
Arm Fortran Compiler
Reference Guide

Version 19.1.0

Document Number 101380_1910_00

CONTENTS

1 Overview 3
1.1 Arm Fortran Compiler . 3
1.2 About this book . 3
1.3 Getting help . 3

2 Get started 5
2.1 Installation . 5
2.2 Configuring environment . 5
2.3 Compiling and running a simple “Hello World” program . 6
2.4 Generating executable binaries from Fortran code . 6
2.5 Compiling and linking object files as separate steps . 6
2.6 Increasing the optimization level . 6
2.7 Compiling and optimizing using CPU auto-detection . 7
2.8 Compiling Fortran code for SVE-enabled target architectures 7
2.9 Common compiler options . 7
2.10 Get support . 8

3 Compiler options 9
3.1 Actions . 9
3.2 File options . 9
3.3 Basic driver options . 10
3.4 Optimization options . 10
3.5 Workload compilation options . 12
3.6 Development options . 14
3.7 Warning options . 14
3.8 Pre-processor options . 14
3.9 Linker options . 15

4 Fortran data types and file extensions 17
4.1 Data types . 17
4.2 Supported file extensions . 18
4.3 Logical variables and constants . 19
4.4 C/Fortran inter-language calling . 19
4.5 Character . 20
4.6 Complex . 20
4.7 Arm Fortran Compiler Fortran implementation notes . 21

5 Fortran statements 23
5.1 Statements . 23

6 Fortran intrinsics 31
6.1 Overview . 31
6.2 Bit manipulation functions and subroutines . 31
6.3 Elemental character and logical functions . 32
6.4 Vector/Matrix functions . 34

i Document number 101380_1910_00

6.5 Array reduction functions . 34
6.6 String construction functions . 37
6.7 Array construction manipulation functions . 37
6.8 General inquiry functions . 38
6.9 Numeric inquiry functions . 39
6.10 Array inquiry functions . 40
6.11 Transfer functions . 40
6.12 Arithmetic functions . 41
6.13 Miscellaneous functions . 44
6.14 Subroutines . 45
6.15 Fortran 2003 functions . 45
6.16 Fortran 2008 functions . 46
6.17 Unsupported functions . 48
6.18 Unsupported subroutines . 50

7 Directives 53
7.1 ivdep . 53
7.2 vector always . 54
7.3 novector . 55
7.4 omp simd . 56
7.5 unroll . 57
7.6 nounroll . 58

8 Optimization remarks 61
8.1 Optimization remarks . 61

9 Standards support 63
9.1 Fortran 2003 . 63
9.2 Fortran 2008 . 65
9.3 OpenMP 4.0 . 66
9.4 OpenMP 4.5 . 67

10 Further resources 69
10.1 Further resources . 69

Document number 101380_1910_00 ii

CONTENTS Arm Fortran Compiler Reference Guide

Copyright © [2016-2019], Arm Limited (or its affiliates). All rights reserved.

Release information

Table 1: Document history
Issue Date Confidentiality Change
1830_00 20 June 2018 Non-Confidential 18.3.0
1840_00 27 July 2018 Non-Confidential 18.4.0
1900_00 2 November 2018 Non-Confidential 19.0.0
1910_00 8 March 2019 Non-Confidential 19.1.0

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the
information contained in this document may be protected by one or more patents or pending patent applications. No
part of this document may be reproduced in any form by any means without the express prior written permission of
Arm. No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted
by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit
others to use the information for the purposes of determining whether implementations infringe any third party
patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WAR-
RANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS
FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm
makes no representation with respect to, and has undertaken no analysis to identify or understand the scope and
content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAM-
AGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNI-
TIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF
LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF Arm HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication
or disclosure of this document complies fully with any relevant export laws and regulations to assure that this
document or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the
word “partner” in reference to Arm’s customers is not intended to create or refer to any partnership relationship
with any other company. Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement
covering this document with Arm, then the signed written agreement prevails over and supersedes the conflicting
provisions of these terms. This document may be translated into other languages for convenience, and you agree
that if there is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of Arm Limited or its affiliates in
the EU and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/
about/trademark-usage-guidelines.php

Copyright © [2016-2019], Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

1 Document number 101380_1910_00

http://www.arm.com/about/trademark-usage-guidelines.php
http://www.arm.com/about/trademark-usage-guidelines.php

Arm Fortran Compiler Reference Guide CONTENTS

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm delivered
this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

http://www.arm.com

Document number 101380_1910_00 2

http://www.arm.com

CHAPTER

ONE

OVERVIEW

Gives an overview of the Arm Fortran Compiler, the information within this book, and provides information on
how to get further support.

1.1 Arm Fortran Compiler

Arm Fortran Compiler is an auto-vectorizing, Linux user-space Fortran compiler, tailored for High Performance
Computing (HPC) and scientific workloads. It is built on the open-source Flang front-end and the LLVM-based
optimization and code generation back-end. It supports popular Fortran and OpenMP standards and is tuned for
64-bit Armv8-A architecture.

Arm Fortran Compiler is available in combination with Arm C/C++ Compiler, Arm Performance Libraries, Arm
Forge, and Arm Performance Reports as part of the Arm Allinea Studio. Arm Allinea Studio is the end-to-end
commercial suite for building and porting HPC applications on Arm.

1.2 About this book

This document contains information on the adherance of the Arm Fortran Compiler with the various Fortran
standards. It also describes the compatibility with various Fortran language features, statements and instrinsics.
In addition, it describes the available compiler options, includes some Getting started content, and provides
information and examples on using some of the compiler features.

This guide is not a tutorial, instead it is intended for application programmers who have a basic understanding of
Fortran concepts and standards.

1.3 Getting help

You can find further help and resources on the Arm Developer website. If you need further assistance, Contact Arm
Support.

3 Document number 101380_1910_00

https://developer.arm.com/products/software-development-tools/hpc/arm-allinea-studio
https://developer.arm.com/products/software-development-tools/hpc/arm-fortran-compiler
https://developer.arm.com/products/software-development-tools/hpc/get-support
https://developer.arm.com/products/software-development-tools/hpc/get-support

Arm Fortran Compiler Reference Guide Chapter 1. Overview

Document number 101380_1910_00 4

CHAPTER

TWO

GET STARTED

Arm Fortran Compiler is an auto-vectorizing compiler for the 64-bit Arm®v8-A architecture. This getting started
tutorial shows how to install, compile Fortran code, use different optimization levels and generate an executable.

The Arm Fortran Compiler tool chain for the 64-bit Arm®v8-A architecture enables you to compile Fortran code
for Arm®v8-A compatible platforms, with an advanced auto-vectorizer capable of taking advantage of SIMD
features.

2.1 Installation

Refer to Installing Arm Compiler for HPC for information on installing Arm Fortran Compiler.

2.2 Configuring environment

As part of the installation, your administrator should have made the Arm Compiler for HPC environment module
available. To see which environment modules are available:

module avail

Note: You may need to configure the MODULEPATH environment variable to include the installation directory:

export MODULEPATH=$MODULEPATH:/opt/arm/modulefiles/

To configure your Linux environment to make Arm Fortran Compiler for HPC available:

module load <architecture>/<linux_variant>/<linux_version>/suites/
arm-compiler-for-hpc/<version>

For example:

module load Generic-AArch64/SUSE/12/suites/arm-compiler-for-hpc/19.1

You can check your environment by examining the PATH variable. It should contain the appropriate bin directory
from /opt/arm, as installed in the previous section:

echo $PATH
/opt/arm/arm-compiler-for-hpc-19.1_Generic-AArch64_SUSE-
12_aarch64-linux/bin:...

Note: You might want to consider adding the module load command to your .profile to run it automatically
every time you log in.

5 Document number 101380_1910_00

https://developer.arm.com/products/software-development-tools/hpc/documentation/installing-arm-compiler-for-hpc

Arm Fortran Compiler Reference Guide Chapter 2. Get started

2.3 Compiling and running a simple “Hello World” program

This example illustrates how to compile and run a simple “Hello World” Fortran program.

1. Create a simple “hello world” program and save it in a file. In our case, we have saved it in a file named
hello.f90

program hello
print *, 'hello world'
end

2. To generate an executable binary, compile your program with Arm Fortran Compiler for HPC.

armflang -o hello hello.f90

3. Now you can run the generated binary hello as shown below

./hello

In the following sections we discuss the available compiler options in more detail and, towards the end of this
tutorial, discuss compiling Fortran code for SVE-enabled targets.

2.4 Generating executable binaries from Fortran code

To generate an executable binary, compile a program using:

armflang -o example1 example1.f90

You can also specify multiple source files on a single line. Each source file is compiled individually and then linked
into a single executable binary:

armflang -o example1 example1a.f90 example1b.f90

2.5 Compiling and linking object files as separate steps

To compile each of your source files individually into an object file, specify the -c (compile-only) option, and then
pass the resulting object files into another invocation of armflang to link them into an executable binary.

armflang -c -o file1a.o file1a.f90
armflang -c -o file1b.o file1b.f90
armflang -o file1 file1a.o file2a.o

2.6 Increasing the optimization level

To increase the optimization level, use the -O<level> option. The -O0 option is the lowest optimization level,
while -O3 is the highest. Arm Fortran Compiler only performs auto-vectorization at -O2 and higher, and uses
-O0 as the default setting. The optimization flag can be specified when generating a binary, such as:

armflang -O3 -o example1 example1.f90

The optimization flag can also be specified when generating an object file:

armflang -O3 -c -o example1a.o example1a.f90
armflang -O3 -c -o example1b.o example1b.f90

Document number 101380_1910_00 6

Chapter 2. Get started Arm Fortran Compiler Reference Guide

or when linking object files:

armflang -O3 -o example1 example1a.o example1b.o

2.7 Compiling and optimizing using CPU auto-detection

Arm Fortran Compiler supports the use of the -mcpu=native option, for example:

armflang -O3 -mcpu=native -o example1 example1.f90

This option enables the compiler to automatically detect the architecture and processor type of the CPU it is being
run on, and optimize accordingly.

This option supports a range of Arm®v8-A based SoCs, including ThunderX2.

Note: The optimization performed according to the auto-detected architecture and processor is independent of the
optimization level denoted by the -O<level> option.

2.8 Compiling Fortran code for SVE-enabled target architectures

The Arm Fortran Compiler toolchain for the 64-bit Armv8-A architecture supports the Scalable Vector Extensions
(SVE), enabling you to:

• Assemble source code containing SVE instructions.

• Disassemble ELF object files containing SVE instructions.

• Compile C and C++ code for SVE-enabled targets, with an advanced auto-vectorizer capable of taking
advantage of SVE features.

To optimize Fortran code for an SVE-enabled target, enable auto-vectorization by using optimization level -O2 or
-O3, and specify an SVE-enabled target architecture using the -march= option:

armflang -O3 -march=armv8-a+sve -o example1 example1.f90

In this example, the Armv8-A target architecture is specified.

You can also specify multiple source files on a single line. Each source file is compiled individually and then linked
into a single executable binary:

armflang -O3 -march=armv8-a+sve -o example2 example2a.f90 example2b.f90

2.9 Common compiler options

-S

Outputs assembly code, rather than object code. Produces a text .s file containing annotated assembly
code.

-c

Performs the compilation step, but does not perform the link step. Produces an ELF object .o file. To
later link object files into an executable binary, run armflang again, passing in the object files.

-o file

Specifies the name of the output file.

7 Document number 101380_1910_00

Arm Fortran Compiler Reference Guide Chapter 2. Get started

-march=name[+[no]feature]

Targets an architecture profile, generating generic code that runs on any processor of that architecture.
For example -march=armv8-a+sve.

-mcpu=native

Enables the compiler to automatically detect the CPU it is being run on and optimize accordingly. This
supports a range of Armv8-A based SoCs, including ThunderX2.

-Olevel

Specifies the level of optimization to use when compiling source files. The default is -O0.

--help

Describes the most common options supported by Arm Fortran Compiler for HPC.

--version

Displays version information.

For a detailed descriptions of all the supported compiler options, see Compiler options.

To view the supported options on the command-line, use the man pages:

man armflang

2.10 Get support

Command line help is accessible through the --help option:

armflang --help

If you have problems and would like to contact our support team, Get in touch.

Document number 101380_1910_00 8

https://developer.arm.com/products/software-development-tools/hpc/get-support

CHAPTER

THREE

COMPILER OPTIONS

This page lists the command-line options currently supported by armflang within Arm Fortran Compiler.

The supported options are also available within the man pages built into the tool. To view them, use:

man armflang

3.1 Actions

Control what action to perform on the input.

Table 1: Compiler actions
Option Description
-E Only run the preprocessor.

Usage
armflang -E

-S Only run preprocess and compilation steps.
Usage
armflang -S

-c Only run preprocess, compile, and assemble steps.
Usage
armflang -c

-fopenmp Enable OpenMP and link in the OpenMP library, libomp.
Usage
armflang -fopenmp

-fsyntax-only Show syntax errors but do not perform any compilation.
Usage
armflang -fsyntax-only

3.2 File options

Specify input or output files.

Table 2: Compiler file options
Option Description
-I<dir> Add directory to include search path.

Usage
armflang -I<dir>

Continued on next page

9 Document number 101380_1910_00

Arm Fortran Compiler Reference Guide Chapter 3. Compiler options

Table 2 – continued from previous page
Option Description
-include <file> Include file before parsing.

Usage
armflang -include <file>
Or
armflang --include <file>”

-o <file> Write output to <file>.
Usage
armflang -o <file>

3.3 Basic driver options

Configure basic functionality of the armflang driver.

Table 3: Compiler basic driver options
Option Description
--gcc-toolchain=<arg> Use the gcc toolchain at the given directory.

Usage
armflang --gcc-toolchain=<arg>

-help
--help

Display available options.
Usage
armflang -help
armflang --help

--help-hidden Display hidden options. Only use these options if advised to do
so by your Arm representative.
Usage
armflang --help-hidden

-v Show commands to run and use verbose output.
Usage
armflang -v
--version

--vsn” Show the version number and some other basic information
about the compiler.
Usage
armflang --version
armflang --vsn”

3.4 Optimization options

Control optimization behavior and performance.

Table 4: Compiler optimization options
Option Description
-O0 Minimum optimization for the performance of the compiled

binary. Turns off most optimizations. When debugging is
enabled, this option generates code that directly corresponds to
the source code. Therefore, this might result in a significantly
larger image. This is the default optimization level.
Usage
armflang -O0

Continued on next page

Document number 101380_1910_00 10

Chapter 3. Compiler options Arm Fortran Compiler Reference Guide

Table 4 – continued from previous page
Option Description
-O1 Restricted optimization. When debugging is enabled, this op-

tion gives the best debug view for the trade-off between image
size, performance, and debug.
Usage
armflang -O1

-O2 High optimization. When debugging is enabled, the debug view
might be less satisfactory because the mapping of object code
to source code is not always clear. The compiler might perform
optimizations that cannot be described by debug information.
Usage
armflang -O2

-O3 Very high optimization. When debugging is enabled, this option
typically gives a poor debug view. Arm recommends debugging
at lower optimization levels.
Usage
armflang -O3

-Ofast Enable all the optimizations from level 3, including those per-
formed with the -ffp-mode=fast armflang option.
This level also performs other aggressive optimizations that
might violate strict compliance with language standards.
Usage
armflang -Ofast

-ffast-math Allow aggressive, lossy floating-point optimizations.
Usage
armflang -ffast-math

-ffinite-math-only Enable optimizations that ignore the possibility of NaN and
+/-Inf.
Usage
armflang -ffinite-math-only

-ffp-contract={fast|on|off} Controls when the compiler is permitted to form fused floating-
point operations (such as FMAs).
fast: Always (default).
on: Only in the presence of the FP_CONTRACT pragma.
off: Never.
Usage
armflang -ffp-contract={fast|on|off}

-finline
-fno-inline

Enable or disable inlining (enabled by default).
Usage
armflang -finline
(enable)
armflang -fno-inline
(disable)

-fstack-arrays
-fnostack-arrays

Place all automatic arrays on stack memory.
For programs using very large arrays on particular operating sys-
tems, consider extending stack memory runtime limits. Enabled
by default at optimization level -Ofast.
Usage
armflang -fstack-arrays
(enable)
armflang -fnostack-arrays
(disable)

Continued on next page

11 Document number 101380_1910_00

Arm Fortran Compiler Reference Guide Chapter 3. Compiler options

Table 4 – continued from previous page
Option Description
-fstrict-aliasing Tells the compiler to adhere to the aliasing rules defined in the

source language.
In some circumstances, this flag allows the compiler to assume
that pointers to different types do not alias. Enabled by default
when using -Ofast.
Usage
armflang -fstrict-aliasing

-funsafe-math-optimizations
-fno-unsafe-math-optimizations

This option enables reassociation and reciprocal math optimiza-
tions, and does not honor trapping nor signed zero.
Usage
armflang -funsafe-math-optimizations
(enable)
armflang-fno-unsafe-math-optimizations
(disable)

-fvectorize
-fno-vectorize

Enable/disable loop vectorization (enabled by default).
Usage
armflang -fvectorize
(enable)
armflang -fno-vectorize
(disable)

-mcpu=<arg> Select which CPU architecture to optimize for
-mcpu=native causes the compiler to auto-detect the
CPU architecture from the build computer.
Usage
armflang -mcpu=<arg>

3.5 Workload compilation options

Configure how Fortran workloads compile.

Table 5: Compiler workload compilation options
Option Description
-frealloc-lhs
-fno-realloc-lhs

-frealloc-lhs uses Fortran 2003 standard semantics for
assignments to allocatables. An allocatable object on the left-
hand side of an assignment is automatically allocated, or re-
allocated, to match the dimensions of the right-hand side. This
is the default behavior.
-fno-realloc-lhs uses Fortran 95 standard semantics for
assignments to allocatables. The left-hand side of an allocatable
assignment is assumed to be allocated with the correct dimen-
sions. Incorrect behavior can occur if the left-hand side is not
allocated with the correct dimensions.

Note: In Arm Fortran Compiler versions 19.0 and
earlier, -Mallocatable=03 was supported instead of
-frealloc-lhs, and -Mallocatable=95was supported
instead of -fno-realloc-lhs.

Usage
armflang -frealloc-lhs
armflang -fno-realloc-lhs

Continued on next page

Document number 101380_1910_00 12

Chapter 3. Compiler options Arm Fortran Compiler Reference Guide

Table 5 – continued from previous page
Option Description
-cpp Preprocess Fortran files.

Usage
armflang -cpp

-fbackslash
-fno-backslash

Treat backslash as C-style escape character (-fbackslash)
or as a normal character (-fno-backslash).
Usage
armflang -fbackslash
(enable)
armflang -fno-backslash
(disable)

-fconvert={native|swap|big-endian
little-endian}

Convert between big and little endian data format. Default =
native.
Usage
armflang -fconvert={native|swap|big-endian
little-endian}

-ffixed-form Force fixed-form format Fortran. This is default for .f and .F
files, and is the inverse of -ffree-form.
Usage
armflang -ffixed-form

-ffixed-line-length={0|72|132|none} Set line length in fixed-form format Fortran. Default = 72. 0
and none are equivalent and set the line length to a very large
value (> 132).
Usage
armflang -ffixed-line-length={72|132}

-ffree-form Force free-form format for Fortran. This is default for .f90 and
.F90 files, and is the inverse of -ffixed-form.
Usage
armflang -ffree-form

-fma Enable generation of FMA instructions.
Usage
armflang -fma

-fno-fortran-main Do not link in Fortran main.
Usage
armflang -fno-fortran-main

-frecursive Allocate all local arrays on the stack, allowing thread-safe re-
cursion.
In the absence of this flag, some large local arrays may be
allocated in static memory. This reduces stack , but is not
thread-safe. This flag is enabled by default when -fopenmp
is given.
Usage
armflang -frecursive

-i8 Treat INTEGER and LOGICAL as INTEGER*8 and
LOGICAL*8.
Usage
armflang -i8

-no-flang-libs Do not link against Flang libraries.
Usage
armflang -no-flang-libs

-nocpp Don’t preprocess Fortran files.
Usage
armflang -nocpp

-nofma Disable generation of FMA instructions.
Usage
armflang -nofma

Continued on next page

13 Document number 101380_1910_00

Arm Fortran Compiler Reference Guide Chapter 3. Compiler options

Table 5 – continued from previous page
Option Description
-r8 Treat REAL as REAL*8.

Usage
armflang -r8

-static-flang-libs Link using static Flang libraries.
Usage
armflang -static-flang-libs

3.6 Development options

Support code development.

Table 6: Compiler development options
Option Description
-fcolor-diagnostics
-fno-color-diagnostics

Use colors in diagnostics.
Usage
armflang -fcolor-diagnostics
Or
armflang -fno-color-diagnostics

-g Generate source-level debug information.
Usage
armflang -g

3.7 Warning options

Control the behavior of warnings.

Table 7: Compiler warning options
Option Description
-W<warning>
-Wno-<warning>

Enable or disable the specified warning.
Usage
armflang -W<warning>

-Wall Enable all warnings.
Usage
armflang -Wall

-w Suppress all warnings.
Usage
armflang -w

3.8 Pre-processor options

Control pre-processor behavior.

Table 8: Compiler pre-processing options
Option Description
-D <macro>=<value> Define <macro> to <value> (or 1 if <value> is omitted).

Usage
armflang -D<macro>=<value>

Continued on next page

Document number 101380_1910_00 14

Chapter 3. Compiler options Arm Fortran Compiler Reference Guide

Table 8 – continued from previous page
Option Description
-U Undefine macro <macro>.

Usage
armflang -U<macro>

3.9 Linker options

Control linking behavior and performance.

Table 9: Compiler linker options
Option Description
-Wl,<arg> Pass the comma separated arguments in <arg> to the linker.

Usage
armflang -Wl,<arg>, <arg2>...

-Xlinker <arg> Pass <arg> to the linker.
Usage
armflang -Xlinker <arg>

-l<library> Search for the library named <library> when linking.
Usage
armflang -l<library>

-larmflang At link time, include this option to use the default For-
tran libarmflang runtime library for both serial and parallel
(OpenMP) Fortran workloads.

Note:
• This option is set by default when linking using
armflang.

• You need to explicitly include this option if you are link-
ing with armclang instead of armflang at link time.

• This option only applies to link time operations.

Usage
armclang -larmflang
See notes in description.

-larmflang-nomp At link time, use this option to avoid linking against the
OpenMP Fortran runtime library.

Note:
• Enabled by default when compiling and linking using
armflang with the -fno-openmp option.

• You need to explicitly include this option if you are link-
ing with armclang instead of armflang at link time.

• Should not be used when your code has been compiled
with the -lomp or -fopenmp options.

• Use this option with care. When using this option, do not
link to any OpenMP-utilizing Fortran runtime libraries in
your code.

• This option only applies to link time operations.

Usage
armclang -larmflang-nomp
See notes in description.

Continued on next page

15 Document number 101380_1910_00

Arm Fortran Compiler Reference Guide Chapter 3. Compiler options

Table 9 – continued from previous page
Option Description
-shared
--shared

Causes library dependencies to be resolved at runtime by the
loader.
This is the inverse of -static. If both options are given, all but
the last option will be ignored.
Usage
armflang -shared
Or
armflang --shared

-static
--static

Causes library dependencies to be resolved at link time.
This is the inverse of -shared. If both options are given, all
but the last option is ignored.
Usage
armflang -static
Or
armflang --static

To link serial or parallel Fortran workloads using armclang instead of armflang, include the -larmflang
option to link with the default Fortran runtime library for serial and parallel Fortran workloads. You also need to
pass any options required to link using the required mathematical routines for your code.

To statically link, in addition to passing -larmflang and the mathematical routine options, you also need to pass:

• -static

• -lomp

• -lrt

To link serial or parallel Fortran workloads using armclang instead of armflang, without linking against the
OpenMP runtime libraries, instead pass -armflang-nomp at link time. For example, pass:

• -larmflang-nomp

• Any mathematical routine options, for example: -lm or -lamath.

Again, to statically link, in addition to -larmflang-nomp and the mathematical routine options, you also need
to pass:

• -static

• -lrt

Warning:

• Do not link against any OpenMP-utlizing Fortran runtime libraries when using this option.

• All lockings and thread local storage will be disabled.

• Arm does not recommend using the -larmflang-nomp option for typical workloads. Use this option
with caution.

Note: The -lompstub option (for linking against libompstub) might still be needed if you have imported
omp_lib in your Fortran code but not compiled with -fopenmp.

Document number 101380_1910_00 16

CHAPTER

FOUR

FORTRAN DATA TYPES AND FILE EXTENSIONS

This topic describes, the data types and file extensions supported by Arm Fortran Compiler.

4.1 Data types

Arm Fortran Compiler provides the following intrinsic data types:

Table 1: Intrinsic data types
** Data Type** Specified as Size (bytes)
INTEGER

INTEGER
INTEGER*1
INTEGER([KIND=]1)
INTEGER*2
INTEGER([KIND=]2)
INTEGER*4
INTEGER([KIND=]4)
INTEGER*8
INTEGER([KIND=]8)

4
1
1
2
2
4
4
8
8

REAL
REAL
REAL*4
REAL([KIND=]4)
REAL*8
REAL([KIND=]8)

4
4
4
8
8

DOUBLE PRECISION DOUBLE PRECISION (same as REAL*8, no KIND
parameter is permitted)

16

COMPLEX
COMPLEX
COMPLEX*8
COMPLEX([KIND=]4)
COMPLEX*16
COMPLEX([KIND=]8)

4
8
8
16
16

DOUBLE COMPLEX DOUBLE COMPLEX (same as COMPLEX*8, no KIND
parameter is permitted)

8

Continued on next page

17 Document number 101380_1910_00

Arm Fortran Compiler Reference Guide Chapter 4. Fortran data types and file extensions

Table 1 – continued from previous page
** Data Type** Specified as Size (bytes)
LOGICAL

LOGICAL
LOGICAL*1
LOGICAL([KIND=]1)
LOGICAL*2
LOGICAL([KIND=]2)
LOGICAL*4
LOGICAL([KIND=]4)
LOGICAL*8
LOGICAL([KIND=]8)

4
1
1
2
2
4
4
8
8

CHARACTER
CHARACTER
CHARACTER([KIND=]1)

1
1

BYTE BYTE (same as INTEGER([KIND=]1)) 1

Note:

• The default entries are the first entries for each intrinsic data type.

• To determine the kind type parameter of a representation method, use the intrinsic function KIND.

For more portable programs, define a PARAMETER constant using the appropriate SELECTED_INT_KIND or
SELECTED_REAL_KIND functions, as appropriate.

For example, this code defines a PARAMETER constant for an INTEGER kind that has 9 digits:

INTEGER, PARAMETER :: MY_INT_KIND = SELECTED_INT_KIND(9)
...
INTEGER(MY_INT_KIND) :: J
...

4.2 Supported file extensions

The extensions f90, .f95, .f03, and .f08 are used for modern, free-form source code conforming to the
Fortran 90, Fortran 95, Fortran 2003, and Fortran 2008 standards, respectively.

The extensions .F90, .F95, .F03, and .F08 are used for modern, free-form source code that require prepro-
cessing, and conform to the Fortran 90, Fortran 95, Fortran 2003, and Fortran 2008 standards, respectively.

The .f and .for extensions are typically used for older, fixed-form code such as FORTRAN77.

The file extensions that are compatible with Arm Fortran Compiler are:

Table 2: Supported file extensions.
File Extension Interpretation
a.out Executable output file.
file.a Library of object files.

file.f
file.for

Fixed-format Fortran source file.

Continued on next page

Document number 101380_1910_00 18

Chapter 4. Fortran data types and file extensions Arm Fortran Compiler Reference Guide

Table 2 – continued from previous page
File Extension Interpretation

file.fpp
file.F

Free-format Fortran source file that requires preprocessing.

file.f90
file.f95
file.f03
file.f08

Free-format Fortran source file.

file.F90
file.F95
file.F03
file.F08

Free-format Fortran source file that requires preprocessing.

file.o Compiled object file.
file.s Assembler source file.

4.3 Logical variables and constants

A LOGICAL constant is either True or False. The Fortran standard does not specify how variables of LOGICAL
type are represented. However, it does require LOGICAL variables of default kind to have the same storage size as
default INTEGER and REAL variables.

For Arm Fortran Compiler:

• .TRUE. corresponds to -1 and has a default storage size of 4-bytes.

• .FALSE. corresponds to 0 and has a default storage size of 4-bytes.

Note: Some compilers represent .TRUE. and .FALSE. as 1 and 0, respectively.

4.4 C/Fortran inter-language calling

This section provides some useful troubleshooting information when handling argument passing and return values
for Fortran functions or subroutines called from C/C++ code.

In Fortran, arguments are passed by reference. Here, reference means the address of the argument is passed, rather
than the argument itself. In C/C++, arguments are passed by value, except for strings and arrays, which are passed
by reference.

C/C++ provides some flexibility when solving passing difference with Fortran. Usually, intelligent use of the &
and * operators in argument passing enables you to call Fortran from C/C++, and in argument declarations when
Fortran is calling C/C++.

Fortran functions which return CHARACTER or COMPLEX data types require special consideration when called
from C/C++ code.

19 Document number 101380_1910_00

Arm Fortran Compiler Reference Guide Chapter 4. Fortran data types and file extensions

4.5 Character

Fortran functions that return a character require the calling C/C++ function to have two arguments to describe the
result:

1. The first argument provides the address of the returned character.

2. The second argument provides the length of the returned character.

For example, the Fortran function:

CHARACTER*(*) FUNCTION CHF(C1, I)
CHARACTER*(*) C1
INTEGER I

END

when called in C/C++, has an extra declaration:

extern void chf_();
char tmp[10];
char c1[9];
int i;
chf_(tmp, 10, c1, &i, 9);

The argument, tmp, provides the address, and the length is defined with the second argument, 10.

Note:

• Fortran functions declared with a character return length, for example CHARACTER*4 FUNCTION CHF(),
still require the second parameter to be supplied to the calling C/C++ code.

• The value of the character function is not automatically NULL-terminated.

4.6 Complex

Fortran functions that return a COMPLEX data type cannot be directly called from C/C++. Instead, a workaround
is possible by passing a C/C++ function a pointer to a memory area. This memory area can then be calling the
COMPLEX function and storing the returned value.

For example, the Fortran function:

SUBROUTINE INTER_CF(C, I)
COMPLEX C
COMPLEX CF
C = CF(I)
RETURN

END

COMPLEX FUNCTION CF(I)
. . .

END

when called in C/C++ is completed using a memory pointer:

extern void inter_cf_();
typedef struct {float real, imag;} cplx;
cplx c1;
int i;
inter_cf_(&c1, &i);

Document number 101380_1910_00 20

Chapter 4. Fortran data types and file extensions Arm Fortran Compiler Reference Guide

4.7 Arm Fortran Compiler Fortran implementation notes

Additional information specific to the Arm Fortran Compiler:

• Arm Fortran Compiler does not initialize arrays or variables with zeros.

Note: This behavior varies from compiler to compiler and is not defined within Fortran standards. It is best
practice to not assume arrays are filled with zeros when created.

21 Document number 101380_1910_00

Arm Fortran Compiler Reference Guide Chapter 4. Fortran data types and file extensions

Document number 101380_1910_00 22

CHAPTER

FIVE

FORTRAN STATEMENTS

This topic describes the Fortran statements supported within Arm Fortran Compiler.

5.1 Statements

The Fortran statements supported within the Arm Fortran Compiler, are:

Table 1: Supported Fortran statements
Statement Language standard Brief description
ACCEPT F77 Causes formatted input to be read on standard

input.
ALLOCATABLE F90 Specifies that an array with fixed rank, but

deferred shape, is available for a future AL-
LOCATE statement.

ALLOCATE F90 Allocates storage for each allocatable array,
pointer object, or pointer-based variable that
appears in the statements; declares storage for
deferred-shape arrays.
Note: Arm Fortran Compiler does not initial-
ize arrays or variables with zeros. It is best
practice to not assume that arrays are filled
with zeros when created.

ASSIGN F77 Assigns a statement label to a variable.
Note: This statement is a deleted feature in
the Fortran standard, but remains supported in
the Arm Fortran Compiler.

ASSOCIATE F2003 Associates a name either with a variable or
with the value of an expression, while in a
block.

ASYNCHRONOUS F77 Warns the compiler that incorrect results may
occur for optimizations involving movement
of code across wait statements, or statements
that cause wait operations.

BACKSPACE F77 Positions the file that is connected to the spec-
ified unit, to before the preceding record.

BLOCK DATA F77 Introduces several non-executable statements
that initialize data values in COMMON tables.

BYTE F77 ext Establishes the data type of a variable by ex-
plicitly attaching the name of a variable to a
1-byte integer, overriding implied data typing.

CALL F77 Transfers control to a subroutine.
CASE F90 Begins a case-statement-block portion of a

SELECT CASE statement.
Continued on next page

23 Document number 101380_1910_00

Arm Fortran Compiler Reference Guide Chapter 5. Fortran statements

Table 1 – continued from previous page
Statement Language standard Brief description
CHARACTER F90 Establishes the data type of a variable by ex-

plicitly attaching the name of a variable to
a character data type, overriding the implied
data typing.
Note: This statement has been marked as ob-
solescent. Obsolescent statements are now
redundant and may be removed from future
standards. This statement remains supported
in the Arm Fortran Compiler.

CLOSE F77 Terminates the connection of the specified file
to a unit.

COMMON F77 Defines global blocks of storage that are either
sequential or non-sequential. May be either
static or dynamic form.
Note: This statement has been marked as ob-
solescent. Obsolescent statements are now
redundant and may be removed from future
standards. This statement remains supported
in the Arm Fortran Compiler.

COMPLEX F90 Establishes the data type of a variable by ex-
plicitly attaching the name of a variable to a
complex data type, overriding implied data
typing.

CONTAINS F90
F2003

Precedes a subprogram, a function or subrou-
tine, and indicates the presence of the sub-
routine or function definition inside a main
program, external subprogram, or module sub-
program.
In F2003, a CONTAINS statement can also
appear in a derived type immediately before
any type-bound procedure definitions.

CONTINUE F77 Passes control to the next statement.
CYCLE F90 Interrupts a DO construct execution and con-

tinues with the next iteration of the loop.
DATA F77 Assigns initial values to variables before exe-

cution.
Note: This statement amongst execution state-
ments has been marked as obsolescent. This
functionality is redundant and may be re-
moved from future standards. This statement
remains supported in the Arm Fortran Com-
piler.

DEALLOCATE F90 Causes the memory that is allocated for each
pointer-based variable or allocatable array that
appears in the statement to be deallocated
(freed). Also may be used to deallocate stor-
age for deferred-shape arrays.

DECODE F77 ext Transfers data between variables or arrays in
internal storage and translates that data from
character form to internal form, according to
format specifiers.

DIMENSION F90 Defines the number of dimensions in an array
and the number of elements in each dimen-
sion.

Continued on next page

Document number 101380_1910_00 24

Chapter 5. Fortran statements Arm Fortran Compiler Reference Guide

Table 1 – continued from previous page
Statement Language standard Brief description
DO (Iterative) F90 Introduces an iterative loop and specifies the

loop control index and parameters.
Note: Label form DO statements have been
marked as obsolescent. Obsolescent state-
ments are now redundant and may be removed
from future standards. This statement remains
supported in the Arm Fortran Compiler.

DO WHILE F77 Introduces a logical DO loop and specifies the
loop control expression.

DOUBLE COMPLEX F77 Establishes the data type of a variable by ex-
plicitly attaching the name of a variable to a
double complex data type. This overrides the
implied data typing.

DOUBLE PRECISION F90 Establishes the data type of a variable by ex-
plicitly attaching the name of a variable to a
double precision data type, overriding implied
data typing.

ELSE F77 Begins an ELSE block of an IF block, and
encloses a series of statements that are condi-
tionally executed.

ELSE IF F77 Begins an ELSE IF block of an IF block series,
and encloses statements that are conditionally
executed.

ELSE WHERE F90 The portion of the WHERE ELSE WHERE
construct that permits conditional masked as-
signments to the elements of an array, or to a
scalar, zero-dimensional array.

ENCODE F77 ext Transfers data between variables or arrays in
internal storage and translates that data from
internal to character form, according to format
specifiers.

END F77 Terminates a segment of a Fortran program.
END ASSOCIATE F2003 Terminates an ASSOCIATE block.
END DO F77 Terminates a DO or DO WHILE loop.
END FILE F77 Writes an ENDFILE record to the files.
END IF F77 Terminates an IF ELSE or ELSE IF block.
END MAP F77 ext Terminates a MAP declaration.
END SELECT F90 Terminates a SELECT declaration.
END STRUCTURE F77 ext Terminates a STRUCTURE declaration.
END UNION F77 ext Terminates a UNION declaration.
END WHERE F90 Terminates a WHERE ELSE WHERE con-

struct.
ENTRY F77 Allows a subroutine or function to have more

than one entry point.
Note: This statement has been marked as ob-
solescent. Obsolescent statements are now
redundant and may be removed from future
standards. This statement remains supported
in the Arm Fortran Compiler.

Continued on next page

25 Document number 101380_1910_00

Arm Fortran Compiler Reference Guide Chapter 5. Fortran statements

Table 1 – continued from previous page
Statement Language standard Brief description
EQUIVALENCE F77 Allows two or more named regions of data

memory to share the same start address.
Note: This statement has been marked as ob-
solescent. Obsolescent statements are now
redundant and may be removed from future
standards. This statement remains supported
in the Arm Fortran Compiler.

EXIT F90 Interrupts a DO construct execution and con-
tinues with the next statement after the loop.

EXTERNAL F77 Identifies a symbolic name as an external or
dummy procedure which can then be used as
an argument.

FINAL F2003 Specifies a final subroutine inside a derived
type.

FORALL F95 Provides, as a statement or construct, a parallel
mechanism to assign values to the elements of
an array.
Note: This statement has been marked as ob-
solescent. Obsolescent statements are now
redundant and may be removed from future
standards. This statement remains supported
in the Arm Fortran Compiler.

FORMAT F77 Specifies format requirements for input or out-
put.

FUNCTION F77 Introduces a program unit; all the statements
that follow apply to the function itself.

GENERIC F2003 Specifies a generic type-bound procedure in-
side a derived type.

GOTO (Assigned) F77 Transfers control so that the statement identi-
fied by the statement label is executed next.
Note: This statement is a deleted feature in
the Fortran standard, but remains supported in
the Arm Fortran Compiler.

GOTO (Computed) F77 Transfers control to one of a list of labels, ac-
cording to the value of an expression.
Note: This statement has been marked as ob-
solescent. Obsolescent statements are now
redundant and may be removed from future
standards. This statement remains supported
in the Arm Fortran Compiler.

GOTO (Unconditional) F77 Unconditionally transfers control to the state-
ment with the label label, which must be de-
clared within the code of the program unit
containing the GOTO statement, and must be
unique within that program unit.

IF (Arithmetic) F77 Transfers control to one of three labeled state-
ments, depending on the value of the arith-
metic expression.
Note: This statement has been marked as ob-
solescent. Obsolescent statements are now
redundant and may be removed from future
standards. This statement remains supported
in the Arm Fortran Compiler.

IF (Block) F77 Consists of a series of statements that are con-
ditionally executed.

Continued on next page

Document number 101380_1910_00 26

Chapter 5. Fortran statements Arm Fortran Compiler Reference Guide

Table 1 – continued from previous page
Statement Language standard Brief description
IF (Logical) F77 Executes or does not execute a statement based

on the value of a logical expression.
IMPLICIT F77 Redefines the implied data type of symbolic

names from their initial letter, overriding im-
plied data types.

IMPORT F2003 Gives access to the named entities of the con-
taining scope.

INCLUDE F77 ext Directs the compiler to start reading from an-
other file.

INQUIRE F77 Inquires about the current properties of a par-
ticular file or the current connections of a par-
ticular unit.

INTEGER F77 Establishes the data type of a variable by ex-
plicitly attaching the name of a variable to
an integer data type, overriding implied data
types.

INTENT F90 Specifies intended use of a dummy argument,
but may not be used in a specification state-
ment of a main program.

INTERFACE F90 Makes an implicit procedure an explicit pro-
cedure where the dummy parameters and pro-
cedure type are known to the calling module;
Also overloads a procedure name.

INTRINSIC F77 Identifies a symbolic name as an intrinsic func-
tion and allows it to be used as an actual argu-
ment.

LOGICAL F77 Establishes the data type of a variable by ex-
plicitly attaching the name of a variable to
a logical data type, overriding implied data
types.

MAP F77 ext Designates each unique field or group of fields
within a UNION statement.

MODULE F90 Specifies the entry point for a Fortran 90, or
Fortran 95, module program unit. A module
defines a host environment of scope of the
module, and may contain subprograms that
are in the same scoping unit.

NAMELIST F90 Allows the definition of NAMELIST groups
for NAMELIST-directed I/O.

NULLIFY F90 Disassociates a pointer from its target.
OPEN F77 Connects an existing file to a unit, creates and

connects a file to a unit, creates a file that is
pre-connected, or changes certain specifiers of
a connection between a file and a unit.

OPTIONAL F90 Specifies dummy arguments that may be omit-
ted or that are optional.

OPTIONS F77 ext Confirms or overrides certain compiler
command-line options.

PARAMETER F77 Gives a symbolic name to a constant.
PAUSE F77 Stops program execution.

Note: This statement is a deleted feature in
the Fortran standard, but remains supported in
the Arm Fortran Compiler.

POINTER F90 Provides a means for declaring pointers.
Continued on next page

27 Document number 101380_1910_00

Arm Fortran Compiler Reference Guide Chapter 5. Fortran statements

Table 1 – continued from previous page
Statement Language standard Brief description
PRINT F77 Transfers data to the standard output device

from the items that are specified in the output
list and format specification.

PRIVATE F90
F2003

Specifies that entities that are defined in a mod-
ule are not accessible outside of the module.
PRIVATE can also appear inside a derived
type to disallow access to its data components
outside the defining module.
In F2003, a PRIVATE statement may appear
after CONTAINS statement of the type, to dis-
allow access to type-bound procedures outside
the defining module.

PROCEDURE F2003 Specifies a type-bound procedure, procedure
pointer, module procedure, dummy procedure,
intrinsic procedure, or an external procedure.

PROGRAM F77 Specifies the entry point for a linked Fortran
program.

PROTECTED F2003 Protects a module variable against modifica-
tion from outside the module in which it was
declared.

PUBLIC F90 Specifies that entities that are defined in a mod-
ule are accessible outside of the module.

PURE F95 Indicates that a function or subroutine has no
side effects.

READ F77 Transfers data from the standard input device
to the items specified in the input and format
specifications.

REAL F90 Establishes the data type of a variable by ex-
plicitly attaching the name of a variable to a
data type, overriding implied data types.

RECORD F77 ext A VAX Fortran extension, defines a user-
defined aggregate data item.

RECURSIVE F90 Indicates whether a function or subroutine
may call itself recursively.

RETURN F77 When used in a subroutine, causes a return to
the statement following a CALL. When used
in a function, returns to the relevant arithmetic
expression.
Note: This statement has been marked as ob-
solescent. Obsolescent statements are now
redundant and may be removed from future
standards. This statement remains supported
in the Arm Fortran Compiler.

REWIND F77 Positions the file at the start. The statement
has no effect if the file is already positioned
at the start, or if the file is connected but does
not exist.

SAVE F77 Retains the definition status of an entity after
a RETURN or END statement in a subroutine
or function that has been executed.

SELECT CASE F90 Begins a CASE construct.
Continued on next page

Document number 101380_1910_00 28

Chapter 5. Fortran statements Arm Fortran Compiler Reference Guide

Table 1 – continued from previous page
Statement Language standard Brief description
SELECT TYPE F2003 Provides the capability to execute alternative

code depending on the dynamic type of a poly-
morphic entity, and to gain access to dynamic
parts. The alternative code is selected using
the TYPE IS statement for a specific dynamic
type, or the CLASS IS statement for a specific
type (and all its type extensions).
Use the optional class default statement to
specify all other dynamic types that do not
match a specified TYPE IS or CLASS IS state-
ment. Like the CASE construct, the code con-
sists of a several blocks and, at most, one is
selected for execution.

SEQUENCE F90 A derived type qualifier that specifies the or-
dering of the storage that is associated with the
derived type. This statement specifies storage
for use with COMMON and EQUIVALENCE
statements.

STOP F77 Stops program execution and precludes any
further execution of the program.

STRUCTURE F77 ext A VAX extension to FORTRAN 77 that de-
fines an aggregate data type.

SUBROUTINE F77 Introduces a subprogram unit.
TARGET F90 Specifies that a data type may be the object

of a pointer variable (for example, pointed to
by a pointer variable). Types that do not have
the TARGET attribute cannot be the target of
a pointer variable.

THEN F77 Part of an IF block statement, surrounds a se-
ries of statements that are conditionally exe-
cuted.

TYPE F90 F2003 Begins a derived type data specification or
declares variables of a specified user-defined
type.
Use the optional EXTENDS statement with
TYPE to indicate a type extension in F2003.

UNION F77 ext A multi-statement declaration defining a data
area that can be shared intermittently during
program execution by one or more fields or
groups of fields.

USE F90 Gives a program unit access to the public en-
tities or to the named entities in the specified
module.

VOLATILE F77 ext Inhibits all optimizations on the variables, ar-
rays and common blocks that it identifies.

WAIT F2003 Performs a wait operation for specified pend-
ing asynchronous data transfer operations.

WHERE F90 Permits masked assignments to the elements
of an array or to a scalar, zero-dimensional
array.

WRITE F77 Transfers data to the standard output device
from the items that are specified in the output
list and format specification.

*See WG5 Fortran Standards

29 Document number 101380_1910_00

https://wg5-fortran.org/

Arm Fortran Compiler Reference Guide Chapter 5. Fortran statements

Note: The denoted language standards indicate the standard they were introduced in, or the standard they were
last significantly changed.

5.1.1 Related information

• WG5 Fortran Standards

Document number 101380_1910_00 30

https://wg5-fortran.org/

CHAPTER

SIX

FORTRAN INTRINSICS

The Fortran language standards implemented in the Arm Fortran Compiler are Fortran 77, Fortran 90, Fortran 95,
Fortran 2003, and Fortran 2008. This topic details the supported and unsupported Fortran intrinsics within Arm
Fortran Compiler.

6.1 Overview

An intrinsic is a function made available for a given language standard, for example, Fortran 95. Intrinsic functions
accept arguments and return values. When an intrinsic function is called within the source code, the compiler
replaces the function with a set of automatically-generated instructions. It is best practice to use these intrinsics to
enable the compiler to optimize the code most efficiently.

Note: The intrinsics listed in the following tables are specific to Fortran 90/95, unless explicitly stated.

6.2 Bit manipulation functions and subroutines

Functions and subroutines for manipulating bits.

Table 1: Bit manipulation functions and subroutines
Intrinsic Description Num. of

Argu-
ments

Argument Type Result

AND Perform a logical AND on
corresponding bits of the ar-
guments.

2 Any, except CHAR or COM-
PLEX

INTEGER or LOGI-
CAL

BIT_SIZE Return the number of bits
(the precision) of the integer
argument.

1 INTEGER INTEGER

BTEST Test the binary value of a bit
in a specified position of an
integer argument.

2 INTEGER, INTEGER LOGICAL

IAND Perform a bit-by-bit logical
AND on the arguments.

2 INTEGER, INTEGER (of
same kind)

INTEGER

IBCLR Clear one bit to zero. 2 INTEGER, INTEGER >=0 INTEGER
IBITS Extract a sequence of bits. 3 INTEGER, INTEGER >=0,

INTEGER >=0
INTEGER

IBSET Set one bit to one. 2 INTEGER, INTEGER >=0 INTEGER
IEOR Perform a bit-by-bit logical

exclusive OR on the argu-
ments.

2 INTEGER, INTEGER (of
same kind)

INTEGER

Continued on next page

31 Document number 101380_1910_00

Arm Fortran Compiler Reference Guide Chapter 6. Fortran intrinsics

Table 1 – continued from previous page
Intrinsic Description Num. of

Argu-
ments

Argument Type Result

IOR Perform a bit-by-bit logical
OR on the arguments.

2 INTEGER, INTEGER (of
same kind)

INTEGER

ISHFT Perform a logical shift. 2 INTEGER, INTEGER INTEGER
ISHFTC Perform a circular shift of

the rightmost bits.
2 or 3 INTEGER, INTEGER

or
INTEGER, INTEGER, IN-
TEGER

INTEGER

LSHIFT Perform a logical shift to the
left.

2 INTEGER, INTEGER INTEGER

MVBITS Copy bit sequence. 5 INTEGER(IN), INTE-
GER(IN), INTEGER(IN),
INTEGER(IN, OUT),
INTEGER(IN)

N/A

NOT Perform a bit-by-bit logi-
cal complement on the argu-
ment.

2 INTEGER INTEGER

OR Perform a logical OR on
each bit of the arguments.

2 Any except CHAR or COM-
PLEX

INTEGER or LOGI-
CAL

POPCNT Return the number of one
bits. (F2008)

1 INTEGER or bits INTEGER

POPPAR Return the bitwise parity.
(F2008)

1 INTEGER or bits INTEGER

RSHIFT Perform a logical shift to the
right.

2 INTEGER, INTEGER INTEGER

SHIFT Perform a logical shift. 2 Any except CHAR or COM-
PLEX, INTEGER

INTEGER or LOGI-
CAL

XOR Perform a logical exclusive
OR on each bit of the argu-
ments.

2 INTEGER, INTEGER INTEGER

ZEXT Zero-extend the argument. 1 INTEGER or LOGICAL INTEGER

6.3 Elemental character and logical functions

Elemental character logical conversion functions.

Table 2: Elemental character and logical functions
Intrinsic Description Num. of

Argu-
ments

Argument Type Result

ACHAR Return character in specified
ASCII collating position.

1 INTEGER CHARACTER

ADJUSTL Left adjust string. 1 CHARACTER CHARACTER
ADJUSTR Right adjust string. 1 CHARACTER CHARACTER
CHAR Return character with speci-

fied ASCII value.
1 LOGICAL*1 INTEGER CHARACTER CHAR-

ACTER
IACHAR Return position of character

in ASCII collating sequence.
1 CHARACTER INTEGER

ICHAR Return position of character
in the character set’s collat-
ing sequence.

1 CHARACTER INTEGER

Continued on next page

Document number 101380_1910_00 32

Chapter 6. Fortran intrinsics Arm Fortran Compiler Reference Guide

Table 2 – continued from previous page
Intrinsic Description Num. of

Argu-
ments

Argument Type Result

INDEX Return starting position of
substring within first string. 2

3

CHARACTER,
CHARACTER

CHARACTER,
CHARACTER,
LOGICAL

INTEGER

INTEGER

LEN Return the length of string. 1 CHARACTER INTEGER
LEN_TRIM Return the length of the sup-

plied string minus the num-
ber of trailing blanks.

1 CHARACTER INTEGER

LGE Test the supplied strings to
determine if the first string
is lexically greater than or
equal to the second.
Note: From F2008, charac-
ter kind ASCII is also sup-
ported.

2 CHARACTER, CHARAC-
TER

LOGICAL

LGT Test the supplied strings to
determine if the first string
is lexically greater than the
second.
Note: From F2008, charac-
ter kind ASCII is also sup-
ported.

2 CHARACTER, CHARAC-
TER

LOGICAL

LLE Test the supplied strings to
determine if the first string is
lexically less than or equal to
the second.
Note: From F2008, charac-
ter kind ASCII is also sup-
ported.

2 CHARACTER, CHARAC-
TER

LOGICAL

LLT Test the supplied strings to
determine if the first string
is lexically less than the sec-
ond.
Note: From F2008, charac-
ter kind ASCII is also sup-
ported.

2 CHARACTER, CHARAC-
TER

LOGICAL

LOGICAL Logical conversion.
1
2

LOGICAL
LOGICAL, INTEGER

LOGICAL
LOGICAL

Continued on next page

33 Document number 101380_1910_00

Arm Fortran Compiler Reference Guide Chapter 6. Fortran intrinsics

Table 2 – continued from previous page
Intrinsic Description Num. of

Argu-
ments

Argument Type Result

SCAN Scan string for characters in
set. 2

3

CHARACTER,
CHARACTER

CHARACTER,
CHARACTER,
LOGICAL

INTEGER

INTEGER

VERIFY Determine if string contains
all characters in set. 2

3

CHARACTER,
CHARACTER

CHARACTER,
CHARACTER,
LOGICAL

INTEGER

INTEGER

6.4 Vector/Matrix functions

Functions for vector or matric multiplication.

Table 3: Vector and matrix functions
Intrinsic Description Num. of

Argu-
ments

Argument Type Result

DOT_PRODUCT Perform dot product on two
vectors. 2 INTEGER,

REAL,
COMPLEX,
or LOGICAL

INTEGER,
REAL,
COMPLEX,
or LOGICAL

MATMUL Perform matrix multiply on
two matrices. 2 INTEGER,

REAL,
COMPLEX,
or LOGICAL

INTEGER,
REAL,
COMPLEX,
or LOGICAL

Note: All matrix outputs are the same type as the argument supplied.

6.5 Array reduction functions

Functions for determining information from, or calculating using, the elements in an array.

Document number 101380_1910_00 34

Chapter 6. Fortran intrinsics Arm Fortran Compiler Reference Guide

Table 4: Array reduction functions
Intrinsic Description Num. of

Argu-
ments

Argument Type Result

ALL Determine if all array values
are true. 1

2
LOGICAL
LOGICAL, INTEGER

LOGICAL
LOGICAL

ANY Determine if any array value
is true. 1

2
LOGICAL
LOGICAL, INTEGER

LOGICAL
LOGICAL

COUNT Count true values in array.
1
2

LOGICAL
LOGICAL, INTEGER

INTEGER
INTEGER

MAXLOC Determine the position of the
array element with the maxi-
mum value.

1
2

2

3

1
2
2
3

INTEGER
INTEGER, LOGICAL

INTEGER, INTEGER

INTEGER, INTEGER,
LOGICAL

REAL
REAL, LOGICAL
REAL, INTEGER
REAL, INTEGER ,
LOGICAL

INTEGER
INTEGER

INTEGER

INTEGER

REAL
REAL
REAL
REAL

MAXVAL Determine the maximum
value of the array elements. 1

2

2

3

1
2
2
3

INTEGER
INTEGER, LOGICAL

INTEGER, INTEGER

INTEGER, INTEGER,
LOGICAL

REAL
REAL, LOGICAL
REAL, INTEGER
REAL, INTEGER ,
LOGICAL

INTEGER
INTEGER

INTEGER

INTEGER

REAL
REAL
REAL
REAL

Continued on next page

35 Document number 101380_1910_00

Arm Fortran Compiler Reference Guide Chapter 6. Fortran intrinsics

Table 4 – continued from previous page
Intrinsic Description Num. of

Argu-
ments

Argument Type Result

MINLOC Determine the position of the
array element with the mini-
mum value.

1
2

2

3

1
2
2
3

INTEGER
INTEGER, LOGICAL

INTEGER, INTEGER

INTEGER, INTEGER,
LOGICAL

REAL
REAL, LOGICAL
REAL, INTEGER
REAL, INTEGER ,
LOGICAL

INTEGER
INTEGER

INTEGER

INTEGER

REAL
REAL
REAL
REAL

MINVAL Determine the minimum
value of the array elements. 1

2

2

3

1
2
2
3

INTEGER
INTEGER, LOGICAL

INTEGER, INTEGER

INTEGER, INTEGER,
LOGICAL

REAL
REAL, LOGICAL
REAL, INTEGER
REAL, INTEGER ,
LOGICAL

INTEGER
INTEGER

INTEGER

INTEGER

REAL
REAL
REAL
REAL

PRODUCT Calculate the product of the
elements of an array. 1

2

2

3

NUMERIC
NUMERIC,
LOGICAL

NUMERIC, INTEGER

NUMERIC, INTEGER,
LOGICAL

NUMERIC
NUMERIC

NUMERIC

NUMERIC

Continued on next page

Document number 101380_1910_00 36

Chapter 6. Fortran intrinsics Arm Fortran Compiler Reference Guide

Table 4 – continued from previous page
Intrinsic Description Num. of

Argu-
ments

Argument Type Result

SUM Calculate the sum of the ele-
ments of an array. 1

2

2

3

NUMERIC
NUMERIC,
LOGICAL

NUMERIC, INTEGER

NUMERIC, INTEGER,
LOGICAL

NUMERIC
NUMERIC

NUMERIC

NUMERIC

6.6 String construction functions

Functions for constructing strings.

Table 5: String construction functions
Intrinsic Description Num. of

Argu-
ments

Argument Type Result

REPEAT Concatenate copies of a
string.

2 CHARACTER, INTEGER CHARACTER

TRIM Remove trailing blanks from
a string.

1 CHARACTER CHARACTER

6.7 Array construction manipulation functions

Functions for constructing and manipulating arrays.

Table 6: Array construction and manipulation functions
Intrinsic Description Num. of

Argu-
ments

Argument Type Result

CSHIFT Perform circular shift on an
array. 2

3

ARRAY, INTEGER

ARRAY, INTEGER,
INTEGER

ARRAY

ARRAY

Continued on next page

37 Document number 101380_1910_00

Arm Fortran Compiler Reference Guide Chapter 6. Fortran intrinsics

Table 6 – continued from previous page
Intrinsic Description Num. of

Argu-
ments

Argument Type Result

OESHIFT Perform end-off shift on an
array. 2

3

3

4

ARRAY, INTEGER

ARRAY, INTEGER,
Any

ARRAY, INTEGER,
INTEGER

ARRAY, INTEGER, Any,
INTEGER

ARRAY

ARRAY

ARRAY

ARRAY, ARRAY

MERGE Merge two arguments based
on the logical mask.

3 Any, Any, LOGICAL The
second argument must be of
the same type as the first ar-
gument.

Any

PACK Pack an array into a rank-one
array. 2

3

ARRAY, LOGICAL

ARRAY, LOGICAL,
VECTOR

ARRAY

ARRAY

RESHIFT Change the shape of an array.
2

3

3

4

ARRAY, INTEGER

ARRAY, INTEGER,
ARRAY

ARRAY, INTEGER,
INTEGER

ARRAY, INTEGER,
ARRAY, INTEGER

ARRAY

ARRAY

ARRAY

ARRAY

SPREAD Replicate an array by adding
a dimension.

3 Any, INTEGER, INTEGER ARRAY

TRANSPOSE Transpose an array of rank
two.

1 ARRAY (m, n) ARRAY (n, m)

UNPACK Unpack a rank-one array into
an array of multiple dimen-
sions.

3 VECTOR, LOGICAL, AR-
RAY

ARRAY

Note: All ARRAY outputs are the same type as the argument supplied.

6.8 General inquiry functions

Functions for general determining.

Document number 101380_1910_00 38

Chapter 6. Fortran intrinsics Arm Fortran Compiler Reference Guide

Table 7: General inquiry functions
Intrinsic Description Num. of

Argu-
ments

Argument Type Result

ASSOCIATED Determine association sta-
tus.

12
POINTER,
POINTER,
. . . ,
POINTER,
TARGET

LOGICAL LOGICAL

KIND Determine the kind of an ar-
gument.

1 Any intrinsic type INTEGER

PRESENT Determine presence of op-
tional argument.

1 Any LOGICAL

6.9 Numeric inquiry functions

Functions for determining numeric information.

Table 8: Numeric inquiry functions
Intrinsic Description Num. of

Argu-
ments

Argument Type Result

DIGITS Determine the number of sig-
nificant digits. 1

1
INTEGER
REAL

INTEGER

EPSILON Smallest number that can be
represented.

1 REAL REAL

HUGE Largest number that can be
represented. 1

1
INTEGER
REAL

INTEGER
REAL

MAXEXPONENT Value of the maximum expo-
nent.

1 REAL INTEGER

MINEXPONENT Value of the minimum expo-
nent.

1 REAL INTEGER

PRECISION Decimal precision.
1
1

REAL
COMPLEX

INTEGER
INTEGER

RADIX Base of the model.
1
1

INTEGER
REAL

INTEGER
INTEGER

RANGE Decimal exponent range.
1
1
1

INTEGER
REAL
COMPLEX

INTEGER
INTEGER
INTEGER

Continued on next page

39 Document number 101380_1910_00

Arm Fortran Compiler Reference Guide Chapter 6. Fortran intrinsics

Table 8 – continued from previous page
Intrinsic Description Num. of

Argu-
ments

Argument Type Result

SELECTED_
INT_KIND

Kind-type titlemeter in
range.

1 INTEGER INTEGER

SELECTED_
REAL_KIND

Kind-type titlemeter in
range.
Syntax: SELECTED
_REAL_KIND(P [,R])
where P is precision and R is
the range.

1
2

INTEGER
INTEGER, INTEGER

INTEGER
INTEGER

TINY Smallest positive number
that can be represented.

1 REAL REAL

6.10 Array inquiry functions

Functions for determining information about an array.

Table 9: Array inquiry functions
Intrinsic Description Num. of

Argu-
ments

Argument Type Result

ALLOCATED Determine if an array is allo-
cated.

1 ARRAY LOGICAL

LBOUND Determine the lower bounds.
1
2

ARRAY
ARRAY, INTEGER

INTEGER

SHAPE Determine the shape. 1 Any INTEGER
SIZE Determine the number of el-

ements. 1
2

ARRAY
ARRAY, INTEGER

INTEGER

UBOUND Determine the upper bounds.
1
2

ARRAY
ARRAY, INTEGER

INTEGER

6.11 Transfer functions

Functions for transferring types.

Table 10: Transfer functions
Intrinsic Description Num. of

Argu-
ments

Argument Type Result

TRANSFER Change the type but maintain
bit representation. 2

3
Any, Any
Any, Any, INTEGER

Any*

Document number 101380_1910_00 40

Chapter 6. Fortran intrinsics Arm Fortran Compiler Reference Guide

*Must be of the same type as the second argument

6.12 Arithmetic functions

Functions for manipulating arithmetic.

Table 11: Arithmetic functions
Intrinsic Description Num. of

Argu-
ments

Argument Type Result

ABS Return absolute value of the
supplied argument.

1 INTEGER, REAL, or COM-
PLEX

INTEGER, REAL,
or COMPLEX

ACOS Return the arccosine (in radi-
ans) of the specified value.

1 REAL REAL

ACOSD Return the arccosine (in de-
grees) of the specified value.

1 REAL REAL

AIMAG Return the value of the imag-
inary part of a complex num-
ber.

1 COMPLEX REAL

AINT Truncate the supplied value
to a whole number.

2 REAL, INTEGER REAL

AND Perform a logical AND on
corresponding bits of the ar-
guments.

2 Any, except CHAR or COM-
PLEX

INTEGER or LOGI-
CAL

ANINT Return the nearest whole
number to the supplied argu-
ment.

2 REAL, INTEGER REAL

ASIN Return the arcsine (in radi-
ans) of the specified value.

1 REAL REAL

ASIND Return the arcsine (in de-
grees) of the specified value.

1 REAL REAL

ATAN Return the arctangent (in ra-
dians) of the specified value.

1 REAL REAL

ATAN2 Return the arctangent (in ra-
dians) of the specified pair of
values.

2 REAL, REAL REAL

ATAN2D Return the arctangent (in de-
grees) of the specified pair of
values.

1 REAL, REAL REAL

ATAND Return the arctangent (in de-
grees) of the specified value.

1 REAL REAL

CEILING Return the least integer
greater than or equal to the
supplied real argument.

2 REAL, KIND INTEGER

Continued on next page

41 Document number 101380_1910_00

Arm Fortran Compiler Reference Guide Chapter 6. Fortran intrinsics

Table 11 – continued from previous page
Intrinsic Description Num. of

Argu-
ments

Argument Type Result

CMPLX Convert the supplied argu-
ment or arguments to com-
plex type.

2

3

{INTEGER, REAL,
or COMPLEX,},
{INTEGER, REAL,
or COMPLEX}

{INTEGER, REAL,
or COMPLEX},
{INTEGER or REAL},
KIND

COMPLEX

COMPLEX

COMPL Perform a logical comple-
ment on the argument.

1 Any, except CHAR or COM-
PLEX

N/A

COS Return the cosine (in radians)
of the specified value.

1 REAL COMPLEX REAL

COSD Return the cosine (in de-
grees) of the specified value.

1 REAL COMPLEX REAL

COSH Return the hyperbolic cosine
of the specified value.

1 REAL REAL

DBLE Convert to double precision
real.

1 INTEGER, REAL, or COM-
PLEX

REAL

DCMPLX Convert the argument or sup-
plied arguments to double
complex type.

1

2

INTEGER, REAL,
or COMPLEX

INTEGER, REAL

DOUBLE COMPLEX

DOUBLE COMPLEX

DPROD Double precision real prod-
uct.

2 REAL, REAL REAL (double preci-
sion)

EQV Perform a logical exclusive
NOR on the arguments.

2 Any, except CHAR or COM-
PLEX

INTEGER or LOGI-
CAL

EXP Exponential function. 1 REAL COMPLEX REAL COMPLEX
EXPONENT Return the exponent part of

a real number.
1 REAL INTEGER

FLOOR Return the greatest integer
less than or equal to the sup-
plied real argument.

1
2

REAL
REAL, KIND

REAL
KIND

FRACTION Return the fractional part of
a real number.

1 REAL INTEGER

IINT Convert a value to a short in-
teger type.

1 INTEGER, REAL, or COM-
PLEX

INTEGER

ININT Return the nearest short inte-
ger to the real argument.

1 REAL INTEGER

Continued on next page

Document number 101380_1910_00 42

Chapter 6. Fortran intrinsics Arm Fortran Compiler Reference Guide

Table 11 – continued from previous page
Intrinsic Description Num. of

Argu-
ments

Argument Type Result

INT Convert a value to integer
type. 1

2

INTEGER, REAL,
or COMPLEX

{INTEGER, REAL,
or COMPLEX}, KIND

INTEGER

INTEGER

INT8 Convert a real value to a long
integer type.

1 REAL INTEGER

IZEXT Zero-extend the argument. 1 LOGICAL or INTEGER INTEGER
JINT Convert a value to an integer

type.
1 INTEGER, REAL, or COM-

PLEX
INTEGER

JNINT Return the nearest integer to
the real argument.

1 REAL INTEGER

KNINT Return the nearest integer to
the real argument.

1 REAL INTEGER (long)

LOG Return the natural logarithm. 1 REAL or COMPLEX REAL
LOG10 Return the common loga-

rithm.
1 REAL REAL

MAX Return the maximum value
of the supplied arguments.

2 or more INTEGER or REAL (all of
same kind)

Same as argument type

MIN Return the minimum value
of the supplied arguments.

2 or more INTEGER or REAL (all of
same kind)

Same as argument type

MOD Find the remainder. 2 or more {INTEGER or REAL}, {IN-
TEGER or REAL} (all of
same kind)

Same as argument type

MODULO Return the modulo value of
the arguments.

2 or more {INTEGER or REAL}, {IN-
TEGER or REAL} (all of
same kind)

Same as argument type

NEAREST Return the nearest different
number that can be repre-
sented, by a machine, in a
given direction.

2 REAL, REAL (non-zero) REAL

NEQV Perform a logical exclusive
OR on the arguments.

2 Any, except CHAR or COM-
PLEX

INTEGER or LOGI-
CAL

NINT Convert a value to integer
type. 1

2
REAL
REAL, KIND

INTEGER

REAL Convert the argument to real.
1

2

INTEGER, REAL,
or COMPLEX

{INTEGER, REAL,
or COMPLEX}, KIND

REAL

REAL

RRSPACING Return the reciprocal of the
relative spacing of model
numbers near the argument
value.

1 REAL REAL

Continued on next page

43 Document number 101380_1910_00

Arm Fortran Compiler Reference Guide Chapter 6. Fortran intrinsics

Table 11 – continued from previous page
Intrinsic Description Num. of

Argu-
ments

Argument Type Result

SET_ EXPONENT Return the model number
whose fractional part is the
fractional part of the model
representation of the first ar-
gument and whose exponent
part is the second argument.

2 REAL, INTEGER REAL

SIGN Return the absolute value of
A times the sign of B. Syn-
tax: SIGN(A, B)

2 {INTEGER or REAL},
{INTEGER or REAL}

Same as argument

SIN Return the sine (in radians)
of the specified value. 1 REAL

COMPLEX
REAL

SIND Return the sine (in degrees)
of the specified value. 1 REAL

COMPLEX
REAL

SINH Return the hyperbolic sine of
the specified value.

1 REAL REAL

SPACING Return the relative spacing
of model numbers near the
argument value.

1 REAL REAL

SQRT Return the square root of the
argument. 1 REAL

COMPLEX
REAL
COMPLEX

TAN Return the tangent (in radi-
ans) of the specified value.

1 REAL REAL

TAND Return the tangent (in de-
grees) of the specified value.

1 REAL REAL

TANH Return the hyperbolic tan-
gent of the specified value.

1 REAL REAL

6.13 Miscellaneous functions

Functions for mixcellaneous use.

Table 12: Miscellaneous functions
Intrinsic Description Num. of

Argu-
ments

Argument Type Result

LOC Return the argument address. 1 NUMERIC INTEGER
NULL Assign a disassociated sta-

tus. 0
1 POINTER

POINTER
POINTER

Document number 101380_1910_00 44

Chapter 6. Fortran intrinsics Arm Fortran Compiler Reference Guide

6.14 Subroutines

Supported subroutines.

Table 13: Subroutines
Intrinsic Description Num. of

Argu-
ments

Argument Type

CPU_TIME Return processor time. 1 REAL (OUT)
DATE_AND_TIME Return the date and time. 4 (all op-

tional) DATE (CHARACTER,
OUT)
TIME (CHARACTER,
OUT)
ZONE (CHARACTER,
OUT)
VALUES (INTEGER, OUT)

RANDOM_NUMBER Generate pseudo-random
numbers.

1 REAL (OUT)

RANDOM_SEED Set or query pseudo-random
number generator.

0

1
1
1

SIZE (INTEGER, OUT)
PUT (INTEGER ARRAY,
IN)
GET (INTEGER ARRAY,
OUT)

SYSTEM_CLOCK Query the real time clock. 3 (op-
tional) COUNT (INTEGER, OUT)

COUNT_RATE (REAL,
OUT)
COUNT_MAX (INTEGER,
OUT)

6.15 Fortran 2003 functions

Fortran 2003-supported functions.

45 Document number 101380_1910_00

Arm Fortran Compiler Reference Guide Chapter 6. Fortran intrinsics

Table 14: Fortran 2003 functions
Intrinsic Description Num. of

Argu-
ments

Argument Type Result

COMMAND
_ARGUMENT
_COUNT

Return a scalar of type de-
fault integer that is equal
to the number of arguments
passed on the command
line when the containing
program was invoked. If
there were no command ar-
guments passed, the result is
0.

0 None INTEGER

EXTENDS_TYPE
_OF

Determine whether the dy-
namic type of A is an ex-
tension type of the dynamic
type of B.
Syntax:
EXTENDS_TYPE _OF(A,
B)

2 Objects of extensible type LOGICAL SCALAR

GET_COMMAND
_ARGUMENT

Return the specified com-
mand line argument of the
command that invoked the
program.

1 to 4 INTEGER plus optionally:
CHAR, INTEGER, INTE-
GER

A command argument

GET_COMMAND Return the entire command
line that was used to invoke
the program.

0 to 3 CHAR, INTEGER, INTE-
GER

A command line

GET_ENVIRONM
ENT_VARIABLE

Return the value of the spec-
ified environment variable.

1 to 5 CHAR, CHAR, INTEGER,
INTEGER, LOGICAL

Stores the value of
NAME in VALUE

IS_IOSTAT _END Test whether a variable has
the value of the I/O status:
‘end of file’.

1 INTEGER LOGICAL

IS_IOSTAT _EOR Test whether a variable has
the value of the I/O status:
‘end of record’.

1 INTEGER LOGICAL

LEADZ Count the number of leading
zero bits.

1 INTEGER or bits INTEGER

MOVE_ALLOC Move an allocation from one
allocatable object to another.

2 Any type and rank None

NEW_LINE Return the newline character. 1 CHARACTER CHARACTER
SAME_TYPE _AS Determine whether the dy-

namic type of A is the same
as the dynamic type of B.
Syntax:
SAME_TYPE_AS (A,
B)

2 Objects of extensible type LOGICAL SCALAR

SCALE Return the value A * B
where B is the base of the
number system in use for A.
Syntax:
‘‘ SCALE(A, B)‘‘

2 REAL, INTEGER REAL

6.16 Fortran 2008 functions

Fortran 2008-supported functions.

Document number 101380_1910_00 46

Chapter 6. Fortran intrinsics Arm Fortran Compiler Reference Guide

Table 15: Fortran 2008 functions
Intrinsic Description Num. of

Argu-
ments

Argument Type Result

ACOSH, ASINH,
``ATANH

Inverse hyperbolic trigono-
metric functions

1 REAL REAL

BESSEL_J0

BESSEL_J1

BESSEL_JN

BESSEL_Y0

BESSEL_Y1

BESSEL_YN

Bessel function of:

the first kind of order 0.

the first kind of order 1.

the first kind.

the second kind of order 0.

the second kind of order 1.

the second kind.

1

1

2 or 3

1

1

2 or 3

REAL

REAL

{INTEGER, REAL,
or INTEGER},
INTEGER, REAL

REAL

REAL

{INTEGER, REAL, or
INTEGER},
INTEGER, REAL

REAL

REAL

REAL

REAL

REAL

REAL

C_SIZEOF Calculates the number of
bytes of storage the expres-
sion A ‘occupies’.
Syntax: C_SIZEOF(A)

1 Any INTEGER

COMPILER
_OPTIONS

Options passed to the com-
piler.

None None STRING

COMPILER
_VERSION

Compiler version string. None None CHARACTER

ERF Error function. 1 REAL REAL
ERFC Complementary error func-

tion.
1 REAL REAL

ERFC _SCALED Exponentially- scaled com-
plementary error function.

1 REAL REAL

FINDLOC Finds the location of a speci-
fied value in an array.
Syntax:
FINDLOC(ARRA Y,
VALUE, DIM, MASK,
KIND, BACK)
Or
FINDLOC(ARRA Y,
VALUE, MASK , KIND,
BACK)

3 to 6 ARRAY VALUE, DIM[,
MASK, KIND, BACK],
Or
ARRAY, VALUE[, MASK,
KIND, BACK]

INTEGER ARRAY

Continued on next page

47 Document number 101380_1910_00

Arm Fortran Compiler Reference Guide Chapter 6. Fortran intrinsics

Table 15 – continued from previous page
Intrinsic Description Num. of

Argu-
ments

Argument Type Result

GAMMA Computes Gamma of A. For
positive, integer values of X.

1 REAL (not zero or negative) REAL

LOG_GAMMA Computes the natural loga-
rithm of the absolute value
of the Gamma function.

1 REAL (not zero or negative) REAL

HYPOT Euclidean distance function. 2 REAL, REAL REAL
IS _CONTIGUOUS Tests the contiguity of an ar-

ray.
1 ARRAY LOGICAL

LEADZ Returns the number of lead-
ing zero bits of an integer.

1 INTEGER INTEGER

POPCNT Return the number of one
bits.

1 INTEGER INTEGER

POPPAR Return the bitwise parity. 1 INTEGER INTEGER
SELECTED_REAL_KINDKind type titlemeter in

range.
Syntax:
SELECTED_REAL_KIND(P[,
R, RADIX])
where P is precision and R is
the range.
Note: Radix argument
added for F2008.

1 2 3 INTEGER
INTEGER, INTEGER
INTEGER, INTEGER, IN-
TEGER

INTEGER
INTEGER
INTEGER

STORAGE_SIZE Storage size of argument A,
in bits.
Syntax:
STORAGE_SIZE(A[,
KIND])

1[, 2] SCALAR or ARRAY[, IN-
TEGER]

INTEGER

TRAILZ Number of trailing zero bits
of an integer

1 INTEGER INTEGER

6.17 Unsupported functions

Unsupported Fortran 2008 functions:

Table 16: Unsupported functions
Intrinsic Description Num. of

Argu-
ments

Argument Type Result

ACOSH
ASINH
ATANH

Inverse hyperbolic
trigonometric fucn-
tions.

1 COMPLEX COMPLEX

Continued on next page

Document number 101380_1910_00 48

Chapter 6. Fortran intrinsics Arm Fortran Compiler Reference Guide

Table 16 – continued from previous page
Intrinsic Description Num. of

Argu-
ments

Argument Type Result

BGE

BGT

BLE

BLT

Bitwise greater than or
equal to.

Bitwise greater than.

Bitwise less than or
equal to.

Bitwise less than.

2

2

2

2

INTEGER, INTEGER

INTEGER, INTEGER

INTEGER, INTEGER

INTEGER, INTEGER

LOGICAL

LOGICAL

LOGICAL

LOGICAL

DSHIFTL

DSHIFTR

Combined left shift.

Combined right shift.

3

3

INTEGER or BOZ constant,
INTEGER or BOZ constant,
INTEGER

INTEGER or BOZ constant,
INTEGER or BOZ constant,
INTEGER

INTEGER

INTEGER

IALL

IANY

IPARITY

Bitwise AND of array
elements.

Bitwise OR of array
elements.

Bitwise XOR of array
elements.
Syntax:
‘‘ INTRIN-
SIC(ARRAY[, DIM[,
MASK]])‘‘

1

1

1

ARRAY

ARRAY

ARRAY

ARRAY

ARRAY

ARRAY

IMAGE_INDEX

NUM_IMAGES

THIS_IMAGE

Co-subscript to image
index conversion.

Number of images.

Co-subscript index of
this image.

2

0, 1, or 2

0, 1, or 2

COARRAY, INTEGER

None, INTEGER, or
INTEGER, LOGICAL

None, INTEGER,
INTEGER or COARRAY,
INTEGER

INTEGER

INTEGER

INTEGER

Continued on next page

49 Document number 101380_1910_00

Arm Fortran Compiler Reference Guide Chapter 6. Fortran intrinsics

Table 16 – continued from previous page
Intrinsic Description Num. of

Argu-
ments

Argument Type Result

LCOBOUND

UCOBOUND

Lower co-dimension
of bounds of an array.

Upper co-dimension
of bounds of an array.
Syntax:
‘‘ INTRIN-
SIC(COARRAY[,
DIM[, KIND]])‘‘

1

1

COARRAY

COARRAY

INTEGER

INTEGER

MASKL

MASKR

Left justified mask.

Right justified mask.
Syntax:
INTRINSIC(I[,
KIND])

1[, or 2]

1[, or 2]

INTEGER[, INTEGER]

INTEGER[, INTEGER]

INTEGER

INTEGER

MERGE_BITS Merge of bits under
mask.

3 INTEGER, INTEGER, IN-
TEGER

INTEGER

NORM2 Euclidean vector norm.
Syntax:
NORM2(ARRAY[,
DIM])

1[, or 2] REAL ARRAY[, INTE-
GER]

ARRAY

PARITY Reduction with exclu-
sive OR.
Syntax:
PARITY(MASK[,
DIM])

1[, or 2] LOGICAL AR-
RAY[,INTEGER]

LOGICAL

SHIFTA

SHIFTL

SHIFTR

Right shift with fill.

Left shift.

Right shift.

2

2

2

INTEGER, INTEGER

INTEGER, INTEGER

INTEGER, INTEGER

INTEGER

INTEGER

INTEGER

6.18 Unsupported subroutines

Unsupported Fortran 2008 subroutines:

Document number 101380_1910_00 50

Chapter 6. Fortran intrinsics Arm Fortran Compiler Reference Guide

Table 17: Unsupported subroutines
Intrinsic Description Num. of

Argu-
ments

Argument Type

ATOMIC_DEFINE Defines the variable ATOM
with the value VALUE atom-
ically.
Syntax:
ATOMIC_DEFINE(ATOM,
VALUE[, STAT])

2[, or 3] {INTEGER or LOGICAL},
{INTEGER or LOGICAL}[,
INTEGER]

ATOMIC_REF Atomically assigns the value
of the variable ATOM to
VALUE.
Syntax:
ATOMIC_REF(ATOM,
VALUE[, STAT])

2[, or 3] {INTEGER or LOGICAL},
{INTEGER or LOGICAL}[,
INTEGER]

EXECUTE_COMMAND
_LINE

Execute a shell command.
Syntax:
EXECUTE_COMMAND_
LINE(COMMAND[,
WAIT, EXITSTAT,
CMDSTAT, CMDMSG])

1 STRING

51 Document number 101380_1910_00

Arm Fortran Compiler Reference Guide Chapter 6. Fortran intrinsics

Document number 101380_1910_00 52

CHAPTER

SEVEN

DIRECTIVES

Directives are used to provide additional information to the compiler, and to control the compilation of specific
code blocks, for example, loops.

Specify compiler directives as markers in your source file.

Note: To enable OpenMP directives, you must also use the -fopenmp compiler option. For more information on
supported OpenMP directives, see Standards support. For more information on the -fopenmp compiler options,
see Actions.

Directives supported by Arm Fortran Compiler:

7.1 ivdep

Apply this general-purpose directive to a loop to force the vectorizer to ignore memory dependencies of iterative
loops, and proceed with the vectorization.

Syntax

Command-line option:

None

Code:

!dir$ ivdep
<loops>

Parameters

None

Example: Using ivdep

Example usage of the ivdep directive.

Code example:

subroutine sum(myarr1,myarr2,ub)
integer, pointer :: myarr1(:)
integer, pointer :: myarr2(:)
integer :: ub

!dir$ ivdep
do i=1,ub
myarr1(i) = myarr1(i)+myarr2(i)

end do
end subroutine

53 Document number 101380_1910_00

Arm Fortran Compiler Reference Guide Chapter 7. Directives

Command-line invocation:

armflang -O3 <test>.f90 -S -Rpass-missed=loop-vectorize
-Rpass=loop-vectorize

Outputs:

1. With the pragma, the loop given below says the following:

remark vectorized loop (vectorization width: 2, interleaved
count: 1) [-Rpass=loop-vectorize]

2. Without the pragma, the loop given below says the following:

remark: loop not vectorized [-Rpass-missed=loop-vectorize]

7.2 vector always

Apply this directive to force vectorization of a loop. The directive tells the vectorizer to ignore any potential
cost-based implications.

Note: The loop needs to be able to be vectorized.

7.2.1 Syntax

Command-line option:

None

Code:

!dir$ vector always
<loops>

7.2.2 Parameters

None

7.2.3 Example: Using vector always

Example usage of the vector always directive.

Code example:

subroutine add(a,b,c,d,e,ub)
implicit none
integer :: i, ub
integer, dimension(:) :: a, b, c, d, e

!dir$ vector always
do i=1, ub
e(i) = a(c(i)) + b(d(i))

end do
end subroutine add

Document number 101380_1910_00 54

Chapter 7. Directives Arm Fortran Compiler Reference Guide

Command-line invocation:

armflang -O3 <test>.f90 -S -Rpass-missed=loop-vectorize -Rpass=loop-vectorize

7.2.4 Outputs

• With the pragma, the output for the example is:

remark: vectorized loop (vectorization width: 4, interleaved
count: 1) [-Rpass=loop-vectorize]

• Without the pragma, the output for the example is:

remark: the cost-model indicates that vectorization is not beneficial [-Rpass-
→˓missed=loop-vectorize]

7.2.5 Related information

• Optimization remarks

7.3 novector

Apply this directive to disable vectorization of a loop.

Note: Use this directive when vectorization would cause a regression instead of an improvement.

7.3.1 Syntax

Command-line option:

None

Code:

!dir$ novector
<loops>

7.3.2 Parameters

None

7.3.3 Example: Using novector

Example usage of the novector directive.

Code example:

subroutine add(arr1,arr2,arr3,ub)
integer :: arr1(ub), arr2(ub), arr3(ub)
integer :: i

!dir$ novector

(continues on next page)

55 Document number 101380_1910_00

Arm Fortran Compiler Reference Guide Chapter 7. Directives

(continued from previous page)

do i=1,ub
arr1(i) = arr1(i) + arr2(i)

end do
end subroutine add

Command-line invocation:

armflang -O3 <test>.f90 -S -Rpass-missed=loop-vectorize -Rpass=loop-vectorize

7.3.4 Outputs

• With the pragma, the output for the example is:

remark: loop not vectorized [-Rpass-missed=loop-vectorize]

• Without the pragma, the output for the example is:

remark: vectorized loop (vectorization width: 4, interleaved count: 2)
[-Rpass=loop-vectorize]

7.3.5 Related information

• Optimization remarks

7.4 omp simd

Apply this OpenMP directive to a loop to indicate that the loop can be transformed into a SIMD loop.

Syntax

Command-line option:

-fopenmp

Code:

!$omp simd
<do-loops>

Parameters

None

Example: Using omp simd

Example usage of the omp simd directive.

Code example:

subroutine sum(myarr1,myarr2,myarr3,myarr4,myarr5,ub)
integer, pointer :: myarr1(:)
integer, pointer :: myarr2(:)
integer, pointer :: myarr3(:)
integer, pointer :: myarr4(:)
integer, pointer :: myarr5(:)
integer :: ub

!$omp simd

(continues on next page)

Document number 101380_1910_00 56

Chapter 7. Directives Arm Fortran Compiler Reference Guide

(continued from previous page)

do i=1,ub
myarr1(i) = myarr2(myarr4(i))+myarr3(myarr5(i))

end do
end subroutine

Command-line invocation:

.. code-block:: Shell

armflang -O3 -fopenmp <test>.f90 -S -Rpass-missed=loop-vectorize -Rpass=loop-vectorize

Outputs:

1. With the pragma, the loop given below says the following:

.. code-block:: Shell

remark vectorized loop (vectorization width: 2, interleaved count: 1) [-Rpass=loop-vectorize]

2. Without the pragma, the loop given below says the following:

.. code-block:: Shell

remark: loop not vectorized [-Rpass-missed=loop-vectorize]

7.5 unroll

Instructs the compiler optimizer to unroll a DO loop when optimization is enabled with the compiler optimization
flags -02 or higher.

7.5.1 Syntax

Command-line option:

None

Code:

!dir$ unroll
<loops>

7.5.2 Parameters

None

7.5.3 Example: Using unroll

Example usage of the unroll directive.

Code example:

subroutine add(a,b,c,d)
integer, parameter :: m = 1000
integer :: a(m), b(m), c(m), d(m)
integer :: i

(continues on next page)

57 Document number 101380_1910_00

Arm Fortran Compiler Reference Guide Chapter 7. Directives

(continued from previous page)

!DIR$ UNROLL
do i =1, m

b(i) = a(i) + 1
d(i) = c(i) + 1

end do
end subroutine add

7.5.4 Related information

• nounroll

• Optimization remarks

• Optimization options

7.6 nounroll

Prevents the unrolling of DO loops when optimization is enabled with the compiler optimization flags -02 or
higher.

7.6.1 Syntax

Command-line option:

None

Code:

!dir$ nounroll
<loops>

7.6.2 Parameters

None

7.6.3 Example: Using nounroll

Example usage of the nounroll directive.

Code example:

subroutine add(a,b,c,d)
integer, parameter :: m = 1000
integer :: a(m), b(m), c(m), d(m)
integer :: i

!DIR$ NOUNROLL
do i =1, m
b(i) = a(i) + 1
d(i) = c(i) + 1

end do
end subroutine add

Document number 101380_1910_00 58

Chapter 7. Directives Arm Fortran Compiler Reference Guide

7.6.4 Related information

• unroll

• Optimization remarks

• Optimization options

59 Document number 101380_1910_00

Arm Fortran Compiler Reference Guide Chapter 7. Directives

Document number 101380_1910_00 60

CHAPTER

EIGHT

OPTIMIZATION REMARKS

This short tutorial describes how to enable and use optimization remarks with Arm Fortran Compiler.

8.1 Optimization remarks

This short tutorial describes how to enable optimization remarks and pipe the information they provide to an output
file.

Optimization remarks provide you with information about the choices made by the compiler. They can be used to
see which code has been inlined or can help you understand why a loop has not been vectorized.

By default, Arm Fortran Compiler prints compilation information to stderr. Optimization remarks prints this
optimization information to the terminal, or you can choose to pipe them to an output file.

8.1.1 Procedure

1. To enable optimization remarks, choose from following Rpass options:

Table 1: Optimization remarks options
Option Description
-Rpass=<regex> Information about what the compiler has optimized.
-Rpass-analysis=<regex> Information about what the compiler has analyzed.
-Rpass-missed=<regex> Information about what the compiler failed to opti-

mize.

For each option, replace <regex> with an expression for the type of remarks you wish to view.

Recommended <regexp> queries are:

• -Rpass=\(loop-vectorize\|inline\|loop-unroll)

• -Rpass-missed=\(loop-vectorize\|inline\|loop-unroll)

• -Rpass-analysis=\(loop-vectorize\|inline\|loop-unroll)

where loop-vectorize will filter remarks regarding vectorized loops, inline for remarks regarding
inlining, and loop-unroll for remarks about unrolled loops.

Note: To search for all remarks, use the expression .*. However, use this expression with care because a
lot of information can print depending on the size of your code and the level of optimization performed.

2. To generate the required debug information, you must combine the -Rpass option with any of the following
-g flags:

61 Document number 101380_1910_00

Arm Fortran Compiler Reference Guide Chapter 8. Optimization remarks

Table 2: Optimization remarks flags
Flag Description
-g Emits debug information into the binary.
-gline-tables-only Only emits line table debug information into the binary.

3. To compile with optimization remarks enabled, debug information specified, and pipe the information
to an output file, pass the selected above options and debug information to armflang, and use >
<outputfile>:

armflang -O<level> -Rpass=<option> <example.f90> <debug_information> 2>
→˓<output_file.txt>

8.1.2 Example: Fortran example using armflang

This example shows you how to enable and pipe optimization remarks for an example program, example.f90.

1. Pass -Rpass with the regular expression loop-vectorize to armflang, use:

armflang -O3 -Rpass=loop-vectorize example.F90 -gline-tables-only

This results in the following example output in the terminal:

example.F90:21: vectorized loop (vectorization width: 2,
interleaved count: 1)
[-Rpass=loop-vectorize]

do i=1

2. Pipe loop vectorization optimization remarks to a file called vecreport.txt, use:

armflang -O3 -Rpass=loop-vectorize -Rpass-analysis=loop-vectorize
-Rpass-missed=loop-vectorize example.F90 -gline-tables-only
2> vecreport.txt

Document number 101380_1910_00 62

CHAPTER

NINE

STANDARDS SUPPORT

The support status of Arm Fortran Compiler with the Fortran and OpenMP standards.

9.1 Fortran 2003

The following table details the support status with the Fortran 2003 standard.

Table 1: Fortran 2003 support
Fortran 2003 Feature Support Status
ISO TR 15580 IEEE Arithmetic Yes
ISO TR 15581 Allocatable Enhancements
Dummy arrays Yes
Function results Yes
Structure components Yes
Data enhancements and object orientation
Parameterized derived types Yes
Procedure pointers Yes
Finalization Yes
Procedures bound by name to a type Yes
The PASS attribute Yes
Procedures bound to a type as operators Yes
Type extension Yes
Overriding a type-bound procedure Yes
Enumerations Yes
ASSOCIATE construct Yes
Polymorphic entities Yes
SELECT TYPE construct Yes
Deferred bindings and abstract types Yes
Allocatable scalars Yes
Allocatable character length Yes
Miscellaneous enhancements Yes
Structure constructor changes Yes
Generic procedure interfaces with the same name as a type Yes
The allocate statement Yes
Source specifier Yes
Errmsg specifier Yes
Assignment to an allocatable array Yes
Transferring an allocation Yes
More control of access from a module Yes
Renaming operators on the USE statement Yes
Pointer assignment Yes
Pointer INTENT Yes

Continued on next page

63 Document number 101380_1910_00

Arm Fortran Compiler Reference Guide Chapter 9. Standards support

Table 1 – continued from previous page
Fortran 2003 Feature Support Status
The VOLATILE attribute Yes

One or more issues are observed
with this feature.

The IMPORT statement Yes
Intrinsic modules Yes
Access to the computing environment Yes
Support for international character sets Partial

Only selected_char_kind
is supported.

Lengths of names and statements
names = 63 Yes
statements = 256 Yes
Binary, octal and hex constants Yes
Array constructor syntax Yes
Specification and initialization expressions Yes

A few intrinsics which are not com-
monly used are not supported.

Complex constants Yes
Changes to intrinsic functions Yes
Controlling IEEE underflow Yes
Another IEEE class value Yes
I/O enhancements Yes
Derived type I/O Yes

One or more issues are observed
with this feature.

Asynchronous I/O Yes
One or more issues are observed
with this feature.

FLUSH statement Yes
IOMSG= specifier Yes
Stream access input/output Yes
ROUND= specifier Yes

Not supported for write.
DECIMAL= specifier Yes
SIGN= specifier Yes

processor_defined does
not work for open.

Kind type parameters of integer specifiers Yes
Recursive input/output Yes
Intrinsic function for newline character Yes
Input and output of IEEE exceptional values Yes

Read does not work for NaN(s).
Comma after a P edit descriptor Yes
Interoperability with
Interoperability of intrinsic types Yes
Interoperability with C pointers Yes
Interoperability of derived types Yes
Interoperability of variables Yes
Interoperability of procedures Yes
Interoperability of global data Yes

Document number 101380_1910_00 64

Chapter 9. Standards support Arm Fortran Compiler Reference Guide

9.2 Fortran 2008

The following table details the support status with the Fortran 2008 standard.

Table 2: Fortran 2008 support
Fortran 2008 feature Support status
Submodules Yes
Coarrays No
Performance enhancements
do concurrent Partial

The do concurrent syntax is
accepted. The code generated is
serial.

Contiguous attribute Yes
Data Declaration
Maximum rank + corank = 15 No
Long integers Yes
Allocatable components of recursive type No
Implied-shape array No
Pointer initialization No
Data statement restrictions lifted No
Kind of a forall index No
Type statement for intrinsic types No
Declaring type-bound procedures No
Value attribute is permitted for any nonallocatable nonpointer noncoarray No
In a pure procedure the intent of an argument need not be specified if it has the
value attribute

Yes

Accessing data objects
Simply contiguous arrays rank remapping to rank>1 target Yes
Omitting an ALLOCATABLE component in a structure constructor No
Multiple allocations with SOURCE= No
Copying the properties of an object in an ALLOCATE statement Yes
MOLD= specifier for ALLOCATE Yes
Copying bounds of source array in ALLOCATE Yes
Polymorphic assignment No
Accessing real and imaginary parts Partial

Not supported for complex arrays.
Pointer function reference is a variable No
Elemental dummy argument restrictions lifted Yes
Input/Output
Finding a unit when opening a file Yes
g0 edit descriptor No
Unlimited format item No
Recursive I/O Yes
Execution control
The BLOCK construct No
Exit statement No
Stop code Yes
ERROR STOP No
Intrinsic procedures for bit processsing
Bit sequence comparison No
Combined shifting No
Counting bits Yes
Masking bits No

Continued on next page

65 Document number 101380_1910_00

Arm Fortran Compiler Reference Guide Chapter 9. Standards support

Table 2 – continued from previous page
Fortran 2008 feature Support status
Shifting bits No
Merging bits No
Bit transformational functions No
Intrinsic procedures and modules
Storage size Yes
Optional argument RADIX added to SELECTED REAL No
Extensions to trigonometric and hyperbolic intrinsics Partial

Complex types are not accepted
for acosh, asinh and atanh.
Additionally, atan2 cannot be ac-
cessed via atan.

Bessel functions Yes
Error and gamma functions Yes
Euclidean vector norms No
Parity No
Execute command line No
Optional back argument added to maxloc and minloc No
Find location in an array Yes
String comparison Yes
Constants Yes
COMPILER_VERSION Yes
COMPILER_OPTIONS Yes
Function for C sizeof Yes
Added optional argument for IEEE_SELECTED_REAL_KIND No
Programs and procedures
Save attribute for module and submodule data Partial

One or more issues are observed
with this feature.

Empty contains section Partial
Not supported for procedures.

Form of end statement for internal and module procedures Yes
Internal procedure as an actual argument Yes
Null pointer or unallocated allocatable as absent dummy arg. Partial

Not supported for null pointer.
Non pointer actual for pointer dummy argument Yes
Generic resolution by procedureness No
Generic resolution by pointer vs. allocatable Yes
Impure elemental procedures Yes
Entry statement becomes obsolescent Yes
Source form
Semicolon at line start Yes

9.3 OpenMP 4.0

The following table details the support status with the OpenMP 4.0 standard.

Table 3: OpenMP 4.0 support
OpenMP 4.0 Feature Support
C/C++ Array Sections N/A
Thread affinity policies Yes

Continued on next page

Document number 101380_1910_00 66

Chapter 9. Standards support Arm Fortran Compiler Reference Guide

Table 3 – continued from previous page
OpenMP 4.0 Feature Support
“simd” construct Partial

Note: No clauses are supported. !
$omp simd can be used to forge
a loop to be vectorized.

“declare simd” construct No
Device constructs No
Task dependencies No
“taskgroup” construct Yes
User defined reductions No
Atomic capture swap Yes
Atomic seq_cst No
Cancellation Yes
OMP_DISPLAY_ENV Yes

9.4 OpenMP 4.5

The following table details the support status with the OpenMP 4.5 standard.

Table 4: OpenMP 4.5 support
OpenMP 4.5 Feature Support
doacross loop nests with ordered No
“linear” clause on loop construct No
“simdlen” clause on simd construct No
Task priorities No
“taskloop” construct Yes
Extensions to device support No
“if” clause for combined constructs Yes
“hint” clause for critical construct No
“source” and “sink” dependence types No
C++ reference types in data sharing attribute clauses N/A
Reductions on C/C++ array sections N/A
“ref”, “val”, “uval” modifiers for linear clause No
Thread affinity query functions Yes
Hints for lock API Yes

67 Document number 101380_1910_00

Arm Fortran Compiler Reference Guide Chapter 9. Standards support

Document number 101380_1910_00 68

CHAPTER

TEN

FURTHER RESOURCES

This topic describes the Fortran statements supported within Arm Fortran Compiler.

10.1 Further resources

To learn more about Arm Fortran Compiler and other Arm tools, refer to the following information on the Arm
Developer website:

• Arm Fortran Compiler

• Installation instructions

• Release history

• Supported platforms

• Porting and tuning

• Packages wiki

• Help and tutorials

• Arm Allinea Studio

• Get software

• Arm HPC tools

• Arm HPC Ecosystem

• Scalable Vector Extension (SVE)

• Contact Arm Support

69 Document number 101380_1910_00

https://developer.arm.com/products/software-development-tools/hpc/arm-fortran-compiler
https://developer.arm.com/products/software-development-tools/hpc/arm-compiler-for-hpc/installation
https://developer.arm.com/products/software-development-tools/hpc/arm-compiler-for-hpc/release-history
https://developer.arm.com/products/software-development-tools/hpc/arm-compiler-for-hpc/supported-platforms
https://developer.arm.com/products/software-development-tools/hpc/resources/porting-and-tuning
https://gitlab.com/arm-hpc/packages/wikis/categories/allPackages
https://developer.arm.com/products/software-development-tools/hpc/documentation
https://developer.arm.com/products/software-development-tools/hpc/arm-allinea-studio
https://www.arm.com/products/development-tools/hpc-tools/get-software
https://developer.arm.com/products/software-development-tools/hpc/
https://developer.arm.com/hpc
https://developer.arm.com/products/software-development-tools/hpc/sve
https://developer.arm.com/products/software-development-tools/hpc/get-support

	Arm_Fortran_Compiler_Reference_101380_1910_00_en.pdf
	Overview
	Arm Fortran Compiler
	About this book
	Getting help

	Get started
	Installation
	Configuring environment
	Compiling and running a simple “Hello World” program
	Generating executable binaries from Fortran code
	Compiling and linking object files as separate steps
	Increasing the optimization level
	Compiling and optimizing using CPU auto-detection
	Compiling Fortran code for SVE-enabled target architectures
	Common compiler options
	Get support

	Compiler options
	Actions
	File options
	Basic driver options
	Optimization options
	Workload compilation options
	Development options
	Warning options
	Pre-processor options
	Linker options

	Fortran data types and file extensions
	Data types
	Supported file extensions
	Logical variables and constants
	C/Fortran inter-language calling
	Character
	Complex
	Arm Fortran Compiler Fortran implementation notes

	Fortran statements
	Statements

	Fortran intrinsics
	Overview
	Bit manipulation functions and subroutines
	Elemental character and logical functions
	Vector/Matrix functions
	Array reduction functions
	String construction functions
	Array construction manipulation functions
	General inquiry functions
	Numeric inquiry functions
	Array inquiry functions
	Transfer functions
	Arithmetic functions
	Miscellaneous functions
	Subroutines
	Fortran 2003 functions
	Fortran 2008 functions
	Unsupported functions
	Unsupported subroutines

	Directives
	ivdep
	vector always
	novector
	omp simd
	unroll
	nounroll

	Optimization remarks
	Optimization remarks

	Standards support
	Fortran 2003
	Fortran 2008
	OpenMP 4.0
	OpenMP 4.5

	Further resources
	Further resources

