
Arm® Fortran Compiler
Version 20.2

Developer and reference guide

Copyright © 2018–2020 Arm Limited or its affiliates. All rights reserved.
101380_2020_00_en

Arm® Fortran Compiler
Developer and reference guide
Copyright © 2018–2020 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

1830-00 20 June 2018 Non-Confidential Document release for Arm® Fortran Compiler version 18.3

1840-00 17 July 2018 Non-Confidential Update for Arm® Fortran Compiler version 18.4

1900-00 02 November 2018 Non-Confidential Update for Arm® Fortran Compiler version 19.0

1910-00 08 March 2019 Non-Confidential Update for Arm® Fortran Compiler version 19.1

1920-00 07 June 2019 Non-Confidential Update for Arm® Fortran Compiler version 19.2

1930-00 30 August 2019 Non-Confidential Update for Arm® Fortran Compiler version 19.3

2000-00 29 November 2019 Non-Confidential Update for Arm® Fortran Compiler version 20.0

2010-00 23 April 2020 Non-Confidential Update for Arm® Fortran Compiler version 20.1

2010-01 23 April 2020 Non-Confidential Documentation update 1 for Arm® Fortran Compiler version
20.1

2020-00 25 June 2020 Non-Confidential Update for Arm® Fortran Compiler version 20.2

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if

 Arm® Fortran Compiler

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2

Non-Confidential

there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/
trademarks.

Copyright © 2018–2020 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

www.arm.com

 Arm® Fortran Compiler

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3

Non-Confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks
https://www.arm.com

Contents
Arm® Fortran Compiler Developer and reference
guide

Preface
About this book 11

Chapter 1 Get started
1.1 Arm® Fortran Compiler 1-14
1.2 Get started with Arm® Fortran Compiler 1-15
1.3 Get support .. 1-17

Chapter 2 Compile and link
2.1 Using the compiler 2-19
2.2 Compile Fortran code for SVE and SVE2-enabled processors 2-22

Chapter 3 Optimize
3.1 Directives 3-24
3.2 Arm Optimization Report 3-31
3.3 Optimization remarks 3-36

Chapter 4 Compiler options
4.1 Arm Fortran Compiler Options by Function 4-41
4.2 -### 4-45
4.3 -armpl= 4-46
4.4 -c .. 4-48

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4

Non-Confidential

4.5 -config .. 4-49
4.6 -cpp .. 4-50
4.7 -D 4-51
4.8 -E 4-52
4.9 -fassociative-math 4-53
4.10 -fbackslash 4-54
4.11 -fcolor-diagnostics 4-55
4.12 -fconvert= 4-56
4.13 -fcxx-exceptions 4-57
4.14 -fdenormal-fp-math= .. 4-58
4.15 -fexceptions 4-59
4.16 -ffast-math 4-60
4.17 -ffinite-math-only .. 4-61
4.18 -ffixed-form 4-62
4.19 -ffixed-line-length- .. 4-63
4.20 -ffp-contract= 4-64
4.21 -ffree-form .. 4-65
4.22 -fhonor-infinities 4-66
4.23 -fhonor-nans 4-67
4.24 -finline .. 4-68
4.25 -finline-functions 4-69
4.26 -finline-hint-functions 4-70
4.27 -fiterative-reciprocal 4-71
4.28 -flto 4-72
4.29 -fmath-errno 4-73
4.30 -fnative-atomics 4-74
4.31 -fno-crash-diagnostics 4-75
4.32 -fno-fortran-main .. 4-76
4.33 -fopenmp 4-77
4.34 -fopenmp-simd 4-78
4.35 -frealloc-lhs .. 4-79
4.36 -freciprocal-math .. 4-80
4.37 -frecursive .. 4-81
4.38 -fsave-optimization-record 4-82
4.39 -fsign-zero .. 4-83
4.40 -fsigned-char .. 4-84
4.41 -fsigned-zeros .. 4-85
4.42 -fsimdmath 4-86
4.43 -fstack-arrays 4-87
4.44 -fstrict-aliasing 4-88
4.45 -fsyntax-only 4-89
4.46 -ftrapping-math 4-90
4.47 -funsafe-math-optimizations 4-91
4.48 -fvectorize .. 4-92
4.49 -g 4-93
4.50 -g0 4-94
4.51 -gcc-toolchain= .. 4-95
4.52 -gline-tables-only 4-96
4.53 -help 4-97
4.54 -help-hidden 4-98

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5

Non-Confidential

4.55 -I 4-99
4.56 -i8 4-100
4.57 -include .. 4-101
4.58 -iquote .. 4-102
4.59 -isysroot 4-103
4.60 -isystem 4-104
4.61 -isystem-after 4-105
4.62 -l 4-106
4.63 -Mnomain 4-107
4.64 -Mstandard 4-108
4.65 -march= 4-109
4.66 -mcpu= 4-110
4.67 -module .. 4-111
4.68 -no-flang-libs .. 4-112
4.69 -nocpp .. 4-113
4.70 -O 4-114
4.71 -o .. 4-115
4.72 -print-search-dirs .. 4-116
4.73 -Qunused-arguments 4-117
4.74 -r8 4-118
4.75 -S 4-119
4.76 -shared 4-120
4.77 -static 4-121
4.78 -static-arm-libs 4-122
4.79 -std= 4-123
4.80 -U 4-124
4.81 -v .. 4-125
4.82 -version .. 4-126
4.83 -W .. 4-127
4.84 -Wall 4-128
4.85 -Warm-extensions 4-129
4.86 -Wdeprecated .. 4-130
4.87 -Wl, 4-131
4.88 -Wp, 4-132
4.89 -w 4-133
4.90 -working-directory .. 4-134
4.91 -Xassembler 4-135
4.92 -Xlinker 4-136
4.93 -Xpreprocessor .. 4-137

Chapter 5 Fortran language reference
5.1 Data types and file extensions 5-139
5.2 Intrinsics 5-144
5.3 Statements 5-162

Chapter 6 Standards support
6.1 Fortran 2003 .. 6-170
6.2 Fortran 2008 .. 6-173
6.3 OpenMP 4.0 6-176
6.4 OpenMP 4.5 6-177

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

6

Non-Confidential

Chapter 7 Troubleshoot
7.1 Application segfaults at -Ofast optimization level 7-179
7.2 Compiling with the -fpic option fails when using GCC compilers 7-180
7.3 Error messages when installing Arm® Compiler for Linux 7-181

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

7

Non-Confidential

List of Tables
Arm® Fortran Compiler Developer and reference
guide

Table 5-1 Intrinsic data types ... 5-139
Table 5-2 Supported file extensions .. 5-140
Table 5-3 Bit manipulation functions and subroutines ... 5-144
Table 5-4 Elemental character and logical functions ... 5-145
Table 5-5 Vector and matrix functions ... 5-147
Table 5-6 Array reduction functions ... 5-147
Table 5-7 String construction functions ... 5-149
Table 5-8 Array construction and manipulation functions .. 5-149
Table 5-9 General inquiry functions ... 5-150
Table 5-10 Numeric inquiry functions .. 5-150
Table 5-11 Array inquiry functions ... 5-151
Table 5-12 Transfer functions .. 5-151
Table 5-13 Arithmetic functions ... 5-152
Table 5-14 Miscellaneous functions .. 5-155
Table 5-15 Subroutines ... 5-155
Table 5-16 Fortran 2003 functions ... 5-156
Table 5-17 Fortran 2008 functions ... 5-157
Table 5-18 Unsupported functions ... 5-159
Table 5-19 Unsupported subroutines .. 5-160
Table 5-20 Supported Fortran statements ... 5-162
Table 6-1 Fortran 2003 support ... 6-170
Table 6-2 Fortran 2008 support ... 6-173

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

8

Non-Confidential

Table 6-3 OpenMP 4.0 support ... 6-176
Table 6-4 OpenMP 4.5 support ... 6-177

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

9

Non-Confidential

Preface

This preface introduces the Arm® Fortran Compiler Developer and reference guide.

It contains the following:
• About this book on page 11.

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

10

Non-Confidential

 About this book
Provides information to help you use the Arm Fortran Compiler component of Arm Compiler for Linux.
Arm Fortran Compiler is an auto-vectorizing, Linux user-space Fortran compiler, tailored for Server and
High Performance Computing (HPC) workloads. Arm Fortran Compiler supports popular Fortran and
OpenMP standards and is tuned for Armv8-A based processors.

 Using this book

This book is organized into the following chapters:

Chapter 1 Get started
This chapter introduces Arm Fortran Compiler (part of Arm Compiler for Linux and Arm Allinea
Studio), and describes how to get started with the compiler, and where to find further support.

Chapter 2 Compile and link
This chapter describes the basic functionality of Arm Fortran Compiler, and describes how to
compile your Fortran source with armflang.

Chapter 3 Optimize
This chapter describes the optimization-specific features supported in Arm Fortran Compiler.

Chapter 4 Compiler options
This chapter summarizes the supported options used with armflang.

Chapter 5 Fortran language reference
Arm Fortran Compiler supports Fortran 2008, Fortran 2003, Fortran 95, Fortran 90, and some
Fortran 2018 language features. This chapter can be used as a reference for the supported
language features.

Chapter 6 Standards support
Describes the level of support in Arm Fortran Compiler for Fortran and OpenMP standards.

Chapter 7 Troubleshoot
Describes how to diagnose problems when compiling applications using Arm Fortran Compiler.

 Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

 Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

 Preface
 About this book

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

11

Non-Confidential

https://developer.arm.com/support/arm-glossary

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Feedback

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Arm Fortran Compiler Developer and reference guide.
• The number 101380_2020_00_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
 Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Other information

• Arm® Developer.
• Arm® Information Center.
• Arm® Technical Support Knowledge Articles.
• Technical Support.
• Arm® Glossary.

 Preface
 About this book

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

12

Non-Confidential

mailto:errata@arm.com
https://developer.arm.com/
http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/topic/com.arm.doc.faqs
http://www.arm.com/support/technical-support
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Chapter 1
Get started

This chapter introduces Arm Fortran Compiler (part of Arm Compiler for Linux and Arm Allinea
Studio), and describes how to get started with the compiler, and where to find further support.

It contains the following sections:
• 1.1 Arm® Fortran Compiler on page 1-14.
• 1.2 Get started with Arm® Fortran Compiler on page 1-15.
• 1.3 Get support on page 1-17.

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

1-13

Non-Confidential

1.1 Arm® Fortran Compiler
Arm Fortran Compiler is a Linux user space Fortran compiler for server and High Performance
Computing (HPC) Arm-based platforms. It is built on the open-source Flang front-end and the LLVM-
based optimization and code generation back-end.

Arm Fortran Compiler supports popular Fortran and OpenMP standards, has a built-in autovectorizer,
and is tuned for the 64-bit Armv8-A architecture. It also supports compiling for Scalable Vector
Extension (SVE) and SVE2-enabled target platforms.

Arm Fortran Compiler is packaged with Arm C/C++ Compiler and Arm Performance Libraries in a
single package called Arm Compiler for Linux. Arm Compiler for Linux is available as part of Arm
Allinea Studio.

Arm Allinea Studio is an end-to-end commercial suite for compiling, debugging, and optimizing Linux
applications on Arm, and is comprised of Arm Compiler for Linux and Arm Forge.

The Arm Allinea Studio tools require a valid license to use them.

Arm® Fortran Compiler resources
• Arm Fortran Compiler
• Arm Allinea Studio
• Arm Allinea Studio installation instructions
• Arm Allinea Studio Release history
• Arm Allinea Studio supported platforms
• Porting and tuning resources
• Scalable Vector Extension (SVE) information

You can find further help and resources on the Arm Developer website.

Related information
Arm Fortran Compiler
Arm Allinea Studio
Arm Allinea Studio Licensing

1 Get started
1.1 Arm® Fortran Compiler

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

1-14

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-fortran-compiler
https://developer.arm.com/tools-and-software/server-and-hpc/arm-allinea-studio
https://developer.arm.com/tools-and-software/server-and-hpc/arm-allinea-studio/installation
https://developer.arm.com/tools-and-software/server-and-hpc/arm-allinea-studio/release-history
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-compiler-for-linux/resources/supported-platforms
https://developer.arm.com/tools-and-software/server-and-hpc/help/porting-and-tuning
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator/resources/tutorials/sve
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-compiler-for-linux/arm-fortran-compiler
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-fortran-compiler
https://developer.arm.com/tools-and-software/server-and-hpc/arm-allinea-studio
https://developer.arm.com/tools-and-software/server-and-hpc/arm-allinea-studio/licensing

1.2 Get started with Arm® Fortran Compiler
Describes how to download and install Arm Compiler for Linux, and how to use Arm Fortran Compiler
to compile Fortran source into an executable binary.

Prerequisites

Download and install Arm Compiler for Linux. You can download Arm Compiler for Linux from the
Arm Allinea Studio Downloads page. Learn how to install and configure Arm Compiler for Linux, using
the Arm Compiler for Linux installation instructions on the Arm Developer website.

Procedure
1. Load the environment module for Arm Compiler for Linux:

a. As part of the installation, Arm recommends that your system administrator makes the Arm
Compiler for Linux environment modules available to all users of the tool suite.
To see which environment modules are available on your system, run:

module avail

 Note

If you cannot see the Arm Compiler for Linux environment module, and you know the installation
location of the tools, set the MODULEPATH environment variable to include the installation
directory:

export MODULEPATH=$MODULEPATH:<path/to/installation>/modulefiles/

replacing <path/to/installation> with the path to your installation of Arm Compiler for
Linux. The default installation location is /opt/arm/.

b. To load the module for Arm Compiler for Linux, run:

module load <architecture>/<linux_variant>/<linux_version>/arm-linux-compiler/
<version>

For example:

module load Generic-AArch64/SUSE/12/arm-linux-compiler/20.2

c. Check your environment. Examine the PATH variable. PATH must contain the
appropriate bin directory from <path/to/installation>:

echo $PATH
/opt/arm/arm-linux-compiler-20.2_Generic-AArch64_SUSE-
12_aarch64-linux/bin:...

 Note

To automatically load the Arm Compiler for Linux every time you log into your Linux terminal, add
the module load command for your system and product version to your .profile file.

2. To generate an executable binary, compile your program with Arm Fortran Compiler.

Specify (-o) the output binary file, <binary>, and the input source filename, <source>.<fortran-
extension>:

armflang -o <binary> <source>.<fortran-extension>

Arm Fortran Compiler builds your binary <binary>.

To run your binary, use:

./<binary>

1 Get started
1.2 Get started with Arm® Fortran Compiler

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

1-15

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/downloads/arm-allinea-studio
https://developer.arm.com/tools-and-software/server-and-hpc/arm-allinea-studio/installation

Example 1-1 Example: Compile and run a Hello World program

This example describes how to write, compile, and run a simple “Hello World” Fortran program.
1. Load the environment module for your system:

module load <architecture>/<linux_variant>/<linux_version>/arm-linux-compiler/<version>

2. Create a “Hello World” program and save it in an .f90 file, for example: hello.f90:

program hello
 print *, 'hello world'
 end

3. To generate an executable binary, compile your Hello World program with Arm Fortran Compiler.

Specify (-o) the input file, hello.f90, and the binary name, hello:

armflang -o <binary-filename> <source-filename>.<fortran-extension>

4. Run the generated binary hello:

./hello

Next Steps

For more information about compiling and linking as separate steps, and how optimization levels effect
auto-vectorization, see Compile and link on page 2-18.

1 Get started
1.2 Get started with Arm® Fortran Compiler

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

1-16

Non-Confidential

1.3 Get support
To see a list of all the supported compiler options in your terminal, use:

armflang --help

or

man armflang

A description of each supported command-line option is available in Compiler options on page 4-38.

If you encounter a problem when developing your application and compiling with the Arm Compiler for
Linux, see the Troubleshoot on page 7-178 topic.

If you encounter a problem when using Arm Compiler for Linux, contact the Arm Support team:

Contact Arm Support

1 Get started
1.3 Get support

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

1-17

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/get-support

Chapter 2
Compile and link

This chapter describes the basic functionality of Arm Fortran Compiler, and describes how to compile
your Fortran source with armflang.

It contains the following sections:
• 2.1 Using the compiler on page 2-19.
• 2.2 Compile Fortran code for SVE and SVE2-enabled processors on page 2-22.

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-18

Non-Confidential

2.1 Using the compiler
Describes how to compile and link object files and enable optimization options.

Compile and link

To generate an executable binary, compile a program using the armflang command. For example, to
compile example1.f90, and create the binary example1, use:

armflang -o example1 example1.f90

You can also specify multiple source files on a single line. For example, to compile example1a.f90 `
and :file:`example1b.f90, and create the binary example1.f90, use:

armflang -o example1 example1a.f90 example1b.f90

Each source file is compiled individually and then linked into a single executable binary.

To compile each of your source files individually into an object file, specify the -c (compile-only)
option. For example, to compile example1a.f90 into example1a.o, and to compile example1b.f90 into
example1b.o, use:

armflang -c -o example1a.o example1a.f90
armflang -c -o example1b.o example1b.f90

To link two object files into an executable binary, run armflang with the -o option, state the binary
name, and pass the object files. For example, to create the binary example1 from the object files
example1a.o and example1b.o, use:

armflang -o example1 example1a.o example1b.o

Control compiler optimization

To control the optimization level, use the -O<level> option. The -O0 option is the lowest optimization
level. -O3 is the highest. Arm Fortran Compiler only performs auto-vectorization at -O2 and higher, and
uses -O0 as the default setting. The optimization flag can be specified when generating a binary, for
example:

armflang -O3 -o <binary> <source-file>

The optimization flag can also be specified when generating an object file. For example, to compile
example1a.f90 into example1a.o, and to compile example1b.f90 into example1b.o, both at -O3 level,
use:

armflang -O3 -c -o example1a.o example1a.f90
armflang -O3 -c -o example1b.o example1b.f90

It can also be specified when linking object files. For example, to create the binary example1 from the
object files example1a.o and example1b.o, use:

armflang -O3 -o example1 example1a.o example1b.o

Compile and optimize using CPU auto-detection

The -mcpu=native option enables the compiler to automatically detect the architecture and processor
type of the CPU you are running the compiler on, and to enable the optimization available for that target.

For example, to compile example1.f90 into the binary example1 with CPU auto-detection, use:

armflang -O3 -mcpu=native -o example1 example1.f90

2 Compile and link
2.1 Using the compiler

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-19

Non-Confidential

This option supports a range of Armv8-A based SoCs, including ThunderX2, Neoverse N1, and A64FX.
 Note

The optimizations that are performed according to the auto-detected architecture and processor are
independent of the optimization level that is denoted by the -O<level> option.

Common compiler options

Describes some common compiler options.

-S

Outputs assembly code, rather than object code. Produces a text .s file containing annotated
assembly code.

-c

Performs the compilation step, but does not perform the link step. Produces an ELF object .o
file. To later link the object files into an executable binary, re-run armflang and pass in the
object files.

-o file

Specifies the name of the output file.

-march=name[+[no]feature]
Targets an architecture profile, generating generic code that runs on any processor of that
architecture. For example -march=armv8-a, -march=armv8-a+sve, or -march=armv8-a+sve2.

 Note

If you know your target microarchitecture, Arm recommends using the -mcpu option instead of
-march.

-mcpu=native

Enables the compiler to automatically detect the CPU you are running the compiler on, and
optimize accordingly. The compiler selects a suitable architecture profile for that CPU. If you
use -mcpu, you do not need to use the -march option.

mcpu supports a range of Armv8-A-based System-on-Chips (SoCs), including ThunderX2,
Neoverse N1, and A64FX.

 Note

When -mcpu is not specified, it defaults to mcpu=generic which generates portable output
suitable for any Armv8-A-based computer.

-Olevel

Specifies the level of optimization to use when compiling source files. The default is -O0.

--config /path/to/<config-file>.cfg

Passes the location of a configuration file to the compile command. Use a configuration file to
specify a set of compile options to be run at compile time. The configuration file can be passed
at compile time, or an environment variable can be set for it to be used for every invocation of
the compiler. For more information about creating and using a configuration file, see Configure
Arm Compiler for Linux.

--help

Describes the most common options that are supported by Arm Fortran Compiler.

2 Compile and link
2.1 Using the compiler

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-20

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio/installation/configure
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio/installation/configure

--version

Displays version information.

For a detailed description of all the supported compiler options, see Compiler options on page 4-38.

To view the supported options on the command-line, use the man pages:

man armflang

Related concepts
2.2 Compile Fortran code for SVE and SVE2-enabled processors on page 2-22
Related references
Chapter 4 Compiler options on page 4-38

2 Compile and link
2.1 Using the compiler

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-21

Non-Confidential

2.2 Compile Fortran code for SVE and SVE2-enabled processors
You can compile for Scalable Vector Extension (SVE) and Scalable Vector Extension version two
(SVE2)-enabled target architectures with Arm Fortran Compiler.

With Arm Compiler for Linux, you can:

• Assemble source code containing SVE and SVE2 instructions.
• Disassemble ELF object files containing SVE and SVE2 instructions.
• Compile C and C++ code for SVE and SVE2-enabled targets, with an advanced auto-vectorizer

capable of taking advantage of the SVE and SVE2 features.

To optimize Fortran code for an SVE or SVE2-enabled target, enable auto-vectorization by using
optimization level -O2 or -O3, and specify an SVE or SVE2-enabled target architecture using the -
march= option:

For SVE targets, use the `` -march=armv8-a+sve`` option. For example:

armflang -O3 -march=armv8-a+sve -o <binary> <source-file>

For SVE2 targets, use the `` -march=armv8-a+sve2`` option. For example:

armflang -O3 -march=armv8-a+sve2 -o <binary> <source-file>

 Note

• sve2 also enables sve.
• There are several SVE2 Cryptographic Extensions available that also enable SVE2: sve2-aes, sve2-

bitperm, sve2-sha3, and sve2-sm4.
• When enabling either the sve2 or sve features, to link to the SVE-enabled version of Arm

Performance Libraries, you must also include the -armpl=sve option. For example:

armflang -O3 -march=armv8-a+sve -armpl=sve -o <binary> <source-file>

For more information about the supported options for -armpl, see the -armpl description in Arm
Fortran Compiler Options by Function on page 4-41.

• For a full list of supported -march options, see Arm Fortran Compiler Options by Function
on page 4-41.

You can also specify multiple source files on a single line. Each source file is compiled individually and
then linked into a single executable binary:

For example, to compile for an SVE-enabled target, use:

armflang -O3 -march=armv8-a+sve -o <binary> <source-file-1> <source-file-2>

For example, to compile for an SVE2-enabled target, use:

armflang -O3 -march=armv8-a+sve2 -o <binary> <source-file-1> <source-file-2>

To run SVE or SVE2 code on non-SVE platforms. download and install Arm Instruction Emulator. Arm
Instruction Emulator runs on AArch64 platforms and emulates SVE and SVE2 instructions, enabling you
to prepare your code before running on SVE or SVE2-enabled hardware.

For more information about Arm Instruction Emulator, see the Arm Instruction Emulator web page.

Related information
Porting and Optimizing HPC Applications for Arm SVE

2 Compile and link
2.2 Compile Fortran code for SVE and SVE2-enabled processors

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

2-22

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator
https://developer.arm.com/docs/101726/latest

Chapter 3
Optimize

This chapter describes the optimization-specific features supported in Arm Fortran Compiler.

It contains the following sections:
• 3.1 Directives on page 3-24.
• 3.2 Arm Optimization Report on page 3-31.
• 3.3 Optimization remarks on page 3-36.

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-23

Non-Confidential

3.1 Directives
Directives are used to provide additional information to the compiler, and to control the compilation of
specific code blocks, for example, loops. This chapter describes what directives are supported in Arm
Fortran Compiler.

To specify a compiler directive in your source file, use:
• For free-form Fortran, use !dir$ to indicate a directive, or !$omp to indicate an OpenMP directive.
• For fixed-form Fortran, either !dir$ or cdir$ can be used to indicate a directive, and either !$omp or

c$omp can be used to indicate an OpenMP directive.
 Warning

Directives using cdir$ or c$omp must start from the first column.

 Note

To enable OpenMP directives, you must also include the -fopenmp compiler option in the compile
command line.

For more information about which OpenMP directives are supported, see Standards support
on page 6-169. For more information on the -fopenmp compiler options, see Arm Fortran Compiler
Options by Function on page 4-41.

This section contains the following subsections:
• 3.1.1 ivdep on page 3-24.
• 3.1.2 vector always on page 3-25.
• 3.1.3 novector on page 3-26.
• 3.1.4 omp simd on page 3-27.
• 3.1.5 unroll on page 3-28.
• 3.1.6 nounroll on page 3-29.

3.1.1 ivdep

Apply this general-purpose directive to a loop to force the vectorizer to ignore memory dependencies of
iterative loops, and proceed with the vectorization.

Syntax

Command-line option:

None

Source:

!dir$ ivdep
 <loops>

 Note

If you are using fixed-form Fortran, directives can be indicated using cdir$ or !dir$, but must start
from the first column.

Parameters

None

3 Optimize
3.1 Directives

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-24

Non-Confidential

Example: Using ivdep
Example usage of the ivdep directive.

subroutine sum(myarr1,myarr2,ub)
 integer, pointer :: myarr1(:)
 integer, pointer :: myarr2(:)
 integer :: ub
 !dir$ ivdep
 do i=1,ub
 myarr1(i) = myarr1(i)+myarr2(i)
 end do
end subroutine

 Note

The example uses the free-form syntax. For fixed-form formats, replace !dir$ with cdir$.

Command-line invocation
armflang -O3 <test>.f90 -S -Rpass-missed=loop-vectorize
-Rpass=loop-vectorize

Outputs
1. With the pragma, the loop that is given below says the following:

remark vectorized loop (vectorization width: 2, interleaved
count: 1) [-Rpass=loop-vectorize]

2. Without the pragma, the loop that is given below says the following:

remark: loop not vectorized [-Rpass-missed=loop-vectorize]

3.1.2 vector always

Apply this directive to force vectorization of a loop. The directive tells the vectorizer to ignore any
potential cost-based implications.

 Note

The loop needs to be able to be vectorized.

Syntax

Command-line option:

None

Source:

!dir$ vector always
 <loops>

 Note

If you are using fixed-form Fortran, directives can be indicated using cdir$ or !dir$, but must start
from the first column.

Parameters

None

Example: Using vector always

Example usage of the vector always directive.

3 Optimize
3.1 Directives

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-25

Non-Confidential

Code example:

subroutine add(a,b,c,d,e,ub)
 implicit none
 integer :: i, ub
 integer, dimension(:) :: a, b, c, d, e
 !dir$ vector always
 do i=1, ub
 e(i) = a(c(i)) + b(d(i))
 end do
end subroutine add

 Note

The example uses the free-form syntax. For fixed-form formats, replace !dir$ with cdir$.

Command-line invocation
armflang -O3 <test>.f90 -S -Rpass-missed=loop-vectorize -Rpass=loop-vectorize

Outputs
• With the pragma, the output for the example is:

remark: vectorized loop (vectorization width: 4, interleaved
count: 1) [-Rpass=loop-vectorize]

• Without the pragma, the output for the example is:

remark: the cost-model indicates that vectorization is not beneficial [-Rpass-missed=loop-
vectorize]

Related references
3.3 Optimization remarks on page 3-36

3.1.3 novector

Apply this directive to disable vectorization of a loop.

 Note

Use this directive when vectorization would cause a regression instead of an improvement.

Syntax

Command-line option:

None

Source:

!dir$ novector
 <loops>

 Note

If you are using fixed-form Fortran, directives can be indicated using cdir$ or !dir$, but must start
from the first column.

Parameters

None

Example: Using novector

Example usage of the novector directive.

3 Optimize
3.1 Directives

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-26

Non-Confidential

Code example:

subroutine add(arr1,arr2,arr3,ub)
 integer :: arr1(ub), arr2(ub), arr3(ub)
 integer :: i
 !dir$ novector
 do i=1,ub
 arr1(i) = arr1(i) + arr2(i)
 end do
end subroutine add

 Note

The example uses the free-form syntax. For fixed-form formats, replace !dir$ with cdir$.

Command-line invocation
armflang -O3 <test>.f90 -S -Rpass-missed=loop-vectorize -Rpass=loop-vectorize

Outputs
• With the pragma, the output for the example is:

remark: loop not vectorized [-Rpass-missed=loop-vectorize]

• Without the pragma, the output for the example is:

remark: vectorized loop (vectorization width: 4, interleaved count: 2)
[-Rpass=loop-vectorize]

Related references
3.3 Optimization remarks on page 3-36

3.1.4 omp simd

Apply this OpenMP directive to a loop to indicate that the loop can be transformed into a SIMD loop.

Syntax

Command-line option:

-fopenmp

Source:

!$omp simd
 <do-loops>

 Note

If you are using fixed-form Fortran, OpenMP directives can be indicated using !$omp or c$omp, but must
start from the first column.

Parameters

None

Example: Using omp simd

Example usage of the omp simd directive.

Code example:

subroutine sum(myarr1,myarr2,myarr3,myarr4,myarr5,ub)
 integer, pointer :: myarr1(:)
 integer, pointer :: myarr2(:)
 integer, pointer :: myarr3(:)
 integer, pointer :: myarr4(:)
 integer, pointer :: myarr5(:)

3 Optimize
3.1 Directives

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-27

Non-Confidential

 integer :: ub
 !$omp simd
 do i=1,ub
 myarr1(i) = myarr2(myarr4(i))+myarr3(myarr5(i))
 end do
end subroutine

Command-line invocation
armflang -O3 -fopenmp <test>.f90 -S -Rpass-missed=loop-vectorize
-Rpass=loop-vectorize

Outputs
1. With the pragma, the loop that is given below says the following:

remark vectorized loop (vectorization width: 2, interleaved
count: 1) [-Rpass=loop-vectorize]

2. Without the pragma, the loop that is given below says the following:

remark: loop not vectorized [-Rpass-missed=loop-vectorize]

Related references
Chapter 6 Standards support on page 6-169

3.1.5 unroll

Instructs the compiler optimizer to unroll a DO loop when optimization is enabled with the compiler
optimization flags -02 or higher.

Syntax

Command-line option:

None

Source:

!dir$ unroll
 <loops>

 Note

If you are using fixed-form Fortran, directives can be indicated using cdir$ or !dir$, but must start
from the first column.

Parameters

None

Example: Using unroll

Example usage of the unroll directive.

Code example:

subroutine add(a,b,c,d)
 integer, parameter :: m = 1000
 integer :: a(m), b(m), c(m), d(m)
 integer :: i
 !DIR$ UNROLL
 do i =1, m
 b(i) = a(i) + 1
 d(i) = c(i) + 1
 end do
end subroutine add

3 Optimize
3.1 Directives

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-28

Non-Confidential

 Note

The example uses the free-form syntax. For fixed-form formats, replace !dir$ with cdir$.

Related references
3.1.6 nounroll on page 3-29
3.3 Optimization remarks on page 3-36
4.1 Arm Fortran Compiler Options by Function on page 4-41

3.1.6 nounroll

Prevents the unrolling of DO loops when optimization is enabled with the compiler optimization flags
-02 or higher.

Syntax

Command-line option:

None

Source:

!dir$ nounroll
 <loops>

 Note

If you are using fixed-form Fortran, directives can be indicated using cdir$ or !dir$, but must start
from the first column..

Parameters

None

Example: Using nounroll

Example usage of the nounroll directive.

Code example:

subroutine add(a,b,c,d)
 integer, parameter :: m = 1000
 integer :: a(m), b(m), c(m), d(m)
 integer :: i
 !DIR$ NOUNROLL
 do i =1, m
 b(i) = a(i) + 1
 d(i) = c(i) + 1
 end do
end subroutine add

 Note

The example uses the free-form syntax. For fixed-form formats, replace !dir$ with cdir$.

Related references
3.1.5 unroll on page 3-28
3.3 Optimization remarks on page 3-36
4.1 Arm Fortran Compiler Options by Function on page 4-41
Related references
3.1.1 ivdep on page 3-24
3.1.2 vector always on page 3-25
3.1.3 novector on page 3-26

3 Optimize
3.1 Directives

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-29

Non-Confidential

3.1.4 omp simd on page 3-27
3.1.5 unroll on page 3-28
3.1.6 nounroll on page 3-29

3 Optimize
3.1 Directives

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-30

Non-Confidential

3.2 Arm Optimization Report
Arm Optimization Report builds on the llvm-opt-report tool available in open-source LLVM. Arm
Optimization Report shows you the optimization decisions that the compiler is making, in-line with your
source code, enabling you to better understand the unrolling, vectorization, and interleaving behavior.

Unrolling

Example questions: Was a loop unrolled? If so, what was the unroll factor?

Unrolling is when a scalar loop is transformed to perform multiple iterations at once, but still as scalar
instructions.

The unroll factor is the number of iterations of the original loop that are performed at once. Sometimes,
loops with known small iteration counts are completely unrolled, such that no loop structure remains. In
completely unrolled cases, the unroll factor is the total scalar iteration count.

Vectorization

Example questions: Was a loop vectorized? If so, what was the vectorization factor?

Vectorization is when multiple iterations of a scalar loop are replaced by a single iteration of vector
instructions.

The vectorization factor is the number of lanes in the vector unit, and corresponds to the number of scalar
iterations that are performed by each vector instruction

 Note

The true vectorization factor is unknown at compile-time for SVE, because SVE supports scalable
vectors.

When SVE is enabled, Arm Optimization Report reports a vectorization factor that corresponds to a 128-
bit SVE implementation.

If you are working with an SVE implementation with a larger vector width (for example, 256 bits or 512
bits), the number of scalar iterations that are performed by each vector instruction increases
proportionally.

SVE scaling factor = <true SVE vector width> / 128

Loops vectorized using scalable vectors are annotated with VS<F,I>. For more information, see arm-opt-
report reference on page 3-33.

Interleaving

Example question: What was the interleave count?

Interleaving is a combination of vectorization followed by unrolling; multiple streams of vector
instructions are performed in each iteration of the loop.

The combination of vectorization and unrolling information tells you how many iterations of the original
scalar loop are performed in each iteration of the generated code.

Number of scalar iterations = <unroll factor> x <vectorization factor> x <interleave count>
x <SVE scaling factor>

Reference

The annotations Arm Optimization Report uses to annotate the source code, and the options that can be
passed to arm-opt-report are described in the Arm Optimization Report reference.

This section contains the following subsections:
• 3.2.1 How to use Arm Optimization Report on page 3-32.
• 3.2.2 arm-opt-report reference on page 3-33.

3 Optimize
3.2 Arm Optimization Report

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-31

Non-Confidential

3.2.1 How to use Arm Optimization Report

This topic describes how to use Arm Optimization Report.

Prerequisites

Download and install Arm Compiler for Linux version 20.0+. For more information, see Download Arm
Compiler for Linux and Installation.

Procedure
1. To generate a machine-readable .opt.yaml report, at compile time add -fsave-optimization-

record to your command line.

The <filename>.opt.yaml report is generated by Arm Compiler, where <filename> is the name of
the binary.

2. To inspect the <filename>.opt.yaml report, as augmented source code, use arm-opt-report:

arm-opt-report <filename>.opt.yaml

Annotated source code appears in the terminal.

Example 3-1 Example

1. Create an example file called example.f90 containing the following code:

subroutine foo
 implicit none
 call bar()
end subroutine foo
subroutine test
 implicit none
 integer :: i
 integer, dimension(1600) :: res, p, d
 do i = 1, 1600
 res(i) = merge(res(i), res(i) + d(i), p(i) == 0)
 end do
 do i = 1, 16
 res(i) = merge(res(i), res(i) + d(i), p(i) == 0)
 end do
 call foo()
 call foo()
 call bar()
 call foo()
end subroutine test

2. Compile the file, for example to a shared object called example.o:

armflang -O3 -fsave-optimization-record -c -o example.o example.f90

This generates a file, example.opt.yaml, in the same directory as the built object.

For compilations that create multiple object files, there is a report for each build object.
 Note

This example compiles to a shared object, however, you could also compile to a static object or to a
binary.

3. View the example.opt.yaml file using arm-opt-report:

arm-opt-report example.opt.yaml

Annotated source code is displayed in the terminal:

< example.f90
 1 | subroutine foo
 2 | implicit none
 3 | call bar()
 4 | end subroutine foo
 5 |
 6 | subroutine test

3 Optimize
3.2 Arm Optimization Report

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-32

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio/download
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio/download
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio/installation

 7 | implicit none
 8 | integer :: i
 9 | integer, dimension(1600) :: res, p, d
10 |
11 |
12 | do i = 1, 1600
13 | res(i) = merge(res(i), res(i) + d(i), p(i) == 0)
14 V4,2 | end do
15 |
16 |
17 | do i = 1, 16
18 | res(i) = merge(res(i), res(i) + d(i), p(i) == 0)
19 U16 | end do
20 |
21 I | call foo()
22 I | call foo()
23 | call bar()
24 I | call foo()
25 | end subroutine test

The example Arm Optimization Report output is interpreted as follows:
• The do loop on line 12:

— Is vectorized
— Has a vectorization factor of four (there are four 32-bit integer lanes)
— Has an interleave factor of two (the loop was unrolled twice)

• The for loop on line 19 is unrolled 16 times. This means it is completely unrolled, with no
remaining loops.

• All three instances of call foo() are inlined

Related references
3.2.2 arm-opt-report reference on page 3-33
Related information
Arm Compiler for Linux and Arm Allinea Studio
Take a trial
Help and tutorials

3.2.2 arm-opt-report reference

Arm Optimization Report (arm-opt-report) is a tool to generate an optimization report from YAML
optimization record files.

arm-opt-report uses a YAML optimization record, as produced by the -fsave-optimization-record
option of LLVM, to output annotated source code that shows the various optimization decisions taken by
the compiler.

 Note

-fsave-optimization-record is not set by default by Arm Compiler for Linux.

Possible annotations are:

Annotation Description

I A function was inlined.

U<N> A loop was unrolled <N> times.

3 Optimize
3.2 Arm Optimization Report

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-33

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio
https://pages.arm.com/Hpc-trial-request
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/documentation

 (continued)

Annotation Description

V<F, I> A loop has been vectorized.

Each vector iteration performed has the equivalent of F*I scalar iterations.

Vectorization Factor, F, is the number of scalar elements that are processed in parallel.

Interleave count, I, is the number of times the vector loop was unrolled.

VS<F,I> A loop has been vectorized using scalable vectors.

Each vector iteration performed has the equivalent of N*F*I scalar iterations, where N is the number of vector granules,
which can vary according to the machine the program is run on.

For example, LLVM assumes a granule size of 128 bits when targeting SVE.

F (Vectorization Factor) and I (Interleave count) are as described for V<F,I>.

Syntax

arm-opt-report [options] <input>

Options

Generic Options:

--help

Displays the available options (use --help-hidden for more).

--help-list

Displays a list of available options (--help-list-hidden for more).

--version

Displays the version of this program.

llvm-opt-report options:

--hide-detrimental-vectorization-info

Hides remarks about vectorization being forced despite the cost-model indicating that it is not
beneficial.

--hide-inline-hints

Hides suggestions to inline function calls which are preventing vectorization.

--hide-lib-call-remark

Hides remarks about the calls to library functions that are preventing vectorization.

--hide-vectorization-cost-info

Hides remarks about the cost of loops that are not beneficial for vectorization.

--no-demangle

Does not demangle function names.

-o=<string>

Specifies an output file to write the report to.

-r=<string>

Specifies the root for relative input paths.

3 Optimize
3.2 Arm Optimization Report

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-34

Non-Confidential

-s

Omits vectorization factors and associated information.

--strip-comments

Removes comments for brevity

--strip-comments=<arg>
Removes comments for brevity. Arguments are:
• none: Do not strip comments.
• c: Strip C-style comments.
• c++: Strip C++-style comments.
• fortran: Strip Fortran-style comments.

Outputs

Annotated source code.

Related tasks
3.2.1 How to use Arm Optimization Report on page 3-32
Related tasks
3.2.1 How to use Arm Optimization Report on page 3-32
Related references
3.2.2 arm-opt-report reference on page 3-33

3 Optimize
3.2 Arm Optimization Report

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-35

Non-Confidential

3.3 Optimization remarks
Optimization remarks provide you with information about the choices made by the compiler. You can use
them to see which code has been inlined or they can help you understand why a loop has not been
vectorized.

By default, Arm Fortran Compiler prints compilation information to stderr. Optimization remarks print
this optimization information to the terminal, or you can choose to pipe them to an output file.

To enable optimization remarks, choose from following Rpass options:

• -Rpass=<regex>: Information about what the compiler has optimized.
• -Rpass-analysis=<regex>: Information about what the compiler has analyzed.
• -Rpass-missed=<regex>: Information about what the compiler failed to optimize.

For each option, replace <regex> with an expression for the type of remarks you wish to view.

Recommended <regexp> queries are:

• -Rpass=\(loop-vectorize\|inline\|loop-unroll\)
• -Rpass-missed=\(loop-vectorize\|inline\|loop-unroll\)
• -Rpass-analysis=\(loop-vectorize\|inline\|loop-unroll\)

where loop-vectorize filters remarks regarding vectorized loops, inline for remarks regarding
inlining, and loop-unroll for remarks about unrolled loops.

 Note

To search for all remarks, use the expression .*. Use this expression with caution; depending on the size
of code, and the level of optimization, a lot of information can print.

When you provide -Rpass, armflang generates debug line tables equivalent to passing -gline-tables-
only, unless you instruct it not to by another debug controlling option. This default behavior ensures that
source location information is available to print the remarks.

To compile with optimization remarks enabled, request debug information, and pipe the information to
an output file, pass the selected options and debug information to armflang, and use > <output-file>:

armflang -O<level> -Rpass[-<option>]=<regex> <source-file> [<debug-option>] 2> <output-file>

This section contains the following subsection:
• 3.3.1 Enable optimization remarks on page 3-36.

3.3.1 Enable optimization remarks

Describes how to enable optimization remarks and to investigate the choices made by the compiler.

Procedure
1. Compile your code and use the -Rpass=<regex>, -Rpass-missed=<regex>, or Rpass-

analysis=<regex> optimization remark options with the -g or gline-tables-only debug options:

armflang -O<level> -Rpass[-<option>]=<regex> <source-file> [<debug-option>]

For example, to enable optimization remarks to be reported for an example.f90 input file, use:

armflang -O3 -Rpass=loop-vectorize example.F90 -gline-tables-only

Result:

example.F90:21: vectorized loop (vectorization width: 2,
interleaved count: 1)
 [-Rpass=loop-vectorize]
 do i=1

3 Optimize
3.3 Optimization remarks

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-36

Non-Confidential

2. Pipe the loop vectorization optimization remarks to a file:

armflang -O<level> -Rpass[-<option>]=<regex> <source-file> [<debug-option>] 2> <output-
file>

For example, to pipe to a file called vecreport.txt, use:

armflang -O3 -Rpass=loop-vectorize -Rpass-analysis=loop-vectorize -Rpass-missed=loop-
vectorize example.F90 -gline-tables-only 2> vecreport.txt

A vecreport.txt file is output with the optimization remarks in it.

Related information
Arm Fortran Compiler
Related tasks
3.3.1 Enable optimization remarks on page 3-36

3 Optimize
3.3 Optimization remarks

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

3-37

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-fortran-compiler

Chapter 4
Compiler options

This chapter summarizes the supported options used with armflang.

armflang provides many command-line options, including most Flang command-line options in addition
to a number of Arm-specific options. Flang is a Fortran language front-end integrated with LLVM which
supports the community feature command-line options that are also supported by Clang. These options
are described in the LLVM documentation on the LLVM Compiler Infrastructure Project web site, http://
llvm.org.

It contains the following sections:
• 4.1 Arm Fortran Compiler Options by Function on page 4-41.
• 4.2 -### on page 4-45.
• 4.3 -armpl= on page 4-46.
• 4.4 -c on page 4-48.
• 4.5 -config on page 4-49.
• 4.6 -cpp on page 4-50.
• 4.7 -D on page 4-51.
• 4.8 -E on page 4-52.
• 4.9 -fassociative-math on page 4-53.
• 4.10 -fbackslash on page 4-54.
• 4.11 -fcolor-diagnostics on page 4-55.
• 4.12 -fconvert= on page 4-56.
• 4.13 -fcxx-exceptions on page 4-57.
• 4.14 -fdenormal-fp-math= on page 4-58.
• 4.15 -fexceptions on page 4-59.
• 4.16 -ffast-math on page 4-60.
• 4.17 -ffinite-math-only on page 4-61.
• 4.18 -ffixed-form on page 4-62.

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-38

Non-Confidential

http://llvm.org
http://llvm.org

• 4.19 -ffixed-line-length- on page 4-63.
• 4.20 -ffp-contract= on page 4-64.
• 4.21 -ffree-form on page 4-65.
• 4.22 -fhonor-infinities on page 4-66.
• 4.23 -fhonor-nans on page 4-67.
• 4.24 -finline on page 4-68.
• 4.25 -finline-functions on page 4-69.
• 4.26 -finline-hint-functions on page 4-70.
• 4.27 -fiterative-reciprocal on page 4-71.
• 4.28 -flto on page 4-72.
• 4.29 -fmath-errno on page 4-73.
• 4.30 -fnative-atomics on page 4-74.
• 4.31 -fno-crash-diagnostics on page 4-75.
• 4.32 -fno-fortran-main on page 4-76.
• 4.33 -fopenmp on page 4-77.
• 4.34 -fopenmp-simd on page 4-78.
• 4.35 -frealloc-lhs on page 4-79.
• 4.36 -freciprocal-math on page 4-80.
• 4.37 -frecursive on page 4-81.
• 4.38 -fsave-optimization-record on page 4-82.
• 4.39 -fsign-zero on page 4-83.
• 4.40 -fsigned-char on page 4-84.
• 4.41 -fsigned-zeros on page 4-85.
• 4.42 -fsimdmath on page 4-86.
• 4.43 -fstack-arrays on page 4-87.
• 4.44 -fstrict-aliasing on page 4-88.
• 4.45 -fsyntax-only on page 4-89.
• 4.46 -ftrapping-math on page 4-90.
• 4.47 -funsafe-math-optimizations on page 4-91.
• 4.48 -fvectorize on page 4-92.
• 4.49 -g on page 4-93.
• 4.50 -g0 on page 4-94.
• 4.51 -gcc-toolchain= on page 4-95.
• 4.52 -gline-tables-only on page 4-96.
• 4.53 -help on page 4-97.
• 4.54 -help-hidden on page 4-98.
• 4.55 -I on page 4-99.
• 4.56 -i8 on page 4-100.
• 4.57 -include on page 4-101.
• 4.58 -iquote on page 4-102.
• 4.59 -isysroot on page 4-103.
• 4.60 -isystem on page 4-104.
• 4.61 -isystem-after on page 4-105.
• 4.62 -l on page 4-106.
• 4.63 -Mnomain on page 4-107.
• 4.64 -Mstandard on page 4-108.
• 4.65 -march= on page 4-109.
• 4.66 -mcpu= on page 4-110.
• 4.67 -module on page 4-111.
• 4.68 -no-flang-libs on page 4-112.
• 4.69 -nocpp on page 4-113.
• 4.70 -O on page 4-114.
• 4.71 -o on page 4-115.
• 4.72 -print-search-dirs on page 4-116.
• 4.73 -Qunused-arguments on page 4-117.
• 4.74 -r8 on page 4-118.

4 Compiler options

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-39

Non-Confidential

• 4.75 -S on page 4-119.
• 4.76 -shared on page 4-120.
• 4.77 -static on page 4-121.
• 4.78 -static-arm-libs on page 4-122.
• 4.79 -std= on page 4-123.
• 4.80 -U on page 4-124.
• 4.81 -v on page 4-125.
• 4.82 -version on page 4-126.
• 4.83 -W on page 4-127.
• 4.84 -Wall on page 4-128.
• 4.85 -Warm-extensions on page 4-129.
• 4.86 -Wdeprecated on page 4-130.
• 4.87 -Wl, on page 4-131.
• 4.88 -Wp, on page 4-132.
• 4.89 -w on page 4-133.
• 4.90 -working-directory on page 4-134.
• 4.91 -Xassembler on page 4-135.
• 4.92 -Xlinker on page 4-136.
• 4.93 -Xpreprocessor on page 4-137.

4 Compiler options

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-40

Non-Confidential

4.1 Arm Fortran Compiler Options by Function
This provides a summary of the armflang command-line options that Arm Fortran Compiler supports.

Actions

Options that control what action to perform on the input.

Option Description

4.8 -E on page 4-52 Only run the preprocessor.

4.75 -S on page 4-119 Only run preprocess and compilation steps.

4.4 -c on page 4-48 Only run preprocess, compile, and assemble steps.

4.13 -fcxx-exceptions on page 4-57 Enable C++ exceptions.

4.15 -fexceptions on page 4-59 Enable support for exception handling.

4.25 -finline-functions on page 4-69 Inline suitable functions.

4.26 -finline-hint-functions on page 4-70 Inline functions which are (explicitly or implicitly) marked inline.

4.33 -fopenmp on page 4-77 Enable OpenMP and link in the OpenMP library, libomp.

4.34 -fopenmp-simd on page 4-78 Enable processing of ‘simd’ and the ‘declare simd’ pragma, without enabling OpenMP or
linking in the OpenMP library, libomp. Enabled by default.

4.45 -fsyntax-only on page 4-89 Show syntax errors but do not perform any compilation.

File options

Options that specify input or output files.

Option Description

4.55 -I on page 4-99 Add directory to include search path. Directories specified with the -I option apply to both the
quote form of the include directive and the system header form.

4.5 -config on page 4-49 Passes the location of a configuration file to the compile command.

4.57 -include on page 4-101 Include file before parsing.

4.58 -iquote on page 4-102 Add directory to the include search path.

4.59 -isysroot on page 4-103 For header files, set the system root directory (usually /).

4.60 -isystem on page 4-104 Override the system include directory.

4.61 -isystem-after on page 4-105 Add directory to end of the SYSTEM include search path.

4.71 -o on page 4-115 Write output to <file>.

4.90 -working-directory on page 4-134 Resolve file paths relative to the specified directory.

Basic driver options

Options that affect basic functionality of the armclang or armflang driver.

Option Description

4.2 -### on page 4-45 Print (but do not run) the commands to run for this compilation.

4.51 -gcc-toolchain= on page 4-95 Use the gcc toolchain at the given directory.

4.53 -help on page 4-97 Display available options.

4.54 -help-hidden on page 4-98 Display hidden options. Only use these options if advised to do so by your Arm representative.

4 Compiler options
4.1 Arm Fortran Compiler Options by Function

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-41

Non-Confidential

 (continued)

Option Description

4.72 -print-search-dirs on page 4-116 Print the paths that are used for finding libraries and programs.

4.81 -v on page 4-125 Show commands to run and use verbose output.

4.82 -version on page 4-126 Show the version number and some other basic information about the compiler.

Optimization options

Options that control what optimizations should be performed.

Option Description

4.70 -O on page 4-114 Specifies the level of optimization to use when compiling source files.

4.3 -armpl= on page 4-46 Enable Arm Performance Libraries (ArmPL) (disabled by default).

4.9 -fassociative-math on page 4-53 Allow (-fassociative-math) or prevent (-fno-associative-math) the re-association of
operands in a series of floating-point operations. Default is -fno-associative-math.

4.14 -fdenormal-fp-math= on page 4-58 Specify the denormal numbers the code is allowed to require.

4.16 -ffast-math on page 4-60 Allow aggressive, lossy floating-point optimizations (disabled by default).

4.17 -ffinite-math-only on page 4-61 Enable optimizations that ignore the possibility of NaN and +/-Inf (disabled by
default).

4.20 -ffp-contract= on page 4-64 Controls when the compiler is permitted to form fused floating-point operations (for
example, FMAs).

4.22 -fhonor-infinities on page 4-66 Do not allow optimizations that assume the arguments and results of floating point
arithmetic are not +/-Inf.

4.23 -fhonor-nans on page 4-67 Do not allow optimizations that assume the arguments and results of floating point
arithmetic are not NaN.

4.24 -finline on page 4-68 Enable/disable inlining (enabled by default).

4.27 -fiterative-reciprocal on page 4-71 Allow optimizations that replace division by reciprocal estimation and refinement.

4.28 -flto on page 4-72 Enable (-flto) or disable (-fno-lto) Link Time Optimizations (LTO).

4.29 -fmath-errno on page 4-73 Require math functions to indicate errors.

4.36 -freciprocal-math on page 4-80 Allow division operations to be reassociated

4.38 -fsave-optimization-record on page 4-82 Enable (-fsave-optimization-record) or disable (-fno-save-optimization-record) the
generation of a YAML optimization record file. Default is -fno-save-optimization-
record.

4.40 -fsigned-char on page 4-84 Set the type of ‘char’ to be signed. Disabled by default.

4.41 -fsigned-zeros on page 4-85 Do not allow optimizations that ignore the sign of floating point zeros. Enabled by
default.

4.42 -fsimdmath on page 4-86 Enables the vectorized libm library to support the vectorization of loops containing
calls to basic library functions, such as those declared in math.h

4.44 -fstrict-aliasing on page 4-88 Tells the compiler to adhere to the aliasing rules defined in the source language
(enabled by default when using ‘-Ofast’).

4.46 -ftrapping-math on page 4-90 Tell the compiler to assume (-ftrapping-math), or not to assume (-fno-trapping-
math), that floating point operations can trap.

4.47 -funsafe-math-optimizations on page 4-91 Enable a subset of the optimizations allowed by -ffast-math.

4 Compiler options
4.1 Arm Fortran Compiler Options by Function

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-42

Non-Confidential

 (continued)

Option Description

4.48 -fvectorize on page 4-92 Enable/disable loop vectorization (enabled by default).

4.65 -march= on page 4-109 Specifies the base architecture and extensions available on the target.

4.66 -mcpu= on page 4-110 Select which CPU architecture to optimize for.

C/C++ Options

Options that affect the way C workloads are compiled.

Option Description

4.79 -std= on page 4-123 Language standard to compile for.

Fortran Options

Options that affect the way Fortran workloads are compiled.

Option Description

4.63 -Mnomain on page 4-107 Do not link in Fortran main.

4.64 -Mstandard on page 4-108 Check Fortran standard conformance.

4.6 -cpp on page 4-50 Preprocess Fortran files.

4.10 -fbackslash on page 4-54 Treat backslash as C-style escape character (-fbackslash) or as a normal character (-fno-
backslash) (C-style is the default).

4.12 -fconvert= on page 4-56 Convert between big and little endian data format. Default is -fconvert=native.

4.18 -ffixed-form on page 4-62 Force fixed-form format Fortran. This is default for .f and .F files, and is the inverse of -ffree-
form.

4.19 -ffixed-line-length- on page 4-63 Set line length in fixed-form format Fortran. Default is 72. 0 and none are equivalent and set
the line length to a very large value (>132).

4.21 -ffree-form on page 4-65 Force free-form format for Fortran. This is default for .f90 and .F90 files, and is the inverse of
-ffixed-form.

4.30 -fnative-atomics on page 4-74 Enable (-fnative-atomics) or disable (-fno-native-atomics) the use of native atomic
instructions for OpenMP atomics. Default is -fnative-atomics.

4.32 -fno-fortran-main on page 4-76 Do not link in Fortran main.

4.35 -frealloc-lhs on page 4-79 Select semantics for assignments to allocatables.

4.37 -frecursive on page 4-81 Allocate all local arrays on the stack, allowing thread-safe recursion (enabled by default with -
fopenmp).

4.39 -fsign-zero on page 4-83 Write floating point numbers of the value zero with the sign bit as a negative number. Enabled
by default.

4.43 -fstack-arrays on page 4-87 Place all automatic arrays on stack memory (enabled by default with -Ofast).

4.56 -i8 on page 4-100 Treat INTEGER and LOGICAL as INTEGER*8 and LOGICAL*8.

4.67 -module on page 4-111 Fortran module path.

4.68 -no-flang-libs on page 4-112 Do not link against Flang libraries.

4.69 -nocpp on page 4-113 Do not preprocess Fortran files.

4.74 -r8 on page 4-118 Treat REAL as REAL*8.

4 Compiler options
4.1 Arm Fortran Compiler Options by Function

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-43

Non-Confidential

Development options

Options that facilitate code development.

Option Description

4.11 -fcolor-diagnostics on page 4-55 Use colors in diagnostics.

4.49 -g on page 4-93 Generate source-level debug information.

4.50 -g0 on page 4-94 Disable generation of source-level debug information (default).

4.52 -gline-tables-only on page 4-96 Emit debug line number tables only.

Warning options

Options that control the behavior of warnings.

Option Description

4.73 -Qunused-arguments on page 4-117 Do not emit a warning for unused driver arguments.

4.83 -W on page 4-127 Enable the specified warning.

4.84 -Wall on page 4-128 Enable all warnings.

4.85 -Warm-extensions on page 4-129 Enable warnings about the use of non-standard language features supported by armclang
or armflang

4.86 -Wdeprecated on page 4-130 Enable warnings for deprecated constructs and define __DEPRECATED.

4.31 -fno-crash-diagnostics on page 4-75 Disable the auto-generation of preprocessed source files and a script for reproduction
during a clang crash.

4.89 -w on page 4-133 Suppress all warnings.

Preprocessor options

Options controlling the behavior of the preprocessor.

Option Description

4.7 -D on page 4-51 Define <macro> to <value> (or 1 if <value> omitted).

4.80 -U on page 4-124 Undefine macro <macro>.

4.88 -Wp, on page 4-132 Pass the comma separated arguments in <arg> to the preprocessor

4.93 -Xpreprocessor on page 4-137 Pass <arg> to the preprocessor.

Linker options

Options that are passed on to the linker or affect linking.

Option Description

4.87 -Wl, on page 4-131 Pass the comma separated arguments in <arg> to the linker.

4.91 -Xassembler on page 4-135 Pass <arg> to the assembler.

4.92 -Xlinker on page 4-136 Pass <arg> to the linker.

4.62 -l on page 4-106 Search for the library named <library> when linking.

4.76 -shared on page 4-120 Create a shared object that can be linked against.

4.77 -static on page 4-121 Link against static libraries.

4.78 -static-arm-libs on page 4-122 Link against static Arm libraries.

4 Compiler options
4.1 Arm Fortran Compiler Options by Function

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-44

Non-Confidential

4.2 -###
Print (but do not run) the commands to run for this compilation.

Syntax
armflang -###

4 Compiler options
4.2 -###

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-45

Non-Confidential

4.3 -armpl=
Enable Arm Performance Libraries (ArmPL) (disabled by default).

Instructs the compiler to load the optimum version of Arm Performance Libraries for your target
architecture and implementation. This option also enables optimized versions of the C mathematical
functions declared in the math.h library, tuned scalar and vector implementations of Fortran math
intrinsics. This option implies -fsimdmath.

ArmPL provides libraries suitable for a range of supported CPUs. If you intend to use -armpl, you must
also specify the required architecture using the -mcpu flag.

The -armpl option also enables:
• Optimized versions of the C mathematical functions declared in math.h.
• Optimized versions of Fortran math intrinsics.
• Auto-vectorization of C mathematical functions (disable this with -fno-simdmath).
• Auto-vectorization of Fortran math intrinsics (disable this with -fno-simdmath).

Default

By default, -armpl is not set (in other words, OFF)

Default argument behavior

If -armpl is set with no arguments, the default behavior of the option is armpl=lp64,sequential.

However, the default behavior of the arguments is also determined by the specification (or not) of the -
i8 (when using armflang) and -fopenmp options:

• If the -i8 option is not specified, lp64 is enabled by default. If -i8 is specified, ilp64 is enabled by
default.

• If the -fopenmp option is not specified, sequential is enabled by default. If -fopenmp is specified,
parallel is enabled by default.

In other words:
• Specifying -armpl sets -armpl=lp64,sequential.
• Specifying -armpl and -i8 sets -armpl=ilp64,sequential.
• Specifying -armpl and -fopenmp sets -armpl=lp64,parallel.
• Specifying -armpl, -i8, and -fopenmp sets -armpl=ilp64,parallel.

Syntax
armflang -armpl=<arg1>,<arg2>...

Arguments

lp64

Use 32-bit integers. (default)

ilp64

Use 64-bit integers. Inverse of lp64. (default if using -i8 with armflang).

sequential

Use the single-threaded implementation of Arm Performance Libraries. (default)

parallel

Use the OpenMP multi-threaded implementation of Arm Performance Libraries. Inverse of
sequential. (default if using -fopenmp)

4 Compiler options
4.3 -armpl=

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-46

Non-Confidential

sve

Use the ‘Generic’ SVE library from Arm Performance Libraries.

Note:
• To enable SVE compilation and library usage on SVE-enabled targets, use -armpl -mcpu=native.
• To enable SVE(2) compilation and library usage on a target without native support for these features,

use -armpl=sve -march=armv8-a+<Feature>, where <Feature> is one of sve, sve2, sve2-
bitperm, sve2-aes, sve2-sha3, or sve2-sm4.

4 Compiler options
4.3 -armpl=

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-47

Non-Confidential

4.4 -c
Only run preprocess, compile, and assemble steps.

Syntax
armflang -c

4 Compiler options
4.4 -c

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-48

Non-Confidential

4.5 -config
Passes the location of a configuration file to the compile command.

Use a configuration file to specify a set of compile options to be run at compile time. The configuration
file can be passed at compile time, or an environment variable can be set for it to be used for every
invocation of the compiler. For more information about creating and using a configuration file, see
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio/
installation/configure.

Syntax
armflang --config <arg>

4 Compiler options
4.5 -config

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-49

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio/installation/configure
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio/installation/configure

4.6 -cpp
Preprocess Fortran files.

Syntax
armflang -cpp

4 Compiler options
4.6 -cpp

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-50

Non-Confidential

4.7 -D
Define <macro> to <value> (or 1 if <value> omitted).

Syntax
armflang -D<macro>=<value>

4 Compiler options
4.7 -D

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-51

Non-Confidential

4.8 -E
Only run the preprocessor.

Syntax
armflang -E

4 Compiler options
4.8 -E

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-52

Non-Confidential

4.9 -fassociative-math
Allow (-fassociative-math) or prevent (-fno-associative-math) the re-association of operands in a series
of floating-point operations. Default is -fno-associative-math.

For example, (a * b) + (a * c) => a * (b + c). Note: Using -fassociative-math violates the ISO C and
C++ language standard.

Default

Default is -fno-associative-math.

Syntax
armflang -fassociative-math, -fno-associative-math

4 Compiler options
4.9 -fassociative-math

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-53

Non-Confidential

4.10 -fbackslash
Treat backslash as C-style escape character (-fbackslash) or as a normal character (-fno-backslash) (C-
style is the default).

Syntax
armflang -fbackslash, -fno-backslash

4 Compiler options
4.10 -fbackslash

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-54

Non-Confidential

4.11 -fcolor-diagnostics
Use colors in diagnostics.

Syntax
armflang -fcolor-diagnostics, -fno-color-diagnostics

4 Compiler options
4.11 -fcolor-diagnostics

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-55

Non-Confidential

4.12 -fconvert=
Convert between big and little endian data format. Default is -fconvert=native.

Default

Default is -fconvert=native.

Syntax
armflang -fconvert={native \| swap \| big-endian \| little-endian}

4 Compiler options
4.12 -fconvert=

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-56

Non-Confidential

4.13 -fcxx-exceptions
Enable C++ exceptions.

Syntax
armflang -fcxx-exceptions

4 Compiler options
4.13 -fcxx-exceptions

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-57

Non-Confidential

4.14 -fdenormal-fp-math=
Specify the denormal numbers the code is allowed to require.

Syntax
armflang -fdenormal-fp-math=<arg>

Arguments

ieee

IEEE 754 denormal numbers.

preserve-sign

Flushed-to-zero number signs are preserved in the sign of 0.

positive-zero

Flush denormal numbers to positive zero.

4 Compiler options
4.14 -fdenormal-fp-math=

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-58

Non-Confidential

4.15 -fexceptions
Enable support for exception handling.

Syntax
armflang -fexceptions

4 Compiler options
4.15 -fexceptions

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-59

Non-Confidential

4.16 -ffast-math
Allow aggressive, lossy floating-point optimizations (disabled by default).

Using -ffast-math is equivalent to specifying the following flags individually:

-fassociative-math, -ffinite-math-only, -ffp-contract=fast, -fno-math-errno, -fno-signed-
zeros, -fno-trapping-math, and -freciprocal-math

Syntax
armflang -ffast-math

4 Compiler options
4.16 -ffast-math

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-60

Non-Confidential

4.17 -ffinite-math-only
Enable optimizations that ignore the possibility of NaN and +/-Inf (disabled by default).

Syntax
armflang -ffinite-math-only

4 Compiler options
4.17 -ffinite-math-only

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-61

Non-Confidential

4.18 -ffixed-form
Force fixed-form format Fortran. This is default for .f and .F files, and is the inverse of -ffree-form.

Syntax
armflang -ffixed-form

4 Compiler options
4.18 -ffixed-form

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-62

Non-Confidential

4.19 -ffixed-line-length-
Set line length in fixed-form format Fortran. Default is 72. 0 and none are equivalent and set the line
length to a very large value (>132).

Default

Default is -ffixed-line-length-72.

Syntax
armflang -ffixed-line-length-{0 \| 72 \| 132 \| none}

4 Compiler options
4.19 -ffixed-line-length-

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-63

Non-Confidential

4.20 -ffp-contract=
Controls when the compiler is permitted to form fused floating-point operations (for example, FMAs).

These instructions typically operate to a higher degree of accuracy than individual multiply and add
instructions.

Syntax
armflang -ffp-contract={fast\|on\|off}

Arguments

fast

Always (default for Fortran workloads). Note: They are not strictly allowed according to the
C/C++ standard because they can lead to deviations from the expected results.

on

Only in the presence of the FP_CONTRACT pragma (default for C/C++ workloads).

off

Never.

4 Compiler options
4.20 -ffp-contract=

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-64

Non-Confidential

4.21 -ffree-form
Force free-form format for Fortran. This is default for .f90 and .F90 files, and is the inverse of -ffixed-
form.

Syntax
armflang -ffree-form

4 Compiler options
4.21 -ffree-form

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-65

Non-Confidential

4.22 -fhonor-infinities
Do not allow optimizations that assume the arguments and results of floating point arithmetic are not +/-
Inf.

Syntax
armflang -fhonor-infinities, -fno-honor-infinities

4 Compiler options
4.22 -fhonor-infinities

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-66

Non-Confidential

4.23 -fhonor-nans
Do not allow optimizations that assume the arguments and results of floating point arithmetic are not
NaN.

Syntax
armflang -fhonor-nans, -fno-honor-nans

4 Compiler options
4.23 -fhonor-nans

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-67

Non-Confidential

4.24 -finline
Enable/disable inlining (enabled by default).

Syntax
armflang -finline, -fno-inline

4 Compiler options
4.24 -finline

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-68

Non-Confidential

4.25 -finline-functions
Inline suitable functions.

Syntax
armflang -finline-functions

4 Compiler options
4.25 -finline-functions

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-69

Non-Confidential

4.26 -finline-hint-functions
Inline functions which are (explicitly or implicitly) marked inline.

Syntax
armflang -finline-hint-functions

4 Compiler options
4.26 -finline-hint-functions

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-70

Non-Confidential

4.27 -fiterative-reciprocal
Allow optimizations that replace division by reciprocal estimation and refinement.

Syntax
armflang -fiterative-reciprocal, -fno-iterative-reciprocal

4 Compiler options
4.27 -fiterative-reciprocal

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-71

Non-Confidential

4.28 -flto
Enable (-flto) or disable (-fno-lto) Link Time Optimizations (LTO).

You must pass the option to both the link and compile commands. When LTO is enabled, compiler object
files contain an intermediate representation of the original code. When linking the objects together into a
binary at link time, the compiler performs optimizations. It can allow the compiler to inline functions
from different files, for example.

Default

Default is -fno-lto.

Syntax
armflang -flto, -fno-lto

4 Compiler options
4.28 -flto

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-72

Non-Confidential

4.29 -fmath-errno
Require math functions to indicate errors.

Use -fmath-errno if your source code uses errno to check the status of math function calls. If your code
never uses errno, you can use -fno-math-errno to unlock optimizations such as:
1. In C/C++ it allows sin() and cos() calls that take the same input to be combined into a more efficient

sincos() call.
2. In C/C++ it allows certain pow(x, y) function calls to be eliminated completely when y is a small

integral value.

Syntax
armflang -fmath-errno, -fno-math-errno

4 Compiler options
4.29 -fmath-errno

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-73

Non-Confidential

4.30 -fnative-atomics
Enable (-fnative-atomics) or disable (-fno-native-atomics) the use of native atomic instructions for
OpenMP atomics. Default is -fnative-atomics.

By default, armflang generates native atomic instructions for OpenMP atomic operations, falling back to
libatomic when no suitable native instruction is available. Use -fno-native-atomics to disable this
feature and have armflang generate code that use barriers to guarantee atomicity. This will normally
result in a slower program.

Default

Default is -fnative-atomics.

Syntax
armflang -fnative-atomics, -fno-native-atomics

4 Compiler options
4.30 -fnative-atomics

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-74

Non-Confidential

4.31 -fno-crash-diagnostics
Disable the auto-generation of preprocessed source files and a script for reproduction during a clang
crash.

Syntax
armflang -fno-crash-diagnostics

4 Compiler options
4.31 -fno-crash-diagnostics

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-75

Non-Confidential

4.32 -fno-fortran-main
Do not link in Fortran main.

Syntax
armflang -fno-fortran-main

4 Compiler options
4.32 -fno-fortran-main

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-76

Non-Confidential

4.33 -fopenmp
Enable OpenMP and link in the OpenMP library, libomp.

Syntax
armflang -fopenmp

4 Compiler options
4.33 -fopenmp

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-77

Non-Confidential

4.34 -fopenmp-simd
Enable processing of ‘simd’ and the ‘declare simd’ pragma, without enabling OpenMP or linking in the
OpenMP library, libomp. Enabled by default.

Syntax
armflang -fopenmp-simd, -fno-openmp-simd

4 Compiler options
4.34 -fopenmp-simd

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-78

Non-Confidential

4.35 -frealloc-lhs
Select semantics for assignments to allocatables.

Fortran 2003 allows dynamic reallocation, which will error in Fortran 90/95. Use -fno-realloc-lhs to
restore the F95 behavior. Default is F2003 semantics (-frealloc-lhs).

Default

Default is F2003 semantics (-frealloc-lhs).

Syntax
armflang -frealloc-lhs, -fno-realloc-lhs

4 Compiler options
4.35 -frealloc-lhs

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-79

Non-Confidential

4.36 -freciprocal-math
Allow division operations to be reassociated

Syntax
armflang -freciprocal-math

4 Compiler options
4.36 -freciprocal-math

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-80

Non-Confidential

4.37 -frecursive
Allocate all local arrays on the stack, allowing thread-safe recursion (enabled by default with -fopenmp).

In the absence of this flag, some large local arrays may be allocated in static memory. This reduces stack
usage, but is not thread-safe.

Default

-frecursive is enabled by default with -fopenmp.

Syntax
armflang -frecursive

4 Compiler options
4.37 -frecursive

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-81

Non-Confidential

4.38 -fsave-optimization-record
Enable (-fsave-optimization-record) or disable (-fno-save-optimization-record) the generation of a
YAML optimization record file. Default is -fno-save-optimization-record.

Optimization records are files named <output name>.opt.yaml, which can be parsed by arm-opt-report to
show what optimization decisions the compiler is making, in-line with your source code. For more
information, see the ‘Optimize’ chapter in the compiler developer and reference guide.

Default

Default is fno-save-optimization-record.

Syntax
armflang -fsave-optimization-record, -fno-save-optimization-record

4 Compiler options
4.38 -fsave-optimization-record

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-82

Non-Confidential

4.39 -fsign-zero
Write floating point numbers of the value zero with the sign bit as a negative number. Enabled by default.

Also write the numbers in formatted output and treat them as negative when used by the ‘SIGN’
intrinsic.

Syntax
armflang -fsign-zero, -fno-sign-zero

4 Compiler options
4.39 -fsign-zero

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-83

Non-Confidential

4.40 -fsigned-char
Set the type of ‘char’ to be signed. Disabled by default.

Syntax
armflang -fsigned-char, -fno-signed-char

4 Compiler options
4.40 -fsigned-char

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-84

Non-Confidential

4.41 -fsigned-zeros
Do not allow optimizations that ignore the sign of floating point zeros. Enabled by default.

Syntax
armflang -fsigned-zeros, -fno-signed-zeros

4 Compiler options
4.41 -fsigned-zeros

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-85

Non-Confidential

4.42 -fsimdmath
Enables the vectorized libm library to support the vectorization of loops containing calls to basic library
functions, such as those declared in math.h

Syntax
armflang -fsimdmath, -fno-simdmath

4 Compiler options
4.42 -fsimdmath

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-86

Non-Confidential

4.43 -fstack-arrays
Place all automatic arrays on stack memory (enabled by default with -Ofast).

Use this option if your Fortran code frequently performs small allocations and deallocations of memory.
-fstack-arrays improves application performance by using memory on the stack instead of allocating
it through malloc, or similar. For programs using very large arrays on particular operating systems,
consider extending stack memory runtime limits.

Syntax
armflang -fstack-arrays, -fno-stack-arrays

4 Compiler options
4.43 -fstack-arrays

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-87

Non-Confidential

4.44 -fstrict-aliasing
Tells the compiler to adhere to the aliasing rules defined in the source language (enabled by default when
using ‘-Ofast’).

In some circumstances, this flag allows the compiler to assume that pointers to different types do not
alias.

Syntax
armflang -fstrict-aliasing

4 Compiler options
4.44 -fstrict-aliasing

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-88

Non-Confidential

4.45 -fsyntax-only
Show syntax errors but do not perform any compilation.

Syntax
armflang -fsyntax-only

4 Compiler options
4.45 -fsyntax-only

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-89

Non-Confidential

4.46 -ftrapping-math
Tell the compiler to assume (-ftrapping-math), or not to assume (-fno-trapping-math), that floating point
operations can trap.

Possible traps include:
• Division by zero
• Underflow
• Overflow
• Inexact result
• Invalid operation.

Syntax
armflang -ftrapping-math, -fno-trapping-math

4 Compiler options
4.46 -ftrapping-math

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-90

Non-Confidential

4.47 -funsafe-math-optimizations
Enable a subset of the optimizations allowed by -ffast-math.

Using --funsafe-math-optimizations is equivalent to specifying the following flags individually:

-fassociative-math, -freciprocal-math, -fno-signed-zeros, and -fno-trapping-math

Syntax
armflang -funsafe-math-optimizations, -fno-unsafe-math-optimizations

4 Compiler options
4.47 -funsafe-math-optimizations

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-91

Non-Confidential

4.48 -fvectorize
Enable/disable loop vectorization (enabled by default).

Syntax
armflang -fvectorize, -fno-vectorize

4 Compiler options
4.48 -fvectorize

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-92

Non-Confidential

4.49 -g
Generate source-level debug information.

Syntax
armflang -g

4 Compiler options
4.49 -g

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-93

Non-Confidential

4.50 -g0
Disable generation of source-level debug information (default).

Syntax
armflang -g0

4 Compiler options
4.50 -g0

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-94

Non-Confidential

4.51 -gcc-toolchain=
Use the gcc toolchain at the given directory.

Syntax
armflang --gcc-toolchain=<arg>

4 Compiler options
4.51 -gcc-toolchain=

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-95

Non-Confidential

4.52 -gline-tables-only
Emit debug line number tables only.

Syntax
armflang -gline-tables-only

4 Compiler options
4.52 -gline-tables-only

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-96

Non-Confidential

4.53 -help
Display available options.

Syntax
armflang -help, --help

4 Compiler options
4.53 -help

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-97

Non-Confidential

4.54 -help-hidden
Display hidden options. Only use these options if advised to do so by your Arm representative.

Syntax
armflang --help-hidden

4 Compiler options
4.54 -help-hidden

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-98

Non-Confidential

4.55 -I
Add directory to include search path. Directories specified with the -I option apply to both the quote
form of the include directive and the system header form.

For example, #include “file” (quote form), and #include <file> (system header form).

Syntax
armflang -I<dir>

4 Compiler options
4.55 -I

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-99

Non-Confidential

4.56 -i8
Treat INTEGER and LOGICAL as INTEGER*8 and LOGICAL*8.

Syntax
armflang -i8

4 Compiler options
4.56 -i8

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-100

Non-Confidential

4.57 -include
Include file before parsing.

Syntax
armflang -include<file>, --include<file>

4 Compiler options
4.57 -include

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-101

Non-Confidential

4.58 -iquote
Add directory to the include search path.

Directories specified with the -iquote option only apply to the quote form of the include directive, such
as #include “file”.

Syntax
armflang -iquote<directory>

4 Compiler options
4.58 -iquote

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-102

Non-Confidential

4.59 -isysroot
For header files, set the system root directory (usually /).

Syntax
armflang -isysroot<dir>

4 Compiler options
4.59 -isysroot

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-103

Non-Confidential

4.60 -isystem
Override the system include directory.

Directories specified with the -isystem option apply to both the quote form of the include directive,
such as #include “file”, and the system header form, such as #include <file>.

Directories specified with this option will be searched after directories specified by the -iquote or -I
options, but before the standard system include directory.

Syntax
armflang -isystem<directory>

4 Compiler options
4.60 -isystem

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-104

Non-Confidential

4.61 -isystem-after
Add directory to end of the SYSTEM include search path.

Syntax
armflang -isystem-after<directory>

4 Compiler options
4.61 -isystem-after

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-105

Non-Confidential

4.62 -l
Search for the library named <library> when linking.

Syntax
armflang -l<library>

4 Compiler options
4.62 -l

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-106

Non-Confidential

4.63 -Mnomain
Do not link in Fortran main.

Syntax
armflang -Mnomain

4 Compiler options
4.63 -Mnomain

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-107

Non-Confidential

4.64 -Mstandard
Check Fortran standard conformance.

Syntax
armflang -Mstandard

4 Compiler options
4.64 -Mstandard

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-108

Non-Confidential

4.65 -march=
Specifies the base architecture and extensions available on the target.

Usage: -march=<arg> where <arg> is constructed as name[+[no]feature+…]:

name

armv8-a : Armv8 application architecture profile.

armv8.1-a : Armv8.1 application architecture profile.

armv8.2-a : Armv8.2 application architecture profile.

feature

Is the name of an optional architectural feature that can be explicitly enabled with +feature and
disabled with +nofeature.

For AArch64, the following features can be specified:
• crc - Enable CRC extension. On by default for -march=armv8.1-a or higher.
• crypto - Enable Cryptographic extension.
• fullfp16 - Enable FP16 extension.
• lse - Enable Large System Extension instructions. On by default for -march=armv8.1-a or

higher.
• sve - Scalable Vector Extension (SVE). This feature also enables fullfp16. See Scalable

Vector Extension for more information.
• sve2- Scalable Vector Extension version two (SVE2). This feature also enables sve. See

Arm A64 Instruction Set Architecture for SVE and SVE2 instructions.
• sve2-aes - SVE2 Cryptographic extension. This feature also enables sve2.
• sve2-bitperm - SVE2 Cryptographic Extension. This feature also enables sve2.
• sve2-sha3 - SVE2 Cryptographic Extension. This feature also enables sve2.
• sve2-sm4 - SVE2 Cryptographic Extension. This feature also enables sve2.

 Note

When enabling either the sve2 or sve features, to link to the SVE-enabled version of Arm
Performance Libraries, you must also include the -armpl=sve option. For more information
about the supported options for -armpl, see the -armpl description.

Syntax
armflang -march=<arg>

4 Compiler options
4.65 -march=

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-109

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/sve
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/sve
https://developer.arm.com/docs/ddi0602/latest/a64-sve-instructions-alphabetic-order

4.66 -mcpu=
Select which CPU architecture to optimize for.

Syntax
armflang -mcpu=<arg>

Arguments

native

Auto-detect the CPU architecture from the build computer.

thunderx2t99

Optimize for Marvell ThunderX2 based computers.

neoverse-n1

Optimize for Neoverse N1 based computers.

a64fx

Optimize for Fujitsu A64FX based computers.

generic

Generate portable output suitable for any Armv8-A based computer.

4 Compiler options
4.66 -mcpu=

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-110

Non-Confidential

4.67 -module
Fortran module path.

Syntax
armflang -module <arg>

4 Compiler options
4.67 -module

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-111

Non-Confidential

4.68 -no-flang-libs
Do not link against Flang libraries.

Syntax
armflang -no-flang-libs

4 Compiler options
4.68 -no-flang-libs

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-112

Non-Confidential

4.69 -nocpp
Do not preprocess Fortran files.

Syntax
armflang -nocpp

4 Compiler options
4.69 -nocpp

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-113

Non-Confidential

4.70 -O
Specifies the level of optimization to use when compiling source files.

Syntax
armflang -O<level>

Arguments

0

Minimum optimization for the performance of the compiled binary. Turns off most
optimizations. When debugging is enabled, this option generates code that directly corresponds
to the source code. Therefore, this might result in a significantly larger image. This is the default
optimization level.

1

Restricted optimization. When debugging is enabled, this option gives the best debug view for
the trade-off between image size, performance, and debug.

2

High optimization. When debugging is enabled, the debug view might be less satisfactory
because the mapping of object code to source code is not always clear. The compiler might
perform optimizations that cannot be described by debug information.

3

Very high optimization. When debugging is enabled, this option typically gives a poor debug
view. Arm recommends debugging at lower optimization levels.

fast

Enables all the optimizations from level 3 including those performed with the -ffp-mode=fast
armclang option. This level also performs other aggressive optimizations that might violate
strict compliance with language standards. -Ofast implies -ffast-math.

4 Compiler options
4.70 -O

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-114

Non-Confidential

4.71 -o
Write output to <file>.

Syntax
armflang -o<file>

4 Compiler options
4.71 -o

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-115

Non-Confidential

4.72 -print-search-dirs
Print the paths that are used for finding libraries and programs.

Syntax
armflang -print-search-dirs, --print-search-dirs

4 Compiler options
4.72 -print-search-dirs

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-116

Non-Confidential

4.73 -Qunused-arguments
Do not emit a warning for unused driver arguments.

Syntax
armflang -Qunused-arguments

4 Compiler options
4.73 -Qunused-arguments

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-117

Non-Confidential

4.74 -r8
Treat REAL as REAL*8.

Syntax
armflang -r8

4 Compiler options
4.74 -r8

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-118

Non-Confidential

4.75 -S
Only run preprocess and compilation steps.

Syntax
armflang -S

4 Compiler options
4.75 -S

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-119

Non-Confidential

4.76 -shared
Create a shared object that can be linked against.

Syntax
armflang -shared, --shared

4 Compiler options
4.76 -shared

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-120

Non-Confidential

4.77 -static
Link against static libraries.

This option prevents runtime dependencies on shared libraries. This is likely to result in larger binaries.

Syntax
armflang -static, --static

4 Compiler options
4.77 -static

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-121

Non-Confidential

4.78 -static-arm-libs
Link against static Arm libraries.

This option prevents runtime dependencies on libraries shipped with Arm Compiler for Linux (such as
libamath, libastring and Arm Performance Libraries). This is likely to result in larger binaries.

Syntax
armflang -static-arm-libs

4 Compiler options
4.78 -static-arm-libs

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-122

Non-Confidential

4.79 -std=
Language standard to compile for.

The list of valid standards depends on the input language, but adding -std= to a build line will generate
an error message listing valid choices.

Syntax
armflang -std=<arg>, --std=<arg>

4 Compiler options
4.79 -std=

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-123

Non-Confidential

4.80 -U
Undefine macro <macro>.

Syntax
armflang -U<macro>

4 Compiler options
4.80 -U

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-124

Non-Confidential

4.81 -v
Show commands to run and use verbose output.

Syntax
armflang -v

4 Compiler options
4.81 -v

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-125

Non-Confidential

4.82 -version
Show the version number and some other basic information about the compiler.

Syntax
armflang --version, --vsn

4 Compiler options
4.82 -version

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-126

Non-Confidential

4.83 -W
Enable the specified warning.

Similarly, warnings can be disabled with -Wno-<warning>.

Syntax
armflang -W<warning>

4 Compiler options
4.83 -W

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-127

Non-Confidential

4.84 -Wall
Enable all warnings.

Syntax
armflang -Wall

4 Compiler options
4.84 -Wall

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-128

Non-Confidential

4.85 -Warm-extensions
Enable warnings about the use of non-standard language features supported by armclang or armflang

Syntax
armflang -Warm-extensions

4 Compiler options
4.85 -Warm-extensions

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-129

Non-Confidential

4.86 -Wdeprecated
Enable warnings for deprecated constructs and define __DEPRECATED.

Syntax
armflang -Wdeprecated

4 Compiler options
4.86 -Wdeprecated

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-130

Non-Confidential

4.87 -Wl,
Pass the comma separated arguments in <arg> to the linker.

Syntax
armflang -Wl,<arg>,<arg2>...

4 Compiler options
4.87 -Wl,

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-131

Non-Confidential

4.88 -Wp,
Pass the comma separated arguments in <arg> to the preprocessor

Syntax
armflang -Wp,<arg>,<arg2>...

4 Compiler options
4.88 -Wp,

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-132

Non-Confidential

4.89 -w
Suppress all warnings.

Syntax
armflang -w

4 Compiler options
4.89 -w

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-133

Non-Confidential

4.90 -working-directory
Resolve file paths relative to the specified directory.

Syntax
armflang -working-directory<arg>

4 Compiler options
4.90 -working-directory

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-134

Non-Confidential

4.91 -Xassembler
Pass <arg> to the assembler.

Syntax
armflang -Xassembler <arg>

4 Compiler options
4.91 -Xassembler

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-135

Non-Confidential

4.92 -Xlinker
Pass <arg> to the linker.

Syntax
armflang -Xlinker <arg>

4 Compiler options
4.92 -Xlinker

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-136

Non-Confidential

4.93 -Xpreprocessor
Pass <arg> to the preprocessor.

Syntax
armflang -Xpreprocessor <arg>

4 Compiler options
4.93 -Xpreprocessor

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

4-137

Non-Confidential

Chapter 5
Fortran language reference

Arm Fortran Compiler supports Fortran 2008, Fortran 2003, Fortran 95, Fortran 90, and some Fortran
2018 language features. This chapter can be used as a reference for the supported language features.

The support level for the latest Fortran standards (2003 and 2008) are described in Standards support
on page 6-169.

For information about the Fortran standards, see the JTC1/SC22/WG5 Fortran standards website.

It contains the following sections:
• 5.1 Data types and file extensions on page 5-139.
• 5.2 Intrinsics on page 5-144.
• 5.3 Statements on page 5-162.

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-138

Non-Confidential

https://wg5-fortran.org/

5.1 Data types and file extensions
Describes the data types and file extensions that are supported by the Arm Fortran Compiler.

This section contains the following subsections:
• 5.1.1 Data types on page 5-139.
• 5.1.2 Supported file extensions on page 5-140.
• 5.1.3 Logical variables and constants on page 5-141.
• 5.1.4 C/Fortran inter-language calling on page 5-141.
• 5.1.5 Character on page 5-142.
• 5.1.6 Complex on page 5-142.
• 5.1.7 Fortran implementation notes on page 5-142.

5.1.1 Data types

Arm Fortran Compiler provides the following intrinsic data types:

Table 5-1 Intrinsic data types

Data Type Specified as Size (bytes)

INTEGER INTEGER

INTEGER*1

INTEGER([KIND=]1)

INTEGER*2

INTEGER([KIND=]2)

INTEGER*4

INTEGER([KIND=]4)

INTEGER*8

INTEGER([KIND=]8)

4

1

1

2

2

4

4

8

8

REAL REAL

REAL*4

REAL([KIND=]4)

REAL*8

REAL([KIND=]8)

4

4

4

8

8

DOUBLE PRECISION DOUBLE PRECISION (same as REAL*8, no KIND parameter is permitted) 16

COMPLEX COMPLEX

COMPLEX*8

COMPLEX([KIND=]4)

COMPLEX*16

COMPLEX([KIND=]8)

4

8

8

16

16

DOUBLE COMPLEX DOUBLE COMPLEX (same as COMPLEX*8, no KIND parameter is permitted) 8

5 Fortran language reference
5.1 Data types and file extensions

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-139

Non-Confidential

Table 5-1 Intrinsic data types (continued)

Data Type Specified as Size (bytes)

LOGICAL LOGICAL

LOGICAL*1

LOGICAL([KIND=]1)

LOGICAL*2

LOGICAL([KIND=]2)

LOGICAL*4

LOGICAL([KIND=]4)

LOGICAL*8

LOGICAL([KIND=]8)

4

1

1

2

2

4

4

8

8

CHARACTER CHARACTER

CHARACTER([KIND=]1)

1

1

BYTE BYTE (same as INTEGER([KIND=]1)) 1

 Note

• The default entries are the first entries for each intrinsic data type.
• To determine the kind type parameter of a representation method, use the intrinsic function KIND.

For more portable programs, define a PARAMETER constant using the appropriate SELECTED_INT_KIND or
SELECTED_REAL_KIND functions, as appropriate.

For example, this code defines a PARAMETER constant for an INTEGER kind that has 9 digits:

INTEGER, PARAMETER :: MY_INT_KIND = SELECTED_INT_KIND(9)
...
INTEGER(MY_INT_KIND) :: J
...

5.1.2 Supported file extensions

The extensions f90, .f95, .f03, and .f08 are used for modern, free-form source code conforming to the
Fortran 90, Fortran 95, Fortran 2003, and Fortran 2008 standards, respectively.

The extensions .F90, .F95, .F03, and .F08 are used for modern, free-form source code that require
preprocessing, and conform to the Fortran 90, Fortran 95, Fortran 2003, and Fortran 2008 standards,
respectively.

The .f and .for extensions are typically used for older, fixed-form code such as FORTRAN77.

The file extensions that are compatible with Arm Fortran Compiler are:

Table 5-2 Supported file extensions

File Extension Interpretation

a.out Executable output file.

file.a Library of object files.

5 Fortran language reference
5.1 Data types and file extensions

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-140

Non-Confidential

Table 5-2 Supported file extensions (continued)

File Extension Interpretation

file.f

file.for

Fixed-format Fortran source file.

file.fpp

file.F

Fixed-format Fortran source file that requires preprocessing.

file.f90

file.f95

file.f03

file.f08

Free-format Fortran source file.

file.F90

file.F95

file.F03

file.F08

Free-format Fortran source file that requires preprocessing.

file.o Compiled object file.

file.s Assembler source file.

5.1.3 Logical variables and constants

This topic describes LOGICAL variables and constants.

A LOGICAL constant is either True or False. The Fortran standard does not specify how variables of
LOGICAL type are represented. However, it does require LOGICAL variables of default kind to have the
same storage size as default INTEGER and REAL variables.

For Arm Fortran Compiler:
• .TRUE. corresponds to -1 and has a default storage size of 4-bytes.
• .FALSE. corresponds to 0 and has a default storage size of 4-bytes.

 Note

Some compilers represent .TRUE. and .FALSE. as 1 and 0, respectively.

5.1.4 C/Fortran inter-language calling

This section provides some useful troubleshooting information when handling argument passing and
return values for Fortran functions or subroutines that are called from C/C++ code.

In Fortran, arguments are passed by reference. Here, reference means the address of the argument is
passed, rather than the argument itself. In C/C++, arguments are passed by value, except for strings and
arrays, which are passed by reference.

C/C++ provides some flexibility when solving passing difference with Fortran. Usually, intelligent use of
the & and * operators in argument passing enables you to call Fortran from C/C++, and in argument
declarations when Fortran is calling C/C++.

Fortran functions which return CHARACTER or COMPLEX data types require special consideration when
called from C/C++ code.

5 Fortran language reference
5.1 Data types and file extensions

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-141

Non-Confidential

5.1.5 Character

This topic describes how C/C++ functions call Fortran functions that return a CHARACTER.

Fortran functions that return a CHARACTER require the calling C/C++ function to have two arguments to
describe the result:

1. The first argument provides the address of the returned character.
2. The second argument provides the length of the returned character.

For example, the Fortran function:

CHARACTER*(*) FUNCTION CHF(C1, I)
 CHARACTER*(*) C1
 INTEGER I
END

when called in C/C++, has an extra declaration:

extern void chf_();
 char tmp[10];
 char c1[9];
 int i;
 chf_(tmp, 10, c1, &i, 9);

The argument, tmp, provides the address, and the length is defined with the second argument, 10.
 Note

• Fortran functions declared with a character return length, for example CHARACTER*4 FUNCTION
CHF(), still require the second parameter to be supplied to the calling C/C++ code.

• The value of the character function is not automatically NULL-terminated.

5.1.6 Complex

This topic describes how to call Fortran functions that return a COMPLEX data type, from C or C++.

Fortran functions that return a COMPLEX data type cannot be directly called from C or C++. Instead, a
workaround is possible by passing a C or C++ function a pointer to a memory area. This memory area
can then be calling the COMPLEX function and storing the returned value.

For example, the Fortran function:

SUBROUTINE INTER_CF(C, I)
 COMPLEX C
 COMPLEX CF
 C = CF(I)
 RETURN
END
COMPLEX FUNCTION CF(I)
 . . .
END

when called in C/C++ is completed using a memory pointer:

extern void inter_cf_();
 typedef struct {float real, imag;} cplx;
 cplx c1;
 int i;
 inter_cf_(&c1, &i);

5.1.7 Fortran implementation notes

Details information that is specific to the implementation of Fortran in Arm Fortran Compiler.

Implementation information:
• Arm Fortran Compiler does not initialize arrays or variables with

zeros.

5 Fortran language reference
5.1 Data types and file extensions

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-142

Non-Confidential

 Note

This behavior varies from compiler to compiler and is not defined in Fortran standards. The best
practice is not to assume that arrays are filled with zeros when they are created.

Related concepts
5.1.4 C/Fortran inter-language calling on page 5-141
5.1.6 Complex on page 5-142
Related references
5.1.1 Data types on page 5-139
5.1.2 Supported file extensions on page 5-140
5.1.3 Logical variables and constants on page 5-141
5.1.5 Character on page 5-142
5.1.7 Fortran implementation notes on page 5-142

5 Fortran language reference
5.1 Data types and file extensions

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-143

Non-Confidential

5.2 Intrinsics
The Fortran language standards that are implemented in Arm Fortran Compiler are Fortran 77, Fortran
90, Fortran 95, Fortran 2003, and Fortran 2008. This topic details the supported and unsupported Fortran
intrinsics in Arm Fortran Compiler.

This section contains the following subsections:
• 5.2.1 Fortran intrinsics overview on page 5-144.
• 5.2.2 Bit manipulation functions and subroutines on page 5-144.
• 5.2.3 Elemental character and logical functions on page 5-145.
• 5.2.4 Vector/Matrix functions on page 5-147.
• 5.2.5 Array reduction functions on page 5-147.
• 5.2.6 String construction functions on page 5-149.
• 5.2.7 Array construction manipulation functions on page 5-149.
• 5.2.8 General inquiry functions on page 5-150.
• 5.2.9 Numeric inquiry functions on page 5-150.
• 5.2.10 Array inquiry functions on page 5-151.
• 5.2.11 Transfer functions on page 5-151.
• 5.2.12 Arithmetic functions on page 5-152.
• 5.2.13 Miscellaneous functions on page 5-155.
• 5.2.14 Subroutines on page 5-155.
• 5.2.15 Fortran 2003 functions on page 5-156.
• 5.2.16 Fortran 2008 functions on page 5-156.
• 5.2.17 Unsupported functions on page 5-158.
• 5.2.18 Unsupported subroutines on page 5-160.

5.2.1 Fortran intrinsics overview

An intrinsic is a function made available for a given language standard, for example, Fortran 95. Intrinsic
functions accept arguments and return values. When an intrinsic function is called in the source code, the
compiler replaces the function with a set of automatically generated instructions. It is best practice to use
these intrinsics to enable the compiler to optimize the code most efficiently.

 Note

The intrinsics listed in the following tables are specific to Fortran 90/95, unless explicitly stated.

5.2.2 Bit manipulation functions and subroutines

Functions and subroutines for manipulating bits.

Table 5-3 Bit manipulation functions and subroutines

Intrinsic Description Num. of
Arguments

Argument Type Result

AND Perform a logical AND on corresponding bits
of the arguments.

2 Any, except CHAR or
COMPLEX

INTEGER or
LOGICAL

BIT_SIZE Return the number of bits (the precision) of
the integer argument.

1 INTEGER INTEGER

BTEST Test the binary value of a bit in a specified
position of an integer argument.

2 INTEGER, INTEGER LOGICAL

IAND Perform a bit-by-bit logical AND on the
arguments.

2 INTEGER, INTEGER (of same
kind)

INTEGER

IBCLR Clear one bit to zero. 2 INTEGER, INTEGER >=0 INTEGER

5 Fortran language reference
5.2 Intrinsics

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-144

Non-Confidential

Table 5-3 Bit manipulation functions and subroutines (continued)

Intrinsic Description Num. of
Arguments

Argument Type Result

IBITS Extract a sequence of bits. 3 INTEGER, INTEGER >=0,
INTEGER >=0

INTEGER

IBSET Set one bit to one. 2 INTEGER, INTEGER >=0 INTEGER

IEOR Perform a bit-by-bit logical exclusive OR on
the arguments.

2 INTEGER, INTEGER (of same
kind)

INTEGER

IOR Perform a bit-by-bit logical OR on the
arguments.

2 INTEGER, INTEGER (of same
kind)

INTEGER

ISHFT Perform a logical shift. 2 INTEGER, INTEGER INTEGER

ISHFTC Perform a circular shift of the rightmost bits. 2 or 3 INTEGER, INTEGER

or

INTEGER, INTEGER,
INTEGER

INTEGER

LSHIFT Perform a logical shift to the left. 2 INTEGER, INTEGER INTEGER

MVBITS Copy bit sequence. 5 INTEGER(IN), INTEGER(IN),
INTEGER(IN), INTEGER(IN,
OUT), INTEGER(IN)

N/A

NOT Perform a bit-by-bit logical complement on
the argument.

2 INTEGER INTEGER

OR Perform a logical OR on each bit of the
arguments.

2 Any except CHAR or
COMPLEX

INTEGER or
LOGICAL

POPCNT Return the number of one bits. (F2008) 1 INTEGER or bits INTEGER

POPPAR Return the bitwise parity. (F2008) 1 INTEGER or bits INTEGER

RSHIFT Perform a logical shift to the right. 2 INTEGER, INTEGER INTEGER

SHIFT Perform a logical shift. 2 Any except CHAR or
COMPLEX, INTEGER

INTEGER or
LOGICAL

XOR Perform a logical exclusive OR on each bit of
the arguments.

2 INTEGER, INTEGER INTEGER

ZEXT Zero-extend the argument. 1 INTEGER or LOGICAL INTEGER

5.2.3 Elemental character and logical functions

Elemental character logical conversion functions.

Table 5-4 Elemental character and logical functions

Intrinsic Description Num. of
Arguments

Argument Type Result

ACHAR Return character in specified ASCII collating
position.

1 INTEGER CHARACTER

ADJUSTL Left adjust string. 1 CHARACTER CHARACTER

ADJUSTR Right adjust string. 1 CHARACTER CHARACTER

5 Fortran language reference
5.2 Intrinsics

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-145

Non-Confidential

Table 5-4 Elemental character and logical functions (continued)

Intrinsic Description Num. of
Arguments

Argument Type Result

CHAR Return character with specified ASCII value. 1 LOGICAL*1 INTEGER CHARACTER
CHARACTER

IACHAR Return position of character in ASCII collating
sequence.

1 CHARACTER INTEGER

ICHAR Return position of character in the character set’s
collating sequence.

1 CHARACTER INTEGER

INDEX Return starting position of substring in first string. 2

3

CHARACTER,
CHARACTER

CHARACTER,
CHARACTER,
LOGICAL

INTEGER

INTEGER

LEN Return the length of string. 1 CHARACTER INTEGER

LEN_TRIM Return the length of the supplied string minus the
number of trailing blanks.

1 CHARACTER INTEGER

LGE Test the supplied strings to determine if the first
string is lexically greater than or equal to the
second.

Note: From F2008, character kind ASCII is also
supported.

2 CHARACTER,
CHARACTER

LOGICAL

LGT Test the supplied strings to determine if the first
string is lexically greater than the second.

Note: From F2008, character kind ASCII is also
supported.

2 CHARACTER,
CHARACTER

LOGICAL

LLE Test the supplied strings to determine if the first
string is lexically less than or equal to the second.

Note: From F2008, character kind ASCII is also
supported.

2 CHARACTER,
CHARACTER

LOGICAL

LLT Test the supplied strings to determine if the first
string is lexically less than the second.

Note: From F2008, character kind ASCII is also
supported.

2 CHARACTER,
CHARACTER

LOGICAL

LOGICAL Logical conversion. 1 2 LOGICAL

LOGICAL, INTEGER

LOGICAL

LOGICAL

5 Fortran language reference
5.2 Intrinsics

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-146

Non-Confidential

Table 5-4 Elemental character and logical functions (continued)

Intrinsic Description Num. of
Arguments

Argument Type Result

SCAN Scan string for characters in set. 2

3

CHARACTER,
CHARACTER

CHARACTER,
CHARACTER,
LOGICAL

INTEGER

INTEGER

VERIFY Determine if string contains all characters in set. 2

3

CHARACTER,
CHARACTER

CHARACTER,
CHARACTER,
LOGICAL

INTEGER

INTEGER

5.2.4 Vector/Matrix functions

Functions for vector or matrix multiplication.

Table 5-5 Vector and matrix functions

Intrinsic Description Num. of
Arguments

Argument Type Result

DOT_PRODUCT Perform dot product on two
vectors.

2 INTEGER, REAL,
COMPLEX, or LOGICAL

INTEGER, REAL,
COMPLEX, or LOGICAL

MATMUL Perform matrix multiply on two
matrices.

2 INTEGER, REAL,
COMPLEX, or LOGICAL

INTEGER, REAL,
COMPLEX, or LOGICAL

 Note

All matrix outputs are the same type as the argument supplied.

5.2.5 Array reduction functions

Functions for determining information from, or calculating using, the elements in an array.

Table 5-6 Array reduction functions

Intrinsic Description Num. of Arguments Argument Type Result

ALL Determine if all array values are true. 1

2

LOGICAL

LOGICAL, INTEGER

LOGICAL

LOGICAL

ANY Determine if any array value is true. 1

2

LOGICAL

LOGICAL, INTEGER

LOGICAL

LOGICAL

COUNT Count true values in array. 1

2

LOGICAL

LOGICAL, INTEGER

INTEGER

INTEGER

5 Fortran language reference
5.2 Intrinsics

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-147

Non-Confidential

Table 5-6 Array reduction functions (continued)

Intrinsic Description Num. of Arguments Argument Type Result

MAXLOC Determine the position of the array element
with the maximum value.

1

2

2

3

1

2

2

3

INTEGER

INTEGER, LOGICAL

INTEGER, INTEGER

INTEGER, INTEGER, LOGICAL

REAL

REAL, LOGICAL

REAL, INTEGER

REAL, INTEGER, LOGICAL

INTEGER

INTEGER

INTEGER

INTEGER

REAL

REAL

REAL

REAL

MAXVAL Determine the maximum value of the array
elements.

1

2

2

3

1

2

2

3

INTEGER

INTEGER, LOGICAL

INTEGER, INTEGER

INTEGER, INTEGER, LOGICAL

REAL

REAL, LOGICAL

REAL, INTEGER

REAL, INTEGER, LOGICAL

INTEGER

INTEGER

INTEGER

INTEGER

REAL

REAL

REAL

REAL

MINLOC Determine the position of the array element
with the minimum value.

1

2

2

3

1

2

2

3

INTEGER

INTEGER, LOGICAL

INTEGER, INTEGER

INTEGER, INTEGER, LOGICAL

REAL

REAL, LOGICAL

REAL, INTEGER

REAL, INTEGER, LOGICAL

INTEGER

INTEGER

INTEGER

INTEGER

REAL

REAL

REAL

REAL

MINVAL Determine the minimum value of the array
elements.

1

2

2

3

1

2

2

3

INTEGER

INTEGER, LOGICAL

INTEGER, INTEGER

INTEGER, INTEGER, LOGICAL

REAL

REAL, LOGICAL

REAL, INTEGER

REAL, INTEGER, LOGICAL

INTEGER

INTEGER

INTEGER

INTEGER

REAL

REAL

REAL

REAL

5 Fortran language reference
5.2 Intrinsics

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-148

Non-Confidential

Table 5-6 Array reduction functions (continued)

Intrinsic Description Num. of Arguments Argument Type Result

PRODUCT Calculate the product of the elements of an
array.

1

2

2

3

NUMERIC

NUMERIC, LOGICAL

NUMERIC, INTEGER

NUMERIC, INTEGER, LOGICAL

NUMERIC

NUMERIC

NUMERIC

NUMERIC

SUM Calculate the sum of the elements of an array. 1

2

2

3

NUMERIC

NUMERIC, LOGICAL

NUMERIC, INTEGER

NUMERIC, INTEGER, LOGICAL

NUMERIC

NUMERIC

NUMERIC

NUMERIC

5.2.6 String construction functions

Functions for constructing strings.

Table 5-7 String construction functions

Intrinsic Description Num. of Arguments Argument Type Result

REPEAT Concatenate copies of a string. 2 CHARACTER, INTEGER CHARACTER

TRIM Remove trailing blanks from a string. 1 CHARACTER CHARACTER

5.2.7 Array construction manipulation functions

Functions for constructing and manipulating arrays.

Table 5-8 Array construction and manipulation functions

Intrinsic Description Num. of Arguments Argument Type Result

CSHIFT Perform circular shift on an array. 2

3

ARRAY, INTEGER

ARRAY, INTEGER, INTEGER

ARRAY

ARRAY

OESHIFT Perform end-off shift on an array. 2

3

3

4

ARRAY, INTEGER

ARRAY, INTEGER, Any

ARRAY, INTEGER, INTEGER

ARRAY, INTEGER, Any, INTEGER

ARRAY

ARRAY

ARRAY

ARRAY, ARRAY

MERGE Merge two arguments using the
logical mask.

3 Any, Any, LOGICAL

The second argument must be of the
same type as the first argument.

Any

PACK Pack an array into a rank-one array. 2

3

ARRAY, LOGICAL

ARRAY, LOGICAL, VECTOR

ARRAY

ARRAY

5 Fortran language reference
5.2 Intrinsics

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-149

Non-Confidential

Table 5-8 Array construction and manipulation functions (continued)

Intrinsic Description Num. of Arguments Argument Type Result

RESHIFT Change the shape of an array. 2

3

3

4

ARRAY, INTEGER

ARRAY, INTEGER, ARRAY

ARRAY, INTEGER, INTEGER

ARRAY, INTEGER, ARRAY,
INTEGER

ARRAY

ARRAY

ARRAY

ARRAY

SPREAD Replicate an array by adding a
dimension.

3 Any, INTEGER, INTEGER ARRAY

TRANSPOSE Transpose an array of rank two. 1 ARRAY (m, n) ARRAY (n, m)

UNPACK Unpack a rank-one array into an
array of multiple dimensions.

3 VECTOR, LOGICAL, ARRAY ARRAY

 Note

All ARRAY outputs are the same type as the argument supplied.

5.2.8 General inquiry functions

Functions for general determining.

Table 5-9 General inquiry functions

Intrinsic Description Num. of Arguments Argument Type Result

ASSOCIATED Determine association status. 1

2

POINTER, POINTER, …,
POINTER, TARGET

LOGICAL

LOGICAL

KIND Determine the kind of an argument. 1 Any intrinsic type INTEGER

PRESENT Determine presence of optional argument. 1 Any LOGICAL

5.2.9 Numeric inquiry functions

Functions for determining numeric information.

Table 5-10 Numeric inquiry functions

Intrinsic Description Num. of
Arguments

Argument Type Result

DIGITS Determine the number of
significant digits.

11 INTEGERREAL INTEGER

EPSILON Smallest number that can be
represented.

1 REAL REAL

HUGE Largest number that can be
represented.

11 INTEGERREAL INTEGERREAL

MAXEXPONENT Value of the maximum
exponent.

1 REAL INTEGER

5 Fortran language reference
5.2 Intrinsics

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-150

Non-Confidential

Table 5-10 Numeric inquiry functions (continued)

Intrinsic Description Num. of
Arguments

Argument Type Result

MINEXPONENT Value of the minimum
exponent.

1 REAL INTEGER

PRECISION Decimal precision. 11 REALCOMPLEX INTEGER INTEGER

RADIX Base of the model. 11 INTEGERREAL INTEGER INTEGER

RANGE Decimal exponent range. 111 INTEGERREALCOMPLEX INTEGERINTEGERINTEGER

SELECTED_
INT_KIND

Kind-type titlemeter in range. 1 INTEGER INTEGER

SELECTED_
REAL_KIND

Kind-type titlemeter in range.

Syntax:SELECTED
_REAL_KIND(P [,R])
where P is precision and R is
the range.

1 2 INTEGER INTEGER,
INTEGER

INTEGER INTEGER

TINY Smallest positive number
that can be represented.

1 REAL REAL

5.2.10 Array inquiry functions

Functions for determining information about an array.

Table 5-11 Array inquiry functions

Intrinsic Description Num. of Arguments Argument Type Result

ALLOCATED Determine if an array is allocated. 1 ARRAY LOGICAL

LBOUND Determine the lower bounds. 1

2

ARRAY

ARRAY, INTEGER

INTEGER

SHAPE Determine the shape. 1 Any INTEGER

SIZE Determine the number of elements. 1

2

ARRAY

ARRAY, INTEGER

INTEGER

UBOUND Determine the upper bounds. 1

2

ARRAY

ARRAY, INTEGER

INTEGER

5.2.11 Transfer functions

Functions for transferring types.

Table 5-12 Transfer functions

Intrinsic Description Num. of Arguments Argument Type Result

TRANSFER Change the type but maintain bit representation. 2 3 Any, Any Any, Any, INTEGER Any*

*Must be of the same type as the second argument

5 Fortran language reference
5.2 Intrinsics

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-151

Non-Confidential

5.2.12 Arithmetic functions

Functions for manipulating arithmetic.

Table 5-13 Arithmetic functions

Intrinsic Description Num. of
Arguments

Argument Type Result

ABS Return absolute value of the supplied
argument.

1 INTEGER, REAL,
 or COMPLEX

INTEGER, REAL,
 or COMPLEX

ACOS Return the arccosine (in radians) of the
specified value.

1 REAL REAL

ACOSD Return the arccosine (in degrees) of
the specified value.

1 REAL REAL

AIMAG Return the value of the imaginary part
of a complex number.

1 COMPLEX REAL

AINT Truncate the supplied value to a whole
number.

2 REAL INTEGER REAL

AND Perform a logical AND on
corresponding bits of the arguments.

2 Any, except CHAR or
COMPLEX

INTEGER or LOGICAL

ANINT Return the nearest whole number to
the supplied argument.

2 REAL, INTEGER REAL

ASIN Return the arcsine (in radians) of the
specified value.

1 REAL REAL

ASIND Return the arcsine (in degrees) of the
specified value.

1 REAL REAL

ATAN Return the arctangent (in radians) of
the specified value.

1 REAL REAL

ATAN2 Return the arctangent (in radians) of
the specified pair of values.

2 REAL, REAL REAL

ATAN2D Return the arctangent (in degrees) of
the specified pair of values.

1 REAL, REAL REAL

ATAND Return the arctangent (in degrees) of
the specified value.

1 REAL REAL

CEILING Return the least integer greater than or
equal to the supplied real argument.

2 REAL, KIND INTEGER

CMPLX Convert the supplied argument or
arguments to complex type.

2

3

{INTEGER, REAL,
or COMPLEX,},
{INTEGER, REAL,
or COMPLEX}

{INTEGER, REAL,
or COMPLEX},
{INTEGER or REAL},
KIND

COMPLEX

COMPLEX

COMPL Perform a logical complement on the
argument.

1 Any, except CHAR or
COMPLEX

N/A

5 Fortran language reference
5.2 Intrinsics

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-152

Non-Confidential

Table 5-13 Arithmetic functions (continued)

Intrinsic Description Num. of
Arguments

Argument Type Result

COS Return the cosine (in radians) of the
specified value.

1 REAL COMPLEX REAL

COSD Return the cosine (in degrees) of the
specified value.

1 REAL COMPLEX REAL

COSH Return the hyperbolic cosine of the
specified value.

1 REAL REAL

DBLE Convert to double precision real. 1 INTEGER, REAL,
or COMPLEX

REAL

DCMPLX Convert the argument or supplied
arguments to double complex type.

1

2

INTEGER, REAL,
or COMPLEX

INTEGER, REAL

DOUBLE COMPLEX

DOUBLE COMPLEX

DPROD Double precision real product. 2 REAL, REAL REAL (double
precision)

EQV Perform a logical exclusive NOR on
the arguments.

2 Any, except CHAR or
COMPLEX

INTEGER or LOGICAL

EXP Exponential function. 1 REAL COMPLEX REAL COMPLEX

EXPONENT Return the exponent part of a real
number.

1 REAL INTEGER

FLOOR Return the greatest integer less than or
equal to the supplied real argument.

1

2

REAL

REAL, KIND

REAL KIND

FRACTION Return the fractional part of a real
number.

1 REAL INTEGER

IINT Convert a value to a short integer type. 1 INTEGER, REAL,
 or COMPLEX

INTEGER

ININT Return the nearest short integer to the
real argument.

1 REAL INTEGER

INT Convert a value to integer type. 1

2

INTEGER, REAL, or
COMPLEX

{INTEGER, REAL,
or COMPLEX}, KIND

INTEGER

INTEGER

INT8 Convert a real value to a long integer
type.

1 REAL INTEGER

IZEXT Zero-extend the argument. 1 LOGICAL or INTEGER INTEGER

JINT Convert a value to an integer type. 1 INTEGER, REAL,
or COMPLEX

INTEGER

JNINT Return the nearest integer to the real
argument.

1 REAL INTEGER

KNINT Return the nearest integer to the real
argument.

1 REAL INTEGER (long)

5 Fortran language reference
5.2 Intrinsics

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-153

Non-Confidential

Table 5-13 Arithmetic functions (continued)

Intrinsic Description Num. of
Arguments

Argument Type Result

LOG Return the natural logarithm. 1 REAL or COMPLEX REAL

LOG10 Return the common logarithm. 1 REAL REAL

MAX Return the maximum value of the
supplied arguments.

2 or more INTEGER or REAL (all of
same kind)

Same as argument type

MIN Return the minimum value of the
supplied arguments.

2 or more INTEGER or REAL (all of
same kind)

Same as argument type

MOD Find the remainder. 2 or more {INTEGER or REAL},
{INTEGER or REAL} (all
of same kind)

Same as argument type

MODULO Return the modulo value of the
arguments.

2 or more {INTEGER or REAL},
{INTEGER or REAL} (all
of same kind)

Same as argument type

NEAREST Return the nearest different number
that can be represented, by a machine,
in a given direction.

2 REAL, REAL (nonzero) REAL

NEQV Perform a logical exclusive OR on the
arguments.

2 Any, except CHAR or
COMPLEX

INTEGER or LOGICAL

NINT Convert a value to integer type. 1

2

REAL

REAL, KIND

INTEGER

REAL Convert the argument to real. 1

2

INTEGER, REAL, or
COMPLEX

{INTEGER, REAL,
or COMPLEX}, KIND

REAL

REAL

RRSPACING Return the reciprocal of the relative
spacing of model numbers near the
argument value.

1 REAL REAL

SET_
EXPONENT

Return the model number whose
fractional part is the fractional part of
the model representation of the first
argument and whose exponent part is
the second argument.

2 REAL, INTEGER REAL

SIGN Return the absolute value of A times
the sign of B. Syntax: SIGN(A, B)

2 {INTEGER or REAL},
{INTEGER or REAL}

Same as argument

SIN Return the sine (in radians) of the
specified value.

1 REAL or COMPLEX REAL

SIND Return the sine (in degrees) of the
specified value.

1 REAL or COMPLEX REAL

SINH Return the hyperbolic sine of the
specified value.

1 REAL REAL

SPACING Return the relative spacing of model
numbers near the argument value.

1 REAL REAL

5 Fortran language reference
5.2 Intrinsics

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-154

Non-Confidential

Table 5-13 Arithmetic functions (continued)

Intrinsic Description Num. of
Arguments

Argument Type Result

SQRT Return the square root of the
argument.

1 REAL or COMPLEX REAL or COMPLEX

TAN Return the tangent (in radians) of the
specified value.

1 REAL REAL

TAND Return the tangent (in degrees) of the
specified value.

1 REAL REAL

TANH Return the hyperbolic tangent of the
specified value.

1 REAL REAL

5.2.13 Miscellaneous functions

Functions for mixcellaneous use.

Table 5-14 Miscellaneous functions

Intrinsic Description Num. of Arguments Argument Type Result

LOC Return the argument address. 1 NUMERIC INTEGER

NULL Assign a disassociated status. 0

1

POINTER POINTER

POINTER

5.2.14 Subroutines

Supported subroutines.

Table 5-15 Subroutines

Intrinsic Description Num. of Arguments Argument Type

CPU_TIME Return processor time. 1 REAL (OUT)

DATE_AND_TIME Return the date and time. 4 (all optional) DATE (CHARACTER, OUT)

TIME (CHARACTER, OUT)

ZONE (CHARACTER, OUT)

VALUES (INTEGER, OUT)

RANDOM_NUMBER Generate pseudo-random numbers. 1 REAL (OUT)

RANDOM_SEED Set or query pseudo-random number generator. 1

1

1

SIZE (INTEGER, OUT)

PUT (INTEGER ARRAY, IN)

GET (INTEGER ARRAY, OUT)

SYSTEM_CLOCK Query the real time clock. 3 (optional) COUNT (INTEGER, OUT)

COUNT_RATE (REAL, OUT)

COUNT_MAX (INTEGER, OUT)

5 Fortran language reference
5.2 Intrinsics

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-155

Non-Confidential

5.2.15 Fortran 2003 functions

Fortran 2003-supported functions.

Table 5-16 Fortran 2003 functions

Intrinsic Description Num. of
Arguments

Argument Type Result

COMMAND
_ARGUMENT
_COUNT

Return a scalar of type default integer that is
equal to the number of arguments that are
passed on the command line when the
containing program was invoked. If no
command arguments are passed, the result is 0.

0 None INTEGER

EXTENDS_TYPE
_OF

Determine whether the dynamic type of A is an
extension type of the dynamic type of B.

Syntax:

EXTENDS_TYPE _OF(A, B)

2 Objects of extensible
type

LOGICAL
SCALAR

GET_COMMAND
_ARGUMENT

Return the specified command line argument
of the command that invoked the program.

1 to 4 INTEGER plus
optionally: CHAR,
INTEGER,
INTEGER

A command
argument

GET_COMMAND Return the entire command line that was used
to invoke the program.

0 to 3 CHAR, INTEGER,
INTEGER

A command line

GET_ENVIRONM
ENT_VARIABLE

Return the value of the specified environment
variable.

1 to 5 CHAR, CHAR,
INTEGER,
INTEGER,
LOGICAL

Stores the value of
NAME in VALUE

IS_IOSTAT _END Test whether a variable has the value of the I/O
status: ‘end of file’.

1 INTEGER LOGICAL

IS_IOSTAT _EOR Test whether a variable has the value of the I/O
status: ‘end of record’.

1 INTEGER LOGICAL

LEADZ Count the number of leading zero bits. 1 INTEGER or bits INTEGER

MOVE_ALLOC Move an allocation from one allocatable object
to another.

2 Any type and rank None

NEW_LINE Return the newline character. 1 CHARACTER CHARACTER

SAME_TYPE _AS Determine whether the dynamic type of A is
the same as the dynamic type of B.

Syntax:

SAME_TYPE_AS (A, B)

2 Objects of extensible
type

LOGICAL
SCALAR

SCALE Return the value A * B where B is the base of
the number system in use for A.

Syntax:

`` SCALE(A, B)``

2 REAL, INTEGER REAL

5.2.16 Fortran 2008 functions

Fortran 2008-supported functions.

5 Fortran language reference
5.2 Intrinsics

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-156

Non-Confidential

Table 5-17 Fortran 2008 functions

Intrinsic Description Num. of
Arguments

Argument Type Result

ACOSH

ASINH

ATANH

Inverse hyperbolic trigonometric functions 1 REAL REAL

BESSEL_J0

BESSEL_J1

BESSEL_JN

BESSEL_Y0

BESSEL_Y1

BESSEL_YN

Bessel function of:

(J0) the first kind of order 0.

(J1) the first kind of order 1.

(JN) the first kind.

(Y0) the second kind of order 0.

(Y1) the second kind of order 1.

(YN) the second kind.

1

1

2 or 3

1

1

2 or 3

REAL

REAL

{INTEGER, REAL,
or INTEGER},
INTEGER, REAL

REAL

REAL

{INTEGER, REAL,
or INTEGER},
INTEGER, REAL

REAL

REAL

REAL

REAL

REAL

REAL

C_SIZEOF Calculates the number of bytes of storage
the expression A ‘occupies’.

Syntax:

C_SIZEOF(A)

1 Any INTEGER

COMPILER _OPTIONS Options passed to the compiler. None None STRING

COMPILER _VERSION Compiler version string. None None CHARACTER

ERF Error function. 1 REAL REAL

ERFC Complementary error function. 1 REAL REAL

ERFC _SCALED Exponentially-scaled complementary error
function.

1 REAL REAL

FINDLOC Finds the location of a specified value in an
array.

Syntax:

FINDLOC(ARRAY, VALUE, DIM, MASK,
KIND, BACK)

Or

FINDLOC(ARRAY, VALUE, MASK ,
KIND, BACK)

3 to 6 ARRAY VALUE,
DIM[, MASK,
KIND, BACK]

Or

ARRAY, VALUE[,
MASK, KIND,
BACK]

INTEGER

ARRAY

GAMMA Computes Gamma of A. For positive,
integer values of X.

1 REAL (not zero or
negative)

REAL

LOG_GAMMA Computes the natural logarithm of the
absolute value of the Gamma function.

1 REAL (not zero or
negative)

REAL

HYPOT Euclidean distance function. 2 REAL, REAL REAL

IS _CONTIGUOUS Tests the contiguity of an array. 1 ARRAY LOGICAL

5 Fortran language reference
5.2 Intrinsics

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-157

Non-Confidential

Table 5-17 Fortran 2008 functions (continued)

Intrinsic Description Num. of
Arguments

Argument Type Result

NORM2 Euclidean vector norm.

Syntax:

NORM2(X[, DIM])

Where: * X shall be a REAL ARRAY. *
DIM is an INTEGER SCALAR with a value
in the range of 1 to n (where n is the rank of
X).

 Note

The current implementation experiences
overflow for arguments containing elements
whose square is at the boundary value for
double-precision floating-point numbers.
There is no such overflow for single-
precision arguments.

1[, or 2] REAL ARRAY[,
INTEGER SCALAR]

The result is the
same type as X.

If DIM is not
present, the result
is SCALAR. If
DIM is present, the
result has rank n−1
and shape [d1,d2,
…,dDIM−1,DIM
+1,…,dn], where n
is the rank of X,
and [d1,d2,…,dn]
is the shape of X.

LEADZ Returns the number of leading zero bits of
an integer.

1 INTEGER INTEGER

POPCNT Return the number of one bits. 1 INTEGER INTEGER

POPPAR Return the bitwise parity. 1 INTEGER INTEGER

SELECTED_REAL_KIND Kind type titlemeter in range.

Syntax:

SELECTED_REAL_KIND(P[, R,
RADIX])

where P is precision and R is the range.

Note: Radix argument added for F2008.

1

2

3

INTEGER

INTEGER,
INTEGER

INTEGER,
INTEGER,
INTEGER

INTEGER

INTEGER

INTEGER

STORAGE_SIZE Storage size of argument A, in bits.

Syntax:

STORAGE_SIZE(A[, KIND])

1[, 2] SCALAR or
ARRAY[, INTEGER]

INTEGER

TRAILZ Number of trailing zero bits of an integer. 1 INTEGER INTEGER

5.2.17 Unsupported functions

Unsupported Fortran 2008 functions:

5 Fortran language reference
5.2 Intrinsics

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-158

Non-Confidential

Table 5-18 Unsupported functions

Intrinsic Description Num. of
Arguments

Argument Type Result

ACOSH

ASINH

ATANH

Inverse hyperbolic trigonometric functions. 1 COMPLEX COMPLEX

BGE

BGT

BLE

BLT

Bitwise greater than or equal to.

Bitwise greater than.

Bitwise less than or equal to.

Bitwise less than.

2

2

2

2

INTEGER, INTEGER

INTEGER, INTEGER

INTEGER, INTEGER

INTEGER, INTEGER

LOGICAL

LOGICAL

LOGICAL

LOGICAL

DSHIFTL

DSHIFTR

Combined left shift.

Combined right shift.

3

3

INTEGER or BOZ constant,
INTEGER or BOZ constant,
INTEGER

INTEGER or BOZ constant,
INTEGER or BOZ constant,
INTEGER

INTEGER

INTEGER”

IALL

IANY

IPARITY

Bitwise AND of array elements.

Bitwise OR of array elements.

Bitwise XOR of array elements.

Syntax:

INTRINSIC(ARRAY[, DIM[, MASK]])

1

1

1

ARRAY

ARRAY

ARRAY

ARRAY

ARRAY

ARRAY

IMAGE_INDEX

NUM_IMAGES

THIS_IMAGE

Co-subscript to image index conversion.

Number of images.

Co-subscript index of this image.

2

0, 1, or 2

0, 1, or 2

COARRAY, INTEGER

None, INTEGER, or INTEGER,
LOGICAL

None, INTEGER, INTEGER or
COARRAY, INTEGER

INTEGER

INTEGER

INTEGER

LCOBOUND

UCOBOUND

Lower co-dimension of bounds of an array.

Upper co-dimension of bounds of an array.

Syntax:

INTRINSIC(COARRAY[, DIM[, KIND]])

1

1

COARRAY

COARRAY

INTEGER

INTEGER

MASKL

MASKR

Left justified mask.

Right justified mask.

Syntax:

INTRINSIC(I[, KIND])

1[, or 2]

1[, or 2]

INTEGER[, INTEGER]

INTEGER[, INTEGER]

INTEGER

INTEGER

MERGE_BITS Merge of bits under mask. 3 INTEGER, INTEGER,
INTEGER

INTEGER

5 Fortran language reference
5.2 Intrinsics

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-159

Non-Confidential

Table 5-18 Unsupported functions (continued)

Intrinsic Description Num. of
Arguments

Argument Type Result

PARITY Reduction with exclusive OR.

Syntax:

PARITY(MASK[, DIM])

1[, or 2] LOGICAL ARRAY[,INTEGER] LOGICAL

SHIFTA

SHIFTL

SHIFTR

Right shift with fill.

Left shift.

Right shift.

2

2

2

INTEGER, INTEGER

INTEGER, INTEGER

INTEGER, INTEGER

INTEGER

INTEGER

INTEGER

5.2.18 Unsupported subroutines

Unsupported Fortran 2008 subroutines:

Table 5-19 Unsupported subroutines

Intrinsic Description Num. of
Arguments

Argument Type

ATOMIC_DEFINE Defines the variable ATOM with the value VALUE
atomically.

Syntax:

ATOMIC_DEFINE(ATOM, VALUE[, STAT])

2[, or 3] {INTEGER or
LOGICAL}, {INTEGER
or LOGICAL}[,
INTEGER]

ATOMIC_REF Atomically assigns the value of the variable ATOM to
VALUE.

Syntax:

ATOMIC_REF(ATOM, VALUE[, STAT])

2[, or 3] {INTEGER or
LOGICAL}, {INTEGER
or LOGICAL}[,
INTEGER]

EXECUTE_COMMAND
_LINE

Execute a shell command.

Syntax:

EXECUTE_COMMAND_ LINE(COMMAND[, WAIT,
EXITSTAT, CMDSTAT, CMDMSG])

1 STRING

Related references
5.2.1 Fortran intrinsics overview on page 5-144
5.2.2 Bit manipulation functions and subroutines on page 5-144
5.2.3 Elemental character and logical functions on page 5-145
5.2.4 Vector/Matrix functions on page 5-147
5.2.5 Array reduction functions on page 5-147
5.2.6 String construction functions on page 5-149
5.2.7 Array construction manipulation functions on page 5-149
5.2.8 General inquiry functions on page 5-150
5.2.9 Numeric inquiry functions on page 5-150
5.2.10 Array inquiry functions on page 5-151
5.2.11 Transfer functions on page 5-151
5.2.12 Arithmetic functions on page 5-152

5 Fortran language reference
5.2 Intrinsics

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-160

Non-Confidential

5.2.13 Miscellaneous functions on page 5-155
5.2.14 Subroutines on page 5-155
5.2.15 Fortran 2003 functions on page 5-156
5.2.16 Fortran 2008 functions on page 5-156
5.2.17 Unsupported functions on page 5-158
5.2.18 Unsupported subroutines on page 5-160

5 Fortran language reference
5.2 Intrinsics

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-161

Non-Confidential

5.3 Statements
Describes the Fortran statements that are supported in|fortrancompiler|.

The Fortran statements that are supported in the Arm Fortran Compiler, are:

Table 5-20 Supported Fortran statements

Statement Language
standard

Brief description

ACCEPT F77 Causes formatted input to be read on standard input.

ALLOCATABLE F90 Specifies that an array with fixed rank, but deferred shape, is available for a future
ALLOCATE statement.

ALLOCATE F90 Allocates storage for each allocatable array, pointer object, or pointer-based variable that
appears in the statements; declares storage for deferred-shape arrays.

Note: Arm Fortran Compiler does not initialize arrays or variables with zeros. It is best
practice to not assume that arrays are filled with zeros when created.

ASSIGN F77 Assigns a statement label to a variable.

Note: This statement is a deleted feature in the Fortran standard, but remains supported in
the Arm Fortran Compiler.

ASSOCIATE F2003 Associates a name either with a variable or with the value of an expression, while in a
block.

ASYNCHRONOUS F77 Warns the compiler that incorrect results might occur for optimizations involving
movement of code across wait statements, or statements that cause wait operations.

BACKSPACE F77 Positions the file that is connected to the specified unit, to before the preceding record.

5 Fortran language reference
5.3 Statements

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-162

Non-Confidential

Table 5-20 Supported Fortran statements (continued)

Statement Language
standard

Brief description

BLOCK F08 Indicates where a BLOCK construct starts. The BLOCK construct defines an executable
block of statements or constructs that can contain declarations. This allows you to declare
variables closer to where they are used in your code.

 Note

• To retain the status and value of a local variable of a BLOCK construct after the block
ends, use the SAVE attribute.

• SAVE-ed statements external to a block do not affect the local variables used internally
in a block.

• Control can not be transferred into a block from outside the block, except when the
return is from a procedure call. Transfers in or out of the block are permitted.

Syntax

<optional-name> BLOCK
 <optional-specification-part> ! One or more specification statements
 <statement-block> ! Zero or more statements or constructs
END BLOCK <optional-name>

The following specification statements are not permitted:
• COMMON
• EQUIVALENCE
• IMPLICIT
• INTENT
• NAMELIST
• OPTIONAL
• SUBROUTINE
• VALUE

BLOCK DATA F77 Introduces several non-executable statements that initialize data values in COMMON
tables.

BYTE F77 ext Establishes the data type of a variable by explicitly attaching the name of a variable to a 1-
byte integer, overriding implied data typing.

CALL F77 Transfers control to a subroutine.

CASE F90 Begins a case-statement-block portion of a SELECT CASE statement.

CHARACTER F90 Establishes the data type of a variable by explicitly attaching the name of a variable to a
character data type, overriding the implied data typing.

Note: This statement has been marked as obsolescent. Obsolescent statements are now
redundant and might be removed from future standards. This statement remains supported
in the Arm Fortran Compiler.

CLOSE F77 Terminates the connection of the specified file to a unit.

COMMON F77 Defines global blocks of storage that are either sequential or non-sequential. Can be either
static or dynamic form.

Note: This statement has been marked as obsolescent. Obsolescent statements are now
redundant and might be removed from future standards. This statement remains supported
in the Arm Fortran Compiler.

5 Fortran language reference
5.3 Statements

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-163

Non-Confidential

Table 5-20 Supported Fortran statements (continued)

Statement Language
standard

Brief description

COMPLEX F90 Establishes the data type of a variable by explicitly attaching the name of a variable to a
complex data type, overriding implied data typing.

CONTAINS F90

F2003

Precedes a subprogram, a function or subroutine, and indicates the presence of the
subroutine or function definition inside a main program, external subprogram, or module
subprogram.

In F2003, a CONTAINS statement can also appear in a derived type immediately before
any type-bound procedure definitions.

CONTINUE F77 Passes control to the next statement.

CYCLE F90 Interrupts a DO construct execution and continues with the next iteration of the loop.

DATA F77 Assigns initial values to variables before execution.

Note: This statement amongst execution statements has been marked as obsolescent. This
functionality is redundant and might be removed from future standards. This statement
remains supported in the Arm Fortran Compiler.

DEALLOCATE F90 Causes the memory that is allocated for each pointer-based variable or allocatable array
that appears in the statement to be deallocated (freed). Also might be used to deallocate
storage for deferred-shape arrays.

DECODE F77 ext Transfers data between variables or arrays in internal storage and translates that data from
character form to internal form, according to format specifiers.

DIMENSION F90 Defines the number of dimensions in an array and the number of elements in each
dimension.

DO (Iterative) F90 Introduces an iterative loop and specifies the loop control index and parameters.

Note: Label form DO statements have been marked as obsolescent. Obsolescent statements
are now redundant and might be removed from future standards. This statement remains
supported in the Arm Fortran Compiler.

DO WHILE F77 Introduces a logical DO loop and specifies the loop control expression.

DOUBLE COMPLEX F77 Establishes the data type of a variable by explicitly attaching the name of a variable to a
double complex data type. This overrides the implied data typing.

DOUBLE PRECISION F90 Establishes the data type of a variable by explicitly attaching the name of a variable to a
double precision data type, overriding implied data typing.

ELSE F77 Begins an ELSE block of an IF block, and encloses a series of statements that are
conditionally executed.

ELSE IF F77 Begins an ELSE IF block of an IF block series, and encloses statements that are
conditionally executed.

ELSE WHERE F90 The portion of the WHERE ELSE WHERE construct that permits conditional masked
assignments to the elements of an array, or to a scalar, zero-dimensional array.

ENCODE F77 ext Transfers data between variables or arrays in internal storage and translates that data from
internal to character form, according to format specifiers.

END F77 Terminates a segment of a Fortran program.

END ASSOCIATE F2003 Terminates an ASSOCIATE block.

5 Fortran language reference
5.3 Statements

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-164

Non-Confidential

Table 5-20 Supported Fortran statements (continued)

Statement Language
standard

Brief description

END DO F77 Terminates a DO or DO WHILE loop.

END FILE F77 Writes an ENDFILE record to the files.

END IF F77 Terminates an IF ELSE or ELSE IF block.

END MAP F77 ext Terminates a MAP declaration.

END SELECT F90 Terminates a SELECT declaration.

END STRUCTURE F77 ext Terminates a STRUCTURE declaration.

END UNION F77 ext Terminates a UNION declaration.

END WHERE F90 Terminates a WHERE ELSE WHERE construct.

ENTRY F77 Allows a subroutine or function to have more than one entry point.

Note: This statement has been marked as obsolescent. Obsolescent statements are now
redundant and might be removed from future standards. This statement remains supported
in the Arm Fortran Compiler.

EQUIVALENCE F77 Allows two or more named regions of data memory to share the same start address.

Note: This statement has been marked as obsolescent. Obsolescent statements are now
redundant and might be removed from future standards. This statement remains supported
in the Arm Fortran Compiler.

ERROR STOP F2008 Stops the program execution and prevents any further execution of the program. ERROR
STOP is similar to STOP, but ERROR STOP indicates that the program terminated in an
error condition.

Note: Also see STOP.

EXIT F90 Interrupts a DO construct execution and continues with the next statement after the loop.

EXTERNAL F77 Identifies a symbolic name as an external or dummy procedure which can then be used as
an argument.

FINAL F2003 Specifies a final subroutine inside a derived type.

FORALL F95 Provides, as a statement or construct, a parallel mechanism to assign values to the elements
of an array.

Note: This statement has been marked as obsolescent. Obsolescent statements are now
redundant and might be removed from future standards. This statement remains supported
in the Arm Fortran Compiler.

FORMAT F77 Specifies format requirements for input or output.

FUNCTION F77 Introduces a program unit; all the statements that follow apply to the function itself.

GENERIC F2003 Specifies a generic type-bound procedure inside a derived type.

GOTO (Assigned) F77 Transfers control so that the statement identified by the statement label is executed next.

Note: This statement is a deleted feature in the Fortran standard, but remains supported in
the Arm Fortran Compiler.

5 Fortran language reference
5.3 Statements

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-165

Non-Confidential

Table 5-20 Supported Fortran statements (continued)

Statement Language
standard

Brief description

GOTO (Computed) F77 Transfers control to one of a list of labels, according to the value of an expression.

Note: This statement has been marked as obsolescent. Obsolescent statements are now
redundant and might be removed from future standards. This statement remains supported
in the Arm Fortran Compiler.

GOTO (Unconditional) F77 Unconditionally transfers control to the statement with the label, which must be declared in
the code of the program unit containing the GOTO statement, and also must be unique in
that program unit.

IF (Arithmetic) F77 Transfers control to one of three labeled statements, depending on the value of the
arithmetic expression.

Note: This statement has been marked as obsolescent. Obsolescent statements are now
redundant and might be removed from future standards. This statement remains supported
in the Arm Fortran Compiler.

IF (Block) F77 Consists of a series of statements that are conditionally executed.

IF (Logical) F77 Executes or does not execute a statement based on the value of a logical expression.

IMPLICIT F77 Redefines the implied data type of symbolic names from their initial letter, overriding
implied data types.

IMPORT F2003 Gives access to the named entities of the containing scope.

INCLUDE F77 ext Directs the compiler to start reading from another file.

INQUIRE F77 Inquires about the current properties of a particular file or the current connections of a
particular unit.

INTEGER F77 Establishes the data type of a variable by explicitly attaching the name of a variable to an
integer data type, overriding implied data types.

INTENT F90 Specifies the intended use of a dummy argument, but can not be used in a specification
statement of a main program.

INTERFACE F90 Makes an implicit procedure an explicit procedure where the dummy parameters and
procedure type are known to the calling module; Also overloads a procedure name.

INTRINSIC F77 Identifies a symbolic name as an intrinsic function and allows it to be used as an actual
argument.

LOGICAL F77 Establishes the data type of a variable by explicitly attaching the name of a variable to a
logical data type, overriding implied data types.

MAP F77 ext Designates each unique field or group of fields in a UNION statement.

MODULE F90 Specifies the entry point for a Fortran 90, or Fortran 95, module program unit. A module
defines a host environment of scope of the module, and might contain subprograms that are
in the same scoping unit.

NAMELIST F90 Allows the definition of NAMELIST groups for NAMELIST-directed I/O.

NULLIFY F90 Disassociates a pointer from its target.

OPEN F77 Connects an existing file to a unit, creates and connects a file to a unit, creates a file that is
pre-connected, or changes certain specifiers of a connection between a file and a unit.

OPTIONAL F90 Specifies dummy arguments that can be omitted or that are optional.

5 Fortran language reference
5.3 Statements

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-166

Non-Confidential

Table 5-20 Supported Fortran statements (continued)

Statement Language
standard

Brief description

OPTIONS F77 ext Confirms or overrides certain compiler command-line options.

PARAMETER F77 Gives a symbolic name to a constant.

PAUSE F77 Stops program execution.

Note: This statement is a deleted feature in the Fortran standard, but remains supported in
the Arm Fortran Compiler.

POINTER F90 Provides a means for declaring pointers.

PRINT F77 Transfers data to the standard output device from the items that are specified in the output
list and format specification.

PRIVATE F90

F2003

Specifies that entities that are defined in a module are not accessible outside of the module.
PRIVATE can also appear inside a derived type to disallow access to its data components
outside the defining module.

In F2003, to disallow access to type-bound procedures outside the defining module, a
PRIVATE statement can appear after a CONTAINS statement, in a derived type.

PROCEDURE F2003 Specifies a type-bound procedure, procedure pointer, module procedure, dummy
procedure, intrinsic procedure, or an external procedure.

PROGRAM F77 Specifies the entry point for a linked Fortran program.

PROTECTED F2003 Protects a module variable against modification from outside the module in which it was
declared.

PUBLIC F90 Specifies that entities that are defined in a module are accessible outside of the module.

PURE F95 Indicates that a function or subroutine has no side effects.

READ F77 Transfers data from the standard input device to the items specified in the input and format
specifications.

REAL F90 Establishes the data type of a variable by explicitly attaching the name of a variable to a
data type, overriding implied data types.

RECORD F77 ext A VAX Fortran extension, defines a user-defined aggregate data item.

RECURSIVE F90 Indicates whether a function or subroutine can call itself recursively.

RETURN F77 When used in a subroutine, causes a return to the statement following a CALL. When used
in a function, returns to the relevant arithmetic expression.

Note: This statement has been marked as obsolescent. Obsolescent statements are now
redundant and might be removed from future standards. This statement remains supported
in the Arm Fortran Compiler.

REWIND F77 Positions the file at the start. The statement has no effect if the file is already positioned at
the start, or if the file is connected but does not exist.

SAVE F77 Retains the definition status of an entity after a RETURN or END statement in a subroutine
or function that has been executed.

SELECT CASE F90 Begins a CASE construct.

5 Fortran language reference
5.3 Statements

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-167

Non-Confidential

Table 5-20 Supported Fortran statements (continued)

Statement Language
standard

Brief description

SELECT TYPE F2003 Provides the capability to execute alternative code depending on the dynamic type of a
polymorphic entity, and to gain access to dynamic parts. The alternative code is selected
using the TYPE IS statement for a specific dynamic type, or the CLASS IS statement for a
specific type (and all its type extensions).

Use the optional class default statement to specify all other dynamic types that do not
match a specified TYPE IS or CLASS IS statement. Like the CASE construct, the code
consists of a several blocks and, at most, one is selected for execution.

SEQUENCE F90 A derived type qualifier that specifies the ordering of the storage that is associated with the
derived type. This statement specifies storage for use with COMMON and
EQUIVALENCE statements.

STOP F77 Stops program execution and precludes any further execution of the program.

Note: Also see ERROR STOP.

STRUCTURE F77 ext A VAX extension to FORTRAN 77 that defines an aggregate data type.

SUBROUTINE F77 Introduces a subprogram unit.

TARGET F90 Specifies that a data type can be the object of a pointer variable (for example, pointed to by
a pointer variable). Types that do not have the TARGET attribute cannot be the target of a
pointer variable.

THEN F77 Part of an IF block statement, surrounds a series of statements that are conditionally
executed.

TYPE F90 F2003 Begins a derived type data specification or declares variables of a specified user-defined
type.

Use the optional EXTENDS statement with TYPE to indicate a type extension in F2003.

UNION F77 ext A multi-statement declaration defining a data area that can be shared intermittently during
program execution by one or more fields or groups of fields.

USE F90 Gives a program unit access to the public entities or to the named entities in the specified
module.

VOLATILE F77 ext Inhibits all optimizations on the variables, arrays and common blocks that it identifies.

WAIT F2003 Performs a wait operation for specified pending asynchronous data transfer operations.

WHERE F90 Permits masked assignments to the elements of an array or to a scalar, zero-dimensional
array.

WRITE F77 Transfers data to the standard output device from the items that are specified in the output
list and format specification.

*See WG5 Fortran Standards
 Note

The denoted language standards indicate the standard that they were introduced in, or the standard that
they were last significantly changed.

Related information
WG5 Fortran Standards

5 Fortran language reference
5.3 Statements

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

5-168

Non-Confidential

https://wg5-fortran.org/
https://wg5-fortran.org/

Chapter 6
Standards support

Describes the level of support in Arm Fortran Compiler for Fortran and OpenMP standards.

It contains the following sections:
• 6.1 Fortran 2003 on page 6-170.
• 6.2 Fortran 2008 on page 6-173.
• 6.3 OpenMP 4.0 on page 6-176.
• 6.4 OpenMP 4.5 on page 6-177.

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

6-169

Non-Confidential

6.1 Fortran 2003
Details the support status with the Fortran 2003 standard.

Table 6-1 Fortran 2003 support

Fortran 2003 Feature Support Status

ISO TR 15580 IEEE Arithmetic Yes

ISO TR 15581 Allocatable Enhancements

Dummy arrays Yes

Function results Yes

Structure components Yes

Data enhancements and object orientation

Parameterized derived types Yes

Procedure pointers Yes

Finalization Yes

Procedures that are bound by name to a type Yes

The PASS attribute Yes

Procedures that are bound to a type as operators Yes

Type extension Yes

Overriding a type-bound procedure Yes

Enumerations Yes

ASSOCIATE construct Yes

Polymorphic entities Yes

SELECT TYPE construct Yes

Deferred bindings and abstract types Yes

Allocatable scalars Yes

Allocatable character length Yes

Miscellaneous enhancements Yes

Structure constructor changes Yes

Generic procedure interfaces with the same name as a type Yes

The allocate statement Yes

Source specifier Yes

Errmsg specifier Yes

Assignment to an allocatable array Yes

Transferring an allocation Yes

More control of access from a module Yes

Renaming operators on the USE statement Yes

Pointer assignment Yes

6 Standards support
6.1 Fortran 2003

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

6-170

Non-Confidential

Table 6-1 Fortran 2003 support (continued)

Fortran 2003 Feature Support Status

Pointer INTENT Yes

The VOLATILE attribute Yes

One or more issues are observed with this feature.

The IMPORT statement Yes

Intrinsic modules Yes

Access to the computing environment Yes

Support for international character sets Partial

Only selected_char_kind is supported.

Lengths of names and statements

names = 63 Yes

statements = 256 Yes

Binary, octal and hex constants Yes

Array constructor syntax Yes

Specification and initialization expressions Yes

A few intrinsics which are not commonly used are not supported.

Complex constants Yes

Changes to intrinsic functions Yes

Controlling IEEE underflow Yes

Another IEEE class value Yes

I/O enhancements Yes

Derived type I/O Yes

One or more issues are observed with this feature.

Asynchronous I/O Yes

One or more issues are observed with this feature.

FLUSH statement Yes

IOMSG= specifier Yes

Stream access input/output Yes

ROUND= specifier Yes

Not supported for write.

DECIMAL= specifier Yes

SIGN= specifier Yes

processor_defined does not work for open.

Kind type parameters of integer specifiers Yes

6 Standards support
6.1 Fortran 2003

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

6-171

Non-Confidential

Table 6-1 Fortran 2003 support (continued)

Fortran 2003 Feature Support Status

Recursive input/output Yes

Intrinsic function for newline character Yes

Input and output of IEEE exceptional values Yes

Read does not work for NaN(s).

Comma after a P edit descriptor Yes

Interoperability with

Interoperability of intrinsic types Yes

Interoperability with C pointers Yes

Interoperability of derived types Yes

Interoperability of variables Yes

Interoperability of procedures Yes

Interoperability of global data Yes

 Note

For more information about the features that are listed in the table above, see N1648 – ISO/IEC JTC1/
SC22/WG5: The new features of Fortran 2003.

6 Standards support
6.1 Fortran 2003

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

6-172

Non-Confidential

https://wg5-fortran.org/N1601-N1650/N1648.pdf
https://wg5-fortran.org/N1601-N1650/N1648.pdf

6.2 Fortran 2008
Details the support status with the Fortran 2008 standard.

Table 6-2 Fortran 2008 support

Fortran 2008 feature Support status

Submodules Yes

Coarrays No

Performance enhancements

do concurrent Partial

The do concurrent syntax is accepted. The
code that is generated is serial.

Contiguous attribute Yes

Data Declaration

Maximum rank + corank = 15 No

Long integers Yes

Allocatable components of recursive type No

Implied-shape array No

Pointer initialization No

Data statement restrictions lifted No

Kind of a forall index No

Type statement for intrinsic types No

Declaring type-bound procedures Yes

Supports declaring multiple type-bound
procedures in a single procedure statement.

Value attribute is permitted for any nonallocatable nonpointer noncoarray No

In a pure procedure the intent of an argument need not be specified if it has the value
attribute

Yes

Accessing data objects

Simply contiguous arrays rank remapping to rank>1 target Yes

Omitting an ALLOCATABLE component in a structure constructor No

Multiple allocations with SOURCE= No

Copying the properties of an object in an ALLOCATE statement Yes

MOLD= specifier for ALLOCATE Yes

Copying bounds of source array in ALLOCATE Yes

Polymorphic assignment No

Accessing real and imaginary parts Partial

Not supported for complex arrays.

6 Standards support
6.2 Fortran 2008

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

6-173

Non-Confidential

Table 6-2 Fortran 2008 support (continued)

Fortran 2008 feature Support status

Pointer function reference is a variable No

Elemental dummy argument restrictions lifted Yes

Input/Output

Finding a unit when opening a file Yes

g0 edit descriptor No

Unlimited format item Yes

Recursive I/O Yes

Execution control

The BLOCK construct Yes

Exit statement No

Stop code Yes

ERROR STOP Yes

Intrinsic procedures for bit processsing

Bit sequence comparison No

Combined shifting No

Counting bits Yes

Masking bits No

Shifting bits No

Merging bits No

Bit transformational functions No

Intrinsic procedures and modules

Storage size Yes

Optional argument RADIX added to SELECTED REAL No

Extensions to trigonometric and hyperbolic intrinsics Partial

Complex types are not accepted for acosh,
asinh and atanh.

Also, atan2 cannot be accessed through atan.

Bessel functions Yes

Error and gamma functions Yes

Euclidean vector norms Yes

The current implementation experiences
overflow for arguments containing elements
whose square is at the boundary value for
double-precision floating-point numbers.
There is no such overflow for single-precision
arguments.

6 Standards support
6.2 Fortran 2008

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

6-174

Non-Confidential

Table 6-2 Fortran 2008 support (continued)

Fortran 2008 feature Support status

Parity No

Execute command line No

Optional back argument added to maxloc and minloc Yes

Find location in an array Yes

String comparison Yes

Constants Yes

COMPILER_VERSION Yes

COMPILER_OPTIONS Yes

Function for C sizeof Yes

Added optional argument for IEEE_SELECTED_REAL_KIND No

Programs and procedures

Save attribute for module and submodule data Partial

One or more issues are observed with this
feature.

Empty contains section Partial

Not supported for procedures.

Form of end statement for internal and module procedures Yes

Internal procedure as an actual argument Yes

Null pointer or unallocated allocatable as absent dummy arg. Partial

Not supported for null pointer.

Non pointer actual for pointer dummy argument Yes

Generic resolution by procedureness No

Generic resolution by pointer vs. allocatable Yes

Impure elemental procedures Yes

Entry statement becomes obsolescent Yes

Source form

Semicolon at line start Yes

 Note

For more information about the features that are listed in the table above, see N1891 – ISO/IEC JTC1/
SC22/WG5: The new features of Fortran 2008.

6 Standards support
6.2 Fortran 2008

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

6-175

Non-Confidential

https://wg5-fortran.org/N1851-N1900/N1891.pdf
https://wg5-fortran.org/N1851-N1900/N1891.pdf

6.3 OpenMP 4.0
Details the support status with the OpenMP 4.0 standard.

Table 6-3 OpenMP 4.0 support

OpenMP 4.0 Feature Support

C/C++ Array Sections N/A

Thread affinity policies Yes

“simd” construct Partial

Note: No clauses are supported. !$omp simd can be used to force a loop to be vectorized.

“declare simd” construct No

Device constructs No

Task dependencies No

“taskgroup” construct Yes

User defined reductions No

Atomic capture swap Yes

Atomic seq_cst No

Cancellation Yes

OMP_DISPLAY_ENV Yes

6 Standards support
6.3 OpenMP 4.0

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

6-176

Non-Confidential

6.4 OpenMP 4.5
Details the support status with the OpenMP 4.5 standard.

Table 6-4 OpenMP 4.5 support

OpenMP 4.5 Feature Support

doacross loop nests with ordered No

“linear” clause on loop construct No

“simdlen” clause on simd construct No

Task priorities No

“taskloop” construct Yes

Extensions to device support No

“if” clause for combined constructs Yes

“hint” clause for critical construct No

“source” and “sink” dependence types No

C++ reference types in data sharing attribute clauses N/A

Reductions on C/C++ array sections N/A

“ref”, “val”, “uval” modifiers for linear clause No

Thread affinity query functions Yes

Hints for lock API Yes

6 Standards support
6.4 OpenMP 4.5

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

6-177

Non-Confidential

Chapter 7
Troubleshoot

Describes how to diagnose problems when compiling applications using Arm Fortran Compiler.

It contains the following sections:
• 7.1 Application segfaults at -Ofast optimization level on page 7-179.
• 7.2 Compiling with the -fpic option fails when using GCC compilers on page 7-180.
• 7.3 Error messages when installing Arm® Compiler for Linux on page 7-181.

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

7-178

Non-Confidential

7.1 Application segfaults at -Ofast optimization level
A Fortran program runs correctly when the binary is built with armflang at -O3 level, but encounters a
runtime crash or segfault with -Ofast optimization level.

Condition

The runtime segfault only occurs when -Ofast is used to compile the code. The segfault disappears
when you add the -fno-stack-arrays option at the compilation with armflang.

The -fstack-arrays option is enabled by default at -Ofast

When the -fstack-arrays option is enabled, either on its own or enabled with -Ofast by default, the
compiler allocates arrays for all sizes using the local stack for local and temporary arrays. This helps to
improve performance, because it avoids slower heap operations with malloc() and free(). However,
applications that use large arrays might reach the Linux stack-size limit at runtime and produce program
segfaults. On typical Linux systems, a default stack-size limit is set, such as 8192 kilobytes. You can
adjust this default stack-size limit to a suitable value.

Solution

Use -Ofast -fno-stack-arrays instead. This disables automatic arrays on the local stack, and keeps all
other -Ofast optimizations. Alternatively, to set the stack so that it is larger than the default size, call
ulimit -s unlimited before running the program.

If you continue to experience problems, Contact Arm Support.

7 Troubleshoot
7.1 Application segfaults at -Ofast optimization level

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

7-179

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/get-support

7.2 Compiling with the -fpic option fails when using GCC compilers
Describes the difference between the -fpic and -fPIC options when compiling for Arm with GCC and
Arm Compiler for Linux.

Condition
Failure can occur at the linking stage when building Position-Independent Code (PIC) on AArch64 using
the lower-case -fpic compiler option with GCC compilers (gfortran, gcc, g++), in preference to using
the upper-case -fPIC option.

 Note

• This issue does not occur when using the -fpic option with Arm Compiler for Linux (armflang/
armclang/armclang++), and it also does not occur on x86_64 because -fpic operates the same as -
fPIC.

• PIC is code which is suitable for shared libraries.

Cause
Using the -fpic compiler option with GCC compilers on AArch64 causes the compiler to generate one
less instruction per address computation in the code, and can provide code size and performance benefits.
However, it also sets a limit of 32k for the Global Offset Table (GOT), and the build can fail at the
executable linking stage because the GOT overflows.

 Note

When building PIC with Arm Compiler for Linux on AArch64, or building PIC on x86_64, -fpic does
not set a limit for the GOT, and this issue does not occur.

Solution

Consider using the -fPIC compiler option with GCC compilers on AArch64, because it ensures that the
size of the GOT for a dynamically linked executable will be large enough to allow the entries to be
resolved by the dynamic loader.

7 Troubleshoot
7.2 Compiling with the -fpic option fails when using GCC compilers

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

7-180

Non-Confidential

7.3 Error messages when installing Arm® Compiler for Linux
If you experience a problem when installing Arm Compiler for Linux, consider the following points.

• To perform a system-wide install, ensure that you have the correct permissions. If you do not have the
correct permissions, the following errors are returned:
— Systems using RPM Package Manager (RPM):

error: can't create transaction lock on /var/lib/rpm/.rpm.lock (Permission denied)

— Debian systems using dpkg:

dpkg: error: requested operation requires superuser privilege

• If you install using the --install-to <directory> option, ensure that the system you are installing
on has the required rpm or dpkg binaries installed. If it does not, the following errors are returned:
— Systems using RPM Package Manager (RPM):

Cannot find 'rpm' on your PATH. Unable to extract .rpm files.

— Debian systems using dpkg:

Cannot find 'dpkg' on your PATH. Unable to extract .deb files.

7 Troubleshoot
7.3 Error messages when installing Arm® Compiler for Linux

101380_2020_00_en Copyright © 2018–2020 Arm Limited or its affiliates. All rights
reserved.

7-181

Non-Confidential

	Arm® Fortran Compiler Developer and reference guide
	Table of Contents
	List of Tables
	Preface
	About this book
	Using this book
	Glossary
	Typographic conventions
	Feedback
	Feedback on this product
	Feedback on content

	Other information

	1 : Get started
	1.1 : Arm® Fortran Compiler
	1.2 : Get started with Arm® Fortran Compiler
	1.3 : Get support

	2 : Compile and link
	2.1 : Using the compiler
	2.2 : Compile Fortran code for SVE and SVE2-enabled processors

	3 : Optimize
	3.1 : Directives
	3.1.1 : ivdep
	3.1.2 : vector always
	3.1.3 : novector
	3.1.4 : omp simd
	3.1.5 : unroll
	3.1.6 : nounroll

	3.2 : Arm Optimization Report
	3.2.1 : How to use Arm Optimization Report
	3.2.2 : arm-opt-report reference

	3.3 : Optimization remarks
	3.3.1 : Enable optimization remarks

	4 : Compiler options
	4.1 : Arm Fortran Compiler Options by Function
	4.2 : -###
	4.3 : -armpl=
	4.4 : -c
	4.5 : -config
	4.6 : -cpp
	4.7 : -D
	4.8 : -E
	4.9 : -fassociative-math
	4.10 : -fbackslash
	4.11 : -fcolor-diagnostics
	4.12 : -fconvert=
	4.13 : -fcxx-exceptions
	4.14 : -fdenormal-fp-math=
	4.15 : -fexceptions
	4.16 : -ffast-math
	4.17 : -ffinite-math-only
	4.18 : -ffixed-form
	4.19 : -ffixed-line-length-
	4.20 : -ffp-contract=
	4.21 : -ffree-form
	4.22 : -fhonor-infinities
	4.23 : -fhonor-nans
	4.24 : -finline
	4.25 : -finline-functions
	4.26 : -finline-hint-functions
	4.27 : -fiterative-reciprocal
	4.28 : -flto
	4.29 : -fmath-errno
	4.30 : -fnative-atomics
	4.31 : -fno-crash-diagnostics
	4.32 : -fno-fortran-main
	4.33 : -fopenmp
	4.34 : -fopenmp-simd
	4.35 : -frealloc-lhs
	4.36 : -freciprocal-math
	4.37 : -frecursive
	4.38 : -fsave-optimization-record
	4.39 : -fsign-zero
	4.40 : -fsigned-char
	4.41 : -fsigned-zeros
	4.42 : -fsimdmath
	4.43 : -fstack-arrays
	4.44 : -fstrict-aliasing
	4.45 : -fsyntax-only
	4.46 : -ftrapping-math
	4.47 : -funsafe-math-optimizations
	4.48 : -fvectorize
	4.49 : -g
	4.50 : -g0
	4.51 : -gcc-toolchain=
	4.52 : -gline-tables-only
	4.53 : -help
	4.54 : -help-hidden
	4.55 : -I
	4.56 : -i8
	4.57 : -include
	4.58 : -iquote
	4.59 : -isysroot
	4.60 : -isystem
	4.61 : -isystem-after
	4.62 : -l
	4.63 : -Mnomain
	4.64 : -Mstandard
	4.65 : -march=
	4.66 : -mcpu=
	4.67 : -module
	4.68 : -no-flang-libs
	4.69 : -nocpp
	4.70 : -O
	4.71 : -o
	4.72 : -print-search-dirs
	4.73 : -Qunused-arguments
	4.74 : -r8
	4.75 : -S
	4.76 : -shared
	4.77 : -static
	4.78 : -static-arm-libs
	4.79 : -std=
	4.80 : -U
	4.81 : -v
	4.82 : -version
	4.83 : -W
	4.84 : -Wall
	4.85 : -Warm-extensions
	4.86 : -Wdeprecated
	4.87 : -Wl,
	4.88 : -Wp,
	4.89 : -w
	4.90 : -working-directory
	4.91 : -Xassembler
	4.92 : -Xlinker
	4.93 : -Xpreprocessor

	5 : Fortran language reference
	5.1 : Data types and file extensions
	5.1.1 : Data types
	5.1.2 : Supported file extensions
	5.1.3 : Logical variables and constants
	5.1.4 : C/Fortran inter-language calling
	5.1.5 : Character
	5.1.6 : Complex
	5.1.7 : Fortran implementation notes

	5.2 : Intrinsics
	5.2.1 : Fortran intrinsics overview
	5.2.2 : Bit manipulation functions and subroutines
	5.2.3 : Elemental character and logical functions
	5.2.4 : Vector/Matrix functions
	5.2.5 : Array reduction functions
	5.2.6 : String construction functions
	5.2.7 : Array construction manipulation functions
	5.2.8 : General inquiry functions
	5.2.9 : Numeric inquiry functions
	5.2.10 : Array inquiry functions
	5.2.11 : Transfer functions
	5.2.12 : Arithmetic functions
	5.2.13 : Miscellaneous functions
	5.2.14 : Subroutines
	5.2.15 : Fortran 2003 functions
	5.2.16 : Fortran 2008 functions
	5.2.17 : Unsupported functions
	5.2.18 : Unsupported subroutines

	5.3 : Statements

	6 : Standards support
	6.1 : Fortran 2003
	6.2 : Fortran 2008
	6.3 : OpenMP 4.0
	6.4 : OpenMP 4.5

	7 : Troubleshoot
	7.1 : Application segfaults at -Ofast optimization level
	7.2 : Compiling with the -fpic option fails when using GCC compilers
	7.3 : Error messages when installing Arm® Compiler for Linux

