
Differences between v1 and v2 of the ABI for the ARM Architecture  

 

ARM IHI 0047A Copyright © 2005, 2007 ARM Limited. All rights reserved. Page 1 of 11 

      

 
 

Differences between v1 and v2 of 
the ABI for the ARM® Architecture 

 

Document number: ARM IHI 0047A 
Date of Issue: 24th March 2005, reissued 30th November 2012 

 

Abstract 
This document describes the differences between versions 1 of the ABI for the ARM Architecture published in 
December 2003 and version 2 published in the first quarter of 2005. 

 

Keywords 
ABI for the ARM architecture, ABI base standard, embedded ABI  

 

 
 
 
 
 
 
 
 
 
 

Proprietary notice 
ARM, Thumb, RealView, ARM7TDMI and ARM9TDMI are registered trademarks of ARM Limited. The ARM logo 
is a trademark of ARM Limited. ARM9, ARM926EJ-S, ARM946E-S, ARM1136J-S ARM1156T2F-S ARM1176JZ-S 
Cortex, and Neon are trademarks of ARM Limited. All other products or services mentioned herein may be 
trademarks of their respective owners.



Differences between v1 and v2 of the ABI for the ARM Architecture  

 

ARM IHI 0047A Copyright © 2005, 2007 ARM Limited. All rights reserved. Page 2 of 11 

Contents 

1 ABOUT THIS DOCUMENT 3 

1.1 Change control 3 
1.1.1 Current status and anticipated changes 3 
1.1.2 Change history 3 

1.2 References 3 

1.3 Terms and abbreviations 4 

2 DIFFERENCES BETWEEN V2 AND V1 OF THE ABI 5 

2.1 Overview 5 

2.2 ABI for the ARM Architecture (Base Standard) 5 

2.3 Procedure Call Standard for the ARM Architecture 6 
2.3.1 Oversize bitfields 6 
2.3.2 Size of enum containers 6 
2.3.3 Type of enum values 6 

2.4 C++ ABI for the ARM Architecture 6 

2.5 Exception Handling ABI for the ARM Architecture 7 
2.5.1 Top level organizational change 7 
2.5.2 Changes of detail 7 
2.5.3 Exception handling component specimen implementations 8 

2.6 ELF for the ARM Architecture 8 

2.7 DWARF for the ARM Architecture 9 

2.8 Run-time ABI for the ARM Architecture 9 

2.9 C Library ABI for the ARM Architecture 10 
2.9.1 Changes of perspective 10 
2.9.2 Detailed changes 10 

2.10 Base Platform ABI for the ARM Architecture 10 

2.11 Addenda to the ABI for the ARM Architecture 11 



Differences between v1 and v2 of the ABI for the ARM Architecture  

 

ARM IHI 0047A Copyright © 2005, 2007 ARM Limited. All rights reserved. Page 3 of 11 

1 ABOUT THIS DOCUMENT 

1.1 Change control 

1.1.1 Current status and anticipated changes  
This document has been released publicly. Anticipated changes to this document include: 

 Typographical corrections. 

 Clarifications. 

 Compatible extensions. 

1.1.2 Change history 
Issue Date By Change 

2.0 24th March 2005 LS First public release. 

A 25th October 2007 LS Document renumbered (formerly GENC-005701 v2.0). 

1.2 References 
This document refers to the following documents. 

Ref Status / External URL Title 

AADWARF  DWARF for the ARM Architecture 

AAELF  ELF for the ARM Architecture 

AAPCS  Procedure Call Standard for the ARM Architecture 

ADDENDA  Addenda to, and errata in, the ABI for the ARM Architecture 

BPABI New in version 2.0 of the ABI. Base Platform ABI for the ARM Architecture 

BSABI  ABI for the ARM Architecture  (Base Standard) 

CLIBABI  C Library ABI for the ARM Architecture 

CPPABI  C++ ABI for the ARM Architecture 

EHABI  Exception Handling ABI for the ARM Architecture 

EHEGI  Exception handling component specimen implementations 

RTABI  Run-time ABI for the ARM Architecture 

GC++ABI http://mentorembedded.github.com/cxx
-abi/abi.html 

Itanium C++ ABI ($Revision: 1.71 $) 
(Although called Itanium C++ ABI, it is very generic). 

 

 

http://mentorembedded.github.com/cxx-abi/abi.html�
http://mentorembedded.github.com/cxx-abi/abi.html�


Differences between v1 and v2 of the ABI for the ARM Architecture  

 

ARM IHI 0047A Copyright © 2005, 2007 ARM Limited. All rights reserved. Page 4 of 11 

1.3 Terms and abbreviations 
The ABI for the ARM Architecture uses the following terms and abbreviations. 

Term Meaning 

AAPCS Procedure Call Standard for the ARM Architecture 

ABI Application Binary Interface: 

1. The specifications to which an executable must conform in order to execute in a specific 
execution environment. For example, the Linux ABI for the ARM Architecture. 

2. A particular aspect of the specifications to which independently produced relocatable 
files must conform in order to be statically linkable and executable.  For example, the 
C++ ABI for the ARM Architecture, the Run-time ABI for the ARM Architecture, the C 
Library ABI for the ARM Architecture. 

AEABI (Embedded) ABI for the ARM architecture (this ABI…) 

ARM-based … based on the ARM architecture … 

core registers The general purpose registers visible in the ARM architecture’s programmer’s model, 
typically r0-r12, SP, LR, PC, and CPSR. 

EABI An ABI suited to the needs of embedded, and deeply embedded (sometimes called free 
standing), applications. 

Q-o-I Quality of Implementation – a quality, behavior, functionality, or mechanism not required by 
this standard, but which might be provided by systems conforming to it. Q-o-I is often used 
to describe the tool-chain-specific means by which a standard requirement is met. 

VFP The ARM architecture’s Floating Point architecture and instruction set 
 
 



Differences between v1 and v2 of the ABI for the ARM Architecture  

 

ARM IHI 0047A Copyright © 2005, 2007 ARM Limited. All rights reserved. Page 5 of 11 

2 DIFFERENCES BETWEEN V2 AND V1 OF THE ABI 

2.1 Overview 
Version 2 of the ABI for the ARM Architecture comprises the ten components listed in §1.2

Version 2 of the ABI is intended to extend and clarify version 1 without introducing incompatibilities. For example, 
it adds a tenth component – the Base Platform ABI for the ARM Architecture [

 of this document. How 
the components fit together to define a coherent ABI is described in the ABI for the ARM Architecture (Base 
Standard) [BSABI]. 

BPABI] – to the nine components of 
version 1. However, in any endeavour of this scale undertaken with limited resources against a background of 
rapid change, it is inevitable that both defects in version 1, and changes to requirements for version 2, should 
generate some incompatibilities. 

The following subsections of this document summarize the changes in perspective and detail between version 2 
and version 1 of each component. 

Version 2 also adds Addenda to the ABI for the ARM Architecture [ADDENDA]. This specifies late addition to the 
standard and is a placeholder for material that will be added during future maintenance of it. 

2.2 ABI for the ARM Architecture (Base Standard) 
This component gives an overview of the ABI.  

 It depicts how the ABI components relate to one another and to relevant external standards. 

 It briefly summarizes each component. 

There are two significant changes to this component. 

 Three new sections (§3.8, §3.9, and §3.10) summarize: 

- The Base Platform ABI for the ARM Architecture [BPABI]. 

- The use of ar format in the ABI. 

- Addenda to the ABI for the ARM Architecture. 

From this overview perspective these new sections make a compatible extension to version 1. 

 There is a change in perspective depicted in [BSABI] §2, Figure 1, A schematic map of the ABI for the ARM 
Architecture and related standards, described immediately below. 

Change of perspective between version 2 and version 1 

In version 2, the boundary between execution environments (platforms) and the Base Platform ABI has been 
adjusted to reflect current market realities better. We now depict three platform families at the executable file level. 

 The bare platform family (so called bare metal). 

 The DLL-based family (for example, Palm OS, Symbian OS). 

 The SVr4-based family (for example, Linux, free BSD). 

Within the Base Platform ABI there are the same procedure call standard and data addressing variants as were 
depicted in version 1 of the ABI, but wrapped in three platform family standards rather than four virtual platforms. 
We justify this change of perspective on three grounds. 

 It makes no difference to the operating systems, and removes the need to define virtual ABIs related to them. 



Differences between v1 and v2 of the ABI for the ARM Architecture  

 

ARM IHI 0047A Copyright © 2005, 2007 ARM Limited. All rights reserved. Page 6 of 11 

 It directly reflects the tool flow within a conforming tool chain, and defines a clear interface between a generic, 
cross platform, binary file format and the platform-specific post linkers that generate platform-specific binaries. 

 It decouples executable file organization from procedure call standard and data addressing concerns, which 
is, in any case, natural for tool chains producing executable or linkable files. 

Figure 2, Base platform ABI tool flow and its relationship to concrete platforms in §2.3, The base platform ABI tool 
flow, of [BPABI] depicts the tool flow in more detail.  

2.3 Procedure Call Standard for the ARM Architecture 
There are few changes between version 2 and version 1 of the procedure call standard [AAPCS]. Each one 
embodies a better compromise with prior art. 

2.3.1 Oversize bitfields 
The layout of oversize bit fields is underspecified by the C and C++ language standards. Eventually, the ABI group 
decided to adopt the definition used by the generic C++ ABI and the GNU C++ compiler. This constitutes a small, 
dark corner, incompatibility between version 2 and version 1 (see [AAPCS] §7.1.7.3, Over-sized bit-fields). 

2.3.2 Size of enum containers 
Since the publication of version 1 of the ABI it has become clear that not all users of it can agree whether enum 
containers should be just big enough to hold all values of the type (to minimize memory footprint) or 32 bits (to 
avoid disaster when an enumeration is extended across an 8-bit or 16-bit boundary). 

Version 2 of this ABI requires the container policy to be specified by the ABI for the execution environment. For 
example, Linux and Palm OS require 32-bit enums, while the bare platform often requires containerized enums. 

With careful use of guard values it is possible to write source code that will generate the same binary (using 32-bit 
enum containers) independent of any platform-specific specification. This strategy is recommended for interfaces 
to portable packages or subsystems. 

2.3.3 Type of enum values 
Version 2 of [AAPCS] (Table 5, Enumerator container types in §7.1.3, Enumerated Types) specifies the type of an 
enumerated value so that in any context in which the usual integral promotions of C or C++ apply, the value will 
promote to type int whenever type int is capable of representing the value. 

In version 1, some values promoted to unsigned int even when type int could represent the value. 

This is a small, dark corner change to an area of compiler behavior that is often not well specified. 

2.4 C++ ABI for the ARM Architecture 
With the exception of the change to over sized bit field layout noted in §2.3

Otherwise, the following clarifications are significant and might reveal incompatibilities between implementations. 

, above, there are no deliberately 
incompatible changes between version 1 and version 2 of the C++ ABI for the ARM Architecture. 

 Version 2 clarifies the definition of key function and adds an example of how the C++ ABI for the ARM 
Architecture deviates from the generic C++ ABI (no change of intended behavior from version 1). 

 Version 2 makes clear that each platform must specify whether RTTI must be identical by address (as 
required by the generic C++ ABI [GC++ABI]) or merely by value (the minimum required by the C++ language 



Differences between v1 and v2 of the ABI for the ARM Architecture  

 

ARM IHI 0047A Copyright © 2005, 2007 ARM Limited. All rights reserved. Page 7 of 11 

standard). The former is appropriate to SVr4-based platforms (such as Linux), the latter to platforms that 
cannot resolve vague linkage at dynamic link time (such as Symbian OS). 

 Version 2 makes clear that C1 and C2 constructors and D1 and D2 destructors must return this (to support tail 
calling from C3 and to remove the need for D0 to save this across calls to D1/D2).  

 In version 2, the specimen implementation of __aeabi_vec_delete now behaves correctly if the destructor 
throws an exception. __aeabi_vec_delete3 has been extended to cope with the deallocator throwing too. 

 Version 2 requires top level static constructor array elements to be relocated by R_ARM_TARGET1 rather than 
R_ARM_RELABS32. This is a change of perspective, not of relocation code (the numerical value is the same). 

 Version 2 fixes a defect in version 1 with respect to registering static object destructions. To do this in a way 
that works for all platforms (including those that statically allocate space for the list of object to destroy), 
destructions must be registered using __aeabi_atexit, not __cxa_atexit. Implementations that follow version 1 
are likely to be defective. 

 In version 2, a new section (§3.2.5) describes the control of visibility of entities (import and export control) 
between DLLs. Only §3.2.5.5, Inter-DLL visibility rules for C++ ABI-defined symbols, is mandatory. 

2.5 Exception Handling ABI for the ARM Architecture 
Between version 1 and version2 of the exception handling ABI there is one significant change to the top level 
organization of exception handling tables, and a number of changes of detail. These relate most significantly to 
fully supporting C++ exception handling semantics. 

There can be no binary compatibility between implementations conforming to version 1 (if, indeed, such 
conformance was ever possible) and those conforming to version 2 (for which there are implementations). 

2.5.1 Top level organizational change 
The version 1 specification tried to allow exception index tables and exception handling tables to be allocated to 
their own, independently loaded, read only, executable segments. Thus an executable file could have from 1-3 
independently loaded, read only, executable segments. This generated two difficulties. 

 It made inter-segment references difficult, requiring new, unfamiliar relocation modes (and more segment 
base addresses to be juggled by run-time systems), or many more dynamic relocations (undesirable, and 
often impossible for read only segments). 

 No operating system we know of supports executable files with multiple read only segments. 

Version 2 of the ABI allows exception handling tables and exception index tables to be read only, position 
independent, and free of dynamic relocations, but does not support their separation into independently loaded 
segments. 

This change would introduce significant incompatibility between implementations conforming to the version 1 and 
version 2 specifications. On the other hand, we believe that a full version 1 implementation was never possible 
(the required relocation modes were never defined), and that we made the change when implementers were first 
struggling with the specification.  

A number of changes of detail follow from this change.  

2.5.2 Changes of detail 
This section lists version 2 details that were different in version 1. 

 In a generic exception handling table entry (§4.4.2, §6.2) the pointer to the table handling function is now 
encoded as a place-relative offset (R_ARM_PREL31). In version 1 it was a segment relative offset. 



Differences between v1 and v2 of the ABI for the ARM Architecture  

 

ARM IHI 0047A Copyright © 2005, 2007 ARM Limited. All rights reserved. Page 8 of 11 

 A new section (§4.4.2, Relocations) makes explicit the obligation on producers of relocatable file producers to 
emit exception handling table fragments that can be read only, position independent, and free of dynamic 
relocations. This section specifies the relocations to be used. 

 A revised section (§5, Index table entries) specifies the relocation of index tables. Version 2 index tables are 
incompatible with version 1 tables (a 31-bit place-relative relocation replaces a 32-bit segment relative one). 

 In the ARM-defined compact model (§6.3) a 31-bit place-relative relocation replaces a 32-bit segment relative 
one (as immediately above). 

The above changes follow from the top level organizational change. 

The following changes are not consequences of the top level organizational change. 

 Version 2 clarifies use of the barrier cache data record by personality routines (in §7.2, Language-
independent unwinding types and functions). 

 Version 2 withdraws support for the obsolete FPA floating point unit (removed from §7.5.1, Control types). 

 Version 2 better supports restoring VFP registers, adding restore with FSTMD to the previously defined use of 
FSTMX (which is partly implementation defined and, hence, less suitable for portable use). 

 Version 2 makes minor changes to the use of a complete C++ exception object (§8.2). A field used in version 
1 is now required to be 0. 

 Version 2 significantly changes the type signature of __cxa_type_match (§8.4.2, Personality routine helper 
functions). The result type changes from bool to an enumerated type, and it gains an additional parameter. 
This incompatible change is required to correctly support C++ exception processing semantics. Version 2 also 
clarifies the behavioral description of __cxa_type_match. 

 Version 2 specifies some small but significant changes to the encoding of exception-handling table entries 
(§9.2) for catch descriptors. To correctly implement C++ exception handling semantics, a descriptor must 
distinguish catching T& from catching T. Coincidentally, the change of top level organization frees up 1 bit in 
the previous encoding (where a 32-bit segment relative offset to the RTTI for T becomes a 31-bit place 
relative offset to the RTTI, leaving 1 bit to distinguish T& from T). 

 Version 2 clarifies and extends the set of supported frame unwinding instructions (§9.3, Frame unwinding 
instructions), as well as withdrawing those previously associated with the FPA floating point unit. 

2.5.3 Exception handling component specimen implementations 
The exception handling component specimen implementations have tracked the changed in specification between 
version 1 and version 2 of the exception handling ABI. 

A number of defects found during testing have also been corrected. 

2.6 ELF for the ARM Architecture 
At version 1, ELF for the ARM Architecture was a partially completed draft. Version 2 [AAELF] completes the 
specification. There are many new sections. We believe there are no significant incompatible changes to those 
sections that were mandatory (not optional) in version 1. 

Version 2 takes the December 2003 draft of the underlying ELF specification as its base standard rather than the 
functionally identical April 2001 draft (the later draft corrects a typographical defect). 

Version 2 adds material to the previously empty §3, PLATFORM STANDARDS. At issue 0.61 it adds requirements 
related to the Base Platform ABI for the ARM Architecture (§2.10

 Symbol versioning (in §3.1.1). 

 and [BPABI]) as follows. 

 Symbol pre-emption in DLLs (in §3.1.2). 

 PLT [code] sequences and usage models (in §3.1.3). 



Differences between v1 and v2 of the ABI for the ARM Architecture  

 

ARM IHI 0047A Copyright © 2005, 2007 ARM Limited. All rights reserved. Page 9 of 11 

There are also the following detailed changes in version 2. 

 In §4.2.1, ELF Identification, version 2 adds an obligation to set EI_OSABI to a conforming value. 

 Version 2 adds a second ARM-specific section type (in Table 4 2, Processor specific section types4, in §3.2, 
Section Types), and a matching special section name in Table 4-3. 

Version 2 completely revises the enumeration of processor-specific relocation types (in §4.6). Some obsolete 
values have been withdrawn, and several values defined in version 1 are deprecated. These should no longer be 
generated by producers, though consumers must continue to process them if they need to handle legacy 
relocatable files. Many new relocation types have been introduced, including some related to the new Thumb2 
instruction set. 

There will most likely be further detailed changes before version 2 is published. 

2.7 DWARF for the ARM Architecture 
There are no deliberately incompatible changes between version 1 and version 2. 

 Version 2 adds the obligation (on producers, §2.1.1, Support for stack unwinding) to always generate frame 
unwinding descriptions. This is to support unwinding through packages. Code that does not conform can be 
considered to be blocking unwinding deliberately. 

 Version 2 defines an idealized debugging illusion (§2.1.2, The debugging illusion (not mandatory)). There is 
no obligation to conform, but we present it as a simple model to which producers might aspire when asked to 
give priority to the quality of debugging experience. 

 Version 2 corrects 2 small typographical defects in Table 1, Mapping from DWARF register number to ARM 
architecture register number (in §3.1, DWARF register names). 

 Version 2 adds a section (§3.5, Common information entries) that specifies a required default interpretation of 
register numbers missing from CIE entries. These arise naturally and unavoidably under the ARM architecture 
(for example when generating portable relocatable code to run on an unknown target), so a defined default is 
necessary. In turn this generates clear obligations on both consumers and producers.  

2.8 Run-time ABI for the ARM Architecture 
There are no deliberately incompatible changes between version 1 and version 2. 

 In version 2, use of floating point terminology has been tightened (§4.1.1, The floating point model). 

 Version 2 clarifies the Notes on Table 3, above, and Table 5, below (in §4.1.2 , The floating-point helper 
functions), making the required status flag settings unambiguous. 

 Version 2 adds two new 32-bit integer division functions (__aeabi_idiv and __aeabi_uidiv) that return only the 
quotient. This is in deference to the Cortex M3 division instructions that behave similarly (the body of each of 
these functions can be replaced by a single instruction when executing on that CPU).  

 Version 2 supports a third option for handling division by zero, namely that of returning a fixed value (such as 
zero). This is in deference to execution environment that require this behavior. 

 There are some minor corrections to the descriptions of C++ helper functions defined by the generic C++ ABI 
(in §4.4.3.1, Helper functions defined by the generic C++ ABI). In two cases this ABI requires the helpers to 
return this. 

 Version 2 gives a more detailed description of static object finalization (§4.4.5, Static object finalization) and of 
the difference between calling __aeabi_atexit and __cxa_atexit to register destructions. We referred to this 
change in the penultimate bullet in §2.4, above. 



Differences between v1 and v2 of the ABI for the ARM Architecture  

 

ARM IHI 0047A Copyright © 2005, 2007 ARM Limited. All rights reserved. Page 10 of 11 

2.9 C Library ABI for the ARM Architecture 

2.9.1 Changes of perspective 
There are two small, but important, changes of perspective between version 1 and version 2 of the C Library ABI 
for the ARM Architecture [CLIBABI] that drive many of the remaining detailed differences. 

 Version 2 abandons the direct, but fiddly, implementation of link time constants as absolute symbols in favor 
of a slightly less efficient, but more accessible, implementation using extern const int… (§4.2.3.1, Compile 
time constants). This allows link time constants to be defined and maintained in C rather than only in 
assembly language. 

 Version 2 introduces a compile time (pre-processor) test of conformance that can be applied header by 
header to the C library, and specifies conformance requirements for each header (§5.1.1, Detecting whether a 
header file honors an AEABI portability request). This allows library implementations to opt into conformance 
header by header, and lets an application check at compile time whether its conformance requirements can 
be met. 

Version 1 was released at issue 0.1 DRAFT status, so, formally, this breaks no promise of binary compatibility. 

2.9.2 Detailed changes 
Version 2 makes the following detailed changes to the version 1 specification. 

 Version 2 corrects a defect in the definition of the assert macro and introduces an obligation to signal 
conformance (as described in §5.1.1 of the C Library ABI for the ARM Architecture and referred to from the 
second bullet of §2.9.1

 Version 2 defines 3 ways for a ctype implementation to conform to the ABI, and adds the §5.1.1 requirement 
for conformance to be detectable at compile time. 

, above). 

 Substantive changes to the errno, limits, locale, stdlib, time, and wctype ABIs follow entirely from the changes 
in perspective described above in §2.9.1

 Version 2 adds to the math ABI the §5.1.1 requirement for conformance to be detectable at compile time. For 
producers that implement some of the C99 standard in this area the result is to require what C99 requires, 
together with the ability to detect conformance at compile time. 

. 

 Version 2 simplifies the setjmp ABI by reducing what an application can count on portably. We believe this is 
the right compromise.  

 Most of the substantive changes to the signal ABI follow from the changes in perspective described above in 
§2.9.1

 Most of the substantive changes to the stdio ABI follow from the changes in perspective described above in 

.  Version 2 also fixes some typographical defects in version 1, adds a specification of sig_atomic_t, and 
clarifies the alternative ways for conforming implementations to define the standard signal handlers. 

§2.9.1

 Version 2 of the wchar ABI relaxes the alignment requirement on an mbstate_t structure. There was never a 
good argument for treating this as a single 8-byte value. There are also the §5.1.1 consequences described 
above in 

. Version 2 revises the definition of fpos_t by adding the mbstate_t member required (in effect) by the 
C99 library standard.  

§2.9.1

Version 2 also adds header by header summaries of requirements, link time constants, and additional ABI-defined 
functions. 

. 

2.10 Base Platform ABI for the ARM Architecture 
This is an entirely new component in version 2 of the ABI. There are, therefore, no incompatibilities with version 1. 



Differences between v1 and v2 of the ABI for the ARM Architecture  

 

ARM IHI 0047A Copyright © 2005, 2007 ARM Limited. All rights reserved. Page 11 of 11 

For a summary of the BPABI see §3.8, The base platform ABI for the ARM architecture, of [BSABI]. For an 
overview see §2.1, The role of this standard in the ABI for the ARM Architecture, of [BPABI]. 

2.11 Addenda to the ABI for the ARM Architecture 
As of the date of publication recorded on the first page of this document, Addenda to, and errata in, the ABI for the 
ARM Architecture describes two late additions to v2.0 (this version) of the ABI, and records no errata. 

The two addenda concern Build Attributes and Thread Local Storage. 

 Build attributes record long-lived facts about how a relocatable file was built. They allow a static linker to 
determine incompatibilities between relocatable files and to choose the best variant of a library function when 
multiple variants are available. 

 The ABI issues associated with Thread Local Storage are sketched and the concrete models adopted by 
Linux for ARM are described. Linux-specific TLS relocations are described in [AAELF] 

 


	1 ABOUT THIS DOCUMENT
	1.1 Change control
	1.1.1 Current status and anticipated changes 
	1.1.2 Change history

	1.2 References
	1.3 Terms and abbreviations

	2 DIFFERENCES BETWEEN V2 AND V1 OF THE ABI
	2.1 Overview
	2.2 ABI for the ARM Architecture (Base Standard)
	2.3 Procedure Call Standard for the ARM Architecture
	2.3.1 Oversize bitfields
	2.3.2 Size of enum containers
	2.3.3 Type of enum values

	2.4 C++ ABI for the ARM Architecture
	2.5 Exception Handling ABI for the ARM Architecture
	2.5.1 Top level organizational change
	2.5.2 Changes of detail
	2.5.3 Exception handling component specimen implementations

	2.6 ELF for the ARM Architecture
	2.7 DWARF for the ARM Architecture
	2.8 Run-time ABI for the ARM Architecture
	2.9 C Library ABI for the ARM Architecture
	2.9.1 Changes of perspective
	2.9.2 Detailed changes

	2.10 Base Platform ABI for the ARM Architecture
	2.11 Addenda to the ABI for the ARM Architecture


