX registers. Writes to this region combine with the data
in the TRANSFER and AUX registers, before being committed to the RAM.

Table 9-28 on page 9-24 describes the RAM-Access memory map and Table 9-29 on page 9-25
describes the TRANSFER and AUX memory map.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 9-23
Non-Confidential

Level Two Interface

Any address that is not listed in Table 9-28 or addresses that are explicitly listed as illegal returns
a SLVERR.

Any fields marked as RAZ/WI refer to the RAMs. The TRANSFER and AUX registers are not
guaranteed to be RAZ/WI.

Table 9-28 RAM-Access space

AxADDRSmM bits

Description

[22:19]

Block select:

0000 = single bank data RAM

0001 = tag RAM

0010 = dirty RAM2

0100 = double bank data RAM2

1000 = strobed double bank data RAMa.

[18:15]

Bank select.
For D-Cache data RAMs:

Single bank mode. Accesses a single RAM-word:

0001 =Bank 0 or 1

0010 =Bank 2 or 3

0100 =Bank 4 or 5

1000 = Bank 6 or 7

Bit [13] of the address determines which of the two banks is selected for each of these values.
0 = lower numbered bank

1 = higher numbered bank

Double bank mode. Accesses 2 RAM-words from contiguous banks:

0001 = Bank 0 and 1

0010 = Bank 2 and 3

0100 = Bank 4 and 5

1000 = Bank 6 and 7

Strobed double bank mode. Accesses 2 contiguous banks with byte-strobe support:
0001 =Bank 0 and 1

0010 = Bank 2 and 3

0100 = Bank 4 and 5

1000 = Bank 6 and 7

Strobes used to access the selected banks are derived directly from the WSTRB signals for the access to
the RAM-Access space.

For I_Cache data RAMs:
0001 = Bank 0
0010 =Bank 1
0100 = Bank 2
1000 = Bank 3

For tagbe and dirtyad RAMs:[15] = Bank 0[16] = Bank 1[17] = Bank 2[18] = Bank 3.
For tag-RAM reads, only one-hot encodings are supported.

For tag-RAM writes, all combinations are supported, the same data is written to all banks.

For dirty RAM accesses, all combinations are supported.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 9-24

Non-Confidential

Level Two Interface

Table 9-28 RAM-Access space (continued)

AxADDRSm bits

Description

[14]

Indicates address space accessed:
0 =RAM-Access

[13:2]

For D_Cache double-bank data RAM accesses:
[13:3] = RAM index
[2] = bank select

For D_Cache single-bank RAM accesses:
[13] = bank select
[12:2] = RAM index

For I Cache data RAM accesses:
[13:3] = RAM index
[2] = word select

For all other accesses:[13:12] = 0x0[11:3] = RAM index
[2] = word select

[1:0]

Byte select

D_Cache only.

Ao o

For tag-RAM reads, only one-hot encodings are supported.
For tag-RAM writes, all combinations are supported. The same data is written to all banks.
For dirty RAM accesses, all combinations are supported.

Table 9-29 TRANSFER/AUX space

AxADDRSm bits Description

[22:15] 0x0

[14] Indicates address space accessed:
1 = TRANSFER/AUX

[13:4] 0x0

[3] Register accessed:
0=TRANSFER
1=AUX

2] Word select

[1:0] Byte select

Only accesses to the RAM-Access space actually perform RAM accesses.

TRANSFER and AUX are intermediate registers that are used by the AXI slave logic to perform
RAM accesses.

Note
The physical integration of the RAMs limits the granularity of RAM accesses. This means that:

. A data chunk and its ECC or parity, if implemented, are always updated together.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 9-25
Non-Confidential

Level Two Interface

. It is not possible to access part of a RAM-word unless the RAM-integration guidelines for
the processor require that the RAM itself must support this feature.

This requirement exists only for the D_Cache data RAMs and dirty RAMs, that must be
implemented by byte-writable RAMs. The AXI slave bus supports the full range of
byte-write support to this RAM only.

Writes to the RAM-Access space update TRANSFER with the write data, then use this register,
and possibly AUX, to write to the selected RAM.Reads from the RAM-Access space read the
RAM contents into TRANSFER, and possibly AUX, and provide the requested portion of the
read data from TRANSFER on the AXI interface.

To perform accesses outside these restrictions, you must perform a read-modify-write sequence.

You can also access the TRANSFER and AUX registers directly using the TRANSFER/AUX
space. Such accesses do not actually perform RAM accesses. In this way RAM accesses are
decoupled from AXI transactions, and a single RAM access can be decomposed into, or
composed from, multiple AXI bus accesses. This enables, for example, a master capable only
of sub-word accesses to get full access to the RAMs.

All accesses to the TRANSFER and AUX registers are cumulative. This means that data written
to the TRANSFER and AUX registers, through direct AXI slave accesses, persists until it is
overwritten. Reads from the cache RAMs, occurring as a side effect of AXI slave accesses to
the RAM-Access space, also update these registers and overwrite any value previously written.
This enables easier read-modify-write (RMW) operation by the master.

The TRANSFER register enables you to transfer data and ECC to the tag and dirty RAMs, and
to transfer data to the data RAMs.

The AUX register is used only for transferring ECC to the data RAMs. If neither cache
implements parity or ECC, direct accesses to the AUX register return a SLVERR.

For writes, you must ensure that all the data to be written to the selected RAM is initialized,
either by prior accesses to TRANSFER/AUX, by the current access to RAM-Access or by a
combination of both.

You can perform writes by a variety of sequences involving the RAM-Access space, and
possibly also the TRANSFER/AUX space. For example, a write to a data RAM can be done by:

. Multiple writes to the TRANSFER register and AUX register, followed by a single write,
with potentially zeroed byte strobes, at the appropriate address to the RAM-Access space

. A single write to the AUX register, if ECC is present, followed by a single write at the
appropriate address to the RAM-Access space.

You can perform reads by a similarly varied number of sequences. For example, a read of a data
RAM can be done by:

. A single 64-bit read of the RAM-Access space followed by a single 64-bit read of the
AUX register

. A byte read of the RAM-Access space followed by several byte-reads to read the rest of
the RAM data from the TRANSFER and AUX registers.

The format of the data, for reads and writes, depends on the RAM accessed and the error
configuration of the RAM. These formats are described in the following tables. All writes must
ensure that the write data is on the correct lane. Reads return data on the lanes described.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 9-26
Non-Confidential

Level Two Interface

D_Cache data RAM single bank accesses
This section applies when you are performing a single bank access.

The location from which data bits are read, or to which they are written, depends on bit [0] of
the RAM index. ECC or parity bits are written to, or read from, the lower byte of the AUX
register.

Table 9-36 on page 9-29 describes the format of the AUX register for D_Cache data RAM
accesses, when ECC is configured.

Table 9-30 Data RAM AUX format, D_Cache, with ECC

Bit Description

[63:7] RAZ/WI

[6:0] ECC32[6:0]

Table 9-37 on page 9-29 describes the format of the AUX register for data RAM, D_Cache,
when parity is configured.

Table 9-31 Data RAM AUX format, D_Cache, with parity

Bit Description

[63:4] RAZ/WI

[3] parity for byte 3, data[31:24]

[2] parity for byte 2, data[23:16]

[1] parity for byte 1, data[15:8]

[0] parity for byte 0, data[7:0]

Table 9-38 on page 9-29 describes the format of the AUX register for data RAM, D_Cache,
when no error correction is configured.

Table 9-32 Data RAM AUX format, D_Cache, with no error correction

Bit Description

[63:0] RAZ/WI

RAM index[0] = 0

Writing The data bits used are the result of the lower word of TRANSFER multiplexed
with the lower word of the data sent to the RAM-Access space. The values of
WSTRB used for this AXI transaction determine which is multiplexed in:

WSTRB=0
data is taken from TRANSFER

WSTRB=1
data is taken from the data bus

Reading The data bits are written to the lower word of TRANSFER, and appear on the
lower word of the AXI data bus.

The upper word of TRANSFER is set to zero.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 9-27
ID021511 Non-Confidential

Level Two Interface

RAM index[0] = 1

Writing The data bits used are the result of the upper word of TRANSFER multiplexed
with the upper word of the data sent to the RAM-Access space. The values of
WSTRB used for this AXI transaction determine which is multiplexed in.

Reading The data bits are written to the upper word of TRANSFER, and appear on the
upper word of the AXI data bus.
I_Cache Data RAM access

Table 9-33 describes the format of the AUX register for data RAM, I-cache, when ECC is
configured.

Table 9-33 Data RAM AUX format, I-cache, with ECC

Bit Description

[63:8] RAZ/WI

[7:0] ECC64[7:0] for double word, data[63:0]

Table 9-34 describes the format of the AUX register for data RAM, I-cache, when parity is
configured.

Table 9-34 Data RAM AUX format, I-cache, with parity

Bit Description

[63:8] RAZ/WI

[7:0] Parity[7:0] for double word, data[63:0]

Table 9-35 describes the format of the AUX register for data RAM, I-cache, when no error
correction is configured.

Table 9-35 Data RAM AUX format, I-cache, with ECC

Bit Description

[63:0] RAZ/WI

D_Cache data RAM double bank accesses
This section applies when you are performing a normal, or strobed, double bank access.

Normal accesses read or write all bytes of the doubleword being transferred. Strobed accesse
read or write only those bytes specified by the corresponding bit in WSTRB. See Table 9-7 on
page 9-10

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 9-28
ID021511 Non-Confidential

Level Two Interface

Table 9-36 describes the format of the AUX register for D_Cache data RAM accesses, when
ECC is configured.

Table 9-36 Data RAM AUX format, D_Cache, with ECC

Bit Description

[63:15] RAZ/WI

[14:8] ECC32[6:0] for upper word, data[63:32]

[7] RAZ/WI

[6:0] ECC32[6:0] for lower word, data[31:0]

Table 9-37 describes the format of the AUX register for data RAM, D _Cache, when parity is
configured.

Table 9-37 Data RAM AUX format, D_Cache, with parity

Bit Description

[63:12] RAZ/WI

[11] parity for byte 3 of upper word, data[63:56]

[10] parity for byte 2 of upper word, data[55:48]

[9] parity for byte 1 of upper word, data[47:40]

[8] parity for byte 0 of upper word, data[39:32]

[7:4] RAZ/WI

[3] parity for byte 3 of lower word, data[31:24]
[2] parity for byte 2 of lower word, data[23:16]
[1] parity for byte 1 of lower word, data[15:8]
[0] parity for byte 0 of lower word, data[7:0]

Table 9-38 describes the format of the AUX register for data RAM, D _Cache, when no error
correction is configured.

Table 9-38 Data RAM AUX format, D_Cache, with ECC

Bit Description

[63:0] RAZ/WI

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 9-29
ID021511 Non-Confidential

Tag RAM access

Level Two Interface

Table 9-39 describes the format of the TRANSFER register for tag RAM, when using ECC.

Table 9-39 Tag RAM TRANSFER ECC format

Bit Description

[63:30] RAZ/WI

[29:23] ECC32 — selected way
[22] Valid - selected way
[21:0] Tag - selected way

Table 9-40 describes the format of the TRANSFER register for tag RAM, when using parity.

Table 9-40 Tag RAM TRANSFER parity format

Bit Description
[63:24] RAZ/WI

[23] Parity — selected way
[22] Valid - selected way
[21:0] Tag - selected way

Table 9-41 describes the format of the TRANSFER register for tag RAM, when no error

correction is configured.

Table 9-41 Tag RAM TRANSFER format, without error correction

Bit Description
[63:23] RAZ/WI

[22] Valid - selected way
[21:0] Tag - selected way

Dirty RAM access

Table 9-42 describes the format of the TRANSFER register for dirty RAM, when ECC is

configured.

Table 9-42 Dirty RAM TRANSFER format, with ECC

Bit Description

[63:31] RAZ/WI

[30:27] ECC32-way3

[26:25] Outer attributes — way 3
[24] Dirty — way 3

[23] RAZ/WI

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.
Non-Confidential

9-30

Level Two Interface

Table 9-42 Dirty RAM TRANSFER format, with ECC (continued)

Bit Description

[22:19] ECC32—-way?2

[18:17] Outer attributes — way 2
[16] Dirty — way 2

[15] RAZ/WI

[14:11] ECC32-way 1

[10:9] Outer attributes — way 1
[8] Dirty — way 1Dirty — way 1
[7] RAZ/WI

[6:3] ECC32 —way 0

[2:1] Outer attributes — way 0
[0] Dirty — way 0

Table 9-43 describes the format of the TRANSFER register for dirty RAM, when parity, or no

error correction, is configured.

Table 9-43 Dirty RAM TRANSFER format, without ECC

Bit Description

[63:27] RAZ/WI

[26:25] Outer attributes — way 3
[24] Dirty — way 3

[23:19] RAZ/WI

[18:17] Outer attributes — way 2
[16] Dirty — way 2

[15:11] RAZ/WI

[10:9] Outer attributes — way 1
[8] Dirty — way 1Dirty — way 1
[7:3] RAZ/WI

[2:1] Outer attributes — way 0
[0] Dirty — way 0

9.7 Peripheral interfaces

The processor has three peripheral interfaces. Accesses to the peripheral interfaces have lower
latency, typically to half the latency of accesses to the AXI master interface. The port is used for:

. Device and Strongly-ordered type data accesses, normally to peripherals

. Normal-type memory low bandwidth data accesses, for example mailboxing.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.
Non-Confidential

9-31

Level Two Interface

The three peripheral interfaces use two physical ports, a 32-bit wide AXI master port that
conforms to the AXI3 standard as described in the AMBA AXI Protocol Specification and an
optional 32-bit wide AHB-Lite master port that conforms to the AHB-Lite standard as described
in the AMBA AHB Protocol Specification.

The AXI peripheral port is sub-divided into:
. a virtual interface, referred to as LLPP Virtual AXI or the virtual-AXI peripheral interface
. a non-virtual interface, referred to as LLPP Normal AXI or the AXI peripheral interface.

The LLPP Virtual AXI is independent of the LLPP Normal AXI and the LLPP AHB peripheral
interface from an ordering point of view. Accesses to both the AXI peripheral interfaces use the
same physical AXI port but have different AXI IDs.

The AXI peripheral port has an address buffer and a data buffer, each of which has three entries.
Each entry in the address buffer holds 32 bits of address, and an entry in the data buffer holds
32 bits of data. No merging is possible between the entries of a buffer. The LLPP Normal AXI
and LLPP Virtual AXI share the address and data buffer.

The AHB peripheral port has its own address and data buffers. The address buffer has three
entries and the data buffer has four entries. Each entry holds 32 bits. No merging is possible
between the entries of a buffer.

The maximum number of outstanding write accesses that the processor posts onto the LLPP
Virtual AXI is 3 and 15 for the LLPP Normal AXI.

AHB-Lite does not have the ability to do posted and out-of-order transactions, so the AHB
peripheral port does not have a separate virtual interface.

Table 9-44 shows the AXI peripheral port attributes.

Table 9-44 AXI peripheral port attributes

Attribute Value Comments

Write issuing capability of LLPP Normal AXI 15 15 outstanding writes on (non-virtual) AXI peripheral interface

Write issuing capability of LLPP Virtual AXT 3 3 outstanding writes on virtual AXI peripheral interface

Read issuing capability 1 -

Combined issuing capability 19 Maximum number of posted writes on all AXI peripheral interfaces and a
read

Write ID capability 2 -

Write interleave capability 1 The AXI peripheral port presents all write data in order

Read ID capability 2 -

The peripheral ports can run at the same frequency as the processor or at a lower synchronous
frequency. See AMBA interface clocking on page 2-16 for more information.

In addition, the peripheral ports produce or check parity bits for each AXI or AHB channel.
These additional signals are not part of the AXI or AHB specification, though some make use
of AXI extension signals.

The following sections describe the attributes of the LLPP interfaces:

. Peripheral interface configuration on page 9-33
. Peripheral interface initialization on page 9-34
. Peripheral interface attributes and permissions on page 9-34
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 9-32

ID021511 Non-Confidential

9.71 Peripheral interface configuration

The peripheral interfaces are configured during implementation and integration.

Identifiers for AXI peripheral port accesses on page 9-34

Write response on page 9-34

Memory attributes on page 9-35

AXI peripheral port transfers on page 9-35
AHB peripheral port transfers on page 9-42

Semaphores on page 9-48.

Level Two Interface

You can configure the AHB peripheral port to be removed, and not included in the processor

design. The AXI peripheral port is always included and is not optional.

During implementation, you can configure the peripheral ports to use an error-correction

scheme to detect and correct signals transferred using the peripheral port buses, see Bus ECC
on page 9-2.

The size of each peripheral interface is configured during integration. The permissible LLPP

Normal AXI, LLPP Virtual AXI, or AHB peripheral interface sizes are:

4KB

8 KB
16 KB
32KB
64 KB
128 KB
256 KB
512 KB
1 MB
2MB

4 MB

8 MB
16 MB
32 MB
64 MB
128 MB
256 MB
512 MB
1GB
2GB

4 GB.

The LLPP Virtual AXI is either the same size as the LLPP Normal AXI or a sub-region of it.

The size of the peripheral interfaces is visible to software in the Peripheral Port Region

Registers.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.

Non-Confidential

9-33

Level Two Interface

9.7.2 Peripheral interface initialization

The LLPP Normal AXI and AHB peripheral interfaces, but not the LLPP Virtual AXI interface,
can be enabled from reset by configuring the control pins. Peripheral interface region enables
can also be programmed using the System Coprocessor Registers, see Peripheral interface
region registers on page 4-84. Ensure that peripheral interface region programming is done
when the MPU is disabled to prevent unpredictable behavior.

9.7.3 Peripheral interface attributes and permissions

Accesses to the peripheral interfaces from the LSU are checked against the MPU for access
permission. Memory access attributes are exported on this interface. Access permissions for
peripheral interface accesses are the same as the permission attributes that the MPU assigns to
the same address. Instructions cannot be fetched from any of the peripheral interfaces, and
therefore they behave as if they have the eXecute Never (XN) attribute, regardless of the MPU
XN attribute. All instruction fetches from the peripheral interfaces generate a permission fault.
See Chapter 7 Memory Protection Unit for more information about memory attributes, types,
and permissions.

Note

If a peripheral interface region overlaps with a TCM region then the TCM region gets more
priority and the overlapping memory gets the attributes of the TCM region.

The L1 memory system cannot cache any peripheral interface access even if the access is to
Normal memory with a Cacheable attribute. Load or store multiple instructions accessing the
peripheral port are not performed as long bursts, and are not interruptible-restartable, even when
they are in Normal memory. ARM recommends that you do not perform multiples to the
peripheral interface regardless of the memory type, because this might impact the interrupt
latency.

Any unaligned access to Device or Strongly Ordered memory generates an alignment fault and
therefore does not cause any peripheral interface access. This means that the access examples
given in this chapter never show unaligned accesses to Device or Strongly Ordered memory.

Also any shared exclusive double to the AXI peripheral port or any shared exclusive to the AHB
peripheral port generates an abort and therefore does not cause an access.
9.7.4 Identifiers for AXI peripheral port accesses

Accesses on the AXI peripheral port use ID values as follows:
. IDO for a read or a write access to the LLPP Normal AXI interface
. ID1 for a read or a write access to the LLPP Virtual AXI interface

9.7.5 Write response

The AXI peripheral port requires that the slave does not return a write response until it has
received both the write data and the write address.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 9-34
ID021511 Non-Confidential

Level Two Interface

Memory attributes

The AXI peripheral port uses the ARCACHEPmM and AWCACHEPM signals to indicate the
memory attributes of the transfer, as returned by the MPU. Table 9-45 shows the encoding used
for the ARCACHEPmM and AWCACHEPMm signals of the master interface. These are
generated from the memory type and outer region attributes.

Table 9-45 ARCACHEPmM and AWCACHEPmM encodings

Encoding2 Meaning

b0000 Strongly Ordered

b0001 Device

b0011 Non-cacheable

b0110 Cacheable, write-through, allocate on reads only
b0111 Cacheable, write-back, allocate on reads only
bl111 Cacheable write-back, allocate on reads and writes

a. All encodings not shown in the table are reserved.

AXI peripheral port transfers

The processor conforms to the AXI3 specification, but it does not generate all the AXI
transaction types that the specification permits. This section describes the types of AXI
transactions that the Cortex-R5 AXI peripheral port does not generate. If you are designing an
AXI slave to work only with the Cortex-R5 processor AXI peripheral port, you can take
advantage of these restrictions and the interface attributes to simplify the slave.

This section also contains tables that show some examples of the types of AXI burst that the
processor generates. However, because a particular type of transaction is not shown here does
not mean that the processor does not generate such a transaction.

Note

An AXI slave device connected to the Cortex-R5 AXI master port must be capable of handling
every kind of transaction permitted by the AXI specification, except where there is an explicit
statement in this chapter that such a transaction is not generated. You must not infer any
additional restrictions from the example tables given.

Restrictions on AXI peripheral transfers on page 9-36 describes restrictions on the type of
transfers that the Cortex-R5 AXI peripheral port generates. If a CPUm exists and is powered up,
BREADYPm and RREADYPm are always asserted. They are, however, deasserted when the
CPU enters Dormant or Shutdown mode. You must not make any assumptions about the AXI
handshaking signals, except that they conform to the AMBA AXI3 Protocol Specification.

The following sections give examples of transfers generated by the LLPP AXI interface:
. Strongly Ordered and Device transactions on page 9-36

. Normal reads on page 9-39

. Normal Writes on page 9-41.

ARM DDI 0460C

Copyright © 2010-2011 ARM. All rights reserved. 9-35
Non-Confidential

Level Two Interface

Restrictions on AXI peripheral transfers

The Cortex-R5 AXI peripheral port applies the following restrictions to the AXI transactions it

generates:

. A burst never transfers more than eight bytes

. The burst length is never more than two transfers

. No transaction ever crosses a 8-byte boundary in memory

. All bursts are incrementing (INCR) bursts

. If the transfer size is 8-bits or 16-bits then the burst length is always one transfer

. The transfer size is never greater than 32 bits

. All transactions are non-secure data accesses

. Transactions to Device and Strongly Ordered memory are always to addresses that are

aligned for the transfer size

. Exclusive and Locked accesses are always to addresses that are aligned for the transfer
size

. Write data is never interleaved

. ID values can only be 0 or 1 indicating normal AXI or virtual AXI respectively.

Strongly Ordered and Device transactions

A load or store instruction to or from Strongly Ordered or Device memory always generates
AXI transactions of the same size as implied by the instruction. All accesses using LDM, STM, LDRD,
or STRD instructions to Strongly Ordered or Device memory occur as 32-bit transfers.

LDRB

Table 9-46 shows the values of ARADDRPm, ARBURSTPm, ARSIZEPm, and ARLENPm
for LDRB from bytes 0-3 in Strongly Ordered or Device memory.

Table 9-46 LDRB transfers

Address[1:0] ARADDRPm ARBURSTPm ARSIZEPm ARLENPm

0x0 (byte 0) 0x00 Incr 8-bit 1 data transfer
0x1 (byte 1) 0x01 Incr 8-bit 1 data transfer
0x2 (byte 2) 0x02 Incr 8-bit 1 data transfer
0x3 (byte 3) 0x03 Incr 8-bit 1 data transfer
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 9-36

ID021511 Non-Confidential

Level Two Interface

LDRH

Table 9-47 shows the values of ARADDRPm, ARBURSTPm, ARSIZEPm, and ARLENPm
for LDRH from halfwords 0-1 in Strongly Ordered or Device memory.

Table 9-47 LDRH transfers

Address[1:0] ARADDRPm ARBURSTPm ARSIZEPm ARLENPm

0x0 (halfword 0) 0x00 Incr 16-bit 1 data transfer

0x2 (halfword 1) 0x02 Incr 16-bit 1 data transfer

Note

A load of a halfword from Strongly Ordered or Device memory addresses 0x1 or 0x3 generates
an alignment fault.

LDR or LDM that transfer one register

Table 9-48 shows the values of ARADDRPm, ARBURSTPm, ARSIZEPm, and ARLENPm
for an LDR or an LDM that transfers one register, an LDM1, in Strongly Ordered or Device memory.

Table 9-48 LDR or LDM transfers

Address[1:0] ARADDRPm ARBURSTPm ARSIZEPm ARLENPm

0x0 (word 0) 0x00 Incr 32-bit 1 data transfer

Note

A load of a word from Strongly Ordered or Device memory addresses 0x1, 0x2, or 0x3 generates
an alignment fault.

LDM that transfers five registers

Table 9-49 shows the values of ARADDRPm, ARBURSTPm, ARSIZEPm, and ARLENPm
for an LDM that transfers five registers, an LDM5, in Strongly Ordered or Device memory.LDM

transfers
Table 9-49 LDM transfers
Address[2:0] ARADDRPm ARBURSTPm ARSIZEPm ARLENPm
0x0 (word 0) 0x00 Incr 32-bit 2 data transfers
0x08 Incr 32-bit 2 data transfers
0x10 Incr 32-bit 1 data transfer
0x4 (word 1) 0x04 Incr 32-bit 1 data transfer
0x08 Incr 32-bit 2 data transfers
0x10 Incr 32-bit 2 data transfers
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 9-37

ID021511 Non-Confidential

Level Two Interface

Note

A load-multiple from memory addresses 0x1, 0x2, 0x3, 0x5, 0x6, or Ox7 generates an alignment
fault.

STRB

Table 9-50 shows the values of AWADDRPm, AWBURSTPm, AWSIZEPm, and
AWLENPmM for an STRB from bytes 0-3 in Strongly Ordered or Device memory.

Table 9-50 STRB transfers

Address[1:0] AWADDRPm AWBURSTPm AWSIZEPm AWLENPmM WSTRBPmM

0x0 (byte 0) 0x00 Incr 8-bit 1 data transfer ~ b0001

0x1 (byte 1) 0x01 Incr 8-bit 1 data transfer b0010

ox2 (byte 2) 0x02 Incr 8-bit 1 data transfer b0100

0x3 (byte 3) 0x03 Incr 8-bit 1 data transfer ~ b1000
STRH

Table 9-51 shows the values of AWADDRPm, AWBURSTPm, AWSIZEPm, and
AWLENPmM for an STRB from halfwords 0-1 in Strongly Ordered or Device memory.

Table 9-51 STRH transfers

Address[1:0] AWADDRPm AWBURSTPm AWSIZEPm AWLENPm WSTRBPm

0x0 (halfword 0) 0x00 Incr 16-bit 1 data transfer b0011
0x2 (halfword 1) 0x02 Incr 16-bit 1 data transfer b1100
Note

A store of a halfword from Strongly Ordered or Device memory addresses 0x1, 0x3, 0x5, or 0x7
generates an alignment fault.

STR or STM of one register

Table 9-52 shows the values of AWADDRm, AWBURSTPm, AWSIZEPm, and AWLENPm
for an STR or an STM that transfers one register, an STM1, to Strongly Ordered or Device memory.

Table 9-52 STR or STM transfers

Address[1:0] AWADDRPm AWBURSTPm AWSIZEPm AWLENPmM WSTRBPmM

0x0 (word 0) 0x00 Incr 32-bit 1 data transfer b1111

Note

A store of a word to Strongly Ordered or Device memory addresses 0x1, @x2, or 0x3 generates
an alignment fault.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 9-38
ID021511 Non-Confidential

Level Two Interface

STM of five registers

Table 9-53 shows the values of AWADDRm, AWBURSTPm, AWSIZEPm, and AWLENPm
for an STM that writes five registers, an STM5, over the AXI peripheral port to Strongly Ordered
or Device memory.

Table 9-53 STM transfers

Address[2:0] AWADDRPm AWBURSTPm AWSIZEPm AWLENPmM WSTRBPm

0x00 (word 0) 0x00 Incr 32-bit 2 data transfers b1111
blll11

0x08 Incr 32-bit 2 data transfers bl111

bll11

0x10 Incr 32-bit 1 data transfer bl111

0x04 (word 1) 0x04 Incr 32-bit 1 data transfer ~ b1111
0x08 Incr 32-bit 2 data transfers bl111

blll11

0x10 Incr 32-bit 2 data transfers bl111

bll11

Note

A store-multiple to address 0x1, 0x2, 0x3, 0x5, 0x6, or 0x7 generates an alignment fault.

Normal reads

Load instructions accessing Normal memory generate AXI peripheral port bursts that are
always of 32-bit size and not necessarily the same size or length as the instruction implies. The
tables in this section give examples of the types of AXI transaction that might result from
various load instructions, accessing various addresses in Normal memory. They are provided as
examples only, and are not an exhaustive description of the AXI transactions.

Table 9-54 shows possible values of ARADDRm, ARBURSTPm, ARSIZEPm, and
ARLENPm for an LDRH from bytes 0-7 in Normal memory.

Table 9-54 LDRH transfers

Address[1:0] ARADDRPm ARBURSTPm ARSIZEPm ARLENPm

0x0 (byte 0) 0x00 Incr 32-bit 1 data transfer
ox1 (byte 1) 0x00 Incr 32-bit 1 data transfer
0x2 (byte 2) 0x00 Incr 32-bit 1 data transfer
0x3 (byte 3) 0x00 Incr 32-bit 2 data transfers
0x4 (byte 4) 0x04 Incr 32-bit 1 data transfer
0x5 (byte 5) 0x04 Incr 32-bit 1 data transfer
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 9-39

ID021511

Non-Confidential

Level Two Interface

Table 9-54 LDRH transfers (continued)

Address[1:0] ARADDRPm ARBURSTPm ARSIZEPm ARLENPm

0x6 (byte 6) 0x04 Incr 32-bit 1 data transfer
0x7 (byte 7) 0x04 Incr 32-bit 1 data transfer
0x08 Incr 32-bit 1 data transfer

a. AXI peripheral port transactions do not cross a double word boundary.

Table 9-55 shows possible values of ARADDRm, ARBURSTPm, ARSIZEPm, and
ARLENPm for an LDR or an LDM that transfers one register, an LDM1, to Normal memory.

Table 9-55 LDR or LDM transfers

Address[1:0] ARADDRPm ARBURSTPm ARSIZEPm ARLENPm
0x0 (byte 0) (word 0) 0x00 Incr 32-bit 1 data transfer
ox1 (byte 1) 0x00 Incr 32-bit 2 data transfers
ox2 (byte 2) 0x00 Incr 32-bit 2 data transfers
0x3 (byte 3) 0x00 Incr 32-bit 2 data transfers
0x4 (byte 4) (word 1) 0x04 Incr 32-bit 1 data transfer
ox5 (byte 5) 0x04 Incr 32-bit 1 data transfer
0x08 Incr 32-bit 1 data transfer
0x6 (byte 6) 0x04 Incr 32-bit 1 data transfer
0x08 Incr 32-bit 1 data transfer
ox7 (byte 7) 0x04 Incr 32-bit 1 data transfer
0x08 Incr 32-bit 1 data transfer

Table 9-56 shows possible values of ARADDRm, ARBURSTPm, ARSIZEPm, and
ARLENPm for an LDM that transfers five registers, an LDM5, to Normal memory.

Table 9-56 LDM transfers

Address[1:0] ARADDRPm ARBURSTPm ARSIZEPm ARLENPm

0x0 (word 0) 0x00 Incr 32-bit 2 data transfers
0x08 Incr 32-bit 2 data transfers
0x10 Incr 32-bit 1 data transfer
0x4 (word 1) 0x04 Incr 32-bit 1 data transfer
0x08 Incr 32-bit 2 data transfers
0x10 Incr 32-bit 2 data transfers
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 9-40

ID021511 Non-Confidential

Level Two Interface

Normal Writes

Store instructions accessing Normal memory generate AXI peripheral port bursts that are
always of 32-bit size and not necessarily the same size or length as the instruction implies. The
AXI peripheral port asserts byte-lane strobes, WSTRBPm[3:0], to ensure that only the bytes
that were written by the instruction are updated.

The tables in this section give examples of the types of AXI transaction that might result from
various store instructions, accessing various addresses in Normal memory. They are provided
as examples only, and are not an exhaustive description of the AXI transactions.

Table 9-57 shows the values of AWADDRPm, AWBURSTPm, AWSIZEPm, and
AWLENPm for an STRH to Normal memory.

Table 9-57 STRH transfers

Address[1:0]1 AWADDRPm AWBURSTPm AWSIZEPm AWLENPmM WSTRBPmM

0x0 (byte 0) 0x00 Incr 32-bit 1 data transfer ~ b0011
ox1 (byte 1) 0x00 Incr 32-bit 1 data transfer ~ b0110
ox2 (byte 2) 0x00 Incr 32-bit 1 data transfer ~ b1100
0x3 (byte 3) 0x00 Incr 32-bit 2 data transfers b1000
b0001

0x4 (byte 4) 0x04 Incr 32-bit 1 data transfer ~ b0011
0x5 (byte 5) 0x04 Incr 32-bit 1 data transfer ~ bO110
0x6 (byte 6) 0x04 Incr 32-bit 1 data transfer ~ b1100
0x7 (byte 7) 0x04 Incr 32-bit 1 data transfer ~ b1000
0x08 Incr 32-bit 1 data transfer ~ b0001

Table 9-58 shows the values of AWADDRPm, AWBURSTPm, AWSIZEPm, and
AWLENPmM for an STR or an STM that transfers one register, an STM1, to Normal memory.

Table 9-58 STR or STM transfers

Address[1:0] AWADDRPmMm AWBURSTPm AWSIZEPm AWLENPmM WSTRBPm
0x0 (byte 0) (word 0) 0x00 Incr 32-bit 1 data transfer ~ b1111
ox1 (byte 1) 0x00 Incr 32-bit 2 data transfers b1110
b0001
ox2 (byte 2) 0x00 Incr 32-bit 2 data transfers b1100
b0011
0x3 (byte 3) 0x00 Incr 32-bit 2 data transfers b1000
b0111
0x4 (byte 4) (word 1) 0x04 Incr 32-bit 1 data transfer b1111
0x5 (byte 5) 0x04 Incr 32-bit 1 data transfer ~ b1110
0x08 Incr 32-bit 1 data transfer ~ b0001

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 9-41

ID021511 Non-Confidential

Level Two Interface

Table 9-58 STR or STM transfers (continued)

Address[1:0] AWADDRPm AWBURSTPm AWSIZEPm AWLENPmM WSTRBPm
0x6 (byte 6) 0x04 Incr 32-bit 1 data transfer ~ b1100

0x08 Incr 32-bit 1 data transfer ~ b0011
ox7 (byte 7) 0x04 Incr 32-bit 1 data transfer ~ b1000

0x08 Incr 32-bit 1 data transfer ~ b0111

9.7.8 AHB peripheral port transfers

The processor conforms to the AHB-Lite specification, but it does not generate all the AHB
transaction types that the specification permits. This section describes the types of AHB
transaction that the Cortex-R5 AHB peripheral port does not generate. If you are designing an
AHB slave to work only with the Cortex-R5 processor AHB peripheral port, you can take
advantage of these restrictions and the interface attributes described in previous sections to
simplify the slave.

This section also contains tables that show some of the types of AHB burst that the processor
generates. However, because a particular type of transaction is not shown here does not mean
that the processor does not generate such a transaction.

Note

An AHB slave device connected to the Cortex-R5 AHB master port must be capable of handling
every kind of transaction permitted by the AHB specification, except where there is an explicit
statement in this chapter that such a transaction is not generated. You must not infer any
additional restrictions from the example tables given.

Restrictions on AHB peripheral port transfers describes restrictions on the type of transfers that
the Cortex-R5 AHB peripheral port generates.

The following sections give examples of transfers generated by the AHB peripheral port:
. Strongly Ordered and Device transactions on page 9-43

. Normal reads on page 9-46

. Normal writes on page 9-47.

Restrictions on AHB peripheral port transfers

The Cortex-R5 AHB peripheral port applies the following restrictions to the AHB transactions
it generates:

. A burst never transfers more than eight bytes.
. The burst length is never more than two transfers.
. No transaction ever crosses a 8-byte boundary in memory

. All bursts are either single or 1-beat incrementing bursts, that is, HBURSTPm|[2:0] is
either SINGLE or INCR.

. The transfer type, that is, HTRANSPm|[2:0] is never BUSY.

. The transfer size is never greater than 32 bits because it is a 32-bit AHB bus.
. If the transfer size is 8 bits or 16 bits then the burst length is always one transfer.
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 9-42

ID021511

Non-Confidential

Level Two Interface

. All transactions are data accesses, that is HPROTPm[0] is always 1.

. Transactions to Device and Strongly Ordered memory are always to addresses that are
aligned for the transfer size.

. Locked accesses are always to addresses that are aligned for the transfer size.

Strongly Ordered and Device transactions

A load or store instruction, to or from Strongly Ordered or Device memory, always generates
AHB transactions of the size implied by the instruction. All accesses using LDM, STM, LDRD or STRD
instructions to Strongly Ordered or Device memory occur as 32-bit transfers.

LDRB

Table 9-59 shows the values of HADDRPm[1:0], HBURSTPm, and HSIZEPm for an LDRB
from bytes 0-3 in Strongly Ordered or Device memory.

Table 9-59 LDRB transfers

Address[1:0] HADDRPm[1:0] HBURSTPm HSIZEPm

0x0 (byte 0) 0x00 Single 8-bit
ox1 (byte 1) 0x01 Single 8-bit
ox2 (byte 2) 0x02 Single 8-bit
0x3 (byte 3) 0x03 Single 8-bit

LDRH

Table 9-60 shows the values of HADDRPm|[1:0], HBURSTPm, and HSIZEPm for an LDRH
from halfwords 0-1 in Strongly Ordered or Device memory.

Table 9-60 LDRH transfers

Address[1:0] HADDRPmM[1:0] HBURSTPm HSIZEPm

0x0 (halfword 0) 0x00 Single 16-bit

0x2 (halfword 1) 0x02 Single 16-bit

Note

A load of a halfword from Strongly Ordered or Device memory addresses 0x1 or 0x3 generates
an alignment fault.

LDR or LDM of one register

Table 9-61 shows the values of HADDRPm|[1:0], HBURSTPm, and HSIZEPm for an LDR or
an LDM that transfers one register, an LDM1, in Strongly Ordered or Device memory.

Table 9-61 LDR or LDM of one register

Address[1:0] HADDRPmM[1:0] HBURSTPm HSIZEPm

0x0 (word 0) 0x00 Single 32-bit

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 9-43
Non-Confidential

Note

Level Two Interface

A load of a word from Strongly Ordered or Device memory addresses 0x1, 0x02, 0x3, 0x5, 0x06,

or 0x7 generates an alignment fault.

LDM that transfers five registers

Table 9-62 shows the values of HADDRPm|[1:0], HBURSTPm, and HSIZEPm for an LDM that
transfers five registers, an LDM5, in Strongly Ordered or Device memory.

Table 9-62 LDM that transfers five registers

Address[1:0] HADDRPm[1:0] HBURSTPm HSIZEPm
0x0 (word 0) 0x00 Incr 32-bit
0x04
0x08 Incr 32-bit
0x0C
0x10 Single 32-bit
0x4 (word 1) 0x04 Single 32-bit
0x08 Incr 32-bit
0x0C
0x10 Incr 32-bit
0x14

Note

A load of a word from Strongly Ordered or Device memory addresses 0x1, 0x2, or 0x3 generates

an alignment fault.

STRB

Table 9-63 shows the values of HADDRPm|[1:0], HBURSTPm, and HSIZEPm for an STRB

from bytes 0-3 in Strongly Ordered or Device memory.

Table 9-63 STRB transfers

Address[1:0] HADDRPmM[1:0] HBURSTPm HSIZEPm
0x0 (byte 0) 0x00 Single 8-bit
ox1 (byte 1) 0x01 Single 8-bit
0x2 (byte 2) 0x02 Single 8-bit
0x3 (byte 3) 0x03 Single 8-bit
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 9-44

ID021511 Non-Confidential

Level Two Interface

STRH

Table 9-60 on page 9-43 shows the values of HADDRPm[1:0], HBURSTPm, and HSIZEPm
for an STRH from halfwords 0-1 in Strongly Ordered or Device memory.

Table 9-64 STRH transfers

Address[1:0] HADDRPm[1:0] HBURSTPm HSIZEPm

0x0 (halfword 0) 0x00 Single 16-bit

0x2 (halfword 1) 0x02 Single 16-bit

Note

A store of a halfword to Strongly Ordered or Device memory addresses 0x1 or 0x3 generates an
alignment fault.

STR of one register

Table 9-65 shows the values of HADDRPm[1:0], HBURSTPm, and HSIZEPm for an STR that
transfers one register, an STR1, in Strongly Ordered or Device memory.

Table 9-65 STR of one register

Address[1:0] HADDRPm[1:0] HBURSTPm HSIZEPm

0x0 (word 0) 0x00 Single 32-bit

Note

A store of a word to Strongly Ordered or Device memory addresses 0x1, 0x2, or 0x3 generates
an alignment fault.

STM of five registers

Table 9-66 shows the values of HADDRPm|[1:0], HBURSTPm, and HSIZEPm for an STM that
transfers five registers, an STM5, over the AHB master port to Strongly Ordered or Device
memory.

Table 9-66 STM of five registers

Address[1:0] HADDRPm[1:0] HBURSTPm HSIZEPm

0x0 (word 0) 0x00 Incr 32-bit
0x04
0x08 Incr 32-bit
0x0C
0x10 Single 32-bit

0x4 (word 1) 0x04 Single 32-bit
0x08 Incr 32-bit
0x0C
0x10 Incr 32-bit
0x14

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 9-45

ID021511

Non-Confidential

Level Two Interface

Note

A store of a word from Strongly Ordered or Device memory addresses 0x1, 0x2, 0x3, 0x5, 0x6, or
0x7 generates an alignment fault.

Normal reads

Load instructions accessing Normal memory generate AHB peripheral port bursts that might not
be the same size or length as the instruction implies. The tables in this section give examples of
AHB transactions that might result from various load instructions, accessing various addresses
in Normal memory. They are examples only, and are not an exhaustive description of the AHB
transactions.

LDRH

Table 9-67 shows possible values of HADDRPm[1:0], HBURSTPm, and HSIZEPm for an
LDRH from bytes 0 to 7 in Normal memory.

Table 9-67 LDRH transfers in Normal memory

Address[1:0] HADDRPm[1:0] HBURSTPm HSIZEPm

0x0 (byte 0) 0x00 Single 16-bit
0x1 (byte 1) 0x01 Single 8-bit
0x02 Single 8-bit
ox2 (byte 2) 0x02 Single 16-bit
0x3 (byte 3) 0x03 Single 8-bit
0x04 Single 8-bit
0x4 (byte 4) 0x04 Single 16-bit
0x5 (byte 5) 0x05 Single 8-bit
0x06 Single 8-bit
0x6 (byte 6) 0x06 Single 16-bit
0x7 (byte 7)2 0x07 Single 8-bit
0x08 Single 8-bit

a. AHB peripheral port transactions do not cross a double word boundary.

LDR

Table 9-68 shows possible values of HADDRPm[1:0], HBURSTPm, and HSIZEPm for an
LDR from Normal memory.

Table 9-68 LDR transfers in Normal memory

Address[1:0] HADDRPmM[1:0] HBURSTPm HSIZEPm
0x0 (byte 0, word 0) 0x00 Single 32-bit
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 9-46

ID021511

Non-Confidential

Level Two Interface

Table 9-68 LDR transfers in Normal memory (continued)

Address[1:0] HADDRPmM[1:0] HBURSTPm HSIZEPm
0x1 (byte 1) 0x01 Single 8-bit
0x02 Single 16-bit
0x04 Single 8-bit
0x2 (byte 2) 0x02 Single 16-bit
0x04 Single 16-bit
0x3 (byte 3) 0x03 Single 8-bit
0x04 Single 16-bit
0x06 Single 8-bit

Normal writes

Store instructions accessing Normal memory generate AHB peripheral port bursts that might
not be the same size or length as the instruction implies. The tables in this section give examples
of AHB transactions that might result from various store instructions, accessing various
addresses in Normal memory. They are examples only, and are not an exhaustive description of
the AHB transactions.

STRH

Table 9-69 shows possible values of HADDRPm[1:0], HBURSTPm, and HSIZEPm for an
STRH from bytes O to 3 in Normal memory.

Table 9-69 STRH transfers in Normal memory

Address[1:0] HADDRPmM[1:0] HBURSTPm HSIZEPm

0x0 (byte 0) 0x00 Single 16-bit
ox1 (byte 1) 0x01 Single 8-bit
0x02 Single 8-bit
ox2 (byte 2) 0x02 Single 16-bit
0x3 (byte 3) 0x03 Single 8-bit
0x04 Single 8-bit

STR or STM of one register

Table 9-70 shows possible values of HADDRPm[1:0], HBURSTPm, and HSIZEPm for an
STR to Normal memory.

Table 9-70 STR transfers in Normal memory

Address[1:0] HADDRPmM[1:0] HBURSTPm HSIZEPm
0x0 (byte 0, word 0) 0x00 Single 32-bit
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 9-47

ID021511

Non-Confidential

9.7.9 Semaphores

Level Two Interface

Table 9-70 STR transfers in Normal memory (continued)

Address[1:0] HADDRPmM[1:0] HBURSTPm HSIZEPm
0x1 (byte 1) 0x01 Single 8-bit
0x02 Single 16-bit
0x04 Single 8-bit
0x2 (byte 2) 0x02 Single 16-bit
0x04 Single 16-bit
0x3 (byte 3) 0x03 Single 8-bit
0x04 Single 16-bit
0x06 Single 8-bit

The peripheral interfaces use the internal exclusive monitor of the processor L1 memory system
to manage load, store and clear exclusive instructions to non-shared memory. The internal
monitor checks exclusive accesses to shared memory and also, if necessary, any external
monitor using the L2 memory interface. You can use these instructions to construct semaphores
and ensure synchronization between different processes or processors. See the ARM
Architecture Reference Manual for more information about how these instructions work.

Only exclusive instructions to shared memory result in exclusive accesses on the bus. Exclusive
accesses to non-shared memory are marked as non-exclusive accesses on the bus.

Exclusive doubles to shared memory on LLPP Normal AXI or LLPP Virtual AXI (LDREXD and
STREXD) are aborted. The AHB peripheral port cannot perform any exclusive accesses, so all
exclusive accesses to shared memory on the AHB peripheral interface are aborted. The source
of an abort because of a shared exclusive double to LLPP Normal AXI or LLPP Virtual AXI, or
a shared exclusive to the AHB peripheral interface is encoded in the Data Fault Status Register
(DFSR) as a Synchronous External AXI Slave Error.

The SWP and SWPB instructions can also be used for memory synchronization. Only swap
instructions to shared memory are marked as locked accesses on the bus.

9.8 Accelerator Coherency Port interface

The optional Accelerator Coherency Port (ACP) provides memory coherency as introduced in
Coherency on page 3-6 between each CPU in the Cortex-R5 group and an external master.

The ACP has an AXI slave interface and an AXI master interface:
. the ACP slave interface has one port with only the AW and B channels
. the ACP master interface has one port with only the AW and B channels.

Each port is 64 bits wide, and conforms to the AMBA 3 AXI standard as described in the AMBA
AXI Protocol Specification.

Within the AXI standard, the ACP slave port uses a number of extension signals to:
. indicate if coherency must be preserved

. give information about coherency maintenance operations

. carry parity information for the bus-ECC feature, if included.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 9-48
Non-Confidential

Level Two Interface

Within the AXI standard, the ACP master port uses a number of extension signals to:
. indicate if coherency must be preserved
. carry parity information for the bus-ECC feature, if included.

See Bus ECC on page 9-2 for more information on parity checking and generation in the ACP.

The ACP ports can run at the same frequency as the processor or at a lower synchronous
frequency. See Clocking on page 2-16 for more information.

The Cortex-R5 ACP memory coherency scheme only provides coherency between an external
master connected to the ACP slave port and a CPU with a data cache in the Cortex-R5 group for
memory regions configured as inner cacheable write-through in the CPU’s MPU. It does not
provide coherency for memory regions configured as cacheable write-back.

Note

In a twin-CPU configuration, the ACP maintains memory coherency between the external
master and each CPU with a data cache in the Cortex-R5 group, but not between the external
master and a CPU without a data cache, or between the two CPUs.

For AXI write transactions going through the ACP and marked as coherent, AW channel
sideband signal AWCOHERENTCS high, the ACP ensures that there is no cached copy of the
data at these addresses in the CPU’s data cache when the AXI write completes.

When an AXI write from the external master appears on the ACP slave port’s AW channel, the
ACP records some information about it and forwards the write transaction to the memory
system on the ACP master port’s AW channel.

When the memory system sends the write response on the ACP master port’s B channel, the
ACP records the response and recalls if the transaction was coherent.

If the transaction is not coherent, the ACP forwards the response to the external master on the
ACP slave port’s B channel.

If the transaction is coherent, the ACP first sends coherency maintenance operations to the
CPU’s data cache controller for the addresses spanned by the write transaction, and waits until
the cache controller has acknowledged that all necessary coherency maintenance operations
have been carried out to forward the write response to the ACP slave port’s B channel, along
with information about the maintenance operations.

Coherency maintenance operations invalidate cache lines when a CPU’s data cache holds a copy
of data at an address spanned by a coherent external write transaction. However if this cache
line is dirty, it is not invalidated and the ACP indicates along with the write response that
coherency was not maintained for this transaction.

For each CPU, information on the coherency maintenance operations includes:
. If all addresses were not cached, sideband signal BMISSCSm

. If at least one address was cached and potentially dirty in which case coherency has not
been maintained, sideband signal BHITDIRTYCSm.

If a transaction is not coherent, the ACP always indicates that all addresses were not cached and
never indicates that at least one address was cached and potentially dirty.

If a CPU’s data cache controller cannot process coherency maintenance requests, because, for
example, it is powered down, the ACP always indicates that all addresses were not cached and
indicates that at least one address was cached and potentially dirty, only if coherency was not
maintained for the write transaction.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 9-49
Non-Confidential

Level Two Interface

Note
. The ACP does not reorder transactions:

— write address transactions appear on the ACP master port AW channel in the same
order as they appeared on the ACP slave port AW channel

— responses appear on the ACP slave port B channel in the same order as they
appeared on the ACP master port B channel.

. The ACP master port requires that the slave it connects to does not return a write response
until it has received both the write data and the write address.

. You must not use the ACP at the same time as the AXI slave is accessing the cache RAMs.
If you use the AXI slave to access the cache RAMs, ensure that it is idle before initiating
ACP transactions.

The ACP slave interface attributes are described in Table 9-71.

Table 9-71 ACP slave interface attributes

Attribute Value

Write acceptance capability 4

Write interleave depth 1

The ACP master interface attributes are described in Table 9-72.

Table 9-72 ACP master interface attributes

Attribute Value

Write issuing capability 2

Write ID capability 4

Write ID width 2

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 9-50
ID021511 Non-Confidential

Chapter 10
Power Control

This chapter describes the processor power control functions. It contains the following sections:

. About power control on page 10-2
. Power management on page 10-3.
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 10-1

ID021511 Non-Confidential

Power Control

10.1 About power control
The features of the processor that improve energy efficiency include:

. branch and return prediction, reducing the number of incorrect instruction fetch and
decode operations

. the caches use sequential access information to reduce the number of accesses to the tag
RAMs and to unwanted data RAMs.

In the processor, extensive use is also made of gated clocks and gates to disable inputs to unused
functional blocks. Only the logic actively in use to perform a calculation consumes any dynamic
power.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 10-2
ID021511 Non-Confidential

Power Control

10.2 Power management

Each CPU in the Cortex-R5 processor supports four different power modes from Run to
Shutdown, with decreasing levels of power consumption, but increasing entry and exit costs.
The modes are summarized in the following table.

Table 10-1 Power management modes

CPUclock CPUlogic CPURAMs

Mode Exit to Run mode requires
gated powered powered
Run No Yes Yes -
Standby When idle Yes Yes Pipeline restart
Dormant Yes No Yes Pipeline restart
Restore registers and configuration from memory
Shutdown Yes No No Pipeline restart

Restore registers and configuration from memory

Invalidate caches and reinitialize caches and TCMs

10.2.1 Run mode

10.2.2 Standby mode

If the processor is implemented with twin CPUs, then each CPU can be in a mode independent
of the other, provided CPU1 is never in a higher power mode than CPUO when CPUO is in
Dormant or Shutdown mode. Regardless of the state of the CPUs, the logic for the ACP
interfaces and the debug-APB interfaces remain powered up.

A CPU can only enter Dormant or Shutdown modes if it is implemented with the appropriate
power gating circuitry and clamp logic, and is integrated into a system with a power controller.

This section describes:

. Run mode

. Standby mode

. Dormant mode on page 10-4

. Shutdown mode on page 10-4

. Power Management Controller on page 10-5

. Power mode interaction with ACP on page 10-5

. Power mode interaction with debug on page 10-5.

Run mode is the normal mode of operation where all of the functionality of the CPU is available.

Standby mode allows most of the clocks of the device to be disabled, while keeping the design
powered up. This reduces the power drawn to the static leakage current, plus a tiny clock power
overhead required to enable the device to wake up from the Standby mode.

Entry into Standby mode is performed by executing the Wait For Interrupt (WFI) instruction or
Wait For Event (WFE) instruction. To ensure that the entry into the Standby mode does not affect
the memory system on a Cortex-R5 CPU, the WFI and WFE instructions automatically performs a
Data Synchronization Barrier operation. This ensures that all explicit memory accesses occur
before the WFI or WFE has completed. When this has happened, the CPU stops fetching
instructions and asserts nWFIPIPESTOPPEDm or nWFEPIPESTOPPEDm as appropriate,
to indicate that it is in Standby mode.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 10-3
Non-Confidential

10.2.3 Dormant mode

Power Control

When the CPU is in Standby mode and it has no outstanding AXI-slave or debug-APB
transactions or ACP invalidate requests, then it stops the clock to the majority of its logic. When
the CPU clocks are stopped the nCLKSTOPPEDm signal is asserted. If the
DBGNOCLKSTOP input is asserted, the CPU does not stop its clocks or assert
nCLKSTOPPEDm when in Standby mode.

When the processor is in Standby mode and the AXI slave interface or debug-APB interface
receives a transaction or an ACP invalidate request is generated, the processor clocks are
temporarily restarted and nCLKSTOPPEDm is deasserted to enable it to service the
transaction, but it does not return to Run mode.

The CPU exits Standby mode and returns to Run mode in response to a variety of events,
depending on whether Standby mode was entered using WFI or WFE.

For WFI, the transition from Standby mode to Run mode is caused by:
. the arrival of an interrupt, whether masked or unmasked

. a debug request, whether debug is enabled or disabled

. a reset.

For WFE, the transition from Standby mode to Run mode is caused by:
. the arrival of an unmasked interrupt

. a debug request, whether debug is enabled or disabled

. an event signalled on the EVENTIm input

. a reset.

The debug request can be generated by an externally generated debug request, using the
EDBGRQm pin on the processor, or from a Debug Halt instruction issued to the processor
through the debug Advanced Peripheral Bus (APB).

Systems using the VIC interface must ensure that the VIC is not masking any interrupts that are
required for restarting the processor when in standby mode.

In Dormant mode, only the CPU logic, but not the CPU TCM and cache RAMs, is powered
down, so that the only power consumption is the static leakage current of the RAM:s.

Before entering Dormant mode, you must save the CPU state, except for the cache and TCM
state, in memory. When power is restored to the CPU logic, the CPU is returned to Run mode
by asserting and deasserting nRESETm. You must restore the CPU state as part of the boot
process. Because the cache and TCM are not powered down in Dormant mode, you do not have
to invalidate or initiate them during boot, and the task can access data in the cache without
requiring a cache refill. In Dormant mode, the CPU state, apart from the cache and TCM state,
is stored to memory before entry into this mode, and restored after exit. For more information
on how to implement and use Dormant mode in your design, contact ARM.

10.2.4 Shutdown mode

In Shutdown mode, the entire CPU is powered down, so that it consumes no power. Before
entering Shutdown mode, you must save all the processor state, including any required cache
and TCM state in the level-2 memory. This typically includes cleaning the whole data cache.
When it is powered up, the CPU is returned to Run mode by asserting and deasserting
nRESETm. As part of the boot process, you must:

. restore the CPU state if required

. invalidate the caches

. initialize the TCMs as part of the boot process.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 10-4
Non-Confidential

Power Control

10.2.5 Power Management Controller

You can only put the CPU into Dormant mode or Shutdown mode if it is integrated into a system
with a memory-mapped Power Management Controller (PMXEVCNTR). The PMXEVCNTR
must respond to software running on the CPU to power down the appropriate logic at the right
time. The PMXEVCNTR must also respond to stimulus from the system, to power up the CPU
logic and return it to Run mode.

Both Standby mode and Dormant mode are entered through Standby mode. You must program
the PMXEVCNTR to indicate which mode you want to enter, then perform the appropriate
state-saving operations. After this is done, execute WFI or WFE to enter Standby mode.

When the CPU is in Standby mode, nWFIPIPESTOPPEDm or nWFEPIPESTOPPEDm is
asserted to indicate that the CPU pipeline has quiesced. The PMXEVCNTR must also ensure
that the system provides no stimulus to the CPU so that the whole CPU is quiesced. For
example, no new transactions to the Cortex-R5 AXI-slave interface can be started, and all
outstanding transactions must be completed. Only when the CPU is completely quiesced can the
PMXEVCNTR remove power from the logic. If the system provides stimulus, for example an
interrupt to the CPU, after it has entered Standby mode, the CPU might have started to exit
Standby mode when the power is removed, that can lead to corruption of the system.

10.2.6 Power mode interaction with ACP

When a CPU is in Standby mode, and a transaction that requires coherency is received by the
ACEP, the clock for the CPU is restarted, if required, so that coherency maintenance operations
can be handled as normal. When the ACP is idle again the clock is gated off again, if
appropriate,

When a CPU is in Dormant mode, then its cache contents are live, but it cannot respond to
coherency maintenance operations that the ACP generates. For this CPU, for ACP transactions
requiring coherency, the coherency maintenance operations information signals indicate that all
addresses were not cached, that is, BMISSCS[m] is asserted, and indicate that at least one
address was cached and potentially dirty, BHITDIRTYCS[m]. Because this is usually
considered erroneous, ARM recommends that the system is built so that transactions requiring
coherency cannot be received by the processor, when one or both of the CPUs are in Dormant
mode.

When a CPU is in Shutdown mode, its cache contents are lost and therefore there are no
coherency issues with that cache. For this CPU, the coherency maintenance operations
information signals indicate that all addresses were not cached, that is, BMISSCS[m] is
asserted, and do not indicate that at least one address was cached and potentially dirty, that is,
BHITDIRTYCS[m] is not asserted.

See Accelerator Coherency Port interface on page 9-48 for more information about the ACP.

10.2.7 Power mode interaction with debug

When one of the Cortex-R5 CPUs is in Standby mode and a debug-APB access to one of the
core registers is received, the clocks for the CPU are restarted, if required, so that the transaction
can be serviced as normal. When the transaction is complete, the clock is, gated off again if
appropriate.

When a CPU is in Shutdown mode or Dormant mode, the core debug registers, for example.
DBGDSCR, are unavailable and an error response is signalled for transactions to these registers.
The debug-APB interface and the debug domain registers, for example DIDR, remain available
as normal. The power-down status is indicated by the DBGPRSR. See Device Power-down and
Reset Status Register on page 12-32.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 10-5
Non-Confidential

Chapter 11

FPU Programmers Model

This chapter describes the programmers model of the Floating Point Unit (FPU). It contains the
following sections:

About the FPU programmers model on page 11-2
General-purpose registers on page 11-4

System registers on page 11-5

Modes of operation on page 11-12

Compliance with the IEEE 754 standard on page 11-13.

The Cortex-R5F processor is a Cortex-RS5 processor that includes the optional FPU. In this chapter,
the generic term processor means only the Cortex-R5F processor.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 11-1
Non-Confidential

FPU Programmers Model

1.1 About the FPU programmers model

The FPU implements the VFPv3-D16 architecture and the Common VFP Sub-Architecture v2.
This includes the instruction set of the VFPv3 architecture. See the ARM Architecture Reference
Manual for information on the VFPv3 instruction set.

11.1.1 FPU functionality

The FPU is an implementation of the ARM Vector Floating Point v3 architecture, with 16
double-precision registers (VFPv3-D16). It provides floating-point computation functionality
that is compliant with the ANSI/IEEFE Std 754-1985, IEEE Standard for Binary Floating-Point
Arithmetic, referred to as the IEEE 754 standard. The FPU supports all data-processing
instructions and data types in the VFPv3 architecture as described in the ARM Architecture
Reference Manual.

The FPU fully supports single-precision and double-precision add, subtract, multiply, divide,
multiply and accumulate, and square root operations. It also provides conversions between
fixed-point and floating-point data formats, and floating-point constant instructions. The FPU
does not support any data processing operations on vectors in hardware. Any data processing
instruction that operates on a vector generates an Undefined Instruction exception. The
operation can then be emulated in software if necessary.

Optionally, you can configure the FPU to support single-precision only.

Cortex-R5F does not implement either the half-precision conversion or fused-MAC extensions
to the VFPv3 architecture.

11.1.2 About the VFPv3-D16 architecture

The VFPv3-D16 architecture only includes 16 double-precision registers. VFPv3 includes 32
double-precision registers by default. An instruction that attempts to access any of the registers
D16-D31 generates an Undefined Instruction exception.

11.1.3 VFP instructions in a single-precision configuration

Table 11-1 lists the VFP instructions that are Undefined in a single-precision only configuration.
These instructions are <opcode>.<cond>.F64 where opcode is listed in the table:

Table 11-1 Instructions undefined in a single-precision only configuration

Instruction Operation Opcodes

Vector Multiply Accumulate or Subtract VMLA, VMLS

Vector Negate Multiply Accumulate or Subtract ~ VNMLA, VNMLS, VNMUL

Vector Multiply VMUL
Vector Add VADD
Vector Subtract VSuB
Vector Divide VDIV
Vector Move VMOV (immediate), VMOV (register)
Vector Absolute VABS
Vector Negate VNEG
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 11-2

ID021511

Non-Confidential

FPU Programmers Model

Table 11-1 Instructions undefined in a single-precision only configuration (continued)

Instruction Operation Opcodes
Vector Square Root VSQRT
Vector Compare VCMP, VCMPE

Vector Convert

VCVT, VCVTR (all supported variants)

Note

The single-precision variants of these instructions (<opcode>.<cond>.F32) execute as normal.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.
Non-Confidential

11-3

FPU Programmers Model

11.2 General-purpose registers

The FPU implements a VFP register bank. This bank is distinct from the ARM register bank.

You can reference the VFP register bank using two explicitly aliased views. Figure 11-1 shows
the two views of the register bank and the way the word and doubleword registers overlap.

11.2.1 FPU views of the register bank

In the FPU, you can view the register bank as:
. Sixteen 64-bit doubleword registers, D0-D15.
. Thirty-two 32-bit single-word registers, S0-531.

. A combination of registers from these views.

SO
ST — DO —
S2

- D1 —
S3
S4
S5
S6

- D3 -
S7 3
S28
529 —D14—
S30
S31 —D15—

Figure 11-1 FPU register bank

The mapping between the registers is as follows:
. S<2n> maps to the least significant half of D<n>
. S<2n+1> maps to the most significant half of D<n>.

For example, you can access the least significant half of the value in D6 by accessing S12, and

the most significant half of the elements by accessing S13.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved.
ID021511 Non-Confidential

11-4

11.3 System registers

FPU Programmers Model

The VFPv3 architecture describes the following system registers:

. Floating-Point System ID Register on page 11-6

. Floating-Point Status and Control Register on page 11-7
. Floating-Point Exception Register, FPEXC on page 11-8
. Media and VFP Feature Registers, MVFR0 and MVFRI on page 11-9.

Table 11-2 shows the VFP system registers in the Cortex-R5F FPU.

Table 11-2 VFP system registers

Register VMRS/VMSR <reg> field Access type Reset state
Floating-Point System ID Register, FPSID b0000 Read-only 0x4102315x2
Floating-Point Status and Control Register, FPSCR 0001 Read/write 0x00000000
Floating-Point Exception Register, FPEXC b1000 Read/write 0x00000000
VFP Feature Register 0, MVFRO bO111 Read-only 0x10110221
VFP Feature Register 1, MVFR1 b0110 Read-only 0x00000011

a. Bits [3:0] of the FPSID depend on the product revision. See the FPSID register description for more information.

Note

The FPSID, MVFRO, and MVFR1 Registers are read-only. Attempts to write these registers are

ignored.

Table 11-3 shows that a Privileged mode is sometimes required to access a VFP system register.
When a Privileged mode is required, an instruction that attempts to access a register in a
nonprivileged mode takes the Undefined Instruction exception.

Table 11-3 Accessing VFP system registers

Privileged access

User access

Register FPEXC EN=0 FPEXC EN=1 FPEXC EN=0 FPEXC EN=1
FPSID Permitted Permitted Not permitted Not permitted
FPSCR Not permitted Permitted Not permitted Permitted
MVFRO, MVFR1 Permitted Permitted Not permitted Not permitted
FPEXC Permitted Permitted Not permitted Not permitted

For a VFP system register to be accessible, it must follow the rules in Table 11-3 and the VFP
must also be accessible according to the CPACR. See ¢/, Coprocessor Access Control Register

on page 4-47 for more information.

ARM DDI 0460C

ID021511 Non-Confidential

Copyright © 2010-2011 ARM. All rights reserved.

11-5

FPU Programmers Model

Note

All hardware ID information is privileged access only:

FPSID is privileged access only

This is a change in VFPv3 compared to VFPv2.

MYVFR registers are privileged access only

User code must issue a system call to determine the features that are supported.

The following sections describe the VFP system registers:

11.3.1 Floating-Point Syste

Floating-Point System ID Register

Floating-Point Status and Control Register on page 11-7
Floating-Point Exception Register, FPEXC on page 11-8

Media and VFP Feature Registers, MVFRO and MVFRI on page 11-9.

m ID Register

The FPSID Register characteristics are:

Purpose Indicates which VFP implementation is being used.

Usage constraints The FPSID Register:

. is a read-only register

. must be accessed in Privileged mode only.
Configurations Use this register if the device is configured as a Cortex-R5F processor.
Attributes See Table 11-4.

Figure 11-2 shows the bit assignments.

31 24 23 22 1615 8 7 4 3 0
Implementer Sub architecture Part number Variant Revision
hw —
Figure 11-2 FPSID Register bit assignments
Table 11-4 shows the bit assignments.
Table 11-4 FPSID Register bit assignments
Bits Name Function
[31:24] Implementer ARM Limited:
0x41=A

[23] Hardware or software 0 = hardware implementation

[22:16] Subarchitecture version

VEFP architecture v3 or later with Common VFP subarchitecture v22:
0x02

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 11-6
Non-Confidential

FPU Programmers Model

Table 11-4 FPSID Register bit assignments (continued)

Bits Name

Function

[15:8] Part number

0x31 = Cortex-R5F processor

[7:4] Variant

0x5 = Cortex-RS5F processor

[3:0] Revision

When the build-configuration includes the floating point unit, this register identifies the revision

number of the floating-point unit:
0x0 = r0p0
0x1 =rlp0
0x2 =rlpl

a. For more information about the Common VFP subarchitecture see the ARM Architecture Reference Manual.

11.3.2 Floating-Point Status and Control Register

The FPSCR Register characteristics are:

Purpose Provides all necessary User level control of the floating-point system.

Usage constraints All bits described as DNM in Figure 11-3 are reserved for future
expansion. These bits must be initialized to zeros. To ensure that these bits
are not modified, any code other than initialization code must use
read-modify-write techniques when writing to FPSCR. Failure to observe
this rule can cause Unpredictable results in future systems.

Configurations Use this register if the device is configured as a Cortex-RS5F processor.

Attributes See Table 11-5.

Figure 11-3 shows the bit assignments.

3130292827262524232221201918 161514131211 109 8 7 6 56 4 3 2 1 0

N|Z|C|V LEN DNM DNM
QC j IDE | IXC ﬂ
AHP IXE UFC
DN UFE OFC
Fz OFE DzC
RMODE DZE loC
STRIDE IOE
DNM DC

Table 11-5 shows the bit assignments.

Figure 11-3 FPSCR Register bit assignments

Table 11-5 FPSCR Register bit assignments

Bits Name Function

[31] N Set if comparison produces a less than result, resets to zero

[30] Z Set if comparison produces an equal result, resets to zero

[29] C Set if comparison produces an equal, greater than, or unordered result, resets to zero
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 11-7

ID021511

Non-Confidential

FPU Programmers Model

Table 11-5 FPSCR Register bit assignments (continued)

Bits Name Function

[28] v Set if comparison produces an unordered result, resets to zero

[27] QC Do Not Modify (DNM)/Read As Zero (RAZ)

[26] AHP DNM/RAZ

[25] DN Default NaN mode enable bit:
0 = default NaN mode disabled, this is the reset value
1 = default NaN mode enabled.

[24] FZ Flush-to-zero mode enable bit:
0 = flush-to-zero mode disabled, this is the reset value
1 = flush-to-zero mode enabled.

[23:22] RMODE Rounding mode control field:
b00 = round to nearest (RN) mode, this is the reset value
b01 = round towards plus infinity (RP) mode
b10 = round towards minus infinity (RM) mode
b1l = round towards zero (RZ) mode.

[21:20] STRIDE Indicates the vector stride, reset value is 0x0

[19] - DNM

[18:16] LEN Indicates the vector length, reset value is 0x0

[15] IDE RAZ

[14:13] - DNM

[12] IXE RAZ

[11] UFE RAZ

[10] OFE RAZ

[9] DZE RAZ

[8] IOE RAZ

[7] IDC Input Subnormal cumulative flag, resets to zero

[6:5] - DNM

[4] IXC Inexact cumulative flag, resets to zero

[3] UFC Underflow cumulative flag, resets to zero

[2] OFC Overflow cumulative flag, resets to zero

[1] DzC Division by Zero cumulative flag, resets to zero

[0] 10C Invalid Operation cumulative flag, resets to zero

11.3.3 Floating-Point Exception Register, FPEXC

The FPEXC Register characteristics are:

Purpose

Provides global enable and disable control of the VFP extension, and
indicate how the state of this extension is recorded.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 11-8

Non-Confidential

FPU Programmers Model

Usage constraints * The FPEXC Register is accessible in Privileged modes only.

. Clearing EN disables VFP functionality, causing all VFP
instructions apart from privileged system register accesses to
generate an Undefined Instruction exception.

Configurations Use this register if the device is configured as a Cortex-R5F processor.
Attributes See Table 11-6.

Figure 11-4 shows the bit assignments.

3130 29 28 0

[

Reserved

Reserved

Figure 11-4 FPEXC Register bit assignments
Table 11-6 shows the bit assignments.

Table 11-6 FPEXC Register bit assignments

Bits

Name

Function

RAZ.

EN

VFP enable bit. Setting EN enables VFP functionality. Reset clears EN.

DEX

Set when an Undefined Instruction exception is taken because of a vector instruction that would have been
executed if the processor supported vectors. This field is cleared when an Undefined Instruction exception is
taken for any other reason. Resets to zero.

In single-precision only configurations, this bit is not set for any double-precision operations, whether they are
vector operations or not.

[28:0]

RAZ.

11.3.4 Media and VFP Feature Registers, MVFR0 and MVFR1

The MVFRO and MVFR1 Register characteristics are:

Purpose Describes the features supported by the FPU.
Usage constraints The MVFRO and MVFRI1 Registers:
. are read-only registers
. are accessible in Privileged modes only.
. ARM recommends that any software attempting to determine the

presence or absence of double-precision floating point hardware
support uses the MVFRI1 register.

Configurations Use this register if the device is configured as a Cortex-R5F processor.
Attributes See Table 11-7 on page 11-10 and Table 11-8 on page 11-10.

Figure 11-5 on page 11-10 shows the MVFRO Register bit assignments.

ARM DDI 0460C

ID021511

Copyright © 2010-2011 ARM. All rights reserved. 11-9
Non-Confidential

FPU Programmers Model

31 28 27 2423 2019 16 15 121 8 7 4 3 0

RM SV SR D TE DP SP RB

Figure 11-5 MVFRO Register bit assignments

Table 11-7 shows the MVFRO Register bit assignments.

Table 11-7 MVFRO Register bit assignments

Bits ::am Function

[31:28] RM Rounding modes supported:
0x1 = all VFP rounding modes supported.

[27:24] SV VFP short vector hardware support:
0x0@ = not supported.

[23:20] SR VFP hardware square root:
0x1 = supported.

[19:16] D VFP hardware divide:
0x1 = supported.

[15:12] TE VFP exception trapping:
0x0 = only untrapped exception handling can be selected.

[11:8] DP Hardware support for VFP double-precision:
0x0 = no double-precision support present in hardware
0x2 = VFPv3 double-precision HW support present.

[7:4] SP Hardware single-precision support:
0x2 = VFPv3 supported.

[3:0] RB VFP register bank 16x64-bit register bank support:
0x1 = supported

Figure 11-6 shows the MVFRI1 Register bit assignments.

31 28 27 24 23 2019 16 15 121 8 7 4 3 0

VFP
Reserved | VFPHPFP| 1 'q)vio SP | LS DN Fz

Figure 11-6 MVFR1 Register bit assignments
Table 11-8 shows the MVFR1 Register bit assignments.

Table 11-8 MVFR1 Register bit assignments

Bits Name Function
[31:28] - Reserved
[27:24] VFP HPFP VFP half-precision conversions:

0x0 = no support.

[23:20] VFP A_SIMD Advanced SIMD half-precision conversions:
0x@ = no support.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 11-10
ID021511 Non-Confidential

FPU Programmers Model

Table 11-8 MVFR1 Register bit assignments (continued)

Bits Name Function
[19:16] SP Single-precision floating-point operation support for Advanced SIMD:
0x0 = no support.
[15:12] 1 Integer operation support for Advanced SIMD:
0x@ = no support.
[11:8] LS Load and store instruction support for Advanced SIMD:
0x0 = no support.
[7:4] DN Indicates whether the VFP hardware supports only Default NaN mode:
0x1 = hardware supports propagation of NaN values in addition to Default NaN mode.
[3:0] FZ Indicates whether the VFP hardware supports only Flush-to-Zero mode:

0x1 = hardware supports full denormal arithmetic in addition to Flush-to-Zero mode.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 11-11

Non-Confidential

FPU Programmers Model

11.4 Modes of operation

The FPU provides three modes of operation to accommodate a variety of applications:
. Full-compliance mode

. Flush-to-zero mode

. Default NaN mode.

11.4.1 Full-compliance mode

In full-compliance mode, the FPU processes all operations according to the IEEE 754 standard
in hardware.

11.4.2 Flush-to-zero mode

Setting the FZ bit, FPSCR[24], enables flush-to-zero mode. In this mode, the FPU treats all
subnormal input operands of arithmetic CDP operations as zeros in the operation. Exceptions that
result from a zero operand are signaled appropriately. VABS, VNEG, and VMOV are not considered
arithmetic CDP operations and are not affected by flush-to-zero mode. A result that is tiny, as
described in the IEEE 754 standard, for the destination-precision is smaller in magnitude than
the minimum normal value before rounding and is replaced with a zero. The IDC flag,
FPSCR[7], indicates when an input flush occurs. The UFC flag, FPSCR[3], indicates when a
result flush occurs.

11.4.3 Default NaN mode

Setting the DN bit, FPSCR[25], enables default NaN mode. In this mode, the result of any
operation that involves an input NaN, or that generated a NaN result, returns the default NaN.
Propagation of the fraction bits is maintained only by VABS, VNEG, and VMOV operations. All other
CDP operations ignore any information in the fraction bits of an input NaN.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 11-12
ID021511 Non-Confidential

FPU Programmers Model

11.5 Compliance with the IEEE 754 standard

When Default NaN (DN) and Flush-to-Zero (FZ) modes are disabled, the VFP functionality is
compliant with the IEEE 754 standard in hardware. No support code is required to achieve this
compliance.

See the ARM Architecture Reference Manual for information about VFP architecture
compliance with the IEEE 754 standard.

11.5.1 Complete implementation of the IEEE 754 standard

The following operations from the IEEE 754 standard are not supplied by the VFP instruction
set:

. remainder

. round floating-point number to integer-valued floating-point number
. binary-to-decimal conversions

. decimal-to-binary conversions

. direct comparison of single-precision and double-precision values.

For complete implementation of the IEEE 754 standard, VFP functionality must be augmented
with library functions that implement these operations. See Application Note 98, VFP Support
Code for information on the available library functions.

11.5.2 IEEE 754 standard implementation choices

Some of the implementation choices permitted by the IEEE 754 standard and used in the VFPv3
architecture are described in the ARM Architecture Reference Manual.

NaN handling

All single-precision and double-precision values with the maximum exponent field value and a
nonzero fraction field are valid NaNs. A most significant fraction bit of zero indicates a
Signaling NaN (SNaN). A one indicates a Quiet NaN (QNaN). Two NaN values are treated as
different NaNs if they differ in any bit. Table 11-9 shows the default NaN values in both
single-precision and double-precision.

Table 11-9 Default NaN values

Single-precision Double-precision
Sign 0 0
Exponent 0xFF Ox7FF

Fraction bit [22] = 1, bits [21:0] are all zeros bit [S1]= 1, bits [50:0] are all zeros

Processing of input NaNs for ARM floating-point functionality and libraries is defined as
follows:

. In full-compliance mode, NaNs are handled as described in the ARM Architecture
Reference Manual. The hardware processes the NaNs directly for arithmetic CDP
instructions. For data transfer operations, NaNs are transferred without raising the Invalid
Operation exception. For the non-arithmetic CDP instructions, VABS, VNEG, and VMOV, NaNs
are copied, with a change of sign if specified in the instructions, without causing the
Invalid Operation exception.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 11-13
Non-Confidential

FPU Programmers Model

. In default NaN mode, arithmetic CDP instructions involving NaN operands return the
default NaN regardless of the fractions of any NaN operands. SNaNs in an arithmetic CDP
operation set the [OC flag, FPSCR[0]. NaN handling by data transfer and non-arithmetic
(DP instructions is the same as in full-compliance mode.

Table 11-10 summarizes the effects of NaN operands on instruction execution.

Table 11-10 QNaN and SNaN handling

Instruction Default With QNaN operand With SNaN operand
type NaN mode
Off The QNaN or one of the QNaN operands, if there ~ I0C# set. The SNaN is quieted and the result
is more than one, is returned according to the rules ~ NaN is determined by the rules given in the
Arithmetic CDP given in the ARM Architecture Reference Manual. ~ ARM Architecture Reference Manual.
On Default NaN returns. 10Ca set. Default NaN returns.
. . Off
Non-arithmetic NaN passes to destination with sign changed as appropriate.
CDpP On
VFCMP - Unordered compare. IOC set. Unordered compare.
VFCMPE - I0C set. Unordered compare. IOC set. Unordered compare.
Off
Load/store All NaNs transferred.
On

a. IOC is the Invalid Operation exception flag, FPSCR[0].

11.5.3 Exceptions

Comparisons

Comparison results modify the flags in the FPSCR Register. You can use the VMRS APSR_nzcv,
FPSCR instruction (formerly FMSTAT) to transfer the current flags from the FPSCR Register to the
CPSR Register. See the ARM Architecture Reference Manual for mapping of IEEE 754 standard
predicates to ARM conditions. The flags used are chosen so that subsequent conditional
execution of ARM instructions can test the predicates defined in the IEEE 754 standard.

Underflow

The Cortex-R5F FPU uses the before rounding form of tininess and the inexact result form of
loss of accuracy as described in the IEEE 754 standard to generate Underflow exceptions.

In flush-to-zero mode, results that are tiny before rounding, as described in the IEEE 754
standard, are flushed to a zero, and the UFC flag, FPSCR][3], is set. See the ARM Architecture
Reference Manual for information on flush-to-zero mode.

When the FPU is not in flush-to-zero mode, operations are performed on subnormal operands.
If the operation does not produce a tiny result, it returns the computed result, and the UFC flag,
FPSCR]3], is not set. The IXC flag, FPSCR[4], is set if the operation is inexact. If the operation
produces a tiny result, the result is a subnormal or zero value, and the UFC flag, FPSCR[3], is
set if the result was also inexact.

The FPU implements the VFPv3 architecture and sets the cumulative exception status flag in
the FPSCR register as required for each instruction. The FPU does not support user-mode traps.
The exception enable bits in the FPSCR read-as-zero, and cannot be written. The processor also

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 11-14
Non-Confidential

FPU Programmers Model

has six output pins, FPIXCm, FPUFCm, FPOFCm, FPDZCm, FPIDCm, and FPIOCm, that
each reflect the status of one of the cumulative exception flags. See FPU signals on page A-32
for a description of these outputs. You can mask each of these outputs masked by setting the
corresponding bit in the Secondary Auxiliary Control Register.

See cl, Auxiliary Control Register on page 4-41 for more information.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 11-15
Non-Confidential

Chapter 12
Debug

This chapter describes the processor debug unit. These features assist the development of
application software, operating systems, and hardware. This chapter contains the following

sections:

Debug systems on page 12-2

About the debug unit on page 12-3

Debug register interface on page 12-5
Debug register descriptions on page 12-10
Management registers on page 12-33
Debug events on page 12-40

Debug exception on page 12-42

Debug state on page 12-45

Cache debug on page 12-50

External debug interface on page 12-51
Using the debug functionality on page 12-54
Debugging systems with energy management capabilities on page 12-70.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.
Non-Confidential

12-1

Debug

121 Debug systems

The Cortex-RS5 processor is one component of a debug system. Figure 12-1 shows a typical
system.

Debug

host Host computer running RealView Debugger

\\

Protocol

For example, RealView ICE
converter

,\\

Debug Development system containing
target Heron processor

Figure 12-1 Typical debug system

This typical system has three parts, described in the following sections:
. Debug host

. Protocol converter

. Debug target.

12.1.1 Debug host

The debug host is a computer, for example a personal computer, running a software debugger
such as RealView™ Debugger. The debug host enables you to issue high-level commands such
as setting breakpoint at a certain location, or examining the contents of a memory address.

12.1.2 Protocol converter

The debug host connects to the processor development system using an interface such as
Ethernet. The messages broadcast over this connection must be converted to the interface
signals of the debug target. A protocol converter performs this function, for example, Real View
ICE.

12.1.3 Debug target

The debug target is the lowest level of the system. An example of a debug target is a
development system with a Cortex-R5 test chip or a silicon part with a Cortex-R5 processor.

The debug target must implement some system support for the protocol converter to access the
processor debug unit using the Advanced Peripheral Bus (APB) slave port.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 12-2
ID021511 Non-Confidential

Debug

12.2 About the debug unit

The processor debug unit assists in debugging software running on the processor. You can use
the processor debug unit, in combination with a software debugger program, to debug:

. application software
. operating systems
. ARM processor-based hardware systems.

The debug unit enables you to:

. stop program execution

. examine and alter processor state

. examine and alter memory and peripheral state
. restart the processor.

You can debug software running on the processor in the following ways:
. Halting debug-mode debugging

. Monitor debug-mode debugging

. Trace debugging, see ETM interface on page 2-11.

The processor debug unit conforms to the ARMv7 debug architecture. For more information see
the ARM Architecture Reference Manual.

12.2.1 Halting debug-mode debugging

When the processor debug unit is in Halting debug-mode, the processor halts program execution
when a debug event, such as a breakpoint, occurs. When the processor is halted, an external
debugger can examine and modify the processor state using the APB slave port. This debug
mode is invasive to program execution.

12.2.2 Monitor debug-mode debugging

When the processor debug unit is in Monitor debug-mode, the processor takes a debug
exception instead of halting. A special piece of software, a monitor target, can then take control
to examine or alter the processor state. Monitor debug-mode is essential in real-time systems
where the processor cannot be halted to collect information. Examples of these systems are
engine controllers and servo mechanisms in hard drive controllers that cannot stop the code
without physically damaging the components.

When debugging in Monitor debug-mode, the processor stops execution of the current program
and starts execution of a monitor target. The state of the processor is preserved in the same
manner as all ARM exceptions. The monitor target communicates with the debugger to access
processor and coprocessor state, and to access memory contents and peripherals. Monitor
debug-mode requires a debug monitor program to interface between the debug hardware and the
software debugger.

12.2.3 Programming the debug unit

The processor debug unit is programmed using the APB slave interface. In a twin-CPU
configuration, each CPU has its own APB slave interface and associated registers that operate
independently of the other CPU. See Table 12-3 on page 12-6 for a complete list of
memory-mapped debug registers accessible using the APB slave interface. Some features of the
debug unit that you can access using the memory-mapped registers are:

. instruction address comparators for triggering breakpoints, see Breakpoint Value
Registers on page 12-23 and Breakpoint Control Registers on page 12-24

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-3
Non-Confidential

Debug

. data address comparators for triggering watchpoints, see Watchpoint Value Registers on
page 12-27 and Watchpoint Control Registers on page 12-27

. a bidirectional Debug Communication Channel (DCC), see Debug communications
channel on page 12-55

. all other state information associated with the debug unit.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 12-4
ID021511 Non-Confidential

Debug

12.3 Debug register interface

You can access the processor debug register map using the APB slave port. The APB slave port
conforms to the AMBA3 APBvV3 standard as described in the AMBA 3 APB Protocol
Specification. This is the only way to get full access to the processor debug capability. ARM
recommends that if your system requires the processor to access its own debug registers, you
choose a system interconnect structure that enables the processor to access the APB slave port
by executing load and stores to an appropriate area of physical memory.

This section describes:

. Coprocessor registers
. CP14 access permissions
. Coprocessor registers summary

. Memory-mapped registers on page 12-6

. Memory addresses for breakpoints and watchpoints on page 12-8
. Power domains on page 12-8

. Effects of resets on debug registers on page 12-8

. APB port access permissions on page 12-8.

12.3.1 Coprocessor registers

Although most of the processor debug registers are accessible through the memory-mapped
interface, there are several registers that you can access through a coprocessor interface. This is
important for boot-strap access to the register file. It enables software running on the processor
to identify the debug architecture version that the device implements.

12.3.2 CP14 access permissions

By default, you can access all CP14 debug registers from a nonprivileged mode. However, you
can program the processor to disable user-mode access to all coprocessor registers using bit [12]
of the DBGDSCR, see CP14 cl, Debug Status and Control Register on page 12-14 for more
information. CP14 debug register accesses are always permitted when the processor is in debug
state regardless of the processor mode.

Table 12-1 shows access to the CP14 debug registers.

Table 12-1 Access to CP14 debug registers

Debug state Processor mode DBGDSCR[12] CP14 debug access

Yes X X Permitted
No User b0 Permitted
No User bl Not permitted2
No Privileged X Permitted

a. Instructions attempting to access CP14 registers cause the processor to take an
Undefined Instruction exception.
12.3.3 Coprocessor registers summary

Table 12-2 on page 12-6 shows a set of valid CP14 instructions for accessing the debug
registers. All CP14 instructions not listed are Undefined.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 12-5
ID021511 Non-Confidential

Debug

Note

The CP14 debug instructions are defined as having Opcode 1 set to 0.

Table 12-2 CP14 debug registers summary

Instruction Mnemonic Description

MRC pl4, 0, <Rd>, c0, c0, 0 DBGDIDR Debug Identification Register. See CP14 c0, Debug ID Register on
page 12-10.

MRC pl4, 0, <Rd>, cl, c0, 0 DBGDRAR Debug ROM Address Register. See CP14 c0, Debug ROM Address Register
on page 12-12.

MRC pl4, 0, <Rd>, c2, c0, 0 DBGDSAR Debug Self Address Register. See CP14 c0, Debug Self Address Offset
Register on page 12-12.

MRC pl4, 0, <Rd>, c@, c5, 0 DBGDTRRXint Host to Target Data Transfer Register. See Data Transfer Register on

STC pl4, c5, <addressing mode> page 12-18.

MCR pl4, 0, <Rd>, c@, c5, 0 DBGDTRTXint Target to Host Data Transfer Register. See Data Transfer Register on

LDC pl4, c5, <addressing mode> page 12-18.

MRC pl4, 0, <Rd>, c@, cl, @ DBGDSCRint Debug Status and Control Register. See CP14 cl, Debug Status and Control

MRC pl4, 0, APSR_nzcv, c0, cl, 0

Register on page 12-14.

12.3.4 Memory-mapped registers

Table 12-3 shows the complete list of memory-mapped registers accessible at the APB slave

interface.

Note

You must ensure that the base address of this 4KB register map is aligned to a 4KB boundary in

physical memory.

Table 12-3 Debug memory-mapped registers

(c:::ift Eﬁg:;::,r Access Mnemonic Description
0x000 c0 R DBGDIDR CP14 c0, Debug ID Register on page 12-10
0x004-0x014 cl-c5 R - RAZ
0x18 c6 RW DBGWFAR Watchpoint Fault Address Register on page 12-19
0x01C c7 RW DBGVCR Vector Catch Register on page 12-19
0x020 c8 R - RAZ
0x024 c9 RW DBGECR Not implemented in this processor. Reads as zero.
0x028 cl0 RW DBGDSCCR Debug State Cache Control Register on page 12-21.
0x02C cll R - RAZ
0x030-0x07C c12-c31 R - RAZ

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 12-6

ID021511

Non-Confidential

Debug

Table 12-3 Debug memory-mapped registers (continued)

(c:]f:i?t ssg:zt:r Access Mnemonic Description

0x080 c32 RW DBGDTRRXext Data Transfer Register on page 12-18.

0x084 c33 W DBGITR Instruction Transfer Register on page 12-22.

0x088 c34 RW DBGDSCRext CP14 cl, Debug Status and Control Register on page 12-14.
0x08C c35 RW DBGDTRTXext Data Transfer Register on page 12-18.

0x090 c36 w DBGDRCR Debug Run Control Register on page 12-22.
0x094-0x09C c37-c39 R - RAZ.

0x0A0 c40 R DBGPCSR Not implemented on this processor. RAZ.

0x0A4 c4l R DBGCIDSR Not implemented on this processor. RAZ.

0x0A8-0xOFC c42-c63 R - RAZ.

0x100-0x11C c64-c71 RW DBGBVR2 Breakpoint Value Registers on page 12-23.
0x120-0x13C ¢72-c79 R - RAZ.

0x140-0x15C ¢c80-c87 RW DBGBCR® Breakpoint Control Registers on page 12-24.
0x160-0x17C c88-c95 R - RAZ.

0x180-0x19C ¢96-c103 RW DBGWVRb Watchpoint Value Registers on page 12-27.
0x1A0-0x1BC c104-cl11 R - RAZ

0x1C0-0x1DC cl12-c119 RW DBGWCRP Watchpoint Control Registers on page 12-27.
0x1EQ-Ox1FC c120-c127 R - RAZ.

0x200-0x2FC ¢128-c191 R - RAZ.

0x300 cl192 R DBGOSLAR Not implemented in this processor. Reads as zero.
0x304 cl193 R DBGOSLSR Operating System Lock Status Register on page 12-29.
0x308 cl94 R DBGOSSRR Not implemented in this processor. Reads as zero.
0x30C cl195 R - RAZ.

0x310 c196 RW DBGPRCR Device Power-down and Reset Control Register on page 12-31.
0x314 cl97 R DBGPRSR Device Power-down and Reset Status Register on page 12-32.
0x318-0x7FC c198-c511 R - RAZ.

0x800-0x8FC c512-575 R - RAZ.

0x900-0xCFC ~ ¢576-c831 R - RAZ.

0xD00-0xDFC ¢832-c895 R - Processor ID Registers on page 12-33.

0xEQ0-0XE7C ¢896-c927 R - RAZ.

OXE80-OXEFC ~ ¢928-c959 - - Chapter 13 Integration Test Registers.

0xFO0-0xFFC c960-c1023 - - Management registers on page 12-33.

a. The actual number of registers depends on the number of breakpoints configured. For non-implemented breakpoints, the
corresponding registers are RAZ.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.
Non-Confidential

12-7

Debug

b. The actual number of registers depends on the number of watchpoints configured. For non-implemented watchpoints, the
corresponding registers are RAZ.

12.3.5 Memory addresses for breakpoints and watchpoints

The Vector Catch Register (DBGVCR) sets breakpoints on exception vectors as instruction
addresses.

The Watchpoint Fault Address Register (DBGWFAR) reads an address and a processor state
dependent offset, +8 for ARM and +4 for Thumb.

12.3.6 Power domains
Cortex-R5 supports separate debug and core power domains to enable debug over power-down.

The following debug registers are implemented in the debug domain:
. Debug ID Register (DBGDIDR)

. Debug Run Control Register (DBGDRCR)

. Device Power-down and Reset Control Register (DBGPRCR)
. Device Power-down and Reset Status Register (DBGPRSR)

. CoreSight management registers.

All other implemented debug registers are in the core domain.

All accesses to core domain debug registers when the CPU is in Dormant or Shutdown modes
return an error response on the CPU APB interface.

For more information about these registers and the split between core domain and debug domain
registers, see the ARM Architecture Reference Manual.

12.3.7 Effects of resets on debug registers
The processor has the following reset signals that affect the processor debug logic:

nSYSPORESET

This signal resets all processor logic including the debug logic.

DBGRESETmn

This signal resets all the core domain debug logic.

PRESETDBGmn

This signal resets all debug domain debug logic.

See Resets on page 2-12 for more information on resets and reset requirements.

12.3.8 APB port access permissions
The restrictions for accessing the APB slave port are as follows:

Privilege of memory access

You must configure the system to disable accesses to the memory-mapped
registers based on the privilege of the memory access.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 12-8
ID021511 Non-Confidential

Debug

Privilege of memory access permission

When non-privileged software attempts to access the APB slave port, the system must ignore
the access or generate an error response to the access. You must implement this restriction at the
system level because the APB protocol does not have a privileged or user control signal. You
can choose to have the system either ignore the access or generate an error response.

You can place additional restrictions on memory transactions that are permitted to access the
APB port. However, ARM does not recommend this.

Locks permission

You can lock the APB slave port so that access to some debug registers is restricted. ARM
Architecture v7 defines two locks:

Software lock

The external debugger can set this lock to prevent software from modifying the
debug registers settings. A debug monitor can also set this lock prior to returning
control to the application to reduce the chance of erratic code changing the debug
settings. When this lock is set, writes to all debug registers are ignored, except
those generated by the external debugger, that override the lock. This is
summarized in Table 12-4. For more information, see Lock Access Register on
page 12-35.

OS Lock The processor does not support OS Lock.

Note

. These locks are set to their reset values only on reset of the debug logic, provided by
PRESETDBGmn.

. You must set the PADDRDBG31m input signal to 1 for accesses originated from the
external debugger for the Software Lock override feature to work.

Table 12-4 External debug interface access permissions

Registers

PADDRDBG31m Lock
DBGDRCR, DBGPRCR, Other Debug registers DBGLAR Other registers

DBGPRSR
1 Xa OKb OKe OKe OKe
0 1c wid WIe OKe¢ WIe
0 0 OKe OKe¢ OKe¢ OKe
a. X indicates that the outcome does not depend on this condition.
b. OK indicates that the access succeeds.
c. DBGLSRJ1] bit is set.
d. WI indicates that writes are ignored.
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 12-9

ID021511 Non-Confidential

Debug

12.4 Debug register descriptions

Table 12-5 shows definitions of terms used in the register descriptions.

Table 12-5 Terms used in register descriptions

Term

Description

Read-only. Written values are ignored.

Write-only. This bit cannot be read. Reads return an Unpredictable value.

Read or write.

Read-As-Zero. Always zero when read.

Read-As-One. Always one when read.

SBZP

Should-Be-Zero (SBZ) or Preserved (P). Must be written as 0 or preserved by writing the same value previously
read from the same fields on the same processor. These bits are usually reserved for future expansion.

UNP

A read from this bit returns an Unpredictable value.

12.41 CP14 c0, Debug ID Register

The DBGDIDR Register characteristics are:

Purpose Identifies the debug architecture version and specifies the number of
debug resources that the processor implements.

Usage constraints The DBGDIDR is:
. in CP14 ¢c0

. a 32 bit read-only register

. accessible in User and Privileged modes.
Configurations Available in all processor configurations.
Attributes See Table 12-6 on page 12-11.

Figure 12-2 shows the bit assignments.

31 28 27 24 23 2019 161514 1312 11 8 7 4 3 0
WRP BRP Context ID Reserved Variant Revision
Debug arc_hltecture _I I—SE_imp
version
PCSR_imp
nSUHD_imp
DEVID_imp

Figure 12-2 DBGDIDR Register bit assignments

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-10
Non-Confidential

Debug

Table 12-6 shows the bit assignments.

Table 12-6 DBGDIDR Register bit assignments

Bits Name Function

[31:28] WRP Number of Watchpoint Register Pairs:
b0000 = 1 WRP
b0001 =2 WRPs
b0111 =8 WRPs.

[27:24] BRP Number of Breakpoint Register Pairs:
b0001 =2 BRPs
b0010 =3 BRPs
b0111 = 8 BRPs.

[23:20] Context Number of Breakpoint Register Pairs (BRP) with context ID comparison capability:
b0000 = 1 BRP has context ID comparison capability.

[19:16] Debugarchitecture Debug architecture version:

version b0100 denotes ARMv7 Debug.

[15] DEVID imp Indicates whether DBGDEVID is implemented.
0 = not implemented, register 1010 is reserved.

[14] nSUHD _imp RAZ.

[13] PCSR_imp RAZ.

[12] SE_imp RAZ.

[11:8] - RAZ.

[7:4] Variant Implementation-defined variant number.This is the major revision number 7 in the rz part
of the rnpn description of the product revision status.

[3:0] Revision Implementation-defined revision number. This is the minor revision number 7 in the pn

part of the rnpn description of the product revision status.

The values of the following fields of the DBGDIDR agree with the values in CP15 c0, Main ID

Register:

. DBGDIDR[3:0] is the same as CP15 c0 bits [3:0]
. DBGDIDR[7:4] is the same as CP15 c0 bits [23:20].

See c0, Main ID Register on page 4-14 for more information of CP15 c0, Main ID Register.

The reason for duplicating these fields here is that the DBGDIDR is also accessible through the
APB slave port. This enables an external debugger to determine the variant and revision
numbers without stopping the processor.

To use the DBGDIDR, read CP14 c0 with:

MRC pl4, 0, <Rd>, c@, c@, @ ; Read DBGDIDR

ARM DDI 0460C

Copyright © 2010-2011 ARM. All rights reserved.

12-11
Non-Confidential

Debug

12.4.2 CP14 c0, Debug ROM Address Register

The DBGDSAR Register characteristics are:

Purpose

Usage constraints

Configurations

Attributes

Returns a 32-bit Debug ROM Address Register value. This is the address
that indicates where in memory a debug monitor can locate the debug bus
ROM specified by the CoreSight™ multiprocessor trace and debug

architecture. Returns a 32-bit Debug ROM Address Register value. This
is the address that indicates where in memory a debug monitor can locate

™

the debug bus ROM specified by the CoreSight™ multiprocessor trace and
debug architecture.

The DBGDRAR is:

. in CP14 c0, sub-register cl

. a 32 bit read-only register

. accessible in User and Privileged modes.

Available in all processor configurations.

See Table 12-7.

Figure 12-3 shows the bit assignments.

31

1221 210

Debug bus ROM physical address Reserved

Valid bits —l

Figure 12-3 DBGDRAR Register bit assignments

Table 12-7 shows the bit assignments.

Table 12-7 DBGDRAR Register bit assignments

Bits Name Function

[31:12] Debug bus ROM address Indicates bits [31:12] of the debug bus ROM address.

[1:2] - SBZ.

[1:0] Valid bits Indicates that the ROM address is valid.

Readsbl11 if DBGROMADDRY is set to 1, otherwise reads b00. DBGROMADDRY must
be set to 1 if DBGROMADDR]31:12] is set to a valid value.

To use the DBGDRAR, read CP14 c0 with:

MRC pl4, 0, <Rd>, cl, c@, @ ; Read DBCDRAR

12.4.3 CP14 c0, Debug Self Address Offset Register

The DBGDSAR Register characteristics are:

Purpose

The DBGDSAR is a read-only register that returns a 32-bit offset value
from the Debug ROM Address Register to the address of the CPU debug
registers. You can configure the address read in this register during
integration using the DBGSELFADDRm|[31:12] and
DBGSELFADDRVm inputs. DBGSELFADDRVmM must be tied off to 1
if DBGSELFADDRm|[31:12] is tied off to a valid value.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 12-12

ID021511

Non-Confidential

Debug

Usage constraints The DBGDSAR is:
. in CP14 c0, sub-register c2
. a 32 bit read-only register

. accessible in User and Privileged modes.
Configurations Auvailable in all processor configurations.
Attributes See Table 12-8.

Figure 12-4 shows the bit assignments.

31 121 210

Debug bus self address offset value Reserved

Valid bits —l

Figure 12-4 DBGDSAR Register bit assignments
Table 12-8 shows the bit assignments.

Table 12-8 DBGDSAR Register bit assignments

Bits Name Function

[31:12] Debug bus self Indicates bits [31:12] of the two’s complement offset from the debug ROM physical
address offset value address to the physical address where the debug registers are mapped.

[11:2] - UNP on reads, SBZP on writes.

[1:0] Valid bits Reads b11 if DBGSELFADDRVm is set to 1, otherwise reads b00. DBGSELFADDRVmM

must be set to 1 if DBGSELFADDRm|[31:12] is set to a valid value.

To use the DBGDSAR, read CP14 c0 with:

MRC pl14, 0, <Rd>, c2, c0, 0 ; Read DBGDSAR

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-13
Non-Confidential

Debug

12.4.4 CP14 c1, Debug Status and Control Register

Reserved
RXfull

TXfull
Reserved
PipeAdv
InstrCompl_|

The DBGDSCR Register characteristics are:

Purpose Contains status and control information about the debug unit.
Usage constraints See DTR access mode on page 12-17.

Configurations Auvailable in all processor configurations.

Attributes See Table 12-9.

Figure 12-5 shows the bit assignments.

31302928 27 26252423222120191817161514131211 109 8 7 6 5 210
MOE
- Res'e,.ved L SDABORT_|
ADABORT _I
ExtDCCmode UND_|
ADAdiscard Reserved
Reserved DBGack
MDBGen INTdis
HDBGen—MM —— ——UDCCdis
ITRen———M8 — RESTARTED —
HALTED —

Figure 12-5 DBGDSCR Register bit assignments
Table 12-9 shows the bit assignments.

Table 12-9 DBGDSCR Register bit assignments

Bits

Name

Function

[31]

[30]

[29]

RXfull

TXfull

RAZ on reads, SBZP on writes.

The RXfull flag:
0 =Read-DTR, DBGDTRRX, empty, reset value
1 =Read-DTR, DBGDTRRX, full.

When set, this flag indicates to the processor that there is data available to read at the DBGDTRRXint.
It is automatically set on writes to the DBGDTRRXext by the debugger, and is cleared when the
processor reads the CP14 DTR. If the flag is not set, the DBGDTRRXint returns an Unpredictable
value.

The TXfull flag:
0 = Write-DTR, DBGDTRTX, empty, reset value
1 = Write-DTR, DBGDTRTX, full.

When clear, this flag indicates to the processor that the DBGDTRTXint is ready to receive data. It is
automatically cleared on reads of the DBGDTRTXext by the debugger, and is set when the processor
writes to the CP14 DTR. If this bit is set and the processor attempts to write to the DBGDTRTXint, the
register contents are overwritten and the TXfull flag remains set.

[28:26]

RAZ on reads, SBZP on writes.

[25]

PipeAdv

Sticky pipeline advance read-only bit. This bit enables the debugger to detect whether the processor is
idle. In some situations, this might mean that the system bus port is deadlocked. This bit is set to 1 when
the processor pipeline retires one instruction. It is cleared by a write to DBGDRCR[3].

0 = no instruction has completed execution since the last time this bit was cleared
1 = an instruction has completed execution since the last time this bit was cleared.

ARM DDI 0460C

ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-14
Non-Confidential

Debug

Table 12-9 DBGDSCR Register bit assignments (continued)

Bits Name Function

[24] InstrCompl 1 Instruction complete read-only bit. This flag determines whether the processor has completed
execution of an instruction issued through the APB port.
0 = processor is executing an instruction fetched from the DBGITR Register
1 = processor is not executing an instruction fetched from the DBGITR Register.
When the APB port reads the DBGDSCR and this bit is clear, then a subsequent write to the DBGITR
Register is ignored unless DBGDSCR[21:20] is not equal to 0. If DBGDSCR[21:20] is not equal to 0,
the DBGITR write stalls until the processor completes execution of the current instruction. If the
processor is not in debug state, then the value read for this flag is Unpredictable. The flag is set to 1 on
entry to debug state.

[23:22] - RAZ on reads, SBZP on writes.

[21:20] ExtDCCmode DTR access mode. You can use this field to optimize DTR traffic between a debugger and the
processor.
b00 = Non-blocking mode, this is the reset value
b01 = Stall mode
b10 = Fast mode
b1l = Reserved.

Note
. This field only affects the behavior of DBGDSCRext, DBGDTRRXext, DBGDTRTXext, and
DBGITR accesses through the APB port, and not through CP14 debug instructions.
. Non-blocking mode is the default setting. Improper use of the other modes might result in the
debug access bus becoming deadlocked.

See DTR access mode on page 12-17 for more information.

[19] ADAdiscard The Asynchronous Aborts Discarded bit is set when the processor is in debug state and is cleared on
exit from debug state. While this bit is set, the processor does not take asynchronous Data Aborts,
instead, the sticky asynchronous Data Abort bit is set to 1.
0 = do not discard asynchronous Data Aborts
1 = discard asynchronous Data Aborts and set ADABORT _I.

[18] NS RAZ on reads, SBZP on writes.

[17] SPNIDdis This bit is the inverse of bit [6] of the DBGAUTHSTATUS, see Authentication Status Register on
page 12-30.

[17] SPIDdis This bit is the inverse of bit [4] of the DBGAUTHSTATUS, see Authentication Status Register on
page 12-30.

[15] MDBGen The Monitor debug-mode enable bit:
0 = Monitor debug-mode disabled, this is the reset value
1 = Monitor debug-mode enabled.
If Halting debug-mode is enabled through bit [14], then the processor is in Halting debug-mode
regardless of the value of bit [15]. If the external interface input DBGENm is LOW, this bit reads as
0. The programmed value is masked until DBGENm is HIGH, and at that time the read value reverts
to the programmed value.

[14] HDBGen The Halting debug-mode enable bit:

0 = Halting debug-mode disabled, this is the reset value
1 = Halting debug-mode enabled.

If the external interface input DBGENmMm is LOW, this bit reads as 0. The programmed value is masked
until DBGENm is HIGH, and at that time the read value reverts to the programmed value.

ARM DDI 0460C

ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-15
Non-Confidential

Debug

Table 12-9 DBGDSCR Register bit assignments (continued)

Bits Name Function

[13] ITRen Execute ARM instruction enable bit:
0 = disabled, this is the reset value
1 = enabled.
If'this bit is set and an DBGITR write succeeds, the processor fetches an instruction from the DBGITR
for execution. If this bit is set to 1 when the processor is not in debug state, the behavior of the
processor is Unpredictable.

[12] UDCCdis CP14 debug user access disable control bit:
0 = CP14 debug user access enable, this is the reset value
1 = CP14 debug user access disable.
If this bit is set and a User mode process attempts to access any CP14 debug registers, an Undefined
Instruction exception is taken.

[11] IntDis Interrupts disable bit:
0 = interrupts enabled, this is the reset value
1 = interrupts disabled.
If this bit is set, the nNIRQm and nFIQm input signals are inhibited. The external debugger can
optionally use this bit to execute pieces of code in normal state as part of the debugging process and
avoid having an interrupt taking control of the program flow.

[10] DbgAck Force Debug Acknowledge bit. If this bit is set to 1, the DBGACKm output signal is forced HIGH,
regardless of the processor state. The external debugger can optionally use this bit to execute pieces of
code in normal state as part of the debugging process for the system to behave as if the processor is in
debug state. Some systems rely on DBGACKm to determine whether data accesses are application or
debugger generated. This bit is 0 on reset.

[9] - RAZ on reads, SBZP on writes.

[8] UND 1 Sticky Undefined bit:

0 = no Undefined Instruction exception occurred in debug state since the last time this bit was cleared
1 = an Undefined Instruction exception occurred while in debug state since the last time this bit was
cleared.

This flag detects Undefined Instruction exceptions generated by instructions issued to the processor
through the DBGITR. This bit is set to 1 when an Undefined Instruction exception occurs while the
processor is in debug state and is cleared by writing a 1 to DBGDRCR[2].

[7] ADABORT 1 Sticky asynchronous Data Abort bit:

0 = no asynchronous Data Aborts occurred since the last time this bit was cleared

1 = an asynchronous Data Abort occurred since the last time this bit was cleared.

This flag detects asynchronous Data Aborts triggered by instructions issued to the processor through
the DBGITR. This bit is set to 1 when an asynchronous Data Abort occurs while the processor is in
debug state and is cleared by writing a 1 to DBGDRCR[2].

[6] SDABORT I Sticky synchronous Data Abort bit:

0 =no synchronous Data Abort occurred since the last time this bit was cleared
1 = a synchronous Data Abort occurred since the last time this bit was cleared.

This flag detects synchronous Data Aborts generated by instructions issued to the processor through
the DBGITR. This bit is set to 1 when a synchronous Data Abort occurs while the processor is in debug
state and is cleared by writing to the DBGDRCR][2].

ARM DDI 0460C

ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-16
Non-Confidential

Debug

Table 12-9 DBGDSCR Register bit assignments (continued)

Bits Name

Function

[52] MOE

Method of entry bits:

b0000 = a DBGDRCR[0] halting debug event occurred
b0001 = a breakpoint occurred

b0100 = an EDBGRQm halting debug event occurred
b0011 = a BKPT instruction occurred

b1010 = a synchronous watchpoint occurred

others = reserved.

These bits are set to indicate any of:

. the cause of a debug exception

. the cause for entering debug state.

A Prefetch Abort or Data Abort handler must check the value of the CP15 Fault Status Register to
determine whether a debug exception occurred and then use these bits to determine the specific debug
event.

[1]a RESTARTED

CPU restarted bit:
0 = The processor is exiting debug state.
1 = The processor has exited debug state. This is the reset value.

The debugger can poll this bit to determine when the processor responds to a request to leave debug
state.

[0]2 HALTED

CPU halted bit:

0 = The processor is in normal state. This is the reset value.

1 = The processor is in debug state.

The debugger can poll this bit to determine when the processor has entered debug state.

a. These bits always reflect the status of the processor, therefore they only have a reset value if the particular reset event affects the processor.
For example, a PRESETDBGmn event leaves these bits unchanged and a processor reset event such as nSYSPORESET sets
DBGDSCR[18] to a 0 and DBGDSCR[1:0] to 10.

To use the DBGDSCR, read or write CP14 c1 with:

MRC p14, 0, <Rd>, c0, c1, 0 ; Read DBGDSCR
MCR pl4, 0, <Rd>, c0@, c1, @ ; Write DBGDSCR

DTR access mode

You can use the ExtDCCmode field to optimize data transfer between a debugger and the
processor.

The DCC access mode can be one of the following:
. Nonblocking. This is the default mode.

. Stall.

. Fast.

In Non-blocking mode, reads from DBGDTRTXext and writes to DBGDTRRXext and
DBGITR are ignored if the appropriate latched ready flag is not in the ready state. These latched
flags are updated on DBGDSCR reads. The following applies:

. writes to DBGDTRRXext are ignored if RXfull 1is set to bl

. reads from DBGDTRTXext are ignored, and return an Unpredictable value, if TXfull 1is
set to b0

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-17
Non-Confidential

Debug

. writes to DBGITR are ignored if InstrCompl_1 is set to b0
. following a successful write to DBGDTRRXext, RXfull and RXfull 1 are set to bl
. following a successful read from DBGDTRTXext, TXfull and TXfull 1 are cleared to b0

. following a successful write to DBGITR, the internal flags InstrCompl and InstrCompl_1
are cleared to b0.

Debuggers accessing these registers must first read DBGDSCRext. This has the side-effect of
copying RXfull and TXfull to RXfull 1and TXfull 1. The debugger must then:

. write to the DBGDTRRXext if the RXfull flag was b0 (RXfull 1is b0)
. read from the DBGDTRTXext if the TXfull flag was bl (TXfull 1is bl)
. write to the DBGITR if the InstrCompl [flag was b1.

However, debuggers can issue both actions together and later determine from the read
DBGDSCR value whether the operations were successful.

In Stall mode, the APB accesses to DBGDTRRXext, DBGDTRTXext, and DBGITR stall under
the following conditions:

. writes to DBGDTRRXext are stalled until RXfull is cleared
. writes to DBGITR are stalled until InstrCompl is set
. reads from DBGDTRTXext are stalled until TXfull is set.

Fast mode is similar to Stall mode except that in Fast mode, the processor fetches an instruction
from the DBGITR when a DBGDTRRXext write or DBGDTRTXext read succeeds. In Stall
mode and Nonblocking mode, the processor fetches an instruction from the DBGITR when a
DBGITR write succeeds.

12.4.5 Data Transfer Register

The DTR consists of two separate physical registers:
. the DBGDTRRX (Read Data Transfer Register)
. the DBGDTRTX (Write Data Transfer Register).

The register accessed is dependent on the instruction used:
. writes, MCR and LDC instructions, access the DBGDTRTX
. reads, MRC and STC instructions, access the DBGDTRRX.

Note

Read and write are used with respect to the processor.

For information on the use of these registers with the TXfull flag and RXfull flag, see Debug
communications channel on page 12-55. The Data Transfer Register, bits [31:0] contain the data
to be transferred.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 12-18
ID021511 Non-Confidential

Debug

Table 12-10 shows how the bit values correspond with the DBGDTRRX and DBGDTRTX
functions.

Table 12-10 Data Transfer Register bit assignments

Bits Name Function

[31:0] Data Reads the Data Transfer Register. This is read-only for the CP14 interface.

Note

Reads of the DBGDTRRXint through the coprocessor interface cause the TXfull flag to be cleared.
However, reads of the DBGDTRRXext through the APB port do not affect this flag.

[31:0] Data Writes the Data Transfer Register. This is write-only for the CP14 interface.

Note

Writes to the DBGDTRTXint through the coprocessor interface cause the RXfull flag to be set.
However, writes to the DBGDTRTXext through the APB port do not affect this flag.

12.4.6 Watchpoint Fault Address Register
The DBGWFAR Register characteristics are:
Purpose Holds the address of the instruction that triggers the watchpoint.
Usage constraints There are no usage constraints.
Configurations Auvailable in all processor configurations.
Attributes See Table 12-11.

Figure 12-6 shows the bit assignments.

31 10

Address

Reserved—,

Figure 12-6 DBGWFAR Register bit assignments
Table 12-11 shows the bit assignments.

Table 12-11 DBGWFAR Register bit assignments

Bits Name Function

[31:1] Address This is the address of the watchpointed instruction. When a watchpoint occurs in ARM state, the
DBGWFAR contains the address of the instruction causing it plus an offset of 0x8. When a
watchpoint occurs in Thumb state, the offset is plus 0x4.

[0] - RAZ.

12.4.7 Vector Catch Register
The DBGVCR Register characteristics are:

Purpose Controls efficient exception vector catching.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 12-19
ID021511 Non-Confidential

Debug

Usage constraints * If one of the bits in this register is set and the instruction at the
corresponding vector is committed for execution, the processor
either enters debug state or takes a debug exception.

. Under this model, any prefetch from an exception vector can trigger
a vector catch, not only the ones because of exception entries. An
explicit branch to an exception vector might generate a vector catch
debug event.

. If any of the bits are set when the processor is in Monitor
debug-mode, then the processor ignores the setting and does not
generate a vector catch debug event. This prevents the processor
entering an unrecoverable state. The debugger must program these
bits to zero when Monitor debug-mode is selected and enabled to
ensure forward-compatibility.

Configurations Available in all processor configurations.
Attributes See Table 12-12.

as Figure 12-7 shows.

31 87 6543210

LI— Reset
Undefined
SvC

Prefetch abort
Data abort
Reserved

IRQ
FIQ

Reserved

Figure 12-7 DBGVCR Register bit assignments
Table 12-12 shows the bit assignments.

Table 12-12 DBGVCR Register bit assignments

Reset Normal High vectors

Bits Name value address address Function Access

[31:8] - 0 - - Do not modify on writes. On reads, the value RAZ or
returns zero. SBZP

[7] FIQ 0 0x0000001C OxFFFF0O1C Vector catch enable, FIQ. RW

(6] IRQ - 0x000000182 OXFFFFO0182 Vector catch enable, IRQ. -

[5] - 0 - - Do not modify on writes. On reads, the value RAZ or
returns zero. SBZP

[4] Data Abort 0 0x00000010 OxFFFFoQ10 Vector catch enable, data abort. RW

[3] Prefetch Abort 0 0x0000000C OxFFFFoQ0C Vector catch enable, prefetch abort. RW

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 12-20

ID021511 Non-Confidential

Debug

Table 12-12 DBGVCR Register bit assignments (continued)

Bits Name Reset Normal High vectors Function Access
value address address

[2] SvC 0 0x00000008 OxFFFF008 Vector catch enable, SVC. RW

[1] Undefined 0 0x00000004 OxFFFFQ004 Vector catch enable, Undefined Instruction. ~ RW

[0] Reset 0 0x00000000 OxFFFF0Q00 Vector catch enable, reset. RW

a. Ifthe VIC interface is enabled, the address is the last IRQ handler address supplied by the VIC, whether or not high vectors are in use.

12.4.8 Debug State Cache Control Register

The DBGDSCCR Register characteristics are:

Purpose

Controls the L1 cache behavior when the processor is in debug state.

Usage constraints For information on the usage model of the DBGDSCCR register, see

Cache debug on page 12-50.

Configurations Available in all processor configurations.

Attributes

See Table 12-13.

Figure 12-8 shows the bit assignments.

31

3210

Reserved

Not write-through4,
Instruction cache line-fill
Data cache line-fill

Figure 12-8 DBGDSCCR Register bit assignments

Table 12-13 shows the bit assignments.

Table 12-13 DBGDSCCR Register bit assignments

Bits Name Reset Description
value
[31:3] - 0 Reserved. Do not modify on writes. On reads, the value returns zero.
[2] nWT 0 Not write-through:
1 = normal operation of regions marked as write-back in debug state
0 = force write-through behavior for regions marked as write-back in debug state, this is
the reset value.
[1] nlL 0 Instruction cache line-fill:
1 = normal operation of L1 instruction cache in debug state
0 = L1 instruction cache line-fills disabled in debug state, this is the reset value.
[0] nDL 0 Data cache line-fill:
1 = normal operation of L1 data cache in debug state
0= L1 data cache line-fills disabled in debug state, this is the reset value.
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 12-21

ID021511

Non-Confidential

Debug

12.4.9 Instruction Transfer Register

The DBGITR enables the external debugger to feed instructions into the processor for execution
while in debug state. The DBGITR is a write-only register. Reads from the DBGITR return an
Unpredictable value.

The Instruction Transfer Register, bits [31:0] contain the ARM instruction for the processor to
execute while in debug state. The reset value of this register is Unpredictable.

Note
Writes to the DBGITR when the processor is not in debug state or the DBGDSCR[13] execute
instruction enable bit is cleared are Unpredictable. When an instruction is issued to the
processor, the debug unit prevents the next instruction from being issued until the
DBGDSCR[25] instruction complete bit is set.

12.4.10 Debug Run Control Register

The DBGDSCR Register characteristics are:

Purpose . Requests the processor to enter or leave debug state.
. Clears the sticky exception bits present in the DBGDSCR.

Usage constraints The DBGDRCR is a write-only register.
Configurations Auvailable in all processor configurations.
Attributes See Table 12-14 on page 12-23.

Figure 12-9 shows the bit assignments.

31 543210

Cancel memory request
Clear sticky pipeline advance
Clear sticky exceptions

Restart request

Reserved

i

Halt request

Figure 12-9 DBGDRCR Register bit assignments

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-22
Non-Confidential

Debug

Table 12-14 shows the bit assignments.

Table 12-14 DBGDRCR Register functions

Bits Name Function
[31:5] - RAZ.
[4] Cancel memory If 1 is written to this bit, the processor abandons any pending memory transactions until it can enter
requests debug state. Debug state entry is the acknowledge event that clears this request. Abandoned transactions
have the following behavior:
. abandoned stores might write an Unpredictable value to the target address
. abandoned loads return an Unpredictable value to the register bank.
An abandoned transaction does not cause any exception. Additional instruction fetches or data accesses
after the processor entered debug state have an Unpredictable behavior.
This bit enables the debugger to progress on a deadlock so the processor can enter debug state. For a
debug state entry to occur, a halting debug event must be requested before this bit is set. If you write a 1
to this bit when DBGENmMm is LOW, the write has no effect.2
[3] Clear sticky Writing a 1 to this bit clears DBGDSCR[25].
pipeline advance
[2] Clear sticky Writing a 1 to this bit clears DBGDSCR[8:6].
exceptions
[1] Restart request Writing a 1 to this bit requests that the processor leaves debug state. This request is held until the
processor exits debug state. When the debugger makes this request, it polls DBGDSCR[1] until it reads
1. This bit always reads as zero. Writes are ignored when the processor is not in debug state.
[0] Halt request Writing a 1 to this bit triggers a halting debug event, that is, a request that the processor enters debug

state. This request is held until the debug state entry occurs. When the debugger makes this request, it
must poll DBGDSCR[0] until it reads 1. This bit always reads as zero. Writes are ignored when the
processor is already in debug state.

a. Entry into debug state is not expected to be recoverable.

12.4.11 Breakpoint Value Registers

Each DBGBVR is associated with a Breakpoint Control Register (DBGBCR). DBGBCRYy is the
corresponding control register for DBGBVRYy.

A pair of breakpoint registers, DBGBVRy/DBGBCRY, is called a Breakpoint Register Pair
(BRP). DBGBVRO-7 are paired with DBGBCRO-7 to make BRPO-7.

The breakpoint value contained in this register corresponds to either an instruction address or a
context ID. Breakpoints can be set on:

. an instruction address
. a context ID value
. an instruction address and context ID pair.

For an instruction address and context ID pair, two BRPs must be linked. A debug event is
generated when both the instruction address and the context ID pair match at the same time.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-23
Non-Confidential

Debug

Table 12-15 shows how the bit values correspond with the Breakpoint Value Registers

functions.
Table 12-15 Breakpoint Value Register bit assignments
Bits Reset value Description
[31:0] ox0 Breakpoint value
Note
. Only BRPn supports context ID comparison, where n+1 is the number of breakpoint

register pairs implemented in the processor.

. Bits [1:0] of Registers DBGBVRO to DBGBVR(n-1) are Do Not Modify on writes and
Read-As-Zero because these registers do not support context ID comparisons.

. The contents of the CP15 Context ID Register give the context ID value for a DBGBVR
to match. For information on the Context ID Register, see Chapter 4 System Control.

12.4.12 Breakpoint Control Registers
The DBGBCR Register characteristics are:

Purpose Contains the necessary control bits for setting:
. breakpoints
. linked breakpoints.

Usage constraints There are no usage constraints.
Configurations Available in all processor configurations.
Attributes See Table 12-16 on page 12-25.

Figure 12-10 shows the bit assignments.

31 29 28 242322 2019 16 1514 13 9 8 543210
Breakpoint Byte
M Linked BRP Reserved address S (B
address mask
select
|—Reserved I—Reserved |—Secure state access control |—Reserved

Figure 12-10 DBGBCR Registers bit assignments

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 12-24
ID021511 Non-Confidential

Table 12-16 shows the bit assignments.

Debug

Table 12-16 Breakpoint Control Register bit assignments

Bits

Name

Function

[31:29]

[28:24]

Breakpoint
address mask

Do not modify on writes. On reads, the value returns zero.

This field sets a breakpoint on a range of addresses by masking lower order address bits out of the

breakpoint comparison.?

b00000 = no mask

b00001 = Reserved

b00010 = Reserved

b00011 = 0x00000007 mask for instruction address
b00100 = 0x0000000F mask for instruction address
b00101 = 0x0000001F mask for instruction address

b11111 = 0x7FFFFFFF mask for instruction address.

(23]

[22:20]

M

Meaning of DBGBVR:

b000 = instruction address match

b001 = linked instruction address match
b010 = unlinked context ID

b011 = linked context ID

b100 = instruction address mismatch

b101 = linked instruction address mismatch
bl1x = Reserved.

For more information, see Table 12-17 on page 12-26

[19:16]

Linked BRP
number

The binary number encoded here indicates another BRP to link this one with.

Note

. if a BRP is linked with itself, it is Unpredictable whether a breakpoint debug event is generated
. if this BRP is linked to another BRP that is not configured for linked context ID matching, it is

Unpredictable whether a breakpoint debug event is generated.

[15:14]

Secure state
access control

RAZ or SBZP.

[13:9]

Do not modify on writes. On reads, the value returns zero.

ARM DDI 0460C

ID021511

Copyright © 2010-2011 ARM. All rights reserved.

Non-Confidential

12-25

Debug

Table 12-16 Breakpoint Control Register bit assignments (continued)

Bits Name

Function

[8:5] Byte address For breakpoints programmed to match an instruction address, the debugger must write a word-aligned

select

address to the DBGBVR. You can then use this field to program the breakpoint so it hits only if certain
byte addresses are accessed.b

If the BRP is programmed for instruction address match:

b0000 = the breakpoint never hits

bxxx1 = the breakpoint hits if the byte at address (DBGBVR & 0xFFFFFFFC) +0 is accessed

bxx1x = the breakpoint hits if the byte at address (DBGBVR & 0xFFFFFFFC) +1 is accessed

bx1xx = the breakpoint hits if the byte at address (DBGBVR & 0xFFFFFFFC) +2 is accessed

blxxx = the breakpoint hits if the byte at address (DBGBVR & 0xFFFFFFFC) +3 is accessed

b1111 = the breakpoint hits if any of the four bytes starting at address (DBGBVR & 0xFFFFFFFC) +0 is
accessed.

If the BRP is programmed for instruction address mismatch, the breakpoint hits where the corresponding
instruction address breakpoint does not hit, that is, the range of addresses covered by an instruction
address mismatch breakpoint is the negative image of the corresponding instruction address breakpoint.

If the BRP is programmed for context ID comparison, this field must be set to b1111. Otherwise,
breakpoint and watchpoint debug events might not be generated as expected.

Supervisor access control. The breakpoint can be conditioned on the mode of the processor:
b00 = User, System, or Supervisor

b01 = Privileged

b10 = User

bll =any.

Breakpoint enable:
0 = Breakpoint disabled. This is the reset value.
1 = Breakpoint enabled.

a. If DBGBCR[28:24] is not set to b00000, then DBGBCR[8:5] must be set to b1111. Otherwise the behavior is Unpredictable. In addition, if
DBGBCR[28:24] is not set to b00000, then the corresponding DBGBVR bits that are not being included in the comparison Should Be Zero.
Otherwise the behavior is Unpredictable. If this BRP is programmed for context ID comparison, this field must be set to b00000. Otherwise
the behavior is Unpredictable. There is no encoding for a full 32-bit mask but the same effect of a break anywhere breakpoint can be achieved
by setting DBGBCR[22] to 1 and DBGBCR[8:5] to b0000.

b. Writing a value to DBGBCR[8:5] so that DBGBCR[8] is not equal to DBGBCR[7] or DBGBCR[6] is not equal to DBGBCR[S5] has
Unpredictable results.

Table 12-17 Meaning of DBGBVR bits [22:20]

DBGBVR[22:20]

Meaning

b000

b001

The corresponding DBGBVR[31:2] is compared against the instruction address bus and the state of the
processor against this DBGBCR. It generates a breakpoint debug event on a joint instruction address and state
match.

The corresponding DBGBVR[31:2] is compared against the instruction address bus and the state of the
processor against this DBGBCR. This BRP is linked with the one indicated by DBGBCR[19:16] linked BRP
field. They generate a breakpoint debug event on a joint instruction address, context ID, and state match.

b010

The corresponding DBGBVR[31:0] is compared against CP15 Context ID Register, c13 and the state of the
processor against this DBGBCR. This BRP is not linked with any other one. It generates a breakpoint debug
event on a joint context ID and state match. For this BRP, DBGBCR[8:5] must be set to b1111. Otherwise it is
Unpredictable whether a breakpoint debug event is generated.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-26
Non-Confidential

Debug

Table 12-17 Meaning of DBGBVR bits [22:20] (continued)

DBGBVR[22:20]

Meaning

b011

The corresponding DBGBVR[31:0] is compared against CP15 Context ID Register, c13. This BRP links
another BRP (of the DBGBCR[21:20]=b01 type), or WRP (with DBGWCR[20]=b1). They generate a
breakpoint or watchpoint debug event on a joint instruction address or data address and context ID match. For
this BRP, DBGBCR[8:5] must be set to b1111, DBGBCR[15:14] must be set to b00, and DBGBCR|[2:1] must
be set to bl 1. Otherwise it is Unpredictable whether a breakpoint debug event is generated.

b100

The corresponding DBGBVR[31:2] and DBGBCR[8:5] are compared against the instruction address bus and
the state of the processor against this DBGBCR. It generates a breakpoint debug event on a joint instruction
address mismatch and state match.

b101

The corresponding DBGBVR[31:2] and DBGBCR[8:5] are compared against the instruction address bus and
the state of the processor against this DBGBCR. This BRP is linked with the one indicated by DBGBCR[19:16]
linked BRP field. It generates a breakpoint debug event on a joint instruction address mismatch, state and
context ID match.

bllx

Reserved. The behavior is Unpredictable.

12.4.13 Watchpoint Value Registers

Each DBGWVR is associated with a Watchpoint Control Register (DBGWCR). DBGWCRYy is
the corresponding register for DBGWVRYy.

A pair of watchpoint registers, DBGWVRy and DBGWCRYy, is called a Watchpoint Register
Pair (WRP). DBGWVRO0-7 are paired with DBGWCRO0-7 to make WRPO0-7.

The watchpoint value contained in the DBGWVR always corresponds to a data address and can
be set either on:

. a data address
. a data address and context ID pair.

For a data address and context ID pair, a WRP and the BRP with context ID comparison
capability must be linked. A debug event is generated when both the data address and the
context ID pair match simultaneously.

Table 12-18 shows the bit assignments.

Table 12-18 Watchpoint Value Register bit assignments

Bits Description

[31:2] Watchpoint address.

[1:0] Reserved. Do not modify on writes. On reads, the value returns zero.

12.4.14 Watchpoint Control Registers

The DBGWCR Register characteristics are:

Purpose Contains the necessary control bits for setting:
. watchpoints
. linked watchpoints.

Usage constraints There are no usage constraints.

Configurations Available in all processor configurations.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-27
Non-Confidential

Debug

Attributes See Table 12-19.

Figure 12-11shows the bit assignments.

31 29 28 2423 212019 1611514 13 12 54 32 10
ac\fé?;cshsp;i;‘;k E |Linked BRP Byte address select | /S | s |w
I— Reserved
Reserved Reserved Secure state access control

Figure 12-11 DBGWCR Register bit assignments
Table 12-19 shows the bit assignments.

Table 12-19 DBGWCR Register bit assignments

Bits Name

Function

[31:29] -

Do not modify on writes. On reads, the value returns zero.

[28:24] Watchpoint
address
mask

This field watches a range of addresses by masking lower order address bits out of the watchpoint
comparison.

b00000 = no mask

b00001 = Reserved

b00010 = Reserved

b00011 = 0x00000007 mask for data address
b00100 = 0x0000000F mask for data address
b00101 = 0x0000001F mask for data address

b11111 = 0x7FFFFFFF mask for data address.

Note
. If DBGWCR[28:24] is not set to b00000, then DBGWCR[12:5] must be set to b11111111. Otherwise
the behavior is Unpredictable.

. If DBGWCR[28:24] is not set to b00000, then the corresponding DBGW VR bits that are not being
included in the comparison Should Be Zero. Otherwise the behavior is Unpredictable.

. To watch for a write to any byte in an 8-byte aligned object of size 8 bytes, ARM recommends that a
debugger sets DBGWCR[28:24] to b00111, and DBGWCR[12:5] to b11111111. This is compatible
with both ARMv7 debug compliant implementations that have an 8-bit DBGWCR[12:5] and with
those that have a 4-bit DBGWCR[8:5] byte address select field.

[23:21] -

Do not modify on writes. On reads, the value returns zero.

[20] E

Enable linking bit:
0 = linking disabled
1 = linking enabled.

When this bit is set, this watchpoint is linked with the context ID holding BRP selected by the linked BRP
field.

[19:16] Linked

Linked BRP number. The binary number encoded here indicates a context ID holding BRP to link this WRP

BRP with. If this WRP is linked to a BRP that is not configured for linked context ID matching, it is Unpredictable
whether a watchpoint debug event is generated.
[15:14] Securestate = RAZ or SBZP.
access
control
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 12-28

ID021511

Non-Confidential

Debug

Table 12-19 DBGWCR Register bit assignments (continued)

Bits Name

Function

[13] -

Appear as zero when read. Do not modify on writes.

[12:5] Byte
address
select

The DBGWVR is programmed with word-aligned address. You can use this field to program the watchpoint
so it only hits if certain byte addresses are accessed:

b00000000 The watchpoint never hits.

bxxxxxxxl The watchpoint hits if the byte at address (DBGWVR[31:0
bxxxxxxlx The watchpoint hits if the byte at address (DBGWVR[31:0
bxxxxxlxx The watchpoint hits if the byte at address (DBGWVR[31:0
bxxxxlxxx The watchpoint hits if the byte at address (DBGWVR[31:0
bxxxIlxxxx The watchpoint hits if the byte at address (DBGWVR[31:0
bxxlxxxxx The watchpoint hits if the byte at address (DBGWVR[31:0
bxIxxxxxx The watchpoint hits if the byte at address (DBGWVR[31:0
blxxxxxxx The watchpoint hits if the byte at address (DBGWVR[31:0

& OXFFFFFFFC) +0 is accessed.
& OXFFFFFFFC) +1 is accessed.
& OXFFFFFFFC) +2 is accessed.
& OXFFFFFFFC) +3 is accessed.
& OXFFFFFFF8) +4 is accessed.
& OXFFFFFFF8) +5 is accessed.
& OXFFFFFFF8) +6 is accessed.
& OXFFFFFFF8) +7 is accessed.

[P W st s Y W S W e

[4:3] L/S

Load/store access. The watchpoint can be conditioned to the type of access:
b00 = Reserved

b01 = load, load exclusive, or swap

b10 = store, store exclusive or swap

bl1 = cither.

A SWP or SWPB triggers on load, store, or either. A load exclusive instruction triggers on load or either. A store
exclusive instruction triggers on store or either, whether it succeeds or not.

[2:1] S

Privileged access control. The watchpoint can be conditioned to the privilege of the access:
b00 = reserved

b01 = Privileged, match if the processor does a privileged access to memory

b10 = User, match only on non-privileged accesses

b11 = either, match all accesses.

Note

For all cases, the match refers to the privilege of the access, not the mode of the processor.

Watchpoint enable:
0 = Watchpoint disabled. This is the reset value.
1 = Watchpoint enabled.

12.4.15 Operating System Lock Status Register

The DBGOSLSR Register characteristics are:

Purpose Contains status information about the locked debug registers.
Usage constraints The DBGOSLSR is a read-only register.

Configurations Auvailable in all processor configurations.

Attributes See Table 12-20 on page 12-30.

Figure 12-12 on page 12-30 shows the bit assignments.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-29
Non-Confidential

Debug

31 10

Reserved

Lock implemented bit J

Figure 12-12 DBGOSLSR Register bit assignments

Table 12-20 shows the bit assignments.

Table 12-20 DBGOSLSR Register bit assignments

Bits Name Function
[31:1] - RAZ.
[0] Lock implemented bit Indicates whether the OS lock functionality is implemented:

0= OS lock not implemented.

12.4.16 Authentication Status Register
The DBGAUTHSTATUS Register characteristics are:

Purpose Reads the current values of the configuration inputs that determine the
debug permission level.

Usage constraints The DBGAUTHSTATUS Register is read-only.
Configurations Available in all processor configurations.
Attributes See Table 12-21.

Figure 12-13 shows the bit assignments.

31 8 7 6 54 3 0

Reserved

Secure non-invasive debug features implemented -
Secure non-invasive debug features enabled
Secure invasive debug features implemented

Secure invasive debug features enabled
Non-secure debug features

Figure 12-13 DBGAUTHSTATUS Register bit assignments
Table 12-21 shows the bit assignments.

Table 12-21 DBGAUTHSTATUS Register bit assignments

Bits Name Value Function

[31:8] - - RAZ

[7] Secure non-invasive debug features implemented 0bl Implemented

[6] Secure non-invasive debug features enabled DBGENmMm || NIDENm Non-invasive debug enable field
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 12-30

ID021511 Non-Confidential

Debug

Table 12-21 DBGAUTHSTATUS Register bit assignments (continued)

Bits Name Value Function

[5] Secure invasive debug features implemented Obl Implemented

[4] Secure invasive debug features enabled DBGENmM Invasive debug enable field
[3:0] Non-secure debug features? 0x0 Not implemented

a. The Cortex-RS processor does not implement the Security Extensions, so all the debug features are considered secure.

12.4.17 Device Power-down and Reset Control Register

The DBGPRCR Register characteristics are:
Purpose Controls reset and power-down related functionality.

Usage constraints The DBGPRCR Register is read-write with more restricted access to some

bits.
Configurations Available in all processor configurations.
Attributes See Table 12-22.

Figure 12-14 shows the bit assignments.

31 3210

Reserved

Hold internal reset4,

Force internal reset
No Power-down

Figure 12-14 DBGPRCR Register bit assignments
Table 12-22 shows the bit assignments.

Table 12-22 DBGPRCR Register bit assignments

Bits Name Function

[31:3] - Do not modify on writes. On reads, the value returns zero.

[2] Hold internal ~ Hold internal reset bit. This bit can be used to prevent the processor from running again before the debugger

reset detects a power-down event and restores the state of the debug registers in the processor. This bit does not

have any effect on initial system power-up, because nSYSPORESET clears it.
0 = Do not hold internal reset on power-up or warm reset. This is the reset value.
1 = Hold the processor non-debug logic in reset on warm reset until this flag is cleared.

[1] Force When a 1 is written to this bit, the processor asserts the DBGRSTREQm output for four cycles. You can

internal reset

connect this output to an external reset controller that, in turn, resets the processor.

[0] No
power-down

When set to 1, the DBGNOPWRDWN output signal is HIGH. This output connects to the system power
controller and is interpreted as a request to operate in emulate mode, if the system supports this functionality.
In this mode, the processor is not actually powered down when requested by software or hardware
handshakes. This mode is useful when debugging applications on top of working operating systems.
0=DBGNOPWRDWN is LOW. This is the reset value

1 =DBGNOPWRDWN is HIGH.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-31
Non-Confidential

Debug

12.4.18 Device Power-down and Reset Status Register

The DBGPRSR Register characteristics are:

Purpose Provides information about the reset and power-down state of the
processor.

Usage constraints The DBGPRSR Register is a read-only register, with reads of the register
also resetting some register bits.

Configurations Available in all processor configurations.
Attributes See Table 12-23.

Figure 12-15 shows the bit assignments.

31 43210

Sticky reset statu54,
Reset status

Sticky power-down status
Power-down status

Reserved

Figure 12-15 DBGPRSR Register bit assignments
Table 12-23 shows the bit assignments.

Table 12-23 DBGPRSR Register bit assignments

Bits Name Function
[31:4] - Do not modify on writes. On reads, the value returns zero.
[3] Sticky reset status Sticky reset status bit. This bit is cleared on read.
0 = the processor has not been reset since the last time this register was read. This is the reset value.
1 = the processor has been reset since the last time this register was read.
This sticky bit is set to | when nRESETm is asserted. This bit is reset to 0 by PRESETDBGmn.
2] Reset status Reset status bit:
0 = the processor is not held in reset
1 = the processor is held in reset.
This bit reads 1 when nRESETm is asserted.
[1] Sticky power-down Indicates if the core power domain has been powered down since the DBGPRCR was last read.
status? 0 = the CPU has not been powered down since the last read. This is the reset value.
1 = the CPU has been powered down since the last read.
If this bit is 1:
. The contents of the core domain debug registers have been lost and must be reprogrammed.
. Debug-APB transactions that access core domain debug registers receive an error response.
This bit is cleared to 0 on a read.
[0] Power-up status? Indicates the status of the core power domain.

0 = the CPU is powered-down, that is, it is in Dormant or Shutdown mode. Core-domain debug
registers cannot be accessed.
1 = the CPU is powered-up, that is, it is in Run or Standby mode. All debug registers can be accessed.

a. Ifyou are implementing a Split/Lock configuration, contact ARM for more information about the functionality of this bit.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-32
Non-Confidential

12.5 Management registers

Debug

The Management Registers define the standardized set of registers that all CoreSight

components implement. This section describes these registers.

Table 12-24 shows the contents of the Management Registers for the processor debug unit.

Table 12-24 Management Registers

(C:‘f;s(;at Ejg::t:rr Access Mnemonic Description

0xD00-0xDFC 832-895 R - See Processor ID Registers.

0xF00 960 RW DBGITCTRL See Integration Mode Control Register (DBGITCTRL) on
page 13-8.

0xFAQ 1000 DBGCLAIMSET See Claim Tag Set Register on page 12-34.

0xFA4 1001 DBGCLAIMCLR See Claim Tag Clear Register on page 12-35.

0xFBO 1004 DBGLAR See Lock Access Register on page 12-35.

0xFB4 1005 R DBGLSR See Lock Status Register on page 12-36.

0xFB8 1006 R DBGAUTHSTATU See Authentication Status Register on page 12-30.

S

0xFB8-0xFC4 1006-1009 R - Reserved.

0xFC8 1010 R DBGDEVID Device Identifier. Reserved.

0xFCC 1011 R DBGDEVTYPE See Device Type Register on page 12-36.

0xFDO-OxFFC 1012-1023 R - See Debug Identification Registers on page 12-37.

12.5.1 Processor ID Registers

The Processor ID Registers are read-only registers that return the same values as the
corresponding CP15 Main ID Register and Feature ID Registers. See Chapter 4 System Control
for more information about the information contained in these registers.

Table 12-25 shows the offset value, register number, mnemonic, and description that are
associated with each Process ID Register.

Table 12-25 Processor Identifier Registers

Offset (hex) Register number Mnemonic Function

0xD00 832 MIDR Main ID Register

0xD04 833 CTR Cache Type Register

0xD08 834 TCMTR TCM Type Register

0xDoC 835 - Alias of MIDR

0xD10 836 MPUIR MPU Type Register

0xD14 837 MPIDR Multiprocessor Affinity Register
0xD18-0xD1C 838-839 - Alias of MIDR

0xD20 840 ID_PFRO Processor Feature Register 0

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.
Non-Confidential

12-33

Debug

Table 12-25 Processor Identifier Registers (continued)

Offset (hex) Register number Mnemonic Function

0xD24 841 ID PFR1 Processor Feature Register 1
0xD28 842 ID_DFRO Debug Feature Register 0
0xD2C 843 ID_AFRO Auxiliary Feature Register 0
0xD30 844 ID_ MMFRO Processor Feature Register 0
0xD34 845 ID_ MMFR1 Processor Feature Register 1
0xD38 846 ID_ MMFR2 Processor Feature Register 2
0xD3C 847 ID_ MMFR3 Processor Feature Register 3
0xD40 848 ID_ISARO ISA Feature Register 0
0xD44 849 ID_ISARI ISA Feature Register 1
0xD48 850 ID_ISAR2 ISA Feature Register 2
0xD4C 851 ID_ISAR3 ISA Feature Register 3
0xD50 852 ID_ISAR4 ISA Feature Register 4
0xD54 853 ID_ISARS ISA Feature Register 5
0xD58-0xDFC 854-895 - Reserved, RAZ/SBZP

12.5.2 Claim Registers
The Claim Tag Set Register and the Claim Tag Clear Register enable an external debugger to
claim debug resources.
Claim Tag Set Register
The DBGCLAIMSET Register characteristics are:
Purpose Enables an external debugger to claim debug resources.

Usage constraints The DBGCLAIMSET Register is a read/write register, in which:
. the CLAIM bits are always RAO
. writing 0 to a CLAIM bit has no effect.

Configurations Auvailable in all processor configurations.
Attributes See Table 12-26 on page 12-35.

Figure 12-16 shows the bit assignments.

31 8 7 0

Reserved Claim tag set

Figure 12-16 DBGCLAIMSET Register bit assignments

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 12-34
ID021511 Non-Confidential

Debug

Table 12-26 shows the bit assignments.

Table 12-26 DBGCLAIMSET Register bit assignments

Bits Name Function

[31:8] - RAZ or SBZP.

[7:0] Claim tag set RAO. Sets claim tags on writes.

Writing bl to a specific claim tag set bit sets that claim tag. Writing b0 to a specific claim tag
bit has no effect. This register always reads 0xFF, indicating eight claim tags are implemented.

Claim Tag Clear Register

The DBGCLAIMCLR Register characteristics are:

Purpose Enables an external debugger to:
. read debug resources
. clear debug resources.

Usage constraints The DBGCLAIMCLR Register is a read/write register, in which:

. Reading this register returns the current claim tag value

. writing 0 to a CLAIM bit has no effect

. writing 1 to a specific claim tag clear bit clears that claim tag.
Configurations Auvailable in all processor configurations.
Attributes See Table 12-27.

Figure 12-16 on page 12-34 shows the bit assignments.

31 8 7 0

Reserved Claim tag clear

Figure 12-17 DBGCLAIMCLR Register bit assignments

Table 12-27 shows the bit assignments.

Table 12-27 DBGCLAIMCLR Register bit assignments

Bit Name Description

[31:8] - RAZ or SBZP.

[7:0] Claim tag clear R/W. Reset value is 0x00.

12.5.3 Lock Access Register

The DBGLAR is a write-only register that controls writes to the debug registers. The purpose
of the DBGLAR is to reduce the risk of accidental corruption to the contents of the debug
registers. It does not prevent all accidental or malicious damage. Because the state of the
DBGLAR is in the debug power domain, it is not lost when the processor powers down.

DBGLAR [31:0] contain a key that controls the lock status. To unlock the debug registers, write
a OxC5ACCESS key to this register. To lock the debug registers, write any other value. Accesses to
locked debug registers are ignored. The lock is set on reset.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-35
Non-Confidential

Debug

12.5.4 Lock Status Register

The DBGLSR Register characteristics are:
Purpose Returns the current lock status of the debug registers.

Usage constraints The DBGLSR is:

. a read-only register

. only defined in the memory-mapped interface
Configurations Available in all processor configurations.
Attributes See Table 12-28.

Figure 12-18 shows the bit assignments.

31 3210

32-bit access_,
Locked bit

Lock implemented bit

Reserved

Figure 12-18 DBGLSR Register bit assignments
Table 12-28 shows the bit assignments.

Table 12-28 DBGLSR Register bit assignments

Name Function

Do not modify on writes. On reads, the value returns zero.

32-bit access Indicates that a 32-bit access is required to write the key to the DBGLAR. This bit

always reads 0.

(0]

Locked bit Locked bit:

0 = Writes are permitted.
1 = Writes are ignored. This is the reset value.

Lock implemented bit Indicates that the OS lock functionality is implemented. This bit always reads 1.

12.5.5 Device Type Register

The DBGDEVTYPE Register characteristics are:

Purpose Indicates the type of debug component.

Usage constraints The DBGDEVTYPE Register is a read-only register.
Configurations Auvailable in all processor configurations.

Attributes See Table 12-29 on page 12-37.

Figure 12-19 on page 12-37 shows the bit assignments.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-36
Non-Confidential

Debug

31 8 7 4 3 0

Reserved Sub type | Main class

Figure 12-19 DBGDEVTYPE Register bit assignments

Table 12-29 shows the bit assignments.

Table 12-29 DBGDEVTYPE Register bit assignments

Bits Name Function

[31:8] - Do not modify on writes. On reads, the value returns zero.

[7:4] Subtype 0x1, indicates that the sub-type of the device is processor.

[3:0] Main class x5, indicates that the main class of the device is debug logic.

12.5.6 Debug ldentification Registers

The Debug Identification Registers are read-only registers that consist of the Peripheral
Identification Registers and the Component Identification Registers. The Peripheral
Identification Registers provide standard information that all CoreSight components require.
Only bits [7:0] of each register are used. The remaining bits Read-As-Zero.

The Component Identification Registers identify the processor as a CoreSight component. Only
bits [7:0] of each register are used, the remaining bits Read-As-Zero. The values in these
registers are fixed.

Table 12-30 shows the offset value, register number, and description that are associated with
each Peripheral Identification Register.

Table 12-30 Peripheral Identification Registers

Offset (hex) Register number Function

0xFDO 1012 Peripheral Identification Register 4
0xFD4 1013 Reserved
OxFD8 1014 Reserved
0xFDC 1015 Reserved
OXFEQ 1016 Peripheral Identification Register 0
OxFE4 1017 Peripheral Identification Register 1
OXFE8 1018 Peripheral Identification Register 2
OXFEC 1019 Peripheral Identification Register 3
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 12-37

ID021511 Non-Confidential

Debug

Table 12-31 shows fields that are in the Peripheral Identification Registers.

Table 12-31 Fields in the Peripheral Identification Registers

Field Size Description

4KB Count 4 bits Indicates the Log, of the number of 4KB blocks occupied by the debug device. The processor debug
registers occupy a single 4KB block, therefore this field is always 0x0.

JEP106 4+7 bits Identifies the designer of the processor. This field consists of a 4-bit continuation code and a 7-bit identity

Identity Code code. Because the processor is designed by ARM, the continuation code is 0x4 and the identity code is
0x3B. For more information see JEP106M, Standard Manufacture s Identification Code.

Part number 12 bits Indicates the part number of the processor. The part number for the processor is 0xC15.

Revision 4 bits Indicates the major and minor revision of the product. The major revision contains functionality changes
and the minor revision contains bug fixes for the product. The revision number starts at 0x0 and increments
by 1 at both major and minor revisions:
0x0 = r0p0
0x1 =rlp0
0x2 =rlpl.

RevAnd 4 bits Indicates the manufacturer revision number. This number starts at 0x0 and increments by the integrated
circuit manufacturer on metal fixes. For the Cortex-RS processor, the initial value is 0x0@ but this value can
be changed by the manufacturer.

Customer 4 bits Indicates an endorsed modification to the device. On this processor the value is always 0x0.

modified

Table 12-32 shows how the bit values correspond with the Peripheral ID Register 0 functions.

Table 12-32 Peripheral ID Register 0 functions

Bits Value Description

[31:8] - Reserved

[7:0] 0x15 Indicates bits [7:0] of the Part number for the processor

Table 12-33 shows how the bit values correspond with the Peripheral ID Register 1 functions.

Table 12-33 Peripheral ID Register 1 functions

Bits Value Description

[31:8] - Reserved

[7:4] 0xB Indicates bits [3:0] of the JEDEC JEP106 Identity Code

[3:0] oxC Indicates bits [11:8] of the Part number for the processor

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-38
Non-Confidential

Debug

Table 12-34 shows how the bit values correspond with the Peripheral ID Register 2 functions.

Table 12-34 Peripheral ID Register 2 functions

Bits Value Description

[31:8] - Reserved.

[7:4] - Indicates the revision number for the Cortex-R5 processor. This is the major revision number 7 in the
rn part of the rnpn description of the product revision status.

[3] ox1 This field is always set to 1. It indicates that the processor uses a JEP 106 identity code.

[2:0] 0x3 Indicates bits [6:4] of the JEDEC JEP106 Identity Code.

Table 12-35 shows how the bit values correspond with the Peripheral ID Register 3 functions.

Table 12-35 Peripheral ID Register 3 functions

Bits Value Description

[31:8] - Reserved.

[7:4] 0x0 Indicates the manufacturer revision number. This value changes based on the metal fixes made by the manufacturer.

[3:0] 0x0 Customer modified. See Table 12-31 on page 12-38.

Table 12-36 shows how the bit values correspond with the Peripheral ID Register 4 functions.

Table 12-36 Peripheral ID Register 4 functions

Bits Value Description

[31:8] - Reserved.

[7:4] 0x0 Indicates the number of blocks the debug component occupies. This field is always set to 0.
[3:0] 0x4 Indicates the JEDEC JEP106 continuation code. For the processor, this value is 4.

Table 12-37 shows the offset value, register number, and value that are associated with each
Component Identification Register.

Table 12-37 Component Identification Registers

Offset (hex) Register number Value Description

0XFFO 1020 0x0D Component Identification Register 0
OxFF4 1021 0x90 Component Identification Register 1
OXFF8 1022 0x05 Component Identification Register 2
OXFFC 1023 0xB1 Component Identification Register 3
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 12-39

ID021511

Non-Confidential

12.6 Debug events

Debug

A processor responds to a debug event in one of the following ways:

ignores the debug event
takes a debug exception
enters debug halt state.

This section describes:

Software debug event

Halting debug event on page 12-41.

Behavior of the processor on debug events on page 12-41
Debug event priority on page 12-41

Watchpoint debug events on page 12-41.

12.6.1 Software debug event

A software debug event is any of the following:

A watchpoint debug event. This occurs when:

— The data address for a load or store matches the watchpoint value.
— All the conditions of the corresponding DBGWCR match.

— The watchpoint is enabled.

— The linked context ID-holding BRP, if any, is enabled and its value matches the
context ID in CP15 c13. See Chapter 4 System Control.

— The instruction that initiated the memory access is committed for execution.

Watchpoint debug events are only generated if the instruction passes its condition code.

A breakpoint debug event. This occurs when:

— An instruction was fetched and the instruction address or the CP15 Context ID
register c13 matched the breakpoint value.

— Atthe same time the instruction was fetched, all the conditions of the corresponding
DBGBCR for unlinked context ID breakpoint generation matched the instruction
fetch.

— The breakpoint is enabled.
— The instruction is committed for execution. These debug events are generated

whether the instruction passes or fails its condition code.

A BKPT debug event. This occurs when a BKPT instruction is committed for execution.
BKPT is an unconditional instruction.
A vector catch debug event. This occurs when:

— Aninstruction was prefetched and the address matched a vector location address.
This includes any kind of prefetch, not only the ones because of exception entry.

— Atthe same time the instruction was fetched, the corresponding bit of the DBGVCR
was set, that is, the vector catch is enabled.

— The instruction is committed for execution. These debug events are generated
whether the instruction passes or fails its condition code.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-40
Non-Confidential

Debug

12.6.2 Halting debug event

The debugger or the system can cause the processor to enter into debug state by triggering any
of the following halting debug events:

. assertion of the EDBGRQm signal, an External Debug Request

. write to the DBGDRCR[0] Halt Request control bit.

When EDBGRQm is asserted while DBGENm is HIGH, the device asserting this signal must
hold it until the processor enters debug state, that is, until DBGACKm is asserted. The state of
the processor pipeline determines how long this takes. If the request is not held in this way, the
behavior of the processor is Unpredictable. For DBGDRCRJ0] halting debug events, the
processor records them internally until it is in a state and mode so that they can be taken.

12.6.3 Behavior of the processor on debug events

This section describes how the processor behaves on debug events while not in debug state. See
Debug state on page 12-45 for information on how the processor behaves while in debug state.
When the processor is in Monitor debug-mode, Prefetch Abort and Data Abort vector catch
debug events are ignored. All other software debug events generate a debug exception such as
Data Abort for watchpoints, and Prefetch Abort for anything else.

When debug is disabled, the BKPT instruction generates a debug exception, Prefetch Abort. All
other software debug events are ignored.

When DBGENm is LOW, debug is disabled regardless of the value of DBGDSCR[15:14].
Table 12-38 shows the behavior of the processor on debug events.

Table 12-38 Processor behavior on debug events

DBGENm DBGDSCR[15:14] Debug mode ‘:“‘,’;'n"t" on software debug ﬁ‘:ﬂ:;‘ :",‘eﬁ'““g
0 bxx Debug disabled Ignore or Prefetch Abort (for BKPT) Ignore

1 b00 None Ignore or Prefetch Abort (for BKPT) Debug state entry

1 bx1 Halting Debug state entry Debug state entry

1 b10 Monitor Debug exception Debug state entry

12.6.4 Debug event priority

Breakpoint, instruction address or CID match, vector catch, and halting debug events have the
same priority. If more than one of these events occurs on the same instruction, it is
Unpredictable which event is taken.

Breakpoint, instruction address or CID match and vector catch cancel the instruction that they
occur on, therefore a watchpoint cannot be taken on such an instruction.

12.6.5 Watchpoint debug events

A synchronous watchpoint exception has similar behavior to a synchronous data abort
exception:

. the processor sets R14 _abt to the address of the instruction to return to plus 0x08.
. the processor does not complete the watchpointed instruction.

If the watchpointed access is subject to a synchronous data abort, then the synchronous abort
takes priority over the watchpoint because it is a higher priority exception.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-41
Non-Confidential

Debug

12.7 Debug exception

The processor takes a debug exception when a software debug event occurs while in Monitor
debug-mode. Prefetch Abort and Data Abort Vector catch debug events are ignored. The debug
software must carefully program certain debug events to prevent the processor from entering an
unrecoverable state. If the processor takes a debug exception because of a breakpoint, BKPT, or
vector catch debug event, the processor performs the following actions:

. sets the DBGDSCR[5:2] method-of-entry bits to indicate that a breakpoint occurred

. sets the CP15 IFSR and IFAR registers as described in Effect of debug exceptions on CP15
registers and DBGWFAR on page 12-43

. performs the same sequence of actions as in a Prefetch Abort exception by:

— updating the SPSR_abt with the saved CPSR

— changing the CPSR to abort mode and the state indicated by the TE and EE bits with
normal interrupts and asynchronous aborts disabled

— setting R14_abt as for a regular Prefetch Abort exception, that is, this register holds
the address of the cancelled instruction plus 0x04

— setting the PC to the appropriate Prefetch Abort vector.

Note
The Prefetch Abort handler is responsible for checking the IFSR to determine if a debug
exception or other kind of Prefetch Abort exception caused the exception entry. If the cause is
a debug exception, the Prefetch Abort handler must branch to the debug monitor. The R14 _abt
register holds the address of the instruction to restart.

If the processor takes a debug exception because of a watchpoint debug event, the processor
performs the following actions:

. sets the DBGDSCR[5:2] method-of-entry bits to indicate that a synchronous watchpoint
occurred

. sets the CP15 DFSR, DFAR, and DBGWFAR registers as described in Effect of debug
exceptions on CP1)5 registers and DBGWFAR on page 12-43

. performs the same sequence of actions as in a Data Abort exception by:

— updating the SPSR_abt with the saved CPSR

— changing the CPSR to the state indicated by the TE and EE bits with normal
interrupts and asynchronous aborts disabled

— setting R14_abt as a regular Data Abort exception, that is, this register gets the
address of the cancelled instruction plus 0x08

— setting the PC to the appropriate Data Abort vector.

Note
The Data Abort handler must check the DFSR to determine if the exception entry was caused
by a Debug exception or other kind of Data Abort exception. If the cause is a Debug exception,
the Data Abort handler must branch to the debug monitor. The R14_abt register holds the
address of the instruction to restart.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-42
Non-Confidential

Debug

Table 12-39 shows the values in the link register after exceptions.

Table 12-39 Values in link register after exceptions

Cause of fault ARM Thumb Return address (RA2) meaning

Breakpoint RA+4 RA+4 Breakpointed instruction address

Watchpoint RA+8 RA+S8 Watchpointed instruction address

BKPT instruction RA+4 RA+4 BKPT instruction address

Vector catch RA+4 RA+4 Vector address
Prefetch Abort RA+4 RA+4 Address of the instruction where the execution can resume
Data Abort RA+8 RA+8 Address of the instruction where the execution can resume

a. This is the address of the instruction that the processor can execute first on debug exception return. The
address of the access that hit the watchpoint is in the DBGWFAR.

The following sections describe:

Effect of debug exceptions on CP15 registers and DBGWFAR
Avoiding unrecoverable states on page 12-44.

12.7.1 Effect of debug exceptions on CP15 registers and DBGWFAR

The four CP15 registers that record abort information are:

I.
2.
3.
4.

Data Fault Address Register (DFAR)
Instruction Fault Address Register (IFAR)
Instruction Fault Status Register (IFSR)
Data Fault Status Register (DFSR).

For more information on these registers, see Chapter 4 System Control.

If the processor takes a debug exception because of a watchpoint debug event, the processor
performs the following actions on these registers:

it does not change the IFSR or IFAR
it updates the DFSR with the debug event encoding
it writes an Unpredictable value to the DFAR

it updates the DBGWFAR with the address of the instruction that accessed the
watchpointed address, plus a processor state dependent offset:

— + 8 for ARM state
— +4 for Thumb state.

If the processor takes a debug exception because of a breakpoint, BKPT, or vector catch debug
event, the processor performs the following actions on these registers:

it updates the IFSR with the debug event encoding
it writes an Unpredictable value to the IFAR
it does not change the DFSR, DFAR, or DBGWFAR.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-43
Non-Confidential

Debug

12.7.2 Avoiding unrecoverable states

The processor ignores vector catch debug events on the Prefetch or Data Abort vectors while in
Monitor debug-mode because these events would otherwise put the processor in an
unrecoverable state.

The debuggers must avoid other similar cases by following these rules, that apply only if the
processor is in Monitor debug-mode:

. if DBGBCR[22:20] is set to b010, and unlinked context ID breakpoint is selected, then
the debugger must program DBGBCR[2:1] for the same breakpoint as stated in this
section

. if DBGBCRJ[22:20] is set to b100 or b101, and instruction address mismatch breakpoint
is selected, then the debugger must program DBGBCR]2:1] for the same breakpoint as
stated in this section.

The debugger must write DBGBCR][2:1] for the same breakpoint as either b00 or b10, that
selects either match in only USR, SYS, or SVC modes or match in only USR mode,
respectively. The debugger must not program either b01, that is, match in any Privileged mode,
or bl1, that is, match in any mode.

You must only request the debugger to write b00 to DBGBCR[2:1] if you know that the abort
handler does not switch to one of the USR, SYS, or SVC mode before saving the context that
might be corrupted by a later debug event. You must also be careful about requesting the
debugger to set a breakpoint or BKPT debug event inside a Prefetch Abort or Data Abort
handler, or a watchpoint debug event on a data address that any of these handlers might access.

In general, you must only set breakpoint or BKPT debug events inside an abort handler after it
saves the abort context. You can avoid breakpoint debug events in abort handlers by setting
DBGBCR]2:1] as previously described.

If the code being debugged is not running in a Privileged mode, you can prevent watchpoint
debug events in abort handlers by setting DBGWCR[2:1] to b10 for match only non-privileged
accesses.

Failure to follow these guidelines can lead to debug events occurring before the handler is able
to save the context of the abort. This causes the corresponding registers to be overwritten, and
results in Unpredictable software behavior.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-44
Non-Confidential

12.8 Debug state

Debug

The debug state enables an external agent, usually a debugger, to control the processor following
a debug event. While in debug state, the processor behaves as follows:

. The DBGDSCR[0] core halted bit is set.
. The DBGACKm signal is asserted, see DBGACKm on page 12-51.
. The DBGDSCR[5:2] method of entry bits are set appropriately.

. The processor is halted. The pipeline is flushed and no instructions are fetched.
. The processor does not change the execution mode. The CPSR is not altered.

. Exceptions are treated as described in Exceptions in debug state on page 12-48.
. Interrupts are ignored.

. New debug events are ignored.

The following sections describe:

. Entering debug state

. Behavior of the PC and CPSR in debug state on page 12-46
. Executing instructions in debug state on page 12-46

. Writing to the CPSR in debug state on page 12-47

. Privilege on page 12-47

. Accessing registers and memory on page 12-47

. Coprocessor instructions on page 12-47

. Effect of debug state on non-invasive debug on page 12-48
. Effects of debug events on processor registers on page 12-48
. Exceptions in debug state on page 12-48

. Leaving debug state on page 12-49.

12.8.1 Entering debug state

When a debug event occurs while the processor is in Halting debug-mode, it switches to a
special state called debug state so the debugger can take control. You can configure Halting
debug-mode by setting DBGDSCR[14].

If a halting debug event occurs, the processor enters debug state even when Halting debug-mode
is not configured. While the processor is in debug state, the PC does not increment on instruction
execution. If the PC is read at any point after the processor has entered debug state, but before
an explicit PC write, it returns a value as described in Table 12-40, depending on the previous
state and the type of debug event.

Table 12-40 shows the read PC value after debug state entry for different debug events.

Table 12-40 Read PC value after debug state entry

Debug event

ARM Thumb Return address (RA) meaning

Breakpoint

Watchpoint

RA+8 RA+4 Breakpointed instruction address.

RA+8 RA+4 Watchpointed instruction address.

BKPT instruction

RA+8 RAH4 BKPT instruction address.

Vector catch

RA+8 RA+4 Vector address.

External debug request signal activation =~ RA+8 RA+4 Address of the instruction where the execution resumes.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-45
Non-Confidential

Debug

Table 12-40 Read PC value after debug state entry (continued)

Debug event

ARM Thumb Return address (RA) meaning

Debug state entry request command RA+8 RA+4 Address of the instruction where the execution resumes.
OS unlock event RA+8 RA+4 Address of the instruction where the execution resumes.
CTI debug request signal RA+8 RA+4 Address of the instruction where the execution resumes.

12.8.2 Behavior of the PC and CPSR in debug state

The behavior of the PC and CPSR registers while the processor is in debug state is as follows:

The PC is frozen on entry to debug state. That is, it does not increment on the execution
of ARM instructions. However, the processor still updates the PC as a response to
instructions that explicitly modify the PC.

If the PC is read after the processor has entered debug state, it returns a value as described
in Table 12-40 on page 12-45, depending on the previous state and the type of debug
event.

If the debugger executes a sequence for writing a certain value to the PC and subsequently
it forces the processor to restart without any additional write to the PC or CPSR, the
execution starts at the address corresponding to the written value.

If the debugger forces the processor to restart without having performed a write to the PC,
the restart address is Unpredictable.

If the debugger writes to the CPSR, subsequent reads from the PC return an Unpredictable
value, and if it forces the processor to restart without having performed a write to the PC,
the restart address is Unpredictable. However, CPSR reads after a CPSR write return the
written value.

If the debugger writes to the PC, subsequent reads from the PC return an Unpredictable
value.

If the debugger forces the processor to execute an instruction that writes to the PC and this
instruction fails its condition codes, the PC is written with an Unpredictable value. That
is, if the debugger forces the processor to restart, the restart address is Unpredictable.
Also, if the debugger reads the PC, the read value is Unpredictable.

While the processor is in debug state, the CPSR does not change unless written to by an
instruction. In particular, the CPSR IT execution state bits do not change on instruction
execution. The CPSR IT execution state bits do not have any effects on instruction
execution.

If the processor executes a data processing instruction with Rd==R15 and S==0, then
alu-out[0] must equal the current value of the CPSR T bit, otherwise the processor
behavior is Unpredictable.

12.8.3 Executing instructions in debug state

In debug state, the processor executes instructions issued through the Instruction Transfer
Register (DBGITR). Before the debugger can force the processor to execute any instruction, it
must enable this feature through DBGDSCR[13].

While the processor is in debug state, it always decodes instructions from the DBGITR as per
the ARM instruction set, regardless of the value of the T and J bits of the CPSR.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-46
Non-Confidential

Debug

The following restrictions apply to instructions executed through the DBGITR while in debug
state:

. with the exception of branch instructions and instructions that modify the CPSR, the
processor executes any ARM instruction in the same manner as if it was not in debug state

. the branch instructions B, BL, BLX(1), and BLX(2) are Unpredictable
. certain instructions that normally update the CPSR are Unpredictable

. instructions that load a value into the PC from memory are Unpredictable.

12.8.4 Writing to the CPSR in debug state

The only instruction that can update the CPSR while in debug state is the MSR instruction. All
other ARMv7 instructions that write to the CPSR are Unpredictable, that is, the BX, BXJ, SETEND,
CPS, RFE, LDM(exception return), and data processing instructions with Rd==R15 and S==1.

The behavior of the CPSR forms of the MSR and MRS instructions in debug state is different to their
behavior in normal state:

. When not in debug state, an MSR instruction that modifies the execution state bits in the
CPSR is Unpredictable. However, in debug state an MSR instruction can update the
execution state bits in the CPSR. An Instruction Synchronization Barrier (ISB) sequence
must follow a direct modification of the execution state bits in the CPSR by an MSR
instruction.

. When not in debug state, an MRS instruction reads the CPSR execution state bits as zeros.
However, in debug state an MRS instruction returns the actual values of the execution state.

The debugger must execute an ISB sequence after it writes to the CPSR execution state bits using
an MSR instruction. If the debugger reads the CPSR using an MRS instruction after a write to any
of these bits, but before an ISB sequence, the value that MRS returns is Unpredictable. Similarly,
if the debugger forces the processor to leave debug state after an MSR writes to the execution state
bits, but before any ISB sequence, the behavior of the processor is Unpredictable.

12.8.5 Privilege

When the processor is in debug state, ARM instructions issued through the DBGITR are subject
to different rules about whether they can perform privileged actions. The general rule is that all
instructions and operations are permitted in debug state.

12.8.6 Accessing registers and memory

The processor always accesses register banks and memory as indicated by the CPSR mode bits,
in both normal and debug state. For example, if the CPSR mode bits indicate the processor is in
User mode, ARM register reads and returns the User mode banked registers, and memory
accesses are presented to the MPU as not privileged.

12.8.7 Coprocessor instructions

CP14 and CP15 instructions can always be executed in debug state regardless of processor
mode.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 12-47
ID021511 Non-Confidential

Debug

12.8.8 Effect of debug state on non-invasive debug

The processor non-invasive debug features are the ETM and Performance Monitoring Unit
(PMU). All of these non-invasive debug features are disabled when the processor is in debug
state. For more information, see Chapter 4 System Control and ETM interface on page 2-11.

When the processor is in debug state:

. the ETM ignores all instructions and data transfers
. PMU events are not counted
. events are not visible to the ETM

. the PMU Cycle Count Register (CCNT) is stopped.

12.8.9 Effects of debug events on processor registers

On entry to debug state, the processor does not update any general-purpose or program status
register. This includes the SPSR_abt and R14_abt registers. In addition, the processor does not
update any coprocessor registers, including the CP15 IFSR, DFSR, DFAR, or IFAR registers,
except for CP14 DBGDSCR[5:2] method-of-entry bits. These bits indicate the type of debug
event that caused the entry into debug state.

Note

On entry to debug state because of a watchpoint debug event, the processor updates the
DBGWFAR register with the address of the instruction accessing the watchpointed address
plus:

. + 8 in ARM state

. + 4 in Thumb state.

12.8.10 Exceptions in debug state

While in debug state, exceptions are handled as follows:

Reset This exception is taken as in a normal processor state. This means the processor
leaves debug state because of the system reset.

Prefetch Abort
This exception cannot occur because the processor does not fetch any instructions
while in debug state.

Debug The processor ignores debug events, including BKPT instructions.

SvC The processor ignores SVC exceptions.

Undefined When an Undefined Instruction exception occurs in debug state, the behavior of
the processor is as follows:

. PC, CPSR, SPSR_und, and R14 und are unchanged
. the processor remains in debug state
. DBGDSCR][8], sticky Undefined bit, is set.

Synchronous Data abort

When a synchronous Data Abort occurs in debug state, the behavior of the
processor is as follows:

. PC, CPSR, SPSR_abt, and R14_abt are unchanged
. the processor remains in debug state
. DBGDSCR[6], sticky synchronous data abort bit, is set

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-48
Non-Confidential

Debug

. DFSR and DFAR are set to the same values as if the abort had occurred in
normal state.
Asynchronous Data Abort

When an asynchronous Data Abort occurs in debug state, the behavior of the
processor is as follows, regardless of the setting of the CPSR A bit:

. PC, CPSR, SPSR_abt, and R14_abt are unchanged

. the processor remains in debug state

. DBGDSCR[7], sticky asynchronous data abort bit, is set
. the DFSR remains unchanged

. the processor does not act on this asynchronous Data Abort on exit from the
debug state, that is, the asynchronous abort is discarded.

Asynchronous Data Aborts on entry and exit from debug state

On entering debug state, the processor executes a Data Synchronization Barrier (DSB)
sequence to ensure that any outstanding asynchronous Data Aborts are detected, before starting
debug operations.

If the DSB operation detects an asynchronous Data Abort, the processor records this event and
its type as if the CPSR A bit was set. The purpose of latching this event is to ensure that it can
be taken on exit from the debug state.

Before forcing the processor to leave debug state, the debugger must execute a DSB sequence
to ensure that all debugger-generated asynchronous Data Aborts are detected, and therefore
discarded, while still in debug state. After exiting debug state, the processor acts on any
previously recorded asynchronous Data Aborts if permitted by the CPSR A bit.

12.8.11 Leaving debug state

The debugger can force the processor to leave debug state:
. by setting the restart request bit, DBGDRCR[1], to 1

. through the Cross Trigger Interface (CTI) external restart request mechanism, using the
DBGRESTARTm and DBGRESTARTEDm signals.

When one of those restart requests occurs, the processor:

1. Clears the DBGDSCRJ1] core restarted flag.

2. Leaves debug state.

3. Clears the DBGDSCRJ0] core halted flag.

4. Drives the DBGACKm signal LOW, unless the DBGDSCR[11] DbgAck bit is set to 1.

5. Starts executing instructions from the address last written to the PC in the processor mode
and state indicated by the current value of the CPSR. The CPSR IT execution state bit is
restarted with the current value applying to the first instruction on restart.

6. Sets the DBGDSCR][1] core restarted flag to 1.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 12-49
ID021511 Non-Confidential

Debug

12.9 Cache debug

This section describes cache debug. It consists of:
. Cache pollution in debug state

. Cache coherency in debug state

. Cache usage profiling.

12.9.1 Cache pollution in debug state

If bit [0] of the Debug State Cache Control Register (DBGDSCCR) is set to 0 while the
processor is in debug state, then the L1 data cache does not perform any line fill.

Note

No special feature is required to prevent L1 instruction cache pollution because instruction side
fetches cannot occur while in debug state.

12.9.2 Cache coherency in debug state

The debugger can update memory while in debug state:
. to replace an instruction with a BKPT, or to restore the original instruction
. to download code for the processor to execute on leaving debug state.

The debugger can maintain cache coherency in both these situations with the following features:

. If bit [2] of the DBGDSCCR is set to 0 while the processor is in debug state, then the
processor treats any memory access that hits in L1 data cache as write-through, regardless
of the memory region attributes. This guarantees that the L1 instruction cache can see the
changes to the code region without the debugger executing a sequence of cache clean
operations.

. After the code is written to memory, the debugger can execute either a CP15 instruction
cache invalidate all operation, or a CP15 instruction cache invalidate line operation.

Note

The processor can normally execute CP15 instruction cache invalidate all operation or CP15
instruction cache invalidate line operation only in Privileged mode. However, in debug state the
processor can execute these instructions even when invasive debug is not permitted in
Privileged mode. This exception to the rule enables the debugger to maintain coherency.

12.9.3 Cache usage profiling

You can obtain cache usage profiling information using the Performance Monitoring Unit
(PMU). The processor can count cache accesses and misses over a period of time. See Chapter 6
Events and Performance Monitor.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-50
Non-Confidential

Debug

12.10 External debug interface

12.10.1 APB signals

The system can access memory-mapped debug registers through the processor APB slave ports.
This section describes the APB interface and the miscellaneous debug input and output signals:

. APB signals
. Miscellaneous debug signals
. Authentication signals on page 12-52.

The APB slave ports are compliant with the AMBA 3 APB Protocol Specification and can be
connected to the Debug Access Port (DAP). This APB slave interface supports 32-bits wide
data, stalls, slave-generated aborts, and ten address bits [11:2] mapping 4KB of memory. An
extra PADDRDBG31m signal indicates to the CPU the source of access.

Table A-21 on page A-26 shows the external debug interface signals.

12.10.2 Miscellaneous debug signals

This section describes the miscellaneous debug signals.

EDBGRQmM

This signal generates a halting debug event, that is, it requests the CPU to enter debug state.
When this occurs, the DBGDSCR[5:2] method-of-debug entry bits are set to b0100. When
EDBGRQm is asserted, it must be held until DBGACKm is asserted. Failure to do so leads to
Unpredictable behavior of the processor.

DBGACKm

The CPU asserts DBGACKm to indicate that the system has entered debug state. It serves as a
handshake for the EDBGRQm signal. The DBGACKm signal is also driven HIGH when the
debugger sets the DBGDSCR[10] DbgAck bit to 1.

DBGNOPWRDWN

The CPU asserts DBGNOPWRDWN when bit [0] of the Device Power down and Reset
Control Register is 1 in either CPU. The processor power controller must work in Emulate mode
when this signal is HIGH.

DBGROMADDR

The DBGROMADDR signal specifies bits [31:12] of the debug ROM physical address. This
is a configuration input and must be tied off or only change while the processor is in reset. In a
system with multiple debug ROMs, this address must be tied off to point to the top-level ROM
address.

DBGROMADDRY is the valid signal for DBGROMADDR. If the address cannot be
determined, DBGROMADDR must be tied off to zero and DBGROMADDRY must be tied
LOW. The value of these signals can be read from the Debug ROM Address Register
(DBGDRAR).

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-51
Non-Confidential

Debug

DBGSELFADDRm

The DBGSELFADDRm signal specifies bits [31:12] of the offset from the debug ROM
physical address to the physical address where the CPU APB port is mapped to the base of the
4KB debug register map. This is a configuration input and must be tied off or only change while
the CPU is in reset.

DBGSELFADDRVm is the valid signal for DBGSELFADDRm. If the offset cannot be
determined, DBGSELFADDRm must be tied off to zero and DBGSELFADDRVmM must be
tied LOW. The value of these signals can be read from the Debug Self Address Register (DSAR).
DBGRESTARTmM

The DBGRESTARTm signal is used to bring the CPU out of debug halt state. The CPU
acknowledges DBGRESTARTm by asserting DBGRESTARTEDm, and then starts fetching
instructions when DBGRESTARTm is deasserted.

DBGRESTARTEDmM

The CPU asserts DBGRESTARTEDmM in response to a DBGRESTARTm request, when it is
ready to exit debug halt state and return to normal run state.

DBGTRIGGERmM

The CPU asserts DBGTRIGGERmM to indicate that the system has accepted a debug request
and attempts to enter debug state. It is not a handshake for the EDBGRQm signal. If
DBGACKm does not go HIGH following DBGTRIGGERM, the memory system has stopped
responding and the CPU has not entered debug state.

Table A-22 on page A-26 shows the debug miscellaneous signals.

12.10.3 Authentication signals

Table 12-41 shows a list of the valid authentication signals and the associated debug
permissions. Authentication signals are used to configure the CPU so its activity can only be
debugged or traced in a certain subset of CPU modes.

Table 12-41 Authentication signal restrictions

Non-invasive debug permitted

DBGENm2 NIDENm in User and Privileged modes

0 0 No
X 1 Yes
1 0 Yes

a. When DBGENm is LOW, the processor behaves as if
DBGDSCR[15:14] equals b00 with the exception that halting
debug events are ignored when this signal is LOW.

Changing the authentication signals

The NIDENm, and DBGENm input signals are either tied off to some fixed value or controlled
by some external device.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 12-52
ID021511 Non-Confidential

Debug

If software running on the CPU has control over an external device that drives the authentication
signals, it must make the change using a safe sequence:

1. Execute an implementation-specific sequence of instructions to change the signal value.
For example, this might be a single STR instruction that writes certain value to a control
register in a system peripheral.

2. Ifstep 1 involves any memory operation, issue a Data Synchronization Barrier (DSB)
instruction.

3. Poll the DBGDSCR or DBGAUTHSTATUS to check whether the CPU has already
detected the changed value of these signals. This is required because the system might not
issue the signal change to the CPU until several cycles after the DSB completes.

4. Issue an Instruction Synchronization Barrier (ISB) instruction.

The software cannot perform debug or analysis operations that depend on the new value of the
authentication signals until this procedure is complete. The same rules apply when the debugger
has control of the CPU through the DBGITR while in debug state.

The values of the DBGENm and NIDENm signals can be determined by polling
DBGDSCR[17:16], DBGDSCR[15:14], or the DBGAUTHSTATUS.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 12-53
ID021511 Non-Confidential

Debug

12.11 Using the debug functionality

This section provides some examples of using the processor debug functionality, both from the
point of view of a software engineer writing code to run on an ARM processor and of a
developer creating debug tools for the processor. In the former case, examples are given in ARM
assembly language. In the latter case, the examples are in C pseudo-language, intended to
convey the algorithms to be used. These examples are not intended as source code for a
debugger.

The debugger examples use a pair of pseudo-functions such as the following:

uint32 ReadDebugRegister(int reg_num)

{

// read the value of the debug register reg_num at address reg_num << 2

}

WriteDebugRegister(int reg_num, uint32 val)

{

// write the value val to the debug register reg_num at address reg_num >> 2

}

A basic function for using the debug state is executing an instruction through the DBGITR.
Example 12-1 shows the sequence for executing an ARM instruction through the DBGITR.

Example 12-1 Executing an ARM instruction through the DBGITR

ExecuteARMInstruction(uint32 instr)

{

// Step 1. Po11 DBGDSCR until InstrCompl_T1 is set.
repeat

{

}

until (dbgdscr & (1<<24));

// Step 2. Write the opcode to the DBGITR.
WriteDebugRegister(33, instr);

// Step 3. Pol1 DBGDSCR until InstrCompl is set.
repeat

dbgdscr := ReadDebugRegister(34);

dbgdscr := ReadDebugRegister(34);

}
until (dbgdscr & (1<<24);

This section describes:

Debug communications channel on page 12-55

Programming breakpoints and watchpoints on page 12-57
Single-stepping on page 12-60

Debug state entry on page 12-61

Debug state exit on page 12-62

Accessing registers and memory in debug state on page 12-63.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-54
Non-Confidential

Debug

12.11.1 Debug communications channel

There are two ways that an external debugger can send data to or receive data from the
processor:

The debug communications channel, when the processor is not in debug state. It is defined
as the set of resources used for communicating between the external debugger and
software running on the processor.

The mechanism for forcing the processor to execute ARM instructions, when the
processor is in debug state. For more information, see Executing instructions in debug
state on page 12-46.

Rules for accessing the DCC

At the processor side, the debug communications channel resources are:

CP14 Debug Register ¢5 (DTR, comprising DBGDTRTXint and DBGDTRRXint)
CP14 Debug Register c1 (DBGDSCRint).

The ARMv7 debug architecture is implemented on the processor so that:

If a read of the DBGDSCRIint returns 1 for the RXfull flag, a following read of the
DBGDTRRXint returns valid data and RXfull is cleared. No ISBis required between these
two CP14 instructions.

If a read of the CP14 DBGDSCRIint returns 1 for the TXfull flag, a following write to the
DBGDTRTXext is Unpredictable.

If a read of the CP14 DBGDSCRint returns 0 for the RXfull flag, a following read of the
CP14 DTR returns an Unpredictable value.

If a read of the CP14 DBGDSCRint returns 0 for the TXfull flag, a following write to the
CP14 DTR writes the intended 32-bit word, and sets TXfull to 1. No ISB is required
between these two CP14 instructions.

When Nonblocking mode is selected for DTR accesses, the following conditions are true for
memory-mapped DBGDSCR, DBGDTRRXext, and DBGDTRTXext registers:

If a read of the DBGDSCRext returns 0 for the TXfull flag, a following read of the
memory-mapped DBGDTRTX is ignored. The content of TXfull is unchanged and the
read returns an UNKNOWN value.

If a read of the DBGDSCRext returns 0 for the RXfull flag, a following write of the
memory-mapped DBGDTRRX passes valid data to the processor and sets RXfull to 1.

If a read of the DBGDSCRext returns 1 for the TXfull flag, a following read of the
DBGDTRTXext returns valid data and clears TXfull.

If a read of the DBGDSCRext returns 1 for the RXfull flag, a following write of the
memory-mapped DBGDTRRXext is ignored, that is, both RXfull and DBGDTRRX
contents are unchanged.

Software access to the DCC

Software running on the processor that sends data to the debugger through the target-to-host
channel can use the sequence of instructions that Example 12-2 on page 12-56 shows.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-55
Non-Confidential

Debug

Example 12-2 Target to host data transfer (target end)

; rd -> word to send to the debugger

WriteDCC MRC pl4, 0, PC, c0, cl1, 0
BEQ WriteDCC
MCR pl4, 0, Rd, c@, c5, 0
BX Ir

Example 12-3 shows the sequence of instructions for sending data to the debugger through the
host-to-target channel.

Example 12-3 Host to target data transfer (target end)

; r@ -> word sent by the debugger

ReadDCC MRC pl4, 0, PC, c0, cl, 0
BCC ReadDCC
MRC pl4, 0, Rd, c@, c5, 0
BX Ir

Debugger access to the DCC

A debugger can access the DCC through the external interface. The following examples show
the pseudo-code operations for these accesses.

Example 12-4 shows the code for target-to-host data transfer.

Example 12-4 Target to host data transfer (host end)

uint32 ReadDCC()

{
// Step 1. Poll DBGDSCR until TXfull is set to 1.
repeat
{

dbgdscr := ReadDebugRegister(34);
}
until (dbgdscr & (1<<29));
// Step 2. Read the value from DBGDTRTX.
dtr_val := ReadDebugRegister(35);

return dtr_val;

Example 12-5 shows the code for host-to-target data transfer.

Example 12-5 Host to target data transfer (host end)

WriteDCC(uint32 dtr_val)

{
// Step 1. Pol1l DBGDSCR until RXfull is clear.

repeat

dbgdscr := ReadDebugRegister(34);

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-56
Non-Confidential

Debug

until (!(dbgdscr & (1<<30)));
// Step 2. Write the value to DBGDTRRX.
WriteDebugRegister(32, dtr_val);

While the processor is running, if the DCC is used as a data channel, it might be appropriate to
poll the DCC regularly.

Example 12-6 shows the code for polling the DCC.

Example 12-6 Polling the DCC (host end)

Po11DCC

{
dbgdscr := ReadDebugRegister(34);
if (dbgdscr & (1<<29))

{
// DBGDTRTX (target -> host transfer register) full
dtr := ReadDebugRegister(35)
ProcessTargetToHostWord(dtr);

}

if (!(dbgdscr & (1<<30)))

{
// DBGDTRRX (host -> target transfer register) empty
dtr := GetNextHostToTargetWord()
WriteDebugRegister(32, dtr);

}

12.11.2 Programming breakpoints and watchpoints

This section describes the following operations:

. Programming simple breakpoints and the byte address select
. Setting a simple aligned watchpoint on page 12-58

. Setting a simple unaligned watchpoint on page 12-59.

Programming simple breakpoints and the byte address select

When programming a simple breakpoint, you must set the byte address select bits in the control
register appropriately. For a breakpoint in ARM state, this is simple. For Thumb state, you must
calculate the value based on the address.

For a simple breakpoint, you can program the settings for the other control bits as Table 12-42
shows:

Table 12-42 Values to write to DBGBCR for a simple breakpoint

Bits Value to write Description

[31:29] 0b00O Reserved

[28:24] 0b00000 Breakpoint address mask

[23] 0b0 Reserved

[22:20] 0b0O0O Meaning of DBGBVR
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 12-57

ID021511

Non-Confidential

Debug

Table 12-42 Values to write to DBGBCR for a simple breakpoint (continued)

Bits Value to write Description
[19:16] 0b0000 Linked BRP number
[15:9] 0b00 Reserved

[8:5] Derived from address ~ Byte address select

[4:3] 0b00 Reserved
[2:1] 0Obl1 Supervisor access control
[0] Obl Breakpoint enable

Example 12-7 shows the sequence of instructions for setting a simple breakpoint.

Example 12-7 Setting a simple breakpoint

SetSimpleBreakpoint(int break_num, uint32 address, iset_t isa)

{

// Step 1. Disable the breakpoint being set.

WriteDebugRegister(80 + break_num, 0x0);

// Step 2. Write address to the DBGBVR, leaving the bottom 2 bits zero.

WriteDebugRegister(64 + break_num, address & @OxFFFFFFC);

// Step 3. Determine the byte address select value to use.

case (isa) of

{

// Note: The processor does not support Jazelle or ThumbEE states

when THUMB:
byte_address_select :

when ARM:
byte_address_select :

(3 << (address & 2));

15;

}

// Step 4. Write the mask and control register to enable the breakpoint.
WriteDebugRegister(80 + break_num, 7 | (byte_address_select << 5));

Setting a simple aligned watchpoint

The simplest and most common type of watchpoint watches for a write to a given address in
memory. In practice, a data object spans a range of addresses but is aligned to a boundary
corresponding to its size, so you must set the byte address select bits in the same way as for a
breakpoint.

For a simple watchpoint, you can program the settings for the other control bits as Table 12-43
shows:

Table 12-43 Values to write to DBGWCR for a simple watchpoint

Bits Value to write Description
[31:29] 0b00O Reserved
[28:24] 0b00000 Watchpoint address mask
[23:21] 0b000 Reserved
[20] 0b0 Enable linking
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 12-58

ID021511

Non-Confidential

Debug

Table 12-43 Values to write to DBGWCR for a simple watchpoint (continued)

Bits Value to write Description
[19:16] 0b0000 Linked BRP number
[15:13] 0b0O Reserved

[12:5] Derived from address ~ Byte address select

[4:3] 0b10 Load/Store access control
[2:1] Obl1 Privileged access control
[0] Obl Watchpoint enable

Example 12-8 shows the code for setting a simple aligned watchpoint.

Example 12-8 Setting a simple aligned watchpoint

SetSimpleAlignedWatchpoint(int watch_num, uint32 address, int size)

{

// Step 1. Disable the watchpoint being set.

WriteDebugRegister(112 + watch_num, 0);

// (Step 2. Write address to the DBGWVR, Tleaving the bottom 3 bits zero.
WriteDebugRegister(96 + watch_num, address & OxFFFFFF8);

// Step 3. Determine the byte address select value to use.

case (size) of

{
when 1:

byte_address_select := (1 << (address & 7));
when 2:

byte_address_select := (3 << (address & 6));
when 4:

byte_address_select := (15 << (address & 4));
when 8:

byte_address_select := 255;
}

// Step 4. Write the mask and control register to enable the watchpoint.
WriteDebugRegister(112 + watch_num, 23 | (byte_address_select << 5));

Setting a simple unaligned watchpoint

Using the byte address select bits, certain unaligned objects up to a doubleword (64 bits) can be
watched in a single watchpoint. However, this cannot cover all cases, and in many cases a
second watchpoint might be required.

Table 12-44 shows some examples.

Table 12-44 Example byte address masks for watchpointed objects

. Objectsize Firstaddress First byte Second address Second byte
Address of object .
in bytes value address mask value address mask
0x00008000 1 0x00008000 0b00000001 Not required -
0x00008007 1 0x00008000 0b10000000 Not required -
0x00009000 2 0x00009000 0b00000011 Not required -
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 12-59

ID021511

Non-Confidential

Debug

Table 12-44 Example byte address masks for watchpointed objects (continued)

Address of object _Object size Firstaddress First byte Second address Second byte
in bytes value address mask value address mask

0x0000900c 2 0x00009000 0b11000000 Not required -

0x0000900d 2 0x00009000 0b10000000 0x00009008 0b00000001

0x0000A000 4 0x0000A000 0b00001111 Not required -

0x0000A003 4 0x0000A000 0b01111000 Not required -

0x0000A005 4 0x0000A000 0b11100000 0x0000A008 0b00000001

0x0000B000 8 0x0000B000 Ob11111111 Not required -

0x0000B001 8 0x0000B000 Ob11111110 0x0000B008 0b00000001

Example 12-9 shows the code for setting a simple unaligned watchpoint.

Example 12-9 Setting a simple unaligned watchpoint

bool SetSimpleWatchpoint(int watch_num, uint32 address, int size)

{

// Step 1. Disable the watchpoint being set.

WriteDebugRegister(112 + watch_num, 0x0);

// Step 2. Write addresses to the DBGWVRs, leaving the bottom 3 bits zero.
WriteDebugRegister(96 + watch_num, (address & OxFFFFFF8));

// Step 3. Determine the byte address select value to use.

byte_address_select
byte_address_select

1= (1 << size) - 1;
:= (byte_address_select) << (address & 7);

// Step 4. Write the mask and control register to enable the breakpoint.
WriteDebugRegister (112 + watch_num, 5'b23 | ((byte_address_select & OxFF) << 5));
// Step 5. Set second watchpoint if required. This is the case if the byte

// address mask is more than 8 bits.

if (byte_address_select >= 256)

{

}

WriteDebugRegister(112 + watch_num + 1, 0);
WriteDebugRegister(96 + watch_num + 1, (address & OxFFFFFF8) + 8);
WriteDebugRegister(112 + watch_num + 1 23| ((byte_address_select & OxFF0Q) >> 3));

// Step 6. Return flag to caller indicating if second watchpoint was used.
return (byte_address_select >= 256)

12.11.3 Single-stepping

You can use the breakpoint mismatch bit to implement single-stepping on the processor. Unlike
high-level stepping, single-stepping implements a low-level step that executes a single
instruction at a time. With high-level stepping, the instruction is decoded to determine the
address of the next instruction and a breakpoint is set at that address.

Example 12-10 on page 12-61 shows the code for single-stepping off an instruction. The
processor must be configured for halt-mode debugging.

ARM DDI 0460C

ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-60
Non-Confidential

Debug

Example 12-10 Single-stepping off an instruction

SingleStepOff(uint32 address)

{
bkpt := FindUnusedBreakpointWithMismatchCapability();
SetComplexBreakpoint(bkpt, address, 4 << 20);

Note

In Example 12-10, the third parameter of SetComplexBreakpoint() indicates the value to set
DBGBCR][22:20].

This method of single-stepping steps off the instruction that might not necessarily be the same
as stepping to the next instruction executed. In certain circumstances, the next instruction
executed might be the same instruction being stepped off.

The simplest example of this is a branch to a self instruction such as (B .). In this case, the
wanted behavior is most likely to step off the branch to self because this is often used as a means
of waiting for an interrupt.

A more complex example is a return from function that returns to the same point. For example,
a simple recursive function might terminate with:

BL ThisFunction
POP {saved_registers, pc}

In this case, the POP instruction loads a link register that is saved at the start of the function, and
if that is the link register created by the BL instruction shown, it points back at the POP instruction.
Therefore, this single step code unwinds the entire call stack to the point of the original caller,
rather than stepping out a level at a time. It is not possible to single step this piece of code using
either the high-level or low-level stepping methods.

12.11.4 Debug state entry

On entry to debug state, the debugger can read the processor state, including all registers and
the PC, and determine the cause of the exception from the DBGDSCR method-of-entry bits.

Example 12-11 shows the code for entry to debug state.

Example 12-11 Entering debug state

OnEntryToDebugState (PROCESSOR_STATE =xstate)

{

// Step 1. Read the DBGDSCR to determine the cause of debug entry.

state->dbgdscr

:= ReadDebugRegister(34);

// Step 2. Issue a DataSynchronizationBarrier instruction if required;
// this is not required by the Cortex-R5 processor but is required for ARMv7

// debug.

if ((state->dbgdscr & (1<<19)) == 0)

{

ExecuteARMInstruction(OxE57FF040)
// Step 3. Pol1 the DBGDSCR for DBGDSCR[19] to be set.

:= ReadDebugRegister(34);

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-61
Non-Confidential

Debug

until (dbgdscr & (1<<19));
}
// Step 4. Read the entire processor state. The function ReadAlTRegisters
// reads all general-purpose registers for all processor modes, and saves
// the data in “state”.
ReadAl1Registers(state);
// Step 5. Based on the CPSR (processor state), determine the actual restart

// address
if (state->cpsr & (1<<5);
{

// Thumb state
state->pc := state->pc - 4;

}
else
{
// ARM state
state->pc := state->pc - 8§;
}

// Step 6. If the method of entry was Watchpoint Occurred, read the DBGWFAR
// register

method_of_debug_entry := ((state->dbgdscr >> 2) & OxF;

if (method_of_debug_entry == 2 || method_of_debug_entry == 10)

{

}

state->dbgwfar := ReadDebugRegister(6);

12.11.5 Debug state exit

When exiting debug state, the program counter must always be written. If the execution state or
CPSR must be changed, this must be done before writing to the PC because writing to the CPSR
can affect the PC.

Having restored the program state, the debugger can restart by writing to bit [1] of the
DBGDRCR. It must then poll bit [1] of the DBGDSCR to determine if the CPU has restarted.

Example 12-12 shows the code for exit from debug state.

Example 12-12 Leaving debug state

ExitDebugState(PROCESSOR_STATE xstate)
{
// Step 1. Update the CPSR value
WriteCPSR(state->cpsr);
// Step 2. Restore any registers corrupted by debug state. The function
// WriteAl11Registers restores all general-purpose registers for all
// processor modes apart from RO.
WriteAl1Registers(state);
// Step 3. Write the return address.
WritePC(state->pc);
// Step 4. Writing the PC corrupts RO therefore, restore RO now.
WriteRegister(0, state->r0);
// Step 5. Write the restart request bit in the DBGDRCR.
WriteDebugRegister(36, 1<<1);
// Step 6. Poll the RESTARTED flag in the DBGDSCR.
repeat

{

}
until (dbgdscr & (1<<1));

dbgdscr := ReadDebugRegister(34);

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 12-62
ID021511 Non-Confidential

Debug

12.11.6 Accessing registers and memory in debug state

This section describes the following:

. Reading and writing registers through the DCC
. Reading the PC in debug state

. Writing the CPSR in debug state on page 12-64
. Reading memory on page 12-64

. Fast register read/write on page 12-66

. Fast memory read/write on page 12-67.

Reading and writing registers through the DCC

To read a single register, the debugger can use the sequence that Example 12-13 shows. This
sequence depends on two other sequences, Executing an ARM instruction through the DBGITR
on page 12-54 and Target to host data transfer (host end) on page 12-56.

Example 12-13 Reading an ARM register

uint32 ReadARMRegister(int Rd)

{
// Step 1. Execute instruction MCR pl4, 0, Rd, c@, c5, @ through the DBGITR.
ExecuteARMInstruction(@xEEQQQEL5 + (Rd<<12));
// Step 2. Read the register value through DBGDTRTX.
reg_val := ReadDCC();
return reg_val;
}

Example 12-14 shows a similar sequence for writing an ARM register.

Example 12-14 Writing an ARM register

WriteRegister(int Rd, uint32 reg_val)

{
// Step 1. Write the register value to DBGDTRRX.
WriteDCC(reg_val);
// Step 2. Execute instruction MRC pl4, 0, Rd, c@, c5, @ to the DBGITR.
ExecuteARMInstruction(@xEELOQELS + (Rd<<12));
}

Reading the PC in debug state

Example 12-15 shows the code to read the PC.

Example 12-15 Reading the PC

ReadPC()

{
// Step 1. Save RO
saved_r@ := ReadRegister(0);

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-63
Non-Confidential

Debug

// Step 2. Execute the instruction MOV r@, pc through the DBGITR.
ExecuteARMInstruction(0xE1AQ000F) ;

// Step 3. Read the value of RO that now contains the PC.

pc := ReadRegister(0);

// Step 4. Restore the value of RO.

WriteRegister(@, saved_ro);

return pc;

Note

You can use a similar sequence to write to the PC to set the return address when leaving debug
state or to read the CPSR or coprocessor registers.

Writing the CPSR in debug state

Example 12-16 shows the code for writing the CPSR.

Example 12-16 Writing the CPSR

WriteCPSR(uint32 cpsr_val)
{
// Step 1. Save RO.
saved_r@ := ReadRegister(0);
// Step 2. Write the new CPSR value to RO.
WriteRegister(@, cpsr_val);
// Step 3. Execute instruction MSR R@, CPSR through the DBGITR.
ExecuteARMInstruction(0xE12FF000);
// Step 4. Execute a PrefetchFlush instruction through the DBGITR.
ExecuteARMInstruction(9xEEQ70F95);
// Step 5. Restore the value of RO.
WriteRegister(@, saved_ro);

Reading memory

Example 12-17 shows the code for reading a byte of memory.

Example 12-17 Reading a byte of memory

uint8 ReadByte(uint32 address, bool &aborted)
{
// Step 1. Save the values of RO and R1.
saved_r@ := ReadRegister(0);
saved_rl := ReadRegister(1l);
// Step 2. Write the address to RO.
WriteRegister(@, address);
// Step 3. Execute the instruction LDRB R1,[R@] through the DBGITR.
ExecuteARMInstruction(0xE5D01000);
// Step 4. Read the value of R1 that contains the data at the address.
datum := ReadRegister(1);
// Step 5. Restore the corrupted registers R@ and R1.
WriteRegister(@, saved_r0);
WriteRegister(1l, saved_rl);
// Step 6. Check the DBGDSCR for a sticky abort.
aborted := CheckForAborts();

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-64
Non-Confidential

Debug

return datum;

Example 12-18 shows the code for checking for aborts after a memory access.

Example 12-18 Checking for an abort after memory access

bool CheckForAborts()
{
// Step 1. Check the DBGDSCR for a sticky abort.
dbgdscr := ReadDebugRegister(34);
if (dbgdscr & ((1<<6) + (1<<7))
{
// Step 2. Clear the sticky flag by writing DBGDRCR[2].
WriteDebugRegister(36, 1<<2);
return true;
}
else

{
}

return false;

Note

You can use a similar sequence to read a halfword of memory and to write to memory.

To read or write blocks of memory, substitute the data instruction with one that uses
post-indexed addressing. For example:

LDRB R1, [RO],1
This prevents reloading the address value for each sequential word.

Example 12-19 shows the code for reading a block of bytes of memory.

Example 12-19 Reading a block of bytes of memory

ReadBytes(uint32 address, bool &aborted, uint8 =data, int nbytes)
{
// Step 1. Save the value of RO and RL.
saved_r@ := ReadRegister(0);
saved_rl := ReadRegister(l);
// Step 2. Write the address to RO
WriteRegister(@, address);
while (nbytes > 0)
{
// Step 3. Execute instruction LDRB R1,[R@],1 through the DBGITR.
ExecuteARMInstruction(0xE4D01001);
// Step 4. Read the value of Rl that contains the data at the
// address.
«data++ := ReadRegister(l);
--nbytes;
}
// Step 5. Restore the corrupted registers R@ and R1.
WriteRegister(@, saved_r0);
WriteRegister(1l, saved-rl);
// Step 6. Check the DBGDSCR for a sticky abort.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-65
Non-Confidential

Debug

aborted := CheckForAborts();
return datum;

Example 12-20 shows the sequence for reading a word of memory.

Note

A faster method is available for reading and writing words using the direct memory access
function of the DCC. See Fast memory read/write on page 12-67.

Example 12-20 Reading a word of memory

uint32 ReadWord(uint32 address, bool &aborted)

{
// Step 1. Save the value of RO.
saved_r@ := ReadRegister(0);
// Step 2. Write the address to RO.
WriteRegister(@, address);
// Step 3. Execute instruction LDC pl4, c5, [RO] through the DBGITR.
ExecuteARMInstruction(@xED905EQQ) ;
// Step 4. Read the value from the DTR directly.
datum := ReadDCC();
// Step 5. Restore the corrupted register RO.
WriteRegister(0, saved_ro0);
// Step 6. Check the DBGDSCR for a sticky abort.
aborted := CheckForAborts();
return datum;

Fast register read/write

When multiple registers must be read in succession, you can optimize the process by placing the
DCC into stall mode and by writing the value 1 to the DCC access mode bits. For more
information, see CP14 c1, Debug Status and Control Register on page 12-14.

Example 12-21 shows the sequence to change the DTR access mode.

Example 12-21 Changing the DTR access mode

SetDTRAccessMode(int mode)

{
// Step 1. Write the mode value to DBGDSCR[21:20].
dbgdscr := ReadDebugRegister(34);
dbgdscr := (dbgdscr & ~(0x3<<20)) | (mode<<20);
WriteDebugRegister(34, dbgdscr);

}

Example 12-22 shows the sequence to read registers in stall mode.

Example 12-22 Reading registers in stall mode

ReadRegisterStallMode(int Rd)
{

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-66
Non-Confidential

Debug

// Step 1. Write the opcode for MCR pl4, 0, Rd, c¢5, c@ to the DBGITR.
// Write stalls until the DBGITR is ready.

WriteDebugRegister(33, OxEEQQQEL5 + (Rd<<12));

// Step 2. Read the register value through the DCC. Read stalls until
// DBGDTRTX is ready

reg_val := ReadDebugRegister(32);

return reg_val;

Example 12-23 shows the sequence to write registers in stall mode.

Example 12-23 Writing registers in stall mode

WriteRegisterInStallMode(int Rd, uint32 value)
{
// Step 1. Write the value to the DBGDTRRX.
// Write stalls until the DBGDTRRX 1is ready.
WriteDebugRegister(32, value);
// Step 2. Write the opcode for MRC pl4, @, Rd, c5, c@ to the DBGITR.
// Write stalls until the DBGITR is ready.
WriteDebugRegister(33, OxEE10QEL5 + (Rd<<12));

Note

To transfer a register to the CPU when in stall mode, you are not required to poll the DBGDSCR
each time an instruction is written to the DBGITR and a value read from or written to the DTR.
The CPU stalls using the signal PREADYDBGm until the previous instruction has completed
or the DTR register is ready for the operation.

Fast memory read/write

This section provides example code to enable faster reads from memory by making use of the
DTR access mode.

Example 12-24 shows the sequence for reading a block of words of memory.

Example 12-24 Reading a block of words of memory

ReadWords(uint32 address, bool &aborted, uint32 xdata, int nwords)

{
// Step 1. Write the value 0b@1 to DBGDSCR[21:20] for stall mode.
SetDTRAccessMode(1);
// Step 2. Save the value of RO.
saved_r@ := ReadRegisterInStallMode(0);
// Step 3. Write the address to read from to the DBGDTRRX.
// Write stalls until the DBGDTRRX 1is ready.
WriteRegisterInStallMode(@, address);
// Step 4. Write the opcode for LDC pl4, c¢5, [RO], 4 to the DBGITR.
// Write stalls until the DBGITR is ready.
WriteDebugRegister(33, OxECBOSEQL);
// Step 5. Write the value 0b10 to DBGDSCR[21:20] for fast mode.
SetDCCAccessMode(2);
// Step 6. Loop reading out the data.
// Each time a word is read from the DBGDTRTX, the instruction is reissued.
while (nwords > 1)

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-67
Non-Confidential

Debug

«data++ = ReadDebugRegister(35);
--nwords;
}
// Step 7. Write the value 0b00@ to DBGDSCR[21:20] for non-blocking mode.
SetDTRAccessMode(0);
// Step 8. Must wait for the final instruction to complete. If there
// was an abort, this completes immediately.
do
{
dbgdscr := ReadDebugRegister(34);
}
until (dbgdscr & (1<<24));
// Step 9: Check for aborts.
aborted := CheckForAborts();
// Step 10: Read the final word from the DCC.
if ('aborted) xdata := ReadDCC();
// Step 11. Restore the corrupted register r0.
WriteRegister(@, saved_r0);

Example 12-25 shows the sequence for writing a block of words to memory.

Example 12-25 Writing a block of words to memory (fast download)

WriteWords(uint32 address, bool &aborted, uint32 xdata, int nwords)

{
// Step 1. Save the value of RO.
saved_r@ := ReadRegister(0);
// Step 2. Write the value 0b10 to DBGDSCR[21:20] for fast mode.
SetDTRAccessMode(2);
// Step 3. Write the opcode for MRC pl4, @, RO, c5, c@ to the DBGITR.
// Write stalls until the DBGITR is ready but the instruction is not issued.
WriteDebugRegister(33, OxEE10QE1S5);
// Step 4. Write the address to read from to the DBGDTRRX
// Write stalls until the DBGITR is ready, but the instruction is not reissued.
WriteDebugRegister(32, address);
// Step 5. Write the opcode for STC pl4, c5, [R@], 4 to the DBGITR.
// Write stalls until the DBGITR is ready but the instruction is not issued.
WriteDebugRegister(33, OxECAQ5EQL);
// Step 6. Loop writing the data.
// Each time a word is written to the DBGDTRRX, the instruction is reissued.
while (nwords > 0)
{
WriteDebugRegister(35, xdata++);
--nwords;
}
// Step 7. Write the value b00 to DBGDSCR[21:20] for normal mode.
SetDTRAccessMode(0);
// Step 8. Restore the corrupted register RO.
WriteRegister(0, saved_ro0);
// Step 9. Check the DBGDSCR for a sticky abort.
aborted := CheckForAborts();
}

Note

As the amount of data transferred increases, these functions reach an optimum performance of
one debug register access per data word transferred.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 12-68
ID021511 Non-Confidential

Debug

After writing data to memory, you must execute a data synchronization barrier instruction to
ensure that the memory window updates properly

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 12-69
ID021511 Non-Confidential

Debug

12.12 Debugging systems with energy management capabilities

The processor offers functionality for debugging systems with energy-management capabilities.
This section describes scenarios where the OS takes energy-saving measures when in an idle
state.

The different measures that the OS can take to save energy during an idle state are divided into
two groups:

Standby The OS takes measures that reduce energy consumption but maintain the
processor state.

Power down The OS takes measures that reduce energy consumption but do not maintain the
processor state, for example, Dormant or Shutdown mode. Recovery involves a
reset of the processor after the power level has been restored, and reinstallation of
the processor state.

Standby is the least invasive OS energy-saving state because it only implies that the core is
unavailable. It does not clear any of the debug settings. For this case, the processor offers the
following:

. If the processor is in standby and a halting debug event occurs, the processor:
— leaves standby
— retires the Wait-For-Interrupt (WFI) or Wait-For-Event (WFE) instruction
— enters debug state.

. If the processor is in standby and detects an APB port access, it temporarily leaves standby
state to complete the transaction. While the processor wakes up from standby, the APB
access is held by keeping the PREADYDBGm signal LOW.

12.12.1 Emulating power down

By writing to bit [0] of the DBGPRCR in either CPU, the debugger causes the processor to
assert the DBGNOPWRDWN output. The expected usage model of this signal is that it
connects to the system power controller and that, when HIGH, it indicates that this controller
must work in emulate mode.

On a power-down request from the processor, if the power controller is in emulate mode, it does
not remove processor power or ETM power. Otherwise, it behaves exactly the same as in normal
mode.

Emulating power down is ideal for debugging applications running on top of operating systems
that are free of errors because the debug register settings are not lost on a power-down event.
However, you must ensure that:

. nIRQm and nFIQm interrupts and EVENTIm events to the processor are externally
masked as part of the emulation to prevent them from retiring the WFI or WFE instruction
from the pipeline.

. The reset controller asserts nRESETm only on emulated power up, rather than combining
it with DBGRESETmn. Asserting DBGRESETmn clears the debug registers inside the
processor.

. The timing effects of power down and voltage stabilization are not factored in the

power-down emulation. This is the case for systems with voltage recovery controlled by
a closed loop system that monitors the processor supply voltage, rather than a fixed timed
for voltage recovery.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-70
Non-Confidential

Debug

The emulation does not model state lost during power down, making it possible to miss
errors in the state storage and recovery routines.

Attaching the debugger for a postmortem debug session is not possible because setting the
DBGNOPWRDWN signal to 1 might not cause the processor to power up. The effect of
setting DBGNOPWRDWN to 1 when the processor is already powered down is
implementation-defined, and is up to the system designer.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 12-71
Non-Confidential

Chapter 13
Integration Test Registers

This chapter describes how to use the Integration Test Registers in the processor. It contains the
following sections:

. About Integration Test Registers on page 13-2

. Summary of the processor registers used for integration testing on page 13-3
. Processor integration testing on page 13-4.
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 13-1

ID021511 Non-Confidential

Integration Test Registers

13.1 About Integration Test Registers

The processor contains Integration Test Registers that enable you to verify integration of the

design and enable topology detection of the design using debug tools. The Integration Mode

Control Register (DBGITCTRL), that is also described in this chapter, controls the use of the
Integration Test Registers.

The Integration Test Registers are programmed using the debug APB interface. For more
information on using the debug APB interface see Chapter 12 Debug.

When programming the Integration Test Registers you must enable all the changes at the same
time.

For more information about the Integration Test Registers and the Integration Mode Control
Register see the ARM Architecture Reference Manual.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 13-2
ID021511 Non-Confidential

Integration Test Registers

13.2 Summary of the processor registers used for integration testing

Table 13-1 lists the processor Integration Test Registers and the Integration Mode Control
Register (DBGITCTRL).

Table 13-1 Integration Test Registers summary

Base Default

Register name
g offset value

Type Description

Integration Test Registers

DBGITETMIF OXED8 n/a? WO See DBGITETMIF Register (ETM interface) on page 13-5

DBGITMISCOUT 0xEF8 n/a WO See DBGITMISCOUT Register (Miscellaneous Outputs) on page 13-6

DBGITMISCIN OxEFC -

o

RO See DBGITMISCIN Register (Miscellaneous Inputs) on page 13-7

Integration Mode Control Register

DBGITCTRL 0xF00 0 R/W See Integration Mode Control Register (DBGITCTRL) on page 13-8

a. See the register description for this value.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 13-3
ID021511 Non-Confidential

Integration Test Registers

13.3 Processor integration testing

This section describes the behavior and use of the Integration Test Registers that are in the
processor. It also describes the Integration Mode Control Register that controls the use of the
Integration Test Registers. For more information about the DBGITCTRL see the ARM
Architecture Reference Manual.

If you want to utilise the integration test registers you must first set bit [0] of the Integration
Mode Control Register to 1.

. You can use the write-only Integration Test Registers to set the outputs of some of the
processor signals. Table 13-2 shows the signals that you can write in this way.

. You can use the read-only Integration Test Registers to read the state of some of the
processor inputs. Table 13-3 on page 13-5 shows the signals that you can read in this way.

Various CoreSight components, including ETM-RS, also include Integration Test Registers that
you can use in conjunction with processor Integration Test Registers for testing the connectivity
between them. For more information see the relevant documentation, for example the ETM-R5
Technical Reference Manual

Table 13-2 Output signals that can be controlled by the Integration Test Registers

Signal Register Bit Register description
DBGRESTARTEDm DBGITMISCOUT [9] See DBGITMISCOUT Register (Miscellaneous Outputs) on page 13-6
DBGTRIGGERm DBGITMISCOUT [8]

ETMWFIPENDINGm DBGITMISCOUT [5]

nPMUIRQm DBGITMISCOUT [4]
COMMTXm DBGITMISCOUT [2]
COMMRXm DBGITMISCOUT [1]
DBGACKm DBGITMISCOUT [0]
EVNTBUSm[54, 0] DBGITETMIF [13:12] See DBGITETMIF Register (ETM interface) on page 13-5
ETMCIDm|31, 0] DBGITETMIF [11:10]
ETMDAm[31, 0] DBGITETMIF [7:6]
ETMDCTLmI11, 0] DBGITETMIF [5:4]
ETMDDm[63, 0] DBGITETMIF [9:8]
ETMIAm|31, 1] DBGITETMIF [3:2]
ETMICTLm[13, 0] DBGITETMIF [1:0]
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 13-4

ID021511 Non-Confidential

Integration Test Registers

Table 13-3 Input signals that can be read by the Integration Test Registers

Signal

Register Bit Register description

DBGRESTARTm

ETMEXTOUTm[1:0]

DBGITMISCIN [11] See DBGITMISCIN Register (Miscellaneous Inputs) on page 13-7

DBGITMISCIN [9:8]

nETMWFIREADYm DBGITMISCIN [5]
nIRQm DBGITMISCIN [2]
nFIQm DBGITMISCIN ~ [1]
EDBGRQm DBGITMISCIN [0]

This section describes:

Using the Integration Test Registers

Performing integration testing

DBGITETMIF Register (ETM interface)

DBGITMISCOUT Register (Miscellaneous Outputs) on page 13-6
DBGITMISCIN Register (Miscellaneous Inputs) on page 13-7
Integration Mode Control Register (DBGITCTRL) on page 13-8.

13.3.1 Using the Integration Test Registers

When bit [0] of the Integration Mode Control Register (DBGITCTRL) is set to b1:

Values written to the write-only Integration Test Registers map onto the specified outputs
of the macrocell. For example, writing bl to DBGITMISCOUTJ[0] causes DBGACKm
to be asserted HIGH.

Values read from the read-only Integration Test Registers correspond to the values of the
specified inputs of the macrocell. For example, if you read DBGITMISCIN[9:8] you
obtain the value of ETMEXTOUTm[1:0].

13.3.2 Performing integration testing

When you perform integration testing or topology detection, ARM strongly recommends that
the processor is halted, because toggling input and output pins might have an unwanted effect
on the operation of the processor. If you follow this recommendation, you must not set the
DBGITCTRL Register until the processor has halted.

After you perform integration testing or topology detection, that is, the Integration Mode
Control Register has been set, the system must be reset. This is because the signals that are
toggled can have an unwanted effect on connected devices.

13.3.3 DBGITETMIF Register (ETM interface)

The DBGITETMIF Register at offset @xED8 is write-only. Figure 13-1 on page 13-6 shows the
register bit assignments.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 13-5
Non-Confidential

31 14131211109 8 7 6 5 4 3 2 10

Integration Test Registers

Reserved

EVNTBUSm[54]—, I—ETMICTLm[O]
EVNTBUSM[0] ETMICTLm[13]
ETMCIDm[31] ETMIAM[1]
ETMCIDm[0] ETMIAm[31]
ETMDDm[63] ETMDCTLm[0]
ETMDDm[0] ETMDCTLm[11]
ETMDAmM[31] ETMDAMO]

Figure 13-1 DBGITETMIF Register bit assignments

Table 13-4 shows the fields when writing the DBGITETMIF Register. When this register is
written the appropriate output pins take the value written.

Table 13-4 DBGITETMIF Register bit assignments

Function

Reserved. Write as zero.

Set value of the EVNTBUSm[54] output pin.

Set value of the EVNTBUSm[0] output pin.

Set value of the ETMCIDm[31] output pin.

Set value of the ETMCIDm|0] output pin.

Set value of the ETMDDm[63] output pin.

Set value of the ETMDDm[0] output pin.

Set value of the ETMDAm([31] output pin.

Set value of the ETMDAm[0] output pin.

Set value of the ETMDCTLm[11] output pin.

Set value of the ETMDCTLm|[0] output pin.

Set value of the ETMIAm[31] output pin.

Set value of the ETMIAm[1] output pin.

Set value of the ETMICTLm[13] output pin.

Bits Name

[31:14] -

[13] EVNTBUSm[54]
[12] EVNTBUSm[0]
[11] ETMCIDm[31]
[10] ETMCIDm[0]
[9] ETMDDm[63]
[8] ETMDDm([0]

(7] ETMDAm[31]
[6] ETMDAmI[0]

[5] ETMDCTLm[11]
[4] ETMDCTLm[0]
[3] ETMIAm[31]

2] ETMIAm[1]

[1] ETMICTLm[13]
[0] ETMICTLm[0]

Set value of the ETMICTLm[0] output pin.

13.3.4 DBGITMISCOUT Register (Miscellaneous Outputs)

The DBGITMISCOUT Register at offset 0xEF8 is write-only. Figure 13-2 on page 13-7 shows

the register bit assignments.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 13-6

ID021511 Non-Confidential

31

Integration Test Registers

109 87 6 543210

Reserved

DBGRESTARTEDmM J
DBGTRIGGERmM

Reserved
ETMWFIPENDINGm
nPMUIRQmM
Reserved
COMMTXm
COMMRXm
DBGACKm

Figure 13-2 DBGITMISCOUT Register bit assignments

Table 13-5 shows the fields when writing the DBGITMISCOUT Register. When this register is
written the appropriate output pins take the value written.

Table 13-5 DBGITMISCOUT Register bit assignments

Bits Name Function

[31:10] - Reserved. Write as zero.

[9] DBGRESTARTEDm Set value of the DBGRESTARTEDmMm output pin.
[8] DBGTRIGGERmM Set value of the DBGTRIGGERmMm output pin.
[7:6] - Reserved. Write as zero.

(3]

ETMWFIPENDINGm Set value of the ETMWFIPENDINGm output pin.

(4]

nPMUIRQm Set value of nPMUIRQm output pin.

(3]

- Reserved. Write as zero.

2] COMMTXm Set value of COMMTXm output pin.
[1] COMMRXm Set value of COMMRXm output pin.
[0] DBGACKm Set value of the DBGACKm output pin.

13.3.5 DBGITMISCIN Register (Miscellaneous Inputs)

The DBGITMISCIN Register at offset @xEFC is read-only. Figure 13-3 on page 13-8 shows the
register bit assignments.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. 13-7

Non-Confidential

31

Integration Test Registers

1211109 8 7 6 54 3 2 10

Reserved

DBGRESTARTmM J
Reserved
ETMEXTOUTm[1:0]
Reserved
NnETMWFIREADYm
Reserved

nFlQm

nIRQm

EDBGRQm

Figure 13-3 DBGITMISCIN Register bit assignments

Table 13-6 lists the register bit assignments for the DBGITMISCIN Register.

Table 13-6 DBGITMISCIN Register bit assignments

Bits Name Function
[31:12] - Reserved. Read Undefined.
[11] DBGRESTARTm Read value of the DBGRESTARTm input pin.
[10] - Reserved. Read Undefined.
[9:8] ETMEXTOUTm Read value of the ETMEXTOUTm[1:0] input pins.
[7:6] - Reserved. Read Undefined.
[5] nETMWFIREADYm Reads the nNETMWFIREADYm input pin. Although this pin is active LOW, the value
of this bit matches the physical state of the signal:
0 = input pin is LOW (asserted)
1 = input pin is HIGH (deasserted).
[4:3] - Reserved. Read Undefined.
[2] nFIQm Read value of nFIQm input pin.
[1] nIRQm Read value of nIRQm input pin.
[0] EDBGRQm Read value of EDBGRQm input pin.

13.3.6

Integration Mode Control Register (DBGITCTRL)

The DBGITCTRL Register, register 0x3C0 at offset 0xF00, is read/write. Figure 13-4 shows the
register bit assignments.

31

Reserved

INTMODEJ

Figure 13-4 DBGITCTRL Register bit assignments

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.

13-8
Non-Confidential

Integration Test Registers

Table 13-7 shows the fields of the DBGITCTRL Register.

Table 13-7 DBGITCTRL Register bit assignments

Bits Access Name Function
[31:1] RAZ/SBZP - Reserved.
[0] R/W INTMODE Controls whether the processor is in normal operating mode or integration mode:

b0 = normal operation, this is the reset value
bl = integration mode enabled.

Writing to the DBGITCTRL register controls whether the processor is in its default functional
mode, or in integration mode, where the inputs and outputs of the device can be directly
controlled for the purpose of integration testing or topology detection. For more information see
the ARM Architecture Reference Manual.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. 13-9
ID021511 Non-Confidential

Appendix A
Signal Descriptions

This appendix describes the processor signals. It contains the following sections:
. About the processor signal descriptions on page A-2

. Global signals on page A-3

. Configuration signals on page A-4

. Interrupt signals, including VIC interface signals on page A-8
. L2 interface signals on page A-9

. TCM interface signals on page A-22

. Redundant CPU signals on page A-25

. Debug interface signals on page A-26

. ETM interface signals on page A-28

. Test signals on page A-29

. MBIST signals on page A-30

. Validation signals on page A-31

. FPU signals on page A-32

. Split/Lock on page A-33

. Power modes on page A-34.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved.
ID021511 Non-Confidential

Signal Descriptions

A1 About the processor signal descriptions

The tables in this appendix list the processor signals, along with their dimensions and direction,
input or output, and a high-level description. Unless otherwise specified, all signals are sampled
on or driven from the rising edge of the clock, CLKIN.

Many of the signal names have an m suffix, that appears before the n suffix in the case of
negative sense signals. This indicates that the processor has two signals, one for each CPU,
named with m being 0 or 1 for CPUO and CPU1 respectively.

The Cortex-RS5 processor has the same signals regardless of configuration. If a particular feature
is not implemented, the signals associated with that feature are not used.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. A-2
Non-Confidential

Signal Descriptions

A.2 Global signals
Table A-1 shows the processor global signals.
Table A-1 Global signals
Signal Direction Description
CLKIN Input Master processor clock.
ACPRESETn Input ACP reset. Assert with nRESETO0 and nRESET]1 to reset the whole processor except the
debug registers. This signal can be asserted asynchronously to CLKIN.
ACPIDLE Output Indicate when uSCU is empty, for drain-and-power-down.
nRESETm Input CPU non-debug logic reset. These signals can be asserted asynchronously to CLKIN.
nSYSPORESET Input System power on reset.
nCPUHALTm Input Processor halt after reset. These signals can be asserted asynchronously to CLKIN.
DBGNOCLKSTOP Input Processor does not stop the clocks when entering standby mode.
nCLKSTOPPEDm Output When LOW, this indicates clock has been stopped because processor is in Standby Mode.
It is never asserted without one of WFIPIPESTOPPEDm or WFEPIPESTOPPEDm.
nWFEPIPESTOPPEDm Output When LOW, this indicates that the CPU is in standby mode because of a WFE instruction.
The CPU pipeline is inactive..
nWFIPIPESTOPPEDm Output When LOW, this indicates the CPU is in standby mode because of a WFI instruction. The
CPU pipeline is inactive.
EVENTIm Input Event input signal.
EVENTOm Output Event output signal.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.
Non-Confidential

A.3 Configuration signals

Signal Descriptions

Table A-2 shows the processor configuration signals. These signals must be tied off, or only
changed under reset.

Table A-2 Configuration signals

Signal

Direction

Description

VINITHIm

Input

Reset V-bit value. When HIGH indicates HIVECS mode at reset. See c/, System Control
Register on page 4-38 for more information.

CFGEE

Input

Reset EE-bit value. When HIGH indicates the implementation uses BE-8 mode for
exceptions at reset. See cI, System Control Register on page 4-38 for more information.

CFGIE

Input

Instruction side endianness, reflected in the IE-bit. When HIGH indicates that big endian
instruction fetch is used. See c/, System Control Register on page 4-38 for more
information.

INITRAMAmM

Input

Reset value of ATCM enable bit. When HIGH indicates Tightly-Coupled Memory A,
ATCM, enabled at reset. See c9, ATCM Region Register on page 4-64 for more
information.

INITRAMBm

Input

Reset value of BTCM bit. When HIGH indicates Tightly-Coupled Memory B, BTCM,
enabled at reset. See ¢9, BTCM Region Register on page 4-63 for more information.

LOCZRAMAmM

Input

When HIGH indicates ATCM initial base address is zero and BTCM base address is
implementation-defined.

When LOW indicates BTCM initial base address is zero and ATCM base address is
implementation-defined.

TEINIT

Input

Reset TE-bit value. Determines exception handling state at reset. When set to:
0=ARM

1 = Thumb.

See c1, System Control Register on page 4-38 for more information.

CFGATCMSZm|3:0]

Input

Selects the ATCM size. The encodings for the TCM sizes are:
b0000 = 0KB
b0011 =4KB
b0100 = 8KB
b0101 = 16KB
b0110 =32KB
b0111 = 64KB
b1000 = 128KB
b1001 =256KB
b1010 =512KB
b1011 = IMB
b1100 =2MB
b1101 =4MB
b1110 = 8MB.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. A-4

Non-Confidential

Signal Descriptions

Table A-2 Configuration signals (continued)

Signal

Direction

Description

CFGBTCMSZm|3:0]

Input

Selects the BTCM size. The encodings for the TCM sizes are:
b0000 = OKB
b0011 =4KB
b0100 = 8KB
b0101 = 16KB
b0110 =32KB
b0111 = 64KB
b1000 = 128KB
b1001 = 256KB
b1010 =512KB
b1011 = IMB
b1100 = 2MB
bl1101 =4MB
b1110 =8MB.

CFGNMFIm

Input

When HIGH, enable nonmaskable Fast Interrupts. Reflected in the NMFI bit. See ¢/,
System Control Register on page 4-38 for more information.

ENTCM1IFm

Input

Enable BITCM interface. Use BOTCM only if this signal not tied HIGH.

PARECCENRAMm[2:0]

Input

TCMs ECC check enable. Tie each bit HIGH to enable ECC checking on the appropriate
TCM at reset. The bit allocations are as follows:

[2]=BITCM?

[1]=B0TCMa2

[0] = ATCM.

See cl, Auxiliary Control Register on page 4-41 for more information.

PARITYLEVEL

ERRENRAMmMm|2:0]

Input

Input

Selects between odd and even parity for caches and buses. See Chapter 8 Level One
Memory System:

Tie LOW for even parity
Tie HIGH for odd parity.

TCMs external error enable. Tie each bit high to enable the external error signals for each
TCM at reset. The bit allocations are as follows:

[2]=BITCM

[1]1=B0OTCM

[0] = ATCM.

See cl, Auxiliary Control Register on page 4-41 for more information.

RMWENRAMm|1:0]

Input

RMW enable bits reset values. Tie each bit high to enable read-modify-write for TCM
interfaces at reset.c The bit allocations are as follows:

[1]=BTCM
[0] = ATCM.
See cl, Auxiliary Control Register on page 4-41 for more information.

SLBTCMSBm

Input

Use most significant bit of BTCM address to select BITCM if this signal is HIGH.
Use bit [3] of the BTCM address if this signal is LOW.

INITPPXm

Input

AXI peripheral interface is enabled out-of-reset.

INITPPHm

GROUPID|3:0]

Input

Input

AHB peripheral interface is enabled out-of-reset.

ID of Cortex-R5 processor group (reflected in MPIDR).

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. A-5
Non-Confidential

Signal Descriptions

Table A-2 Configuration signals (continued)

Signal Direction Description

PPHBASEm|[31:12] Input Base address of AHB peripheral interface. Must be size-aligned.

PPHSIZEm[4:0] Input Size of AHB peripheral interface. See Table A-3 for the size encodings.

PPXBASEm([31:12] Input Base address of AXI peripheral interface. Must be size aligned.

PPXSIZEm|[4:0] Input Size of AXI peripheral interface. See Table A-3 for the size encodings.

PPVBASEm|[31:12] Input Base address of virtual-AXI peripheral interface. Must be within AXI PP and size-aligned.
The virtual AXI peripheral interface region must be the same size or smaller than the AXI
peripheral interface.

PPVSIZEm|4:0] Input Size of virtual-AXI peripheral interface. See Table A-3 for the size encodings.

a. Ifthe BTCM is configured with ECC, bit[2] and bit[1] must be the same value.
b. Not used if 32-bit ECC is included.
c. Not available in rOpx revisions of the processor.

Table A-3 shows the peripheral interface size encodings.

Table A-3 Peripheral interface size encodings

Encoding Size
b00011 4KB
b00100 8KB
b00101 16KB
b00110 32KB
b00111 64KB
b01000 128KB
b01001 256KB
b01010 512KB
b01011 1IMB
b01100 2MB
b01101 4MB
b01110 8MB
b01111 16MB
b10000 32MB
b10001 64MB
b10010 128MB
b10011 256MB
b10100 512MB
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. A-6

ID021511

Non-Confidential

Signal Descriptions

Table A-3 Peripheral interface size encodings (continued)

Encoding Size
b10101 1GB
b10110 2GB
b10111 4GB

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.
Non-Confidential

Signal Descriptions

A.4 Interrupt signals, including VIC interface signals

Table A-4 shows the interrupt signals including signals used on the VIC interface.

Table A-4 Interrupt signals

Signal Direction Description
nFIQm Input Fast interrupt?. This signal can be asserted asynchronously if INTSYNCEN is HIGH.
nIRQm Input Normal interrupt?. This signal can be asserted asynchronously if INTSYNCEN is HIGH.
INTSYNCEN Input Tie HIGH if the interrupt inputs are asynchronous to CLKIN.
Tie LOW if the interrupt inputs are synchronous to CLKIN.
IRQADDRVm Input Indicates IRQADDRm is valid. This signal can be asserted asynchronously if
IRQADDRVSYNCEN is HIGH.
IRQADDRVSYNCEN Input Tie HIGH if the IRQADDRVm input from the VIC is asynchronous to CLKIN.
Tie HIGH if the IRQADDRVm input from the VIC is synchronous to CLKIN.
IRQADDRm|31:2] Input Address of the IRQ. This signal can be asserted asynchronously but must be stable when
IRQADDRVm is asserted.
IRQACKm Output Acknowledges interrupt.
nPMUIRQm Output Interrupt request by Performance Monitor Unit (PMU).

a. This signal is level-sensitive and must be held LOW until a suitable interrupt response is received from the processor.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. A-8
Non-Confidential

A.5 L2 interface signals

Signal Descriptions

This section describes the processor L2 interface AXI signals. For more information on
Advanced Microcontroller Bus Architecture (AMBA) AXI signals see the AMBA AXI Protocol
Specification. For more information on the AHB signals, see the AMBA 3 AHB-Lite Protocol
Specification.

A.5.1 AXI master port

Table A-5 shows the AXI master port signals for the L2 interface. With the exception of the
ACLKENMm, all signals are only sampled or driven on CLKIN edges when ACLKENMm
is asserted, see AMBA interface clocking on page 2-16 for more information.

Table A-5 AXI master port signals for the L2 interface

Signal Direction Description
ACLKENMm Input Clock enable for the AXI master port.
Write address channel
AWADDRMm|31:0] Output Transfer start address.
AWBURSTMm[1:0] Output Write burst type.
AWCACHEMm|3:0] Output Provides decode information for outer attributes:
b0000 = Strongly Ordered.
b0001 = Device.
b0011 = Normal, Non-cacheable.
b0110 = Normal, Cacheable. write-through.
b1111 = Normal, Cacheable. write-back, write allocation.
b0111 = Normal, Cacheable. write-back, no write allocation.
Note
The AXI specification describes these encodings using the pre-ARMvV6 terms such as
cacheable-bufferable. These terms are equivalent to the ARMv6 memory-type descriptions
such as Normal, Non-cacheable used here.
AWIDMm|3:0] Output The identification tag for the write address group of signals.
AWLENMm|3:0] Output Write transfer burst length.
AWLOCKMm[1:0] Output Lock signal.
AWPROTMm]|2:0] Output Protection type.
AWREADYMm Input Address ready. The slave uses this signal to indicate that it can accept the address.
AWSIZEMm|2:0] Output Indicates the size of the transfer.
AWINNERMm|[3:0] Output Provides inner attribute information for the write address channel. See Table 9-2 on
page 9-6 for information about the encoding of this signal.2
AWSHAREMm|[0] Output Indicates the shareability of the address:
0 = non-shared
1 = shared.
AWVALIDMm Output Indicates address and control are valid.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. A-9
Non-Confidential

Signal Descriptions

Table A-5 AXI master port signals for the L2 interface (continued)

Signal Direction Description

Write data channel

WDATAMm[63:0] Output Write data.

WIDMm|3:0] Output The identification tag for the write data group of signals.
WLASTMm Output Indicates the last data transfer of a burst.

WREADYMm Input Indicates that the slave is ready to accept write data
WSTRBMm|[7:0] Output Write strobes used to indicate which byte lanes must be updated.
WVALIDMm Output Indicates address and control are valid.

Write response channel

BIDMm|3:0] Input The identification tag for the write response signal.
BREADYMm Output Indicates that the CPU is ready to accept write response.
BRESPMm|[1:0] Input Write response.

BVALIDMm Input Indicates that a valid write response is available.

Read address channel

ARADDRMm|[31:0] Output Instruction fetch burst start address.
ARBURSTMm|1:0] Output Burst type.
ARCACHEMm|3:0] Output Provides decode information for outer attributes:

b0000 = Strongly Ordered.

b0001 = Device.

b0011 = Normal, Non-cacheable.

b0110 = Normal, Cacheable. write-through.

bl111 = Normal, Cacheable. write-back, write allocation.
b0111 = Normal, Cacheable. write-back, no write allocation.

Note

The AXI specification describes these encodings using the pre-ARMv6 terms such as
cacheable-bufferable. These terms are equivalent to the ARMv6 memory-type descriptions
such as Normal, Non-cacheable used here.

ARIDMm|[3:0] Output Identification tag for the read address group of signals

ARLENMm|3:0] Output Instruction fetch burst length.

ARLOCKMm([1:0] Output Lock signal.

ARPROTMm|2:0] Output Protection type.

ARREADYMm Input Address ready. The slave uses this signal to indicate that it can accept the address.
ARSIZEMm|2:0] Output Indicates the size of the transfer.

ARINNERMm|3:0] Output Provides inner attribute for the read address channel. See Table 9-2 on page 9-6 for

information about the encoding of this signal.2

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. A-10
ID021511 Non-Confidential

Signal Descriptions

Table A-5 AXI master port signals for the L2 interface (continued)

Signal Direction Description
ARSHAREMm Output Indicates the shareability of the address:
0 = non-shared
1 = shared.
ARVALIDMm Output Indicates address and control are valid.
Read Data Channel
RDATAMm|[63:0] Input Read Data.
RIDMm|[3:0] Input The identification tag for the read data group of signals.
RLASTMm Input Indicates the last transfer in a read burst.
RREADYMm Output Read ready signal indicating that the bus master can accept read data and response
information.
RRESPMm|1:0] Input Read response.
RVALIDMm Input Indicates that read data is available.

a. This is an AXI extension signal.

A.5.2

AXI master port error detection signals

Table A-6 shows the AXI master port error detection signals. these signals are only generated if
the processor is configured to include AXI bus parity. See Configurable options on page 1-6 for

more information.

Table A-6 AXI master port error detection signals

Signal Direction Description

ARADDRPTYMm|3:0] Output Parity bits for ARADDRMm?
ARCTLPTYMm|3:0] Output Parity bits for the rest of the read address channel?
ARRPTYMm Input Parity bit for ARREADYMm

ARUSERPTYMm Output Parity bit for sideband signals2

ARVPTYMm Output Parity bit for ARVALIDMm
AWADDRPTYMm|[3:0] Output Parity bits for AWADDRMm.?
AWCTLPTYMm[3:0] Output Parity bits for the rest of the write address channel?
AWRPTYMm Input Parity bit for AWREADYMm
AWUSERPTYMm Output Parity bit for sideband signals2

AWVPTYMm Output Parity bit for AWVALIDMm

AXIMCORRm Output Correctable error detected on RDATAMm
AXIMFATALmM[4:0] Output Fatal error detected on AXI master, per channel {R, AR, B, W, AW}
BCTLPTYMm|1:0] Input Parity for buffered response channel2

BRPTYMm Output Parity bit for BREADYMm

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.

A-11

Non-Confidential

Signal Descriptions

Table A-6 AXI master port error detection signals (continued)

Signal Direction Description

BVPTYMm Input Parity bit for BVALIDMm
MERRADDRmM|31:3]b Output Address of correctable error, doubleword
RCTLPTYMm[1:0] Input Parity for rest of read data channel?
RERRCODEMm([7:0] Input ECC code for RDATAMm?
RRPTYMm Output Parity bit for RREADYMm
RVPTYMm Input Parity bit for RVALIDMm
WCTLPTYMm|2:0] Output Parity bits for the rest of the write data channel?
WERRCODEMm|[7:0] Output ECC code for WDATAMm?
WRPTYMm Input Parity bit for WREADYMm
WVPTYMm Input Parity bit for WVALIDMm

a.

This is an AXI extension signal.
b. This address bus is also used by other AMBA masters: PPX and PPH.

A5.3 AXl slave port
Table A-7 shows the AXI slave port signals for the L2 interface. With the exception of the
ACLKENSm, all signals are only sampled or driven on CLKIN edges when ACLKENSm is
asserted, see AMBA interface clocking on page 2-16 for more information.
Table A-7 AXI slave port signals for the L2 interface
Signal Direction Description
ACLKENSm Input Clock enable for the AXI slave port.
Write Address Channel
AWADDRSm[31:0] Input Transfer start address.
AWBURSTSm[1:0] Input Write burst type.
AWCACHESm[3:0] Input Write address outer attribute information.
AWCSELSm[3:0] Input Memory type select data cache, instruction cache, BTCM or ATCM, one hot.2
AWIDSm([7:0] Input The identification tag for the write address group of signals.
AWLENSmM|[3:0] Input Write transfer burst length.
AWLOCKSm[1:0] Input Lock signal.
AWPROTSm|[2:0] Input Protection information, privileged/normal access.
AWREADYSm Output Address ready. The slave uses this signal to indicate that it can accept the address.
AWSIZESm[2:0] Input Indicates the size of the transfer.
AWVALIDSm Input Indicates address and control are valid.
Write Data Channel
WDATASm|63:0] Input Write data.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.
Non-Confidential

A-12

Signal Descriptions

Table A-7 AXI slave port signals for the L2 interface (continued)

Signal Direction Description
WIDSm[7:0] Input The identification tag for the write group of signals.
WLASTSm Input Indicates the last data transfer of a burst.
WREADYSm Output Indicates that the slave is ready to accept write data.
WSTRBSm[7:0] Input Write strobes used to indicate which byte lanes must be updated.
WVALIDSm Input Indicates address and control are valid.

Write Response Channel
BIDSm[7:0] Output The identification tag for the write response signal.
BREADYSm Input Indicates that the CPU is ready to accept write response.
BRESPSm[1:0] Output Write response.
BVALIDSm Output Indicates that a valid write response is available.

Read Address Channel
ARADDRSmM|[31:0] Input Instruction fetch burst start address.
ARBURSTSm[1:0] Input Burst type.
ARCACHESmM[3:0] Input Read address outer attribute information.
ARIDSm|7:0] Input Identification tag for the read address group of signals.
ARLENSm[3:0] Input Instruction fetch burst length.
ARLOCKSm[1:0] Input Lock signal.
ARPROTSm[2:0] Input Protection information, privileged/normal access.
ARREADYSm Output Address ready. The slave uses this signal to indicate that it can accept the address.
ARSIZESm|2:0] Input Indicates the size of the transfer.
ARCSELSm|[3:0] Input Memory type select {data cache, instruction cache, BTCM or ATCM}, one hot.2
ARVALIDSm Input Indicates address and control are valid.

Read Data Channel
RDATASmM[63:0] Output Read data.
RIDSm|[7:0] Output The identification tag for the read data group of signals.
RLASTSm Output Indicates the last transfer in a read burst.
RREADYSm Input Read ready signal indicating that the bus master can accept read data and response

information.

RRESPSm[1:0] Output Read response.
RVALIDSm Output Indicates address and control are valid.

a. This is an AXI extension signal.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. A-13
Non-Confidential

A.5.4 AXl slave port error detection signals

Signal Descriptions

Table A-8 shows the AXI slave port error detection signals. These signals are only generated if
the processor is configured to include AXI bus parity. See Configurable options on page 1-6 for
more information.

Table A-8 AXI slave port error detection signals

Signal Direction Description
ARADDRPTYSm[3:0] Input Parity bits for ARADDRSm?
ARCTLPTYSm|[3:0] Input Parity bits for the rest of the read address channel?
ARRPTYSm Output Parity bit for ARREADYSm
ARUSERPTYSm Input Parity bit for sideband signals?
ARVPTYSm Input Parity bit for ARVALIDSm
AWADDRPTYSm[3:0] Input Parity bits for AWADDRSm?
AWCTLPTYSm[3:0] Input Parity bits for the rest of the write address channel?
AWRPTYSm Output Party bit for AWREADYSm
AWUSERPTYSm Input Parity bit for sideband signals?
AWVPTYSm Input Parity bit for AWVALIDSm
AXISCORRm Output Correctable error, write data channel
AXISFATALm[4:0] Output Fatal error, per channel.
BCTLPTYSm[1:0] Output Parity for buffered response channel?
BRPTYSm Output Parity bit for BREADYSm
BVPTYSm Input Parity bit for BVALIDSm
RCTLPTYSm|[1:0] Output Parity for rest of read data channel?
RERRCODESm|7:0] Input ECC code for RDATASm?
RRPTYSm Output Parity bit for RREADYSm
RVPTYSm Output Parity bit for RVALIDSm
SERRADDRm[22:3] Output Address of correctable error, within doubleword
SERRCSELm|3:0] Output Chip-select of correctable error.
WCTLPTYSm|2:0] Input Parity bits for rest of write data channel?
WERRCODESm|7:0] Input ECC code for WDATAMm?
WRPTYSm Output Parity bit for WREADYSm
WVPTYSm Input Parity bit for WVALIDSm
a. This is an AXI extension signal.
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. A-14

ID021511

Non-Confidential

Signal Descriptions

A.5.5 ACP slave port
Table A-9 shows the ACP slave port signals.

Table A-9 ACP slave port signals

Signal Direction Description
ACLKENC Input Clock enable, shared between ACP slave and master port.
Write Address Channel
AWIDCS[1:0] Input The identification tag for the write address group of signals.
AWADDRCS|31:0] Input Transfer start address.
AWLENCS|3:0] Input Write transfer burst length.
AWSIZECS]2:0] Input Indicates the size of the transfer.
AWBURSTCS[1:0] Input Write burst type.
AWLOCKCS]1:0] Input Lock signal.
AWCACHECS]3:0] Input Provides decode information for outer attributes:

b0000 = Strongly Ordered.

b0001 = Device.

b0011 = Normal, Non-cacheable.

b0110 = Normal, Cacheable. write-through.

bl111 = Normal, Cacheable. write-back, write allocation.
b0111 = Normal, Cacheable. write-back, no write allocation.

Note

The AXI specification describes these encodings using the pre-ARMv6 terms such as
cacheable-bufferable. These terms are equivalent to the ARMv6 memory-type descriptions
such as Normal, Non-cacheable used here.

AWPROTCS]2:0] Input Protection signals provide additional information about a bus access.
AWCOHERENTCS Input Require caches to be made coherent with this access.?

AWUSERCS|3:0] Input For transmission of other sideband information.2

AWVALIDCS Input Indicates address and control are valid.

AWREADYCS Output Address ready. The slave uses this signal to indicate it is ready to accept the address.

Write Response Channel

BIDCSJ[1:0] Output The identification tag for the write response signal.

BRESPCSJ1:0] Output Write response.

BVALIDCS Output Indicates that a valid write response is available.

BREADYCS Input Indicates that the CPU is ready to accept write response.

BMISSCSJ[1:0] Output Access did not hit in either cache, or coherency not required. One bit for each CPU.2
BHITDIRTYCS[1:0] Output Access hit a dirty line, or Dormant CPU, and was not invalidated. One bit for each CPU.2
BUSERCS]3:0] Output For transmission of other sideband information.2

a. This is an AXI extension signal.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. A-15
ID021511 Non-Confidential

Signal Descriptions

A.5.6 ACP slave port error detection signals

Table A-10 shows the ACP slave port error detection signals. These signals are only generated
if the processor is configured to include AXI bus parity. See Configurable options on page 1-6
for more information.

Table A-10 ACP slave port error detection signals

Signal Direction Description

ACPSFATAL[1:0] Output Fatal error, per channel, {B,AW}
AWADDRPTYCSJ[3:0] Input Parity bits for AWADDRCS?
AWCTLPTYCS[3:0] Input Parity bits for the rest of the write address channel?
AWRPTYCS Output Parity bit for AWREADYCS
AWUSERPTYCS Input Parity bit for sideband signals?
AWVPTYCS Input Parity bit for AWVALIDCS
BCTLPTYCS[1:0] Output Parity for buffered response signal?
BRPTYCS Output Parity bit for BREADYCS
BVPTYCS Output Parity bit for BVALIDCS
BUSERPTYCS Output Parity bit for sideband signals?

a. This is an AXI extension signal.

A.5.7 ACP master port
Table A-11 shows the ACP master port signals.

Table A-11 ACP master port signals

Signal Direction Description

Write Address Channel
AWIDCM|[1:0] Output The identification tag for the write address group of signals.
AWADDRCM]|31:0] Output Transfer start address
AWLENCM|3:0] Output Write transfer burst length.
AWSIZECM|2:0] Output Indicates the size of the transfer.
AWBURSTCM][1:0] Output Write burst type.
AWLOCKCM]1:0] Output Lock signal.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. A-16

ID021511 Non-Confidential

Signal Descriptions

Table A-11 ACP master port signals (continued)

Signal Direction Description
AWCACHECM|3:0] Output Provides decode information for outer attributes:
b0000 = Strongly Ordered.
b0001 = Device.
b0011 = Normal, Non-cacheable.
b0110 = Normal, Cacheable. write-through.
b1111 = Normal, Cacheable. write-back, write allocation.
b0111 = Normal, Cacheable. write-back, no write allocation.
Note
The AXI specification describes these encodings using the pre-ARMvV6 terms such as
cacheable-bufferable. These terms are equivalent to the ARMv6 memory-type
descriptions such as Normal, Non-cacheable used here.
AWPROTCM]2:0] Output Protection type.
AWCOHERENTCM Output Require caches to be made coherent with this access.?
AWUSERCM|3:0] Output For transmission of other sideband information.2
AWVALIDCM Output Indicates address and control are valid.
AWREADYCM Input Address ready. The slave uses this signal to indicate it is ready to accept the address.
Write Response Channel
BIDCM[1:0] Input The identification tag for the write response signal.
BRESPCM]1:0] Input Write response
BUSERCM]3:0] Input For transmission of other sideband information.2
BVALIDCM Input Indicates that a valid write response is available.
BREADYCM Output Indicates that the CPU is ready to accept write response.

a. This is an AXI extension signal.

A.5.8 ACP master port error detection signals

Table A-12 shows the ACP master port error detection signals. These signals are only generated
if the processor is configured to include AXI bus parity. See Configurable options on page 1-6
for more information.

Table A-12 ACP master port error detection signals

Signal Direction Description
AWVPTYCM Output Parity bit for AWVALIDCM
AWRPTYCM Input Parity bit for AWREADYCM
AWADDRPTYCM|3:0] Output Parity bits for AWADDRCMz2
AWCTLPTYCM|3:0] Output Parity bits for the rest of the write address channel?
AWUSERPTYCM Output Parity bit for sideband signals2
BVPTYCM Input Parity bit for BVALIDCM

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. A-17

ID021511

Non-Confidential

Signal Descriptions

Table A-12 ACP master port error detection signals (continued)

Signal Direction Description

BRPTYCM Output Parity bit for BREADYCM
BCTLPTYCM]1:0] Input Parity for buffered response signal2
BUSERPTYCM Input Parity bit for sideband signals?
ACPMFATAL[1:0] Output Fatal error, per channel, {B,AW}

a. This is an AXI extension signal.

A.5.9 AXIl peripheral port
Table A-13 shows the AXI peripheral port signals.

Table A-13 AXI peripheral port signals

Signal Direction Description

ACLKENPm Input Clock enable for the AXI peripheral port.

Write Address Channel

AWIDPm[3:0] Output The identification tag for the write address group of signals.
AWADDRPm[31:0] Output Transfer start address.

AWLENPmMm|[3:0] Output Write transfer burst length.

AWSIZEPm|[2:0] Output Indicates the size of the transfer.

AWBURSTPm|[1:0] Output Write burst type.

AWLOCKPm|[1:0] Output Lock signal.

AWCACHEPm|3:0] Output Provides decode information for outer attributes:

b0000 = Strongly Ordered.

b0001 = Device.

b0011 = Normal, Non-cacheable.

b0110 = Normal, Cacheable. write-through.

b1111 = Normal, Cacheable. write-back, write allocation.
b0111 = Normal, Cacheable. write-back, no write allocation.

Note

The AXI specification describes these encodings using the pre-ARMv6 terms such
as cacheable-bufferable. These terms are equivalent to the ARMv6 memory-type
descriptions such as Normal, Non-cacheable used here.

AWPROTPm[2:0] Output Protection type.
AWVALIDPm Output Indicates address and control are valid.
AWREADYPm Input Address ready. The slave uses this signal to indicate it is ready to accept the address.

Write Data Channel

WIDPm|3:0] Output The identification tag for the write data group of signals.
WDATAPmM|[31:0] Output Write data.
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. A-18

ID021511 Non-Confidential

Signal Descriptions

Table A-13 AXI peripheral port signals (continued)

Signal Direction Description
WSTRBPm|3:0] Output Write strobes used to indicate which byte lanes must be updated.
WLASTPm Output Indicates the last data transfer of a burst.
WVALIDPm Output Indicates address and control are valid.
WREADYPm Input Indicates that the slave is ready to accept write data.

Write Response Channel

BIDPm|[3:0] Input The identification tag for the write response channel.
BRESPPm[1:0] Input Write response.
BVALIDPm Input Indicates that a valid write response is available.
BVPTYPm Input Parity bit for BVALIDPm
BREADYPm Output Indicates that the CPU is ready to accept a write response.
BRPTYPm Output Parity bit for BREADYPm
BCTLPTYPm[1:0] Input Parity for buffered response channel
Read Address Channel
ARIDPm[3:0] Output Identification tag for the read address group of signals.
ARADDRPm|[31:0] Output Instruction fetch burst start address.
ARLENPm|3:0] Output Instruction fetch burst length.
ARSIZEPm|2:0] Output Indicates the size of the transfer.
ARBURSTPm([1:0] Output Burst type.
ARLOCKPm|[1:0] Output Lock signal.
ARCACHEPM[3:0] Output Provides decode information for outer attributes:

b0000 = Strongly Ordered.

b0001 = Device.

b0011 = Normal, Non-cacheable.

b0110 = Normal, Cacheable. write-through.

b1111 = Normal, Cacheable. write-back, write allocation.
b0111 = Normal, Cacheable. write-back, no write allocation.

Note

The AXI specification describes these encodings using the pre-ARMV6 terms such
as cacheable-bufferable. These terms are equivalent to the ARMv6 memory-type
descriptions such as Normal, Non-cacheable used here.

ARPROTPm|[2:0] Output Protection type.
ARVALIDPm Output Indicates address and control are valid.
ARREADYPm Input Address ready. The slave uses this signal to indicate it is ready to accept the address.
Read Data Channel
RIDPm|3:0] Input The identification tag for the read data group of signals.
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. A-19

ID021511 Non-Confidential

Signal Descriptions

Table A-13 AXI peripheral port signals (continued)

Signal Direction Description
RDATAPm|31:0] Input Read data.
RRESPPm[1:0] Input Read response.
RLASTPm Input Indicates the last transfer in a read burst.
RVALIDPm Input Indicates that read data is available.
RREADYPm Output Read ready signal indicating that the bus master can accept read data and response
information.

A.5.10 AXI peripheral port error detection signals

Table A-14 shows the AXI peripheral port error detection signals. These signals are only
generated if the processor is configured to include AXI bus parity. See Configurable options on
page 1-6 for more information.

Table A-14 AXI peripheral port error detection signals

Signal Direction Description

ARADDRPTYPm[3:0] Output Parity bits for ARADDRPm?
ARCTLPTYPm|3:0] Output Parity bits for the rest of the read address channel?
ARRPTYPm Input Parity bit for ARREADYPm

ARVPTYPm Output Parity bit for ARVALIDPm
AWADDRPTYPm[3:0] Output Parity bits for AWADDRPm?
AWCTLPTYPm|3:0] Output Parity bits for the rest of the write address channel2
AWRPTYPm Input Parity bit for AWREADYPm

AWVPTYPm Output Parity bit for AWVALIDPm

PPXCORRm Output Correctable error on RRESPPmb
PPXFATALm|4:0] Output Fatal error, one bit for each channel {R,AR,B,W,AW}
RCTLPTYPm|1:0] Input Parity bits for the rest of the read data channel?
RERRCODEPmM[6:0] Input ECC code for RDATAPm?

RRPTYPm Output Parity bit for RREADYPm

RVPTYPm Input Parity bit for RVALIDPm

WCTLPTYPm|2:0] Output Parity bits for the rest of the write data channel?
WERRCODEPmM|[6:0] Output ECC code for WDATAPm?

WRPTYPm Input Parity bit for WREADYPm

WVPTYPm Output Parity bit for WVALIDPm

a. This is an AXI extension signal.
b. Address is reported on MERRADDRm, listed in Table A-6 on page A-11.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. A-20
ID021511 Non-Confidential

A.5.11 AHB peripheral port

Signal Descriptions

Table A-15 shows the AHB peripheral port signals.

Table A-15 AHB peripheral port signals

Signal Direction Description

Address Phase
HCLKENPm Input Synchronous enable for AHB transfers.
HADDRPm|[31:0] Output System address bus
HBURSTPm|[2:0] Output Burst type
HMASTLOCKPm Output Indicates that the current transfer is part of a locked sequence
HPROTPm[3:0] Output Protection type
HSIZEPm|2:0] Output Indicates the size of the transfer.
HTRANSPm[1:0] Output Transfer type
HWDATAPm[31:0] Output Write data
HWRITEPm Output Indicates the direction of the transfer

Data phase
HRDATAPm[31:0] Input Read data
HREADYPm Input Indicates that the previous transfer is finished
HRESPPm Input Transfer response

A.5.12 AHB peripheral port error detection signals

Table A-16 shows the AHB peripheral port error detection signals. These signals are only
generated if the processor is configured to include AHB bus parity. See Configurable options
on page 1-6 for more information.

Table A-16 AHB peripheral port error detection signals

Signal Direction Description
HWERRCODEPm[6:0] Output ECC code for HWDATAPm.
HADDRPTYPm|3:0] Output Parity bit for HADRRPm.

HCTLPTYPm[1:0] Output

Parity bits for the rest of the data channel.

HRERRCODEPm[6:0] Input

ECC code for HRDATAPm.

HRESPPTYPm Input Parity bit for HREADYPm and HRESPPm?.
PPHFATALm Output Fatal error on:
. parity computed for HREADYPm and HRESPPm
. two bit error on HRDATAPm.
PPHCORRm Output Correctable error on HRDATAPm. Address is reported on MERRADDRm.

a. This is not parity for HRESP alone, even though that might be suggested by the name.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. A-21

ID021511

Non-Confidential

Signal Descriptions

A.6 TCM interface signals
Table A-17 shows the ATCM port signals.

Table A-17 ATCM port signals

Signal Direction Description
ATCDATAINmM|[63:0] Input Data from ATCM
ATCPARITYINm[13:0] Input ECC code from ATCM
ATCERRORmM Input Error detected by ATCM2
ATCWAITm Input Wait from ATCM
ATCLATEERRORmM Input Late error from ATCM?
ATCRETRYm Input Access to ATCM must be retried?
ATCADDRPTYm Output Parity formed from ATCM address output®
ATCENOm Output Enable for ATCM lower word, bit range [31:0]
ATCENIm Output Enable for ATCM upper word, bit range [64:32]
ATCWEm Output Write enable for ATCM
ATCADDRm|[22:3] Output Address for ATCM data RAM
ATCBYTEWRmM|7:0] Output Byte strobes for direct write
ATCSEQm Output ATCM RAM access is sequential
ATCDATAOUTm[63:0] Output Write data for ATCM data RAM
ATCPARITYOUTm([13:0] Output Write ECC code for ATCM
ATCACCTYPEm|[2:0] Output Determines access type:

b001 = Load/Store

b010 = Fetch

b100 = DMA

b100 = MBIST®.

a. This signal is ignored when bit [0] of the Auxiliary Control Register is set to 0, see ¢/, Auxiliary
Control Register on page 4-41.

b. Only generated if the processor is configured to include TCM address bus parity.

¢. The MBIST interface has no way of signaling a wait. If it is accessing the TCM, and the TCM
signals a wait, the AXI slave pipeline stalls and the data arrives later. However, no signal is sent
to the MBIST controller to indicate this.

Table A-18 shows the BOTCM port signals.

Table A-18 BOTCM port signals

Signal Direction Description
BOTCDATAINmM|[63:0] Input Data from BOTCM
BOTCPARITYINm[13:0] Input ECC code from BOTCM
BOTCERRORmM Input Error detected by BOTCM2
BOTCWAITm Input Wait from BOTCM
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. A-22

ID021511 Non-Confidential

Signal Descriptions

Table A-18 BOTCM port signals (continued)

Signal Direction Description

BOTCLATEERRORmM Input Late error from BOTCMa

BOTCRETRYm Input Access to BITCM must be retried?
BOTCADDRPTYm Output Parity formed from BOTCM address output?
BOTCWEm Output Write enable for BOTCM

BOTCENOm Output Enable for BOTCM lower word, bit range [31:0]
BOTCEN1m Output Enable for BOTCM upper word, bit range [64:32]
BOTCADDRm|[22:3] Output Address for BOTCM data RAM
BOTCBYTEWRmMm|[7:0] Output Byte strobes for direct write

BOTCSEQm Output BOTCM RAM access is sequential
BOTCDATAOUTm[63:0] Output Write data for BOTCM data RAM
BOTCPARITYOUTm[13:0] Output Write ECC code for BOTCM
BOTCACCTYPEm|2:0] Output Determines access type:

b001 = Load/Store
b010 = Fetch
b100 = DMA
b100 = MBISTe.

a. This signal is ignored when bit [1] of the Auxiliary Control Register is set to 0, see ¢/, Auxiliary
Control Register on page 4-41.

b. Only generated if the processor is configured to include TCM address bus parity.

c. The MBIST interface has no way of signaling a wait. If it is accessing the TCM, and the TCM
signals a wait, the AXI slave pipeline stalls and the data arrives later. However, no signal is sent to
the MBIST controller to indicate this.

Table A-19 shows the BITCM port signals.

Table A-19 B1TCM port signals

Signal Direction Description

B1ITCDATAINmM[63:0] Input Data from BITCM

BITCPARITYINm|[13:0] Input ECC code from BITCM

BITCERRORmM Input Error detected by BITCMa

BITCRETRYm Input Access to BITCM must be retried?

BITCLATEERRORmM Input Late error from BITCM2

B1ITCWAITm Input Wait from BITCM

BITCADDRPTYm Output Parity formed from B1TCM address output®

B1ITCWEm Output Write enable for BITCM

B1TCENOm Output Enable for BITCM lower word, bit range [31:0]

B1TCEN1Im Output Enable for BITCM upper word, bit range [64:32]
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. A-23

ID021511 Non-Confidential

Signal Descriptions

Table A-19 B1TCM port signals (continued)

Signal Direction Description
B1ITCADDRm|22:3] Output Address for BITCM data RAM
BITCBYTEWRmMm[7:0] Output Byte strobes for direct write
BITCSEQm Output BITCM RAM access is sequential

BITCDATAOUTm[63:0] Output

Write data for BITCM data RAM

BITCPARITYOUTm([13:0] Output

BITCACCTYPEm|[2:0] Output

Write ECC code for BITCM

Determines access type:
b001 = Load/Store
b010 = Fetch

b100 = DMA

b100 = MBIST®.

a. This signal is ignored when bit [2] of the Auxiliary Control Register is set to 0, see ¢/, Auxiliary

Control Register on page 4-41.

b. Only generated if the processor is configured to include TCM address bus parity.
c. The MBIST interface has no way of signaling a wait. If it is accessing the TCM, and the TCM
signals a wait, the AXI slave pipeline stalls and the data arrives later. However, no signal is sent to

the MBIST controller to indicate this.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. A-24

Non-Confidential

Signal Descriptions

A.7 Redundant CPU signals

Table A-20 shows the redundant CPU signals. If you are implementing a redundant CPU
configuration, contact ARM for more information about the functionality of these signals.

Table A-20 Redundant CPU signals

Signal Direction

CLKIN1 Input

DCCMINP[7:0] Input

DCCMINP2[7:0] Input

DCCMOUT]7:0] Output

DCCMOUT?2[7:0] Output

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. A-25
ID021511 Non-Confidential

Signal Descriptions

A.8 Debug interface signals

Table A-21 shows the debug interface signals. With the exception of PCLKENDBG,
DBGRESETmn, and PRESETDBGmn, all these signals are only sampled or driven on
CLKIN edges when PCLKENDBG is asserted.

Table A-21 Debug interface signals

Signal Direction Description

PCLKENDBG Input Clock enable for APB buses.

PSELDBGm Input Selects the external debug interface.
PADDRDBGm[11:2] Input Programming address.

PADDRDBG31m Input Programming address.

PRDATADBGm[31:0] Output Read data bus.

PWDATADBGm[31:0] Input Write data bus.

PENABLEDBGm Input Indicates second, and subsequent, cycle of a transfer.
PREADYDBGm Output Extends a APB transfer by the inserting wait states.
PSLVERRDBGm Output Slave-generated error response.

PWRITEDBGm Input Indicates access is a write transfer.

Distinguishes between a read, LOW, and a write, HIGH.

PRESETDBGmn Input Reset debug domain debug logic.?

DBGRESETmn Input Reset core domain debug logic.2

a. Can be asserted asynchronously.

Table A-22 shows the debug miscellaneous signals.

Table A-22 Debug miscellaneous signals

Signal Direction Description
DBGENm Input Debug enable?
NIDENm Input Non-invasive debug enable?
EDBGRQm Input External debug request?
DBGACKm Output Debug acknowledge
DBGRSTREQm Output Request for reset from debug logic
DBGTRIGGERm Output External debug request taken
COMMRXm Output DTRRX full
COMMTXm Output DTRTX empty
DBGRESTARTm Input External restart request?
DBGRESTARTEDm Output Handshake for DBGRESTARTm
DBGNOPWRDWN Output No power-down request

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. A-26

ID021511 Non-Confidential

Signal Descriptions

Table A-22 Debug miscellaneous signals (continued)

Signal Direction Description
DBGROMADDR[31:12] Input Debug ROM physical address
DBGROMADDRY Input Debug ROM physical address valid
DBGSELFADDRm[31:12] Input Debug self-address offset
DBGSELFADDRVm Input Debug self-address offset valid

a. Can be asserted asynchronously.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. A-27
ID021511 Non-Confidential

A.9 ETM interface signals

Table A-23 shows the ETM interface signals.

Signal Descriptions

Table A-23 ETM interface signals

Signal Direction Description
ETMICTLm[13:0] Output ETM instruction control bus
ETMIAm[31:1] Output ETM instruction address
ETMDCTLm[11:0] Output ETM data control bus
ETMDAm|31:0] Output ETM data address
ETMDDm[63:0] Output ETM data-data
ETMCIDm|31:0] Output Current value of processor CID register
ETMWFIPENDINGm Output Core is attempting to enter standby state because of a WFI or WFE
EVNTBUSm[54:0] Output Performance monitor unit output
ETMPWRUPm Input Power up ETM interface
nETMWFIREADYm Input ETM FIFO is empty, CPU can enter WFI state
ETMEXTOUTm|[1:0] Input ETM detected events
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. A-28

ID021511

Non-Confidential

Signal Descriptions

A.10 Test signals
Table A-24 shows the test signals.

Table A-24 Test signals

Signal Direction Description

SEm Input Scan Enable

RSTBYPASSm Input Bypass pipelined reset
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. A-29

ID021511 Non-Confidential

A.11 MBIST signals

Table A-25 shows the MBIST signals.

Signal Descriptions

Table A-25 MBIST signals

Signal Direction Description
MBTESTONm Input MBIST test is enabled
MBISTDINm|[77:0] Input MBIST data in
MBISTADDRm[19:0] Input MBIST address
MBISTCEm Input MBIST chip enable
MBISTSELm|[4:0] Input MBIST chip select
MBISTWEm|7:0] Input MBIST write enable
MBISTDOUTm[77:0] Output MBIST data out

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.
Non-Confidential

A-30

A.12 Validation signals

Table A-26 shows the validation signals.

Signal Descriptions

Table A-26 Validation signals

Signal Direction Description
VALEDBGRQm Output Debug request
nVALIRQm Output Request for an interrupt
nVALFIQm Output Request for a Fast Interrupt
nVALRESETm Output Request for a reset

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.
Non-Confidential

A-31

Signal Descriptions

A.13 FPU signals

Table A-27 shows the FPU signals. These signals are only driven if the processor is configured
to include the floating-point logic.

Table A-27 FPU signals

Signal Direction Description

FPIXCm Output Masked floating-point inexact exception

FPOFCm Output Masked floating-point overflow exception

FPUFCm Output Masked floating-point underflow exception

FPIOCm Output Masked floating-point invalid operation exception

FPDZCm Output Masked floating-point divide-by-zero exception

FPIDCm Output Masked floating-point input denormal exception
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. A-32

ID021511 Non-Confidential

Signal Descriptions

A.14 Split/Lock

Table A-28 shows the Split/Lock signals. If you are implementing a Split/Lock configuration,
contact ARM for more information about the functionality of these signals.

Table A-28 Split/Lock signals

Signal Direction

SLSPLIT Input

SLRESETn Input

SLCLAMP Input

SLERRACPn Input

SLERRDBGn Input

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. A-33
ID021511 Non-Confidential

Signal Descriptions

A.15 Power modes
Table A-29 shows the Power mode signal.

Table A-29 Power mode signal

Signal Direction Description

RAMCONTROLm[7:0] - Wires only — connected to cortexr5_caches_rams<m> module for use controlling
physical RAM features of CPU m, where m is 0 or 1, such as retention states.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. A-34
ID021511 Non-Confidential

Appendix B
Cycle Timings and Interlock Behavior

This appendix describes the cycle timings and interlock behavior of instructions on the processor.
It contains the following sections:

About cycle timings and interlock behavior on page B-3
Register interlock examples on page B-6

Data processing instructions on page B-7

OADD, ODADD, QSUB, and QDSUB instructions on page B-9
Media data-processing on page B-10

Sum of Absolute Differences (SAD) on page B-11

Multiplies on page B-12

Divide on page B-14

Branches on page B-15

Processor state updating instructions on page B-16

Single load and store instructions on page B-17

Load and Store Double instructions on page B-19

Load and Store Multiple instructions on page B-20

RFE and SRS instructions on page B-23

Synchronization instructions on page B-24

Coprocessor instructions on page B-25

SVC, BKPT, Undefined, and Prefetch Aborted instructions on page B-26
Miscellaneous instructions on page B-27

Floating-point register transfer instructions on page B-28
Floating-point load/store instructions on page B-29
Floating-point single-precision data processing instructions on page B-31

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. B-1
Non-Confidential

Cycle Timings and Interlock Behavior

Floating-point double-precision data processing instructions on page B-32
Dual issue on page B-33.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. B-2
Non-Confidential

Cycle Timings and Interlock Behavior

B.1 About cycle timings and interlock behavior

Complex instruction dependencies and memory system interactions make it impossible to
describe briefly the exact cycle timing behavior for all instructions in all circumstances. The
timings described in this chapter are accurate in most cases. If precise timings are required, you
must use a cycle-accurate model of the processor.

Unless stated otherwise, cycle counts and result latencies that this chapter describes are
best-case numbers. They assume:

. no outstanding data dependencies between the current instruction and a previous
instruction

. the instruction does not encounter any resource conflicts

. all data accesses hit in the data cache, and do not cross protection region boundaries

. all instruction accesses hit in the instruction cache.

This section describes:

. Instruction execution overview
. Conditional instructions on page B-4
. Flag-setting instructions on page B-4

. Definition of terms on page B-4.
. Assembler language syntax on page B-5.

B.1.1 Instruction execution overview

The instruction execution pipeline has four stages, Iss, Ex1, Ex2, and Wr.

Extensive forwarding to the end of the Iss, Ex1, and Ex2 stages enables many dependent
instruction sequences to run without pipeline stalls. General forwarding occurs from the end of
the Ex2 and Wr pipeline stages. In addition, the multiplier contains an internal multiply
accumulate forwarding path. The address generation unit also contains an internal forwarding
path.

Many instructions do not require data from a register until the Ex2 stage. All result latencies are
given as the number of cycles until the register is available for a following instruction in the Ex2
stage. Most ALU operations require their source registers at the start of the Ex2 stage, and have
a result latency of one. For example, the following sequence takes two cycles:

ADD R1,R3,R4 ;Result Tlatency one
ADD R5,R2,R1 ;Register R1 required by ALU

The PC is the only register that result latency does not affect. An instruction that alters the PC
never causes a pipeline stall because of interlocking with a subsequent instruction that reads the
PC.

Most loads have a result latency of two or higher, because they do not forward their results until
the Wr stage. For example, the following sequence takes three cycles:

LDR R1, [R2] ;Result Tlatency two
ADD R3, R3, R1 ;Register R1 required by ALU

If a subsequent instruction requires the register at the end of the Iss stage then an extra cycle
must be added to the result latency of the instruction producing the required register.
Instructions that require a register at the end of these stages are specified by describing that
register as an Early Reg. The following sequence, requiring an Early Reg, takes four cycles:

LDR R1, [R2] ;Result Tlatency two

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. B-3
Non-Confidential

Cycle Timings and Interlock Behavior

ADD R3, R3, R1 LSL#6 ;plus one because Register Rl is Early
The following sequence where R1 is a Late Reg takes two cycles:

LDR R1, [R2] ;Result Tlatency two minus one cycles
STR R1, [R3] ;no penalty because R1 is a Late register

The following sequence where R1 is a Very Early Reg takes four cycles:
ADD R3, R1, R2 ;Result latency one plus two cycles
LDR R4, [R3] ;plus two because register R3 is Very Early

B.1.2 Conditional instructions

Most instructions do not take more or fewer cycles to execute if they fail their condition codes.
The exceptions to this are:

. instructions that alter the PC, such as branches
. integer divide instructions, that require only one execute cycle.

The result latency of most instructions that fail their condition codes is one. The exceptions to

this are:
. all load and store instructions, that have their result latency unaffected
. integer divide instructions, that have a result latency of three.

B.1.3 Flag-setting instructions

Most instructions do not take more or fewer cycles to execute if they are flag-setting. The
exceptions to this are certain multiply instructions.

B.1.4 Definition of terms
Table B-1 gives descriptions of cycle timing terms used in this appendix.

Table B-1 Definition of cycle timing terms

Term Description

Memory Cycles This is the number of cycles during which an instruction sends a memory access to the cache.

Cycles This is the minimum number of cycles required to issue an instruction. Issue cycles that produce memory
accesses to the cache are included, so Cycles is always greater than or equal to Memory Cycles.

Result Latency This is the number of cycles before the result of this instruction is available to a Normal Reg of the following
instruction. When the Result Latency of an instruction is greater than Cycles and the following instruction
requires the result, the following instruction stalls for a number of cycles equal to Result Latency minus Cycles.
If this value is negative, there are zero stall cycles.

Note

The Result Latency is counted from the first cycle of an instruction.

Normal Reg The specified registers are required at the start of the Ex2 stage.

Late Reg The specified registers are not required until the start of the Wr stage. Subtract one cycle from the Result Latency
of the instruction producing this register.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. B-4
ID021511 Non-Confidential

Cycle Timings and Interlock Behavior

Table B-1 Definition of cycle timing terms (continued)

Term Description

Early Reg The specified registers are required at the start of the Ex1 stage. Add one cycle to the Result Latency of the
instruction producing this register.

Very Early Reg The specified registers are required at the start of the Iss stage. Add two cycles to the Result Latency of the
instruction producing this register, or one cycle if the instruction producing this register is an LDM, LDR, LDRD,
LDREX, or LDRT. The lower Result Latency does not apply if this register is the base register of the load instruction
producing this register, or if the load instruction is an LDRB, LDRBT, LDRH, LDRSB, or LDRSH.

Interlock There is a data dependency between two instructions in the pipeline, resulting in the Iss stage being stalled until

the processor resolves the dependency.

B.1.5 Assembler language syntax

The syntax used throughout this chapter is unified assembler and the timings apply to ARM and
Thumb instructions.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. B-5
Non-Confidential

B.2

Cycle Timings and Interlock Behavior

Register interlock examples

Table B-2 shows register interlock examples using LDR and ADD instructions.

LDR instructions take one cycle, have a result latency of two, and require their base register as a
Very Early Reg.

ADD instructions take one cycle and have a result latency of one.

Table B-2 Register interlock examples

Instruction .
Behavior
sequence
LDR R1, [R2] Takes two cycles because there are no register dependencies.
ADD R6, R5, R4
ADD R1, R2, R3 Takes two cycles because ADD instructions have a result latency of one.
ADD R9, R6, R1
LDR R1, [R2] Takes three cycles because of the result latency of R1.
ADD R6, R5, R1
ADD R2, R5, R6 Takes four cycles because of the use of the result of R2 as a Very Early Reg.
LDR R1, [R2]
LDR R1, [R2] Takes four cycles because of the result latency of R1, the use of the result of R1 as a Very Early Reg,
LDR RS, [R1] and the use of an LDR to generate R1.

ARM DDI 0460C

ID021511

Copyright © 2010-2011 ARM. All rights reserved. B-6
Non-Confidential

Cycle Timings and Interlock Behavior

B.3 Data processing instructions
This section describes the cycle timing behavior for the ADC, ADD, ADDW, AND, ASR, BIC, CLZ, CMN, CMP,
EOR, LSL, LSR, MOV, MOVT, MOVW, MVN, ORN, ORR, ROR, RRX, RSB, RSC, SBC, SUB, SUBW, TEQ, and TST
instructions.
This section describes:
. Cycle counts if destination is not PC
. Cycle counts if destination is the PC
. Example interlocks on page B-8
B.3.1 Cycle counts if destination is not PC
Table B-3 shows the cycle timing behavior for data processing instructions if their destination
is not the PC. You can substitute ADD with any of the data processing instructions identified in
the opening paragraph of this section.
Table B-3 Data Processing Instruction cycle timing behavior if destination is not PC
Example instruction Cycles Early Late Result Comments
Reg Reg latency
ADD <Rd>, <Rn>, #<immed> 1 - - 1 Normal cases.
ADD <Rd>, <Rn>, <Rm> 1 - - 1
ADD <Rd>, <Rn>, <Rm>, LSL #<immed> 1 <Rm> - 1 Requires a shifted source register.
ADD <Rd>, <Rn>, <Rm>, LSL <Rs> 1 <Rm>, <Rs> - 1 Requires a register controlled shifted
source register.
MOV <Rd>, <Rm> 1 - <Rm> 1 Simple MOV case. Must not set the flags
or require a shifted source register.
B.3.2 Cycle counts if destination is the PC

Table B-4 shows the cycle timing behavior for data processing instructions if their destination
is the PC. You can substitute ADD with any data processing instruction except for a CLZ. A CLZ
with the PC as the destination is an Unpredictable instruction.

For condition code failing cycle counts, the cycles for the non-PC destination variants must be

used.

Table B-4 Data Processing instruction cycle timing behavior if destination is the PC

. . Earl Late Result

Example instruction Cycles y Comments
Reg Reg latency

ADD pc, <Rn>, #<immed> 9 - - - Normal cases to PC

ADD pc, <Rn>, <Rm> 9 - - -

ADD pc, <Rn>, <Rm>, LSL #<immed> 9 <Rm> - - Requires a shifted source register

ADD pc, <Rn>, <Rm>, LSL <Rs> 9 <Rm>, - - Requires a register controlled shifted
<Rs> source register

ARM DDI 0460C

ID021511

Non-Confidential

Copyright © 2010-2011 ARM. All rights reserved.

Cycle Timings and Interlock Behavior

B.3.3 Example interlocks

Most data processing instructions are single-cycle and can be executed back-to-back without
interlock cycles, even if there are data dependencies between them. The exceptions to this are
when shifts are used.

Shifter

The registers that the shifter requires are Early Regs and require an additional cycle of result
availability before use. For example, the following sequence introduces a 1-cycle interlock, and
takes three cycles to execute:

ADD R1,R2,R3
ADD R4,R5,R1 LSL #1

The second source register, that is not shifted, does not incur an extra data dependency check.
Therefore, the following sequence takes two cycles to execute:

ADD R1,R2,R3
ADD R4,R1,R9 LSL #1

Register controlled shifts

The register containing the shift distance is an Early Reg. For example, the following sequence
takes three cycles to execute:

ADD R1, R2, R3
ADD R4, R2, R4, LSL R1

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. B-8
Non-Confidential

Cycle Timings and Interlock Behavior

B.4 QADD, QDADD, QSUB, and QDSUB instructions

This section describes the cycle timing behavior for the QADD, QDADD, QSUB, and QDSUB instructions.

These instructions perform saturating arithmetic. They have a result latency of two. The QDADD
and QDSUB instructions must double and saturate the register <Rn> before the addition. This
register is an Early Reg.

Table B-5 shows the cycle timing behavior for QADD, QDADD, QSUB, and QDSUB instructions.

Table B-5 QADD, QDADD, QSUB, and QDSUB instruction cycle timing behavior

Instructions Cycles Early Reg Result latency

QADD, QSUB 1 - 2
QDADD, QDSUB 1 <Rn> 2
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. B-9

ID021511

Non-Confidential

B.5 Media data-processing

Table B-6 shows media data-processing instructions and gives their cycle timing behavior.

Cycle Timings and Interlock Behavior

All media data-processing instructions are single-cycle issue instructions. These instructions
have result latencies of one or two cycles. Some of the instructions require an input register to
be shifted, or manipulated in some other way before use and therefore are marked as requiring

an Early Reg.

Table B-6 Media data-processing instructions cycle timing behavior

Instructions Cycles Early Reg Result latency
SADD16, SSUB16, SADDS, SSUBS 1 - 1
UADD16, USUB16, UADDS, USUB8 1 - 1
SEL 1 - 1
QADD16, QSUB16, QADDS, QSUBS 1 - 2
SHADD16, SHSUB16, SHADD8, SHSUB8 1 - 1
UQADD16, UQSUB16, UQADDS, UQSUBS 1 - 2
UHADD16, UHSUB16, UHADDS, UHSUBS 1 - 1
SSAT16, USAT16 1 <Rn> 1
SASX, SSAX 1 - 1
UASX, USAX 1 - 1
SXTAB, SXTAB16, SXTAH 1 <Rm> 1
SXTB, SXTB16, SXTH 1 <Rm>2 1
UXTB, UXTB16, UXTH 1 <Rm>a 1
UXTAB, UXTAB16, UXTAH 1 <Rm> 1
REV, REV16, REVSH, RBIT 1 <Rm> 1
PKHBT, PKHTB 1 <Rm> 1
SSAT, USAT 1 <Rm> 1
QASX, QSAX 1 - 2
SHASX, SHSAX 1 - 1
UQASX, UQSAX 1 - 2
UHASX, UHSAX 1 - 1
BFC 1 <Rd> 1
SBFX, UBFX 1 <Rn> 1
BFI 1 <Rd>, <Rn> 1

a. A shift of zero makes <Rm> a Normal Reg for these instructions.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.

Non-Confidential

B-10

Cycle Timings and Interlock Behavior

B.6 Sum of Absolute Differences (SAD)

Table B-7 shows SAD instructions and gives their cycle timing behavior.

B.6.1 Example interlocks

Table B-7 Sum of absolute differences instruction timing behavior

Instructions Cycles Early Reg Result latency

USAD8 1 <Rn>, <Rm> Da

USADA8 1 <Rn>, <Rm> 2a

a. Result latency is one fewer if the destination is the
accumulate for a subsequent USADAS.

Table B-8 shows interlock examples using USAD8 and USADAS instructions.

Table B-8 Example interlocks

Instruction sequence

Behavior

USAD8 R1,R2,R3
ADD R5,R6,R1

Takes three cycles because USAD8 has a Result Latency of two, and the ADD requires
the result of the USAD8 instruction.

USAD8 R1,R2,R3
MOV R9,R9
ADD R5,R6,R1

Takes three cycles. The MOV instruction is scheduled during the Result Latency of
the USAD8 instruction.

USAD8 R1,R2,R3
USADA8 R1,R4,R5,R1

Takes two cycles. The Result Latency is one less because the result is used as the
accumulate for a subsequent USADAS instruction.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. B-11

Non-Confidential

Cycle Timings and Interlock Behavior

B.7 Multiplies

Most multiply operations cannot forward their result early, except as the accumulate value for a
subsequent multiply. For a subsequent multiply accumulate the result is available one cycle
earlier than for all other uses of the result.

Certain multiplies require:
. more than one cycle to execute
. more than one pipeline issue to produce a result.

The multiplicand and multiplier are required as Early Regs because they are both required at the
end of the Iss stage.

Flag-setting multiplies followed by a conditional instruction interlock the conditional
instruction for one cycle, or two cycles if the instruction is a conditional multiply. Flag-setting
multiplies followed by a flag-setting instruction interlock the flag-setting instruction for one
cycle, unless the instruction is a flag-setting multiply in which case there is no interlock.

Table B-9 shows the cycle timing behavior of example multiply instructions.

Table B-9 Example multiply instruction cycle timing behavior

Example

instruction Cycles Early Reg Late Reg Result latency
MUL(S) 2 <Rn>, <Rm> - 3

MLA(S), MLS 2 <Rn>, <Rm> <Ra> 3

SMULL(S) 2 <Rn>, <Rm> - 3,3

UMULL(S) 2 <Rn>, <Rm> - 3,3

SMLAL(S) 2 <Rn>, <Rm> <RdLo>, <RdHi> 3,3

UMLAL(S) 2 <Rn>, <Rm> <RdLo>, <RdHi> 3,3

SMULxy 1 <Rn>, <Rm> - 2

SMLAXy 1 <Rn>, <Rm> - 2

SMULWy 1 <Rn>, <Rm> - 2

SMLAWY 1 <Rn>, <Rm> - 2

SMLALxy 2 <Rn>, <Rm> <RdLo>, <RdHi> 3,3

SMUAD, SMUADX 1 <Rn>, <Rm> - 2

SMLAD, SMLADX 1 <Rn>, <Rm> - 2

SMUSD, SMUSDX 1 <Rn>, <Rm> - 2

SMLSD, SMLSDX 1 <Rn>, <Rm> - 2

SMMUL, SMMULR 2 <Rn>, <Rm> - 3

SMMLA, SMMLAR 2 <Rn>, <Rm> <Ra> 3

SMMLS, SMMLSR 2 <Rn>, <Rm> <Ra> 3

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. B-12

ID021511 Non-Confidential

Cycle Timings and Interlock Behavior

Table B-9 Example multiply instruction cycle timing behavior (continued)

Eiatzzlt?on Cycles Early Reg Late Reg Result latency
SMLALD, SMLALDX 1 <Rn>, <Rm> - 2,2
SMLSLD, SMLSLDX 1 <Rn>, <Rm> - 2,2
UMAAL 2 <Rn>, <Rm> <RdLo>, <RdHi> 3,3

Note

Result Latency is one less if the result is used as the accumulate value for a subsequent multiply
accumulate. This only applies if the result is the same width as the accumulate value, that is 32

or 64 bits.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.
Non-Confidential

B-13

B.8 Divide

Cycle Timings and Interlock Behavior

This section describes the cycle timing behavior of the UDIV and SDIV instructions.

The divider unit is separate from the main execute pipeline so the UDIV and SDIV instructions
require one cycle to issue. They execute out-of-order relative to the rest of the pipeline, and
require an additional issue cycle at the end of the divide operation to write the result to the
destination register. This additional cycle is not required if the divide instruction fails its
condition code.

Result Latency for a UDIV instruction A divided by B is given by:

Result latency = 3 + pax ((w) ,O)

2

Result Latency for a SDIV instruction A divided by B is given by:

Result latency = 4 + 5 ((M) ,0)

2

Note
. A divide instruction that fails its condition code or attempts to divide by zero has a Result
Latency of three.
. The value of the (clz(B) - clz(A) + 1)/2 component of these equations must be rounded
down.
. The clz(x) function counts the number of leading zeros in the 32-bit value x. If x is

negative, it is negated before this count occurs.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. B-14
Non-Confidential

B.9 Branches

Cycle Timings and Interlock Behavior

This section describes the cycle timing behavior for the B, BL, BLX, BX, BXJ, CBNZ, CBZ, TBB, and TBH
instructions. Branches are subject to dynamic and return stack predictions. Table B-10 shows
example branch instructions and their cycle timing behavior.

Table B-10 Branch instruction cycle timing behavior

Memory

Example instruction Cycles cycles Comments
B<label>, BL<label>3, BLX<label>2 1 - Correct dynamic prediction
8 - Incorrect dynamic prediction
BX <Rm>b 1 - Correct return stack prediction
9 - Incorrect return stack prediction
BX <cond> <Rm>b 1 - Correct condition prediction and correct return stack prediction
8 - Incorrect condition prediction
9 - Correct condition prediction and incorrect return stack prediction
BXJ <cond> <Rm> 1 - Condition code fails
9 - Condition code passes
BLX <Rm> 9 - -
BLX <cond> <Rm> 1 - Condition code fails
9 - Condition code passes
(BZ <Rn>, <label>, (BNZ <Rn>, <label> 1 - Correct condition prediction
8 - Incorrectly predicted
TBB [<Rn>, <Rm>]¢ 9 1 Condition code fails
9 1 Condition code passes
TBH [<Rn>, <Rm>, LSL#1]¢ 9 1 Condition code fails
9 1 Condition code passes
a. Return stack push.
b. Return stack pop, if condition passes.
c. <Rn>and <Rm> are Very Early Regs.
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. B-15

ID021511

Non-Confidential

B.10 Processor state updating instructions

Cycle Timings and Interlock Behavior

This section describes the cycle timing behavior for the MSR, MRS, CPS, and SETEND instructions.
Table B-11 shows processor state updating instructions and their cycle timing behavior.

Table B-11 Processor state updating instructions cycle timing behavior

Instruction Cycles Comments

MRS 1 Al MRS instructions

MSR SPSR 1 All MSR instructions to the SPSR

MSR 5 All other MSR instructions to the CPSR

CPS<effect> <iflags>

Interrupt masks only

CPS<effect> <iflags>, #<mode>

1

Mode changing

SETEND

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.

Non-Confidential

B-16

Cycle Timings and Interlock Behavior

B.11 Single load and store instructions

This s

LDRSB,

Table

ection describes the cycle timing behavior for LDR, LDRHT, LDRSBT, LDRSHT, LDRT, LDRB, LDRBT,
LDRH, LDRSH, STR, STRT, STRB, STRBT, STRH, and PLD instructions.

B-12 shows the cycle timing behavior for stores and loads, other than loads to the PC. You

can replace LDR with any of these single load or store instructions. The following rules apply:

They are normally single-cycle issue. Both the base and any offset register are Very Early
Regs.

They are 3-cycle issue if pre-increment addressing with either a negative register offset or
a shift other than LSL #1, 2 or 3 is used. Both the base and any offset register are Very
Early Regs.

Accesses to addresses not aligned to the access size that cross a 64-bit aligned boundary
generate two memory accesses, and require an additional cycle to issue. This extra cycle
is required if the final address is potentially unaligned, even if the final address turns out
to be aligned.

PLD (data preload hint instructions) have cycle timing behavior as for load instructions.
Because they have no destination register, the result latency is not-applicable for such
instructions.

For store instructions <Rt> is always a Late Reg.

Table B-12 Cycle timing behavior for stores and loads, other than loads to the PC

Memory Resultlatency Resultlatency

Example instruction Cycles cycles (LDR) (base register) Comments

LDR <Rt>, <addr_md_lcycle>d 1 1 2 1 Aligned access

LDR <Rt>, <addr_md_3cycle>® 3 1 4 3 Aligned access

LDR <Rt>, <addr_md_lcycle>d 2 2 3 2 Potentially unaligned access
LDR <Rt>, <addr_md_3cycle>2 4 2 5 4 Potentially unaligned access

a. See Table B-14 on page B-18 for an explanation of <addr_md_1cycle> and <addr_md_3cycle>.

Table

B-13 shows the cycle timing behavior for loads to the PC.

Table B-13 Cycle timing behavior for loads to the PC

Memory Result

Example instruction Cycles Comments
cycles latency

LDR pc, [sp, #<imm>] (!) 1 1 - Correctly return stack predicted, or conditional
predicted correctly

LDR pc, [sp]l, #<imm> 1 1 -

LDR pc, [sp, #<imm>] (!) 9 1 - Return stack mispredicted, conditional predicted
correctly

LDR pc, [spl, #<imm> 9 1 -

LDR <cond> pc, [sp, #<imm>] (!) 8 1 - Conditional predicted incorrectly, but return
stack predicted correctly

LDR <cond> pc, [spl, #cns 8 1 -

LDR pc, <addr_md_lcycle>? 9 1 - -

LDR pc, <addr_md_3cycle>2 11 1 - -

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. B-17

ID021511

Non-Confidential

Cycle Timings and Interlock Behavior

a. See Table B-14 for an explanation of <addr_md_lcycle> and <addr_md_3cycle>. For condition code failing cycle counts, you must
use the cycles for the non-PC destination variants.

Only cycle times for aligned accesses are given because Unaligned accesses to the PC are not
supported.

The processor includes a 4-entry return stack that can predict procedure returns. Any LDR
instruction to the PC with an immediate post-indexed offset of plus four, and the stack pointer
R13 as the base register is considered a procedure return.

Table B-14 shows the explanation of <addr_md_lcycle> and <addr_md_3cycle> used in
Table B-12 on page B-17 and Table B-13 on page B-17.

Table B-14 <addr_md_1cycle> and <addr_md_3cycle> LDR example instruction explanation

Example instruction Very Early Reg Comments

<addr_md_lcycle>

LDR <Rt>, [<Rn>, #<imm>] (!) <Rn> If post-increment addressing or pre-increment
addressing with an immediate offset, or a
positive register offset with no shift or shift
LSL #1, 2 or 3, then 1-issue cycle

LDR <Rt>, [<Rn>, <Rm>] (!) <Rn>, <Rm>

LDR <Rt>, [<Rn>, <Rm>, LSL #1, 2 or 3] (!) <Rn>, <Rm>

LDR <Rt>, [<Rn>], #<imm> <Rn>
LDR <Rt>, [<Rn>], +/-<Rm> <Rn>, <Rm>
LDR <Rt>, [<Rn>], +/-<Rm> <shift> <cns> <Rn>, <Rm>

<addr_md_3cycle>

LDR <Rt>, [<Rn>, -<Rm>] (!) <Rn>, <Rm> If pre-increment addressing with a negative
register offset or shift other than LSL #1, 2 or

LDR <Rt>, <Rn>, +/-<Rm> <shift> <cns>] (!) <Rn>,<Rm> 3, then 3-issue cycles

B.11.1 Base register update

The base register update for load or store instructions occurs in the ALU pipeline. To prevent an
interlock for back-to-back load or store instructions reusing the same base register, there is a
local forwarding path to recycle the updated base register around the address generator. This
only applies when the load or store instruction with base write-back uses pre-increment
addressing, and is a single load or store instruction that is not a load or store double instruction
or load or store multiple instruction.

For example, with R2 aligned the following instruction sequence take three cycles to execute:

LDR R5, [R2, #4]!
LDR R6, [R2, #0x10]!
LDR R7, [R2, #0x20]!

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. B-18
ID021511 Non-Confidential

Cycle Timings and Interlock Behavior

B.12 Load and Store Double instructions
This section describes the cycle timing behavior for the LDRD and STRD instructions.
The LDRD and STRD instructions:
. Are normally single-cycle issue. Both the base and any offset register are Very Early Regs.

. Are 3-cycle issue if offset or pre-increment addressing with a negative register offset is
used. Both the base and any offset register are Very Early Regs.

. Take only one memory cycle if the address is doubleword aligned.
. Take two memory cycles if the address is not doubleword aligned.

Table B-15 shows the cycle timing behavior for LDRD and STRD instructions.

Table B-15 Load and Store Double instructions cycle timing behavior

Example instruction Cycles Cycles v.vith Memory Resultlatency Result Iatfancy
base writeback cycles (LDRD) (base register)

Address is doubleword aligned

LDRD RO, R1, <addr_md_lcycle>2 1 2 1 2,2 2

LDRD RO, R1, <addr_md_3cycle>® 3 4 1 4,4 4
Address not doubleword aligned

LDRD RO, R1, <addr_md_lcycles® 2 2 2 2,3 2

LDRD RO, R1, <addr_md_3cyclesd 4 4 2 4,5 4

a. See Table B-16 for an explanation of <addr_md_lcycle> and <addr_md_3cycle>.

Table B-16 shows the explanation of <addr_md_1lcycle> and <addr_md_3cycle> used in
Table B-15.

Table B-16 <addr_md_1cycle> and <addr_md_3cycle> LDRD example instruction explanation

Example instruction Very Early Reg Comments

<addr_md_lcycle>

LDRD <Rt>, <Rt2>, [<Rn>, #<imm>] (!) <Rn> If post-increment addressing, pre-increment
addressing with an immediate offset or a positive
register offset, then 1-issue cycle

LDRD <Rt>, <Rt2>, [<Rn>, <Rm>] (!) <Rn>, <Rm>

LDRD <Rt>, <Rt2>, [<Rn>], #<imm> <Rn>

LDRD <Rt>, <Rt2>, [<Rn>], +/-<Rm> <Rn>, <Rm>
<addr_md_3cycle>

LDRD <Rt>, <Rt2>, [<Rn>, -<Rm>] (!) <Rn>, <Rm> If pre-increment addressing with a negative
register offset, then 3-issue cycles

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. B-19
ID021511 Non-Confidential

Cycle Timings and Interlock Behavior

B.13 Load and Store Multiple instructions

This section describes the cycle timing behavior for the LDM, STM, PUSH, and POP instructions.
These instructions take multiple cycles to issue, and then use multiple memory cycles to load
and store all the registers. Because the memory datapath is 64-bits wide, two registers can be
loaded or stored on each cycle.

This section describes:
. Load and Store Multiples, other than load multiples including the PC
. Load Multiples, where the PC is in the register list on page B-21
. Example Interlocks on page B-21
B.13.1 Load and Store Multiples, other than load multiples including the PC
In all cases the base register, <Rn>, is a Very Early Reg.

Table B-17 shows the cycle timing behavior of load and store multiples including the PC.

Table B-17 Cycle timing behavior of Load and Store Multiples, other than load multiples including the PC

Example instruction Cycles g::fee:e:i:rer Memory Result latency Result Iatfancy
write-back cycles (LDM) (base register)

First address 64-bit aligned

LDMIA <Rn>,{R1} 1 1 1 2 1

LDMIA <Rn>,{R1,R2} 1 2 1 2,2 2

LDMIA <Rn>,{R1,R2,R3} 2 2 2 2,23 2

LDMIA <Rn>,{R1,R2,R3,R4} 2 3 2 2,233 3

LDMIA <Rn>,{R1,R2,R3,R4,R5} 3 3 3 2,2,3,3,4 3

LDMIA <Rn>,{R1,R2,R3,R4,R5,R6} 3 4 3 2,2,3,3,44 4

LDMIA <Rn>,{R1,R2,R3,R4,R5,R6,R7} 4 4 4 2,2.3,3,44,5 4
First address not 64-bit aligned

LDMIA <Rn>,{R1} 1 2 1 2 2

LDMIA <Rn>,{R1,R2} 2 2 2 2,3 2

LDMIA <Rn>,{R1,R2,R3} 2 3 2 23,3 3

LDMIA <Rn>,{R1,R2,R3,R4} 3 3 3 2,3,3,4 3

LDMIA <Rn>,{R1,R2,R3,R4,R5} 3 4 3 2,3,3,4.4 4

LDMIA <Rn>,{R1,R2,R3,R4,R5,R6} 4 4 4 233,445 4

LDMIA <Rn>,{R1,R2,R3,R4,R5,R6,R7} 4 5 4 2,3,3,44,5,5 5

Note

The Cycle timing behavior that Table B-17 shows also covers PUSH and POP instructions that
behave like store and load multiple instructions with base register write-back.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. B-20
ID021511 Non-Confidential

Cycle Timings and Interlock Behavior

B.13.2 Load Multiples, where the PC is in the register list

The processor includes a 4-entry return stack that can predict procedure returns. Any LDM to the
PC that does not restore the SPSR to the CPSR, is predicted as a procedure return.

In all cases the base register, <Rn>, is a Very Early Reg.

Table B-18 shows the cycle timing behavior of Load Multiples, where the PC is in the register
list.

Table B-18 Cycle timing behavior of Load Multiples, with PC in the register list (64-bit aligned)

Memory Result

Example instruction Cycles cycles latency Comments

LDMIA <Rn>,{...,pc} ma nb 2,... Correct return stack prediction

LDMIA <Rn>,{...,pc} mé+ 8 nb 2,... Incorrect return stack prediction

LDMIA <cond> <Rn>,{...,pc} ma nb 2,... Correct condition prediction and correct return stack prediction
LDMIA <cond> <Rn>,{...,pc} ma+7 nb 2,... Incorrect condition prediction

LDMIA <cond> <Rn>,{...,pc} ma+§ nb 2,... Correct condition prediction and incorrect return stack prediction

a. Where m is the number of cycles for this instruction if the PC were treated as a normal register.
b. Where n is the number of memory cycles for this instruction if the PC were treated as a normal register.

Note

The Cycle timing behavior that Table B-18 shows also covers PUSH and POP instructions that
behave like store and load multiple instructions with base register writeback.

B.13.3 Example Interlocks

The following sequence that has an LDM instruction takes six cycles to execute, because R7 has a
result latency of five cycles:

LDMIA R@, {R1-R7}
ADD R10, R10, R7

The following sequence that has an STM instruction takes five cycles to execute:

STMIA RO, {R1-R7}
ADD R7, R10, R11

The following sequence has a result latency hidden by issue cycles. It takes five cycles to
execute.

LDMIA RO, {R1-R7}
ADD R10, R10, R3

The following sequence that has a POP instruction takes seven cycles to execute, because R9 has
a result latency of six cycles:

POP {R1-R9}
ADD R10, R10, R9

The following sequence that has a PUSH instruction takes five cycles to execute:

PUSH {R1-R7}
ADD R10,R10,R7

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. B-21
Non-Confidential

Cycle Timings and Interlock Behavior

Note

In the examples, RO and sp are 64-bit aligned addresses. The instructions PUSH and POP always
use the sp register for the base address.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. B-22
ID021511 Non-Confidential

Cycle Timings and Interlock Behavior

B.14 RFE and SRS instructions

This section describes the cycle timing for the RFE and SRS instructions.

These instructions:

. return from an exception and save exception return state respectively
. take one or two memory cycles depending on doubleword alignment first address
location.

In all cases the base register is a Very Early Reg.

Table B-19 shows the cycle timing behavior for RFE and SRS instructions.

Table B-19 RFE and SRS instructions cycle timing behavior

Example instruction Cycles Memory cycles

Address doubleword aligned

RFEIA <Rn> 10 1

SRSIA #<mode> 1 1

Address not doubleword aligned

RFEIA <Rn> 11 2
SRSIA #<mode> 2 2
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. B-23

ID021511

Non-Confidential

Cycle Timings and Interlock Behavior

B.15 Synchronization instructions

This section describes the cycle timing behavior for the CLREX, DMB, DSB, ISB, LDREX, LDREXB,
LDREXD, LDREXH, STREX, STREXB, STREXD, STREXH, SWP, and SWPB instructions

In all cases the base register, Rn, is a Very Early Reg. Table B-20 shows the synchronization
instructions cycle timing behavior.

Table B-20 Synchronization instructions cycle timing behavior

Instruction Cycles Memory cycles Result latency
CLREX 1 - -
LDREX <Rt>, <Rn> 1 1 2
LDREXB <Rt>, <Rn> 1 1 2
LDREXH <Rt>, <Rn> 1 1 2
LDREXD <Rt>, <Rn>2 1 1 2
STREX <Rd>, <Rt>, <Rn> 1 1 2
STREXB <Rd>, <Rt>, <Rn> 1 1 2
STREXH <Rd>, <Rt>, <Rn> 1 1 2
STREXD <Rd>, <Rt>, <Rt2>, <Rn>a 1 1 2
SWP <Rt>, <Rt2>, <Rn> 2 2 3
SWPB <Rt>, <Rt2>, <Rn> 2 2 3

a. Address must be 64-bit aligned.

The synchronization instructions DMB, DSB, and ISB stall the pipeline for a variable number of
cycles, depending on the current state of the memory system.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. B-24
ID021511 Non-Confidential

B.16 Coprocessor instructions

Cycle Timings and Interlock Behavior

This section describes the cycle timing behavior for the MCR and MRC instructions to CP14, the
debug coprocessor or CP15, the system control coprocessor.

The precise timing of coprocessor instructions is tightly linked with the behavior of the relevant
coprocessor. Table B-21 shows the coprocessor instructions cycle timing behavior. Table B-21

shows the best case numbers.

Table B-21 Coprocessor instructions cycle timing behavior

Instruction Cycles

Result latency n Comments

MCR 6 - -

MCR<cond> 6 - Condition code passes
4 - Condition code fails

MRC 6 6 -

MRC<cond> 6 6 Condition code passes
4 4 Condition code fails

Note

Some instructions such as cache operations take more cycles.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. B-25

Non-Confidential

Cycle Timings and Interlock Behavior

B.17 SVC, BKPT, Undefined, and Prefetch Aborted instructions

This section describes the cycle timing behavior for SVC, Undefined Instruction, BKPT and
Prefetch Abort.

In all cases the exception is taken in the Wr stage of the pipeline. SVC and most Undefined
Instructions that fail their condition codes take one cycle. A small number of Undefined
Instructions that fail their condition codes take two cycles. Table B-22 shows the SVC, BKPT,
Undefined, prefetch aborted instructions cycle timing behavior.

Table B-22 SVC, BKPT, Undefined, prefetch aborted instructions cycle timing behavior

Instruction Cycles
SVC (formerly SWI) 9
BKPT 9
Prefetch Abort 9

Undefined Instruction 9

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. B-26
Non-Confidential

Cycle Timings and Interlock Behavior

B.18 Miscellaneous instructions

Table B-23 shows the cycle timing behavior for If~-Then (IT) and No OPeration (NOP)
instructions.

Table B-23 IT and NOP instructions cycle timing behavior

Example instructions Cycles Early Reg Late Reg Resultlatency Comments

IT{<v>{<w>{<z>}}} <cond> 1 - - - -

NOP 1 - - - -

The DBG, PLI, and YIELD instructions are all treated the same as NOP, and so have the same cycle
timing behavior.

The WFI and WFE instructions stall the pipeline for a variable number of cycles, depending on the
current state of the memory system.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. B-27
ID021511 Non-Confidential

Cycle Timings and Interlock Behavior

B.19 Floating-point register transfer instructions

This section describes the cycle timing behavior for the various VFP instruction that transfer
data between the VFP register file and the integer register file, including the system registers.

All source operands are Normal Regs, and the result latency for non-system register transfers is
always 1 cycle.

Instructions that write data from the integer register file to the VFP system registers (VMSR) are
blocking, that is, no subsequent instruction can start execution before the VMSR has completed
execution. Consequently, the VMSR instructions take six cycles to execute.

All transfers to and from the VFP system registers are also serializing. This means that if there
are any outstanding out-of-order-completion VFP instructions, the system register transfer
instruction stalls in the iss-stage until these instructions are complete.

VFP instructions that complete out-of-order are VMLA.F32, VMLS.F32, VNMLS.F32, VNMLA.F32,
VDIV.F32, VSQRT.F32, VCVT.F64.F32, and double-precision arithmetic and conversion instructions.

Table B-24 shows the floating-point register transfer instructions cycle timing behavior.

Table B-24 Floating-point register transfer instructions cycle timing behavior

Example instruction Cycles Resultlatency Comments
VMOV <Sn>, <Rt> 1 1 -
VMOV <Rt>, <Sn> 1 2 -
VMOV <Dn[x]>, <Rt> 1 1 -
VMOV.<32> <Rt>, <Dn[x]> 1 2 -
VMOV <Sm>, <Sml>, <Rt>, <Rt2> 1 1 -
VMOV <Rt>, <Rt2>, <Sm>, <Sml> 1 2 -
VMOV <Dm>, <Rt>, <Rt2> 1 1 -
VMOV <Rt>, <Rt2>, <Dm> 1 2 -
VMSR <spec_reg>, <Rt> 6 - Blocking and serializing
VMRS <Rt>, <spec_reg> 1 2 Serializing
VMRS APSR_nzcv, FPSCR 1 - Serializing
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. B-28

ID021511

Non-Confidential

Cycle Timings and Interlock Behavior

B.20 Floating-point load/store instructions

This section describes the cycle timing behavior for all load and store instructions that operate

on the VFP register file:

. The base address register, and any offset register are Very Early Regs for both loads and
stores.

. For store instructions, the data register (Sd or Dd), or registers are always Late Regs.

. The cycle timing of load and store instructions is affected by the starting address for the
transfer.

Note

The starting address is not always the same as the base address.

. The cycle timing of load and store multiple instructions is also affected by whether or not
the base address register is updated by the instruction, that is, base register writeback.

Table B-25 shows the number of cycles and result latencies for single load and store instructions
and load multiple instructions. Values are shown for each instruction with and without base
register writeback, and with different starting address alignments. Cycle counts and base
register result latencies for store multiple instructions are the same as for the equivalent load
multiple instruction.

Table B-25 Floating-point load/store instructions cycle timing behavior

Cycles/ . Result Resultlatency
. . Cycles with .
Example instruction memory . latency (baseregister, Comments
writeback (!)
cycles (load) <Rn>)
VLDR.32 <Sd>, [<Rn>{, #+/-<imm>}] 1 - 1 - -
VLDR.64 <Dd>, [<Rn>{, #+/-<imm>}] 1 - 1 - 64-bit aligned address
VLDR.64 <Dd>, [<Rn>{, #+/-<imm>}] 2 - 2 - Not aligned

VSTR.32 <Sd>, [<Rn>{, #+/-<imm>}] 1 - - - -

VSTR.64 <Dd>, [<Rn>{, #+/-<imm>}] 1 - - - 64-bit aligned address

VSTR.64 <Dd>, [<Rn>{, #+/-<imm>}] 2 - - - Not aligned

First address 64-bit aligned

VLDM{mode}.32 <Rn>{!}, {s1} 1 1 1 1 -
VLDM{mode}.32 <Rn>{!}, {s1,s2} 1 2 1,1 2 -
VLDM{mode}.32 <Rn>{!}, {sl-s3} 2 2 1,1,2 2 -
VLDM{mode}.32 <Rn>{!}, {sl-s4} 2 3 1,1,2,2 3 -
VLDM{mode}.64 <Rn>{!}, {d1} 1 2 1 2 -
VLDM{mode}.64 <Rn>{!'}, {d1,d2} 2 3 1,2 3 -
VLDM{mode}.64 <Rn>{!}, {d1-d3} 3 4 1,2,3 4 -
VLDM{mode}.64 <Rn>{!}, {d1-d4} 4 5 1,2,3,4 5 -

First address not 64-bit aligned

VLDM{mode}.32 <Rn>{'}, {s1} 1 1 1 1 -

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. B-29
ID021511 Non-Confidential

Cycle Timings and Interlock Behavior

Table B-25 Floating-point load/store instructions cycle timing behavior (continued)

Cycles/ . Result Resultlatency
. . Cycles with .
Example instruction memory . latency (baseregister, Comments
writeback (!)

cycles (load) <Rn>)
VLDM{mode}.32 <Rn>{!}, {s1,s2} 2 2 1,2 2 -
VLDM{mode}.32 <Rn>{!}, {sl-s3} 2 3 1,2,2 3 -
VLDM{mode}.32 <Rn>{!}, {s1l-s4} 3 3 1,2,2,3 3 -
VLDM{mode}.64 <Rn>{'}, {d1} 2 2 2 2 -
VLDM{mode}.64 <Rn>{!}, {d1,d2} 3 3 23 3 -
VLDM{mode}.64 <Rn>{!'}, {d1-d3} 4 4 2,34 4 -
VLDM{mode}.64 <Rn>{'}, {d1-d4} 5 5 2,345 5 -

ARM DDI 0460C

ID021511

Copyright © 2010-2011 ARM. All rights reserved.

Non-Confidential

B-30

Cycle Timings and Interlock Behavior

B.21 Floating-point single-precision data processing instructions

This section describes the cycle timing behavior for all single-precision VFP CDP instructions.

This includes arithmetic instructions such as VMUL.F32, data and immediate moving instructions
such as "VMOV.F32 <Sd>, #<imm>", VABS.F32, VNEG.F32, and "VMOV <Sd>, <Sm>", and comparison

instructions and conversion instructions.

Table B-26 shows the floating-point single-precision data processing instructions cycle timing
behavior.

Table B-26 Floating-point single-precision data processing instructions cycle timing

behavior

Example instruction Cycles Early Reg Result latency
VMLA.F32 <Sd>, <Sn>, <Sm>2 1b <Sn>, <Sm> 5¢

VADD.F32 <Sd>, <Sn>, <Sm>d 1 <Sn>, <Sm> 2

VDIV.F32 <Sd>, <Sn>, <Sm> 2 <Sn>, <Sm> 16

VSQRT.F32 <Sd>, <Sm> 2 <Sm> 16

VMOV.F32 <Sd>, #<imm> 1 - 1

VMOV.F32 <Sd>, <Sm>¢ 1 - 1

VCMP.F32 <Sd>, <Sm>f 1 <Sd>, <S> -

VCMP.F32 <Sd>, #0.0f 1 <Sd> -

VCVT.F32.U32 <Sd>, <Sm>g 1 <Sm> 2

VCVT.F32.U32 <Sd>, <Sd>, #<fbitss>h 1 <Sd> 2

VCVTR.U32.F32 <Sd>, <Sm>i 1 <Sm> 2

VCVT.U32.F32 <Sd>, <Sd>, #<fbitssi 1 <Sd> 2

VCVT.F64.F32 <Dd>, <Sn> 3 <Sm> 5

a. Also VMLS.F32, VNMLS.F32, and VNMLA.F32.

b. VMLA.F32 completes out-of-order, and can take an extra cycle (two in total) if an add
instruction (VADD) or certain dual-issued instruction pairs are in the iss-stage when the
instruction completes.

c. Except when the instruction dependent on the result <Sd> is another VMLA.F32

instruction, and the dependent operand is the accumulate operand, <Sd>. In this case, the

result latency is reduced to 3 cycles.

Also VSUB.F32, VMUL.F32, and VNMUL. F32.

Also VABS.F32 and VNEG. F32.

Also VCMPE. F32.

Also VCVT.F32.532.

Also VCVT.F32.U16, VCVT.F32.532, and VCVT.F32.516.

Also VCVT.U32.F32, VCVTR.S32.F32, and VCVT.S32.F32.

Also VCVT.U16.F32, VCVT.S32.F32, and VCVT.S16.F32.

~roE o A

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. B-31
Non-Confidential

Cycle Timings and Interlock Behavior

B.22 Floating-point double-precision data processing instructions

This section describes the cycle timing behavior for all double-precision VFP CDP instructions.
This includes arithmetic instructions such as VMUL. F64, data and immediate moving instructions
such as "VMOV.F64 <Dd>, #<imm>", VABS.F64, VNEG.F64, and "VMOV <Dd>, <Dm>", and comparison
instructions and conversion instructions.

Table B-27 shows the floating-point double-precision data processing instructions cycle timing
behavior

Table B-27 Floating-point double-precision data processing instructions cycle timing

behavior
Example instruction Cycles Early Reg Result latency
VMLA.F64 <Dd>, <Dn>, <Dm>?2 13 <Dn>, <Dm> 19
VADD.F64 <Dd>, <Dn>, <Dm>b 3 <Dn>, <Dm> 9
VDIV.F64 <Dd>, <Dn>, <Dm> 3 <Dn>, <Dm> 96
VSQRT.F64 <Dd>, <Dm> 3 <Dm> 96
VMOV.F64 <Dd>, #<imm> 1 - 1
VMOV.F64 <Dd>, <Dm>¢ 1 - 1
VCMP.F64 <Dd>, <Dm>d 2 <Dd>, <Dm> -
VCMP.F64 <Dd>, #0.0d 2 <Dm> -
VCVT.F64.U32 <Dd>, <Sm>¢ 3 <Dm> 7
VCVT.F64.U32 <Dd>, <Dd>, #<fbits>f 3 <Dd> 7
VCVTR.U32.F64 <Sd>, <Dm>g 3 <Dm> 7
VCVT.U32.F64 <Dd>, <Dd>, #<fbits>h 3 <Dd> 7
VCVT.F32.F64 <Sd>, <Dn> 3 <Dm> 7
a. Also VMLS.F64, VNMLS.F64, and VNMLA.F64.
b. Also VSUB.F64, VMUL.F64, and VNMUL. F64.
c. Also VABS.F64 and VNEG.F64.
d. Also VCMPE.F64.
e. Also VCVT.F64.532.
f. Also VCVT.F64.U16, VCVT.F64.532, and VCVT.F64.516.
g. Also VCVT.U32.F64, VCVTR.S32.F64, and VCVT.S32.F64.
h. Also VCVT.U16.F64, VCVT.S32.F64, and VCVT.S16.F64.
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. B-32

ID021511

Non-Confidential

B.23 Dual issue

Cycle Timings and Interlock Behavior

To increase instruction throughput, the processor can issue certain pairs of instructions
simultaneously. This is called dual issue. When this happens, the instruction with the smaller
cycle count is assumed to execute in zero cycles. If a pair of instructions can be dual-issued, they
are always dual-issued unless dual-issuing is disabled, see c/, Auxiliary Control Register on
page 4-41. If one instruction of the pair is interlocked, both are interlocked.

This section describes:
. Dual issue rules
. Permitted combinations on page B-34

B.23.1 Dual issue rules

The following rules apply to dual-issue instructions:

. Both instructions must be available to the issue stage at the same time. This is unlikely if
there are many branches.

. The second instruction must not use the PC as a source register unless it is B #immed.

. The first instruction must not use the PC as a destination register.

. Both instructions must belong to the same instruction set, ARM or Thumb.

. There must be no data dependency between the two instructions. That is, the second
instruction must not have any source registers that are destination registers of the first
instruction.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. B-33

ID021511

Non-Confidential

Cycle Timings and Interlock Behavior

B.23.2 Permitted combinations

Table B-28 lists the permitted instruction combinations. Any instruction can be conditional or
flag-setting unless otherwise stated. Only the exact instruction combinations listed in

Table B-28 can be dual issued, provided you ensure the instruction combinations obey the rules
specified in Dual issue rules on page B-33.

Table B-28 Permitted instruction combinations

Dualissue s . . .
First instruction Second instruction
case
Case A Any instruction other than load/store multiple/double, flag-setting B #immed
multiply, non-VFP coprocessor operations, miscellaneous T
processor control instructions?, or floating point instructions if NOP
floating point logic is not included in the processor
Case A-Fb Any floating point instructions, excluding load/store multiple,
double-precision CDP instructions, VCVT.F64.F32, and VMRS and
VMSR.
Case Bl LDR <Rt>, [<Rn>, #<imm>]¢ Any data processing instruction that does not
LDR <Rt>, [<Rn>, <Rm>]¢ require a shift by a register value.d
LDR <Rt>, [<Rn>, <Rm>, LSL #1, 2 or 3]¢ Any bitfield, saturate or bit-packing instruction.®
Any signed or unsigned extend instruction.f
Any SIMD add or subtract instruction.8
Other miscellaneous instructions.h
Case B1-Fb Any single-precision CDPi, excluding "VMOV. F32
<Sd>, #<imm>", VNEG.F32, VABS.F32, VCVT.F64.F32,
VDIV.F32, and VSQRT.F32.
32-bit transfers to and from the floating-point
register filel.
Case B2 STR <Rt>, [<Rn>, #<imm>]¢ As for Case Bl.
Case B2-Fb As for Case B1-F
Case C MOV <Rd>, #immedik Any data processing instruction.d
MOWW <Rd>, #immedi Any bitfield, saturate or bit-packing instruction.®
MOV <Rd>, <Rm>j Any signed or unsigned extend instruction.f
Any SIMD add or subtract instruction.8
Other miscellaneous instructions.h
Case C-Fb 32-bit transfers to and from the floating-point
register filel.
Case F1bm Any single-precision (DPi, excluding “VMOV.S32 <Sd>, #<imm>", As for case C or C-F.
VCVT.F64.F32, VABS.F32, and VNEG.F32.
Case F2_1d® VLDR.F32n As for Case B1 or Case B1-F
Case F2_stb VSTR.F32n As for Case B1.
Any single-precision CDPi, excluding
multiply-accumulate instructionse.
32-bit transfers to and from the floating-point
register filel.
Case F2DP VLDR.F64n As for Case Bl.
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. B-34

ID021511

Non-Confidential

Cycle Timings and Interlock Behavior

Table B-28 Permitted instruction combinations (continued)

Dualissue s . . .
First instruction Second instruction

case

Case F3b 32-bit transfers to and from the floating-point register file! As for Case F2_st.
"VMOV.F32, <Sd>, <Sm>", VABS.F32, and VNEG.F32.

Case F4b Any instruction that does not set flags, other than load/store Any single-precision CDPi, excluding "VMOV. F32
multiple/double, non-VFP coprocessor operations, multi-cycle <Sd>, #<imm>", VNEG.F32, VABS.F32, VCVT.F64.F32,
multiply instructionsP, double-precision floating point CDP VDIV.F32, and VSQRT.F32.
instructions, VCVT.F64.F32, or a miscellaneous processor control 32-bit transfers to and from the floating-point
instruction? register filel.

Case F6b VMRS r15, FPSCR As for Case A.

a. These are processor state updating instructions, synchronization instructions, SVC, BKPT, prefetch abort and Undefined Instructions.

b. This case can only occur if the optional floating-point functionality has been configured for the Cortex-R5F processor, see Configurable

options on page 1-6.

You can substitute LDR with LDRB, LDRH, LDRSB, or LDRSH. You can also substitute STR with STRB or STRH.

d. Data processing instructions are ADC, ADD, ADDW, AND, ASR, BIC, CLZ, CMN, CMP, EOR, LSL, LSR, MOV, MOVT, MOVW, MVN, ORN, ORR, ROR, RRX, RSB, SBC, SUB,
SUBW, TEQ, and TST.

e. Bitfield, saturate, and bit-packing instructions are BFC, BFI, PKHBT, PKHTB, QADD, QDADD, QDSUB, QSUB, SBFX, SSAT, SSAT16, UBFX, USAT, and USAT16.

f. Signed or unsigned extend instructions are SXTAB, SXTAB16, SXTAH, SXTB, SXTB16, SXTH, UXTAB, UXTAB16, UXTAH, UXTB, UXTB16, and UXTH.

SIMD add and subtract instructions are QADD16, QADD8, QASX, SQUB16, QSUBS, QSAX, SADD16, SADD8, SASX, SHADD16, SHADD8, SHASX, SHSUB16, SHSUBS,
SHSAX, SSUB16, SSUBS, SSAX, UADD16, UADDS, UASX, UHADDL6, UHADDS, UHASX, UHSUB16, UHSUBS, UHSAX, UQADDL6, UQADDS, UQASX, UQSUB16, UQSUBS, UQSAX,
USUB16, USUBS, and USAX.

h. Other miscellaneous instructions are RBIT, REV, REV16, REVSH, and SEL.

i. Single-precision CDPs are VABS.F32, VNEG.F32, "VMOV.F32 <Sd>, #<imm>", VMLA.F32, VMLS.F32, VNMLS.F32, VNMLA.F32, VMUL.F32, VNMUL.F32,
VADD. F32, VSUB.F32, VDIV.F32, VSQRT.F32, VCMP.F32, VCMPE.F32, VCVT.F64.F32, VCVT.F32.U32, VCVT.F32.S32, VCVT.F32.U16, VCVT.F32.516,
VCVTR.U32.F32, VCVT.U32.F32, VCVTR.S32.F32, VCVT.S32.F32, VCVT.U16.F32, and VCVT.S16.F32.

j- Must not be flag-setting.

k. Immediate value must not require a shift.

. 32-bit transfers to or from the floating point register file include single or half-double floating point register transfers, including "VMOV <Sn>,
<Rt>", "VMOV.F32 <Dn[x]>, <Rt>", "VMOV.F32 <Rt>, <Dn[x]>", and "VMOV <Rt>, <Sn>", but excluding VMRS and VMSR.

m. When the first instruction is a floating point multiply-accumulate, and the second instruction is a 32-bit transfer to the floating-point register

file, case F1 can only occur if the two instructions have different destination registers.

Any addressing modes.

Single-precision floating-point multiply-accumulate instructions are VMLA.F32, VMLS.F32, VNMLS.F32, and VNMLA.F32.

Multi-cycle multiply instructions are SMMUL, SMMLA, SMMLS, MUL, MLA, MLS, SMULL, SMLAL, UMAAL, UMULL, and UMLAL.

iz

v op

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. B-35
ID021511 Non-Confidential

Appendix C
ECC Schemes

This appendix describes some of the advantages and disadvantages of the different Error Checking
and Correction (ECC) schemes for the TCMs. It contains the following section:

. ECC scheme selection guidelines on page C-2.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. C-1
ID021511 Non-Confidential

ECC Schemes

CA1 ECC scheme selection guidelines

When deciding to implement a Cortex-RS processor with an ECC scheme on one or both of the
TCM interfaces, give careful consideration between using 32-bit or 64-bit ECC. To calculate or
check the ECC code for data, the processor must know the value of all bytes in the data chunk
protected by the scheme. Therefore, when using these schemes, the processor must perform
additional read accesses to calculate and check the ECC code stored with the data.

For example, if the ATCM is implemented with 32-bit ECC and a program performs an aligned
STR to the memory, the processor can calculate the error correction code using only the data
stored by the program.

If the same memory was implemented with 64-bit ECC, the processor cannot calculate the ECC
code for the doubleword memory chunk being written using only the data stored by the program.
To calculate the ECC code and store the data, the processor must first perform a read of the other
word in that memory chunk. This increases the number of memory accesses required to execute
the program. This increases power consumption, and can also lead to a decrease in performance.

Use the following guidelines to decide which scheme to use. If you are in any doubt, benchmark
your system running typical software to find the best balance between area, power, and
performance for your application.

. For a TCM interface that contains mainly instructions, use 64-bit ECC. The vast majority
of reads requested by the prefetch unit are doubleword.

. Use 64-bit ECC when a TCM contains data that is accessed using:
— LDRD or STRD instructions where the start address is doubleword aligned

— LDMor STM instructions where the start address is doubleword aligned and there are
an even number of registers in the register list.

64-bit ECC requires less RAM area, and does not provide any performance loss or
increased power consumption over 32-bit ECC in these cases.

. When LDM and STM instructions are used to access many registers, the majority of TCM
accesses do not require additional reads with 64-bit ECC.

. 32-bit ECC provides better power consumption and generally better performance
compared to 64-bit ECC when:
— aprogram performs many unaligned accesses to data in a TCM
— aprogram performs many byte, halfword, and word accesses to data in a TCM.
You might be able to obtain optimal results by using a different error detection scheme on each

TCM interface, and allocating instructions and data to each interface based on the guidelines
given in this section.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. C-2
Non-Confidential

Appendix D
Memory Ordering

This appendix describes the processor memory ordering. It contains the following sections:
. Memory ordering on page D-2
. Virtual AXI peripheral interface on page D-3.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved.
ID021511 Non-Confidential

D-1

Memory Ordering

D.1 Memory ordering

The ARM architecture requires that transactions to locations in Device-type memory be
ordered. The Cortex-R5 processor has an in-order pipeline, so any non-cached read blocks,
preventing any subsequent read or write from starting until the current read is complete. On an
AXI bus, as used by the Cortex-R5 processor, a series of writes issued in order, is kept in order
by using the same ID for all the transactions.

To maintain ordering between a write and a subsequent read, the Cortex-R5 processor waits for
the write transaction to complete before starting the read. The writes that the Cortex-R5
processor must wait for are any Device-type writes in its write buffer or bus interface and writes
for which the address and data have been accepted by the bus but for which no response has been
received, that is AXI outstanding writes. The latency of the Device read depends on how many
writes must complete before it starts.

The architectural ordering requirements apply only to individual peripherals so, for example, an
outstanding write to a UART does not have to be completed before a read from an interrupt
controller can be started. However, the Cortex-R5 processor views the memory attached the
each interface as flat, so ordering is preserved for all accesses to a given interface. Accesses to
different Cortex-R5 interfaces are not ordered, so selecting which interface is used can improve
the latency of critical Device read accesses.

For example, if a CPU has a number of write transactions outstanding on the AXI master
interface, a read from an interrupt controller attached to the AXI master interface must wait for
those writes to complete and the latency incurred might impact the interrupt handling
performance. Alternatively, if the interrupt controller were attached to the AXI peripheral
interface, the read could start without waiting for the outstanding writes on the AXI master
interface. However, the read would have to wait for any outstanding writes on the AXI
peripheral interface or its buffers.

Note

. The transaction ordering provided by Device memory is useful in situations where the
access has side effects. For example, if the processor writes to a memory-mapped FIFO,
and then reads a different memory-mapped register that indicates whether the FIFO is full,
the value read must reflect the state of the FIFO after the write otherwise a further write
could be performed that causes an overflow.

. If a write to a peripheral on one interface causes a side effect on a peripheral on a different
interface, there is no implicit ordering to ensure the side effect is observed by a subsequent
access to the second peripheral, even if both are in Device-type memory. In this situation,
you must perform a read from the first peripheral to ensure that the write has completed,
followed by a DMB to ensure ordering before performing the second access. On the
Cortex-R5 processor, a DMB alone is sufficient to force this ordering, but this is not
architectural and cannot be relied on in the general case.

Writes to Device-type memory always drain from the Cortex-R5 buffers as quickly as possible.
If the memory system attached to a port is perfect, that is the write response is returned in the
cycle after the address and data have been received, outstanding accesses cannot accumulate.
Selecting different interfaces for different peripherals does not improve read latencies in such a
system.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. D-2
ID021511 Non-Confidential

Memory Ordering

D.2 Virtual AXI peripheral interface

Each Cortex-R5 CPU can perform memory transactions using the AXI master interface, the
AXI peripheral interface or, if included, the AHB peripheral interface. Each of these interfaces
is treated independently from an ordering point of view. The virtual AXI peripheral interface
provides an additional interface that, although it shares the same physical port as the AXI
peripheral interface, is treated independently from an ordering point of view.

The two AXI peripheral interfaces use different AXI IDs to enable the memory system to return
responses out of order. They also have different limits on the number of outstanding writes
permitted so, by selecting a particular interface for a peripheral, you can have some control over
the maximum latency of accesses to that peripheral. If your AXI peripheral port memory system
accepts outstanding write transactions, ARM recommends that you configure the peripheral
interfaces so that the most latency critical peripheral, possibly an interrupt controller, is on the
virtual AXI peripheral interface and all others elsewhere.

Note

. The AXI peripheral interface and virtual AXI peripheral interface share write buffer logic,
and write data is drained in order from this buffer. The interfaces use different IDs, so
write responses can be received out-of-order. If the buffer contains writes to both
interfaces, and the AXI peripheral interface writes are older, a virtual AXI peripheral
interface read cannot start until the virtual AXI peripheral interface writes have all
completed, and this in turn requires that the AXI peripheral interface writes have posted
address and data to the bus though not necessarily completed.

. Similarly, if the memory system on the AXI peripheral port returns all write responses in
order, regardless of ID, this can force reads on one interface to wait for writes on a
different interface. The same effect is possible if two CPU ports connect to a common
memory bus that forces ordering.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. D-3
Non-Confidential

Appendix E
Revisions

This appendix describes the technical changes between released issues of this book.

Table E-1 Issue A

Change Location Affects

First release -

Table E-2 Differences between issue A and issue B

Change Location Affects
Add ID values for r1p0 Table 1-3 on page 1-16 rlp0
Updated AMBA interface clock gating Clock gating on page 2-16 rip0
System control register enables SWP and SWPB to be Table 4-24 on page 4-39 rlp0
Undefined

Single-precision only option for Cortex-RSF Features on page 1-4 rlp0

Table 1-1 on page 1-6

Figure 4-45 on page 4-69

Table 4-58 on page 4-80

About the FPU programmers model on page 11-2

Media and VFP Feature Registers, MVFR0 and MVFRI
on page 11-9

Accessibility of Slave Port Control Register

page 4-65

All revisions

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved.

ID021511

Non-Confidential

Revisions

Table E-2 Differences between issue A and issue B (continued)

Change Location Affects
Additional description for c15, Build Options 1 Register ¢35, Build Options 1 Register on page 4-79 All revisions
Update AXI slave address decode information AXI slave interface for cache RAMs on page 9-18 All revisions
Update AXI slave characteristics AXI slave characteristics on page 9-20 All revisions
Changed RAM access using AXI slave interface Accessing RAMs using the AXI slave interface on rlp0
page 9-21
Register name corrections STRH on page 9-38 All revisions
DTR access mode on page 12-17
MVFRI1.LS change of usage Table 11-8 on page 11-10 rlp0

Table E-3 Differences between issue B and issue C

Change

Location Affects

Update revision information

Table 1-3 on page 1-16 ripl

Table 4-7 on page 4-18

Table 4-15 on page 4-28

Table 4-17 on page 4-31

AXI master interface transfers on page 9-7

Correct RVPTYSm signal name Table A-8 on page A-14 All revisions
Add BVPTYCS signal description Table A-10 on page A-16 All revisions
Add ARCTLPTYS|3:0] signal description Table A-8 on page A-14 All revisions
Update RAM-Access space reference Cache RAM access on page 9-23 All revisions
Update validation register short names Validation Registers on page 4-68 All revisions
Update descriptions of product revisions Table 4-3 on page 4-15 All revisions

Table 12-6 on page 12-11

Table 12-31 on page 12-38

Table 11-4 on page 11-6

Update register descriptions

Throughout manual All revisions

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. E-2
ID021511 Non-Confidential

Glossary

This glossary describes some of the terms used in technical documents from ARM.

Abort An exception caused by an illegal memory access. Aborts can be caused by the external memory
system or by the memory-management hardware, that might include a Memory Management Unit
(MMU) or a Memory Protection Unit (MPU).

See also Data abort, External abort and Prefetch abort.

Abort model Describes what happens to the processor state when a Data abort exception occurs. Different abort
models behave differently with regard to load and store instructions that specify base register
write-back.

Addressing mode A method for generating the memory address used by a load or store instruction.

Advanced eXtensible Interface (AXI)
A bus protocol that supports separate phases for address or control and data, unaligned data
transfers using byte strobes, burst-based transactions with only start address issued, separate read
and write data channels, issuing multiple outstanding addresses, out-of-order transaction
completion, and easy addition of register stages to provide timing closure.

The AXI protocol includes optional extensions for signaling for low-power operation.

Advanced High-performance Bus (AHB)
A bus protocol with a fixed pipeline between the address or control and data phases. It supports a
subset of the functionality of the AMBA AXI protocol. The full AMBA AHB protocol
specification includes a number of features that are not commonly required for master and slave
implementations and ARM recommends using the AMBA AHB-Lite subset of the protocol.

See also Advanced Microcontroller Bus Architecture (AMBA) and AHB-Lite.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. Glossary-1
ID021511 Non-Confidential

Glossary

Advanced Microcontroller Bus Architecture (AMBA)

The AMBA family of protocol specifications is the ARM open standard for on-chip buses.
AMBA provides a strategy for the interconnection and management of the functional blocks
that make up a System-on-Chip (SoC). Applications include the development of embedded
systems with one or more processors or signal processors and multiple peripherals. AMBA
defines a common backbone for SoC modules, and therefore complements a reusable design
methodology.

Advanced Peripheral Bus (APB)

Advanced SIMD

AHB

AHB-Lite

Aligned

AMBA
APB

ARM instruction

ARM state
AXI

A bus protocol that is designed for use with ancillary or general-purpose peripherals such as
timers, interrupt controllers, UARTS, and I/O ports. It connects to the main system bus through
a system-to-peripheral bus bridge that helps reduce system power consumption.

An extension to the ARM architecture that provides Single Instruction Multiple Data (SIMD)
operations on a bank of extension registers. If a floating-point extension is also implemented,
the two extensions share a common extension register bank. The Advanced SIMD extension
implements NEON technology, and is often called NEON.

See Advanced High-performance Bus (AHB).

A subset of the full AMBA AHB protocol specification. It provides all of the basic functions
required by the majority of AMBA AHB slave and master designs, particularly when used with
a multi-layer AMBA interconnect. In most cases, the extra facilities provided by a full AMBA
AHB interface are implemented more efficiently using an AMBA AXI protocol interface.

A data item stored at an address that is divisible by the number of bytes that defines its data size
is said to be aligned. Aligned doublewords, words, and halfwords have addresses that are
divisible by eight, four, and two respectively. The terms doubleword-aligned, word-aligned, and
halfword-aligned therefore stipulate addresses that are divisible by eight, four, and two
respectively. An aligned access is one where the address of the access is aligned to the size of
an element of the access.

See Advanced Microcontroller Bus Architecture (AMBA).
See Advanced Peripheral Bus (APB).

A word that specifies an operation for a processor in ARM state to perform. ARM instructions
must be word-aligned.

In ARM state the processor executes the ARM instruction set.

See Advanced eXtensible Interface (AXI).

AXI channels, channel order and interfaces

The block diagram shows:
. the order in which AXI channel signals are described
. the master and slave interface conventions for AXI components.

AXI signal names have a one or two letter prefix that denotes the AXI channel as follows:
AW Write address channel.

w Write data channel.

B Write response channel.
AR Read address channel.
R Read data channel.

General descriptions of AXI signals use x to represent this prefix, for example, xVALID and
xREADY.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. Glossary-2
Non-Confidential

AXI terminology

Glossary

The following general AXI terms apply to both masters and slaves:

Active read transaction
A transaction for which the read address transfer has been completed, but the last
read data transfer has not been completed.

Active transfer
A transfer for which the transmitting interface has asserted the xVALID
handshake signal, but the receiving interface has not asserted the xXREADY
handshake signal.

Active write transaction
A transaction for which the write address or leading write data transfer has been
completed, but the write response has not been completed.

Completed transfer
A transfer for which the handshake using xXVALID and xREADY is complete.

Payload The non-handshake signals in a transfer.

Transaction An entire burst of transfers, comprising an address transfer, one or more data
transfers and, for write transactions only, a response transfer.

Transmitting interface
An initiator driving the payload and asserting the relevant xVALID signal.

Transfer A single exchange of information. That is, a transfer with a single handshake
using XVALID and xREADY.

The following AXI terms are master interface attributes. To permit system performance
optimization, they must be specified for every component with an AXI master interface:
Combined issuing capability
The maximum number of active transactions that the interface can generate. It is
specified for master interfaces that use combined storage for active write and read
transactions. If not specified you can assume it is equal to the sum of the write and
read issuing capabilities.
Read ID capability
The maximum number of different ARID values that the interface can generate
for all active read transactions at any one time.
Read ID width
The number of bits in the ARID bus.

Read issuing capability
The maximum number of active read transactions that the interface can generate.
Must be specified if the combined issuing capability is not specified.

Write ID capability

The maximum number of different AWID values that the interface can generate
for all active write transactions at any one time.

Werite ID width
The number of bits in the AWID and WID buses.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. Glossary-3
Non-Confidential

Banked registers

Base register

Base register write-back

Beat

Boundary scan chain

Glossary

Write interleave capability
The number of active write transactions for which the interface can transmit data.
This is counted from the earliest transaction.

Write issuing capability
The maximum number of active write transactions that a master interface can

generate. Must be specified if the combined issuing capability is not specified.

The following AXI terms are slave interface attributes. To permit performance optimization,
they must be specified for every component with an AXI slave interface:

Combined acceptance capability

The maximum number of active transactions that the interface can accept. It is
specified for slave interfaces that use combined storage for active write and read
transactions. If not specified then you can assume it is equal to the sum of the
write and read acceptance capabilities.

Read acceptance capability
The maximum number of active read transactions that the interface can accept.
Must be specified if the combined acceptance capability is not specified.

Read data reordering depth
The number of active read transactions for which the interface can transmit data.
This is counted from the earliest transaction.

Write acceptance capability
The maximum number of active write transactions that the interface can accept.
Must be specified if the combined acceptance capability is not specified.

Write interleave depth
The number of active write transactions for which the interface can receive data.

This is counted from the earliest transaction.

A register that has multiple instances, with the instance that is in use dependent on a property of
the state of the device, for example the processor mode or security state.

A register specified by a load or store instruction that is used as the base value for the address
calculation for the instruction. Depending on the instruction and its addressing mode, an offset
can be added to or subtracted from the base register value to form the virtual address that is sent
to memory.

Writing back a modified value to the base register used in an address calculation.

Alternative word for an individual transfer within a burst. For example, an INCR4 burst
comprises four beats.

See also Burst.

A boundary scan chain is made up of serially-connected devices that implement boundary scan
technology using a standard JTAG TAP interface. Each device contains at least one TAP
controller containing shift registers that form the chain, connected between TDI and TDO,
through which test data is shifted. A processor can contain several shift registers, enabling you
to access selected parts of the device.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. Glossary-4
Non-Confidential

Branch prediction

Breakpoint

Burst

Byte lane strobe

Byte-invariant

Cache hit

Cache line

Cache miss

Cache sets

Cache terminology

Glossary

A technique where a processor chooses a future execution path to prefetch along. For example,
after a branch instruction, the processor can choose to prefetch either the instruction following
the branch or the instruction at the branch target.

See also Prefetching.

A breakpoint is a debug event triggered by the execution of a particular instruction. It is
specified in terms of one or both of the address of the instruction and the state of the processor
when the instruction is executed.

See also Watchpoint.

A group of transfers to consecutive addresses. Because the addresses are consecutive, the device
transmitting the data does not have to supply an address for any transfer after the first one. This
increases the speed at which the burst occurs. If using an AMBA interface, the transmitting
device controls the burst using signals that indicate the length of the burst and how the addresses
are incremented.

See also Beat.

A signal that determines which byte lanes are active, or valid, in a data transfer. Each bit of this
signal corresponds to eight bits of the data bus.

In a byte-invariant system, the address of each byte of memory remains unchanged when
switching between little-endian and big-endian operation. When a data item larger than a byte
is loaded from or stored to memory, the bytes making up that data item are arranged into the
correct order depending on the endianness of the memory access.

The ARM architecture supports byte-invariant systems in ARMv6 and later versions.

When byte-invariant support is selected, unaligned halfword and word memory accesses are
also supported. The architecture requires multi-word accesses to be word-aligned.

See also Word-invariant.

A memory access that can be processed at high speed because the instruction or data that it
addresses is already held in the cache.

The basic unit of storage in a cache. Its size in words is always a power of two, usually four or
eight words. A cache line must be aligned to a suitable memory boundary.

See also Cache terminology diagram.

A memory access that cannot be processed at high speed because the instruction or data it
addresses is not in the cache.

Areas of a cache, divided up to simplify and speed up the process of determining whether a
cache hit occurs. In the ARM architecture, the number of cache sets is always a power of two.

See also Cache terminology diagram.

See the Cache terminology diagram and the entries for terms used in that diagram.

Cache terminology diagram

The diagram illustrates the following cache terminology:
. block address

. cache line
. cache set
. cache way
. index
. tag.
ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. Glossary-5

ID021511

Non-Confidential

Cache way

CDP instruction

Clean

Clock gating

Glossary

A cache way consists of one cache line from each cache set. The cache ways are indexed from
0 to ASSOCIATIVITY-1. Each cache lines in a cache way has the same index as the cache way.
For example cache way n consists of the cache line with index n from each cache set.

See also Cache terminology diagram.

Coprocessor data processing instruction. For the VFP coprocessor, CDP instructions are
arithmetic instructions and FCPY, FABS, and FNEC.

A cache line that has not been modified while it is in the cache is said to be clean. To clean a
cache is to write dirty cache entries into main memory. If a cache line is clean, it is not written
on a cache miss because the next level of memory contains the same data as the cache.

See also Dirty.

Gating a clock signal for a macrocell or functional block with a control signal and using the
modified clock that results to control the operating state of the macrocell or block.

Clocks Per Instruction (CPI)

Coherency

Cold reset

Communications channel

Condition field

Conditional execution

Context switch

Coprocessor

See Cycles Per Instruction (CPI).
See Memory coherency.

Also known as power-on reset. Starting the processor by turning power on. Turning power off
and then back on again clears main memory and many internal settings. Some program failures
can lock up the processor and require a cold reset to restart the system. In other cases, only a
warm reset is required.

See also Warm reset.

The hardware used for communicating between the software running on the processor, and an
external host, using the debug interface. When this communication is for debug purposes, it is
called the Debug Communications Channel (DCC). From ARMv6, the DCC includes the Data
Transfer Register, some bits in the Data Status and Control Register, and the external debug
interface controller, such as the DBGTAP controller in the case of a JTAG interface.

A four-bit field in an ARM instruction that specifies a condition under which the instruction
executes.

See also Conditional execution.

For ARM instructions, if the condition field indicates that the corresponding condition is true
when the instruction starts executing, it executes normally. Otherwise, the instruction does
nothing.

In the Thumb instruction set, the IT instruction makes up to four of the following instructions
conditional.

The saving and restoring of computational state when switching between different threads or
processes. In ARM documentation, the term context switch describes any situation where the
context is switched by an operating system and might or might not include changes to the
address space.

A processor that supplements the main processor to carry out additional functions that the main
processor cannot perform. The ARM architecture defines an interface to up to 16 coprocessors,
CPO-CP15 for use by ARM:

. CP15 instructions access the System Control processor

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. Glossary-6
Non-Confidential

Glossary

. CP14 instructions access control registers for debug, trace, and execution environment
features

. CP10 an CP11 instruction space is for floating-point and Advanced SIMD instructions if
supported.

Core register One of the 32-bit general-purpose integer registers, RO to R15. R15 is an alias for PC, the
Program Counter.

R14 is an alias for LR, the Link Register, and R13 is an alias for SP, the Stack Pointer.

See the appropriate ARM Architectural Reference Manual for the constraints on the use of PC,
LR, and SP.

CoreSight ARM on-chip debug and trace components, that provide the infrastructure for monitoring,
tracing, and debugging a complete system on chip.

CPI See Cycles Per Instruction (CPI).
CPSR See Current Program Status Register (CPSR).

Cross Trigger Interface (CTI)
Part of an Embedded Cross Trigger (ECT) device. In an ECT, the CTI provides the interface
between a processor or ETM and the CTM.

Cross Trigger Matrix (CTM)
In an ECT device, the CTM combines the trigger requests generated by CTIs and broadcasts
them to all CTIs as channel triggers.

CTI See Cross Trigger Interface (CTI).
CT™M See Cross Trigger Matrix (CTM).

Current Program Status Register (CPSR)
The register that holds the current operating processor status.

See also Program Status Register and Saved Program Status Register.

Cycles Per Instruction (CPI)
A measure of the number of computer instructions that can be performed in one clock cycle,
also called clocks per instruction. This value can be used to compare the performance of
different processors that implement the same instruction set. The lower the value, the better the

performance.
DAP See Debug Access Port.
Data abort An indication from a memory system to the processor of an attempt to access an illegal data

memory location. An exception must be taken if the processor attempts to use the data that
caused the abort.

See also Abort, External abort, and Prefetch abort.
DBGTAP See Debug Test Access Port.

Debug Access Port (DAP)
A block that acts as a master on a system bus and provides access to the bus from an external
debugger.

Debug Test Access Port (DBGTAP)
A debug control and data interface based on the IEEE 1149.1 JTAG Test Access Port (TAP). The
interface has four or five signals.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. Glossary-7
ID021511 Non-Confidential

Debugger

Default NaN mode

Glossary

A debugging system that includes a program, used to detect, locate, and correct software faults,
together with custom hardware that supports software debugging.

In floating-point operation, a mode in which all operations that result in a NaN return the default
NaN, regardless of the cause of the NaN result. This mode is compliant with the IEEE 754
standard but implies that all information contained in any input NaNs to an operation is lost.

See also NaN.

Digital Signal Processing (DSP)

Dirty

DNM
Do Not Modify (DNM)

Double-precision value

Doubleword

Doubleword-aligned

DSP

A variety of algorithms to process signals that have been sampled and converted to digital form.
Saturated arithmetic is often used in such algorithms.

A dirty cache line in a write-back cache is a line that has been modified while it is in the cache.
Typically, a cache line is marked as dirty by setting the dirty bit to 1.

See also Clean.

See Do Not Modify.

A value that must not be altered by software. DNM fields read as unknown values, and must
only be written with the value read from the same field on the same processor.

In floating-point operation, consists of two 32-bit words that must appear consecutively in
memory and are both word-aligned. The value is interpreted as a basic double-precision
floating-point number according to the IEEE 754-1985 standard.

A 64-bit data item. Doublewords are normally at least word-aligned in ARM systems.

A data item having a memory address that is divisible by eight.

See Digital Signal Processing.

Embedded Trace Macrocell (ETM)

EmbeddedICE logic

EmbeddedICE-RT

Endianness

ETM

Event

Exception

A hardware macrocell that, when connected to a processor, outputs trace information on a trace
port. The ETM provides processor driven trace through a trace port compliant to the ATB
protocol. An ETM always supports instruction trace, and might support data trace.

An on-chip logic block that provides TAP-based debug support for an ARM processor. It is
accessed through the DAP on the ARM processor.

Hardware provided by an ARM processor to aid debugging in real-time.

The scheme that determines the order of successive bytes of a data word when it is stored in
memory.

See Embedded Trace Macrocell.

In an ARM trace macrocell, event has a particular meaning and these events can be simple or
complex:

Simple An observable condition that a trace macrocell can use to control aspects of a
trace.

Complex A boolean combination of simple events that a trace macrocell can use to control
aspects of a trace.

A mechanism to handle a fault or error event. For example, exceptions handle external interrupts
and undefined instructions.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. Glossary-8
Non-Confidential

Exception vector

External abort

Glossary

A fixed address that contains the address of the first instruction of the corresponding exception
handler.

An abort generated by the external memory system.

See also Abort, Data abort and Prefetch abort.

Fast Context Switch Extension (FCSE)

Fault

FCSE

Flat address mapping

Flush-to-zero mode

General-purpose register

Halfword
Halfword-aligned

Halting debug-mode

High registers

High vectors

Hint instruction

Host

Immediate values

Implementation-defined

An extension to the ARM architecture that modifies the behavior of the memory system. It
enables multiple programs running on the processor to use identical address ranges, while
ensuring that the addresses they present to the rest of the memory system differ.

From ARMV6, use of the FCSE is deprecated. The FCSE is optional in ARMv7, and obsolete
from the ARMv7 Multiprocessing Extensions.

An abort generated by the memory system, for example by the Memory Management Unit
(MMU).

See Fast Context Switch Extension.

A system of organizing memory where the physical address for every access is equal to its
virtual address.

In floating-point operation, a special processing mode that optimizes the performance of some
floating-point algorithms by replacing the denormalized operands and intermediate results with
zeros, without significantly affecting the accuracy of their final results.

See Core register.
A 16-bit data item. Halfwords are normally halfword-aligned in ARM systems.

A data item having a memory address that is divisible by 2.

One of two mutually exclusive debug modes. In Halting debug-mode all processor execution
halts when a breakpoint or watchpoint is encountered. You can examine and alter all processor
state, coprocessor state, memory, input and output locations using the debug interface.

See also Monitor debug-mode.
See Core register.

Alternative locations for exception vectors. The high vector address range is near the top of the
address space, rather than at the bottom.

A hint instruction provides information that the hardware can take advantage of. A processor
implementation can choose whether to implement hint instructions or not. If they are not
implemented, they execute as NOP.

A computer that provides data and other services to another computer. Especially, a computer
providing debugging services to a target being debugged.

Values that are encoded directly in the instruction and used as numeric data when the instruction
is executed. Many ARM and Thumb instructions can be used with an immediate argument.

Behavior that is not defined by the architecture, but is defined and documented by the
implementation.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.
Non-Confidential

Glossary-9

Implementation-specific

Index

Instruction cycle count

Internal scan chain

Interrupt handler

Invalidate

Jazelle state

Glossary

See Implementation-defined

See Cache index.

The number of cycles for which an instruction occupies the Execute stage of the pipeline.

A series of registers connected together to form a path through a device, used during production
testing to import test patterns into internal nodes of the device and export the resulting values.

See Exception handler.

Marking a cache line as being not valid, by clearing the valid bit to 0. This must be done
whenever the line does not contain a valid cache entry. For example, after a cache flush all lines
are invalid.

In Jazelle state the processor executes Java bytecodes as part of a Java Virtual Machine (JVM).

See also ARM state, Thumb state, and ThumbEE state.

JTAG Access Port (JTAG-AP)

Load/store architecture

Macrocell

Memory coherency

An optional component of the DAP that provides debugger access to on-chip scan chains.

A processor architecture where data-processing operations only operate on register contents, not
directly on memory contents.

A complex logic block with a defined interface and behavior. A typical VLSI system comprises
several macrocells, such as a processor, an ETM, and a memory block integrated with
application-specific logic.

A memory is coherent if the value read by a data read or instruction fetch is the value that was
most recently written to that location. Memory coherency is made difficult when the memory

system includes multiple possible physical locations, such as main memory, a write buffer and
one or more caches.

Memory Management Unit (MMU)

A hardware unit that provides detailed control of a memory system. Most of the control is
provided by translation tables held in memory.

Memory Protection Unit (MPU)

Miss

MMU

A hardware unit that provides simple control of a limited number of protection regions in
memory.

See Cache miss.

See Memory Management Unit.

Modified Virtual Address (MVA)

The address produced by the FCSE that is sent to the rest of the memory system to be used in
place of the normal virtual address.

When the FCSE is absent or disabled, the MVA and the Virtual Address (VA) have the same
value.

See also Fast Context Switch Extension.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. Glossary-10
Non-Confidential

Monitor debug-mode

MPU
MVA

NaN

PA

Penalty

Physical Address (PA)

Power-on reset

Prefetch abort

Prefetching

Privileged mode

Glossary

One of two mutually exclusive debug modes. In Monitor debug-mode the processor enables a
software abort handler provided by the debug monitor or operating system debug task. When a
breakpoint or watchpoint is encountered, system interrupts continue to be serviced while normal
program execution is suspended.

See also Halting debug-mode.
See Memory Protection Unit.
See Modified Virtual Address.

Not a number. In floating-point operation, NaNs are special floating-point values that can be
used when neither a numeric value nor an infinity is appropriate. NaNs can be quiet NaNs that
propagate through most floating-point operations, or signaling NaNs that cause Invalid
Operation floating-point exceptions when used.

See Physical Address.

The number of cycles in which no useful Execute stage pipeline activity can occur because an
instruction flow is different from that assumed or predicted.

The address that identifies a main memory location.
See Cold reset.

An indication from a memory system to the processor that an instruction has been fetched from
an illegal memory location. An exception must be taken if the processor attempts to execute the
instruction. A Prefetch abort can be caused by the external or internal memory system as a result
of attempting to access invalid instruction memory.

See also Data abort, External abort and Abort.

The process of fetching instructions from memory before the instructions that precede them
have finished executing. Prefetching an instruction does not mean that the instruction must be
executed.

Any processor mode other than User mode. Memory systems typically check memory accesses
from privileged modes against supervisor access permissions rather than the more restrictive
user access permissions. The use of some instructions is also restricted in privileged modes.

Programming Language Interface (PLI)

Protection region

Read

RealView ICE

Remapping

Reserved

For Verilog simulators, an interface by which foreign code can be included in a simulation.
Foreign code is code written in a different language.

A memory region whose position, size, and other properties are defined by the Memory
Protection Unit registers.

Memory operations that have the semantics of a load. See the ARM Architecture Reference
Manual for more information.

ARM JTAG interface unit for debugging embedded processor cores that uses a DBGTAP or
Serial Wire interface.

Changing the address of physical memory or devices after the application has started executing.
This might be done to permit RAM to replace ROM when the initialization has completed.

Registers and instructions that are reserved are Unpredictable unless otherwise stated. Bit
positions described as Reserved are UNK/SBZP.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. Glossary-11
Non-Confidential

Glossary

Round to Nearest (RN) mode
In floating-point operation, the rounded result is the nearest representable number to the
unrounded result. The tie case is rounded up if it would clear the least significant bit of the
significand, making it even.

See also Rounding mode, Rounding error.

Round towards Minus infinity (RM) mode
In floating-point operation, the rounded result is the nearest representable number that is less
than or equal to the exact result. This rounding mode is used in interval arithmetic.

See also Rounding mode, Rounding error.

Round towards Plus infinity (RP) mode
In floating-point operation, the rounded result is the nearest representable number that is greater
than or equal to the exact result. This rounding mode is used in interval arithmetic.

See also Rounding mode, Rounding error.

Round towards Zero (RZ) mode
In floating-point operation, results are rounded to the nearest representable number that is no
greater in magnitude than the unrounded result. This rounding mode chops any bits to the right
of the significand, always rounding down, and is used by the C, C++, and Java languages in
integer conversions.

See also Rounding mode, Rounding error.

Rounding error Is defined to be the value of the rounded result of an arithmetic operation minus the exact result
of the operation.

See also Rounding mode.

Rounding mode In floating-point operation, specifies how the exact result of a floating-point operation is
rounded to a value that is representable in the destination format.

See also Round to Nearest (RN) mode, Round towards Minus Infinity (RM) mode, Round
towards Plus infinity (RP) mode, and Round towards Zero (RZ) mode.

Saved Program Status Register (SPSR)
The register that holds the CPSR of the task immediately before the exception occurred that
caused the switch to the current mode. Each exception mode has its own SPSR.

SBO See Should Be One.

SBz See Should Be Zero.

SBZP See Should Be Zero or Preserved.
Set See Cache set.

Short vector operation
A floating-point coprocessor operation involving more than one destination register and perhaps
more than one source register in the generation of the result for each destination.

Should Be One (SBO)
Software must write as 1, or all 1s for bit fields. Writing any other value produces Unpredictable
results.

Should Be Zero (SBZ)
Software must write as 0, or all Os for bit fields. Writing any other value produces Unpredictable
results.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. Glossary-12
ID021511 Non-Confidential

Glossary

Should Be Zero or Preserved (SBZP)

Signaling NaN

SIMD
SPSR

Subnormal value

Support code

SvC
SWI

Synchronization primitive

Tag bits

TCM

Thumb instruction

Thumb state

ThumbEE state

Software must write as 0, or all Os for a bit field, if the value is being written without having
previously been read, or if the register has not been initialized. If the register has previously been
read, software must preserve the field value by writing back the value that was read from the
same field on the same processor.

In floating-point operation, the floating-point coprocessor causes an Invalid Operation
exception whenever any floating-point operation receives a signaling NaN as an operand. You
can use signaling NaNs in debugging, to track down some uses of uninitialized variables.

Single-Instruction, Multiple-Data operation.
See Saved Program Status Register.

In floating-point operation, a value in the range (-2Emin < x < 2Emin) except for plus or minus 0.
In the IEEE 754 standard format for single-precision and double-precision operands, a
subnormal value has a zero exponent and a nonzero fraction field. The IEEE 754 standard
requires that the generation and manipulation of subnormal operands be performed with the
same precision as normal operands.

In a floating-point implementation, system software that complements the hardware VFP
implementation to provide compatibility with the IEEE 754 standard. The support code has a
library of routines that perform supported functions, such as divide with unsupported inputs or
inputs that might generate an exception, in addition to operations beyond the scope of the
hardware. The support code has a set of exception handlers to process exceptional conditions in
compliance with the IEEE 754 standard.

See Supervisor Call.

See Supervisor Call.

An instruction that is used to ensure memory synchronization, for example LDREX or STREX.
See the ARM Architecture Reference Manual for more information.

In a cache implementation, bits [31:(L+S)] of a virtual address, where L = log2 (cache line
length) and S = log2 (number of cache sets). A cache hit occurs if the tag bits of the virtual
address supplied by the processor match the tag bits associated with a valid line in the selected
cache set.

See also Cache terminology diagram on the last page of this glossary.
See Tightly Coupled Memory.

One or two halfwords that specify an operation for a processor in Thumb state to perform.
Thumb instructions must be halfword-aligned.

See also Thumb state, ThumbEE state.
In Thumb state the processor executes the Thumb instruction set.

In ThumbEE state the processor executes a variation of the Thumb instruction set specifically
targeted for use with dynamic compilation techniques associated with an execution
environment.

See also ARM state, Jazelle state, Thumb state.

Tightly Coupled Memory (TCM)

An area of low latency memory that provides predictable instruction execution or data load
timing in cases where deterministic performance is required. TCMs are suited to holding:

. critical routines such as for interrupt handling
. scratchpad data

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved.
Non-Confidential

Glossary-13

Tiny

TLB

Trace hardware

Glossary

. data types whose locality is not suited to caching
. critical data structures, such as interrupt stacks.

In a floating-point operation, a nonzero result or value that is between the positive and negative
minimum normal values for the destination precision.

See Translation Lookaside Buffer.

A term for a device that contains an ARM trace macrocell.

Translation Lookaside Buffer (TLB)

Trigger instruction

Unaligned

Undefined

Unknown

UNP

Unpredictable

Unpredictable

VA
VFP

Victim

Virtual Address (VA)

WA

A memory structure containing the results of translation table walks. TLBs help to reduce the
average cost of memory accesses. Usually, there is a TLB for each memory interface of the
processor implementation.

A floating-point instruction that causes a bounce when it is issued. A potentially exceptional
instruction causes the floating-point coprocessor to enter the exceptional state. A subsequent
instruction, unless it is an FMXR or FMRX instruction accessing the FPEXC, FPINST, or FPSID
register, causes a bounce, starting exception processing. The trigger instruction might not be
exceptional, and is not processed. It is retried at the return from the exception processing of the
potentially exceptional instruction.

See also Bounce, Potentially exceptional instruction, and Exceptional state.

An unaligned access is an access where the address of the access is not aligned to the size of an
element of the access.

Indicates an instruction that generates an Undefined Instruction exception. See the ARM
Architecture Reference Manual for more information.

An Unknown value does not contain valid data, and can vary from moment to moment,
instruction to instruction, and implementation to implementation. An Unknown value must not
be a security hole.

See Unpredictable.

For a processor means the behavior cannot be relied on. Unpredictable behavior must not
represent security holes. Unpredictable behavior must not halt or hang the processor, or any
parts of the system.

For an ARM trace macrocell, means that the behavior of the macrocell cannot be relied on. Such
conditions have not been validated. When applied to the programming of an event resource,
only the output of that event resource is Unpredictable. Unpredictable behavior can affect the
behavior of the entire system, because the trace macrocell can cause the processor to enter debug
state, and external outputs can be used for other purposes.

See Virtual Address.

A coprocessor extension to the ARM architecture that provides floating-point arithmetic. For
ARMV7, more accurately described as the Floating-Point Extension.

A cache line, selected to be discarded to make room for a replacement cache line that is required
because of a cache miss. The way that the victim is selected for eviction is processor-specific.
A victim is also known as a cast out.

An address generated by an ARM processor. For a Protected Memory System Architecture
(PMSA) implementation, the virtual address is identical to the physical address.

See Write-Allocate cache.

ARM DDI 0460C
ID021511

Copyright © 2010-2011 ARM. All rights reserved. Glossary-14
Non-Confidential

Glossary

Warm reset Also known as a core reset. Initializes the majority of the processor excluding the debug
controller and debug logic. This type of reset is useful if you are using the debugging features
of a processor.

Watchpoint A debug event triggered by an access to memory, specified in terms of the address of the
location in memory being accessed.

See also Breakpoint.

Way See Cache way.

wB See Write-Back cache.

Word A 32-bit data item. Words are normally word-aligned in ARM systems.

Word-aligned A data item having a memory address that is divisible by four.

Word-invariant In a word-invariant system, the address of each byte of memory changes when switching

between little-endian and big-endian operation, in such a way that the byte with address A in
one endianness has address A EOR 3 in the other endianness. As a result, each aligned word of
memory always consists of the same four bytes of memory in the same order, regardless of
endianness. The change of endianness occurs because of the change to the byte addresses, not
because the bytes are rearranged.

The ARM architecture supports word-invariant systems in ARMv3 and later versions. When
word-invariant support is selected, the behavior of load or store instructions with unaligned
addresses is instruction-specific, and is in general not the expected behavior for an unaligned
access. ARM strongly recommends that word-invariant systems use the endianness that
produces the required byte addresses at all times, apart possibly from very early in their reset
handlers before they have set up the endianness, and that this early part of the reset handler uses
only aligned word memory accesses.

See also Byte-invariant.

Write Operations that have the semantics of a store. See the ARM Architecture Reference Manual for
more information.

Write buffer A block of high-speed memory implemented to optimize stores to main memory.

Write interleave capability
The number of data-active write transactions for which the interface can transmit data. This is
counted from the earliest transaction.

Write interleave depth
The number of data-active write transactions for which the interface can receive data.

Write-Allocate cache
A cache where a cache miss on storing data causes a cache line to be allocated and main memory
contents to be read into it, followed by writing the stored data into the cache line.

Write-Back cache A cache where, when a cache hit occurs on a store access, the data is only written to the cache.
Data in the cache can therefore be more up-to-date than data in main memory.

Any such data is written back to main memory when the cache line is cleaned or re-allocated.
Also called copy-back cache.

Write-Through cache
A cache in which, when a cache hit occurs on a store access, the data is written both to the cache
and to main memory. This is normally done using a write buffer, to avoid slowing down the
processor.

WT See Write-Through cache.

ARM DDI 0460C Copyright © 2010-2011 ARM. All rights reserved. Glossary-15
ID021511 Non-Confidential

	Cortex-R5 and Cortex-R5F Technical Reference Manual
	Contents
	Preface
	About this book
	Product revision status
	Intended audience
	Using this book
	Conventions
	Additional reading

	Feedback
	Feedback on this product
	Feedback on content

	Introduction
	1.1 About the processor
	1.2 Compliance
	1.2.1 ARM architecture
	1.2.2 Trace macrocell
	1.2.3 Advanced Microcontroller Bus Architecture
	1.2.4 Debug architecture

	1.3 Features
	1.4 Interfaces
	1.5 Configurable options
	1.5.1 CPU configurations

	1.6 Test features
	1.7 Product documentation, design flow, and architecture
	1.7.1 Documentation
	1.7.2 Design flow

	1.8 Changes from previous version

	Functional Description
	2.1 About the functions
	2.1.1 Data Processing Unit
	2.1.2 Load/Store Unit
	2.1.3 PreFetch Unit
	2.1.4 L1 memory system
	2.1.5 L2 AXI interfaces
	2.1.6 Dual-redundant core
	2.1.7 Split/lock
	2.1.8 Hard error features
	2.1.9 Debug
	2.1.10 System control coprocessor
	2.1.11 Interrupt handling
	2.1.12 Power management

	2.2 Interfaces
	2.2.1 AXI master interface
	2.2.2 Peripheral interfaces
	2.2.3 AXI slave interface
	2.2.4 TCM interfaces
	2.2.5 ACP interface
	2.2.6 Interrupt and VIC interface
	2.2.7 Configuration interface
	2.2.8 Interrupt and event outputs
	2.2.9 APB Debug interface
	2.2.10 ETM interface
	2.2.11 Test interface

	2.3 Clocking and resets
	2.3.1 Resets
	2.3.2 Reset modes
	2.3.3 Clocking

	2.4 Operation
	2.4.1 Initialization

	Programmers Model
	3.1 About the programmers model
	3.2 Modes of operation and execution
	3.2.1 Instruction set states
	3.2.2 Modes of operation

	3.3 Memory model
	3.3.1 Byte-invariant big-endian format
	3.3.2 Little-endian format

	3.4 Coherency
	3.5 Data structures
	3.6 Registers
	3.6.1 The register set

	3.7 Program status registers
	3.7.1 The N, Z, C, and V bits
	3.7.2 The Q bit
	3.7.3 The IT bits
	3.7.4 The J bit
	3.7.5 The DNM bits
	3.7.6 The GE bits
	3.7.7 The E bit
	3.7.8 The A bit
	3.7.9 The I and F bits
	3.7.10 The T bit
	3.7.11 The M bits
	3.7.12 Modification of PSR bits by MSR instructions

	3.8 Exceptions
	3.8.1 Exception entry and exit summary
	3.8.2 Reset
	3.8.3 Interrupts
	3.8.4 Aborts
	3.8.5 Supervisor call instruction
	3.8.6 Undefined Instruction
	3.8.7 Breakpoint instruction
	3.8.8 Exception vectors

	3.9 Acceleration of execution environments
	3.10 Unaligned and mixed-endian data access support
	3.11 Big-endian instruction support

	System Control
	4.1 About system control
	4.1.1 System control and configuration
	4.1.2 MPU control and configuration
	4.1.3 Cache control and configuration
	4.1.4 Interface control and configuration
	4.1.5 System performance monitor
	4.1.6 System validation

	4.2 Register summary
	4.3 Register descriptions
	4.3.1 Register allocation
	4.3.2 c0, Main ID Register
	4.3.3 c0, Cache Type Register
	4.3.4 c0, TCM Type Register
	4.3.5 c0, MPU Type Register
	4.3.6 c0, Multiprocessor Affinity Register
	4.3.7 The Processor Feature Registers
	4.3.8 c0, Debug Feature Register 0
	4.3.9 c0, Auxiliary Feature Register 0
	4.3.10 Memory Model Feature Registers
	4.3.11 Instruction Set Attributes Registers
	4.3.12 c0, Cache Size ID Register
	4.3.13 c0, Cache Level ID Register
	4.3.14 c0, Auxiliary ID Register
	4.3.15 c0, Cache Size Selection Register
	4.3.16 c1, System Control Register
	4.3.17 c1, Auxiliary Control Register
	4.3.18 c15, Secondary Auxiliary Control Register
	4.3.19 c1, Coprocessor Access Control Register
	4.3.20 Fault Status and Address Registers
	4.3.21 c6, MPU memory region programming registers
	4.3.22 Cache operations
	4.3.23 c9, BTCM Region Register
	4.3.24 c9, ATCM Region Register
	4.3.25 c9, TCM Selection Register
	4.3.26 c11, Slave Port Control Register
	4.3.27 c13, FCSE PID Register
	4.3.28 c13, Context ID Register
	4.3.29 c13, Thread and Process ID Registers
	4.3.30 Validation Registers
	4.3.31 Correctable Fault Location Register
	4.3.32 Build Options Registers
	4.3.33 Pin Options Register
	4.3.34 Peripheral interface region registers

	Prefetch Unit
	5.1 About the prefetch unit
	5.2 Branch prediction
	5.2.1 Branch predictor
	5.2.2 Incorrect predictions and correction

	5.3 Return stack
	5.4 Controlling instruction prefetch and program flow prediction

	Events and Performance Monitor
	6.1 About the events
	6.2 About the PMU
	6.3 Performance monitoring registers
	6.3.1 c9, Performance Monitor Control Register
	6.3.2 c9, Count Enable Set Register
	6.3.3 c9, Count Enable Clear Register
	6.3.4 c9, Overflow Flag Status Register
	6.3.5 c9, Software Increment Register
	6.3.6 c9, Performance Counter Selection Register
	6.3.7 c9, Cycle Count Register
	6.3.8 c9, Event Type Selection Register
	6.3.9 c9, Event Count Registers
	6.3.10 c9, User Enable Register
	6.3.11 c9, Interrupt Enable Set Register
	6.3.12 c9, Interrupt Enable Clear Register

	6.4 Event bus interface
	6.4.1 Use of the event bus and counters

	Memory Protection Unit
	7.1 About the MPU
	7.1.1 Memory regions
	7.1.2 Overlapping regions
	7.1.3 Background regions
	7.1.4 TCM regions
	7.1.5 Peripheral port regions

	7.2 Memory types
	7.2.1 Using memory types

	7.3 Region attributes
	7.4 MPU interaction with memory system
	7.5 MPU faults
	7.5.1 Background fault
	7.5.2 Permission fault
	7.5.3 Alignment fault

	7.6 MPU software-accessible registers

	Level One Memory System
	8.1 About the L1 memory system
	8.2 About the error detection and correction schemes
	8.2.1 Parity
	8.2.2 Error checking and correction
	8.2.3 Read-Modify-Write
	8.2.4 Hard errors
	8.2.5 Error correction

	8.3 Fault handling
	8.3.1 Faults
	8.3.2 Fault status information
	8.3.3 Correctable Fault Location Register
	8.3.4 Usage models

	8.4 About the TCMs
	8.4.1 TCM attributes and permissions
	8.4.2 ATCM and BTCM configuration
	8.4.3 TCM internal error detection and correction
	8.4.4 TCM arbitration
	8.4.5 TCM initialization
	8.4.6 TCM port protocol
	8.4.7 External TCM errors
	8.4.8 AXI slave interfaces for TCMs

	8.5 About the caches
	8.5.1 Store buffer
	8.5.2 Cache maintenance operations
	8.5.3 Cache error detection and correction
	8.5.4 Cache RAM organization
	8.5.5 Cache interaction with memory system

	8.6 Internal exclusive monitor
	8.7 Memory types and L1 memory system behavior
	8.8 Error detection events
	8.8.1 TCM error events
	8.8.2 Instruction-cache error events
	8.8.3 Data-cache error events
	8.8.4 Events and the CFLR

	Level Two Interface
	9.1 About the L2 interface
	9.1.1 Bus ECC

	9.2 AXI master interface
	9.2.1 Identifiers for AXI bus accesses
	9.2.2 Write response
	9.2.3 Linefill buffers and the AXI master interface
	9.2.4 Eviction buffer
	9.2.5 AXI extensions
	9.2.6 Memory system implications for AXI accesses

	9.3 AXI master interface transfers
	9.3.1 Restrictions on AXI transfers
	9.3.2 Strongly Ordered and Device transactions
	9.3.3 Linefills
	9.3.4 Cache line write-back (eviction)
	9.3.5 Non-cacheable reads
	9.3.6 Non-cacheable or write-through writes
	9.3.7 AXI transaction splitting
	9.3.8 Normal write merging

	9.4 AXI slave interface
	9.4.1 AXI slave interface for cache RAMs
	9.4.2 TCM ECC support
	9.4.3 External TCM errors
	9.4.4 Cache parity and ECC support
	9.4.5 AXI slave control
	9.4.6 AXI slave characteristics

	9.5 Enabling or disabling AXI slave accesses
	9.6 Accessing RAMs using the AXI slave interface
	9.6.1 TCM RAM access
	9.6.2 Cache RAM access

	9.7 Peripheral interfaces
	9.7.1 Peripheral interface configuration
	9.7.2 Peripheral interface initialization
	9.7.3 Peripheral interface attributes and permissions
	9.7.4 Identifiers for AXI peripheral port accesses
	9.7.5 Write response
	9.7.6 Memory attributes
	9.7.7 AXI peripheral port transfers
	9.7.8 AHB peripheral port transfers
	9.7.9 Semaphores

	9.8 Accelerator Coherency Port interface

	Power Control
	10.1 About power control
	10.2 Power management
	10.2.1 Run mode
	10.2.2 Standby mode
	10.2.3 Dormant mode
	10.2.4 Shutdown mode
	10.2.5 Power Management Controller
	10.2.6 Power mode interaction with ACP
	10.2.7 Power mode interaction with debug

	FPU Programmers Model
	11.1 About the FPU programmers model
	11.1.1 FPU functionality
	11.1.2 About the VFPv3-D16 architecture
	11.1.3 VFP instructions in a single-precision configuration

	11.2 General-purpose registers
	11.2.1 FPU views of the register bank

	11.3 System registers
	11.3.1 Floating-Point System ID Register
	11.3.2 Floating-Point Status and Control Register
	11.3.3 Floating-Point Exception Register, FPEXC
	11.3.4 Media and VFP Feature Registers, MVFR0 and MVFR1

	11.4 Modes of operation
	11.4.1 Full-compliance mode
	11.4.2 Flush-to-zero mode
	11.4.3 Default NaN mode

	11.5 Compliance with the IEEE 754 standard
	11.5.1 Complete implementation of the IEEE 754 standard
	11.5.2 IEEE 754 standard implementation choices
	11.5.3 Exceptions

	Debug
	12.1 Debug systems
	12.1.1 Debug host
	12.1.2 Protocol converter
	12.1.3 Debug target

	12.2 About the debug unit
	12.2.1 Halting debug-mode debugging
	12.2.2 Monitor debug-mode debugging
	12.2.3 Programming the debug unit

	12.3 Debug register interface
	12.3.1 Coprocessor registers
	12.3.2 CP14 access permissions
	12.3.3 Coprocessor registers summary
	12.3.4 Memory-mapped registers
	12.3.5 Memory addresses for breakpoints and watchpoints
	12.3.6 Power domains
	12.3.7 Effects of resets on debug registers
	12.3.8 APB port access permissions

	12.4 Debug register descriptions
	12.4.1 CP14 c0, Debug ID Register
	12.4.2 CP14 c0, Debug ROM Address Register
	12.4.3 CP14 c0, Debug Self Address Offset Register
	12.4.4 CP14 c1, Debug Status and Control Register
	12.4.5 Data Transfer Register
	12.4.6 Watchpoint Fault Address Register
	12.4.7 Vector Catch Register
	12.4.8 Debug State Cache Control Register
	12.4.9 Instruction Transfer Register
	12.4.10 Debug Run Control Register
	12.4.11 Breakpoint Value Registers
	12.4.12 Breakpoint Control Registers
	12.4.13 Watchpoint Value Registers
	12.4.14 Watchpoint Control Registers
	12.4.15 Operating System Lock Status Register
	12.4.16 Authentication Status Register
	12.4.17 Device Power-down and Reset Control Register
	12.4.18 Device Power-down and Reset Status Register

	12.5 Management registers
	12.5.1 Processor ID Registers
	12.5.2 Claim Registers
	12.5.3 Lock Access Register
	12.5.4 Lock Status Register
	12.5.5 Device Type Register
	12.5.6 Debug Identification Registers

	12.6 Debug events
	12.6.1 Software debug event
	12.6.2 Halting debug event
	12.6.3 Behavior of the processor on debug events
	12.6.4 Debug event priority
	12.6.5 Watchpoint debug events

	12.7 Debug exception
	12.7.1 Effect of debug exceptions on CP15 registers and DBGWFAR
	12.7.2 Avoiding unrecoverable states

	12.8 Debug state
	12.8.1 Entering debug state
	12.8.2 Behavior of the PC and CPSR in debug state
	12.8.3 Executing instructions in debug state
	12.8.4 Writing to the CPSR in debug state
	12.8.5 Privilege
	12.8.6 Accessing registers and memory
	12.8.7 Coprocessor instructions
	12.8.8 Effect of debug state on non-invasive debug
	12.8.9 Effects of debug events on processor registers
	12.8.10 Exceptions in debug state
	12.8.11 Leaving debug state

	12.9 Cache debug
	12.9.1 Cache pollution in debug state
	12.9.2 Cache coherency in debug state
	12.9.3 Cache usage profiling

	12.10 External debug interface
	12.10.1 APB signals
	12.10.2 Miscellaneous debug signals
	12.10.3 Authentication signals

	12.11 Using the debug functionality
	12.11.1 Debug communications channel
	12.11.2 Programming breakpoints and watchpoints
	12.11.3 Single-stepping
	12.11.4 Debug state entry
	12.11.5 Debug state exit
	12.11.6 Accessing registers and memory in debug state

	12.12 Debugging systems with energy management capabilities
	12.12.1 Emulating power down

	Integration Test Registers
	13.1 About Integration Test Registers
	13.2 Summary of the processor registers used for integration testing
	13.3 Processor integration testing
	13.3.1 Using the Integration Test Registers
	13.3.2 Performing integration testing
	13.3.3 DBGITETMIF Register (ETM interface)
	13.3.4 DBGITMISCOUT Register (Miscellaneous Outputs)
	13.3.5 DBGITMISCIN Register (Miscellaneous Inputs)
	13.3.6 Integration Mode Control Register (DBGITCTRL)

	Signal Descriptions
	A.1 About the processor signal descriptions
	A.2 Global signals
	A.3 Configuration signals
	A.4 Interrupt signals, including VIC interface signals
	A.5 L2 interface signals
	A.5.1 AXI master port
	A.5.2 AXI master port error detection signals
	A.5.3 AXI slave port
	A.5.4 AXI slave port error detection signals
	A.5.5 ACP slave port
	A.5.6 ACP slave port error detection signals
	A.5.7 ACP master port
	A.5.8 ACP master port error detection signals
	A.5.9 AXI peripheral port
	A.5.10 AXI peripheral port error detection signals
	A.5.11 AHB peripheral port
	A.5.12 AHB peripheral port error detection signals

	A.6 TCM interface signals
	A.7 Redundant CPU signals
	A.8 Debug interface signals
	A.9 ETM interface signals
	A.10 Test signals
	A.11 MBIST signals
	A.12 Validation signals
	A.13 FPU signals
	A.14 Split/Lock
	A.15 Power modes

	Cycle Timings and Interlock Behavior
	B.1 About cycle timings and interlock behavior
	B.1.1 Instruction execution overview
	B.1.2 Conditional instructions
	B.1.3 Flag-setting instructions
	B.1.4 Definition of terms
	B.1.5 Assembler language syntax

	B.2 Register interlock examples
	B.3 Data processing instructions
	B.3.1 Cycle counts if destination is not PC
	B.3.2 Cycle counts if destination is the PC
	B.3.3 Example interlocks

	B.4 QADD, QDADD, QSUB, and QDSUB instructions
	B.5 Media data-processing
	B.6 Sum of Absolute Differences (SAD)
	B.6.1 Example interlocks

	B.7 Multiplies
	B.8 Divide
	B.9 Branches
	B.10 Processor state updating instructions
	B.11 Single load and store instructions
	B.11.1 Base register update

	B.12 Load and Store Double instructions
	B.13 Load and Store Multiple instructions
	B.13.1 Load and Store Multiples, other than load multiples including the PC
	B.13.2 Load Multiples, where the PC is in the register list
	B.13.3 Example Interlocks

	B.14 RFE and SRS instructions
	B.15 Synchronization instructions
	B.16 Coprocessor instructions
	B.17 SVC, BKPT, Undefined, and Prefetch Aborted instructions
	B.18 Miscellaneous instructions
	B.19 Floating-point register transfer instructions
	B.20 Floating-point load/store instructions
	B.21 Floating-point single-precision data processing instructions
	B.22 Floating-point double-precision data processing instructions
	B.23 Dual issue
	B.23.1 Dual issue rules
	B.23.2 Permitted combinations

	ECC Schemes
	C.1 ECC scheme selection guidelines

	Memory Ordering
	D.1 Memory ordering
	D.2 Virtual AXI peripheral interface

	Revisions
	Glossary

