
Arm® Cortex®-M23 Devices
Revision: r1p0

Generic User Guide
Copyright © 2018 Arm Limited or its affiliates. All rights reserved.
DUI 1095A (ID062218)

Arm Cortex-M23 Devices
Generic User Guide

Copyright © 2018 Arm Limited or its affiliates. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information
contained in this document may be protected by one or more patents or pending patent applications. No part of this
document may be reproduced in any form by any means without the express prior written permission of Arm. No
license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this
document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit
others to use the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS
FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes
no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of,
patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or
disclosure of this document complies fully with any relevant export laws and regulations to assure that this document
or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner”
in reference to Arm’s customers is not intended to create or refer to any partnership relationship with any other company.
Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and
supersedes the conflicting provisions of these terms. This document may be translated into other languages for
convenience, and you agree that if there is any conflict between the English version of this document and any
translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or
its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document
may be the trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at
http://www.arm.com/company/policies/trademarks.

Copyright © 2018 Arm Limited or its affiliates. All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Change history

Date Issue Confidentiality Change

18 June 2018 A Non-confidential First release for r1p0
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ii
ID062218 Non-Confidential

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this
document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. iii
ID062218 Non-Confidential

Contents
Arm Cortex-M23 Devices Generic User Guide

Preface
About this book .. vii
Feedback .. xi

Chapter 1 Introduction
1.1 About the Cortex-M23 processor and core peripherals ... 1-2

Chapter 2 The Cortex-M23 Processor
2.1 Programmers model .. 2-2
2.2 Memory model ... 2-11
2.3 Exception model .. 2-20
2.4 Security state switches .. 2-29
2.5 Fault handling .. 2-30
2.6 Power management ... 2-32

Chapter 3 The Cortex-M23 Instruction Set
3.1 Instruction set summary ... 3-2
3.2 CMSIS functions .. 3-5
3.3 CMSE .. 3-7
3.4 About the instruction descriptions .. 3-8
3.5 Memory access instructions .. 3-15
3.6 General data processing instructions .. 3-31
3.7 Branch and control instructions ... 3-48
3.8 Miscellaneous instructions ... 3-53

Chapter 4 Cortex-M23 Peripherals
4.1 About the Cortex-M23 peripherals ... 4-2
4.2 Nested Vectored Interrupt Controller ... 4-3
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. iv
ID062218 Non-Confidential

4.3 System Control Space ... 4-11
4.4 System timer, SysTick ... 4-24
4.5 Security Attribution and Memory Protection .. 4-28
4.6 I/O Port .. 4-43

Appendix A Revisions
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. v
ID062218 Non-Confidential

Preface

This preface introduces the Arm® Cortex®®-M23 Devices Generic User Guide. contains the
following sections:
• About this book on page vii.
• Feedback on page xi.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. vi
ID062218 Non-Confidential

Preface
About this book
This book is a generic user guide for devices that implement the Arm Cortex-M23 processor.
Implementers of Cortex-M23 designs make a number of implementation choices, that can affect
the functionality of the device. This means that, in this book some information is described as
implementation-defined, and some features are described as optional. In this book, unless the
context indicates otherwise, processor refers to the Cortex-M23 processor, as supplied by Arm,
and device refers to an implemented device, supplied by an Arm partner, that incorporates a
Cortex-M23 processor. In particular, your device refers to the particular implementation of the
Cortex-M23 that you are using. Some features of your device depend on the implementation
choices made by the Arm partner that made the device.

Product revision status

The rmpn identifier indicates the revision status of the product described in this book, for
example, r1p2, where:
rm Identifies the major revision of the product, for example, r1.
pn Identifies the minor revision or modification status of the product, for example,

p2.

Intended audience

This book is written for application and system-level software developers, familiar with
programming, who want to program a device that includes the Cortex-M23 processor.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
This chapter introduces the Cortex-M23 processor and its features.

Chapter 2 The Cortex-M23 Processor
Configure the information in this chapter to provide your description of the
processor.

Chapter 3 The Cortex-M23 Instruction Set
Configure the information in this chapter to provide your description of the
instruction set supported by the processor.

Chapter 4 Cortex-M23 Peripherals
Configure the information in this chapter to provide your description of the
peripherals that are integrated with the processor.

Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm® Glossary does not contain terms that are industry standard unless the
Arm meaning differs from the generally accepted meaning.

See Arm® Glossary http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. vii
ID062218 Non-Confidential

Preface
Conventions

This book uses the conventions that are described in:
• Typographical conventions.
• Timing diagrams.
• Signals on page ix.

Typographical conventions

The following table describes the typographical conventions:

Timing diagrams

The figure Key to timing diagram conventions on page ix explains the components used in
timing diagrams. Variations, when they occur, have clear labels. You must not assume any
timing information that is not explicit in the diagrams.

Shaded bus and signal areas are UNDEFINED, so the bus or signal can assume any value within
the shaded area at that time. The actual level is unimportant and does not affect normal
operation.

Typographical conventions

Style Purpose

italic Introduces special terminology, denotes cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes signal names. Also used for terms in descriptive
lists, where appropriate.

monospace Denotes text that you can enter at the keyboard, such as commands, file and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. You can enter the underlined text instead of the full
command or option name.

monospace italic Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments. For example:
MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Used in body text for a few terms that have specific technical meanings, that are defined in the Arm® Glossary.
For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. viii
ID062218 Non-Confidential

Preface
Key to timing diagram conventions

Timing diagrams sometimes show single-bit signals as HIGH and LOW at the same time and
they look similar to the bus change shown in Key to timing diagram conventions. If a timing
diagram shows a single-bit signal in this way then its value does not affect the accompanying
description.

Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is
active-HIGH or active-LOW. Asserted means:
• HIGH for active-HIGH signals.
• LOW for active-LOW signals.

Lowercase n At the start or end of a signal name denotes an active-LOW signal.

Additional reading

This section lists publications by Arm and by third parties.

See Infocenter http://infocenter.arm.com, for access to Arm documentation.

See on Arm http://www.arm.com/cmsis, for embedded software development resources
including the Cortex® Microcontroller Software Interface Standard (CMSIS).

Arm publications

This book contains information that is specific to this product. See the following documents for
other relevant information:
• Arm® AMBA® 5 AHB Protocol Specification (IHI 0033)
• AMBA® APB Protocol Version 2.0 Specification (IHI 0024)
• AMBA®4 ATB Protocol Specification (IHI 0032)
• CoreSight™ Components Technical Reference Manual (DDI 0314)
• Lazy Stacking and Context Switching Application Note 298 (DAI0298).
• Arm® Embedded Trace Macrocell Architecture Specification ETMv4 (IHI 0064).
• Arm® CoreSight™ Architecture Specification v3.0 (IHI 0029).
• Arm® Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2 (IHI 0031).
• Armv8-M Processor Debug (100734).
• ACLE Extensions for Armv8-M (100739).

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. ix
ID062218 Non-Confidential

Preface
• Fault Handling and Detection (100691).
• Armv8-M Architecture Reference Manual (DDI 0553).
• Arm® Synchronization Primitives Development Article (ID012816).
• Armv8-M Exception Handling (100701).
• Memory Protection Unit for Armv8-M based platforms (100699).
• TrustZone® technology for Armv8-M Architecture (100690).
• Introduction to the Armv8-M Architecture (100688).

The following confidential books are only available to licensees:
• Arm® Cortex®-M23 Processor Integration and Implementation Manual (DIT0062).

Other publications

This section lists relevant documents published by third parties:

• IEEE Std 1149.1-2001, Test Access Port and Boundary-Scan Architecture (JTAG).

• ANSI/IEEE Std 754-2008, IEEE Standard for Binary Floating-Point Arithmetic.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. x
ID062218 Non-Confidential

Preface
Feedback
Arm welcomes feedback on this product and its documentation.

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and

diagnostic procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:
• The title.
• The number, DUI 1095A.
• The page numbers to which your comments apply.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note
 Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality
of the represented document when used with any other PDF reader.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. xi
ID062218 Non-Confidential

Chapter 1
Introduction

This chapter introduces the Cortex-M23 processor and its features.

• About the Cortex-M23 processor and core peripherals on page 1-2.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 1-1
ID062218 Non-Confidential

Introduction
1.1 About the Cortex-M23 processor and core peripherals
The Cortex-M23 processor is an entry-level 32-bit Arm Cortex processor designed for a broad
range of embedded applications. It offers significant benefits to developers, including:
• A simple architecture that is easy to learn and program.
• Ultra-low power, energy-efficient operation.
• Excellent code density.
• Deterministic, high-performance interrupt handling.
• Upward compatibility with Cortex-M processor family.
• Platform security robustness, with optional integrated memory protection.
• Extended security features, with optional Security Extension for Armv8-M.

Figure 1-1 Cortex-M23 processor implementation

The Cortex-M23 processor is built on a highly area and power optimized 32-bit processor core,
with a 2-stage pipeline von Neumann architecture. The processor delivers high energy
efficiency through a small but powerful instruction set and extensively optimized design,
providing high-end processing hardware including a single-cycle multiplier and a 17-cycle
divider.

For each security state, the Cortex-M23 processor implements the baseline profile of the
Armv8-M architecture, which is based on the 32-bit Thumb® instruction set and includes
Thumb-2 technology. This provides the exceptional performance expected of a modern 32-bit
architecture, with a higher code density than other 8-bit and 16-bit microcontrollers.

Interrupts

Trace
Interface

Memory system

MTB SRAM
Interface

MTB AHB Interface

AMBA5 AHB 5

Debug
Interface

Implementation
Defined

Attribution Unit
(IDAU)

Processor

Optional
Cross Trigger
Interface (CTI)

Nested Vector
Interrupt Controller

(NVIC)

Optional
Wake up Interrupt
Controller (WIC)

Bus matrix

Optional
Embedded Trace
Macrocell (ETM)Processor core

Optional
Micro Trace Buffer

(MTB)

Optional Memory Protection
Data Watchpoint and

Trace Unit (DWT)

Breakpoint Unit

ROM tables

Security
Attribution Unit

(SAU)

Secure Memory
Protection Unit

(MPU_S)

Non-secure
Memory

Protection Unit
(MPU_NS)
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 1-2
ID062218 Non-Confidential

Introduction
The Cortex-M23 processor closely integrates a configurable Nested Vectored Interrupt
Controller (NVIC), to deliver industry-leading interrupt performance. The NVIC:
• Includes a Non-Maskable Interrupt (NMI).
• Provides a zero jitter interrupt option.
• Provides four programmable priority levels, and additional levels for NMI and Hardfault.

The tight integration of the processor core and NVIC provides fast execution of Interrupt
Service Routines (ISRs), significantly reducing the interrupt latency. This is achieved through
the hardware stacking of registers, and the ability to abandon load-multiple and store-multiple
operations. Interrupt handlers do not require any assembler wrapper code, removing any code
overhead from the ISRs. Tail-chaining optimization also significantly reduces the overhead
when switching from one ISR to another.

To optimize low-power designs, the NVIC supports different sleep modes, including a deep
sleep function that enables the entire device to be rapidly powered down while still retaining
program state.

1.1.1 Cortex-M23 processor features summary
• Thumb® instruction set with Thumb-2 Technology.
• High code density with 32-bit performance.
• Unprivileged and Privileged access.
• Tools and binaries upwards compatible with Cortex-M processor family.
• Integrated ultra low-power sleep modes.
• Efficient code execution enabling slower processor clock or increased sleep time.
• Single-cycle 32-bit hardware multiplier and fast 17-cycle hardware divider.
• Zero jitter interrupt handling.
• Optional:

— Security Attribution Unit (SAU) for security management.
— Memory Protection Unit (MPU) for safety-critical applications.
— Low latency, high-speed peripheral I/O port.
— Vector Table Offset Register, which is banked between Secure and Non-secure state

when implemented with Security Extensions.
— Extendable debug capabilities.

1.1.2 System-level interface

The Cortex-M23 processor implements a complete hardware debug solution. This provides high
system visibility of the processor and memory through either a traditional JTAG port or a 2-pin
Serial Wire Debug (SWD) port that is ideal for microcontrollers and other small package
devices. The MCU vendor determines the debug feature configuration, therefore debug features
can differ across different devices and and families.

The optional CoreSight technology components, Embedded Trace Macrocell (ETM), and Micro
Trace Buffer (MTB), deliver unrivalled instruction trace capture in an area far smaller than
traditional trace units, enabling many low-cost MCUs to implement full instruction trace for the
first time.evices.

The breakpoint unit provides up to four hardware breakpoint comparators that debuggers can
use.

The data watchpoint unit provides up to four data watchpoint comparators that debuggers can
use.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 1-3
ID062218 Non-Confidential

Introduction
1.1.3 Security Extension

The Security Extension to the Armv8-M baseline adds security and code and data protection
features. The Security Extension introduces a new security state to the existing thread and
handler modes. A Cortex-M23 processor with the Security Extension has two security states,
Secure and Non-secure.

With the Security Extension implemented, the following happens:

• The Cortex-M23 processor always resets into Secure state.

• Some registers are banked between security states. There are two separate instances of the
same register, one in Secure state and the other in Non-secure state.

• The Secure state can access Non-secure versions of banked registers through the
Non-secure alias.

• Some exceptions are banked between security states, some other exceptions are
configurable.

• Some faults are banked between security states.

• Secure memory can only be accessed from Secure state.

1.1.4 Cortex-M23 processor core peripherals

The Cortex-M23 core peripherals are:

NVIC The NVIC is an embedded interrupt controller that supports low latency interrupt
processing.

System Control Space
The System Control Space (SCS) is the programmers model interface to the
processor. It provides system implementation information and system control,
including configuration, control, and reporting of system exceptions.

System Timer
The System Timer, SysTick, is a 24-bit count-down timer. Use this as a Real Time
Operating System (RTOS) tick timer or as a simple counter.

Note
 • In an implementation that supports the Security Extension, either:

— One configurable SysTick is implemented.
— Two SysTicks banked between security states are implemented.

• In an implementation that does not support the Security Extension, either:
— No SysTicks are implemented.
— One SysTick is implemented.

Security Attribution Unit
The optional SAU determines the security of an address.

Memory Protection Unit
The optional MPU improves system reliability by defining the memory attributes
for different memory regions. It provides up to eight different regions, and an
optional predefined background region.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 1-4
ID062218 Non-Confidential

Introduction
Depending on the implementation, there are two MPUs, one for Secure state and
one for Non-secure state.
Each MPU can define memory access permissions and attributes independently.

I/O port The optional I/O port provides single-cycle loads and stores to tightly-coupled
peripherals.

1.1.5 Armv8-M enablement

Although the following documents are not specific to this product, they do contain information
that might enable you in developing your Cortex-M23 processor.
• Armv8-M Processor Debug.
• ACLE Extensions for Armv8-M.
• Fault Handling and Detection.
• Armv8-M Exception Handling.
• Memory Protection Unit for Armv8-M based platforms.
• Arm®v8-M Architecture Reference Manual.
• TrustZone® technology for Armv8-M Architecture.
• Introduction to the Armv8-M Architecture.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 1-5
ID062218 Non-Confidential

Chapter 2
The Cortex-M23 Processor

The following sections are the reference material for the Cortex-M23 processor description in a
User Guide:
• Programmers model on page 2-2.
• Memory model on page 2-11.
• Exception model on page 2-20.
• Fault handling on page 2-30.
• Power management on page 2-32.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-1
ID062218 Non-Confidential

The Cortex-M23 Processor
2.1 Programmers model
This section describes the programmers model. In addition to the individual core register
descriptions, it contains information about the processor modes, privilege levels for software
execution, security states, and stacks.

2.1.1 Processor modes and privilege levels for software execution

The processor modes are:

Thread mode Executes application software. The processor enters Thread mode on
Reset, or as a result of an exception return.

Handler mode Handles exceptions. The processor returns to Thread mode when it has
finished all exception processing.

The privilege levels for software execution are:

Unprivileged The software:
• Has limited access to system registers using the MSR and MRS

instructions, and cannot use the CPS instruction to mask interrupts.
• Cannot access the system timer, NVIC, or system control block.
• Might have restricted access to memory or peripherals.
Unprivileged software executes at the unprivileged level.

Privileged Software can use all the instructions and has access to all resources.
Privileged software executes at the privileged level.

In Thread mode, the CONTROL register controls whether software execution is privileged or
unprivileged, see CONTROL register on page 2-8. In Handler mode, software execution is
always privileged.

Only privileged software can write to the CONTROL register to change the privilege level for
software execution in Thread mode. Unprivileged software can use the SVC instruction to make
a Supervisor Call to transfer control to privileged software.

2.1.2 Security states

In a processor with the Security Extension implemented, the programmers model includes the
following security states:

Secure state The processor always resets into Secure state.

Non-secure state The programmers model includes only the Non-secure state.

Registers in the System Control Space are banked across Secure and Non-secure states, with the
Non-secure register view available at an aliased address to Secure state.

Each security state includes a set of independent operating modes and supports both privileged
and unprivileged user access.

2.1.3 Stacks

The processor uses a full descending stack. This means the Stack Pointer indicates the last
stacked item on the stack memory. When the processor pushes a new item onto the stack, it
decrements the Stack Pointer and then writes the item to the new memory location. The
processor implements two stacks per security state, the main stack and the process stack, with
independent copies of the Stack Pointer, see Stack Pointer on page 2-4.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-2
ID062218 Non-Confidential

The Cortex-M23 Processor
In Thread mode, the CONTROL register controls whether the processor uses the main stack or
the process stack, see CONTROL register on page 2-8. In Handler mode, the processor always
uses the main stack. The options for processor operations are:

2.1.4 Core registers

The processor core registers are:

Table 2-1 Summary of processor mode, execution privilege level, and stack use options

Processor mode Used to execute Privilege level for
software execution Stack used

Thread Applications Privileged or unprivilegeda Main stack or process stacka

a. See CONTROL register on page 2-8.

Handler Exception handlers Always privileged Main stack

Table 2-2 Core register set summary

Name Typea Reset value Description

R0-R12 RW Unknown General-purpose registers on page 2-4.

MSP_S RW See description Stack Pointer on page 2-4.b

MSP_NS

Program Counter

SP (R13)
LR (R14)
PC (R15)

R5
R6
R7

R0
R1

R3
R4

R2

R10
R11
R12

R8
R9

Low registers

High registers

MSP_S
PSP_S

CONTROL_NS

Link Register
Active Stack Pointer

General purpose registers

Program Status Register

Control Register

PRIMASK_NSInterrupt mask register

Banked stack pointers

PSP_NS
MSP_NS

Banked special registers

PRIMASK_S
CONTROL_S

PRIMASK
CONTROL

PSR

MSP_LIM_S
PSP_LIM_S
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-3
ID062218 Non-Confidential

The Cortex-M23 Processor
General-purpose registers

R0-R12 are 32-bit general-purpose registers for data operations.

Stack Pointer

The Stack Pointer (SP) is register R13.

In an implementation with Security Extensions, there are four stacks and four Stack Pointer
registers banked between Secure and Non-secure state.

In Thread mode, bit[1], CONTROL.SPSEL, of the CONTROL register indicates the Stack
Pointer to use:
• 0 = Main Stack Pointer (MSP). This is the reset value.

PSP_S RW Unknown Stack Pointer.b

PSP_NS

LR RW Unknown Link Register on page 2-5

PC RW See description Program Counter on page 2-5.

PSRc RW Unknownd Program Status Register on page 2-5.b

APSR RW Unknown Application Program Status Register on
page 2-6.

IPSR RO 0x00000000 Interrupt Program Status Register on page 2-6.

EPSR RO Unknownd Execution Program Status Register on page 2-7.

PRIMASK_S RW 0x00000000 Priority Mask Register on page 2-8.b

PRIMASK_NS

CONTROL_S RW 0x00000000 CONTROL register on page 2-8.b

CONTROL_NS

a. Describes the access type during program execution in Thread mode and Handler mode. Debug
access can differ.

b. In a processor with the Security Extension implemented, the register is banked between Secure and
Non-secure state.

c. PSR includes APSR, IPSR, and EPSR.
d. Bit[24] is the T-bit and is loaded from bit[0] of the reset vector.

Table 2-3 Stack Pointer register

Stack Stack Pointer
register

Stack Pointer
Limit register

Secure Main MSP_S MSPLIM

Process PSP_S PSPLIM

Non-secure Main MSP_NS -

Process PSP_NS -

Table 2-2 Core register set summary (continued)

Name Typea Reset value Description
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-4
ID062218 Non-Confidential

The Cortex-M23 Processor
• 1 = Process Stack Pointer (PSP).

Link Register

The Link Register (LR) is register R14. It stores the return information for subroutines, function
calls, and exceptions. On reset, the LR value is Unknown.

Program Counter

The Program Counter (PC) is register R15. It contains the current program address. On reset,
the processor loads the PC with the value of the reset vector, which is at address 0x00000004.
Bit[0] of the value is loaded into the EPSR T-bit at reset and must be 1.

Program Status Register

The Program Status Register (PSR) combines:
• Application Program Status Register (APSR).
• Interrupt Program Status Register (IPSR).
• Execution Program Status Register (EPSR).

These registers are allocated as mutually exclusive bit fields within the 32-bit PSR. The PSR bit
assignments are:

Access these registers individually or as a combination of any two or all three registers, using
the register name as an argument to the MSR or MRS instructions. For example:
• Read all the registers using PSR with the MRS instruction.
• Write to the APSR N, Z, C, and V bits using APSR with the MSR instruction.

The PSR combinations and attributes are:

31 30 29 28 27 25 24 23 89 0

APSR

IPSR

EPSR

10

Reserved

V

Exception numberReserved

N Z C Reserved

TReserved

Table 2-4 PSR register combinations

Register Type Combination

PSR RWa, b

a. The processor ignores writes to the IPSR bits.
b. Reads of the EPSR bits return zero, and the

processor ignores writes to these bits.

APSR, EPSR, and IPSR.

IEPSR RO EPSR and IPSR.

IAPSR RWa APSR and IPSR.

EAPSR RWb APSR and EPSR.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-5
ID062218 Non-Confidential

The Cortex-M23 Processor
See the instruction descriptions MRS on page 3-59 and MSR on page 3-60 for more information
about how to access the Program Status Registers.

Application Program Status Register

The APSR contains the current state of the condition flags, from previous instruction
executions. See the register summary in Table 2-2 on page 2-3 for its attributes. The bit
assignments are:

See The condition flags on page 3-13 for more information about the APSR negative, zero, carry
or borrow, and overflow flags.

Interrupt Program Status Register

The IPSR contains the exception number of the current ISR. See the register summary in
Table 2-2 on page 2-3 for its attributes. The bit assignments are:

Table 2-5 APSR bit assignments

Bits Name Function

[31] N Negative flag.

[30] Z Zero flag.

[29] C Carry or borrow flag.

[28] V Overflow flag.

[27:0] - Reserved.

Table 2-6 IPSR bit assignments

Bits Name Function

[31:6]a - Reserved.

[5:0] Exception number This is the number of the current exception:
0 = Thread mode.
1 = Reserved. This exception number is used when Secure
code calls a Non-secure function and Secure code was
executing in handler mode.
2 = NMI.
3 = HardFault.
4-10 = Reserved.
11 = SVCall.
12, 13 = Reserved.
14 = PendSV.
15 = SysTick | Reserved.
16 = IRQ0.
.
.
255 = IRQ239.
See Exception types on page 2-20 for more information.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-6
ID062218 Non-Confidential

The Cortex-M23 Processor
Execution Program Status Register

The EPSR contains the Thumb state bit.

See the register summary in Table 2-2 on page 2-3 for the EPSR attributes. The bit assignments
are:

Attempts by application software to read the EPSR directly using the MRS instruction always
return zero. Attempts to write the EPSR using the MSR instruction are ignored. The following can
clear the T bit to 0:
• Instructions BLX, BX and, POP{PC}.
• Restoration from the stacked xPSR value on an exception return.
• Bit[0] of the vector value on an exception entry.

Attempting to execute instructions when the T bit is 0 results in a HardFault or Lockup. See
Lockup on page 2-31 for more information.

Interruptible-restartable instructions

The interruptible-restartable instructions are LDM and STM, PUSH, POP, SDIV, UDIV, and MULS ,<if
32-cycle multiplier is used>. When an interrupt occurs during the execution of one of these
instructions, the processor abandons execution of the instruction. After servicing the interrupt,
the processor restarts execution of the instruction from the beginning.

Exception mask register

The exception mask register disables the handling of exceptions by the processor. Disable
exceptions where they might impact on timing critical tasks or code sequences requiring
atomicity.

To disable or re-enable exceptions, use the MSR and MRS instructions, or the CPS instruction, to
change the value of PRIMASK. See MRS on page 3-59, MSR on page 3-60, and CPS on
page 3-55 for more information.

In an implementation with Security Extensions, this register is banked between security states.

a. The last bit of the Exception number bit field depends on the number of interrupts implemented.
0-47 interrupts = [5:0].
48-111 interrupts = [6:0].
112-239 interrupts = [7:0].

Table 2-7 EPSR bit assignments

Bits Name Function

[31:25] - Reserved.

[24] T Thumb state bit.

[23:0] - Reserved.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-7
ID062218 Non-Confidential

The Cortex-M23 Processor
Priority Mask Register

The PRIMASK register prevents activation of all exceptions with configurable priority. See the
register summary in Table 2-2 on page 2-3 for its attributes. The bit assignments are:

PRIMASK_S masks all configurable interrupts.

If PRIS=0, PRIMASK_NS masks all configurable interrupts.

If PRIS=1, PRIMASK_NS masks all non-configurable interrupts and Secure configurable
interrupts if their priority is 0x80 and 0xC0.

CONTROL register

The CONTROL register controls the stack used, and the privilege level for software execution,
when the processor is in Thread mode.

In an implementation with Security Extensions, this register is banked between security states
on a bit by bit basis.

Table 2-8 PRIMASK register bit assignments

Bits Name Function

[31:1] - Reserved.

[0] PM Prioritizable interrupt mask:
0 = No effect.
1 = Prevents the activation of all exceptions with configurable priority.

31

Reserved

1 0

PM
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-8
ID062218 Non-Confidential

The Cortex-M23 Processor
See the register summary in Table 2-2 on page 2-3 for its attributes. The bit assignments are:

The SPSEL bit can be written at any time, but in Handler mode MSP is always used, regardless
of the value of SPSEL.

In an OS environment, Arm recommends that threads running in Thread mode use the process
stack and the kernel and exception handlers use the main stack.

By default, Thread mode uses the MSP. To switch the Stack Pointer used in Thread mode to the
PSP, use the MSR instruction to set the active Stack Pointer bit to 1, see MRS on page 3-59.

Note
 When changing the Stack Pointer, software must use an ISB instruction immediately after the
MSR instruction. This ensures that instructions after the ISB execute using the new Stack Pointer.
See ISB on page 3-58.

2.1.5 Exceptions and interrupts

The Cortex-M23 processor supports interrupts and system exceptions. The processor and the
NVIC prioritize and handle all exceptions. An interrupt or exception changes the normal flow
of software control. The processor uses Handler mode to handle all exceptions except for reset.
See Exception entry on page 2-25 and Exception return on page 2-27 for more information.

The NVIC registers control interrupt handling. See Nested Vectored Interrupt Controller on
page 4-3 for more information.

Table 2-9 CONTROL register bit assignments

Bits Name Function

[31:2] - Reserved.

[1] SPSEL Defines the current stack:
0 = MSP is the current Stack Pointer.
1 = PSP is the current Stack Pointer.
In Handler mode this bit is ignored, the processor always
uses the MSP.

[0] nPRIV Defines the Thread mode privilege level:
0 = Privileged.
1 = Unprivileged.

31 1 0

Reserved

SPSEL
nPRIV

2

DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-9
ID062218 Non-Confidential

The Cortex-M23 Processor
2.1.6 Data types

The processor:

• Supports the following data types:
— 32-bit words.
— 16-bit halfwords.
— 8-bit bytes.

• Manages all data memory accesses as little-endian or big-endian. See Memory regions,
types, and attributes on page 2-11 for more information.

2.1.7 The Cortex Microcontroller Software Interface Standard

Arm provides the Cortex Microcontroller Software Interface Standard (CMSIS) for
programming microcontrollers. The CMSIS is an integrated part of the device driver library. For
a Cortex-M23 microcontroller system, CMSIS defines:
• A common way to:

— Access peripheral registers.
— Define exception vectors.

• The names of:
— The registers of the core peripherals.
— The core exception vectors.

• A device-independent interface for RTOS kernels.

The CMSIS includes address definitions and data structures for the core peripherals in the
Cortex-M23 processor.

The CMSIS simplifies software development by enabling the reuse of template code, and the
combination of CMSIS-compliant software components from various middleware vendors.
Software vendors can expand the CMSIS to include their peripheral definitions and access
functions for those peripherals.

This document includes the register names defined by the CMSIS, and gives short descriptions
of the CMSIS functions that address the processor core and the core peripherals.

Note
 This document uses the register short names defined by the CMSIS. In a few cases, these differ
from the architectural short names that might be used in other documents.

Related information:
• Power management programming hints on page 2-34.
• CMSIS functions on page 3-5.
• Accessing the Cortex-M23 NVIC registers using CMSIS on page 4-4.
• NVIC programming hints on page 4-10.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-10
ID062218 Non-Confidential

The Cortex-M23 Processor
2.2 Memory model
This section describes the processor memory map and the behavior of memory accesses. The
processor has a fixed memory map that provides up to 4GB of addressable memory. The
memory map is:

The processor reserves regions of the Private Peripheral Bus (PPB) address range for core
peripheral registers, see About the Cortex-M23 processor and core peripherals on page 1-2.

2.2.1 Memory regions, types, and attributes

The memory map and the programming of the MPU splits into regions. Each region has a
defined memory type, and some regions have additional memory attributes. The memory type
and attributes determine the behavior of accesses to the region.

External device

External RAM

Peripheral

SRAM

Code

0xE00F0000

Private peripheral bus
0xE0040000
0xE003FFFF

0x9FFFFFFF
0xA0000000

0x5FFFFFFF
0x60000000

0x3FFFFFFF
0x40000000

0x1FFFFFFF
0x20000000

0x00000000

1.0GB

1.0GB

0.5GB

0.5GB

0.5GB

0xDFFFFFFF
0xE0000000

Device

Private peripheral bus

Device

Vendor_SYS

Vendor_SYS

0xE004FFFF
0xE0050000

0xE00EFFFF

0xE00FFFFF
0xE0100000

0xEFFFFFFF
0xF0000000

0xFFFFFFFF
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-11
ID062218 Non-Confidential

The Cortex-M23 Processor
The memory types are:

Normal The processor can re-order transactions for efficiency, or perform
speculative reads.

Device The processor preserves transaction order relative to other transactions to
Device or Device-GRE memory.

The additional memory attributes include:

Shareable For a shareable memory region, the memory system might provide data
synchronization between bus masters in a system with multiple bus
masters, for example, a processor with a DMA controller.
If multiple bus masters can access a Non-shareable memory region,
software must ensure data coherency between the bus masters.
The Shareable memory attribute is required only if the device is likely to
be used in systems where memory is shared between multiple processors.

eXecute Never (XN)
Means that the processor prevents instruction accesses. A HardFault
exception is generated on executing an instruction fetched from an XN
region of memory.

2.2.2 Device memory

Device memory must be used for memory regions that cover peripheral control registers. Some
of the optimizations that are permitted for Normal memory, such as access merging or repeating,
can be unsafe for a peripheral register.

The Device memory type has several attributes:

G or nG Gathering or non-Gathering. Multiple accesses to a device can be merged into a
single transaction except for operations with memory ordering semantics, for
example, memory barrier instructions, load acquire/store release.

R or nR Reordering.

E or nE Early Write Acknowledge.

Only four combinations of these attributes are valid:
• Device-nGnRnE.
• Device-nGnRE.
• Device-nGRE.
• Device-GRE.

Note
 • Device-nGnRnE is equivalent to Armv7-M Strongly Ordered memory type.
• Device-nGnRE is equivalent to Armv7-M Device memory.
• Device-nGRE and Device-GRE are new to Armv8-M.

Typically, peripheral control registers must be either Device-nGnRE or Device-nGnRnE to
prevent reordering of the transactions in the programming sequences.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-12
ID062218 Non-Confidential

The Cortex-M23 Processor
Device-nGRE and Device-GRE memory types can be useful for peripherals where results are
not affected by memory access sequence and ordering. For example, bitmap or display buffers
in display interface.If the bus interface of such a peripheral can only accept certain transfer sizes,
the peripheral must be set to Device memory with non-Gathering attribute.

Note
 • For most simple processor designs, reordering, and gathering (merging of transactions) do

not occur even if the memory attribute configuration allows it to do so.

• Device memory is shareable, and must not be cached.

2.2.3 Secure memory system and memory partitioning

In an implementation with Security Extensions, the 4GB memory space is partitioned into
Secure and Non-secure memory regions.

Secure (S)

Secure addresses are used for memories and peripherals that are only accessible by Secure
software or Secure masters.Secure transactions are those that originate from masters operating
as, or deemed to be, Secure when targeting a Secure address.

Non-secure Callable (NSC)

NSC is a special type of Secure location. This type of memory is the only type which an
Armv8-M processor permits to hold an SG instruction that enables software to transition from
Non-secure to Secure state.

The inclusion of NSC memory locations removes the need for Secure software creators to allow
for the accidental inclusion of SG instructions, or data sharing encoding values, in normal Secure
memory by restricting the functionality of the SG instruction to NSC memory only.

Non-secure (NS)

Non-secure addresses are used for memory and peripherals accessible by all software running
on the device.

Non-secure transactions are those that originate from masters operating as, or deemed to be,
Non-secure or from Secure masters accessing a Non-secure address. Non-secure transactions
are only permitted to access Non-secure addresses, and the system must ensure that Non-secure
transactions are denied access to Secure addresses.

Note
 Secure software that accesses memory regions marked as Non-secure in the SAU or
Implementation Defined Attribution Unit (IDAU) is marked as Non-secure on the AHB bus.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-13
ID062218 Non-Confidential

The Cortex-M23 Processor
2.2.4 Behavior of memory accesses

The behavior of accesses to each region in the memory map is:

The Code, SRAM, and external RAM regions can hold programs.

The MPU can override the default memory access behavior described in this section. For more
information, see Security Attribution and Memory Protection on page 4-28.

Additional memory access constraints for caches and shared memory

When a system includes caches or shared memory, some memory regions have additional access
constraints, and some regions are subdivided, as Table 2-11 shows:

Table 2-10 Memory access behavior

Address range Memory region Memory typea XNa Description

0x00000000- 0x1FFFFFFF Code Normal - Executable region for program code. You can also put
data here.

0x20000000- 0x3FFFFFFF SRAM Normal - Executable region for data. You can also put code
here.

0x40000000- 0x5FFFFFFF Peripheral Device XN External device memory.

0x60000000- 0x9FFFFFFF RAM Normal - Executable region for data.

0xA0000000- 0xDFFFFFFF External device Device XN External device memory.

0xE0000000- 0xE003FFFF Private Peripheral Bus - XN This region includes the SCS, NVIC, MPU, and SAU
registers.
Only word accesses can be used in this region.

0xE0040000- 0xE004FFFF Device Device XN This region is for debug components and can include
the MTB, ETM, CTI, and TPIU configuration
registers or none.

0xE0050000- 0xE00EFFFF Private Peripheral Bus - XN Reserved.

0xE00F0000- 0xE00FFFFF Device Device XN This region includes the Cortex-M23 MCU ROM
when implemented.

0xE0100000- 0xEFFFFFFF Vendor_SYS - XN Vendor specific.

0xF0000000- 0xFFFFFFFF Vendor_SYS Device XN Vendor specific.

a. See Memory regions, types, and attributes on page 2-11 for more information.

Table 2-11 Memory region shareability and cache policies

Address range Memory region Memory typea Shareabilitya Cache policyb

0x00000000- 0x1FFFFFFF Code Normal - WT

0x20000000- 0x3FFFFFFF SRAM Normal - WBWA

0x40000000- 0x5FFFFFFF Peripheral Device - -

0x60000000- 0x7FFFFFFF RAM Normal - WBWA

0x80000000- 0x9FFFFFFF WT
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-14
ID062218 Non-Confidential

The Cortex-M23 Processor
2.2.5 Software ordering of memory accesses

The order of instructions in the program flow does not always guarantee the order of the
corresponding memory transactions. This is because:
• Memory or devices in the memory map might have different wait states.
• Some memory accesses associated with instruction fetches are speculative.

Device memory on page 2-12 describes the cases where the memory system guarantees the order
of memory accesses. Otherwise, if the order of memory accesses is critical, software must
include memory barrier instructions to force that ordering. The processor provides the following
memory barrier instructions:

DMB The Data Memory Barrier (DMB) instruction ensures that outstanding
memory transactions complete before subsequent memory transactions.
See DMB on page 3-56.

DSB The Data Synchronization Barrier (DSB) instruction ensures that
outstanding memory transactions complete before subsequent instructions
execute. See DSB on page 3-57.

ISB The Instruction Synchronization Barrier (ISB) ensures that the effect of
any context-changing operations is recognizable by subsequent
instructions. See ISB on page 3-58.

LDA, LDAB, LDAEX, LDAEXB, LDAEXH, LDAH These instructions ensure that
subsequent memory transactions are observed after the load.

STL, STLB, STLEX, STLEXB, STLEXH, STLH These instructions ensure that outstanding
memory transactions complete before the store is observed.

The following are examples of using memory barrier instructions:

Vector table If the program changes an entry in the vector table, and then enables the
corresponding exception, use a DMB instruction between the operations.
This ensures that if the exception is taken immediately after being enabled,
then the processor uses the new exception vector.

0xA0000000- 0xBFFFFFFF External device Device Shareable -

0xC0000000- 0xDFFFFFFF Shareable

0xE0000000- 0xE003FFFF Private Peripheral Bus Device Shareable -

0xE0040000- 0xE004FFFF Device Device - -

0xE0050000- 0xE00EFFFF Private Peripheral Bus - - Device

0xE00F0000- 0xE00FFFFF Device Device - Device

0xE0100000- 0xEFFFFFFF Vendor_SYS - - Device

0xF0000000- 0xFFFFFFFF Vendor_SYS Device - Device

a. See Memory regions, types, and attributes on page 2-11 for more information.
b. WT = Write through, no write allocate. WBWA = Write back, write allocate.

Table 2-11 Memory region shareability and cache policies (continued)

Address range Memory region Memory typea Shareabilitya Cache policyb
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-15
ID062218 Non-Confidential

The Cortex-M23 Processor
Self-modifying code
If a program contains self-modifying code, use an ISB instruction
immediately after the code modification in the program. This ensures
subsequent instruction execution uses the updated program.

Memory map switching
If the system contains a memory map switching mechanism, use a DSB
instruction after switching the memory map. This ensures subsequent
instruction execution uses the updated memory map.

MPU programming
Use a DSB followed by an ISB instruction or exception return to ensure that
the new MPU configuration is used by subsequent instructions.

VTOR programming
If the program updates the value of the VTOR, use a DMB instruction to
ensure that the new vector table is used for subsequent exceptions.

2.2.6 Memory endianness

The processor views memory as a linear collection of bytes numbered in ascending order from
zero. For example, bytes 0-3 hold the first stored word, and bytes 4-7 hold the second stored
word. Byte-invariant big-endian format or Little-endian format on page 2-17 describes how
words of data are stored in memory.

Byte-invariant big-endian format

In byte-invariant big-endian format, the processor stores the most significant byte (msbyte) of a
word at the lowest-numbered byte, and the least significant byte (lsbyte) at the
highest-numbered byte. For example:

Memory Register

A

A+1

msbyte

lsbyte

A+2

A+3

07

B3B2B0 B1
31 2423 1615 8 7 0

B0

B1

B2

B3

Address
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-16
ID062218 Non-Confidential

The Cortex-M23 Processor
Little-endian format

In little-endian format, the processor stores the least significant byte (lsbyte) of a word at the
lowest-numbered byte, and the most significant byte (msbyte) at the highest-numbered byte. For
example:

2.2.7 Synchronization primitives

The instruction set support for the Cortex-M23 processor includes pairs of synchronization
primitives. These provide a non-blocking mechanism that a thread or process can use to obtain
exclusive access to a memory location. Software can use them to perform a guaranteed
read-modify-write memory update sequence, or for a semaphore mechanism.

A pair of synchronization primitives comprises:

A Load-Exclusive instruction
Used to read the value of a memory location, requesting exclusive access to that
location.

A Store-Exclusive instruction
Used to attempt to write to the same memory location, returning a status bit to a
register. If this bit is:
0 It indicates that the thread or process gained exclusive access to the

memory, and the write succeeds,
1 It indicates that the thread or process did not gain exclusive access to

the memory, and no write was performed.

The pairs of Load-Exclusive and Store-Exclusive instructions are:
• The word instructions:

— LDAEX and STLEX.
— LDREX and STREX.

• The halfword instructions:
— LDAEXH and STLEXH.
— LDREXH and STREXH.

• The byte instructions:
— LDAEXB and STLEXB.
— LDREXB and STREXB.

Software must use a Load-Exclusive instruction with the corresponding Store-Exclusive
instruction.

To perform an exclusive read-modify-write of a memory location, software must:

1. Use a Load-Exclusive instruction to read the value of the location.

Register

A+1

lsbyte

msbyte

A+2

A+3

07

B0B1B3 B2
31 2423 1615 8 7 0

B0

B1

B2

B3

Memory

AAddress
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-17
ID062218 Non-Confidential

The Cortex-M23 Processor
2. Modify the value, as required.

3. Use a Store-Exclusive instruction to attempt to write the new value back to the memory
location.

4. Test the returned status bit. If this bit is:
0 The read-modify-write completed successfully.
1 No write was performed. This indicates that the value returned at step 1 might

be out of date. The software must retry the entire read-modify-write sequence.

Software can use the synchronization primitives to implement a semaphore as follows:

1. Use a Load-Exclusive instruction to read from the semaphore address to check whether
the semaphore is free.

2. If the semaphore is free, use a Store-Exclusive to write the claim value to the semaphore
address.

3. If the returned status bit from step 2 indicates that the Store-Exclusive succeeded, then the
software has claimed the semaphore. However, if the Store-Exclusive failed, another
process might have claimed the semaphore after the software performed step 1.

The Cortex-M23 processor includes an exclusive access monitor, that tags the fact that the
processor has executed a Load-Exclusive instruction. If the processor is part of a multiprocessor
system, includes a global monitor, and the address is in a shared region of memory, then the
system also globally tags the memory locations that are addressed by exclusive accesses by each
processor.

Note
 Shared region of memory: Accesses to Device regions in the ranges 0x40000000-0x5FFFFFFF and
0xc0000000-0xFFFFFFFF do not use the Global Exclusive Monitor when ACTLR.EXTEXCLALL
is 0 and the default memory map is used.

The processor removes its exclusive access tag if:

• It executes a CLREX instruction.

• It executes a STREX instruction, regardless of whether the write succeeds.

• An exception occurs. This means that the processor can resolve semaphore conflicts
between different threads.

In a multiprocessor implementation:

• Executing a CLREX instruction removes only the local exclusive access tag for the
processor.

• Executing a STREX instruction, or an exception, removes the local exclusive access tags for
the processor.

• Executing a STREX instruction to a Shareable memory region can also remove the global
exclusive access tags for the processor in the system.

For more information about the synchronization primitive instructions, see LDREX and STREX
on page 3-24 and CLREX on page 3-17.

Global monitor access can be done:

• In a Shared region if the MPU is implemented, or in the default memory map.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-18
ID062218 Non-Confidential

The Cortex-M23 Processor
Note
 Default memory map: Accesses to Device regions in the ranges 0x40000000-0x5fffffff

and 0xc0000000-0xffffffff do not use the Global Exclusive Monitor when
ACTLR.EXTEXCLALL is 0 and the default memory map is used.

• By setting ACTLR.EXTEXLALL. In this case, exclusive information is always sent
externally.

In any other case, exclusive information is not sent on the AHB bus, HEXCL is 0, and only the
local monitor is used.

If HEXCL is sent externally and there is no exclusive monitor for the corresponding memory
region, then STREX fails.

2.2.8 Programming hints for the synchronization primitives

ISO/IEC C cannot directly generate the exclusive access instructions. CMSIS provides intrinsic
functions for generation of these instructions:

For example:

uint16_t value;
uint16_t *address = 0x20001002;
value = __LDREXH (address); // load 16-bit value from memory address 0x20001002

Table 2-12 CMSIS functions for exclusive access instructions

Instruction CMSIS function

LDAEX uint16_t __LDAEX (volatile uint16_t * ptr)

LDAEXB uint8_t __LDAEXB (volatile uint8_t * ptr)

LDAEXH uint16_t __LDAEXH (volatile uint16_t * ptr)

LDREX uint32_t __LDREXW (uint32_t *addr)

LDREXB uint8_t __LDREXB (uint8_t *addr)

LDREXH uint16_t __LDREXH (uint16_t *addr)

STLEX uint16_t __STLEX (uint16_t value, volatile uint16_t * ptr)

STLEXB uint8_t __STLEXB (uint8_t value, volatile uint8_t * ptr)

STLEXH uint16_t __STLEXH (uint16_t value, volatile uint16_t * ptr)

STREX uint32_t __STREXW (uint32_t value, uint32_t *addr)

STREXB uint8_t __STREXB (uint8_t value, uint8_t *addr)

STREXH uint16_t __STREXH (uint16_t value, uint16_t *addr)

CLREX void __CLREX (void)
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-19
ID062218 Non-Confidential

The Cortex-M23 Processor
2.3 Exception model
This section describes the exception model.

2.3.1 Exception states

Each exception is in one of the following states:

Inactive The exception is not active and not pending.

Pending The exception is waiting to be serviced by the processor.
An interrupt request from a peripheral or from software can change the
state of the corresponding interrupt to pending.

Active An exception that is being serviced by the processor but has not
completed.

Note
 An exception handler can interrupt the execution of another exception

handler. In this case, both exceptions are in the active state.

Active and pending
The exception is being serviced by the processor and there is a pending
exception from the same source.

2.3.2 Exception types

The exception types are:

Reset Reset is invoked on powerup or a Warm reset. The exception model treats
reset as a special form of exception. When reset is asserted, the operation
of the processor stops, potentially at any point in an instruction. When
reset is deasserted, execution restarts from the address provided by the
reset entry in the vector table. Execution restarts as privileged execution
in Thread mode.
In an implementation with Securty Extensions:
• This exception is not banked between security states.
• the processor starts in Secure state.

NMI A Non-Maskable Interrupt (NMI) can be signaled by a peripheral or
triggered by software.
NMIs are superseded by Secure HardFault at priority -3.
With the Security Extension implemented, this exception is not banked
between security states.
If AICR.BFHFNMINS=0, then the NMI is Secure.
If AICR.BFHFNMINS=1, then NMI is Non-secure.

HardFault Priority -1. A HardFault is an exception that occurs because of an error
during normal or exception processing. HardFaults have a fixed priority of
-1, meaning they have higher priority than any exception with
configurable priority.
In an implementation with Securty Extensions, this exception is banked
between security states.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-20
ID062218 Non-Confidential

The Cortex-M23 Processor
If BFHFNMINS=0, HardFault handles all Secure and Non-secure faults,
and the handler is Secure.
If BFHFNMINS=1, HardFault handles Non-secure faults, the handler is
Non-secure, and bus faults are Non-secure, even if they are caused by
Secure code.

Secure HardFault Priority -3. A Secure HardFault is only enabled when BFHFNMINS=1.
Secure HardFault handles faults caused by Secure code or faults to Secure
regions, except bus faults.

SVCall A Supervisor Call (SVC) is an exception that is triggered by the SVC
instruction. In an OS environment, applications can use SVC instructions to
access OS kernel functions and device drivers.
In an implementation with Securty Extensions, this exception is banked
between security states.

PendSV PendSV is an interrupt-driven request for system-level service. In an OS
environment, use PendSV for context switching when no other exception
is active.
In an implementation with Securty Extensions, this exception is banked
between security states.

SysTick A SysTick exception is an exception the system timer generates when it
reaches zero. Software can also generate a SysTick exception. In an OS
environment, the processor can use this exception as system tick.
In an implementation with Securty Extensions, this exception is banked
between security states.

Interrupt (IRQ) An interrupt, or IRQ, is an exception signaled by a peripheral, or generated
by a software request. All interrupts are asynchronous to instruction
execution. In the system, peripherals use interrupts to communicate with
the processor.
This exception is not banked between security states. Secure code can
assign each interrupt to Secure or Non-secure state. By default all
interrupts are assigned to Secure state.

Table 2-13 Properties of the different exception types

Exception numbera IRQ numbera Exception type Priority Vector addressb Activation

1 - Reset -4, the highest 0x00000004 Asynchronous

2 -14 NMI -2 0x00000008 Asynchronous

3 -13 Secure HardFault when
AIRCR.BFHFNMINS is 1

-3 0x0000000C Synchronous

Non-secure HardFault or
HardFault when
AIRCR.BFHFNMINS is
0.

-1

4-10 - Reserved - - -

11 -5 SVCall Configurable 0x0000002C Synchronous

12-13 - Reserved - - -
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-21
ID062218 Non-Confidential

The Cortex-M23 Processor
For an asynchronous exception, other than reset, the processor can execute extra instructions
between the moment the exception is triggered and the moment the processor enters the
exception handler.

Privileged software can disable the exceptions that have configurable priority, as shown in
Table 2-13 on page 2-21. See Interrupt Clear-enable Registers on page 4-5 for more
information.

In an implementation with Security Extensions, an exception that targets Secure state cannot be
disabled by Non-secure code.

For more information about HardFaults, see Fault handling on page 2-30.

2.3.3 Exception handlers

The processor handles exceptions using:

Interrupt Service Routines (ISRs)
Interrupts IRQ0 to IRQ239 are the exceptions handled by ISRs.
Each interrupt is configured by Secure software in Secure or Non-secure
state, using ITNS.

Fault handler HardFault is the only exception handled by the fault handler.
There can be separate fault handlers in Secure and Non-secure state.

System handlers NMI, PendSV, SVCall, SysTick, and HardFault are all system exceptions
handled by system handlers.
Most system handlers can be banked with separate handlers between
Secure and Non-secure state.

2.3.4 Vector table

When the Security Extension is implemented, there are two vector tables and two Vector Table
Offset Registers, VTOR_S and VTOR_NS.

The vector table contains the reset value of the Stack Pointer, and the start addresses, also called
exception vectors, for all exception handlers. Figure 2-1 on page 2-23 shows the order of the
exception vectors in the vector table, in Secure and Non-secure state when Security Extensions
are implemented. The least-significant bit of each vector must be 1, indicating that the exception
handler is written in Thumb code.

14 -2 PendSV Configurablec 0x00000038 Asynchronous

15 -1 SysTick Configurablec 0x0000003C Asynchronous

16 and above 0 and above Interrupt (IRQ) Configurablec 0x00000040 and aboved Asynchronous

a. To simplify the software layer, the CMSIS only uses IRQ numbers. It uses negative values for exceptions other than interrupts. The IPSR
returns the Exception number, see Interrupt Program Status Register on page 2-6.

b. See Vector table for more information.
c. See Interrupt Priority Registers on page 4-8.
d. Increasing in steps of 4.

Table 2-13 Properties of the different exception types (continued)

Exception numbera IRQ numbera Exception type Priority Vector addressb Activation
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-22
ID062218 Non-Confidential

The Cortex-M23 Processor
Figure 2-1 Vector table

There are two vector tables and the one that is used depends on the target state of the exception.

The Non-secure handler address of IRQs is used only if the exception targets Non-secure state
(ITNS).

If only one SysTick is implemented, then its Non-secure handler address is used only if the
exception targets Non-secure state (STTNS).

If AIRCR.BFHFNMINS is 0, then HardFault and NMI are only present in Secure state.

If AIRCR.BFHFNMINS is 1, then HardFault and NMI are present in Non-secure state and
Secure HardFault is in Secure state.

On system reset, the vector table is fixed at address 0x00000000.

Privileged software can write to the VTOR to relocate the vector table start address to a different
memory location, in the range 0x00000000 to 0xFFFFFF80.

The silicon vendor must configure the required alignment, which depends on the number of
interrupts implemented. The minimum alignment is 32 words, enough for up to 16 interrupts.
For more interrupts, adjust the alignment by rounding up to the next power of two. For example,
if you require 21 interrupts, the alignment must be on a 64-word boundary because the required
table size is 37 words, and the next power of two is 64, see Vector Table Offset Register on
page 4-15.

Initial SP value

Reset

HardFault_S

NMI_S

0x00

0x04

0x08

0x0C

0x10

Reserved

SVCall_S

PendSV_S

SysTick_S

IRQ0

Reserved

0x2C

0x38

0x3C

0x40

OffsetException number

2

3

4

5

6

11

12

14

15

16

18

13

7

10

1

Secure Vector

.

.

.

8

9

IRQ1

IRQ2

0x44

IRQ239

17

0x48

255

.

.

.

.

.

.

0xBC

IRQ number

0

2

1

239

HardFault_NS

NMI_NS

Reserved

SVCall_NS

PendSV_NS

SysTick_NS

IRQ0

Reserved

IRQ1

IRQ2

IRQ239

.

.

.

Non-secure Vector

- -

0x30
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-23
ID062218 Non-Confidential

The Cortex-M23 Processor
2.3.5 Exception priorities

As Table 2-13 on page 2-21 shows, all exceptions have an associated priority, with:
• A lower priority value indicating a higher priority.
• Configurable priorities for all exceptions except Reset, HardFault, and NMI.

If software does not configure any priorities, then all exceptions with a configurable priority
have a priority of 0. For information about configuring exception priorities, see:
• System Handler Priority Registers on page 4-19.
• Interrupt Priority Registers on page 4-8.

Note
 Configurable priority values are in the range 0x0-0xC0, in steps of 0x40. The Reset, HardFault,
and NMI exceptions, with fixed negative priority values, always have higher priority than any
other exception.

The security state defines the priority. Depending on the value of PRIS, the priority can be
extended.

Assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1] means that
IRQ[1] has higher priority than IRQ[0]. If both IRQ[1] and IRQ[0] are asserted, IRQ[1] is
processed before IRQ[0].

If multiple pending exceptions have the same priority, the pending exception with the lowest
exception number takes precedence. For example, if both IRQ[0] and IRQ[1] are pending and
have the same priority, then IRQ[0] is processed before IRQ[1].

When the processor is executing an exception handler, the exception handler is preempted if a
higher priority exception occurs. If an exception occurs with the same priority as the exception
being handled, the handler is not preempted, irrespective of the exception number. However, the
status of the new interrupt changes to pending.

2.3.6 Exception entry and return

Descriptions of exception handling use the following terms:

Preemption When the processor is executing an exception handler, an exception can
preempt the exception handler if its priority is higher than the priority of
the exception being handled.
When one exception preempts another, the exceptions are called nested
exceptions. See Exception entry on page 2-25 for more information.

Return This occurs when the exception handler is completed, and:
• There is no pending exception with sufficient priority to be serviced.

Table 2-14 Extended priority

Priority
value [7:6] Secure priority Non-secure priority

when PRIS = 0
Non-secure priority
when PRIS = 1

0 0x0 0x0 0x80

1 0x40 0x40 0xA0

2 0x80 0x80 0xC0

3 0xC0 0xC0 0xE0
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-24
ID062218 Non-Confidential

The Cortex-M23 Processor
• The completed exception handler was not handling a late-arriving
exception.

The processor pops the stack and restores the processor state to the state it
had before the interrupt occurred. See Exception return on page 2-27 for
more information.

Tail-chaining This mechanism speeds up exception servicing. On completion of an
exception handler, if there is a pending exception that meets the
requirements for exception entry, the stack pop is skipped and control
transfers to the new exception handler.

Late-arriving This mechanism speeds up preemption. If a higher priority exception
occurs during state saving for a previous exception, the processor switches
to handle the higher priority exception and initiates the vector fetch for
that exception. State saving is not affected by late arrival because the state
saved would be the same for both exceptions. On return from the
exception handler of the late-arriving exception, the normal tail-chaining
rules apply.

Exception entry

Exception entry occurs when there is a pending exception which is enabled and has sufficient
priority and either:

• The processor is in Thread mode.

• The new exception is of higher priority than the exception being handled, in which case
the new exception preempts the exception being handled.

When one exception preempts another, the exceptions are nested.

Sufficient priority means the exception has greater priority than any limit set by the mask
register, see Exception mask register on page 2-7. An exception with less priority than this is
pending but is not handled by the processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-arriving
exception, the processor pushes information onto the current stack. This operation is referred to
as stacking and the structure is referred to as a stack frame.

The following figure shows the short stack frame. The short stack frame is used when the
extended stack frame is not required, for exceptions taken from Non-secure state, or when the
Security extension is not implemented.

R0

R1

R2

R3

R12

LR (R14)

Return Address

xPSR

<previous> SP points here before interrupt

SP + 0x00

SP + 0x04

SP + 0x08

SP + 0x0C

SP + 0x10

SP + 0x14

SP + 0x18

SP + 0x1C

SP + 0x20

State context
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-25
ID062218 Non-Confidential

The Cortex-M23 Processor
Hardware saves the state context onto the stack that the Stack Pointer register points to. The
extented stack frame shown in the following figure is used when Non-secure code preempts
Secure code. The extented stack frame is also used in case of late arrival of exceptions and the
final exception is Secure. In case of tail-chaining, some stacking might be required to extend the
stack if it was not already full.

Immediately after stacking, the Stack Pointer indicates the lowest address in the stack frame.
The stack frame is aligned to a doubleword address.

The stack frame includes the return address. This is the address of the next instruction in the
interrupted program. This value is restored to the PC at exception return so that the interrupted
program resumes.

The processor performs a vector fetch that reads the exception handler start address from the
vector table. When stacking is complete, the processor starts executing the exception handler.
At the same time, the processor writes an EXC_RETURN value to the LR. This indicates which
Stack Pointer corresponds to the stack frame and what operation mode the processor was in
before the entry occurred.

If no higher priority exception occurs during exception entry, the processor starts executing the
exception handler and automatically changes the status of the corresponding pending interrupt
to active.

If another higher priority exception occurs during exception entry, the processor starts executing
the exception handler for this exception and does not change the pending status of the earlier
exception. This is the late arrival case.

Integrity signature

Reserved

R4

R5

R6

R7

R8

R9

R10

R11

R0

R1

R2

R3

R12

LR (R14)

Return Address

xPSR

<previous> SP points here before interrupt

SP points here after interruptSP + 0x00

SP + 0x04

SP + 0x08

SP + 0x0C

SP + 0x10

SP + 0x14

SP + 0x18

SP + 0x20

SP + 0x24

SP + 0x28

SP + 0x2C

SP + 0x30

SP + 0x34

SP + 0x38

SP + 0x3C

SP + 0x40

SP + 0x44

SP + 0x48

SP + 0x1C

State context

Additional state context
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-26
ID062218 Non-Confidential

The Cortex-M23 Processor
Exception return

Exception return occurs when the processor is in Handler mode and execution of one of the
following instructions attempts to set the PC to an EXC_RETURN value:
• A POP instruction that loads the PC.
• A BX instruction using any register.

The processor saves an EXC_RETURN value to the LR on exception entry. The exception
mechanism relies on this value to detect when the processor has completed an exception
handler. When the processor loads a value matching this pattern to the PC it detects that the
operation is not a normal branch operation and, instead, that the exception is complete. As a
result, it starts the exception return sequence. Bit[3], bit[2], and bit[0] of the EXC_RETURN
value indicate the required return stack and processor mode, as Table 2-15 shows.

Table 2-15 Exception return behavior

Bits Name Function

[31:24] PREFIX Indicates that this is an EXC_RETURN value.
This field reads as 0b11111111.

[23:7] - Reserved, RES1.

[6] S Indicates whether registers have been pushed to
a Secure or Non-secure stack.
0 = Non-secure stack used.
1 = Secure stack used.
If the Security Extension is not implemented,
this bit is RES0.

[5] DCRS Indicates whether the default stacking rules
apply, or whether the callee registers are already
on the stack.
0 = Stacking of the callee saved registers is
skipped.
1 = Default rules for stacking the callee registers
are followed.
If the Security Extension is not implemented,
this bit is RES1.

[4] - Reserved, RES1.

[3] Mode Indicates the mode that was stacked from.
0 = Handler mode.
1 = Thread mode.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-27
ID062218 Non-Confidential

The Cortex-M23 Processor
[2] SPSEL Indicates which Stack Pointer the exception
frame resides on.
0 = Main Stack Pointer.
1 = Process Stack Pointer.

[1] - Reserved.

[0] ES Indicates the security state the exception was
taken to.
0 = Non-secure.
1 = Secure.
If the Security Extension is not implemented,
this bit is RES0.

Table 2-15 Exception return behavior (continued)

Bits Name Function
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-28
ID062218 Non-Confidential

The Cortex-M23 Processor
2.4 Security state switches
The following table shows the branch instructions that can be used to switch between security
states.

Any scenario not listed in the table above triggers a Secure HardFault. For example:
• Sequential instructions that cross security attributes.
• A 32-bit instruction fetch that crosses regions with different security attributes.

When an exception is taken to the other Security state, the processor automatically transitions
to that other Security state.

Secure software can call a Non-secure function using a BXNS instruction. In this case, the LR is
set to a special value called FNC_RETURN, and the actual return address is saved in the Secure
stack. When the Non-secure function triggers a return using the FNC_RETURN value, the
processor automatically switches back to Secure state and restores the Secure PC from the
Secure stack.

Table 2-16 Security state transitions

Current
security state

Security attribute of
the branch target
address

Security state change

Secure Non-secure Change to Non-secure state if the branch was a BXNS or
BLXNS instruction, with the lsb of its target address set to
0.
If the branch instruction is not BXNS or BLXNS, and the
branch target adress is Non-secure, then a Secure
HardFault is generated.

Non-secure Secure and Non-secure
callable

Change to Secure state if the branch target address
contains an SG instruction.
Otherwise, a Secure Hardfault is generated.

Non-secure Secure and not
Non-secure callable

A Secure HardFault is generated.

Non-secure Secure Returning to Secure using BX <reg> or POP {...,pc} if
the data loaded to the PC is FNC_RETURN.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-29
ID062218 Non-Confidential

The Cortex-M23 Processor
2.5 Fault handling
Faults are a subset of exceptions, see Exception model on page 2-20. All the faults that occur in
the NMI or HardFault handler might result in the HardFault exception being taken or cause
lockup. See the Arm®v8-M Architecture Reference Manual for M profile. The faults can be
divided into three categories:

Execution faults

• Execution of an SVC instruction at a priority equal to or higher than SVCall.

• Execution of a BKPT instruction when instruction debug is not authenticated for the current
security state.

• A system-generated bus error on a load or store.

• Execution of an instruction from an XN memory address.

• Execution of an instruction from a location for which the system generates a bus fault.

• A system-generated bus error on a vector fetch.

• Execution of an UNDEFINED instruction.

• Execution of an instruction when not in Thumb state as a result of the T-bit being
previously cleared to 0.

• An attempted load or store to an unaligned address.

• An MPU fault because of a privilege violation or an attempt to access an unmanaged
region.

• Execution of an unpredictable instruction.

• LDREX/STREX instructions that target the I/O port.

Security switches

• An SAU fault because of Non-secure access to Secure data.

• A change of security memory attributes on a sequential stream of instructions.

• A branch from Secure to Non-secure state without a correct BXNS or BLXNS instruction.

• Non-secure code moving to a Secure Non-secure callable region without a branch to a
Secure gateway instruction.

• A Stack Pointer Limit fault when running in Secure state.

• A fault on integrity data on return from an exception.

Exception entries and returns
• A bus fault, MPU fault, or SAU fault during Non-secure stacking.
• An error in Return From Exception data.
• An Interrupt Program Status Register mismatch on Thread and Handler mode.
• Returning from an exception that is not active in the current security state.

Note
 Only Reset and NMI can preempt the fixed priority HardFault handler. A HardFault at priority
-3 (when BFHFNMINS is set to 1) can preempt NMI or a HardFault at priority -1.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-30
ID062218 Non-Confidential

The Cortex-M23 Processor
2.5.1 Lockup

Lockup is a processor state where the processor stops executing instructions in response to an
error for which escalation to an appropriate HardFault handler is not possible because of the
current exception priority. When the processor is in Lockup state, it does not execute any
instructions. The processor remains in Lockup state until one of the following occurs:
• It is reset.
• A debugger halts it when instruction debug is authenticated for the current security state.
• An NMI occurs and the current Lockup is in the HardFault handler at priority -1.

Note
 Arm recommends a reset to exit lockup state.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-31
ID062218 Non-Confidential

The Cortex-M23 Processor
2.6 Power management
The Cortex-M23 processor has two sleep modes that reduce power consumption:
• A sleep mode, that stops the processor clock.
• A deep sleep mode, that stops the system clock and switches off the PLL and flash

memory.

In Non-secure state, deep sleep mode is authorized depending on the value of
SCR.SLEEPDEEPS.

The SLEEPDEEP bit of the SCR selects which sleep mode is used, see System Control Register
on page 4-17. For more information about the behavior of the sleep modes, see <insert reference
to your description of wakeup latency, and any other relevant information>.

This section describes the mechanisms for entering sleep mode, and the conditions for waking
up from sleep mode.

2.6.1 Entering sleep mode

This section describes the mechanisms software can use to put the processor into sleep mode.

The system can generate spurious wakeup events. For example, a debug operation wakes up the
processor. For this reason, software must be able to put the processor back into sleep mode after
such an event. A program might have an idle loop to put the processor back in to sleep mode.

Wait For Interrupt

The Wait For Interrupt (WFI) instruction causes immediate entry to sleep mode. When the
processor executes a WFI instruction, it stops executing instructions and enters sleep mode. See
WFI on page 3-68 for more information.

Wait For Event

The Wait For Event (WFE) instruction causes entry to sleep mode conditional on the value of a
one-bit event register. When the processor executes a WFE instruction, it checks the value of the
event register:

0 The processor stops executing instructions and enters sleep mode.

1 The processor sets the register to zero and continues executing instructions
without entering sleep mode.

See WFE on page 3-67 for more information.

If the event register is 1, it indicates that the processor must not enter sleep mode on execution
of a WFE instruction. Typically, this is because of the assertion of an external event, an interrupt
entry, an interrupt exit, a halt entry, or because another processor in the system has executed a
SEV instruction, see SEV on page 3-62. Software cannot access this register directly.

Sleep-on-exit

If the SLEEPONEXIT bit of the SCR is set to 1, when the processor completes the execution of
an exception handler and returns to Thread mode, it immediately enters sleep mode. Use this
mechanism in applications that only require the processor to run when an interrupt occurs.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-32
ID062218 Non-Confidential

The Cortex-M23 Processor
Note
 Sleep-on-exit is banked between security states. If returning to Secure state, use the Secure
instance. If returning to Non-secure state, use the Non-secure instance.

2.6.2 Wakeup from sleep mode

The conditions for the processor to wake up depend on the mechanism that caused it to enter
sleep mode.

Wakeup from WFI or sleep-on-exit

Normally, the processor wakes up only when it detects an exception with sufficient priority to
cause exception entry, ignoring the value of PRIMASK.

Some embedded systems might have to execute system restore tasks after the processor wakes
up, and before it executes an interrupt handler. To achieve this, set the PRIMASK.PM bit to 1.
If an enabled interrupt arrives and has a higher priority than the current exception priority, the
processor wakes up but does not execute the interrupt handler. For more information about
PRIMASK, see Exception mask register on page 2-7.

Wakeup from WFE

The processor wakes up if:
• It detects an exception with sufficient priority to cause exception entry.
• It detects an external event signal, see External event input.

In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt triggers
an event and wakes up the processor, even if the interrupt is disabled or has insufficient priority
to cause exception entry. For more information about the SCR, see System Control Register on
page 4-17.

SEVONPEND is banked between security states, and only the exceptions that target the
corresponding security state are counted.

2.6.3 Wakeup Interrupt Controller

The Wakeup Interrupt Controller (WIC) is a peripheral that can detect an interrupt and wake the
processor from deep sleep mode. The WIC is enabled each time the processor goes to sleep
mode or deep sleep mode.

The WIC is not programmable and does not have any registers or user interface. It operates
entirely from hardware signals and is transparent to software.

When the WIC is enabled and the processor enters deep sleep mode, the power management unit
in the system can power down most of the Cortex-M23 processor. This has the side effect of
stopping the SysTick timer.

2.6.4 External event input

The processor provides an external event input signal. This signal can be generated by
peripherals. Tie this signal LOW if it is not used.

This signal can wakeup the processor from WFE, or set the internal WFE event register to 1 to
indicate that the processor must not enter sleep mode on a later WFE instruction, see Wait For
Event on page 2-32.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-33
ID062218 Non-Confidential

The Cortex-M23 Processor
You can use any WFE wakeup event to set the Event Register, even if the processor is not in
WFE mode, so there is no guarantee that WFE causes a sleep.

WFE can be called inside a loop to check the wakeup condition.

2.6.5 Power management programming hints

ISO/IEC C cannot directly generate the WFI, WFE, and SEV instructions. The CMSIS provides the
following intrinsic functions for these instructions:

void __WFE(void) // Wait for Event
void __WFI(void) // Wait for Interrupt
void __SEV(void) // Send Event
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2-34
ID062218 Non-Confidential

Chapter 3
The Cortex-M23 Instruction Set

This chapter is the reference material for the Cortex-M23 instruction set description in a User
Guide. The following sections give general information:
• Instruction set summary on page 3-2.
• CMSIS functions on page 3-5.
• CMSE on page 3-7.
• About the instruction descriptions on page 3-8.

Each of the following sections describes a functional group of Cortex-M23 instructions.
Together they describe all the instructions that are supported by the Cortex-M23 processor:
• Memory access instructions on page 3-15.
• General data processing instructions on page 3-31.
• Branch and control instructions on page 3-48.
• Miscellaneous instructions on page 3-53.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-1
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.1 Instruction set summary
The processor implements a version of the Thumb instruction set. Table 3-1 shows the
instructions that the Cortex-M23 processor supports.

Note
 In Table 3-1:
• Angle brackets, <>, enclose alternative forms of the operand.
• Braces, {}, enclose optional operands and mnemonic parts.
• The Operands column is not exhaustive.

For more information on the instructions and operands, see the instruction descriptions.

Table 3-1 Cortex-M23 instructions

Mnemonic Operands Brief description Flags Page

ADCS {Rd,} Rn, Rm Add with Carry N,Z,C,V page 3-32

ADD{S} {Rd,} Rn, <Rm|#imm> Add N,Z,C,V page 3-32

ADR Rd, label PC-relative Address to Register - page 3-16

ANDS {Rd,} Rn, Rm Bitwise AND N,Z page 3-32

ASRS {Rd,} Rm, <Rs|#imm> Arithmetic Shift Right N,Z,C page 3-38

B{cond} label Branch {conditionally} - page 3-49

BICS {Rd,} Rn, Rm Bit Clear N,Z page 3-36

BKPT #imm Breakpoint - page 3-54

BL label Branch with Link - page 3-49

BLX Rm Branch indirect with Link - page 3-49

BLXNS Rm Branch indirect with Link to Non-secure page 3-51

BX Rm Branch indirect - page 3-49

BXNS Rm Branch indirect to Non-secure - page 3-51

CBZ Rn,label Compare and Branch on Zero - page 3-52

CBNZ Rn,label Compare and Branch on Non-Zero - page 3-52

CLREX - Clear Exclusive Monitor - page 3-17

CMN Rn, Rm Compare Negative N,Z,C,V page 3-40

CMP Rn, <Rm|#imm> Compare N,Z,C,V page 3-40

CPSID i Change Processor State, Disable Interrupts - page 3-55

CPSIE i Change Processor State, Enable Interrupts - page 3-55

DMB - Data Memory Barrier - page 3-56

DSB - Data Synchronization Barrier - page 3-57

EORS {Rd,} Rn, Rm Exclusive OR N,Z page 3-36
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-2
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
ISB - Instruction Synchronization Barrier - page 3-58

LDA LDA Rt, [Rn] Load-Acquire Word page 3-27

LDAB Rt, [Rn] Load-Acquire Byte - page 3-27

LDAH Rt, [Rn] Load-Acquire Halfword - page 3-27

LDAEX Rt, [Rn] Load-Acquire Exclusive Word - page 3-28

LDAEXB Rt, [Rn] Load-Acquire Exclusive Byte - page 3-28

LDAEXH Rt, [Rn] Load-Acquire Exclusive Halfword - page 3-28

LDM Rn{!}, reglist Load Multiple registers, increment after - page 3-22

LDR Rt, label Load Register from PC-relative address - page 3-15

LDR Rt, [Rn, <Rm|#imm>] Load Register with Word - page 3-15

LDRB Rt, [Rn, <Rm|#imm>] Load Register Byte - page 3-15

LDRH Rt, [Rn, <Rm|#imm>] Load Register with Halfword - page 3-15

LDRSB Rt, [Rn, <Rm|#imm>] Load Register Signed Byte - page 3-15

LDRSH Rt, [Rn, <Rm|#imm>] Load Register Signed Halfword - page 3-15

LSLS {Rd,} Rn, <Rs|#imm> Logical Shift Left N,Z,C page 3-38

LSRS {Rd,} Rn, <Rs|#imm> Logical Shift Right N,Z,C page 3-38

MOV{S} Rd, Rm Move N,Z page 3-41

MRS Rd, spec_reg Move to general register from special register - page 3-59

MSR spec_reg, Rm Move to special register from general register N,Z,C,V page 3-60

MULS Rd, Rn, Rm Multiply, 32-bit result N,Z page 3-43

MVNS Rd, Rm Bitwise NOT N,Z page 3-41

NOP - No Operation - page 3-61

ORRS {Rd,} Rn, Rm Logical OR N,Z page 3-36

POP reglist Pop registers from stack - page 3-30

PUSH reglist Push registers onto stack - page 3-30

REV Rd, Rm Byte-Reverse word - page 3-44

REV16 Rd, Rm Byte-Reverse packed halfword - page 3-44

REVSH Rd, Rm Byte-Reverse signed halfword - page 3-44

RORS {Rd,} Rn, Rs Rotate Right N,Z,C page 3-38

RSBS {Rd,} Rn, #0 Reverse Subtract N,Z,C,V page 3-32

SBCS {Rd,} Rn, Rm Subtract with Carry N,Z,C,V page 3-32

SDIV {Rd,} Rn, Rm Signed Divide page 3-45

SEV - Send Event - page 3-62

Table 3-1 Cortex-M23 instructions (continued)

Mnemonic Operands Brief description Flags Page
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-3
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
SG - Secure Gateway - page 3-63

STL STL Rt, [Rn] Store Release - page 3-27

STLB Rt, [Rn] Store Release Byte - page 3-27

STLH Rt, [Rn] Store Release Halfword - page 3-27

STLEX Rd, Rt, [Rn] Store Release Exclusive - page 3-28

STLEXB Rd, Rt, [Rn] Store Release Exclusive Byte - page 3-28

STLEXH Rd, Rt, [Rn] Store Release Exclusive Halfword - page 3-28

STREX Rd, Rt, [Rn] Store Register Exclusive - page 3-24

STREXB Rd, Rt, [Rn] Store Register Exclusive Byte - page 3-24

STREXH Rd, Rt, [Rn] Store Register Exclusive Halfword - page 3-24

STM Rn!, reglist Store Multiple registers, increment after - page 3-22

STR Rt, [Rn, <Rm|#imm>] Store Register Word - page 3-15

STRB Rt, [Rn, <Rm|#imm>] Store Register Byte - page 3-15

STRH Rt, [Rn, <Rm|#imm>] Store Register Halfword - page 3-15

SUB{S} {Rd,} Rn, <Rm|#imm> Subtract N,Z,C,V page 3-32

SVC #imm Supervisor Call - page 3-64

SXTB Rd, Rm Signed Extended Byte - page 3-46

SXTH Rd, Rm Signed Extended Halfword - page 3-46

TST Rn, Rm Logical AND based test N,Z page 3-47

TT Rd, [Rn] Test Target - page 3-65

TTT Rd, [Rn] Test Target Unprivileged - page 3-65

TTA Rd, [Rn] Test Target Alternate Domain - page 3-65

TTAT Rd, [Rn] Test Target Alternate Domain Unprivileged - page 3-65

UDIV {Rd,} Rn, Rm Unsigned Divide - page 3-45

UXTB Rd, Rm Unsigned Extend Byte - page 3-46

UXTH Rd, Rm Unsigned Extend Halfword - page 3-46

WFE - Wait For Event - page 3-67

WFI - Wait For Interrupt - page 3-68

Table 3-1 Cortex-M23 instructions (continued)

Mnemonic Operands Brief description Flags Page
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-4
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.2 CMSIS functions
ISO/IEC C code cannot directly access some Cortex-M23 instructions. This section describes
intrinsic functions that can generate these instructions, provided by the CMSIS and that might
be provided by a C compiler. If a C compiler does not support an appropriate intrinsic function,
you might have to use inline assembler to access the relevant instruction.

The CMSIS provides the following intrinsic functions to generate instructions that ISO/IEC C
code cannot directly access:

Table 3-2 CMSIS intrinsic functions to generate some Cortex-M23 instructions

Instruction CMSIS intrinsic function

BKPT void __BKPT

CLREX void __CLREX

CLZ uint8_t __CLZ (uint32_t value)

CPSIE i void __enable_irq (void)

CPSID i void __disable_irq (void)

ISB void __ISB (void)

DSB void __DSB (void)

DMB void __DMB (void)

LDA uint32_t __LDA (volatile uint32_t * ptr)

LDAB uint8_t __LDAB (volatile uint8_t * ptr)

LDAEX uint32_t __LDAEX (volatile uint32_t * ptr)

LDAEXB uint8_t __LDAEXB (volatile uint32_t * ptr)

LDAEXH uint16_t __LDAEXH (volatile uint32_t * ptr)

LDAH uint32_t __LDAH (volatile uint32_t * addr)

LDRT uint32_t __LDRT (uint32_t ptr)

NOP void __NOP (void)

RBIT uint32_t __RBIT (uint32_t int value)

REV uint32_t __REV (uint32_t int value)

REV16 uint32_t __REV16 (uint32_t int value)

REVSH uint32_t __REVSH(uint32_t int value)

ROR uint32_t __ROR (uint32_t value, uint32_t shift)

RRX uint32_t __RRX (uint32_t value)

STL void __STL (uint32_t value, volatile uint32_t * ptr)

STLEX uint32_t __STLEX (uint16_t value, volatile uint16_t * ptr)

STLEXB uint32_t __STLEXB (uint16_t value, volatile uint16_t * ptr)

STLEXH uint32_t __STLEXH (uint16_t value, volatile uint16_t * ptr)

STLH void __STLH (uint16_t value, volatile uint16_t * ptr)
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-5
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
The CMSIS provides several functions for accessing the special registers using MRS and MSR
instructions:

The CMSIS also provides several functions for accessing the Non-secure special registers using
MRS and MSR instructions:

STREX uint32_t __STREXW (uint32_t value, uint32_t *addr)

STREXH uint32_t __STREXH (uint16_t value, uint16_t *addr)

STREXB uint32_t __STREXB (uint8_t value, uint8_t *addr)

SEV void __SEV (void)

WFE void __WFE (void)

WFI void __WFI (void)

Table 3-3 CMSIS intrinsic functions to access the special registers

Special register Access CMSIS function

PRIMASK Read uint32_t __get_PRIMASK (void)

Write void __set_PRIMASK (uint32_t value)

CONTROL Read uint32_t __get_CONTROL (void)

Write void __set_CONTROL (uint32_t value)

MSP Read uint32_t __get_MSP (void)

Write void __set_MSP (uint32_t TopOfMainStack)

PSP Read uint32_t __get_PSP (void)

Write void __set_PSP (uint32_t TopOfProcStack)

Table 3-4 CMSIS intrinsic functions to access the Non-secure special registers

Special register Access CMSIS function

PRIMASK_NS Read uint32_t _TZ_get_PRIMASK_NS (void)

Write void _TZ_set_PRIMASK_NS (uint32_t value)

CONTROL_NS Read uint32_t __TZ_get_CONTROL_NS (void)

Write void __TZ_set_CONTROL_NS (uint32_t value)

MSP_NS Read uint32_t _TZ_get_MSP_NS (void)

Write void _TZ_set_MSP_NS (uint32_t TopOfMainStack)

PSP_NS Read uint32_t _TZ_get_PSP_NS (void)

Write void _TZ_set_PSP_NS (uint32_t TopOfProcStack)

Table 3-2 CMSIS intrinsic functions to generate some Cortex-M23 instructions

Instruction CMSIS intrinsic function
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-6
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.3 CMSE
CMSE is the compiler support for the Armv8-M Security Extension (architecture intrinsics and
options) and is part of the Arm C Language (ACLE) specification.

Using CMSE features is required when developing software running in Secure state. This
provides mechanisms to define Secure entry points and enable the tool chain to generate correct
instructions or support functions in the program image.

The CMSE features are accessed using various attributes and intrinsics. Additional macros are
also defined as part of the CMSE.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-7
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.4 About the instruction descriptions
The following sections give more information about using the instructions:
• Operands.
• Restrictions when using PC or SP.
• Shift Operations.
• Address alignment on page 3-11.
• PC-relative expressions on page 3-11.
• Conditional execution on page 3-12.

3.4.1 Operands

An instruction operand can be an Arm register, a constant, or another instruction-specific
parameter. Instructions act on the operands and often store the result in a destination register.
When there is a destination register in the instruction, it is usually specified before the other
operands.

3.4.2 Restrictions when using PC or SP

Many instructions are unable to use, or have restrictions on whether you can use, the Program
Counter (PC) or Stack Pointer (SP) for the operands or destination register. See instruction
descriptions for more information.

Note
 When you update the PC with a BX, BLX, or POP instruction, bit[0] of any address must be 1 for
correct execution. This is because this bit indicates the destination instruction set, and the
Cortex-M23 processor only supports Thumb instructions. When a BL or BLX instruction writes
the value of bit[0] into the LR it is automatically assigned the value 1. There is an exception on
BXNS and BLXNS where bit 0 with value 0 means that a switch to Non-secure is permitted.

3.4.3 Shift Operations

Register shift operations move the bits in a register left or right by a specified number of bits,
the shift length. Register shift can be performed directly by the instructions ASR, LSR, LSL, and ROR
and the result is written to a destination register.

The permitted shift lengths depend on the shift type and the instruction, see the individual
instruction description. If the shift length is 0, no shift occurs. Register shift operations update
the carry flag except when the specified shift length is 0. The following subsections describe the
various shift operations and how they affect the carry flag. In these descriptions, Rm is the register
containing the value to be shifted, and n is the shift length.

ASR

Arithmetic shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n
places, into the right-hand 32-n bits of the result, and it copies the original bit[31] of the register
into the left-hand n bits of the result. See Figure 3-1 on page 3-9.

You can use the ASR operation to divide the signed value in the register Rm by 2n, with the result
being rounded towards negative-infinity.

When the instruction is ASRS the carry flag is updated to the last bit shifted out, bit[n-1], of the
register Rm.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-8
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
Note
 • If n is 32 or more, then all the bits in the result are set to the value of bit[31] of Rm.
• If n is 32 or more and the carry flag is updated, it is updated to the value of bit[31] of Rm.

Figure 3-1 ASR #3

LSR

Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n
places, into the right-hand 32-n bits of the result, and it sets the left-hand n bits of the result to 0.
See Figure 3-2.

You can use the LSR operation to divide the value in the register Rm by 2n, if the value is regarded
as an unsigned integer.

When the instruction is LSRS, the carry flag is updated to the last bit shifted out, bit[n-1], of the
register Rm.

Note
 • If n is 32 or more, then all the bits in the result are cleared to 0.
• If n is 33 or more and the carry flag is updated, it is updated to 0.

Figure 3-2 LSR #3

LSL

Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n places,
into the left-hand 32-n bits of the result, and it sets the right-hand n bits of the result to 0. See
Figure 3-3 on page 3-10.

You can use the LSL operation to multiply the value in the register Rm by 2n, if the value is
regarded as an unsigned integer or a two’s complement signed integer. Overflow can occur
without warning.

When the instruction is LSLS the carry flag is updated to the last bit shifted out, bit[32-n], of the
register Rm. These instructions do not affect the carry flag when used with LSL #0.

31 1 0245 3

...

Carry
Flag

31 1 0245 3

...

000 Carry
Flag
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-9
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
Note
 • If n is 32 or more, then all the bits in the result are cleared to 0.
• If n is 33 or more and the carry flag is updated, it is updated to 0.

Figure 3-3 LSL #3

ROR

Rotate right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into
the right-hand 32-n bits of the result, and it moves the right-hand n bits of the register into the
left-hand n bits of the result. See Figure 3-4.

When the instruction is RORS the carry flag is updated to the last bit rotation, bit[n-1], of the
register Rm.

Note
 • If n is 32, then the value of the result is same as the value in Rm, and if the carry flag is

updated, it is updated to bit[31] of Rm.

• ROR with shift length, n, greater than 32 is the same as ROR with shift length n-32.

Figure 3-4 ROR #3

1 0245 331

...

0 0 0

Carry
Flag

31 1 0245 3

...

Carry
Flag
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-10
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.4.4 Address alignment

An aligned access is an operation where a word-aligned address is used for a word, or multiple
word access, or where a halfword-aligned address is used for a halfword access. Byte accesses
are always aligned.

There is no support for unaligned accesses on the Cortex-M23 processor. Any attempt to
perform an unaligned memory access operation results in a HardFault exception.

3.4.5 PC-relative expressions

A PC-relative expression or label is a symbol that represents the address of an instruction or
literal data. It is represented in the instruction as the PC value plus or minus a numeric offset.
The assembler calculates the required offset from the label and the address of the current
instruction. If the offset is too big, the assembler produces an error.

Note
 • For most instructions, the value of the PC is the address of the current instruction plus 4

bytes.

• Your assembler might permit other syntaxes for PC-relative expressions, such as a label
plus or minus a number, or an expression of the form [PC, #imm].
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-11
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.4.6 Conditional execution

Most data processing instructions update the condition flags in the Application Program Status
Register (APSR) according to the result of the operation, see Application Program Status
Register on page 2-6. Some instructions update all flags, and some only update a subset. If a flag
is not updated, the original value is preserved. See the instruction descriptions for the flags they
affect.

You can execute a conditional branch instruction, based on the condition flags set in another
instruction, either:
• Immediately after the instruction that updated the flags.
• After any number of intervening instructions that have not updated the flags.

On the Cortex-M23 processor, conditional execution is available by using conditional branches.

This section describes:
• The condition flags on page 3-13.
• Condition code suffixes on page 3-14.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-12
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
The condition flags

The APSR contains the following condition flags:

N Set to 1 when the result of the operation was negative, cleared to 0 otherwise.

Z Set to 1 when the result of the operation was zero, cleared to 0 otherwise.

C Set to 1 when the operation resulted in a carry, cleared to 0 otherwise.

V Set to 1 when the operation caused overflow, cleared to 0 otherwise.

For more information about the APSR, see Program Status Register on page 2-5.

A carry occurs:
• If the result of an addition is greater than or equal to 232.
• If the result of a subtraction is positive or zero.
• As the result of a shift or rotate instruction.

Overflow occurs when the sign of the result in bit[31] does not match the sign of the result, had
the operation been performed at infinite precision. For example:
• If adding two negative values results in a positive value.
• If adding two positive values results in a negative value.
• If subtracting a positive value from a negative value generates a positive value.
• If subtracting a negative value from a positive value generates a negative value.

The Compare operations are identical to subtracting, for CMP, or adding, for CMN, except that the
result is discarded. See the instruction descriptions for more information.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-13
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
Condition code suffixes

Conditional branch is shown in syntax descriptions as B{cond}. A branch instruction with a
condition code is only taken if the condition code flags in the APSR meet the specified
condition, otherwise the branch instruction is ignored. Table 3-5 shows the condition codes to
use.

Table 3-5 also shows the relationship between condition code suffixes and the N, Z, C, and V
flags.

Table 3-5 Condition code suffixes

Suffix Flags Meaning

EQ Z = 1 Equal, last flag setting result was zero.

NE Z = 0 Not equal, last flag setting result was non-zero.

CS or HS C = 1 Higher or same, unsigned.

CC or LO C = 0 Lower, unsigned.

MI N = 1 Negative.

PL N = 0 Positive or zero.

VS V = 1 Overflow.

VC V = 0 No overflow.

HI C = 1 and Z = 0 Higher, unsigned.

LS C = 0 or Z = 1 Lower or same, unsigned.

GE N = V Greater than or equal, signed.

LT N != V Less than, signed.

GT Z = 0 and N = V Greater than, signed.

LE Z = 1 or N != V Less than or equal, signed.

AL Can have any value Always. This is the default when no suffix is specified.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-14
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.5 Memory access instructions
Table 3-6 shows the memory access instructions:

Semaphore data shared between multiple processes in software, and between multiple
processors, use exclusive accesses to handle the read-modify-write sequence as required. For an
exclusive read-modify-write sequence to succeed, no other process or processor can modify the
variable between the exclusive read and exclusive write cycles.

If there is an access conflict of the exclusive Read-Modify-Write sequence:
• The exclusive store fails.
• The memory location does not update.

A local monitor inside the processor is responsible for the detection and management of access
conflicts. A global monitor in the system is responsible for the detection and management of
access conflicts between multiple processors.

Table 3-6 Memory access instructions

Mnemonic Brief description See

ADR Generate PC-relative address ADR on page 3-16.

CLREX Clear Exclusive CLREX on page 3-17.

LDA{type} Load-Acquire LDA and STL on page 3-27.

LDAEX{type} Load-Acquire Exclusive LDAEX and STLEX on page 3-28.

LDM Load Multiple registers LDM and STM on page 3-22.

LDREX{type} Load-Exclusive LDREX and STREX on page 3-24.

LDR{type} Load Register using immediate offset LDR and STR, immediate offset on page 3-18.

LDR{type} Load Register using register offset LDR and STR, register offset on page 3-19.

LDR Load Register from PC-relative address LDR, PC-relative on page 3-21.

POP Pop registers from stack PUSH and POP on page 3-30.

PUSH Push registers onto stack PUSH and POP on page 3-30.

STL{type} Store-Release LDA and STL on page 3-27.

STLEX{type} Store-Acquire Exclusive LDAEX and STLEX on page 3-28.

STM Store Multiple registers LDM and STM on page 3-22.

STREX{type} Store Register Exclusive LDREX and STREX on page 3-24.

STR{type} Store Register using immediate offset LDR and STR, immediate offset on page 3-18.

STR{type} Store Register using register offset LDR and STR, register offset on page 3-19.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-15
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.5.1 ADR

Generates a PC-relative address.

Syntax

ADR Rd, label

where:
Rd Is the destination register.
label Is a PC-relative expression. See PC-relative expressions on page 3-11.

Operation

ADR generates an address by adding an immediate value to the PC, and writes the result to the
destination register.

ADR facilitates the generation of position-independent code, because the address is PC-relative.

If you use ADR to generate a target address for a BX or BLX instruction, you must ensure that bit[0]
of the address you generate is set to 1 for correct execution.

Restrictions

In this instruction Rd must specify R0-R7. The data-value addressed must be word aligned and
within 1020 bytes of the current PC.

Condition flags

This instruction does not change the flags.

Examples

ADR R1, TextMessage ; Write address value of a location labelled as
 ; TextMessage to R1

ADR R3, [PC,#996] ; Set R3 to value of PC + 996.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-16
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.5.2 CLREX

Clear Exclusive.

Syntax

CLREX{cond}

Where:

cond Is an optional condition code. See Conditional execution on page 3-12.

Operation

Use CLREX to make the next STLEX, STREX, STREXB, or STREXH instruction write 1 to its destination
register and fail to perform the store. However, if there is an LDREX instruction between the CLREX
instruction and the next STLEX, STREX, STREXB, or STREXH instruction, then the LDREX instruction is
valid and does not fail.

CLREX enables compatibility with other Arm Cortex processors that have to force the failure of
the store exclusive if the exception occurs between a load-exclusive instruction and the
matching store-exclusive instruction in a synchronization operation. In Cortex-M processors,
the local exclusive access monitor clears automatically on an exception boundary, so exception
handlers using CLREX are optional.

See Synchronization primitives on page 2-17 for more information.

Condition flags

This instruction does not change the flags.

Examples

CLREX
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-17
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.5.3 LDR and STR, immediate offset

Load and Store with immediate offset.

Syntax

LDR Rt, [<Rn | SP> {, #imm}]

LDR<B|H> Rt, [Rn {, #imm}]

STR Rt, [<Rn | SP>, {,#imm}]

STR<B|H> Rt, [Rn {,#imm}]

where:
Rt Is the register to load or store.
Rn Is the register on which the memory address is based.
imm Is an offset from Rn. If imm is omitted, it is assumed to be zero.

Operation

LDR, LDRB, and LDRH instructions load the register specified by Rt with either a word, byte or
halfword data value from memory. Sizes less than word are zero extended to 32-bits before
being written to the register specified by Rt.

STR, STRB, and STRH instructions store the word, least-significant byte, or lower halfword
contained in the single register specified by Rt into memory. The memory address to load from
or store to is the sum of the value in the register specified by either Rn or SP and the immediate
value imm.

Restrictions

In these instructions:

• Rt and Rn must only specify R0-R7.

• imm must be between:
— 0 and 1020 and an integer multiple of four for LDR and STR using SP as the base

register.
— 0 and 124 and an integer multiple of four for LDR and STR using R0-R7 as the base

register.
— 0 and 62 and an integer multiple of two for LDRH and STRH.
— 0 and 31 for LDRB and STRB.

• The computed address must be divisible by the number of bytes in the transaction, see
Address alignment on page 3-11.

Condition flags

These instructions do not change the flags.

Examples

LDR R4, [R7] ; Loads R4 from the address in R7.
STR R2, [R0,#const-struc] ; const-struc is an expression evaluating

; to a constant in the range 0-1020.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-18
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.5.4 LDR and STR, register offset

Load and Store with register offset.

Syntax

LDR Rt, [Rn, Rm]

LDR<B|H> Rt, [Rn, Rm]

LDR<SB|SH> Rt, [Rn, Rm]

STR Rt, [Rn, Rm]

STR<B|H> Rt, [Rn, Rm]

where:
Rt Is the register to load or store.
Rn Is the register on which the memory address is based.
Rm Is a register containing a value to be used as the offset.

Operation

LDR, LDRB, LDRH, LDRSB, and LDRSH load the register specified by Rt with either a word, zero
extended byte, zero extended halfword, sign extended byte, or sign extended halfword value
from memory.

STR, STRB, and STRH store the word, least-significant byte, or lower halfword contained in the
single register specified by Rt into memory.

The memory address to load from or store to is the sum of the values in the registers specified
by Rn and Rm.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-19
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
Restrictions

In these instructions:

• Rt, Rn, and Rm must only specify R0-R7.

• The computed memory address must be divisible by the number of bytes in the load or
store, see Address alignment on page 3-11.

Condition flags

These instructions do not change the flags.

Examples

STR R0, [R5, R1] ; Store value of R0 into an address equal to
; sum of R5 and R1

 LDRSH R1, [R2, R3] ; Load a halfword from the memory address
; specified by (R2 + R3), sign extend to 32-bits
; and write to R1.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-20
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.5.5 LDR, PC-relative

Load register (literal) from memory.

Syntax

LDR Rt, label

where:
Rt Is the register to load.
label Is a PC-relative expression. See PC-relative expressions on page 3-11.

Operation

Loads the register specified by Rt from the word in memory specified by label.

Restrictions

In these instructions, label must be within 1020 bytes of the current PC and word aligned.

Condition flags

These instructions do not change the flags.

Examples

LDR R0, LookUpTable ; Load R0 with a word of data from an address
; labelled as LookUpTable.

LDR R3, [PC, #100] ; Load R3 with memory word at (PC + 100).
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-21
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.5.6 LDM and STM

Load and Store Multiple registers.

Syntax

LDM Rn{!}, reglist

STM Rn!, reglist

where:

Rn Is the register on which the memory addresses are based.

! Writeback suffix.

reglist Is a list of one or more registers to be loaded or stored, enclosed in braces. It can
contain register ranges. It must be comma separated if it contains more than one
register or register range, see Examples on page 3-23.

LDMIA and LDMFD are synonyms for LDM. LDMIA refers to the base register being Incremented After
each access. LDMFD refers to its use for popping data from Full Descending stacks.

STMIA and STMEA are synonyms for STM. STMIA refers to the base register being Incremented After
each access. STMEA refers to its use for pushing data onto Empty Ascending stacks.

Operation

LDM instructions load the registers in reglist with word values from memory addresses based on
Rn.

STM instructions store the word values in the registers in reglist to memory addresses based on
Rn.

The memory addresses used for the accesses are at 4-byte intervals ranging from the value in
the register specified by Rn to the value in the register specified by Rn + 4 * (n-1), where n is the
number of registers in reglist. The accesses happen in order of increasing register numbers,
with the lowest numbered register using the lowest memory address and the highest number
register using the highest memory address. If the Write-Back suffix is specified, the value in the
register specified by Rn + 4 *n is written back to the register specified by Rn.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-22
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
Restrictions

In these instructions:
• reglist and Rn are limited to R0-R7.
• The Write-Back suffix must always be used unless the instruction is an LDM where reglist

also contains Rn, in which case the Write-Back suffix must not be used.
• The value in the register specified by Rn must be word aligned. See Address alignment on

page 3-11 for more information.
• For STM, if Rn appears in reglist, then it must be the first register in the list.

Condition flags

These instructions do not change the flags.

Examples

LDM R0,{R0,R3,R4} ; LDMIA is a synonym for LDM
STMIA R1!,{R2-R4,R6}

Incorrect examples

STM R5!,{R4,R5,R6} ; Value stored for R5 is unpredictable
LDM R2,{} ; There must be at least one register in the list
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-23
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.5.7 LDREX and STREX

Load and Store Register Exclusive.

Syntax

LDREX Rt, [Rn {, #offset}]

STREX Rd, Rt, [Rn {, #offset}]

LDREXB Rt, [Rn]

STREXB Rd, Rt, [Rn]

LDREXH Rt, [Rn]

STREXH Rd, Rt, [Rn]

Where:

Rd Is the destination register for the returned status.

Rt Is the register to load or store.

Rn Is the register on which the memory address is based.

offset Is an optional offset applied to the value in Rn. If offset is omitted, the address is
the value in Rn.

Operation

LDREX, LDREXB, and LDREXH load a word, byte, and halfword respectively from a memory address.

STREX, STREXB, and STREXH attempt to store a word, byte, and halfword respectively to a memory
address. The address used in any Store-Exclusive instruction must be the same as the address in
the most recently executed Load-exclusive instruction. The value stored by the Store-Exclusive
instruction must also have the same data size as the value loaded by the preceding
Load-exclusive instruction. This means software must always use a Load-exclusive instruction
and a matching Store-Exclusive instruction to perform a synchronization operation, see
Synchronization primitives on page 2-17.

If a Store-Exclusive instruction performs the store, it writes 0 to its destination register. If it does
not perform the store, it writes 1 to its destination register. If the Store-Exclusive instruction
writes 0 to the destination register, it is guaranteed that no other process in the system has
accessed the memory location between the Load-exclusive and Store-Exclusive instructions.

For reasons of performance, keep the number of instructions between corresponding
Load-Exclusive and Store-Exclusive instruction to a minimum.

Exclusive accesses are not supported in the I/O memory space.

The local monitor does not tag the address or the size. It means that a LDREX or STREX
instruction completes even if the address, the size or the attributes do not match.

The global monitor is used in addition to the local monitor when:

• The target address is a shared location in the default memory map with no MPU hint, or
hits in a shared MPU region.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-24
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
Note
 Default memory map: Accesses to Device regions in the ranges 0x40000000-0x5fffffff

and 0xc0000000-0xffffffff do not use the Global Exclusive Monitor when
ACTLR.EXTEXCLALL is 0 and the default memory map is used.

• ACTLR.EXCLEXTALL is set. In this case, any memory location uses the exclusive
monitor. This is particularly useful when there is no MPU implemented or the MPU is
disabled.

The silicon vendor must specify which memory regions have a global monitor. If an STREX
instruction uses the global monitor whereas there is no global monitor present, then the
instruction always fails.

The silicon vendor must specify how many addresses are supported, and how many processors
are present. LDREX and STREX instructions that target the I/O port always trigger a HardFault.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-25
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
Restrictions

In these instructions:
• Do not use PC.
• Do not use SP for Rd and Rt.
• For STREX, Rd must be different from both Rt and Rn.
• The value of offset must be a multiple of four in the range 0-1020.

Condition flags

These instructions do not change the flags.

Examples

MOV R1, #0x1 ; Initialize the ‘lock taken’ value
try

LDREX R0, [LockAddr] ; Load the lock value
CMP R0, #0 ; Is the lock free?
BNE try ; No – try again
STREX R0, R1, [LockAddr] ; Try and claim the lock
CMP R0, #0 ; Did this succeed?
BNE try ; No – try again
.... ; Yes – we have the lock.

For higher efficiency, in a system with multiple cores, WFE can be used before BNE try and SEV
after the last BNE try.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-26
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.5.8 LDA and STL

Load-Acquire and Store-Release.

Syntax

LDA Rt, [Rn]

STLH Rt, [Rn]

STL Rt, [Rn]

LDAB Rt, [Rn]

STLB Rt, [Rn]

LDAH Rt, [Rn]

where:

Rt Is the register to load or store,

Rn Is the register on which the memory address is based,

Operation

LDA, LDAB, and LDAH loads word, byte, and halfword data respectively from a memory address. If
any loads or stores appear after a load-acquire in program order, then all observers are
guaranteed to see the load-acquire before the loads and stores. Loads and stores appearing
before a load-acquire are unaffected.

STL, STLB, and STLH stores word, byte, and halfword data respectively to a memory address. If
any loads or stores appear before a store-release in program order, then all observers are
guaranteed to see the loads and stores before observing the store-release. Loads and stores
appearing after a store-release are unaffected.

In addition, if a store-release is followed by a load-acquire, each observer is guaranteed to see
them in program order.

There is no requirement that a load-acquire and store-release be paired.

All store-release operations are multi-copy atomic, meaning that in a multiprocessing system, if
one observer sees a write to memory because of a store-release operation, then all observers see
it. Also, all observers see all writes to the same location in the same order.

Restrictions

The address specified must be naturally aligned, or an alignment fault is generated.

The PC must not use SP for Rt.

Condition flags

These instructions do not change the flags.

Examples

STR r1, [r0] # Write a memory location
STL r3, [r2] # Memory location at r0 is guaranteed to be visible when update location
at address r2 is visible
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-27
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.5.9 LDAEX and STLEX

Load-Acquire and Store-Release Exclusive.

Syntax

LDAEX Rt, [Rn]

LDAEXB Rt, [Rn]

LDAEXH Rt, [Rn]

STLEX Rd, Rt, [Rn]

STLEXB Rd, Rt, [Rn]

STLEXH Rd, Rt, [Rn]

where:

Rd Is the destination register into which the status result of the store exclusive is
written.

Rt Is the register to load or store.

Rn Is the register on which the memory address is based.

Operation

LDAEX, LDAEXB, LDAEXH, and LDAEXD calculate an address from a base register value and an
immediate offset, loads a word from memory, writes it to a register, and:

• If the address has the Shareable memory attribute, marks the physical address as exclusive
access for the executing core in a global monitor.

• Causes the core that executes to indicate an active exclusive access in the local monitor.

If any loads or stores appear after an LDAEX, LDAEXB, LDAEXH, or LDAEXD instruction in program
order, then all observers are guaranteed to observe the LDAEX, LDAEXB, LDAEXH ,or LDAEXD
instruction before observing the loads and stores. Loads and stores appearing before an LDAEX,
LDAEXB, LDAEXH, or LDAEXD instruction are unaffected.

STLEX, STLEXB, STLEXH and STLEXD calculate an address from a base register value and an
immediate offset, and stores a word from a register to memory. If the executing core has
exclusive access to the memory addressed:

• Rd is the destination general-purpose register into which the status result of the store
exclusive is written, encoded in the Rd field. The value returned is:
0 If the operation updates memory.
1 If the operation fails to update memory.

If any loads or stores appear before an STLEX, STLEXB, STLEXH, or STLEXD instruction in program
order, then all observers are guaranteed to observe the loads and stores before observing the
store-release. Loads and stores appearing after an STLEX, STLEXB, STLEXH, or STLEXD instruction are
unaffected.

Note
 All store-release operations are multi-copy atomic.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-28
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
Condition flags

These instructions do not change the flags.

Examples

lock
MOV R1, #0x1 ; Initialize the ‘lock taken’ value try
LDAEX R0, [LockAddr] ; Load the lock value

 CMP R0, #0 ; Is the lock free?
 BNE try ; No – try again
 STREX R0, R1, [LockAddr] ; Try and claim the lock
 CMP R0, #0 ; Did this succeed?
 BNE try ; No – try again

 ; Yes – we have the lock.
unlock
 MOV r1, #0
 STL r1, [r0]
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-29
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.5.10 PUSH and POP

Push registers onto, and pop registers off a full-descending stack.

Syntax

PUSH reglist

POP reglist

where:

reglist Is a non-empty list of registers, enclosed in braces. It can contain register ranges.
It must be comma separated if it contains more than one register or register range.

Operation

PUSH stores registers on the stack, with the lowest numbered register using the lowest memory
address and the highest numbered register using the highest memory address.

POP loads registers from the stack, with the lowest numbered register using the lowest memory
address and the highest numbered register using the highest memory address.

PUSH uses the value in the SP register minus four as the highest memory address, POP uses the
value in the SP register as the lowest memory address, implementing a full-descending stack.
On completion, PUSH updates the SP register to point to the location of the lowest store value,
POP updates the SP register to point to the location above the highest location loaded.

If a POP instruction includes PC in its reglist, a branch to this location is performed when the
POP instruction has completed. Bit[0] of the value read for the PC is used to update the APSR
T-bit. This bit must be 1 to ensure correct operation.

Restrictions

In these instructions:
• reglist must use only R0-R7.
• The exception to this rule is LR for a PUSH and PC for a POP.

Condition flags

These instructions do not change the flags.

A POP instruction that contains the PC can be used as an Exception Return or Function Return
instruction, depending on the value of the loaded PC.

Examples

PUSH {R0,R4-R7} ; Push R0,R4,R5,R6,R7 onto the stack
PUSH {R2,LR} ; Push R2 and the link-register onto the stack
POP {R0,R6,PC} ; Pop r0,r6 and PC from the stack, then branch to

; the new PC.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-30
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.6 General data processing instructions
Table 3-7 shows the data processing instructions:

Table 3-7 Data processing instructions

Mnemonic Brief description See

ADCS Add with Carry ADC, ADD, RSB, SBC, and SUB on page 3-32.

ADD{S} Add ADC, ADD, RSB, SBC, and SUB on page 3-32.

ANDS Logical AND AND, ORR, EOR, and BIC on page 3-36.

ASRS Arithmetic Shift Right ASR, LSL, LSR, and ROR on page 3-38.

BICS Bit Clear AND, ORR, EOR, and BIC on page 3-36.

CMN Compare Negative CMP and CMN on page 3-40.

CMP Compare CMP and CMN on page 3-40.

EORS Exclusive OR AND, ORR, EOR, and BIC on page 3-36.

LSLS Logical Shift Left ASR, LSL, LSR, and ROR on page 3-38.

LSRS Logical Shift Right ASR, LSL, LSR, and ROR on page 3-38.

MOV{S} Move MOV and MVN on page 3-41.

MULS Multiply MULS on page 3-43.

MVNS Move NOT MOV and MVN on page 3-41.

ORRS Logical OR AND, ORR, EOR, and BIC on page 3-36.

REV Reverse byte order in a word REV, REV16, and REVSH on page 3-44.

REV16 Reverse byte order in each halfword REV, REV16, and REVSH on page 3-44.

REVSH Reverse byte order in bottom halfword and sign extend REV, REV16, and REVSH on page 3-44.

RORS Rotate Right ASR, LSL, LSR, and ROR on page 3-38.

RSBS Reverse Subtract ADC, ADD, RSB, SBC, and SUB on page 3-32.

SBCS Subtract with Carry ADC, ADD, RSB, SBC, and SUB on page 3-32.

SDIV Signed Divide SDIV and UDIV on page 3-45.

SUBS Subtract ADC, ADD, RSB, SBC, and SUB on page 3-32.

SXTB Signed extend Byte SXT and UXT on page 3-46.

SXTH Signed extend Halfword SXT and UXT on page 3-46.

UDIV Unsigned Divide SDIV and UDIV on page 3-45.

UXTB Unsigned Extend Byte SXT and UXT on page 3-46.

UXTH Unsigned Extend Halfword SXT and UXT on page 3-46.

TST Test TST on page 3-47.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-31
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.6.1 ADC, ADD, RSB, SBC, and SUB

Add with carry, Add, Reverse Subtract, Subtract with carry, and Subtract.

Syntax

ADCS {Rd,} Rn, Rm

ADD{S} {Rd,} Rn, <Rm|#imm>

RSBS {Rd,} Rn, #0

SBCS {Rd,} Rn, Rm

SUB{S} {Rd,} Rn, <Rm|#imm>

where:
S Causes an ADD or SUB instruction to update flags.
Rd Specifies the result register.
Rn Specifies the first source register.
Rm Specifies the second source register.
imm Specifies a constant immediate value.

When the optional Rd register specifier is omitted, it is assumed to take the same value as Rn, for
example ADDS R1,R2 is identical to ADDS R1,R1,R2.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-32
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
Operation

The ADCS instruction adds the value in Rn to the value in Rm, adding another one if the carry flag
is set, places the result in the register specified by Rd and updates the N, Z, C, and V flags.

The ADD instruction adds the value in Rn to the value in Rm or an immediate value specified by imm
and places the result in the register specified by Rd.

The ADDS instruction performs the same operation as ADD and also updates the N, Z, C, and V
flags.

The RSBS instruction subtracts the value in Rn from zero, producing the arithmetic negative of the
value, and places the result in the register specified by Rd and updates the N, Z, C, and V flags.

The SBCS instruction subtracts the value of Rm from the value in Rn, deducts another one if the
carry flag is set. It places the result in the register specified by Rd and updates the N, Z, C, and
V flags.

The SUB instruction subtracts the value in Rm or the immediate specified by imm from Rn. It
places the result in the register specified by Rd.

The SUBS instruction performs the same operation as SUB and also updates the N, Z, C, and V
flags.

Use ADC and SBC to synthesize multiword arithmetic, see Examples on page 3-35.

See also ADR on page 3-16.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-33
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
Restrictions

Table 3-8 lists the legal combinations of register specifiers and immediate values that can be
used with each instruction.

Table 3-8 ADC, ADD, RSB, SBC and SUB operand restrictions

Instruction Rd Rn Rm imm Restrictions

ADCS R0-R7 R0-R7 R0-R7 - Rd and Rn must specify the same register.

ADD R0-R15 R0-R15 R0-PC - Rd and Rn must specify the same register.
Rn and Rm must not both specify PC.

R0-R7 SP or PC - 0-1020 Immediate value must be an integer multiple of four.

SP SP - 0-508 Immediate value must be an integer multiple of four.

ADDS R0-R7 R0-R7 - 0-7 -

R0-R7 R0-R7 - 0-255 Rd and Rn must specify the same register.

R0-R7 R0-R7 R0-R7 - -

RSBS R0-R7 R0-R7 - - -

SBCS R0-R7 R0-R7 R0-R7 - Rd and Rn must specify the same register.

SUB SP SP - 0-508 Immediate value must be an integer multiple of four.

SUBS R0-R7 R0-R7 - 0-7 -

R0-R7 R0-R7 - 0-255 Rd and Rn must specify the same register.

R0-R7 R0-R7 R0-R7 - -
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-34
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
Examples

Example 3-1 shows two instructions that add a 64-bit integer contained in R0 and R1 to another
64-bit integer contained in R2 and R3, and place the result in R0 and R1.

Example 3-1 64-bit addition

ADDS R0, R0, R2 ; add the least significant words
ADCS R1, R1, R3 ; add the most significant words with carry

Multiword values do not have to use consecutive registers. Example 3-2 shows instructions that
subtract a 96-bit integer contained in R1, R2, and R3 from another contained in R4, R5, and R6.
The example stores the result in R4, R5, and R6.

Example 3-2 96-bit subtraction

SUBS R4, R4, R1 ; subtract the least significant words
SBCS R5, R5, R2 ; subtract the middle words with carry
SBCS R6, R6, R3 ; subtract the most significant words with carry

Example 3-3 shows the RSBS instruction used to perform a 1's complement of a single register.

Example 3-3 Arithmetic negation

RSBS R7, R7, #0 ; subtract R7 from zero
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-35
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.6.2 AND, ORR, EOR, and BIC

Logical AND, OR, Exclusive OR, and Bit Clear.

Syntax

ANDS {Rd,} Rn, Rm

ORRS {Rd,} Rn, Rm

EORS {Rd,} Rn, Rm

BICS {Rd,} Rn, Rm

where:

Rd Is the destination register.

Rn Is the register holding the first operand and is the same as the destination register.

Rm Second register.

Operation

The AND, EOR, and ORR instructions perform bitwise AND, exclusive OR, and inclusive OR
operations on the values in Rn and Rm.

The BIC instruction performs an AND operation on the bits in Rn with the logical negation of the
corresponding bits in the value of Rm.

The condition code flags are updated on the result of the operation, see The condition flags on
page 3-13.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-36
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
Restrictions

In these instructions, Rd, Rn, and Rm must only specify R0-R7.

Condition flags

These instructions:
• Update the N and Z flags according to the result.
• Do not affect the C or V flag.

Examples

ANDS R2, R2, R1
ORRS R2, R2, R5
ANDS R5, R5, R8
EORS R7, R7, R6
BICS R0, R0, R1
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-37
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.6.3 ASR, LSL, LSR, and ROR

Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, and Rotate Right.

Syntax

ASRS {Rd,} Rm, Rs

ASRS {Rd,} Rm, #imm

LSLS {Rd,} Rm, Rs

LSLS {Rd,} Rm, #imm

LSRS {Rd,} Rm, Rs

LSRS {Rd,} Rm, #imm

RORS {Rd,} Rm, Rs

where:

Rd Is the destination register. If Rd is omitted, it is assumed to take the same value as
Rm.

Rm Is the register holding the value to be shifted.

Rs Is the register holding the shift length to apply to the value in Rm.

imm Is the shift length. The range of shift length depends on the instruction:
ASR shift length from 1 to 32
LSL shift length from 0 to 31
LSR shift length from 1 to 32.

Note
 MOVS Rd, Rm is a pseudonym for LSLS Rd, Rm, #0.

Operation

ASR, LSL, LSR, and ROR perform an arithmetic-shift-left, logical-shift-left, logical-shift-right, or a
right-rotation of the bits in the register Rm by the number of places specified by the immediate
imm or the value in the least-significant byte of the register specified by Rs.

For details on what result is generated by the different instructions, see Shift Operations on
page 3-8.

Restrictions

In these instructions, Rd, Rm, and Rs must only specify R0-R7. For non-immediate instructions,
Rd and Rm must specify the same register.

Condition flags

These instructions update the N and Z flags according to the result.

The C flag is updated to the last bit shifted out, except when the shift length is 0, see Shift
Operations on page 3-8. The V flag is left unmodified.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-38
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
Examples

ASRS R7, R5, #9 ; Arithmetic shift right by 9 bits
LSLS R1, R2, #3 ; Logical shift left by 3 bits with flag update
LSRS R4, R5, #6 ; Logical shift right by 6 bits
RORS R4, R4, R6 ; Rotate right by the value in the bottom byte of R6.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-39
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.6.4 CMP and CMN

Compare and Compare Negative.

Syntax

CMN Rn, Rm

CMP Rn, #imm

CMP Rn, Rm

where:
Rn Is the register holding the first operand.
Rm Is the register to compare with.
imm Is the immediate value to compare with.

Operation

These instructions compare the value in a register with either the value in another register or an
immediate value. They update the condition flags on the result, but do not write the result to a
register.

The CMP instruction subtracts either the value in the register specified by Rm, or the immediate
imm from the value in Rn and updates the flags. This is the same as a SUBS instruction, except that
the result is discarded.

The CMN instruction adds the value of Rm to the value in Rn and updates the flags. This is the same
as an ADDS instruction, except that the result is discarded.

Restrictions

For the:

• CMN instruction, Rn and Rm must only specify R0-R7.

• CMP instruction:
— Rn and Rm can specify R0-R14.
— Immediate must be in the range 0-255.

Condition flags

These instructions update the N, Z, C, and V flags according to the result.

Examples

CMP R2, R9
CMN R0, R2
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-40
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.6.5 MOV and MVN

Move and Move NOT.

Syntax

MOV{S} Rd, Rm

MOVS Rd, #imm8

MOV{W} Rd, #imm16

MVNS Rd, Rm

where:

S Is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation, see Conditional execution on page 3-12.

Rd Is the destination register.

Rm Is a register.

imm8 Is any value in the range 0-255.

imm16 Is any value in the range 0-65535.

Operation

The MOV instruction copies the value of Rm into Rd.

The MOVS instruction performs the same operation as the MOV instruction, but also updates the N
and Z flags.

The MVNS instruction takes the value of Rm, performs a bitwise logical negate operation on the
value, and places the result into Rd.

Restrictions

In these instructions, Rd and Rm must only specify R0-R7. The exception to this rule is MOV RD,
Rm for which Rm can be either PC or R0-R14.

Condition flags

If S is specified, these instructions:
• Update the N and Z flags according to the result.
• Do not affect the C or V flags.

Example

MOVS R0, #0x000B ; Write value of 0x000B to R0, flags get updated
MOVS R1, #0x0 ; Write value of zero to R1, flags are updated
MOV R10, R12 ; Write value in R12 to R10, flags are not updated
MOVS R3, #23 ; Write value of 23 to R3
MOV R8, SP ; Write value of stack pointer to R8
MVNS R2, R0 ; Write inverse of R0 to the R2 and update flags
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-41
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.6.6 MOVT

Move Top.

Syntax

MOVT Rd, #imm16

Where:
Rd Is the destination register.
imm16 Is a 16-bit immediate constant and must be in the range 0-65535.

Operation

MOVT writes a 32-bit immediate value, imm16, to the top halfword, Rd[31:16], of its destination
register. The write does not affect Rd[15:0].

The MOV, MOVT instruction pair enables you to generate any 32-bit constant.

Restrictions

Rd must not be SP and must not be PC.

Condition flags

This instruction does not change the flags.

Examples

MOV R3, #0x4567
MOVT R3, #F123 ; R3 is now F1234567.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-42
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.6.7 MULS

Multiply using 32-bit operands, and producing a 32-bit result.

Syntax

MULS Rd, Rn, Rm

where:
Rd Is the destination register.
Rn, Rm Are registers holding the values to be multiplied.

Operation

The MUL instruction multiplies the values in the registers specified by Rn and Rm, and places the
least significant 32 bits of the result in Rd. The condition code flags are updated on the result of
the operation, see Conditional execution on page 3-12.

The result of this instruction does not depend on whether the operands are signed or unsigned.

Restrictions

In this instruction:
• Rd, Rn, and Rm must only specify R0-R7.
• Rd must be the same as Rm.

Condition flags

This instruction:
• Updates the N and Z flags according to the result.
• Does not affect the C or V flags.

Examples

MULS R0, R2, R0 ; Multiply with flag update, R0 = R0 x R2

In SMUL configurations, the MUL instruction takes 32 cycles. Depending on the data, it can be
faster to do the multiplication in software using ADD instructions.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-43
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.6.8 REV, REV16, and REVSH

Reverse bytes.

Syntax

REV Rd, Rn

REV16 Rd, Rn

REVSH Rd, Rn

Where:
Rd Is the destination register.
Rn Is the source register.

Operation

Use these instructions to change endianness of data:

REV Converts 32-bit big-endian data into little-endian data or 32-bit little-endian data
into big-endian data.

REV16 Converts two packed 16-bit big-endian data into little-endian data or two packed
16-bit little-endian data into big-endian data.

REVSH Converts 16-bit signed big-endian data into 32-bit signed little-endian data or
16-bit signed little-endian data into 32-bit signed big-endian data.

Restrictions

In these instructions, Rd, and Rn must only specify R0-R7.

Condition flags

These instructions do not change the flags.

Examples

REV R3, R7 ; Reverse byte order of value in R7 and write it to R3
REV16 R0, R0 ; Reverse byte order of each 16-bit halfword in R0
REVSH R0, R5 ; Reverse signed halfword
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-44
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.6.9 SDIV and UDIV

Signed Divide and Unsigned Divide.

Syntax

SDIV {Rd,} Rn, Rm

UDIV {Rd,} Rn, Rm

Where:

Rd Is the destination register. If Rd is omitted, the destination register is Rn.

Rn Is the register holding the value to be divided.

Rm Is a register holding the divisor.

Operation

The SDIV instruction performs a signed integer division of the value in Rn by the value in Rm.

The UDIV instruction performs an unsigned integer division of the value in Rn by the value in Rm.

For both instructions, if the value in Rn is not divisible by the value in Rm, the result is rounded
towards zero.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not change the flags.

Examples

SDIV R0, R2, R4 ; Signed divide, R0 = R2/R4
UDIV R8, R8, R1 ; Unsigned divide, R8 = R8/R1

Depending on the SDIV parameter, SDIV or UDIV takes either 17 or 34 cycles.

Depending on the value of the operands, it can be faster to do the division in software.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-45
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.6.10 SXT and UXT

Signed Extend and Unsigned Extend Byte/Halfword.

Syntax

SXTB Rd, Rm

SXTH Rd, Rm

UXTB Rd, Rm

UXTH Rd, Rm

Where:
Rd Is the destination register.
Rm Is the register holding the value to be extended.

Operation

These instructions extract bits from the resulting value:
• SXTB extracts bits[7:0] and sign extends to 32 bits.
• UXTB extracts bits[7:0] and zero extends to 32 bits.
• SXTH extracts bits[15:0] and sign extends to 32 bits.
• UXTH extracts bits[15:0] and zero extends to 32 bits.

Restrictions

In these instructions, Rd and Rm must only specify R0-R7.

Condition flags

These instructions do not affect the flags.

Examples

SXTH R4, R6 ; Obtain the lower halfword of the
; value in R6 and then sign extend to
; 32 bits and write the result to R4.

UXTB R3, R1 ; Extract lowest byte of the value in R10 and zero
; extend it, and write the result to R3
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-46
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.6.11 TST

Test bits.

Syntax

TST Rn, Rm

Where:
Rn Is the register holding the first operand.
Rm The register to test against.

Operation

This instruction tests the value in a register against another register. It updates the condition
flags based on the result, but does not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value in Rm.
This is the same as the ANDS instruction, except that it discards the result.

To test whether a bit of Rn is 0 or 1, use the TST instruction with a register that has that bit set to
1 and all other bits cleared to 0.

Restrictions

In these instructions, Rn and Rm must only specify R0-R7.

Condition flags

This instruction:
• Updates the N and Z flags according to the result.
• Does not affect the C or V flags.

Examples

TST R0, R1 ; Perform bitwise AND of R0 value and R1 value,
; condition code flags are updated but result is discarded
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-47
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.7 Branch and control instructions
Table 3-9 shows the branch and control instructions:

Table 3-9 Branch and control instructions

Mnemonic Brief description See

B{cc} Branch {conditionally} B, BL, BX, and BLX on page 3-49.

BL Branch with Link B, BL, BX, and BLX on page 3-49.

BLX Branch indirect with Link B, BL, BX, and BLX on page 3-49.

BLXNS Branch with Link and Exchange
Non-secure

BXNS and BLXNS on page 3-51.

BX Branch indirect B, BL, BX, and BLX on page 3-49.

BXNS Branch indirect Non Secure BXNS and BLXNS on page 3-51.

CBNZ Compare and Branch if Non-Zero CBZ and CBNZ on page 3-52.

CBZ Compare and Branch if Zero CBZ and CBNZ on page 3-52.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-48
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.7.1 B, BL, BX, and BLX

Branch instructions.

Syntax

B{cond} label

BL label

BX Rm

BLX Rm

Where:
cond Is an optional condition code, see Conditional execution on page 3-12.
label Is a PC-relative expression. See PC-relative expressions on page 3-11.
Rm Is a register providing the address to branch to.

Operation

All these instructions cause a branch to the address indicated by label or contained in the
register specified by Rm. In addition:

• The BL and BLX instructions write the address of the next instruction to LR, the link register
R14.

• The BX and BLX instructions result in a UsageFault exception if bit[0] of Rm is 0.

BL and BLX instructions also set bit[0] of the LR to 1. This ensures that the value is suitable for
use by a subsequent POP {PC} or BX instruction to perform a successful return branch.

Table 3-10 shows the ranges for the various branch instructions.

Restrictions

In these instructions:

• Do not use SP or PC in the BX or BLX instruction.

• For BX and BLX, bit[0] of Rm must be 1 for correct execution. Bit[0] is used to update the
EPSR T-bit and is discarded from the target address.

Note
 Bcond is the only conditional instruction on the Cortex-M23 processor.

Table 3-10 Branch ranges

Instruction Branch range

B label −16MB to +16MB.

Bcond label −256 bytes to +254 bytes.

BL label −16MB to +16MB.

BX Rm Any value in register.

BLX Rm Any value in register.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-49
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
BX can be used an Exception or Function return.

Condition flags

These instructions do not change the flags.

Examples

B loopA ; Branch to loopA
BL funC ; Branch with link (Call) to function funC, return address

; stored in LR
BX LR ; Return from function call if LR contains a FUNC_RETURN value.
BLX R0 ; Branch with link and exchange (Call) to a address stored

; in R0
BEQ labelD ; Conditionally branch to labelD if last flag setting

; instruction set the Z flag, else do not branch.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-50
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.7.2 BXNS and BLXNS

Branch and Exchange Non-secure, Branch with Link and Exchange Non-secure

Syntax

BXNS <Rm>

BLXNS <Rm>

Where:
Rm Is a register containing an address to branch to.

Operation

The BXNS instruction causes a branch to an address contained in Rm and conditionally causes a
transition from the Secure to the Non-secure state.

The BLXNS instruction calls a subroutine at an address contained in Rm and conditionally causes
a transition from the Secure to the Non-secure state.

For both BXNS and BLXNS, bit[0] indicates a transition to Non-secure state if value is 0, otherwise
the target state remains Secure. BLXNS pushes the return address and partial PSR to the Secure
stack and assigns R14 to a FNC_RETURN value.These instructions are available for Secure
state only. When the processor is in Non-secure state, these instructions are UNDEFINED and
triggers a HardFault if executed.

Restrictions

PC and SP cannot be used for Rm.

Condition flags

These instructions do not change the flags.

Examples

LDR r0, =non_secure_function
MOVS r1, #1BICS r0, r1 # Clear bit 0 of address in r0BLXNS r0 ; Call Non-Secure
function. This sets r14 to FUNC_RETURN valueBX

Note
 For information about how to build a Secure image that uses a previously generated import
library, see the Arm® Compiler Software Development Guide.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-51
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.7.3 CBZ and CBNZ

Compare and Branch on Zero, Compare and Branch on Non-Zero.

Syntax

CB{N}Z <Rn>,< label>

Where:
cond Is an optional condition code. See see Conditional execution on page 3-12.
Rn Is the register holding the operand.
label Is the branch destination.

Operation

Use the CBZ or CBNZ instructions to avoid changing the condition code flags and to reduce the
number of instructions.

CBZ Rn, label does not change condition flags but is otherwise equivalent to:

CMP Rn, #0
BEQ label

CBNZ Rn, label does not change condition flags but is otherwise equivalent to:

CMP Rn, #0
BNE label

Restrictions

The restrictions are:
• Rn must be in the range of R0-R7.
• The branch destination must be within 4 to 130 bytes after the instruction.

Condition flags

These instructions do not change the flags.

Examples

CBZ R5, target ; Forward branch if R5 is zero
CBNZ R0, target ; Forward branch if R0 is not zero
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-52
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.8 Miscellaneous instructions
Table 3-11 shows the remaining Cortex-M23 instructions:

Table 3-11 Miscellaneous instructions

Mnemonic Brief description See

BKPT Breakpoint BKPT on page 3-54.

CPSID Change Processor State, Disable Interrupts CPS on page 3-55.

CPSIE Change Processor State, Enable Interrupts CPS on page 3-55.

DMB Data Memory Barrier DMB on page 3-56.

DSB Data Synchronization Barrier DSB on page 3-57.

ISB Instruction Synchronization Barrier ISB on page 3-58.

MRS Move from special register to register MRS on page 3-59.

MSR Move from register to special register MSR on page 3-60.

NOP No Operation NOP on page 3-61.

SEV Send Event SEV on page 3-62.

SG Secure Gateway SG on page 3-63.

SVC Supervisor Call SVC on page 3-64.

TT Test Target TT, TTT, TTA, and
TTAT on page 3-65.

TTT Test Target Unprivileged TT, TTT, TTA, and
TTAT on page 3-65.

TTA Test Target Alternate Domain TT, TTT, TTA, and
TTAT on page 3-65.

TTAT Test Target Alternate Domain
Unprivileged

TT, TTT, TTA, and
TTAT on page 3-65.

WFE Wait For Event WFE on page 3-67.

WFI Wait For Interrupt WFI on page 3-68.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-53
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.8.1 BKPT

Breakpoint.

Syntax

BKPT #imm

where:

imm Is an integer in the range 0-255.

Operation

The BKPT instruction causes the processor to enter Debug state. Debug tools can use this to
investigate system state when the instruction at a particular address is reached.

imm is ignored by the processor. If required, a debugger can use it to store additional information
about the breakpoint.

The processor might also produce a HardFault or go into Lockup if a debugger is not attached
or if debug is not enabled when a BKPT instruction is executed. See Lockup on page 2-31 for more
information.

Restrictions

There are no restrictions.

Condition flags

This instruction does not change the flags.

Examples

BKPT #0 ; Breakpoint with immediate value set to 0x0.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-54
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.8.2 CPS

Change Processor State.

Syntax

CPSID i

CPSIE i

Operation

CPS changes the PRIMASK special register values. CPSID causes interrupts to be disabled by
setting PRIMASK. CPSIE causes interrupts to be enabled by clearing PRIMASK. See Exception
mask register on page 2-7 for more information about these registers.

Restrictions

If the current mode of execution is not privileged, then this instruction behaves as a NOP and does
not change the current state of PRIMASK.

Condition flags

This instruction does not change the condition flags.

Examples

CPSID i ; Disable all interrupts except NMI and Hardfault.
If PRIS is set, PRIMASK_NS.PM rises the security level to 0x80, and does not mask
Secure interrupts with a lower priority value.

CPSIE i ; Enable interrupts (clear PRIMASK.PM)
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-55
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.8.3 DMB

Data Memory Barrier.

Syntax

DMB

Operation

DMB acts as a data memory barrier. It ensures that all explicit memory accesses that appear in
program order before the DMB instruction are observed before any explicit memory accesses that
appear in program order after the DMB instruction. DMB does not affect the ordering of instructions
that do not access memory.

Restrictions

There are no restrictions.

Condition flags

This instruction does not change the flags.

Examples

DMB ; Data Memory Barrier
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-56
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.8.4 DSB

Data Synchronization Barrier.

Syntax

DSB

Operation

DSB acts as a special data synchronization memory barrier. Instructions that come after the DSB,
in program order, do not execute until the DSB instruction completes. The DSB instruction
completes when all explicit memory accesses before it complete.

Restrictions

There are no restrictions.

Condition flags

This instruction does not change the flags.

Examples

DSB ; Data Synchronisation Barrier
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-57
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.8.5 ISB

Instruction Synchronization Barrier.

Syntax

ISB

Operation

ISB acts as an Instruction Synchronization Barrier. It flushes the pipeline of the processor, so that
all instructions following the ISB are fetched from cache or memory again, after the ISB
instruction has been completed.

Restrictions

There are no restrictions.

Condition flags

This instruction does not change the flags.

Examples

ISB ; Instruction Synchronisation Barrier
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-58
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.8.6 MRS

Move the contents of a special register to a general-purpose register.

Syntax

MRS Rd, spec_reg

Where:

Rd Is the general-purpose destination register.

spec_reg Is one of the special-purpose registers: APSR, IPSR, EPSR, IEPSR, IAPSR,
EAPSR, PSR, MSP, PSP, PRIMASK, or CONTROL. spec_reg can also be
MSP_NS, PSP_NS, MSPLIM, PSPLIM, CONTROL_NS, PRIMASK_NS in
Secure state.

Operation

MRS stores the contents of a special-purpose register to a general-purpose register. The MRS
instruction can be combined with the MSR instruction to produce read-modify-write sequences,
which are suitable for modifying a specific flag in the PSR.

See MSR on page 3-60.

Restrictions

In this instruction, Rd must not be SP or PC.

If the current mode of execution is not privileged, then the values of all registers other than the
APSR read as zero.

If Non-secure code tries to access a register reserved to Secure state, then it reads as zero.

Condition flags

This instruction does not change the flags.

Examples

MRS R0, PRIMASK ; Read PRIMASK value and write it to R0
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-59
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.8.7 MSR

Move the contents of a general-purpose register into the specified special register.

Syntax

MSR spec_reg, Rn

Where:

Rn Is the general-purpose source register.

spec_reg Is the special-purpose destination register: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR,
PSR, MSP, PSP, PRIMASK, or CONTROL. spec_reg can also be MSP_NS, PSP_NS,
MSPLIM, PSPLIM, CONTROL_NS, PRIMASK_NS in Secure state.

Operation

MSR updates one of the special registers with the value from the register specified by Rn.

See MRS on page 3-59.

Restrictions

In this instruction, Rn must not be SP and must not be PC.

If the current mode of execution is not privileged, then all attempts to modify any register other
than the APSR are ignored.

A write in Non-secure state to a register that is reserved to Secure is ignored.

Condition flags

This instruction updates the flags explicitly based on the value in Rn when PASR is written.

Examples

MSR CONTROL, R1 ; Read R1 value and write it to the CONTROL register
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-60
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.8.8 NOP

No Operation.

Syntax

NOP

Operation

NOP performs no operation and is not guaranteed to be time consuming. The processor might
remove it from the pipeline before it reaches the execution stage.

Restrictions

There are no restrictions.

Condition flags

This instruction does not change the flags.

Examples

NOP ; No operation
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-61
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.8.9 SEV

Send Event.

Syntax

SEV

Operation

SEV sets the local event register, see Power management on page 2-32. This depends on your
system. You can connect TXEV from other processors, in this case it can depends on SEV.
However, peripherals might be connected to RXEV.

See also WFE on page 3-67.

Restrictions

There are no restrictions.

Condition flags

This instruction does not change the flags.

Examples

SEV ; Send Event
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-62
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.8.10 SG

Secure Gateway.

Syntax

SG

Operation

Secure Gateway marks a valid branch target for branches from Non-secure code that wants to
call Secure code.

A linker is expected to generate a Secure Gateway operation as a part of the branch table for the
Non-secure Callable (NSC) region.

There is no C intrinsic function for SG. Arm does not expect software developers to insert a
Secure Gateway instruction inside C or C++ program code. It is expected that a linker generates
the branch veneers that contain SG instructions and branches.

Note
 For information about how to build a Secure image that uses a previously generated import
library, see the Arm® Compiler Software Development Guide.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-63
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.8.11 SVC

Supervisor Call.

Syntax

SVC #imm

Where:

imm Is an integer in the range 0-255.

Operation

The SVC instruction causes the SVC exception.

imm is ignored by the processor. If required, it can be retrieved by the exception handler to
determine what service is being requested.

Restrictions

Executing the SVC instruction, while the current execution priority level is greater than or equal
to that of the SVCall handler, results in a fault being generated.

Condition flags

This instruction does not change the flags.

Examples

SVC #0x32 ; Supervisor Call (SVC handler can extract the immediate value
; by locating it through the stacked PC)
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-64
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.8.12 TT, TTT, TTA, and TTAT

Test Target (Alternate Domain, Unprivileged).

Syntax

{op} Rd, Rn, label

Where:

op Is one of:
TT Test Target (TT) queries the security state and access permissions of a

memory location.
TTT Test Target Unprivileged (TTT) queries the security state and access

permissions of a memory location for an unprivileged access to that
location.

TTA Test Target Alternate Domain (TTA) queries the security state and
access permissions of a memory location for a Non-secure access to
that location. These instructions are only valid when executing in
Secure state, and are UNDEFINED if used from Non-secure state.

TTAT Test Target Alternate Domain Unprivileged (TTAT) queries the
security state and access permissions of a memory location for a
Non-secure and unprivileged access to that location. These
instructions are only valid when executing in Secure state, and are
UNDEFINED if used from Non-secure state.

Rd Is the destination general-purpose register into which the status result of the target
test is written.

Rn Is the general-purpose base register.

Operation

The instruction returns the security state and access permissions in the destination register, the
contents of which are as follows:

Table 3-12 Security state and access permissions in the destination register

Bits Name Description

[7:0] MREGION The MPU region that the address maps to. This field is 0 if
MRVALID is 0.

[15:8] SREGION The SAU region that the address maps to. This field is only valid
if the instruction is executed from Secure state. This field is 0 if
SRVALID is 0.

[16] MRVALID Set to 1 if the MREGION content is valid. Set to 0 if the
MREGION content is invalid.

[17] SRVALID Set to 1 if the SREGION content is valid. Set to 0 if the
SREGION content is invalid.

[18] R Read accessibility. Set to 1 if the memory location can be read
according to the permissions of the selected MPU when
operating in the current mode. For TTT and TTAT, this bit returns
the permissions for unprivileged access, regardless of whether
the current mode is privileged or unprivileged.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-65
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
Invalid fields are 0.

The MREGION field is invalid and 0 if any of the following conditions are true:
• The MPU is not present or MPU_CTRL.ENABLE is 0.
• The address did not match any enabled MPU regions.
• The address matched multiple MPU regions.
• TT was executed from an unprivileged mode, or TTA is executed and Non-secure state is

unprivileged.

The R, RW, NSR, and NSRW bits are invalid and 0 if any of the following conditions are true:
• The address matched multiple MPU regions.
• TT is executed from an unprivileged mode, or TTA is executed and Non-secure state is

unprivileged..

[19] RW Read/write accessibility. Set to 1 if the memory location can be
read and written according to the permissions of the selected
MPU when operating in the current mode.

[20] NSR Equal to R AND NOT S. Can be used in combination with the
LSLS (immediate) instruction to check both the MPU and SAU
or IDAU permissions. This bit is only valid if the instruction is
executed from Secure state and the R field is valid.

[21] NSRW Equal to RW AND NOT S. Can be used in combination with the
LSLS (immediate) instruction to check both the MPU and SAU
or IDAU permissions. This bit is only valid if the instruction is
executed from Secure state and the RW field is valid.

[22] S Security. A value of 1 indicates the memory location is Secure,
and a value of 0 indicates the memory location is Non-secure.
This bit is only valid if the instruction is executed from Secure
state.

[23] IRVALID IREGION valid flag. For a Secure request, indicates the validity
of the IREGION field. Set to 1 if the IREGION content is valid.
Set to 0 if the IREGION content is invalid.This bit is always 0 if
the IDAU cannot provide a region number, the address is
exempt from security attribution, or if the requesting TT
instruction is executed from the Non-secure state.

[31:24] IREGION IDAU region number. Indicates the IDAU region number
containing the target address. This field is 0 if IRVALID is 0.

Table 3-12 Security state and access permissions in the destination register (continued)

Bits Name Description
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-66
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.8.13 WFE

Wait For Event.

Syntax

WFE

Operation

See Power management on page 2-32.

Note
 WFE is intended for power saving only. When writing software assume that WFE might behave as
NOP.

Restrictions

There are no restrictions.

Condition flags

This instruction does not change the flags.

Examples

WFE ; Wait for event
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-67
ID062218 Non-Confidential

The Cortex-M23 Instruction Set
3.8.14 WFI

Wait for Interrupt.

Syntax

WFI

Operation

See Power management on page 2-32.

Note
 WFI is intended for power saving only. When writing, software assumes that WFI might behave
as a NOP operation.

Restrictions

There are no restrictions.

Condition flags

This instruction does not change the flags.

Examples

WFI ; Wait for interrupt
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3-68
ID062218 Non-Confidential

Chapter 4
Cortex-M23 Peripherals

The following sections are the reference material for the Arm Cortex-M23 core peripherals
descriptions in a User Guide:
• About the Cortex-M23 peripherals on page 4-2.
• Nested Vectored Interrupt Controller on page 4-3.
• System Control Space on page 4-11.
• System timer, SysTick on page 4-24.
• Security Attribution and Memory Protection on page 4-28.
• I/O Port on page 4-43.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-1
ID062218 Non-Confidential

Cortex-M23 Peripherals
4.1 About the Cortex-M23 peripherals
The address map of the Private Peripheral Bus (PPB) is:

In register descriptions:

• The register type is described as follows:
RW Read and write.
RO Read-only.
WO Write-only.

• The required privilege gives the privilege level required to access the register, as follows:
Privileged Only privileged software can access the register.
Unprivileged Both unprivileged and privileged software can access the register.

Table 4-1 Core peripheral register regions

Address Core peripheral Description

0xE000E008-0xE000E00F System Control Space Table 4-11 on page 4-11.

0xE000E010-0xE000E01F Reserved -

0xE000E010-0xE000E01F System timer Table 4-23 on page 4-24.

0xE000E100-0xE000E4EF Nested Vectored Interrupt Controller Table 4-2 on page 4-3.

0xE000ED00-0xE000ED3F System Control Space Table 4-11 on page 4-11.

0xE000ED90-0xE000EDCF Memory Protection Unita

a. Software can read the MPU Type Register at 0xE000ED90 to test for the presence of a Memory
Protection Unit (MPU).

Table 4-35 on page 4-33.

0xE000EF00-0xE000EF03 Nested Vectored Interrupt Controller Table 4-2 on page 4-3.

0XE000ED00-0XE00EDEF Security Attribution Unit Table 4-28 on page 4-28.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-2
ID062218 Non-Confidential

Cortex-M23 Peripherals
4.2 Nested Vectored Interrupt Controller
This section describes the Nested Vectored Interrupt Controller (NVIC) and the registers it uses.
The NVIC supports:

• 0 to 240 interrupts.

• A programmable priority level of 0-192 in steps of 64 for each interrupt in Secure state.
A higher level corresponds to a lower priority, so level 0 is the highest interrupt priority.
In Non-secure state, this depends on the value of PRIS. See Extended priority on
page 2-24.

• Level and pulse detection of interrupt signals.

• Interrupt tail-chaining.

• An external Non-Maskable Interrupt (NMI).

• An optional Wake-up Interrupt Controller (WIC).

The processor automatically stacks its state on exception entry and unstacks this state on
exception exit, with no instruction overhead. This provides low latency exception handling. The
hardware implementation of the NVIC registers is:

Table 4-2 NVIC register summary

Address Name Type Reset value Description

0xE000E100-0xE000E13C NVIC_ISER0 -
NVIC_ISER7

RW 0x00000000 Interrupt Set-enable
Registers on page 4-5.

- -

0xE002E100-0xE002E13C NVIC_ISER0_NS -
NVIC_ISER7_NS

- 0x00000000

- - Depending on NVIC_ITNS,
bits can be RAZ/WI from
Non-secure state.

0xE000E180-0xE000E1BC NVIC_ICER0 -
NVIC_ICER7

RW 0x00000000 Interrupt Clear-enable
Registers on page 4-5.

- -

0xE002E180-0xE002E1BC NVIC_ICER0_NS -
NVIC_ICER7_NS

- 0x00000000

- - Depending on NVIC_ITNS,
bits can be RAZ/WI from
Non-secure state.

0xE000E200-0xE000E23C NVIC_ISPR0 -
NVIC_ISPR7

RW 0x00000000 Interrupt Set-pending
Registers on page 4-6.

- -

0xE002E200-0xE002E23C NVIC_ISPR0_NS -
NVIC_ISPR7_NS

- 0x00000000

- - Depending on NVIC_ITNS,
bits can be RAZ/WI from
Non-secure state.

0xE002E280-0xE000E2BC NVIC_ICPR0 -
NVIC_ICPR7

RW 0x00000000 Interrupt Clear-pending
Registers on page 4-6.
Depending on NVIC_ITNS,
bits can be RAZ/WI from
Non-secure state.

- -

0xE000E280-0xE002E2BC NVIC_ICPR0_NS -
NVIC_ICPR7_NS

- 0x00000000

- -
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-3
ID062218 Non-Confidential

Cortex-M23 Peripherals
Note
 Depending on the number of interrupts configured and whether Security Extension is
implemented, some registers can be RAZ/WI.

4.2.1 Accessing the Cortex-M23 NVIC registers using CMSIS

CMSIS functions enable software portability between different Cortex-M profile processors.

To access the NVIC registers when using CMSIS, use the following functions:

0xE000E300-0xE000E33C NVIC_IABR0 -
NVIC_ISABR7

RO 0x00000000 Interrupt Active Bit
Registers on page 4-7.

- -

0xE002E300-0xE002E33C NVIC_IABR0_NS -
NVIC_IABR7_NS

- 0x00000000

- - Depending on NVIC_ITNS,
bits can be RAZ/WI from
Non-secure state.

0xE000E380-0xE000E3BC NVIC_ITNS0 -
NVIC_ITNS7

RW 0x00000000 Interrupt Target Non-secure
Registers on page 4-7.

0xE000E400-0xE000E5DC NVIC_IPR0 -
NVIC_IPR119

RW 0x00000000 Interrupt Priority Registers
on page 4-8.

- -

0xE002E400-0xE002E5DC NVIC_IPR0_NS -
NVIC_IPR119_NS

- 0x00000000

- - Depending on NVIC_ITNS,
bits can be RAZ/WI from
Non-secure state.

Table 4-2 NVIC register summary (continued)

Address Name Type Reset value Description

Table 4-3 CMSIS access NVIC functions

CMSIS function Description

void NVIC_EnableIRQ(IRQn_Type IRQn)a Enables an interrupt or exception.

void NVIC_DisableIRQ(IRQn_Type IRQn)a Disables an interrupt or exception.

void NVIC_SetPendingIRQ(IRQn_Type IRQn)a Sets the pending status of an interrupt or exception to 1.

void NVIC_ClearPendingIRQ(IRQn_Type IRQn)a Clears the pending status of an interrupt or exception to 0.

uint32_t NVIC_GetPendingIRQ(IRQn_Type IRQn)a Reads the pending status of an interrupt or exception. This function
returns a non-zero value if the pending status is set to 1.

void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)a Sets the priority of an interrupt or exception with configurable
priority level to 1.

uint32_t NVIC_GetPriority(IRQn_Type IRQn)a Reads the priority of an interrupt or exception with configurable
priority level. This function returns the current priority level.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-4
ID062218 Non-Confidential

Cortex-M23 Peripherals
4.2.2 Interrupt Set-enable Registers

The NVIC_ISER0-NVIC_ISER7 enable interrupts, and shows which interrupts are enabled.
See the register summary in Table 4-2 on page 4-3 for the register attributes.

Register bits can be RAZ/WI depending on the value of ITNS.

The bit assignments are:

If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority. If an
interrupt is not enabled, asserting its interrupt signal changes the interrupt state to pending, but
the NVIC never activates the interrupt, regardless of its priority.

4.2.3 Interrupt Clear-enable Registers

The NVIC_ICER0-NVIC_ICER7 disable interrupts, and show which interrupts are enabled.
See the register summary in Table 4-2 on page 4-3 for the register attributes.

Register bits can be RAZ/WI depending on the value of ITNS.

uint32_t SetTargetState(IRQn_Type IRQn)a Sets the interrupt target field in the NVIC.

uint32_t NVIC_GETTargetState(IRQn_Type IRQn)a Gets interrupt target state.

uint32_t ClearTargetState(IRQn_Type IRQn)a Clears the interrupt target field in the Non-secure NVIC when in
Secure state.

a. The input parameter IRQn is the IRQ number, see Table 2-13 on page 2-21 for more information.

Table 4-3 CMSIS access NVIC functions (continued)

CMSIS function Description

Table 4-4 NVIC_ISERn bit assignments

Bits Name Function

[31:0] SETENA Interrupt set-enable bits.
Write:
0 = No effect.
1 = Enable interrupt.
Read:
0 = Interrupt disabled.
1 = Interrupt enabled.

SETENA[32n+31:32n]

31 0
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-5
ID062218 Non-Confidential

Cortex-M23 Peripherals
The bit assignments are:

4.2.4 Interrupt Set-pending Registers

The NVIC_ISPR0-NVIC_ISPR7 force interrupts into the pending state, and shows which
interrupts are pending. See the register summary in Table 4-2 on page 4-3 for the register
attributes.

Register bits can be RAZ/WI depending on the value of ITNS.

The bit assignments are:

Note
 Writing 1 to the NVIC_ISPR bit corresponding to:
• An interrupt that is pending has no effect.
• A disabled interrupt sets the state of that interrupt to pending.

4.2.5 Interrupt Clear-pending Registers

The NVIC_ICPR0-NVIC_ICPR9 remove the pending state from interrupts, and shows which
interrupts are pending. See the register summary in Table 4-2 on page 4-3 for the register
attributes.

Table 4-5 NVIC_ICERn bit assignments

Bits Name Function

[31:0] CLRENA Interrupt clear-enable bits.
Write:
0 = No effect.
1 = Disable interrupt.
Read:
0 = Interrupt disabled.
1 = Interrupt enabled.

CLRENA[32n+31:32n]

31 0

Table 4-6 NVIC_ISPRn bit assignments

Bits Name Function

[31:0] SETPEND Interrupt set-pending bits.
Write:
0 = No effect.
1 = Changes interrupt state to pending.
Read:
0 = Interrupt is not pending.
1 = Interrupt is pending.

SETPEND[32n+31:32n]

31 0
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-6
ID062218 Non-Confidential

Cortex-M23 Peripherals
Register bits can be RAZ/WI depending on the value of ITNS.

The bit assignments are:

Note
 Writing 1 to an NVIC_ICPR bit does not affect the active state of the corresponding interrupt.

4.2.6 Interrupt Active Bit Registers

The NVIC_IABR0-NVIC_IABR7 indicate the active state of each interrupt. See the register
summary in Table 4-2 on page 4-3 for the register attributes.

Register bits can be RAZ/WI depending on the value of ITNS.

The bit assignments are:

4.2.7 Interrupt Target Non-secure Registers

The NVIC_ITNS0-NVIC_ITNS7 determine, for each group of 32 interrupts, whether each
interrupt targets Non-secure or Secure state. See the register summary in Table 4-2 on page 4-3
for the register attributes.

This register is accessible from Secure state only.

Table 4-7 NVIC_ICPRn bit assignments

Bits Name Function

[31:0] CLRPEND Interrupt clear-pending bits.
Write:
0 = No effect.
1 = Removes pending state and interrupt.
Read:
0 = Interrupt is not pending.
1 = Interrupt is pending.

CLRPEND[32n+31:32n]

31 0

Table 4-8 NVIC_IABRn bit assignments

Bits Name Function

[31:0] ACTIVE Active state bits.
0 = The interrupt is not active.
1 = The interrupt is active.

31 0

ACTIVE[32n+31:32n]
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-7
ID062218 Non-Confidential

Cortex-M23 Peripherals
The bit assignments are:

4.2.8 Interrupt Priority Registers

The NVIC_IPR0-NVIC_IPR59 registers provide an 8-bit priority field for each interrupt. These
registers are only word-accessible. See the register summary in Table 4-2 on page 4-3 for their
attributes. Each register holds four priority fields as shown:

See Accessing the Cortex-M23 NVIC registers using CMSIS on page 4-4 for more information
about the access to the interrupt priority array, which provides the software view of the interrupt
priorities.

Find the NVIC_IPR number and byte offset for interrupt M as follows:
• The corresponding NVIC_IPR number, N, is given by N = N DIV 4.
• The byte offset of the required Priority field in this register is M MOD 4, where:

— Byte offset 0 refers to register bits[7:0].

Table 4-9 NVIC_ITNSn bit assignments

Bits Nam
e Function

[31:0] ITNS Interrupt Targets Non-secure bits.
0 = The interrupt targets Secure state.
1 = The interrupt targets Non-secure state.

31 0

ITNS[32n+31:32n]

Table 4-10 NVIC_IPRn bit assignments

Bits Name Function

[31:24] Priority, byte offset 3 Each priority field holds a priority value. The priority depends on the value of PRIS for
exceptions targeting the Non-secure state. The lower the value, the greater the priority
of the corresponding interrupt. The processor implements only bits[7:6] of each field,
bits[5:0] read as zero and ignore writes. This means writing 255 to a priority register
saves value 192 to the register.

[23:16] Priority, byte offset 2

[15:8] Priority, byte offset 1

[7:0] Priority, byte offset 0

PRI_239

31 24 23 16 15 8 7 0

PRI_238 PRI_237 PRI_236NVIC_IPR59

PRI_(4n+3) PRI_(4n+2) PRI_(4n+1) PRI_(4n)NVIC_IPRn

PRI_3 PRI_2 PRI_1 PRI_0NVIC_IPR0

.

.

.

.

.

.

. .
 .

. .
 .
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-8
ID062218 Non-Confidential

Cortex-M23 Peripherals
— Byte offset 1 refers to register bits[15:8].
— Byte offset 2 refers to register bits[23:16].
— Byte offset 3 refers to register bits[31:24].

Priority values depend on the value of PRIS as described in Extended priority on page 2-24.

Register bits can be RAZ/WI depending on the value of ITNS.

4.2.9 Level-sensitive and pulse interrupts

The processor supports both level-sensitive and pulse interrupts. Pulse interrupts are also
described as edge-triggered interrupts.

A level-sensitive interrupt is held asserted until the peripheral deasserts the interrupt signal.
Typically this happens because the ISR accesses the peripheral, causing it to clear the interrupt
request. A pulse interrupt is an interrupt signal sampled synchronously on the rising edge of the
processor clock. To ensure the NVIC detects the interrupt, the peripheral must assert the
interrupt signal for at least one clock cycle, during which the NVIC detects the pulse and latches
the interrupt.

When the processor enters the ISR, it automatically removes the pending state from the
interrupt, see Hardware and software control of interrupts. For a level-sensitive interrupt, if the
signal is not deasserted before the processor returns from the ISR, the interrupt becomes
pending again, and the processor must execute its ISR again. This means that the peripheral can
hold the interrupt signal asserted until it no longer requires servicing.

Hardware and software control of interrupts

The Cortex-M23 processor latches all interrupts. A peripheral interrupt becomes pending for
one of the following reasons:

• The NVIC detects that the interrupt signal is active and the corresponding interrupt is not
active.

• The NVIC detects a rising edge on the interrupt signal.

• Software writes to the corresponding interrupt set-pending register bit, see Interrupt
Set-pending Registers on page 4-6.

A pending interrupt remains pending until one of the following occurs:

• The processor enters the ISR for the interrupt. This changes the state of the interrupt from
pending to active. Then:
— For a level-sensitive interrupt, when the processor returns from the ISR, the NVIC

samples the interrupt signal. If the signal is asserted, the state of the interrupt
changes to pending, which might cause the processor to immediately reenter the
ISR. Otherwise, the state of the interrupt changes to inactive.

— For a pulse interrupt, the NVIC continues to monitor the interrupt signal, and if this
is pulsed the state of the interrupt changes to pending and active. In this case, when
the processor returns from the ISR the state of the interrupt changes to pending,
which might cause the processor to immediately reenter the ISR.
If the interrupt signal is not pulsed while the processor is in the ISR, when the
processor returns from the ISR the state of the interrupt changes to inactive.

• Software writes to the corresponding interrupt clear-pending register bit.
For a level-sensitive interrupt, if the interrupt signal is still asserted, the state of the
interrupt does not change. Otherwise, the state of the interrupt changes to inactive.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-9
ID062218 Non-Confidential

Cortex-M23 Peripherals
For a pulse interrupt, state of the interrupt changes to:
— Inactive, if the state was pending.
— Active, if the state was active and pending.

4.2.10 NVIC usage hints and tips

Ensure software uses correctly aligned register accesses. The processor does not support
unaligned accesses to NVIC registers.

An interrupt can enter pending state even if it is disabled. Disabling an interrupt only prevents
the processor from taking that interrupt.

Before programming VTOR to relocate the vector table, ensure the vector table entries of the
new vector table are set up for fault handlers, NMI, and all enabled exception like interrupts.
For more information, see Vector Table Offset Register on page 4-15.

NVIC programming hints

Software uses the CPSIE i and CPSID i instructions to enable and disable interrupts. The CMSIS
provides the following intrinsic functions for these instructions:

void __disable_irq(void) // Disable Interrupts
void __enable_irq(void) // Enable Interrupts

In addition, the CMSIS provides functions for NVIC control, listed in Accessing the
Cortex-M23 NVIC registers using CMSIS on page 4-4.

The input parameter IRQn is the IRQ number, see Table 2-13 on page 2-21 for more information.
For more information about these functions, see the CMSIS documentation.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-10
ID062218 Non-Confidential

Cortex-M23 Peripherals
4.3 System Control Space
The System Control Space (SCS) provides system implementation information, and system
control. This includes configuration, control, and reporting of the system exceptions. The SCS
registers are:

Note
 Depending on whether the Security Extension is implemented, some SCS registers can be
RAZ/WI.

4.3.1 The CMSIS mapping of the Cortex-M23 SCS registers

To improve software efficiency, the CMSIS simplifies the SCS register presentation. In the
CMSIS, SHP[0] accesses SHPR2 and SHP[1] accesses SHPR3.

Table 4-11 Summary of the SCS registers

Address Name Type Reset value Description

0xE000ED00 CPUID_S RO 0x410CD200 CPUID Register on page 4-12.

0xE002ED00 CPUID_NS RO 0x410CD200

0xE000ED04 ICSR_S RWa

a. See the register description for more information.

0x00000000 Interrupt Control and State Register on
page 4-12.

0xE002ED04 ICSR_NS 0x00000000

0xE000ED08 VTOR RW 0x00000000 Vector Table Offset Register on page 4-15.

0xE002ED08 VTOR_NS RW 0x00000000

0xE000ED0C AIRCR_S RWa 0xFA050000 Application Interrupt and Reset Control
Register on page 4-15.

0xE002ED0C AIRCR_NS 0xFA050000

0xE000ED10 SCR_S RW 0x00000000 System Control Register on page 4-17.

0xE002ED10 SCR_NS RW 0x00000000

0xE000ED14 CCR_S RW 0x00000204 Configuration and Control Register on
page 4-19.

0xE002ED14 CCR_NS RW 0x00000204

0xE000ED1C SHPR2_S RW 0x00000000 System Handler Priority Register 2 on
page 4-21.

0xE002ED1C SHPR2_NS RW 0x00000000

0xE000ED20 SHPR3_S RW 0x00000000 System Handler Priority Register 3 on
page 4-21.

0xE002ED20 SHPR3_NS RW 0x00000000

0xE000ED24 SHCSR_S RW 0x00000000 System Handler Control and State Register
on page 4-21.

0xE002ED24 SHCSR_NS RW 0x00000000

0xE000E008 ACTLR_S RW 0x00000000 Auxiliary Control Register on page 4-23.

0xE002E008 ACTLR_NS RW 0x00000000
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-11
ID062218 Non-Confidential

Cortex-M23 Peripherals
4.3.2 CPUID Register

The CPUID register contains the processor part number, version, and implementation
information. See the register summary in Table 4-11 on page 4-11 for its attributes. The bit
assignments are:

4.3.3 Interrupt Control and State Register

The ICSR:
• Provides:

— A set-pending bit for the Non-Maskable Interrupt (NMI) exception.
— Set-pending and clear-pending bits for the PendSV and SysTick exceptions.

• Indicates:
— The exception number of the highest priority pending exception.

This register is banked between Secure and Non-secure state on a bit by bit basis.

See the register summary in Table 4-11 on page 4-11 for the ICSR attributes.

Table 4-12 CPUID register bit assignments

Bits Name Function

[31:24] IMPLEMENTER Implementer code:
0x41 = Arm.

[23:20] VARIANT Major revision number n in the rnpm revision status:
0x1 = Revision 1.

[19:16] ARCHITECTURE Constant that defines the architecture of the processor:
0xC = Armv8-M architecture.

[15:4] PARTNO Part number of the processor:
0xD20 = Cortex-M23.

[3:0] REVISION Minor revision number m in the rnpm revision status:
0x0 = Patch 0.

31 16 15 4 3 0

IMPLEMENTER REVISIONPARTNO

24 23 20 19

VARIANT 1100
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-12
ID062218 Non-Confidential

Cortex-M23 Peripherals
The bit assignments are:

Table 4-13 ICSR bit assignments

Bits Name Type Function

[31] PENDNMISET WO NMI set-pending bit.
Write:
0 = No effect.
1 = Changes NMI exception state to pending.
Read:
0 = NMI exception is not pending.
1 = NMI exception is pending.
If AIRCR.BFHFNMINS is 0 this bit is RAZ/WI from
Non-secure state.

[30] PENDNMICLR WO/
RAZ

NMI bit-pending bit.
0 = No effect.
1 = Clear pending status.
If AIRCR.BFHFNMINS is 0 this bit is RAZ/WI from
Non-secure state.

[29] - - Reserved.

[28] PENDSVSET RW This bit is banked between security states.
PendSV set-pending bit.
Write:
0 = No effect.
1 = Sets the PendSV exception pending.
Read:
0 = PendSV exception is not pending.
1 = PendSV exception is pending.

[27] PENDSVCLR WO This bit is banked between security states.
PendSV clearing-pending bit.
0 = No effect.
1 = Clear pending status.

31 28 030 29 27 26 24 12 11

VECTPENDING

PENDNMISET

PENDSTSET
PENDSVCLR

VECTACTIVE

25

PENDSVSET

(0)

23 22 21 20 9 8

(0) RES0

PENDNMICLR

PENDSTCLR
STTNS
ISRPREEMPT
ISRPENDING
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-13
ID062218 Non-Confidential

Cortex-M23 Peripherals
[26] PENDSTSET RW This bit is banked between security states if two
SysTicks are implemented.
This bit is RAZ/WI from Non-secure state if one
SysTick is implemented and STTNS=0.
SysTick set-pending bit.
Write:
0 = No effect.
1 = Sets the SysTick exception pending for the selected
Security state.
Read:
0 = SysTick exception is not pending.
1 = SysTick exception is pending.

[25] PENDSTCLR WO This bit is banked between security states if two
SysTicks are implemented.
This bit is RAZ/WI from Non-secure state if one
SysTick is implemented and STTNS=0.
SysTick clear-pending bit.
0 = No effect.
1 = Clear pending status.

[24] STTNS RW SysTick Targets Non-secure bit.
When one SysTick is implemented:
0 = SysTick is Secure.
1 = SysTick is Non-secure.
This bit behaves as RAZ/WI when:
• Accessed from Non-secure state
• No SysTick is implemented.
• Two SysTicks are implemented.
• The Security Extension is not implemented.

[23] ISRPREEMPT RO Interrupt preempt bit.
0 = Will not service.
1 = Will service a pending exception.
When the debug extensions are not implemented, this bit
is RAZ/WI.

[22] ISRPENDING RO Interrupt pending bit.
0 = No external interrupt is pending.
1 = External interrupt is pending.
When the debug extensions are not implemented, this bit
is RAZ/WI.

[21] - - Reserved.

Table 4-13 ICSR bit assignments (continued)

Bits Name Type Function
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-14
ID062218 Non-Confidential

Cortex-M23 Peripherals
When you write to the ICSR, the effect is UNPREDICTABLE if you:
• Write 1 to the PENDSVSET bit and write 1 to the PENDSVCLR bit.
• Write 1 to the PENDSTSET bit and write 1 to the PENDSTCLR bit.

4.3.4 Vector Table Offset Register

The VTOR indicates the offset of the vector table base address from memory address
0x00000000. See the register summary in Table 4-14 for its attributes.

With the Security Extension implemented, the following occurs:

• Exceptions that target Secure state use VTOR_S to determine the base address of the
Secure vector table.

• Exceptions that target Non-secure state use VTOR_NS to determine the base address of
the Non-secure vector table.

The bit assignments are:

4.3.5 Application Interrupt and Reset Control Register

The AIRCR provides endian status for data accesses and reset control of the system. See the
register summary in Table 4-11 on page 4-11 and Table 4-15 on page 4-16 for its attributes.

[20:12] VECTPENDING RO Vector pending bit.
0 = No pending and enabled exception.
Non-zero = Exception number.

[11:9] - - Reserved.

[8:0] VECTACTIVE RO Vector active bit.
0 = Thread mode.
Non-zero = Exception number.
When the debug extensions are not implemented, this bit
is RAZ/WI.

Table 4-13 ICSR bit assignments (continued)

Bits Name Type Function

Table 4-14 VTOR bit assignments

Bits Name Function

[31:7] TBLOFF Vector table base offset field. It contains bits[31:7] of the
offset of the table base from the bottom of the memory map.a

a. The last bit of the Exception number bit field depends on the number of interrupts
implemented.
0-47 interrupts = [31:7].
48-111 interrupts = [31:8].
112-239 interrupts = [31:9].

[6:0] - Reserved.

31 6 0

TBLOFF Reserved

7

DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-15
ID062218 Non-Confidential

Cortex-M23 Peripherals
To write to this register, you must write 0x05FA to the VECTKEY field, otherwise the processor
ignores the write.

This register is banked between Secure and Non-secure state on a bit by bit basis.

The bit assignments are:

Table 4-15 AIRCR bit assignments

Bits Name Function

[31:16] VECTKEY Vector key bits.
On writes, write 0x05FA to VECTKEY, otherwise the write is
ignored.
This bit is not banked between Security states.

[31:16] VECTKEYSTAT Vector key status bits.
On reads, this field reads as 0xFA05.

[15] ENDIANESS Data endianness bits.
0 = Little-endian.
1 = Big-endian.
This bit is not banked between Security states.

[14] PRIS Priority Secure exceptions bit.
0 = Priority ranges of Secure and Non-secure exceptions are
identical.
1 = Non-secure exceptions are de-prioritized.
This bit is not banked between Security states and it is RES0
when the Security Extension is not implemented.

[13] BFHFNMINS BusFault, HardFault, and NMI Non-secure enable bit.
0 = BusFault, HardFault, and NMI are Secure.
1 = BusFault and NMI are Non-secure and exceptions can
target Non-secure HardFault.
This bit is not banked between Security states it is RES0
when the Security Extension is not implemented.

[12:4] - Reserved.

[13] SYSRESETREQS System reset request Secure only bit.
0 = SYSRESETREQ functionality is available to both
security states.
1 = SYSRESETREQ functionality is available to Secure
state.
This bit is not banked between security states.
In Secure state, this bit is RAZ/WI.

ReservedOn read: VECTKEYSTAT
On write: VECTKEY

31 16 15 14 3 2 1 0

ENDIANESS

SYSRESETREQS
SYSRESETREQ
VECTCLRACTIVE

13 12 4

(0)

PRIS
BFHFNMINS
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-16
ID062218 Non-Confidential

Cortex-M23 Peripherals
4.3.6 System Control Register

The SCR controls features of entry to and exit from low-power state. See the register summary
in Table 4-11 on page 4-11 for its attributes.

This register is banked between Secure and Non-secure state on a bit by bit basis.

[2] SYSRESETREQ System reset request bit.
0 = Do not request a system reset.
1 = Request a system reset.
This bit is not banked between security states.

[1] VECTCLRACTIVE Clear active state bit.
0 = Do not clear active state.
1 = Clear active state.
This bit is WO and can only be written when the processor
is in Halt state.
This bit is not banked between security states.

[0] - Reserved.

Table 4-15 AIRCR bit assignments (continued)

Bits Name Function
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-17
ID062218 Non-Confidential

Cortex-M23 Peripherals
The bit assignments for SCR_S and SCR_NS are:

Table 4-16 SCR bit assignments

Bits Name Function

[31:5] - Reserved.

[4] SEVONPEND This bit is banked between security states.
Send Event on Pending bit:
0 = Only enabled interrupts or events can wakeup the
processor, disabled interrupts are excluded.
1 = Enabled events and all interrupts, including disabled
interrupts, can wakeup the processor.
When an event or interrupt becomes pending, the event
signal wakes up the processor from WFE. If the processor is
not waiting for an event, the event is registered and affects
the next WFE.
The processor also wakes up from WFE on execution of an
SEV instruction or an external event.

[3] SLEEPDEEPS Controls whether the SLEEPDEEP bit is only accessible
from the Secure state:
0 = The SLEEPDEEP bit is accessible from both security
states.
1 = The SLEEPDEEP bit behaves as RAZ/WI when
accessed from the Non-secure state.

[2] SLEEPDEEP Controls whether the processor uses sleep or deep sleep as
its low-power mode:
0 = Sleep.
1 = Deep sleep.
This bit is not banked between security states.

[1] SLEEPONEXIT This bit is banked between security states.
Indicates sleep-on-exit when returning from Handler mode
to Thread mode:
0 = Do not sleep when returning to Thread mode.
1 = Enter sleep, or deep sleep, on return from an ISR to
Thread mode.
Setting this bit to 1 enables an interrupt driven application to
avoid returning to an empty main application.

[0] - Reserved.

31 4 3 2 1 0

Reserved

SLEEPDEEPS
SLEEPDEEP

SLEEPONEXIT
Reserved

5

SEVONPEND
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-18
ID062218 Non-Confidential

Cortex-M23 Peripherals
4.3.7 Configuration and Control Register

The CCR is a read-only register and indicates some aspects of the behavior of the Cortex-M23
processor. See the register summary in Table 4-11 on page 4-11 for the CCR attributes.

This register is banked between Secure and Non-secure state.

The bit assignments for CCR_S and CCR_NS are:

4.3.8 System Handler Priority Registers

The SHPR2-SHPR3 registers set the priority level, 0 to 192, of the system exception handlers
that have configurable priority.

The SHPR2-SHPR3 registers are word accessible. See the register summary in Table 4-11 on
page 4-11 for their attributes.

To access the system exception priority level using CMSIS, use the following CMSIS functions:
• uint32_t NVIC_GetPriority(IRQn_Type IRQn)

• void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)

Reserved

31 10 9 8 4 3 2 011 7

BP
IC

DC

Reserved
UNALIGN_TRP
DIV_0_TRP

Reserved

5

BFHFNMIGN

STKOFHFNMIGN
Reserved

1516171819

Reserved

Table 4-17 CCR bit assignments

Bits Name Function

[31:19] - Reserved.

[18] BP RAZ/WI.

[17] IC RAZ/WI.

[16] DC RAZ/WI.

[15:11] - Reserved.

[10] STKOFHFNMIGN 0 = RAZ/WI.

[9] - RES1.

[8] BFHFNMIGN 0 = RAZ/WI.

[7:5] - Reserved.

[4] DIV_0_TRP RAZ/WI.

[3] UNALIGN_TRP 1 = RAO/WI.

[2:0] - Reserved.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-19
ID062218 Non-Confidential

Cortex-M23 Peripherals
The input parameter IRQn is the IRQ number, see Table 2-13 on page 2-21 for more information.

The system handlers, and the priority field and register for each handler are:

Each PRI_N field is 8 bits wide, but the processor implements only bits[7:6] of each field.
Bits[5:0] read as zero and ignore writes.

If one SysTick is implemented, the SysTick handler is not banked. In this case, STTNS indicates
whether it can be written by Non-secure or not.

If two SysTicks are implemented, the SysTick handler is banked between security states.

The SVCall and PendSV handlers are always banked between security states.

Priorities values depend on the value of PRIS, as described in Extended priority on page 2-24.

Table 4-18 System fault handler priority fields

Handler Field Register description

SVCall PRI_11 System Handler Priority Register 2 on page 4-21.

PendSV PRI_14 System Handler Priority Register 3 on page 4-21.

SysTick PRI_15
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-20
ID062218 Non-Confidential

Cortex-M23 Peripherals
System Handler Priority Register 2

This register is banked between Secure and Non-secure state.

The bit assignments for SHPR2_S and SHPR2_NS are:

System Handler Priority Register 3

This register is banked between Secure and Non-secure state.

The bit assignments for SHPR3_S and SHPR3_NS are:

4.3.9 System Handler Control and State Register

The SHCSR provides access to the active and pending status of system exceptions.

This register is banked between Secure and Non-secure state on a bit by bit basis.

Table 4-19 SHPR2 register bit assignments

Bits Name Function

[31:24] PRI_11 Priority of system handler 11, SVCall.

[23:0] - Reserved.

Table 4-20 SHPR3 register bit assignments

Bits Name Function

[31:24] PRI_15 Priority of system handler 15, SysTick exceptiona.

a. This is Reserved when the SysTick timer is not implemented.
If the Security Extension and two SysTicks are implemented, it is banked
between security states. If the Security Extension, one SysTick is implemented,
and STTNIS is 1, then it is RAZ/WI from Non-secure state.

[23:16] PRI_14 Priority of system handler 14, PendSV.

[15:0] - Reserved.

31 24 23 0

PRI_11 Reserved

PRI_15

31 15 01624 23

PRI_14 Reserved
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-21
ID062218 Non-Confidential

Cortex-M23 Peripherals
The bit assignments for SHCSR_S and SHCSR_NS are:

Table 4-21 SHCSR bit assignments

Bits Name Function

[31:22] - Reserved.

[21] HARDFAULTPENDED This bit is banked between security states.
HardFault exception pended state bit.
0 = HardFault exception is not pending for the selected security state.
1 = HardFault exception is pending for the selected security state.
If AIRCR.BFHFNMINS is set to zero, the Non-secure HardFault
exception does not preempt.

[20:16] - Reserved.

[15] SVCALLPENDED This bit is banked between security states.
SVCall exception pended state bit.
0 = SVCall exception is not pending for the selected security state.
1 = SVCall exception is pending for the selected security state.

[14:12] - Reserved.

[11] SYSTICKACT If two SysTick timers are implemented, this bit is banked between
security states.
SysTick exception active state bit.
0 = SysTick exception is not active for the selected security state.
1 = SysTick exception is active for the selected security state.
If less than two SysTick timers are implemented when the Security
Extension is implemented, this bit is not banked between Security states,
and if AIRCR.STTNS is zero this bit is RAZ/WI from Non-secure state.

[10] PENDSVACT This bit is banked between security states.
PendSV exception active state bit.
0 = PendSV exception is not active for the selected security state.
1 = PendSV exception is active for the selected security state.

[9:8] - Reserved.

[7] SVCALLACT This bit is banked between security states.
SVCall exception active state bit.
0 = SVCall exception is not active for the selected security state.
1 = SVCall exception is active for the selected security state.

[6] - Reserved.

31 3 1 0

HARDFAULTACT
Reserved

14 11 10 8 2

Reserved
NMIACT
Reserved

12

SVCALLACT

Reserved

456715

HARDFAULTPENDED

16202122

Reserved

SVCALLPENDED
Reserved

SYSTICKACT
PENDSVACT

Reserved

9

DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-22
ID062218 Non-Confidential

Cortex-M23 Peripherals
4.3.10 Auxiliary Control Register

The ACTLR contains several fields that allow software to control the processor features and
functionality.

The bit assignments are:

4.3.11 SCS usage hints and tips

Ensure software uses aligned 32-bit word size transactions to access all the SCS registers.

[5] NMIACT NMI exception active state bit.
0 = NMI exception is not active.
1 = NMI exception is active.

[4:3] - Reserved.

[2] HARDFAULTACT This bit is banked between security states.
HardFault exception active state bit.
0 = HardFault exception is not active for the selected security state.
1 = HardFault exception is active for the selected security state.

[1:0] - Reserved.

Table 4-21 SHCSR bit assignments (continued)

Bits Name Function

Table 4-22 ACTLR bit assignments

Bits Name Function

[31:30] - RAZ/WI.

[29] EXTEXCLALL 0 = LDREX and STREX instructions use the global monitor when
hitting in a shared region, either in the default memory map,
or in a shared MPU region.

Note
 Shared region: Accesses to Device regions in the ranges
0x40000000-0x5fffffff and 0xc0000000-0xffffffff do not use
the Global Exclusive Monitor when
ACTLR.EXTEXCLALL is 0 and the default memory map is
used.

1 = LDREX and STREX instructions always use the global
exclusive monitor.

[28:0] - RAZ/WI.

31 0

Reserved

2930 28

EXTEXCLALL
Reserved
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-23
ID062218 Non-Confidential

Cortex-M23 Peripherals
4.4 System timer, SysTick
If the Security Extension is not implemented, SysTick timers can be present or absent. You can
configure your Cortex-M23 processor to have up to two SysTick timers.

If the Security Extension is implemented, SysTick timers can be present for Secure state, present
for both Secure and Non-secure states, or absent.

When enabled, the timer counts down from the reload value to zero, reloads (wraps to) the value
in the SYST_RVR on the next clock cycle, then decrements on subsequent clock cycles. Writing
a value of zero to the SYST_RVR disables the counter on the next wrap. When the counter
transitions to zero, the COUNTFLAG status bit is set to 1. Reading SYST_CSR clears the
COUNTFLAG bit to 0. Writing to the SYST_CVR clears the register and the COUNTFLAG
status bit to 0. The write does not trigger the SysTick exception logic. Reading the register
returns its value at the time it is accessed.

Note
 When the processor is halted for debugging, the counter does not decrement.

The system timer registers are:

Note
 In a processor without Security Extension and the SysTick timer absent, the System timer
registers are RAZ/WI.

4.4.1 SysTick Control and Status Register

The SYST_CSR controls the SysTick timer and provides status data for the selected Security
state. See the register summary in Table 4-23 for its attributes.

In a processor with Security Extension, this register is banked between Secure and Non-secure
state if two SysTick timers are implemented.

Table 4-23 System timer registers summary

Address Name Type Reset value Description

0xE000E010 SYST_CSR RW 0x00000000 SysTick Control and Status Register.

0xE000E014 SYST_RVR RW Unknown SysTick Reload Value Register on page 4-25.

0xE000E018 SYST_CVR RW Unknown SysTick Current Value Register on page 4-26.

0xE000E01C SYST_CALIB RO 0xC0000000a SysTick Calibration Value Register on page 4-26.

a. SysTick calibration value.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-24
ID062218 Non-Confidential

Cortex-M23 Peripherals
The bit assignments for SYST_CSR_S and SYST_CSR_NS are:

4.4.2 SysTick Reload Value Register

The SYST_RVR specifies the SysTick timer counter reload value for the selected Security state.
See the register summary in Table 4-23 on page 4-24 for its attributes.

In a processor with Security Extension, this register is banked between Secure and Non-secure
state if two SysTick timers are implemented.

The bit assignments for SYST_RVR_S and SYST_RVR_NS are:

Table 4-24 SYST_CSR bit assignments

Bits Name Function

[31:17] - Reserved.

[16] COUNTFLAG Returns 1 if timer counted to 0 since the last read of this register.

[15:3] - Reserved.

[2] CLKSOURCE Selects the SysTick timer clock source:
0 = External reference clock.
1 = Processor clock.

[1] TICKINT Enables SysTick exception request:
0 = Counting down to zero does not assert the SysTick exception
request.
1 = Counting down to zero asserts the SysTick exception request.

[0] ENABLE Enables the counter:
0 = Counter disabled.
1 = Counter enabled.

0Reserved

31 17 16 15 3 2 1 0

Reserved 0 0

COUNTFLAG CLKSOURCE
TICKINT
ENABLE

Table 4-25 SYST_RVR bit assignments

Bits Name Function

[31:24] - Reserved

[23:0] RELOAD Value to load into the SYST_CVR when the counter is enabled and when it
reaches 0, see Calculating the RELOAD value on page 4-26.

31 0

RELOADReserved

2324
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-25
ID062218 Non-Confidential

Cortex-M23 Peripherals
Calculating the RELOAD value

The RELOAD value can be any value in the range 0x00000001-0x00FFFFFF. You can program a
value of 0, but this has no effect because the SysTick exception request and COUNTFLAG are
activated when counting from 1 to 0.

To generate a multi-shot timer with a period of N processor clock cycles, use a RELOAD value
of N-1. For example, if the SysTick interrupt is required every 100 clock pulses, set RELOAD
to 99.

4.4.3 SysTick Current Value Register

The SYST_CVR contains the current value of the SysTick counter. See the register summary in
Table 4-23 on page 4-24 for its attributes.

In a processor with Security Extension, this register is banked between Secure and Non-secure
state if two SysTick timers are implemented.

The bit assignments for SYST_CVR_S and SYST_CVR_NS are:

4.4.4 SysTick Calibration Value Register

The SYST_CALIB register indicates the SysTick calibration value and parameters for the
selected Security state. See the register summary in Table 4-23 on page 4-24 for its attributes.

In a processor with Security Extension, this register is banked between Secure and Non-secure
state if two SysTick timers are implemented.

Table 4-26 SYST_CVR bit assignments

Bits Name Function

[31:24] - Reserved.

[23:0] CURRENT Reads return the current value of the SysTick counter.
If only one SystTick timer is implemented and ICSR.STTNS is
clear, this field is RAZ/WI from Non-secure.
If no SystTick timer is implemented this field is reserved.
A write of any value clears the field to 0, and also clears the
SYST_CSR.COUNTFLAG bit to 0.

31 0

CURRENTReserved

2324
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-26
ID062218 Non-Confidential

Cortex-M23 Peripherals
The bit assignments for SYST_CALIB_S and SYST_CALIB_NS are:

If calibration information is not known, calculate the calibration value required from the
frequency of the processor clock or external clock.

4.4.5 SysTick usage hints and tips

The interrupt controller clock updates the SysTick counter. If this clock signal is stopped for
low-power mode, the SysTick counter stops.

Ensure software uses word accesses to access the SysTick registers.

If the SysTick counter reload and current value are undefined at reset, the correct initialization
sequence for the SysTick counter is:
1. Program reload value.
2. Clear current value.
3. Program Control and Status register.

Table 4-27 SYST_CALIB register bit assignments

Bits Name Function

[31] NOREF Reads as one. Indicates that no separate reference clock is provided.

[30] SKEW Reads as one. Calibration value for the 10ms inexact timing is not known
because TENMS is not known. This can affect the suitability of SysTick as
a software real-time clock.

[29:24] - Reserved.

[23:0] TENMS Reads as zero. Indicates calibration value is not known.

31 0

TENMSReserved

232430

SKEW
NOREF

29
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-27
ID062218 Non-Confidential

Cortex-M23 Peripherals
4.5 Security Attribution and Memory Protection
This section describes the security attribution and memory protection that the processor uses.
The Protection Unit consists of the optional Security Attribution Unit (SAU) and the optional
Memory Protection Unit (MPU).

The Cortex-M23 processor has an optional Security Attribution Unit (SAU) and Memory
Protection Unit (MPU) that provide fine grain memory control, enabling applications to use
multiple privilege levels, separating and protecting code, data, and stack on a task-by-task basis.
Such requirements are becoming critical in many embedded applications such as automotive
systems.

4.5.1 Security Attribution Unit

If the Armv8-M Security Extension is implemented, the system can contain an SAU. The SAU
determines the security of an address.

For instructions, the SAU returns the security attribute (Secure or Non-secure) and identifies
whether the instruction address is in a Non-secure callable region.

For data, the SAU returns the security attribute and checks whether both the security of the core
and the target address are Non-secure.

When a memory access is performed, the SAU is required. Any address that matches multiple
SAU regions is marked as Secure regardless of the attributes that are specified by the regions
that matched the address.

The following table shows the SAU registers.

Table 4-28 SAU registers

Address Name Type Reset value Description

0xE000EDD0 SAU_CTRL RW 00000000a See Security Attribution Unit
Control Register on page 4-29. This
is the reset value in Secure state. In
Non-secure state this register is
RAZ/WI.

0xE000EDD4 SAU_TYPE RO 00000000 See Security Attribution Unit Type
Register on page 4-30. This is the
reset value in Secure state. In
Non-secure state this register is
RAZ/WI.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-28
ID062218 Non-Confidential

Cortex-M23 Peripherals
Note
 • Only Privileged accesses to the SAU registers are permitted. Unprivileged accesses

generate a fault.

• The SAU registers are word accessible only. Halfword and byte accesses are
UNPREDICTABLE.

• The SAU registers are RAZ/WI when accessed from Non-secure state.

• The SAU registers are not banked between Security states.

4.5.2 Security Attribution Unit Control Register

The SAU_CTRL allows enabling of the Security Attribution Unit.

0xE000EDD8 SAU_RNR RW UNKNOWN See Security Attribution Unit
Region Number Register on
page 4-31. In Non-secure state this
register is RAZ/WI.
With the Security Extension
implemented, if the number of SAU
regions is 0, then only
SAU_CTRL.ALLNS is writable.

0xE000EDDC SAU_RBAR RW UNKNOWN See Security Attribution Unit
Region Base Address Register on
page 4-31. In Non-secure state this
register is RAZ/WI.

0xE000EDE0 SAU_RLAR RW Bit[0] resets to 0.
Other bits reset to an
UNKNOWN value.

See Security Attribution Unit
Region Limit Address Register on
page 4-31. This is the reset value in
Secure state. In Non-secure state
this register is RAZ/WI.

a. This is the reset value when the Security Extension is implemented. If the Security Extension is not implemented,
the reset value is 00000002.

Table 4-28 SAU registers (continued)

Address Name Type Reset value Description
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-29
ID062218 Non-Confidential

Cortex-M23 Peripherals
The SAU_CTRL bit assignments are:

4.5.3 Security Attribution Unit Type Register

The SAU_TYPE indicates the number of regions implemented by the Security Attribution Unit.

The SAU_TYPE bit assignments are:

Table 4-29 SAU_CTRL bit assignments

Bits Name Function

[31:2] - Reserved.

[1] ALLNS All Non-secure. When SAU_CTRL.ENABLE is 0 this bit
controls if the memory is marked as Non-secure or Secure.
The possible values of this bit are:
0 = Memory is marked as Secure and is not Non-secure callable.
1 = Memory is marked as Non-secure.
This bit is RAO/WI when the Security Extension is not
implemented.
This bit is writable when the Security Extension is implemented
with an SAU with zero region.
Write this bit after a reset to allow regions to become
Non-secure, depending on the IDAU.

[0] ENABLE Enable. Enables the SAU.
The possible values of this bit are:
0 = The SAU is disabled.
1 = The SAU is enabled.
This bit is RAZ/WI when the Security Extension is not
implemented or when the Security Extension is implemented
without an SAU region.

31 2 1 0

Reserved

ALLNS

ENABLE

Table 4-30 SAU_TYPE bit assignments

Bits Name Function

[31:8] - Reserved.

[7:0] SREGION SAU regions. The number of implemented SAU regions.

31 7 0

Reserved

8

SREGION
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-30
ID062218 Non-Confidential

Cortex-M23 Peripherals
4.5.4 Security Attribution Unit Region Number Register

The SAU_RNR selects the region currently accessed by SAU_RBAR and SAU_RLAR.

The SAU_RNR bit assignments are:

4.5.5 Security Attribution Unit Region Base Address Register

The SAU_RBAR provides indirect read and write access to the base address of the currently
selected SAU region.

The SAU_RBAR bit assignments are:

4.5.6 Security Attribution Unit Region Limit Address Register

The SAU_RLAR provides indirect read and write access to the limit address of the currently
selected SAU region.

31 0

RES0

78

REGION

Table 4-31 SAU_RNR bit assignments

Bits Name Function

[31:8] - Reserved.

[7:0] REGION Region number. Indicates the SAU region accessed by
SAU_RBAR and SAU_RLAR.
If no SAU regions are implemented, this field is reserved.
Writing a value corresponding to an unimplemented region is
CONSTRAINED UNPREDICTABLE.
This field resets to an UNKNOWN value on a Warm reset.

Table 4-32 SAU_RBAR bit assignments

Bits Name Function

[31:5] BADDR Base address. Holds bits [31:5] of the base address for the
selected SAU region.
Bits [4:0] of the base address are defined as 0x00.

[4:0] - Reserved.

31 045

ReservedBADDR
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-31
ID062218 Non-Confidential

Cortex-M23 Peripherals
The SAU_RLAR bit assignments are:

4.5.7 Memory Protection Unit

The MPU is divided into regions and defines the location, size, access permissions, and memory
attributes of each region. It supports:
• Independent attribute settings for each region.
• Export of memory attributes to the system.

If the Cortex-M23 processor implements the Security Extensions, it contains:
• One optional Secure MPU.
• One optional Non-secure MPU.

When memory regions overlap, the processor generates a fault if a core access hits the
overlapping regions.

The MPU memory map is unified. This means instruction accesses and data accesses have the
same region settings.

If a program accesses a memory location that is prohibited by the MPU, the processor generates
a HardFault exception. In an OS environment, the kernel can update the MPU region setting
dynamically based on the process to be executed. Typically, an embedded OS uses the MPU for
memory protection.

Configuration of MPU regions is based on memory types, see Memory regions, types, and
attributes on page 2-11.

Table 4-33 SAU_RLAR bit assignments

Bits Name Function

[31:5] LADDR Limit address. Holds bits [31:5] of the limit address for the
selected SAU region.
Bits [4:0] of the limit address are defined as 0x1F.

[4:2] - Reserved.

[1] NSC Non-secure callable. Controls whether Non-secure state is
permitted to execute an SG instruction from this region.
The possible values of this bit are:
0 = Region is not Non-secure callable.
1 = Region is Non-secure callable.

[0] ENABLE Enable. SAU region enable.
The possible values of this bit are:
0 = SAU region is enabled.
1 = SAU region is disabled.
This bit reset to 0 on a warm reset.

31 4 2 1 0

LADDR

Reserved

ENABLE

5

NSC
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-32
ID062218 Non-Confidential

Cortex-M23 Peripherals
Table 4-34 shows the possible MPU region attributes. These include Shareability and cache
behavior attributes that are not relevant to most microcontroller implementations. See MPU
configuration for a microcontroller on page 4-42 for guidelines for programming such an
implementation.

Use the MPU registers to define the MPU regions and their attributes. Table 4-35 shows the
MPU registers.

4.5.8 MPU Type Register

The MPU_TYPE register indicates whether the MPU is present, and if so, how many regions it
supports.

Table 4-34 Memory attributes summary

Memory type Shareability Other attributes Description

Device, nGnRE - - All accesses to Device, nGnRE memory occur in
program order. All Strongly ordered regions are
assumed to be shared.

Device Shared - Memory-mapped peripherals that several processors
share.

Normal Shared Non-cacheable
Write-Through
Cacheable Write-Back
Cacheable

Normal memory that is shared between several
processors.

Non-shared Non-cacheable
Write-Through
Cacheable Write-Back
Cacheable

Normal memory that only a single processor uses.

Table 4-35 MPU registers summary

Address Name Type Reset Value Description

0xE000ED90 MPU_TYPE RO The reset value is fixed
and depends on the value
of bits[15:8] which
depends on
implementation options.

See MPU Type Register.

0xE000ED94 MPU_CTRL RW 0x00000000 See MPU Control Register on page 4-34.

0xE000ED98 MPU_RNR RW UNKNOWN See MPU Region Number Register on page 4-36.

0xE000ED9C MPU_RBAR RW UNKNOWN See MPU Region Base Address Register on
page 4-36.

0xE000EDA0 MPU_RLAR RW UNKNOWN See MPU Region Limit Address Register on
page 4-37.

0xE000EDC0 MPU_MAIR0 RW UNKNOWN See MPU Memory Attribute Indirection Register 0
and MPU Memory Attribute Indirection Register 1
on page 4-38.0xE000EDC4 MPU_MAIR1 RW UNKNOWN
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-33
ID062218 Non-Confidential

Cortex-M23 Peripherals
The MPU_TYPE bit assignments are:

4.5.9 MPU Control Register

The MPU_CTRL register enables the MPU. When the MPU is enabled, it controls:

• Whether the default memory map is enabled as a background region for privileged
accesses.

• Whether the MPU is enabled for HardFaults, and NMIs.

Table 4-36 MPU_TYPE bit assignments

Bits Name Function

[31:16] - Reserved.

[15:8] DREGION Data regions. Number of regions supported by the MPU.
0x00 = Zero regions if your device does not include the MPU.
0x8= Eight regions if your device includes the MPU. This value
is implementation defined.

[7:1] - Reserved.

[0] SEPARATE Indicates support for unified or separate instructions and data
address regions.
Armv8-M only supports unified MPU regions.
0 = Unified.

Reserved

31 16 15 8 7 1 0

DREGION Reserved

SEPARATE
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-34
ID062218 Non-Confidential

Cortex-M23 Peripherals
The MPU_CTRL bit assignments are:

XN and Strongly ordered rules always apply to the System Control Space regardless of the value
of the ENABLE bit.

When the ENABLE bit is set to 1, at least one region of the memory map must be enabled for
the system to function unless the PRIVDEFENA bit is set to 1. If the PRIVDEFENA bit is set
to 1 and no regions are enabled, then only privileged software can operate.

When the ENABLE bit is set to 0, the system uses the default memory map. This has the same
behavior as if the MPU is not implemented, see Memory access behavior on page 2-14. The
default memory map applies to accesses from both privileged and unprivileged software.

When the MPU is enabled, accesses to the System Control Space and vector table are always
permitted. Other areas are accessible based on regions and whether PRIVDEFENA is set to 1.

Table 4-37 MPU_CTRL bit assignments

Bits Name Function

[31:3] - Reserved.

[2] PRIVDEFENA Enables privileged software access to the default memory map.
When the MPU is enabled:
0 = Disables use of the default memory map. Any memory
access to a location not covered by any enabled region causes a
fault.
1 = Enables use of the default memory map as a background
region for privileged software accesses.
When enabled, the background region acts as if it is region
number -1. Any region that is defined and enabled has priority
over this default map.If the MPU is disabled, the processor
ignores this bit.

[1] HFNMIENA Enables the operation of MPU during HardFault and NMI
handlers.
When the MPU is enabled:
0 = MPU is disabled during HardFault and NMI handlers,
regardless of the value of the ENABLE bit.
1 = The MPU is enabled during HardFault and NMI handlers.
When the MPU is disabled, if this bit is set to 1 the behavior is
UNPREDICTABLE.

[0] ENABLE Enables the MPU:
0 = MPU is disabled.
1 = MPU is enabled.

31 1 0

Reserved

HFNMIENA
ENABLE

2

PRIVDEFENA

3

DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-35
ID062218 Non-Confidential

Cortex-M23 Peripherals
Unless HFNMIENA is set to 1, the MPU is not enabled when the processor is executing the
handler for an exception with priority –1, –2, or –3. These priorities are only possible when
handling a HardFault or NMI exception. Setting the HFNMIENA bit to 1 enables the MPU
when operating with these priorities.

4.5.10 MPU Region Number Register

The MPU_RNR selects the region currently accessed by MPU_RBAR and MPU_RLAR.

The MPU_RNR bit assignments are:

You need to write the required region number to this register before accessing the MPU_RBAR
or MPU_RASR.

4.5.11 MPU Region Base Address Register

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR, and
writes to this register can update the value of the MPU_RNR.

Write MPU_RBAR with the VALID bit set to 1 to change the current region number and update
the MPU_RNR.

Table 4-38 MPU_RNR bit assignments

Bits Name Function

[31:8] - Reserved.

[7:0] REGION Regions. Indicates the memory region accessed by
MPU_RBAR and PMU_RLAR.
If no MPU region is implemented, this field is reserved. Writing
a value corresponding to an unimplemented region is
CONSTRAINED UNPREDICTABLE.

Reserved

31 8 7 0

REGION
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-36
ID062218 Non-Confidential

Cortex-M23 Peripherals
The MPU_RBAR bit assignments are:

4.5.12 MPU Region Limit Address Register

The MPU_RLAR provides indirect read and write access to the limit address of the currently
selected MPU region for the selected Security state.

Table 4-39 MPU_RBAR bit assignments

Bits Name Function

[31:5] BASE Contains bits [31:5] of the lower inclusive limit of the selected
MPU memory region. This value is zero extended to provide the
base address to be checked against.

[4:3] SH Shareability. Defines the shareability domain of this region for
Normal memory.
0b00 Non-shareable.
0b01 UNPREDICTABLE.
0b10 Outer shareable.
0b11 Inner shareable.
All other values are reserved.
For any type of Device memory, the value of this field is
ignored.

[2:1] AP[2:1] Access permissions.
0b00 Read/write by privileged code only.
0b01 Read/write by any privilege level.
0b10 Read-only by privileged code only.
0b11 Read-only by any privilege level.

[0] XN Execute never. Defines whether code can be executed from this
region.
0 Execution not permitted.
1 Execution only permitted if read permitted.

BASE

31 5 04

AP[2:1]
SH

3 2 1

XN
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-37
ID062218 Non-Confidential

Cortex-M23 Peripherals
The MPU_RLAR bit assignments are:

4.5.13 MPU Memory Attribute Indirection Register 0 and MPU Memory Attribute Indirection Register 1

The MPU_MAIR0 and MPU_MAIR1 provide the memory attribute encodings corresponding
to the AttrIndex values.

The MPU_MAIR0 bit assignments are:

Attr<n>, bits [8n+7:8n], for n= 0 to 3. Memory attribute encoding for MPU regions with an
AttrIndex of n.

The MPU_MAIR1 bit assignments are:

Attr<n>, bits [8(n-4)+7:8(n-4)], for n = 4 to 7 Memory attribute encoding for MPU regions
with an AttrIndex of n.

MAIR_ATTR defines the memory attribute encoding used in MPU_MAIR0 and MPU_MAIR1,
and the bit assignments are:

Table 4-40 MPU_RLAR bit assignments

Bits Name Function

[31:5] LIMIT Limit address. Contains bits[31:5] of the upper inclusive limit of
the selected MPU memory region.
This value is postfixed with 0x1F to provide the limit address to
be checked against.

[4] - Reserved.

[3:1] AttrIndx Attribute index. Associates a set of attributes in the
MPU_MAIR0 and MPU_MAIR1 fields.

[0] EN Enable. Region enable.
The possible values of this bit are:
0 Region disabled.
1 Region enabled.

31 4 3 1 0

LIMIT

5

(0) AttrIndx EN

31 0

Attr3 Attr2 Attr1 Attr0

7815162324

31 0

Attr7 Attr6 Attr5 Attr4

7815162324
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-38
ID062218 Non-Confidential

Cortex-M23 Peripherals
When MAIR_ATTR[7:4] is 0000:

Table 4-41 MAIR_ATTR values for bits[3:2] when MAIR_ATTR[7:4] is 0000

Bits Name Function

[3:2] Device Device attributes. Specifies the memory attributes for
Device.The possible values of this field are:
0b00 Device-nGnRnE.
0b01 Device-nGnRE.
0b10 Device-nGRE.
0b11 Device-GRE.

0

0000

7 4 3 2 1

Device

00
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-39
ID062218 Non-Confidential

Cortex-M23 Peripherals
When MAIR_ATTR[7:4] is not 0000:

4.5.14 MPU mismatch

When access violates the MPU permissions, the processor generates a HardFault.

If BFHFNMINS = 0, Hardfaults are always Secure.

If BFHFNMINS = 1, MPU faults are Secure or Non-secure depending on the MPU that is
accessed.

This means that Non-secure code and Secure code can both access a Non-secure MPU. This
depends on the SAU or IDAU programming and on the data or instruction.

If the SAU detects a fault, then this fault has priority over MPU faults.

Table 4-42 MAIR_ATTR bit assignments when MAIR_ATTR[7:4] is not 0000

Bits Name Function

[7:4] Outer Outer attributes. Specifies the Outer memory attributes. The
possible values of this field are:
0b0000 Device memory. In this case, refer to

MAIR_ATTR values for bits[3:2] when
MAIR_ATTR[7:4] is 0000 on page 4-39.

0b00RW Normal memory, Outer write-through transient
(RW is not 00).

0b0100 Normal memory, Outer non-cacheable.
0b01RW Normal memory, Outer write-back transient

(RW is not 00).
0b10RW Normal memory, Outer write-through

non-transient.
0b11RW Normal memory, Outer write-back

non-transient.
R and W specify the outer read and write allocation policy: 0 =
do not allocate, 1 = allocate.

[3:0] Inner Inner attributes. Specifies the Inner memory attributes. The
possible values of this field are:
0b0000 UNPREDICTABLE.
0b00RW Normal memory, Inner write-through transient

(RW is not 00).
0b0100 Normal memory, Inner non-cacheable.
0b01RW Normal memory, Inner write-back transient

(RW is not 00).
0b10RW Normal memory, Inner write-through

non-transient.
0b11RW Normal memory, Inner write-back

non-transient.
R and W specify the outer read and write allocation policy: 0 =
do not allocate, 1 = allocate.

0

Outer

7 4 3

Inner
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-40
ID062218 Non-Confidential

Cortex-M23 Peripherals
If BFHFNMINS = 1 and the MPU fault is Secure, then this triggers a Secure HardFault.

4.5.15 Updating an MPU region

To update the attributes for an MPU region, update the MPU_RNR, MPU_RBAR and
MPU_RASR registers.

Updating an MPU region

Simple code to configure one region:

; R1 = region number
; R2 = base address, permissions and shareability
; R3 = limit address, attributes index and enable
LDR R0,=MPU_RNR
STR R1, [R0, #0x0] ; MPU_RNR
STR R2, [R0, #0x4] ; MPU_RBAR
STR R2, [R0, #0x8] ; MPU_RLAR

Software must use memory barrier instructions:

• Before MPU setup if there might be outstanding memory transfers, such as buffered
writes, that might be affected by the change in MPU settings.

• After MPU setup if it includes memory transfers that must use the new MPU settings.

However, an ISB instruction is not required if the MPU setup process starts by entering an
exception handler, or is followed by an exception return, because the exception entry and
exception return mechanism cause memory barrier behavior.

For example, if you want all the memory access behavior to take effect immediately after the
programming sequence, use a DSB instruction and an ISB instruction. A DSB is required after
changing MPU settings, such as at the end of a context switch. An ISB is required if the code
that programs the MPU region or regions is entered using a branch or call. If the programming
sequence is entered using a return from exception, or by taking an exception, then you do not
require an ISB.

4.5.16 MPU design hints and tips

To avoid unexpected behavior, disable the interrupts before updating the attributes of a region
that the interrupt handlers might access.

When setting up the MPU, and if the MPU has previously been programmed, disable unused
regions to prevent any previous region settings from affecting the new MPU setup.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-41
ID062218 Non-Confidential

Cortex-M23 Peripherals
MPU configuration for a microcontroller

Usually, a microcontroller system has only a single processor and no caches. In such a system,
program the MPU as follows:

In most microcontroller implementations, the cache policy attributes do not affect the system
behavior. However, using these settings for the MPU regions can make the application code
more portable. The values given are for typical situations. In special systems, such as
multiprocessor designs or designs with a separate DMA engine, the shareability attribute might
be important. In these cases, refer to the recommendations of the memory device manufacturer.

Shareability attributes define whether the global monitor is used, or only the local monitor is
used, as detailed in LDREX and STREX on page 3-24.

Table 4-43 Memory region attributes for a microcontroller

Memory region
MAIR_ATTR.Outer
MAIR_ATTRInner

Shareability Memory type and attributes

Flash memory 0b1010 0 Normal memory, Non-shareable,
Write-Through.

Internal SRAM 0b1010 1 Normal memory, Shareable,
Write-Through.

External SRAM 0b1111 1 Normal memory, Shareable,
Write-Back, write-allocate.

Peripherals 0b0000 1 Device memory, Shareable.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-42
ID062218 Non-Confidential

Cortex-M23 Peripherals
4.6 I/O Port
The Cortex-M23 processor optionally implements a dedicated single-cycle I/O port for
high-speed, low-latency access to peripherals. The I/O port is memory mapped and supports all
the load and store instructions given in Memory access instructions on page 3-15. The I/O port
does not support code execution and does not support all forms of exclusive Load and Store.

If implemented, the I/O port can be protected by the MPU and SAU.
DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 4-43
ID062218 Non-Confidential

DUI 1095A Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A-1
ID062218 Non-Confidential

Appendix A
Revisions

This appendix describes the technical changes between released issues of this book.

Table A-1 Issue A

Change Location Affects

First release - -

	Arm Cortex-M23 Devices Generic User Guide
	Contents
	Preface
	About this book
	Product revision status
	Intended audience
	Using this book
	Glossary
	Conventions
	Additional reading

	Feedback
	Feedback on this product
	Feedback on content

	1: Introduction
	1.1 About the Cortex-M23 processor and core peripherals
	1.1.1 Cortex-M23 processor features summary
	1.1.2 System-level interface
	1.1.3 Security Extension
	1.1.4 Cortex-M23 processor core peripherals
	1.1.5 Armv8-M enablement

	2: The Cortex-M23 Processor
	2.1 Programmers model
	2.1.1 Processor modes and privilege levels for software execution
	2.1.2 Security states
	2.1.3 Stacks
	2.1.4 Core registers
	2.1.5 Exceptions and interrupts
	2.1.6 Data types
	2.1.7 The Cortex Microcontroller Software Interface Standard

	2.2 Memory model
	2.2.1 Memory regions, types, and attributes
	2.2.2 Device memory
	2.2.3 Secure memory system and memory partitioning
	2.2.4 Behavior of memory accesses
	2.2.5 Software ordering of memory accesses
	2.2.6 Memory endianness
	2.2.7 Synchronization primitives
	2.2.8 Programming hints for the synchronization primitives

	2.3 Exception model
	2.3.1 Exception states
	2.3.2 Exception types
	2.3.3 Exception handlers
	2.3.4 Vector table
	2.3.5 Exception priorities
	2.3.6 Exception entry and return

	2.4 Security state switches
	2.5 Fault handling
	2.5.1 Lockup

	2.6 Power management
	2.6.1 Entering sleep mode
	2.6.2 Wakeup from sleep mode
	2.6.3 Wakeup Interrupt Controller
	2.6.4 External event input
	2.6.5 Power management programming hints

	3: The Cortex-M23 Instruction Set
	3.1 Instruction set summary
	3.2 CMSIS functions
	3.3 CMSE
	3.4 About the instruction descriptions
	3.4.1 Operands
	3.4.2 Restrictions when using PC or SP
	3.4.3 Shift Operations
	3.4.4 Address alignment
	3.4.5 PC-relative expressions
	3.4.6 Conditional execution

	3.5 Memory access instructions
	3.5.1 ADR
	3.5.2 CLREX
	3.5.3 LDR and STR, immediate offset
	3.5.4 LDR and STR, register offset
	3.5.5 LDR, PC-relative
	3.5.6 LDM and STM
	3.5.7 LDREX and STREX
	3.5.8 LDA and STL
	3.5.9 LDAEX and STLEX
	3.5.10 PUSH and POP

	3.6 General data processing instructions
	3.6.1 ADC, ADD, RSB, SBC, and SUB
	3.6.2 AND, ORR, EOR, and BIC
	3.6.3 ASR, LSL, LSR, and ROR
	3.6.4 CMP and CMN
	3.6.5 MOV and MVN
	3.6.6 MOVT
	3.6.7 MULS
	3.6.8 REV, REV16, and REVSH
	3.6.9 SDIV and UDIV
	3.6.10 SXT and UXT
	3.6.11 TST

	3.7 Branch and control instructions
	3.7.1 B, BL, BX, and BLX
	3.7.2 BXNS and BLXNS
	3.7.3 CBZ and CBNZ

	3.8 Miscellaneous instructions
	3.8.1 BKPT
	3.8.2 CPS
	3.8.3 DMB
	3.8.4 DSB
	3.8.5 ISB
	3.8.6 MRS
	3.8.7 MSR
	3.8.8 NOP
	3.8.9 SEV
	3.8.10 SG
	3.8.11 SVC
	3.8.12 TT, TTT, TTA, and TTAT
	3.8.13 WFE
	3.8.14 WFI

	4: Cortex-M23 Peripherals
	4.1 About the Cortex-M23 peripherals
	4.2 Nested Vectored Interrupt Controller
	4.2.1 Accessing the Cortex-M23 NVIC registers using CMSIS
	4.2.2 Interrupt Set-enable Registers
	4.2.3 Interrupt Clear-enable Registers
	4.2.4 Interrupt Set-pending Registers
	4.2.5 Interrupt Clear-pending Registers
	4.2.6 Interrupt Active Bit Registers
	4.2.7 Interrupt Target Non-secure Registers
	4.2.8 Interrupt Priority Registers
	4.2.9 Level-sensitive and pulse interrupts
	4.2.10 NVIC usage hints and tips

	4.3 System Control Space
	4.3.1 The CMSIS mapping of the Cortex-M23 SCS registers
	4.3.2 CPUID Register
	4.3.3 Interrupt Control and State Register
	4.3.4 Vector Table Offset Register
	4.3.5 Application Interrupt and Reset Control Register
	4.3.6 System Control Register
	4.3.7 Configuration and Control Register
	4.3.8 System Handler Priority Registers
	4.3.9 System Handler Control and State Register
	4.3.10 Auxiliary Control Register
	4.3.11 SCS usage hints and tips

	4.4 System timer, SysTick
	4.4.1 SysTick Control and Status Register
	4.4.2 SysTick Reload Value Register
	4.4.3 SysTick Current Value Register
	4.4.4 SysTick Calibration Value Register
	4.4.5 SysTick usage hints and tips

	4.5 Security Attribution and Memory Protection
	4.5.1 Security Attribution Unit
	4.5.2 Security Attribution Unit Control Register
	4.5.3 Security Attribution Unit Type Register
	4.5.4 Security Attribution Unit Region Number Register
	4.5.5 Security Attribution Unit Region Base Address Register
	4.5.6 Security Attribution Unit Region Limit Address Register
	4.5.7 Memory Protection Unit
	4.5.8 MPU Type Register
	4.5.9 MPU Control Register
	4.5.10 MPU Region Number Register
	4.5.11 MPU Region Base Address Register
	4.5.12 MPU Region Limit Address Register
	4.5.13 MPU Memory Attribute Indirection Register 0 and MPU Memory Attribute Indirection Register 1
	4.5.14 MPU mismatch
	4.5.15 Updating an MPU region
	4.5.16 MPU design hints and tips

	4.6 I/O Port

	A: Revisions

