Arm Fortran Compiler Reference Guide

Version 19.0.0

Document Number 101380_1900_00

CONTENTS

1.1 Arm Fortran Compiler 1.2 About this book 1.3 Getting help 1.3 Getting help 2 Get started 2.1 Installation 2.2 Configuring environment 2.3 Compiling and running a simple "Hello World" program 2.4 Generating executable binaries from Fortran code 2.5 Compiling and linking object files as separate steps 2.6 Increasing the optimization level		3
1.3 Getting help 2 Get started 2.1 Installation 2.2 Configuring environment 2.3 Compiling and running a simple "Hello World" program 2.4 Generating executable binaries from Fortran code 2.5 Compiling and linking object files as separate steps		. 3
 2 Get started 2.1 Installation		. 3
 2.1 Installation		. 3
 2.2 Configuring environment		5
 2.3 Compiling and running a simple "Hello World" program		. 5
 2.3 Compiling and running a simple "Hello World" program		. 5
 2.4 Generating executable binaries from Fortran code		
2.5 Compiling and linking object files as separate steps		
2.7 Compiling and optimizing using CPU auto-detection		
2.8 Compiling Fortran code for SVE-enabled target architectures		
2.9 Common compiler options		
2.10 Get support		
3 Compiler options		11
3.1 Actions		
3.2 File options		. 11
3.3 Basic driver options		. 12
3.4 Optimization options		. 12
3.5 Workload compilation options		. 15
3.6 Development options		. 16
3.7 Warning options		. 17
3.8 Pre-processor options		. 17
3.9 Linker options	•••	. 17
4 Fortran data types and file extensions		21
4.1 Data types		
4.2 Supported file extensions		
4.3 Logical variables and constants		
4.4 C/Fortran inter-language calling		
4.5 Character		
4.6 Complex	• •	24
4.7 Arm Fortran Compiler Fortran implementation notes		

5	Fortr	an statements 2	27
	5.1	Statements	27
		5.1.1 Related information	37
6			<u>89</u>
	6.1		39
	6.2	Bit manipulation functions and subroutines	39
	6.3	Elemental character and logical functions	11
	6.4	Vector/Matrix functions	13
	6.5	Array reduction functions	4
	6.6	String construction functions	17
	6.7	•	17
	6.8		18
	6.9		19
	6.10	1 5	50
	6.11		51
	6.12		51
	6.13		56
			57
	6.14		
	6.15		58
	6.16		59
	6.17	1 1	52
	6.18	Unsupported subroutines	55
7	Direc		57
/			57
	7.1	1	
	7.2	I second s	58
	7.3		59
			59
			70
			70
		7.3.4 Outputs	70
	7.4	novector	70
		7.4.1 Syntax	71
		7.4.2 Parameters	71
		7.4.3 Example: Using novector	71
		7.4.4 Outputs	71
8	Opti	ization remarks 7	73
	8.1	Optimization remarks	73
		8.1.1 Procedure	73
		8.1.2 Example: Fortran example using armflang	74
	~		
9		The second se	7
	9.1		7
	9.2		79
	9.3	OpenMP 4.0	32
	9.4	OpenMP 4.5	32

10	Furth	ier resources	83
	10.1	Further resources	83

Release information

Issue	Date	Confidentiality	Change
1830_00	20/06/18	Non-confidential	18.3.0
1840_00	27/07/18	Non-confidential	18.4.0
1900_00	02/11/18	Non-confidential	19.0.0

Table 1: Document history

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any form by any means without the express prior written permission of Arm. **No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.**

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITH-OUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFAC-TORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF Arm HAS BEEN ADVISED OF THE POS-SIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word "partner" in reference to Arm's customers is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this document with Arm, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

Words and logos marked with [®] or TM are registered trademarks or trademarks of Arm Limited or its affiliates in the EU and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners. Please follow Arm's trademark usage guidelines at http://www.arm.com/about/trademark-usage-guidelines. php

Copyright © [2016-2018], Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

http://www.arm.com

CHAPTER

OVERVIEW

Gives an overview of the Arm Fortran Compiler, the information within this book, and provides information on how to get further support.

1.1 Arm Fortran Compiler

Arm Fortran Compiler is an auto-vectorizing, Linux user-space Fortran compiler, tailored for High Performance Computing (HPC) and scientific workloads. It is built on the open-source Flang front-end and the LLVM-based optimization and code generation back-end. It supports popular Fortran and OpenMP standards and is tuned for 64-bit Armv8-A architecture.

Arm Fortran Compiler is available in combination with Arm C/C++ Compiler, Arm Performance Libraries, Arm Forge, and Arm Performance Reports as part of the Arm Allinea Studio. Arm Allinea Studio is the end-to-end commercial suite for building and porting HPC applications on Arm.

1.2 About this book

This document contains information on the adherance of the Arm Fortran Compiler with the various Fortran standards. It also describes the compatibility with various Fortran language features, statements and instrinsics. In addition, it describes the available compiler options, includes some *Getting started* content, and provides information and examples on using some of the compiler features.

This guide is not a tutorial, instead it is intended for application programmers who have a basic understanding of Fortran concepts and standards.

1.3 Getting help

You can find further help and resources on the Arm Developer website. If you need further assistance, Contact Arm Support.

CHAPTER

GET STARTED

Arm Fortran Compiler is an auto-vectorizing compiler for the 64-bit Armv8-A architecture. This getting started tutorial shows how to install, compile Fortran code, use different optimization levels and generate an executable.

The Arm Fortran Compiler tool chain for the 64-bit Armv8-A architecture enables you to compile Fortran code for Armv8-A compatible platforms, with an advanced auto-vectorizer capable of taking advantage of SIMD features.

2.1 Installation

Refer to Installing Arm Compiler for HPC for information on installing Arm Fortran Compiler.

2.2 Configuring environment

As part of the installation, your administrator should have made the Arm Compiler for HPC environment module available. To see which environment modules are available:

module avail

Note: You may need to configure the MODULEPATH environment variable to include the installation directory:

export MODULEPATH=\$MODULEPATH:/opt/arm/modulefiles/

To configure your Linux environment to make Arm Fortran Compiler for HPC available:

```
module load <architecture>/<linux_variant>/<linux_version>/suites/
arm-compiler-for-hpc/<version>
```

For example:

module load Generic-AArch64/SUSE/12/suites/arm-compiler-for-hpc/19.0

You can check your environment by examining the PATH variable. It should contain the appropriate bin directory from /opt/arm, as installed in the previous section:

```
echo $PATH
/opt/arm/arm-compiler-for-hpc-19.0_Generic-AArch64_SUSE-
12_aarch64-linux/bin:...
```

Note: You might want to consider adding the module load command to your .profile to run it automatically every time you log in.

2.3 Compiling and running a simple "Hello World" program

This example illustrates how to compile and run a simple "Hello World" Fortran program.

1. Create a simple "hello world" program and save it in a file. In our case, we have saved it in a file named hello.f90

```
program hello
  print *, 'hello world'
  end
```

2. To generate an executable binary, compile your program with Arm Fortran Compiler for HPC.

armflang -o hello hello.f90

3. Now you can run the generated binary hello as shown below

./hello

In the following sections we discuss the available compiler options in more detail and, towards the end of this tutorial, discuss compiling Fortran code for SVE-enabled targets.

2.4 Generating executable binaries from Fortran code

To generate an executable binary, compile a program using:

armflang -o example1 example1.f90

You can also specify multiple source files on a single line. Each source file is compiled individually and then linked into a single executable binary:

armflang -o example1 example1a.f90 example1b.f90

2.5 Compiling and linking object files as separate steps

To compile each of your source files individually into an object file, specify the -c (compileonly) option, and then pass the resulting object files into another invocation of armflang to link them into an executable binary.

```
armflang -c -o file1a.o file1a.f90
armflang -c -o file1b.o file1b.f90
armflang -o file1 file1a.o file2a.o
```

2.6 Increasing the optimization level

To increase the optimization level, use the -0 < level> option. The -00 option is the lowest optimization level, while -03 is the highest. Arm Fortran Compiler only performs autovectorization at -02 and higher, and uses -00 as the default setting. The optimization flag can be specified when generating a binary, such as:

armflang -O3 -o example1 example1.f90

The optimization flag can also be specified when generating an object file:

armflang -O3 -c -o example1a.o example1a.f90 armflang -O3 -c -o example1b.o example1b.f90

or when linking object files:

armflang -03 -o example1 example1a.o example1b.o

2.7 Compiling and optimizing using CPU autodetection

Arm Fortran Compiler supports the use of the -mcpu=native option, for example:

armflang -03 -mcpu=native -o example1 example1.f90

This option enables the compiler to automatically detect the architecture and processor type of the CPU it is being run on, and optimize accordingly.

This option supports a range of Armv8-A based SoCs, including ThunderX2.

Note: The optimization performed according to the auto-detected architecture and processor is independent of the optimization level denoted by the -0 < level > option.

2.8 Compiling Fortran code for SVE-enabled target architectures

The Arm Fortran Compiler toolchain for the 64-bit Armv8-A architecture supports the Scalable Vector Extensions (SVE), enabling you to:

- Assemble source code containing SVE instructions.
- Disassemble ELF object files containing SVE instructions.
- Compile C and C++ code for SVE-enabled targets, with an advanced auto-vectorizer capable of taking advantage of SVE features.

To optimize Fortran code for an SVE-enabled target, enable auto-vectorization by using optimization level -02 or -03, and specify an SVE-enabled target architecture using the -march= option:

armflang -O3 -march=armv8-a+sve -o example1 example1.f90

In this example, the Armv8-A target architecture is specified.

You can also specify multiple source files on a single line. Each source file is compiled individually and then linked into a single executable binary:

```
armflang -O3 -march=armv8-a+sve -o example2 example2a.f90
example2b.f90
```

2.9 Common compiler options

-S

Outputs assembly code, rather than object code. Produces a text .s file containing annotated assembly code.

-C

Performs the compilation step, but does not perform the link step. Produces an ELF object .o file. To later link object files into an executable binary, run armflang again, passing in the object files.

-o file

Specifies the name of the output file.

```
-march=name[+[no]feature]
```

Targets an architecture profile, generating generic code that runs on any processor of that architecture. For example -march=armv8-a+sve.

-mcpu=native

Enables the compiler to automatically detect the CPU it is being run on and optimize accordingly. This supports a range of Armv8-A based SoCs, including ThunderX2.

-Olevel

Specifies the level of optimization to use when compiling source files. The default is -00.

--help

Describes the most common options supported by Arm Fortran Compiler for HPC.

--version

Displays version information.

For a detailed descriptions of all the supported compiler options, see Compiler options.

To view the supported options on the command-line, use the man pages:

man armflang

2.10 Get support

Command line help is accessible through the --help option:

armflang --help

If you have problems and would like to contact our support team, Get in touch.

CHAPTER

THREE

COMPILER OPTIONS

This page lists the command-line options currently supported by armflang within Arm Fortran Compiler.

The supported options are also available within the man pages built into the tool. To view them, use:

man armflang

3.1 Actions

Control what action to perform on the input.

Option	Description	Usage
-E	Only run the preprocessor.	armflang -E
-S	Only run preprocess and compilation	armflang -S
	steps.	
-c	Only run preprocess, compile, and as-	armflang -c
	semble steps.	
-fopenmp	Enable OpenMP and link in the armflang -fope	
	OpenMP library, libomp.	
-fsyntax-only	Show syntax errors but do not perform	armflang
	any compilation.	-fsyntax-only

Table 1:	Compiler	actions
----------	----------	---------

3.2 File options

Specify input or output files.

Option	Description	Usage
-I <dir></dir>	Add directory to include search path.	armflang -I <dir></dir>
-include <file></file>	Include file before parsing.	armflang -include
		<file></file>
		Or
		armflanginclude
		<file></file>
-o <file></file>	Write output to <file>.</file>	armflang -o <file></file>

 Table 2: Compiler file options

3.3 Basic driver options

Configure basic functionality of the armflang driver.

Option	Description	Usage
gcc-toolchain= <arg></arg>	Use the gcc toolchain at the	armflang
	given directory.	-gcc-toolchain= <arg></arg>
-help	Display available options.	armflang -help
		armflanghelp
helphidden	Display hidden options.	armflanghelp-hidden
	Only use these options if	
	advised to do so by your	
	Arm representative.	
-v	Show commands to run and	armflang -v
	use verbose output.	
version	Show the version number	armflangversion
vsn	and some other basic infor-	armflangvsn
	mation about the compiler.	

Table 3: Compiler basic driver options

3.4 Optimization options

Control optimization behavior and performance.

Option	Description	Usage
-00	Minimum optimization for	armflang -00
	the performance of the com-	
	piled binary. Turns off	
	most optimizations. When	
	debugging is enabled, this	
	option generates code that	
	directly corresponds to the	
	source code. Therefore, this	
	might result in a signifi-	
	cantly larger image. This	
	is the default optimization	
	level.	
-01	Restricted optimization.	armflang -01
	When debugging is enabled,	
	this option gives the best	
	debug view for the trade-	
	off between image size,	
	performance, and debug.	
-02	High optimization. When	armflang -02
	debugging is enabled, the	_
	debug view might be less	
	satisfactory because the	
	mapping of object code to	
	source code is not always	
	clear. The compiler might	
	perform optimizations that	
	cannot be described by	
	debug information.	
-03	Very high optimization.	armflang -03
	When debugging is enabled,	
	this option typically gives	
	a poor debug view. Arm	
	recommends debugging at	
	lower optimization levels.	
-Ofast	Enable all the optimiza-	armflang -Ofast
	tions from level 3, includ-	
	ing those performed with the	
	ffpmode=fast armflang op-	
	tion.	
	This level also performs	
	other aggressive optimiza-	
	tions that might violate strict	
	compliance with language	
	standards.	

Option	Description	Usage
-ffastmath	Allow aggressive, lossy	armflang
	floating-point optimiza-	-ffast-math
	tions.	
-ffinite-mathonly	Enable optimizations that	armflang
	ignore the possibility of	-ffinite-math-only
	NaN and +/Inf.	
-ffp-contract={fast on	Controls when the com-	armflang
off}	piler is permitted to form	-ffp-contract={fast
	fused floating-point opera-	on off}
	tions (such as FMAs).	
	fast: Always (default).	
	on: Only in the presence	
	of the FP_CONTRACT	
	pragma.	
	off: Never.	
-finline	Enable or disable inlining	armflang -finline
-fno-inline	(enabled by default).	(enable)
		armflang
		-fno-inline
		(disable)
-fstack-arrays	Place all automatic arrays on	armflang
-fno-stack-arrays	stack memory.	-fstack-arrays
	For programs using very	(enable)
	large arrays on particular	armflang
	operating systems, consider	-fno-stack-arrays
	extending stack memory	(disable)
	runtime limits. Enabled by	
	default at optimization level -Ofast.	
-fstrict-aliasing	Tells the compiler to adhere	armflang
I SUITCE-AITASING	to the aliasing rules defined	-fstrict-aliasing
	in the source language.	ISCILCE ALLASING
	In some circumstances, this	
	flag allows the compiler to	
	assume that pointers to dif-	
	ferent types do not alias. En-	
	abled by default when using	
	-Ofast.	

Table 4 – continued from previous page

Option	Description	Usage
-funsafe-math	This option enables reasso-	armflang
-optimizations	ciation and reciprocal math	-funsafe-math
-fno-unsafe-math	optimizations, and does not	-optimizations
-optimizations	honor trapping nor signed	(enable)
	zero.	armflang -fno
		-unsafe-math
		-optimizations
		(disable)
-fvectorize	Enable/disable loop vector-	armflang
-fno-vectorize	ization (enabled by default).	-fvectorize
		(enable)
		armflang
		-fno-vectorize
		(disable)
-mcpu= <arg></arg>	Select which CPU archi-	armflang
	tecture to optimize for	-mcpu= <arg></arg>
	-mcpu=native causes	
	the compiler to auto-detect	
	the CPU architecture from	
	the build computer.	

Table 4 – continued from previous page

3.5 Workload compilation options

Configure how Fortran workloads compile.

Option	Description	Usage
-Mallocatable={95	Select semantics for assignments to	armflang
03 }	allocatables. Fortran 2003 (03) allows	-Mallocatable={95
	dynamic reallocation, which will er-	03}
	ror in Fortran 90/95 (95). Default =	
	03.	
-cpp	Preprocess Fortran files.	armflang -cpp
-fbackslash	Treat backslash as C-style escape	armflang
-fno-backslash	character (-fbackslash) or as a normal	-fbackslash
	character (-fno-backslash).	(enable)
		armflang
		-fno-backslash
		(disable)

Table 5: Compiler workload comp	oilation options
---------------------------------	------------------

Option	able 5 – continued from previous pag	Usage
-fconvert={native	Convert between big and little endian	armflang
swap	data format. Default = native.	-fconvert={
big-endian		native swap
little-endian}		big-endian
		little-endian}
-ffixed-form	Force fixedform format Fortran. This	armflang
	is default for .f and .F files, and is the	-ffixed-form
	inverse of -ffree-form.	
-ffixed-line-length	Set line length in fixed-form format	armflang
={0 72 132	Fortran. Default = 72.0 and none are	-ffixed-line
none}	equivalent and set the line length to a	length={72 132}
	very large value (> 132).	
-ffree-form	Force free-form format for For-	armflang
	tran. This is default for .f90 and	-ffree-form
	.F90 files, and is the inverse of	
	-ffixed-form.	
-fma	Enable generation of FMA instruc-	armflang -fma
	tions.	
-fno-fortran-main	Don't link in Fortran main.	armflang fno
		-fortran-main
-frecursive	Allocate all local arrays on the stack,	armflang
	allowing thread-safe recursion.	-frecursive
	In the absence of this flag, some large	
	local arrays may be allocated in static	
	memory. This reduces stack, but is	
	not thread-safe. This flag is enabled	
	by default when -fopenmp is given.	
-i8	Treat INTEGER and LOGICAL as	armflang -i8
	INTEGER*8 and LOGICAL*8.	
-no-flang-libs	Do not link against Flang libraries.	armflang
	Don't proprocess Fortrop files	-no-flang-libs
-nocpp	Don't preprocess Fortran files.	armflang -nocpp
-nofma	Disable generation of FMA instruc- tions.	armflang -nofma
		avention and
-r8	Treat REAL as REAL * 8.	armflang -r8
-static-flang-libs	Link using static Flang libraries.	armflang
		-static-flang-libs

Table 5 – continued from previous page

3.6 Development options

Support code development.

Option	Description	Usage
-fcolor-diagnostics	Use colors in diagnostics.	armflang -fcolor
-fno-color-diagnostics		-diagnostics
		Or
		armflang -fno
		-color-diagnostics
-g	Generate source-level debug	armflang -g
	information.	

Table 6: Compiler development options

3.7 Warning options

Control the behavior of warnings.

Option	Description	Usage
-W <warning></warning>	Enable or diable the specified warn-	armflang
-Wno- <warning></warning>	ing.	-W <warning></warning>
-Wall	Enable all warnings.	armflang -Wall
-W	Suppress all warnings.	armflang -w

3.8 Pre-processor options

Control pre-processor behavior.

Table 8: Co	ompiler pre-p	processor options
-------------	---------------	-------------------

Option	Description	Usage
-D <macro>=<value></value></macro>	Define <macro> to <value> (or 1</value></macro>	armflang
	if <value> is omitted).</value>	-D <macro>=<value></value></macro>
-U	Undefine macro <macro>.</macro>	armflang -U <macro></macro>

3.9 Linker options

Control linking behavior and performance.

Option	Description	Usage
-Wl, <arg></arg>	Pass the comma separated arguments	armflang -Wl,
	<arg> to the linker.</arg>	<arg>;</arg>

Option	Description	Usage
-Xlinker <arg></arg>	Pass <arg> to the linker.</arg>	armflang -Xlinker
		<arg></arg>
-l <library></library>	Search for the library named	armflang
	<library> when linking.</library>	-l <library></library>
-larmflang	At link time, include this option to use	armflang
	the default Fortran libarmflang run-	-larmflang
	time library for both serial and paral-	See notes in description.
	lel (OpenMP) Fortran workloads.	
	 Note: This option is set by default when linking using armflang. You need to explicitly include this option if you are linking with armclang instead of armflang at link time. This option only applies to link time operations. 	
		Continued on next page

Table 9 – continued from previous page

Option	Description	Usage
Option -larmflang-nomp	Description At link time, use this option to avoid linking against the OpenMP Fortran runtime library. Note: • Enabled by default when compiling and linking using armflang with the -fno-openmp option. • You need to explicitly include this option if you are linking with armclang instead of armflang at link time.	Usage armflang -larmflang-nomp See notes in description.
	 Should not be used when your code has been compiled with the -lomp or -fopenmp options. Use this option with care. When using this option, do not link to any OpenMP-utilizing Fortran runtime libraries in your code. This option only applies to link time operations. 	
-shared shared	Causes library dependencies to be re- solved at runtime by the loader. This is the inverse of static. If both options are given, all but the last op-	armflang -shared Or armflangshared
-static	tion will be ignored. Causes library dependencies to be re-	armflang - statio
static	solved at link time.	armflang -static Or
	This is the inverse of shared. If both options are given, all but the last option is ignored.	armflangstatic

Table 9 – continued from previous page

To link serial or parallel Fortran workloads using armclang instead of armflang, include the -larmflang option to link with the default Fortran runtime library for serial and parallel Fortran workloads. You also need to pass any options required to link using the required mathematical routines for your code.

To statically link, in addition to passing *-larmflang* and the mathematical routine options, you also need to pass:

• -static

- -lomp
- -lrt

To link serial or parallel Fortran workloads using *armclang* ' instead of armflang, without linking against the OpenMP runtime libraries, instead pass -armflang-nomp, at link time. For example, pass:

- -larmflang-nomp
- Any mathematical routine options, for example: -lm or -lamath.

Again, to statically link, in addition to *-larmflang-nomp* and the mathematical routine options, you also need to pass:

- -static
- -lrt

Warning:

- Do not link against any OpenMP-utlizing Fortran runtime libraries when using this option.
- All lockings and thread local storage will be disabled.
- Arm does not recommend using the *-larmflang-nomp* option for typical workloads. Use this option with caution.

Note: The -lompstub option (for linking against libompstub) might still be needed if you have imported omp_lib in your Fortran code but not compiled with -fopenmp.

CHAPTER

FOUR

FORTRAN DATA TYPES AND FILE EXTENSIONS

This topic describes, the data types and file extensions supported by Arm Fortran Compiler.

4.1 Data types

Arm Fortran Compiler provides the following intrinsic data types:

** Data Type**	Specified as	Size (bytes)
INTEGER		
	INTEGER	4
	INTEGER*1	1
	INTEGER([KIND=]1)	1
	INTEGER*2	2
	INTEGER([KIND=]2)	2
	INTEGER*4	4
	INTEGER([KIND=]4)	4
	INTEGER*8	8
	INTEGER([KIND=]8)	8
REAL		
KLAL	REAL	4
	REAL*4	4
	REAL([KIND=]4)	4
	REAL*8	8
	REAL([KIND=]8)	8
DOUBLE PRECISION	DOUBLE PRECISION (same as REAL*8, no	16
	KIND parameter is permitted)	

Table 1: Intrinsic data types

** Data Type**	Specified as	Size (bytes)
COMPLEX		
	COMPLEX	4
	COMPLEX*8	8
	COMPLEX([KIND=]4)	8
	COMPLEX*16	16
	COMPLEX([KIND=]8)	16
DOUBLE COMPLEX	DOUBLE COMPLEX (same as COMPLEX*8, no KIND parameter is permitted)	8
LOGICAL		
	LOGICAL	4
	LOGICAL*1	1
	LOGICAL([KIND=]1)	1
	LOGICAL*2	2
	LOGICAL([KIND=]2)	2
	LOGICAL*4	4
	LOGICAL([KIND=]4)	4
	LOGICAL*8	8
	LOGICAL([KIND=]8)	8
CHARACTER		
	CHARACTER	1
	CHARACTER([KIND=]1)	1
BYTE	BYTE (same as INTEGER([KIND=]1))	1

Table 1 – continued from previous page

Note:

- The default entries are the first entries for each intrinsic data type.
- To determine the kind type parameter of a representation method, use the intrinsic function KIND.

For more portable programs, define a PARAMETER constant using the appropriate SELECTED_INT_KIND or SELECTED_REAL_KIND functions, as appropriate.

For example, this code defines a PARAMETER constant for an INTEGER kind that has 9 digits:

```
INTEGER, PARAMETER :: MY_INT_KIND = SELECTED_INT_KIND(9)
...
INTEGER(MY_INT_KIND) :: J
...
```

4.2 Supported file extensions

The extensions £90, . £95, . £03, and . £08 are used for modern, free-form source code conforming to the Fortran 90, Fortran 95, Fortran 2003, and Fortran 2008 standards, respectively.

The extensions .F90, .F95, .F03, and .F08 are used for modern, free-form source code that require preprocessing, and conform to the Fortran 90, Fortran 95, Fortran 2003, and Fortran 2008 standards, respectively.

The .f and .for extensions are typically used for older, fixed-form code such as FOR-TRAN77.

The file extensions that are compatible with Arm Fortran Compiler are:

File Extension	Interpretation	
a.out	Executable output file.	
file.a	Library of object files.	
	Fixed-format Fortran source file.	
file.f		
file.for		
	Free-format Fortran source file that requires preprocess-	
file.fpp	ing.	
file.F		
	Free-format Fortran source file.	
file.f90		
file.f95		
file.f03		
file.f08		
	Free-format Fortran source file that requires preprocess-	
file.F90	ing.	
file.F95		
file.F03		
file.F08		
file.o	Compiled object file.	
file.s	Assembler source file.	

Table 2: Supported file extensions.

4.3 Logical variables and constants

A LOGICAL constant is either True or False. The Fortran standard does not specify how variables of LOGICAL type are represented. However, it does require LOGICAL variables of

default kind to have the same storage size as default INTEGER and REAL variables.

For Arm Fortran Compiler:

- .TRUE. corresponds to -1 and has a default storage size of 4-bytes.
- .FALSE. corresponds to 0 and has a default storage size of 4-bytes.

Note: Some compilers represent . TRUE . and . FALSE . as 1 and 0, respectively.

4.4 C/Fortran inter-language calling

This section provides some useful troubleshooting information when handling argument passing and return values for Fortran functions or subroutines called from C/C++ code.

In Fortran, arguments are passed by reference. Here, reference means the address of the argument is passed, rather than the argument itself. In C/C++, arguments are passed by value, except for strings and arrays, which are passed by reference.

C/C++ provides some flexibility when solving passing difference with Fortran. Usually, intelligent use of the & and * operators in argument passing enables you to call Fortran from C/C++, and in argument declarations when Fortran is calling C/C++.

Fortran functions which return CHARACTER or COMPLEX data types require special consideration when called from C/C++ code.

4.5 Character

Fortran functions that return a character require the *calling* C/C++ function to have two arguments to describe the result:

- 1. The first argument provides the address of the returned character.
- 2. The second argument provides the length of the returned character.

For example, the Fortran function:

```
CHARACTER* (*) FUNCTION CHF ( C1, I)
CHARACTER* (*) C1
INTEGER I
END
```

when called in C/C++, has an extra declaration:

```
extern void chf_();
    char tmp[10];
    char c1[9];
```

(continues on next page)

(continued from previous page)

```
int i;
chf_(tmp, 10, c1, &i, 9);
```

The argument, tmp, provides the address, and the length is defined with the second argument, 10.

Note:

- Fortran functions declared with a character return length, for example CHARACTER ± 4 FUNCTION CHF(), still require the second parameter to be supplied to the calling C/C++ code.
- The value of the character function is not automatically NULL-terminated.

4.6 Complex

Fortran functions that return a COMPLEX data type cannot be directly called from C/C++. Instead, a workaround is possible by passing a C/C++ function a pointer to a memory area. This memory area can then be calling the COMPLEX function and storing the returned value.

For example, the Fortran function:

```
SUBROUTINE INTER_CF(C, I)
COMPLEX C
COMPLEX CF
C = CF(I)
RETURN
END
COMPLEX FUNCTION CF(I)
. . .
END
```

when called in C/C++ is completed using a memory pointer:

```
extern void inter_cf_();
  typedef struct {float real, imag;} cplx;
  cplx c1;
  int i;
  inter_cf_(&c1, &i);
```

4.7 Arm Fortran Compiler Fortran implementation notes

Additional information specific to the Arm Fortran Compiler:

• Arm Fortran Compiler does not initialize arrays or variables with zeros.

Note: This behavior varies from compiler to compiler and is not defined within Fortran standards. It is best practice to not assume arrays are filled with zeros when created.

CHAPTER

FIVE

FORTRAN STATEMENTS

This topic describes the Fortran statements supported within Arm Fortran Compiler.

5.1 Statements

The Fortran statements supported within the Arm Fortran Compiler, are:

Statement	Language standard	Brief description
		•
ACCEPT	F77	Causes formatted input to be read on
		standard input.
ALLOCATABLE	F90	Specifies that an array with fixed rank,
		but deferred shape, is available for a
		future ALLOCATE statement.
ALLOCATE	F90	Allocates storage for each allocatable
		array, pointer object, or pointer-based
		variable that appears in the state-
		ments; declares storage for deferred-
		shape arrays.
		Note: Arm Fortran Compiler does not
		initialize arrays or variables with ze-
		ros. It is best practice to not assume
		that arrays are filled with zeros when
		created.
ASSIGN	F77	Assigns a statement label to a vari-
		able.
		Note: This statement is a deleted fea-
		ture in the Fortran standard, but re-
		mains supported in the Arm Fortran
		Compiler.
ASSOCIATE	F2003	Associates a name either with a vari-
		able or with the value of an expres-
		sion, while in a block.

Table 1: Supported Fortran statements

	Table 1 – continued from p	
Statement	Language standard	Brief description
ASYNCHRONOUS	F77	Warns the compiler that incorrect re-
		sults may occur for optimizations in-
		volving movement of code across
		wait statements, or statements that
D A CIVODA CE	522	cause wait operations.
BACKSPACE	F77	Positions the file that is connected to
		the specified unit, to before the pre-
		ceding record.
BLOCK DATA	F77	Introduces several non-executable
		statements that initialize data values
DVTE	F77	in COMMON tables.
BYTE	F77 ext	Establishes the data type of a variable
		by explicitly attaching the name of a
		variable to a 1-byte integer, overriding
CALL		implied data typing.Transfers control to a subroutine.
CALL	F77	
CASE	F90	Begins a case-statement-block por- tion of a SELECT CASE statement.
	E00	
CHARACTER	F90	Establishes the data type of a variable
		by explicitly attaching the name of a
		variable to a character data type, over-
		riding the implied data typing.
		Note: This statement has been
		marked as obsolescent. Obsolescent
		statements are now redundant and
		may be removed from future stan-
		dards. This statement remains sup-
~ ~ ~ ~		ported in the Arm Fortran Compiler.
CLOSE	F77	Terminates the connection of the
<u></u>		specified file to a unit.
COMMON	F77	Defines global blocks of storage
		that are either sequential or non-
		sequential. May be either static or dy-
		namic form.
		Note: This statement has been
		marked as obsolescent. Obsolescent
		statements are now redundant and
		may be removed from future stan-
		dards. This statement remains sup-
		ported in the Arm Fortran Compiler.
COMPLEX	F90	Establishes the data type of a variable
		by explicitly attaching the name of a
		variable to a complex data type, over-
		riding implied data typing.

antinued frame many Tabla 1

<u> </u>	Table 1 – continued from p	
Statement	Language standard	Brief description
CONTAINS	F90 F2003	Precedes a subprogram, a function or subroutine, and indicates the presence of the subroutine or function defini- tion inside a main program, external
		subprogram, or module subprogram. In F2003, a CONTAINS statement can also appear in a derived type im- mediately before any type-bound pro- cedure definitions.
CONTINUE	F77	Passes control to the next statement.
CYCLE	F90	Interrupts a DO construct execution and continues with the next iteration of the loop.
DATA	F77	 Assigns initial values to variables before execution. Note: This statement amongst execution statements has been marked as obsolescent. This functionality is redundant and may be removed from future standards. This statement remains supported in the Arm Fortran Compiler.
DEALLOCATE	F90	Causes the memory that is allocated for each pointer-based variable or al- locatable array that appears in the statement to be deallocated (freed). Also may be used to deallocate stor- age for deferred-shape arrays.
DECODE	F77 ext	Transfers data between variables or arrays in internal storage and trans- lates that data from character form to internal form, according to format specifiers.
DIMENSION	F90	Defines the number of dimensions in an array and the number of elements in each dimension.

Table 1 – continued from previous page

Table 1 – continued from previous page	Table 1	 continued from 	previous page
--	---------	------------------------------------	---------------

Statement	Language standard	Brief description
DO (Iterative)	F90	Introduces an iterative loop and speci-
		fies the loop control index and param-
		eters.
		Note: Label form DO statements
		have been marked as obsolescent. Ob-
		solescent statements are now redun-
		dant and may be removed from fu-
		ture standards. This statement re-
		mains supported in the Arm Fortran
		Compiler.
DO WHILE	F77	Introduces a logical DO loop and
		specifies the loop control expression.
DOUBLE COMPLEX	F77	Establishes the data type of a vari-
		able by explicitly attaching the name
		of a variable to a double complex data
		type. This overrides the implied data
		typing.
DOUBLE PRECISION	F90	Establishes the data type of a vari-
		able by explicitly attaching the name
		of a variable to a double precision data
		type, overriding implied data typing.
ELSE	F77	Begins an ELSE block of an IF block,
		and encloses a series of statements
		that are conditionally executed.
ELSE IF	F77	Begins an ELSE IF block of an IF
		block series, and encloses statements
		that are conditionally executed.
ELSE WHERE	F90	The portion of the WHERE ELSE
		WHERE construct that permits condi-
		tional masked assignments to the ele-
		ments of an array, or to a scalar, zero-
ENCODE	F77	dimensional array. Transfers data between variables or
ENCODE	F77 ext	
		arrays in internal storage and trans- lates that data from internal to char-
		acter form, according to format speci-
		fiers.
END	F77	Terminates a segment of a Fortran
		program.
END ASSOCIATE	F2003	Terminates an ASSOCIATE block.
END DO	F77	Terminates a DO or DO WHILE loop.
END FILE	F77	Writes an ENDFILE record to the
		files.
END IF	F77	Terminates an IF ELSE or ELSE IF
		block.
	·	Continued on next page

Table 1 – continued from previous page		
Statement	Language standard	Brief description
END MAP	F77 ext	Terminates a MAP declaration.
END SELECT	F90	Terminates a SELECT declaration.
END STRUCTURE	F77 ext	Terminates a STRUCTURE declara-
		tion.
END UNION	F77 ext	Terminates a UNION declaration.
END WHERE	F90	Terminates a WHERE ELSE WHERE construct.
ENTRY	F77	Allows a subroutine or function to have more than one entry point. Note: This statement has been marked as obsolescent. Obsolescent statements are now redundant and may be removed from future stan- dards. This statement remains sup-
EQUIVALENCE	F77	ported in the Arm Fortran Compiler.Allows two or more named regions of data memory to share the same start address.Note:This statement has been
		marked as obsolescent. Obsolescent statements are now redundant and may be removed from future stan- dards. This statement remains sup- ported in the Arm Fortran Compiler.
EXIT	F90	Interrupts a DO construct execution and continues with the next statement after the loop.
EXTERNAL	F77	Identifies a symbolic name as an ex- ternal or dummy procedure which can then be used as an argument.
FINAL	F2003	Specifies a final subroutine inside a derived type.
FORALL	F95	 Provides, as a statement or construct, a parallel mechanism to assign values to the elements of an array. Note: This statement has been marked as obsolescent. Obsolescent statements are now redundant and may be removed from future standards. This statement remains supported in the Arm Fortran Compiler.
FORMAT	F77	Specifies format requirements for in- put or output.

Table 1 – continued from previous page

Table 1 – continued from previous page					
Statement	Language standard	Brief description			
FUNCTION	F77	Introduces a program unit; all the			
		statements that follow apply to the			
		function itself.			
GENERIC	F2003	Specifies a generic type-bound proce-			
		dure inside a derived type.			
GOTO (Assigned)	F77	Transfers control so that the statement			
		identified by the statement label is ex-			
		ecuted next.			
		Note: This statement is a deleted fea-			
		ture in the Fortran standard, but re-			
		mains supported in the Arm Fortran			
		Compiler.			
GOTO (Computed)	F77	Transfers control to one of a list of la-			
		bels, according to the value of an ex-			
		pression.			
		Note: This statement has been			
		marked as obsolescent. Obsolescent			
		statements are now redundant and			
		may be removed from future stan-			
		dards. This statement remains sup-			
		ported in the Arm Fortran Compiler.			
GOTO (Unconditional)	F77	Unconditionally transfers control to			
		the statement with the label label,			
		which must be declared within the			
		code of the program unit containing			
		the GOTO statement, and must be			
		unique within that program unit.			
IF (Arithmetic)	F77	Transfers control to one of three la-			
		beled statements, depending on the			
		value of the arithmetic expression.			
		Note: This statement has been			
		marked as obsolescent. Obsolescent			
		statements are now redundant and			
		may be removed from future stan-			
		dards. This statement remains sup-			
		ported in the Arm Fortran Compiler.			
IF (Block)	F77	Consists of a series of statements that			
		are conditionally executed.			
IF (Logical)	F77	Executes or does not execute a state-			
		ment based on the value of a logical			
		expression.			
IMPLICIT	F77	Redefines the implied data type of			
		symbolic names from their initial let-			
		ter, overriding implied data types.			
		Continued on poyt page			

Table 1 – continued from previous page	Table 1	- continued	from	previous p	aae
--	---------	-------------	------	------------	-----

Statement	Table 1 – continued from p	Brief description
IMPORT	F2003	Gives access to the named entities of
IMPORT	F2003	
	F77 and	the containing scope.
INCLUDE	F77 ext	Directs the compiler to start reading
DIOLUDE	577	from another file.
INQUIRE	F77	Inquires about the current properties
		of a particular file or the current con-
		nections of a particular unit.
INTEGER	F77	Establishes the data type of a variable
		by explicitly attaching the name of a
		variable to an integer data type, over-
		riding implied data types.
INTENT	F90	Specifies intended use of a dummy
		argument, but may not be used in a
		specification statement of a main pro-
		gram.
INTERFACE	F90	Makes an implicit procedure an ex-
		plicit procedure where the dummy
		parameters and procedure type are
		known to the calling module; Also
		overloads a procedure name.
INTRINSIC	F77	Identifies a symbolic name as an in-
		trinsic function and allows it to be
		used as an actual argument.
LOGICAL	F77	Establishes the data type of a variable
		by explicitly attaching the name of a
		variable to a logical data type, over-
		riding implied data types.
MAP	F77 ext	Designates each unique field or group
		of fields within a UNION statement.
MODULE	F90	Specifies the entry point for a Fortran
		90, or Fortran 95, module program
		unit. A module defines a host envi-
		ronment of scope of the module, and
		may contain subprograms that are in
		the same scoping unit.
NAMELIST	F90	Allows the definition of NAMELIST
		groups for NAMELIST-directed I/O.
NULLIFY	F90	Disassociates a pointer from its target.
OPEN	F77	Connects an existing file to a unit, cre-
		ates and connects a file to a unit, cre-
		ates a file that is pre-connected, or
		changes certain specifiers of a con-
		nection between a file and a unit.
OPTIONAL	F90	Specifies dummy arguments that may
		be omitted or that are optional.
L		Continued on next page

Table 1 – continued from previous page	
--	--

<u>.</u>	Table 1 – continued from p	
Statement	Language standard	Brief description
OPTIONS	F77 ext	Confirms or overrides certain com-
		piler command-line options.
PARAMETER	F77	Gives a symbolic name to a constant.
PAUSE	F77	Stops program execution.
		Note: This statement is a deleted fea-
		ture in the Fortran standard, but re-
		mains supported in the Arm Fortran
		Compiler.
POINTER	F90	Provides a means for declaring point-
		ers.
PRINT	F77	Transfers data to the standard output
		device from the items that are speci-
		fied in the output list and format spec-
		ification.
PRIVATE	F90	Specifies that entities that are defined
	F2003	in a module are not accessible outside
		of the module. PRIVATE can also ap-
		pear inside a derived type to disallow
		access to its data components outside
		the defining module.
		In F2003, a PRIVATE statement may
		appear after CONTAINS statement of
		the type, to disallow access to type-
		bound procedures outside the defining
		module.
PROCEDURE	F2003	Specifies a type-bound procedure,
		procedure pointer, module procedure,
		dummy procedure, intrinsic proce-
		dure, or an external procedure.
PROGRAM	F77	Specifies the entry point for a linked
		Fortran program.
PROTECTED	F2003	Protects a module variable against
		modification from outside the module
		in which it was declared.
PUBLIC	F90	Specifies that entities that are defined
		in a module are accessible outside of
		the module.
PURE	F95	Indicates that a function or subroutine
		has no side effects.
READ	F77	Transfers data from the standard input
		device to the items specified in the in-
		put and format specifications.

Table 1 – continued from previous page

Otatamant	Table 1 – continued from p	
Statement	Language standard	Brief description
REAL	F90	Establishes the data type of a variable
		by explicitly attaching the name of a
		variable to a data type, overriding im-
		plied data types.
RECORD	F77 ext	A VAX Fortran extension, defines a
		user-defined aggregate data item.
RECURSIVE	F90	Indicates whether a function or sub-
		routine may call itself recursively.
RETURN	F77	When used in a subroutine, causes
		a return to the statement following a
		CALL. When used in a function, re-
		turns to the relevant arithmetic ex-
		pression.
		Note: This statement has been
		marked as obsolescent. Obsolescent
		statements are now redundant and
		may be removed from future stan-
		dards. This statement remains sup-
		ported in the Arm Fortran Compiler.
REWIND	F77	Positions the file at the start. The
		statement has no effect if the file is al-
		ready positioned at the start, or if the
		file is connected but does not exist.
SAVE	F77	Retains the definition status of an en-
		tity after a RETURN or END state-
		ment in a subroutine or function that
		has been executed.
SELECT CASE	F90	Begins a CASE construct.
SELECT TYPE	F2003	Provides the capability to execute al-
		ternative code depending on the dy-
		namic type of a polymorphic entity,
		and to gain access to dynamic parts.
		The alternative code is selected using
		the TYPE IS statement for a specific
		dynamic type, or the CLASS IS state-
		ment for a specific type (and all its
		type extensions).
		Use the optional class default state-
		ment to specify all other dynamic
		types that do not match a specified
		TYPE IS or CLASS IS statement.
		Like the CASE construct, the code
		consists of a several blocks and, at
		most, one is selected for execution.

Table 1 – continued from previous page	Table 1	- continued from	previous page
--	---------	------------------	---------------

Statement	Table 1 – continued from p	Brief description
SEQUENCE	F90	A derived type qualifier that speci-
SEQUENCE	150	fies the ordering of the storage that
		is associated with the derived type.
		This statement specifies storage for
		use with COMMON and EQUIVA-
(TOD		LENCE statements.
STOP	F77	Stops program execution and pre-
		cludes any further execution of the
		program.
STRUCTURE	F77 ext	A VAX extension to FORTRAN 77
		that defines an aggregate data type.
SUBROUTINE	F77	Introduces a subprogram unit.
TARGET	F90	Specifies that a data type may be the
		object of a pointer variable (for ex-
		ample, pointed to by a pointer vari-
		able). Types that do not have the
		TARGET attribute cannot be the tar-
		get of a pointer variable.
THEN	F77	Part of an IF block statement, sur-
	1 / /	rounds a series of statements that are
		conditionally executed.
ТҮРЕ	F90 F2003	Begins a derived type data specifica-
IIFE	F90 F2003	
		tion or declares variables of a speci-
		fied user-defined type.
		Use the optional EXTENDS state-
		ment with TYPE to indicate a type ex-
		tension in F2003.
UNION	F77 ext	A multi-statement declaration defin-
		ing a data area that can be shared in-
		termittently during program execution
		by one or more fields or groups of
		fields.
USE	F90	Gives a program unit access to the
		public entities or to the named entities
		in the specified module.
VOLATILE	F77 ext	Inhibits all optimizations on the vari-
		ables, arrays and common blocks that
		it identifies.
WAIT	F2003	Performs a wait operation for speci-
		fied pending asynchronous data trans-
		fer operations.
WHERE	F90	
WILEKE	Г У U	Permits masked assignments to the el-
		ements of an array or to a scalar, zero-
		dimensional array.

Statement	Language standard	Brief description
WRITE	F77	Transfers data to the standard output
		device from the items that are speci-
		fied in the output list and format spec-
		ification.

Table 1 – continued from previous page

*See WG5 Fortran Standards

Note: The denoted language standards indicate the standard they were introduced in, or the standard they were last significantly changed.

5.1.1 Related information

• WG5 Fortran Standards

CHAPTER

FORTRAN INTRINSICS

The Fortran language standards implemented in the Arm Fortran Compiler are Fortran 77, Fortran 90, Fortran 95, Fortran 2003, and Fortran 2008. This topic details the supported and unsupported Fortran intrinsics within Arm Fortran Compiler.

6.1 Overview

An intrinsic is a function made available for a given language standard, for example, Fortran 95. Intrinsic functions accept arguments and return values. When an intrinsic function is called within the source code, the compiler replaces the function with a set of automatically-generated instructions. It is best practice to use these intrinsics to enable the compiler to optimize the code most efficiently.

Note: The intrinsics listed in the following tables are specific to Fortran 90/95, unless explicitly stated.

6.2 Bit manipulation functions and subroutines

Functions and subroutines for manipulating bits.

Intrinsic	Description	Num. of Argu- ments	Argument Type	Result
AND	Perform a logical AND on corresponding bits	2	Any, except CHAR or COMPLEX	INTEGER or LOGICAL
	of the arguments.			
BIT_SIZE	Return the number of	1	INTEGER	INTEGER
	bits (the precision) of			
	the integer argument.			

Intrinsic	Description	Num. of	Argument Type	Result
	•	Argu- ments		
BTEST	Test the binary value of a bit in a specified posi- tion of an integer argu- ment.	2	INTEGER, INTEGER	LOGICAL
IAND	Perform a bit-by-bit logical AND on the arguments.	2	INTEGER, INTEGER (of same kind)	INTEGER
IBCLR	Clear one bit to zero.	2	INTEGER, INTEGER >=0	INTEGER
IBITS	Extract a sequence of bits.	3	INTEGER, INTEGER >=0, INTEGER >=0	INTEGER
IBSET	Set one bit to one.	2	INTEGER, INTEGER >=0	INTEGER
IEOR	Perform a bit-by-bit logical exclusive OR on the arguments.	2	INTEGER, INTEGER (of same kind)	INTEGER
IOR	Perform a bit-by-bit logical OR on the arguments.	2	INTEGER, INTEGER (of same kind)	INTEGER
ISHFT	Perform a logical shift.	2	INTEGER, INTEGER	INTEGER
ISHFTC	Perform a circular shift of the rightmost bits.	2 or 3	INTEGER, INTEGER or INTEGER, INTEGER, INTEGER	INTEGER
LSHIFT	Perform a logical shift to the left.	2	INTEGER, INTEGER	INTEGER
MVBITS	Copy bit sequence.	5	INTEGER(IN),IN-TEGER(IN),IN-TEGER(IN),IN-TEGER(IN,OUT),INTEGER(IN)	N/A
NOT	Perform a bit-by-bit logical complement on the argument.	2	INTEGER	INTEGER
OR	Perform a logical OR on each bit of the argu- ments.	2	Any except CHAR or COMPLEX	INTEGER or LOGICAL
POPCNT	Return the number of one bits. (F2008)	1	INTEGER or bits	INTEGER
POPPAR	Return the bitwise par- ity. (F2008)	1	INTEGER or bits	INTEGER
RSHIFT	Perform a logical shift to the right.	2	INTEGER, INTEGER	INTEGER

Table 1 – continued from previous page

Intrinsic	Description	Num. of Argu- ments	Argument Type	Result
SHIFT	Perform a logical shift.	2	Any except CHAR or	INTEGER or
			COMPLEX, INTE-	LOGICAL
			GER	
XOR	Perform a logical ex-	2	INTEGER, INTEGER	INTEGER
	clusive OR on each bit			
	of the arguments.			
ZEXT	Zero-extend the argu-	1	INTEGER or LOGI-	INTEGER
	ment.		CAL	

Table 1 – continued from previous page

6.3 Elemental character and logical functions

Elemental character logical conversion functions.

Intrinsic	Description	Num. of Argu- ments	Argument Type	Result
ACHAR	Return character in specified ASCII collating position.	1	INTEGER	CHARACTER
ADJUSTL	Left adjust string.	1	CHARACTER	CHARACTER
ADJUSTR	Right adjust string.	1	CHARACTER	CHARACTER
CHAR	Return character with specified ASCII value.	1	LOGICAL*1 INTE- GER	CHARACTER CHARACTER
IACHAR	Return position of char- acter in ASCII collating sequence.	1	CHARACTER	INTEGER
ICHAR	Return position of char- acter in the charac- ter set's collating se- quence.	1	CHARACTER	INTEGER
INDEX	Return starting position of substring within first string.	2	CHARACTER, CHARACTER	INTEGER
		3	CHARACTER, CHARACTER, LOGICAL	INTEGER

Table 2: Elemental character and logical functions

Intrinsic	Description		previous page Argument Type	Result
	-	Argu- ments		
LEN	Return the length of string.	1	CHARACTER	INTEGER
LEN_TRIM	Return the length of the supplied string minus the number of trailing blanks.	1	CHARACTER	INTEGER
LGE	Testthesuppliedstringstodetermineifthefirststringislexicallygreaterthanorequal tothesecond.Note:FromF2008,characterkindASCIIalsosupported.	2	CHARACTER, CHARACTER	LOGICAL
LGT	Testthesuppliedstringstodetermineifthefirststringislexicallygreaterthanthe second.Note:FromF2008,characterkindASCIIisalsosupported.Supported.Supported.	2	CHARACTER, CHARACTER	LOGICAL
LLE	Test the supplied strings to determine if the first string is lexically less than or equal to the second. Note: From F2008, character kind ASCII is also supported.	2	CHARACTER, CHARACTER	LOGICAL
LLT	Testthesuppliedstringstodetermineifthefirststringislexicallylessthansecond.Note:FromF2008,characterkindASCIIisalsosupported.Supported.	2	CHARACTER, CHARACTER	LOGICAL
LOGICAL	Logical conversion.	1 2	LOGICAL LOGICAL, INTEGER	LOGICAL LOGICAL

Table 2 – continued from previous page

Intrinsic	Description	Num. of Argu- ments	Argument Type	Result
SCAN	Scan string for charac- ters in set.	2	CHARACTER, CHARACTER	INTEGER
		3	CHARACTER, CHARACTER, LOGICAL	INTEGER
VERIFY	Determine if string contains all characters in set.	2	CHARACTER, CHARACTER	INTEGER
		3	CHARACTER, CHARACTER, LOGICAL	INTEGER

T 0		<i>c</i>		
Table 2 –	continued	trom	previous	page
			0.0.0000	P ~ 9 ~

6.4 Vector/Matrix functions

Functions for vector or matric multiplication.

Intrinsic	Description	Num. of Argu- ments	Argument Type	Result
DOT_PRODUCT	Perform dot product on two vectors.	2	INTEGER, REAL, COMPLEX, or LOGICAL	INTEGER, REAL, COMPLEX, or LOGICAL
MATMUL	Perform matrix multi- ply on two matrices.	2	INTEGER, REAL, COMPLEX, or LOGICAL	INTEGER, REAL, COMPLEX, or LOGICAL

Table 3: Vector and matrix functions

Note: All matrix outputs are the same type as the argument supplied.

6.5 Array reduction functions

Functions for determining information from, or calculating using, the elements in an array.

Intrinsic	Description	Num. of Argu- ments	Argument Type	Result
ALL	Determine if all array			
	values are true.	1	LOGICAL	LOGICAL
		2	LOGICAL, INTEGER	LOGICAL
ANY	Determine if any array			
	value is true.	1	LOGICAL	LOGICAL
		2	LOGICAL, INTEGER	LOGICAL
COUNT	Count true values in ar-			
	ray.	1	LOGICAL	INTEGER
		2	LOGICAL, INTEGER	INTEGER
MAXLOC	Determine the position			
	of the array element	1	INTEGER	INTEGER
	with the maximum value.	2	INTEGER, LOGICAL	INTEGER
		2	INTEGER, INTEGER	INTEGER
		3	INTEGER, INTEGER,	INTEGER
			LOGICAL	
		1	REAL	REAL
		2	REAL, LOGICAL	REAL
		2	REAL, INTEGER	REAL
		3	REAL, INTEGER ,	REAL
			LOGICAL	

Table 4: Array reduction functions

Intrinsic	Description	Num. of	Argument Type	Result
		Argu-		
		ments		
MAXVAL	Determine the maxi-	1	INTECED	INTEGER
	mum value of the array elements.	1	INTEGER	
	cicilients.	2	INTEGER, LOGICAL	INTEGER
		2	INTEGER, INTEGER	INTEGER
		3	INTEGER, INTEGER,	INTEGER
			LOGICAL	
		1	REAL	REAL
		2	REAL, LOGICAL	REAL
		$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$	REAL, INTEGER	REAL
		3	REAL, INTEGER,	REAL
			LOGICAL	
MINLOC	Determine the position			
	of the array element	1	INTEGER	INTEGER
	with the minimum value.	2	INTEGER, LOGICAL	INTEGER
		2	INTEGER, INTEGER	INTEGER
		3	INTEGER, INTEGER,	INTEGER
			LOGICAL	
		1	REAL	REAL
		2	REAL, LOGICAL	REAL
		2	REAL, INTEGER	REAL
		3	REAL, INTEGER,	REAL
			LOGICAL	

T I I 4		r		
Iable 4 –	continued	trom	nrevious	nade
	0011111000		proviouo	pugo

Intrinsic	Description	Num. of Argu- ments	Argument Type	Result
MINVAL	Determine the mini- mum value of the array elements.	1 2	INTEGER INTEGER, LOGICAL	INTEGER INTEGER
		2	INTEGER, INTEGER	INTEGER
		3	INTEGER, INTEGER, LOGICAL	INTEGER
		1 2 2 3	REAL REAL, LOGICAL REAL, INTEGER REAL, INTEGER , LOGICAL	REAL REAL REAL REAL
PRODUCT	Calculate the product of the elements of an ar- ray.	1 2	NUMERIC NUMERIC, LOGICAL	NUMERIC NUMERIC
		2	NUMERIC, INTEGER	NUMERIC
		3	NUMERIC, INTEGER, LOGICAL	NUMERIC
SUM	Calculate the sum of the elements of an ar- ray.	1 2	NUMERIC NUMERIC, LOGICAL	NUMERIC NUMERIC
		2	NUMERIC, INTEGER	NUMERIC
		3	NUMERIC, INTEGER, LOGICAL	NUMERIC

Table 4 – continued from previous page

6.6 String construction functions

Functions for constructing strings.

Intrinsic	Description	Num. of Argu- ments	Argument Type	Result
REPEAT	Concatenate copies of a	2	CHARACTER, INTE-	CHARACTER
	string.		GER	
TRIM	Remove trailing blanks	1	CHARACTER	CHARACTER
	from a string.			

Table 5: String construction functions	Table 5:	String	construction	functions
--	----------	--------	--------------	-----------

6.7 Array construction manipulation functions

Functions for constructing and manipulating arrays.

Intrinsic	Description	Num. of Argu- ments	Argument Type	Result
CSHIFT	Perform circular shift on an array.	2	ARRAY, INTEGER	ARRAY
		3	ARRAY, INTEGER, INTEGER	ARRAY
OESHIFT	Perform end-off shift on an array.	2	ARRAY, INTEGER	ARRAY
		3	ARRAY, INTEGER, Any	ARRAY
		3	ARRAY, INTEGER, INTEGER	ARRAY
		4	ARRAY, INTEGER, Any, INTEGER	ARRAY, ARRAY

Table 6: Array construction and manipulation functions

Intrinsic	Description	Num. of Argu- ments	Argument Type	Result
MERGE	Merge two arguments based on the logical mask.	3	Any, Any, LOGICAL The second argument must be of the same type as the first argu- ment.	Any
PACK	Pack an array into a rank-one array.	2	ARRAY, LOGICAL	ARRAY
		3	ARRAY, LOGICAL, VECTOR	ARRAY
RESHIFT	Change the shape of an array.	2	ARRAY, INTEGER	ARRAY
		3	ARRAY, INTEGER, ARRAY	ARRAY
		3	ARRAY, INTEGER, INTEGER	ARRAY
		4	ARRAY, INTEGER, ARRAY, INTEGER	ARRAY
SPREAD	Replicate an array by adding a dimension.	3	Any, INTEGER, INTE- GER	ARRAY
TRANSPOSE	Transpose an array of rank two.	1	ARRAY (m, n)	ARRAY (n, m)
UNPACK	Unpack a rank-one ar- ray into an array of multiple dimensions.	3	VECTOR, LOGICAL, ARRAY	ARRAY

Table	6 –	continued	from	previous	page
Tubic	0	Continued	110111	provious	puge

Note: All ARRAY outputs are the same type as the argument supplied.

6.8 General inquiry functions

Functions for general determining.

Intrinsic	Description	Num. of Argu- ments	Argument Type	Result
ASSOCIATED	Determine association	12		LOGICAL LOGI-
	status.		POINTER,	CAL
			POINTER,	
			••••,	
			POINTER,	
			TARGET	
KIND	Determine the kind of an argument.	1	Any intrinsic type	INTEGER
PRESENT	Determine presence of optional argument.	1	Any	LOGICAL

Table 7: General inquiry functions

6.9 Numeric inquiry functions

Functions for determining numeric information.

Intrinsic	Description	Num. of Argu- ments	Argument Type	Result
DIGITS	Determine the number			
	of significant digits.	1	INTEGER	INTEGER
		1	REAL	
EPSILON	Smallest number that can be represented.	1	REAL	REAL
HUGE	Largest number that			
	can be represented.	1	INTEGER	INTEGER
		1	REAL	REAL
MAXEXPONENT	Value of the maximum exponent.	1	REAL	INTEGER
MINEXPONENT	Value of the minimum exponent.	1	REAL	INTEGER
PRECISION	Decimal precision.			
		1	REAL	INTEGER
		1	COMPLEX	INTEGER

Intrinsic	Description	Num. of Argu- ments	Argument Type	Result
RADIX	Base of the model.			
		1	INTEGER	INTEGER
		1	REAL	INTEGER
RANGE	Decimal exponent			
	range.	1	INTEGER	INTEGER
		1	REAL	INTEGER
		1	COMPLEX	INTEGER
SELECTED_	Kind-type titlemeter in	1	INTEGER	INTEGER
INT_KIND	range.			
SELECTED_	Kind-type titlemeter in			
REAL_KIND	range.	1	INTEGER	INTEGER
	Syntax: SELECTED	2	INTEGER, INTEGER	INTEGER
	[,R]) where P is			
	precision and R is the			
	range.			
TINY	Smallest positive num-	1	REAL	REAL
	ber that can be repre-			
	sented.			

Table 8 –	continued	from	nrevious	nage
Table 0 -	continueu	nom	previous	paye

6.10 Array inquiry functions

Functions for determining information about an array.

Intrinsic	Description	Num. of Argu- ments	Argument Type	Result
ALLOCATED	Determine if an array is allocated.	1	ARRAY	LOGICAL
LBOUND	Determine the lower bounds.	1 2	ARRAY ARRAY, INTEGER	INTEGER
SHAPE	Determine the shape.	1	Any	INTEGER

Intrinsic	Description	Num. of Argu- ments	Argument Type	Result
SIZE	Determine the number			
	of elements.	1	ARRAY	INTEGER
		2	ARRAY, INTEGER	
UBOUND	Determine the upper			
	bounds.	1	ARRAY	INTEGER
		2	ARRAY, INTEGER	

Table 9 – continued from previous page

6.11 Transfer functions

Functions for transferring types.

Intrinsic	Description	Num. of Argu- ments	Argument Type	Result
TRANSFER	Change the type but maintain bit representa- tion.	2 3	Any, Any Any, Any, INTEGER	Any*

Table 10: Transfer functions

*Must be of the same type as the second argument

6.12 Arithmetic functions

Functions for manipulating arithmetic.

Intrinsic	Description	Num. of Argu- ments	Argument Type	Result
ABS	Return absolute value of the supplied argu- ment.	1	INTEGER, REAL, or COMPLEX	INTEGER, REAL, or COMPLEX
ACOS	Return the arccosine (in radians) of the specified value.	1	REAL	REAL

Intrinsic	Description	Num. of Argu- ments	Argument Type	Result
ACOSD	Return the arccosine (in degrees) of the specified value.	1	REAL	REAL
AIMAG	Return the value of the imaginary part of a complex number.	1	COMPLEX	REAL
AINT	Truncate the supplied value to a whole number.	2	REAL, INTEGER	REAL
AND	Perform a logical AND on corresponding bits of the arguments.	2	Any, except CHAR or COMPLEX	INTEGER or LOGICAL
ANINT	Return the nearest whole number to the supplied argument.	2	REAL, INTEGER	REAL
ASIN	Return the arcsine (in radians) of the specified value.	1	REAL	REAL
ASIND	Return the arcsine (in degrees) of the speci- fied value.	1	REAL	REAL
ATAN	Return the arctangent (in radians) of the spec- ified value.	1	REAL	REAL
ATAN2	Return the arctangent (in radians) of the spec- ified pair of values.	2	REAL, REAL	REAL
ATAN2D	Return the arctangent (in degrees) of the spec- ified pair of values.	1	REAL, REAL	REAL
ATAND	Return the arctangent (in degrees) of the spec- ified value.	1	REAL	REAL
CEILING	Return the least integer greater than or equal to the supplied real argu- ment.	2	REAL, KIND	INTEGER

Intrinsic	insic Description Num. of Argument Type Argu- ments		Result		
CMPLX	Convert the supplied argument or arguments to complex type.	2	{INTEGER, REAL, or COMPLEX,}, {INTEGER, REAL, or COMPLEX}	COMPLEX	
		3	{INTEGER, REAL, or COMPLEX}, {INTEGER or REAL}, KIND	COMPLEX	
COMPL	Perform a logical com- plement on the argu- ment.	1	Any, except CHAR or COMPLEX	N/A	
COS	Return the cosine (in radians) of the specified value.	1	REAL COMPLEX	REAL	
COSD	Return the cosine (in degrees) of the speci- fied value.	1	REAL COMPLEX	REAL	
COSH	Return the hyperbolic cosine of the specified value.	1	REAL	REAL	
DBLE	Convert to double pre- cision real.	1	INTEGER, REAL, or COMPLEX	REAL	
DCMPLX	Convert the argument or supplied arguments to double complex type.	1	INTEGER, REAL, or COMPLEX	DOUBLE COMPLEX	
		2	INTEGER, REAL	DOUBLE COMPLEX	
DPROD	Double precision real product.	2	REAL, REAL	REAL (double precision)	
EQV	Perform a logical ex- clusive NOR on the ar- guments.	2	Any, except CHAR or COMPLEX	1 ·	
EXP	Exponential function.	1	REAL COMPLEX	REAL COM- PLEX	

Table 11 – continued from previous page

Table 11 – continued from previous page Intrinsic Description Num. of Argument Type Result					
Intrinsic	Description	Num. of Argu- ments		Result	
EXPONENT	Return the exponent part of a real number.	1	REAL	INTEGER	
FLOOR	Return the greatest in- teger less than or equal to the supplied real ar- gument.	1 2	REAL REAL, KIND	REAL KIND	
FRACTION	Return the fractional part of a real number.	1	REAL	INTEGER	
IINT	Convert a value to a short integer type.	1	INTEGER, REAL, or COMPLEX	INTEGER	
ININT	Return the nearest short integer to the real argu- ment.	1	REAL	INTEGER	
INT	Convert a value to inte- ger type.	1	INTEGER, REAL, or COMPLEX	INTEGER	
		2	{INTEGER, REAL, or COMPLEX}, KIND	INTEGER	
INT8	Convert a real value to a long integer type.	1	REAL	INTEGER	
IZEXT	Zero-extend the argument.	1	LOGICAL or INTE- GER	INTEGER	
JINT	Convert a value to an integer type.	1	INTEGER, REAL, or COMPLEX	INTEGER	
JNINT	Return the nearest in- teger to the real argu- ment.	1	REAL	INTEGER	
KNINT	Return the nearest in- teger to the real argu- ment.	1	REAL	INTEGER (long)	
LOG	Return the natural loga- rithm.	1	REAL or COMPLEX	REAL	
LOG10	Return the common logarithm.	1	REAL	REAL	
MAX	Return the maximum value of the supplied arguments.	2 or more	INTEGER or REAL (all of same kind)	Same as argument type	
MIN	Return the minimum value of the supplied ar- guments.	2 or more	INTEGER or REAL (all of same kind)	Same as argument type	
		1	1	1	

Table 11 – continued from previous page

Intrinsic	Description		Argument Type	Result
		Argu- ments		
MOD	Find the remainder.	2 or more	{INTEGER or REAL}, {INTEGER or REAL} (all of same kind)	Same as argument type
MODULO	Return the modulo value of the arguments.	2 or more	{INTEGER or REAL}, {INTEGER or REAL} (all of same kind)	Same as argument type
NEAREST	Return the nearest dif- ferent number that can be represented, by a machine, in a given di- rection.	2	REAL, REAL (non-zero)	REAL
NEQV	Perform a logical ex- clusive OR on the argu- ments.	2	Any, except CHAR or COMPLEX	INTEGER or LOGICAL
NINT	Convert a value to inte- ger type.	1 2	REAL REAL, KIND	INTEGER
REAL	Convert the argument to real.	1	INTEGER, REAL, or COMPLEX	REAL
		2	{INTEGER, REAL, or COMPLEX}, KIND	REAL
RRSPACING	Return the reciprocal of the relative spacing of model numbers near the argument value.	1	REAL	REAL
SET_ EXPONENT	Return the model num- ber whose fractional part is the fractional part of the model repre- sentation of the first ar- gument and whose ex- ponent part is the sec- ond argument.	2	REAL, INTEGER	REAL
SIGN	Return the absolute value of A times the sign of B. Syntax: SIGN(A, B)	2	{INTEGER or REAL}, {INTEGER or REAL}	Same as argument

Table 11	- continued	from	previous	page
	oontinuou		proviouo	pugo

Intrinsic	Description	Num. of Argu- ments	Argument Type	Result
SIN	Return the sine (in ra- dians) of the specified value.	1	REAL COMPLEX	REAL
SIND	Return the sine (in de- grees) of the specified value.	1	REAL COMPLEX	REAL
SINH	Return the hyperbolic sine of the specified value.	1	REAL	REAL
SPACING	Return the relative spacing of model num- bers near the argument value.	1	REAL	REAL
SQRT	Return the square root of the argument.	1	REAL COMPLEX	REAL COMPLEX
TAN	Return the tangent (in radians) of the specified value.	1	REAL	REAL
TAND	Return the tangent (in degrees) of the speci- fied value.	1	REAL	REAL
TANH	Return the hyperbolic tangent of the specified value.	1	REAL	REAL

Table 11	- continued	from	previous p	ade
	0011111000		providuo p	ugo.

6.13 Miscellaneous functions

Functions for mixcellaneous use.

Intrinsic	Description	Num. of Argu- ments	Argument Type	Result
LOC	Return the argument address.	1	NUMERIC	INTEGER

Table 12: Miscellaneous functions

Intrinsic	Description	Num. of Argu- ments	Argument Type	Result
NULL	Assign a disassociated status.	0 1	POINTER	POINTER POINTER

Table 12 – continued from previous page

6.14 Subroutines

Supported subroutines.

Intrinsic	Description	Num. of Argu- ments	Argument Type
CPU_TIME	Return processor time.	1	REAL (OUT)
DATE_AND_TIME	Return the date and time.	4 (all op- tional)	DATE (CHARACTER, OUT) TIME (CHARACTER, OUT) ZONE (CHARACTER, OUT) VALUES (INTEGER, OUT)
RANDOM_NUMBER	Generate pseudo- random numbers.	1	REAL (OUT)
RANDOM_SEED	Set or query pseudo- random number gener- ator.	0 1 1 1	SIZE (INTEGER, OUT) PUT (INTEGER ARRAY, IN) GET (INTEGER ARRAY, OUT)

•
,

Intrinsic	Description	Num. of Argu- ments	Argument Type
SYSTEM_CLOCK	Query the real time clock.	3 (op- tional)	COUNT (INTEGER, OUT) COUNT_RATE (REAL, OUT) COUNT_MAX (INTEGER, OUT)

Table 13 – continued from previous page

6.15 Fortran 2003 functions

Fortran 2003-supported functions.

Intrinsic	Description	Num. of	Argument Type	Result
		Argu-		
		ments		
COMMAND	Return a scalar of type	0	None	INTEGER
_ARGUMENT	default integer that is			
_COUNT	equal to the number			
	of arguments passed on			
	the command line when			
	the containing program			
	was invoked. If there			
	were no command ar-			
	guments passed, the re-			
	sult is 0.			
EXTENDS_TYPE	Determine whether the	2	Objects of extensible	LOGICAL
_OF	dynamic type of A is		type	SCALAR
	an extension type of the			
	dynamic type of B.			
	Syntax:			
	EXTENDS_TYPE			
	_OF(A, B)			
GET_COMMAND	Return the speci-	1 to 4	INTEGER plus option-	A command argu-
_ARGUMENT	fied command line		ally: CHAR, INTE-	ment
	argument of the com-		GER, INTEGER	
	mand that invoked the			
	program.			

Table 14: Fortran 2003 functions

Intrinsic	Description	Num. of Argu- ments		Result
GET_COMMAND	Return the entire com- mand line that was used to invoke the program.	0 to 3	CHAR, INTEGER, IN- TEGER	A command line
GET_ENVIRONM ENT_VARIABLE	Return the value of the specified environ- ment variable.	1 to 5	CHAR, CHAR, IN- TEGER, INTEGER, LOGICAL	Stores the value of NAME in VALUE
IS_IOSTAT _END	Test whether a variable has the value of the I/O status: 'end of file'.	1	INTEGER	LOGICAL
IS_IOSTAT _EOR	Test whether a variable has the value of the I/O status: 'end of record'.	1	INTEGER	LOGICAL
LEADZ	Count the number of leading zero bits.	1	INTEGER or bits	INTEGER
MOVE_ALLOC	Move an allocation from one allocatable object to another.	2	Any type and rank	None
NEW_LINE	Return the newline character.	1	CHARACTER	CHARACTER
SAME_TYPE _AS	Determine whether the dynamic type of A is the same as the dy- namic type of B. Syntax: SAME_TYPE_AS (A, B)	2	Objects of extensible type	LOGICAL SCALAR
SCALE	Return the value A * B where B is the base of the number system in use for A. Syntax: "SCALE(A, B)"	2	REAL, INTEGER	REAL

Table 14 - co	ontinued from	previous	page
		proviouo	pugo

6.16 Fortran 2008 functions

Fortran 2008-supported functions.

Intrinsic	Description	Num. of Argu-	Argument Type	Result
		ments		
ACOSH, ASINH,	Inverse hyperbolic	1	REAL	REAL
``ATANH	trigonometric functions			
	Bessel function of:			
BESSEL_JO	the first kind of order 0.	1	REAL	REAL
	the first kind of order 1.	1	DEAL	DEAL
BESSEL_J1	the first kind.	1	REAL	REAL
BESSEL_JN	the second kind of	2 or 3	{INTEGER, REAL, or INTEGER}, INTEGER, REAL	REAL
	order 0.			
BESSEL_YO	the second kind of order 1.	1	REAL	REAL
BESSEL_Y1	the second kind.	1	REAL	REAL
BESSEL_YN		2 or 3	{INTEGER, REAL, or INTEGER}, INTEGER, REAL	REAL
C_SIZEOF	Calculates the number of bytes of storage the expression A 'occupies'. Syntax: C_SIZEOF (A)	1	Any	INTEGER
COMPILER	Options passed to the	None	None	STRING
_OPTIONS	compiler.			
COMPILER _VERSION	Compiler version string.	None	None	CHARACTER
ERF	Error function.	1	REAL	REAL
ERFC	Complementary error function.	1	REAL	REAL

Table 15: Fortran 2008 functions

Intrinsic	lable 15 - con Description		Argument Type Result	
		Argu- ments		
ERFC _SCALED	Exponentially- scaled	1	REAL	REAL
	complementary error			
	function.			
FINDLOC	Finds the location of a	3 to 6	ARRAY VALUE,	INTEGER AR-
	specified value in an ar-		DIM[, MASK, KIND,	RAY
	ray.		BACK],	
	Syntax:		Or	
	FINDLOC (ARRA		ARRAY, VALUE[,	
	Y, VALUE, DIM,		MASK, KIND, BACK]	
	MASK, KIND,			
	BACK)			
	Or			
	FINDLOC(ARRA Y,			
	VALUE, MASK ,			
	KIND, BACK)			
GAMMA	Computes Gamma of	1	REAL (not zero or neg-	REAL
	A. For positive, integer		ative)	
	values of X.			DEAL
LOG_GAMMA	Computes the natu-	1	REAL (not zero or neg-	REAL
	ral logarithm of the		ative)	
	absolute value of the Gamma function.			
	Euclidean distance	2	REAL, REAL	REAL
НҮРОТ	function.		KEAL, KEAL	KEAL
IS	Tests the contiguity of	1	ARRAY	LOGICAL
_CONTIGUOUS	an array.	1		LOOICAL
LEADZ	Returns the number of	1	INTEGER	INTEGER
	leading zero bits of an	1	IIII DOLIN	IIIIIIIII
	integer.			
POPCNT	Return the number of	1	INTEGER	INTEGER
	one bits.			
POPPAR	Return the bitwise par-	1	INTEGER	INTEGER
	ity.			
SELECTED_REAL	Kind type titlemeter in	123	INTEGER	INTEGER
	range.		INTEGER, INTEGER	INTEGER
	Syntax:		INTEGER, INTEGER,	INTEGER
	SELECTED_REAL_KI	ND(P[,	INTEGER	
	R, RADIX])			
	where P is precision			
	and R is the range.			
	Note: Radix argument			
	added for F2008.			

Table 15 – continued	from	nrevious nade	2
	nom	pievious page	5

Intrinsic	Description	Num. of Argu- ments	Argument Type	Result
STORAGE_SIZE	Storage size of argu- ment A, in bits. Syntax: STORAGE_SIZE(A[, KIND])	1[, 2]	SCALAR or ARRAY[, INTEGER]	INTEGER

Table 15 – continued from previous page

6.17 Unsupported functions

Unsupported Fortran 2008 functions:

Intrinsic	Description	Num. of Argu- ments	Argument Type	Result
ACOSH	Inverse hyperbolic	1	COMPLEX	COMPLEX
ASINH	trigonometric fuc-			
ATANH	ntions.			
BGE	Bitwise greater than or equal to.	2	INTEGER, INTEGER	LOGICAL
BGT	Bitwise greater than.	2	INTEGER, INTEGER	LOGICAL
BLE	Bitwise less than or equal to.	2	INTEGER, INTEGER	LOGICAL
BLT	Bitwise less than.	2		LOGICAL

Table 16: Unsupported functions	
---------------------------------	--

Intrinsic Description Num. of Argument Type Result				
	Description	Argu- ments		
DSHIFTL	Combined left shift.	3	INTEGER or BOZ constant, INTEGER or BOZ constant, INTEGER	INTEGER
DSHIFTR	Combined right shift.	3	INTEGER or BOZ constant, INTEGER or BOZ constant, INTEGER	INTEGER
IALL	Bitwise AND of array elements.	1	ARRAY	ARRAY
IANY	Bitwise OR of array elements.	1	ARRAY	ARRAY
IPARITY	Bitwise XOR of array elements. Syntax: "INTRIN- SIC(ARRAY[, DIM[, MASK]])"	1	ARRAY	ARRAY
IMAGE_INDE:	Co-subscript to timage index conversion.	2	COARRAY, INTEGER	INTEGER
	Number of	0, 1, or 2	None, INTEGER, or INTEGER, LOGICAL	INTEGER
NUM_IMAGES	images. Co-subscript index of this image.	0, 1, or 2	None, INTEGER, INTEGER or COARRAY, INTEGER	INTEGER
THIS_IMAGE				

Table 16 – continued from previous page

Intrinsic	Description	Num. of	Argument Type	Result
		Argu- ments		
LCOBOUND	Lower co-dimension of bounds of an array.	1	COARRAY	INTEGER
UCOBOUND	Upper co-dimension of bounds of an array. Syntax: '' INTRIN- SIC(COARRAY[, DIM[, KIND]])''	1	COARRAY	INTEGER
MASKL	Left justified mask.	1[, or 2]	INTEGER[, INTEGER]	INTEGER
MASKR	Right justified mask. Syntax: INTRINSIC(I[, KIND])	1[, or 2]	INTEGER[, INTEGER]	INTEGER
MERGE_BITS	Merge of bits un- der mask.	3	INTEGER, INTEGER, INTEGER	INTEGER
NORM2	Euclidean vector norm. Syntax: NORM2 (ARRAY [, DIM])	1[, or 2]	REAL ARRAY[, IN- TEGER]	ARRAY
PARITY	Reduction with ex- clusive OR. Syntax: PARITY (MASK[, DIM])	1[, or 2]	LOGICAL AR- RAY[,INTEGER]	LOGICAL

Table 16 – continued from previous page

Intrinsic	Description	Num. of Argu- ments	Argument Type	Result
SHIFTA	Right shift with fill.	2	INTEGER, INTEGER	INTEGER
SHIFTL	L - C - L 'C	2	INTEGER, INTEGER	INTEGER
SHIFTR	Left shift.	2	INTEGER, INTEGER	INTEGER
	Right shift.	_		
TRAILZ	Number of trailing zero bits of an in- teger	1	INTEGER	INTEGER

Table 16 – continued from previous page

6.18 Unsupported subroutines

Unsupported Fortran 2008 subroutines:

Intrinsic	Description	Num. of	Argument Type
		Argu-	
		ments	
ATOMIC_DEFINE	Defines the variable	2[, or 3]	{INTEGER or LOGI-
	ATOM with the value		CAL}, {INTEGER or
	VALUE atomically.		LOGICAL}[, INTE-
	Syntax:		GER]
	ATOMIC_DEFINE (ATOM,		
	VALUE[, STAT])		
ATOMIC_REF	Atomically assigns the	2[, or 3]	{INTEGER or LOGI-
	value of the variable		CAL}, {INTEGER or
	ATOM to VALUE.		LOGICAL}[, INTE-
	Syntax:		GER]
	ATOMIC_REF (ATOM,		
	VALUE[, STAT])		

Table 17: Unsupported subroutines

Intrinsic	Description	Num. of Argu- ments	Argument Type
EXECUTE_COMMAND	Execute a shell com-	1	STRING
_LINE	mand.		
	Syntax:		
	EXECUTE_COMMAND_		
	LINE (COMMAND[,		
	WAIT, EXITSTAT,		
	CMDSTAT,		
	CMDMSG])		

Table 17 – continued from previous page

CHAPTER

SEVEN

DIRECTIVES

Directives are used to provide additional information to the compiler, and to control the compilation of specific code blocks, for example, loops.

For general-purpose directives, you do not need to specify a specific compiler option to enable the directive.

Arm Fortran Compiler supports the general-purpose ivdep directive, and the OpenMP-specific omp simd directive.

For more information on supported OpenMP directives, see the Standards support topic.

7.1 ivdep

Apply this general-purpose directive to a loop to force the vectorizer to ignore memory dependencies of iterative loops, and proceed with the vectorization.

Syntax

Command-line option:

None

Code:

```
!dir$ ivdep
<loops>
```

Parameters

None

Example: Using ivdep

Example usage of the ivdep directive.

Code example:

```
subroutine sum(myarr1,myarr2,ub)
integer, pointer :: myarr1(:)
integer, pointer :: myarr2(:)
```

(continues on next page)

(continued from previous page)

```
integer :: ub
 !dir$ ivdep
 do i=1,ub
   myarr1(i) = myarr1(i)+myarr2(i)
 end do
end subroutine
```

Command-line invocation:

```
armflang -O3 <test>.f90 -S -Rpass-missed=loop-vectorize -Rpass=loop-vectorize
```

Outputs:

1. With the pragma, the loop given below says the following:

```
remark vectorized loop (vectorization width: 2, interleaved
count: 1) [-Rpass=loop-vectorize]
```

2. Without the pragma, the loop given below says the following:

remark: loop not vectorized [-Rpass-missed=loop-vectorize]

7.2 omp simd

Apply this OpenMP directive to a loop to indicate that the loop can be transformed into a SIMD loop.

Syntax

Command-line option:

-fopenmp

Code:

```
!$omp simd
<do-loops>
```

Parameters

None

Example: Using omp simd

Example usage of the omp simd directive.

Code example:

```
subroutine sum(myarr1,myarr2,myarr3,myarr4,myarr5,ub)
integer, pointer :: myarr1(:)
integer, pointer :: myarr2(:)
integer, pointer :: myarr3(:)
integer, pointer :: myarr5(:)
integer :: ub
   !$omp simd
   do i=1,ub
      myarr1(i) = myarr2(myarr4(i))+myarr3(myarr5(i))
   end do
end subroutine
```

Command-line invocation:

```
armflang -O3 -fopenmp <test>.f90 -S -Rpass-missed=loop-vectorize -Rpass=loop-vectorize
```

Outputs:

1. With the pragma, the loop given below says the following:

```
remark vectorized loop (vectorization width: 2, interleaved
count: 1) [-Rpass=loop-vectorize]
```

2. Without the pragma, the loop given below says the following:

remark: loop not vectorized [-Rpass-missed=loop-vectorize]

7.3 vector always

Apply this directive to force vectorization of a loop. The directive tells the vectorizer to ignore any potential cost-based implications.

Note: The loop needs to be able to be vectorized.

7.3.1 Syntax

Command-line option:

None

Code:

!dir\$ vector always
 <loops>

7.3.2 Parameters

None

7.3.3 Example: Using vector always

Example usage of the vector always directive.

Code example:

```
subroutine add(a,b,c,d,e,ub)
implicit none
integer :: i, ub
integer, dimension(:) :: a, b, c, d, e

!dir$ vector always
do i=1, ub
e(i) = a(c(i)) + b(d(i))
end do
end subroutine add
```

Command-line invocation:

```
armflang -O3 <test>.f90 -S -Rpass-missed=loop-vectorize -
→Rpass=loop-vectorize
```

7.3.4 Outputs

• With the pragma, the output for the example is:

```
remark: vectorized loop (vectorization width: 4, interleaved
count: 1) [-Rpass=loop-vectorize]
```

• Without the pragma, the output for the example is:

7.4 novector

Apply this directive to disable vectorization of a loop.

Note: Use this directive when vectorization would cause a regression instead of an improvement.

7.4.1 Syntax

Command-line option:

None

Code:

```
!dir$ novector
<loops>
```

7.4.2 Parameters

None

7.4.3 Example: Using novector

Example usage of the novector directive.

Code example:

```
subroutine add(arr1,arr2,,arr3,ub)
integer :: arr1(ub), arr2(ub), arr3(ub)
integer :: i

/dir$ novector
do i=1,ub
arr1(i) = arr1(i) + arr2(i)
end do
end subroutine add
```

Command-line invocation:

```
armflang -O3 <test>.f90 -S -Rpass-missed=loop-vectorize -
→Rpass=loop-vectorize
```

7.4.4 Outputs

• With the pragma, the output for the example is:

remark: loop not vectorized [-Rpass-missed=loop-vectorize]

• Without the pragma, the output for the example is:

```
remark: vectorized loop (vectorization width: 4, interleaved count:_

$\to$2)
[-Rpass=loop-vectorize]
```

CHAPTER

EIGHT

OPTIMIZATION REMARKS

This short tutorial describes how to enable and use optimization remarks with Arm Fortran Compiler.

8.1 Optimization remarks

This short tutorial describes how to enable optimization remarks and pipe the information they provide to an output file.

Optimization remarks provide you with information about the choices made by the compiler. They can be used to see which code has been inlined or can help you understand why a loop has not been vectorized.

By default, Arm Fortran Compiler prints compilation information to stderr. Optimization remarks prints this optimization information to the terminal, or you can choose to pipe them to an output file.

8.1.1 Procedure

1. To enable optimization remarks, choose from following Rpass options:

Option	Description
-Rpass= <regex></regex>	Information about what the compiler has op-
	timized.
-Rpass-analysis= <regex></regex>	Information about what the compiler has an-
	alyzed.
-Rpass-missed= <regex></regex>	Information about what the compiler failed
	to optimize.

Table 1:	Optimization	remarks	options
----------	--------------	---------	---------

For each option, replace <regex> with an expression for the type of remarks you wish to view.

Recommended <regexp> queries are:

• -Rpass=\(loop-vectorize\|inline\)

- -Rpass-missed=\(loop-vectorize\|inline\)
- -Rpass-analysis=\(loop-vectorize\|inline\)

where loop-vectorize will filter remarks regarding vectorized loops, and inline for remarks regarding inlining.

Note: To search for all remarks, use the expression . *. However, use this expression with care because a lot of information can print depending on the size of your code and the level of optimization performed.

2. To generate the required debug information, you must combine the -Rpass option with any of the following -g flags:

Flag	Description	
-g	Emits debug information into the binary.	
-gline-tables-only	Only emits line table debug information into	
	the binary.	

Table 2: Optimization remarks flags

3. To compile with optimization remarks enabled, debug information specified, and pipe the information to an output file, pass the selected above options and debug information to armflang, and use > <outputfile>:

```
armflang -0<level> -rpass=<option> <example.f90>
<debug_information> 2> <output_file.txt>
```

8.1.2 Example: Fortran example using armflang

This example shows you how to enable and pipe optimization remarks for an example program, example.f90.

1. Pass -Rpass with the regular expression loop-vectorize to armflang, use:

```
armflang -O3 -Rpass=loop-vectorize example.F90 -gline-tables-
→only
```

This results in the following example output in the terminal:

2. Pipe loop vectorization optimization remarks to a file called vecreport.txt, use:

CHAPTER

NINE

STANDARDS SUPPORT

The support status of Arm Fortran Compiler with the Fortran and OpenMP standards.

9.1 Fortran 2003

The following table details the support status with the Fortran 2003 standard.

Fortran 2003 Feature	Support Status
ISO TR 15580 IEEE Arithmetic	Yes
ISO TR 15581 Allocatable Enhancements	
Dummy arrays	Yes
Function results	Yes
Structure components	Yes
Data enhancements and object orientation	
Parameterized derived types	Yes
Procedure pointers	Yes
Finalization	Yes
Procedures bound by name to a type	Yes
The PASS attribute	Yes
Procedures bound to a type as operators	Yes
Type extension	Yes
Overriding a type-bound procedure	Yes
Enumerations	Yes
ASSOCIATE construct	Yes
Polymorphic entities	Yes
SELECT TYPE construct	Yes
Deferred bindings and abstract types	Yes
Allocatable scalars	Yes
Allocatable character length	Yes
Miscellaneous enhancements	Yes
Structure constructor changes	Yes
Generic procedure interfaces with the same name as a type	Yes

Table 1: Fortran 2003 support

Continued on next page

Fortran 2003 Feature	Support Status
The allocate statement	Yes
Source specifier	Yes
Errmsg specifier	Yes
Assignment to an allocatable array	Yes
Transferring an allocation	Yes
More control of access from a module	Yes
Renaming operators on the USE statement	Yes
Pointer assignment	Yes
Pointer INTENT	Yes
The VOLATILE attribute	Yes
	One or more issues are ob-
	served with this feature.
The IMPORT statement	Yes
Intrinsic modules	Yes
Access to the computing environment	Yes
Support for international character sets	Partial
	Only
	selected_char_kind
	is supported.
Lengths of names and statements	
names = 63	Yes
statements = 256	Yes
Binary, octal and hex constants	Yes
Array constructor syntax	Yes
Specification and initialization expressions	Yes
r i i i i i i i i i i i i i i i i i i i	A few intrinsics which are
	not commonly used are not
	supported.
Complex constants	Yes
Changes to intrinsic functions	Yes
Controlling IEEE underflow	Yes
Another IEEE class value	Yes
I/O enhancements	Yes
Derived type I/O	Yes
	One or more issues are ob-
	served with this feature.
Asynchronous I/O	Yes
	One or more issues are ob-
	served with this feature.
FLUSH statement	Yes
IOMSG= specifier	Yes
Stream access input/output	Yes
ROUND= specifier	Yes
Koond- sponio	Not supported for write.
	Continued on next page

Table 1 – continued from previous page

Fortran 2003 Feature	Support Status
DECIMAL= specifier	Yes
SIGN= specifier	Yes
	processor_defined
	does not work for open.
Kind type parameters of integer specifiers	Yes
Recursive input/output	Yes
Intrinsic function for newline character	Yes
Input and output of IEEE exceptional values	Yes
	Read does not work for
	NaN(s).
Comma after a P edit descriptor	Yes
Interoperability with	
Interoperability of intrinsic types	Yes
Interoperability with C pointers	Yes
Interoperability of derived types	Yes
Interoperability of variables	Yes
Interoperability of procedures	Yes
Interoperability of global data	Yes

Table 1 – continued from previous page

9.2 Fortran 2008

The following table details the support status with the Fortran 2008 standard.

Support status
Yes
No
Partial
The do concurrent
syntax is accepted. The
code generated is serial.
Yes
No
Yes
No

Table 2: Fortran 2008 support

Continued on next page

Fortran 2008 feature	Support status
Declaring type-bound procedures	No
Value attribute is permitted for any nonallocatable nonpointer non-	No
coarray	
In a pure procedure the intent of an argument need not be specified	Yes
if it has the value attribute	
Accessing data objects	
Simply contiguous arrays rank remapping to rank>1 target	Yes
Omitting an ALLOCATABLE component in a structure construc-	No
tor	
Multiple allocations with SOURCE=	No
Copying the properties of an object in an ALLOCATE statement	Yes
MOLD= specifier for ALLOCATE	Yes
Copying bounds of source array in ALLOCATE	Yes
Polymorphic assignment	No
Accessing real and imaginary parts	Partial
	Not supported for complex
	arrays.
Pointer function reference is a variable	No
Elemental dummy argument restrictions lifted	Yes
Input/Output	
Finding a unit when opening a file	Yes
g0 edit descriptor	No
Unlimited format item	Yes
Recursive I/O	Yes
Execution control	
The BLOCK construct	No
Exit statement	No
Stop code	Yes
ERROR STOP	No
Intrinsic procedures for bit processsing	
Bit sequence comparison	No
Combined shifting	No
Counting bits	Partial
	Trailz is not supported.
Masking bits	No
Shifting bits	No
Merging bits	No
Bit transformational functions	No
Intrinsic procedures and modules	
Storage size	Yes
Storage size	

Table 2 – continued from previous page

Continued on next page

Fortran 2008 feature	Support status
Extensions to trigonometric and hyperbolic intrinsics	Partial
	Complex types are not ac-
	cepted for acosh, asinh and
	atanh.
	Additionally, atan2 cannot
	be accessed via atan.
Bessel functions	Yes
Error and gamma functions	Yes
Euclidean vector norms	No
Parity	No
Execute command line	No
Optional back argument added to maxloc and minloc	No
Find location in an array	Yes
String comparison	Yes
Constants	Yes
COMPILER_VERSION	Yes
COMPILER_OPTIONS	Yes
Function for C sizeof	Yes
Added optional argument for IEEE_SELECTED_REAL_KIND	No
Programs and procedures	
Save attribute for module and submodule data	Partial
	One or more issues are ob-
	served with this feature.
Empty contains section	Partial
	Not supported for proce-
	dures.
Form of end statement for internal and module procedures	Yes
Internal procedure as an actual argument	Yes
Null pointer or unallocated allocatable as absent dummy arg.	Partial
	Not supported for null
	pointer.
Non pointer actual for pointer dummy argument	pointer. Yes
Non pointer actual for pointer dummy argument Generic resolution by procedureness	-
	Yes
Generic resolution by procedureness	Yes No
Generic resolution by procedureness Generic resolution by pointer vs. allocatable	Yes No Yes
Generic resolution by procedureness Generic resolution by pointer vs. allocatable Impure elemental procedures	Yes No Yes Yes
Generic resolution by procedureness Generic resolution by pointer vs. allocatable Impure elemental procedures	Yes No Yes Yes Partial
Generic resolution by procedureness Generic resolution by pointer vs. allocatable Impure elemental procedures	Yes No Yes Yes Partial Only shows a warning with

Table 2 – continued from previous page

9.3 OpenMP 4.0

The following table details the support status with the OpenMP 4.0 standard.

OpenMP 4.0 Feature	Support
C/C++ Array Sections	N/A
Thread affinity policies	Yes
"simd" construct	Partial
	Note: No clauses are sup-
	ported. !\$omp simd can
	be used to forge a loop to be
	vectorized.
"declare simd" construct	No
Device constructs	No
Task dependencies	No
"taskgroup" construct	Yes
User defined reductions	No
Atomic capture swap	Yes
Atomic seq_cst	No
Cancellation	Yes
OMP_DISPLAY_ENV	Yes

9.4 OpenMP 4.5

The following table details the support status with the OpenMP 4.5 standard.

Table 4: OpenMP 4.5 support

OpenMP 4.5 Feature	Support
doacross loop nests with ordered	No
"linear" clause on loop construct	No
"simdlen" clause on simd construct	No
Task priorities	No
"taskloop" construct	Yes
Extensions to device support	No
"if" clause for combined constructs	Yes
"hint" clause for critical construct	No
"source" and "sink" dependence types	No
C++ reference types in data sharing attribute clauses	N/A
Reductions on C/C++ array sections	N/A
"ref", "val", "uval" modifiers for linear clause	No
Thread affinity query functions	Yes
Hints for lock API	Yes

CHAPTER

FURTHER RESOURCES

This topic describes the Fortran statements supported within Arm Fortran Compiler.

10.1 Further resources

To learn more about Arm Fortran Compiler and other Arm tools, refer to the following information on the Arm Developer website:

- Arm Fortran Compiler
- Installation instructions
- Release history
- Supported platforms
- Porting and tuning
- Packages wiki
- Help and tutorials
- Arm Allinea Studio
- Get software
- Arm HPC tools
- Arm HPC Ecosystem
- Scalable Vector Extension (SVE)
- Contact Arm Support