
Armv8-A Address Translation

Copyright © 2017-2019 Arm Limited or its affiliates. All rights reserved.

Page 1 of 32 Arm 100940_0101_en

Connect User Guide
Version 0.1

Armv8-A Address
Translation
Version 1.1

Armv8-A Address Translation

Copyright © 2017-2019 Arm Limited or its affiliates. All rights reserved.

Page 2 of 32 Arm 100940_0101_en

Revision Information

The following revisions have been made to this User Guide.

Date Issue Confidentiality Change

28 February 2017 0100 Non-Confidential First release

3 July 2019 0101 Non-Confidential Section 6.1: corrected TCR_EL2.TG0
reference to VTCR_EL2.TG0

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of Arm® in the
EU and other countries, except as otherwise stated below in this proprietary notice. Other brands
and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this
document may be adapted or reproduced in any material form except with the prior written
permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements.
All particulars of the product and its use contained in this document are given by Arm in good
faith. However, all warranties implied or expressed, including but not limited to implied warranties
of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. Arm shall not be
liable for any loss or damage arising from the use of any information in this document, or any error
or omission in such information, or any incorrect use of the product.

Where the term Arm is used it means “Arm or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Confidential. The right to use, copy and disclose this document may be subject to
license restrictions in accordance with the terms of the agreement entered into by Arm and the
party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

http://www.arm.com/

Armv8-A Address Translation

Copyright © 2017-2019 Arm Limited or its affiliates. All rights reserved.

Page 3 of 32 Arm 100940_0101_en

Contents

1 Armv8-A Address translation .. 4

2 Separation of kernel and application virtual address spaces ... 6

3 Translating a virtual address to a physical address .. 8

3.1 Secure and Non-secure addresses ... 10

3.2 Multiple virtual address spaces .. 11

3.3 Operation when the Memory Management Unit is disabled ... 12

3.4 Configuring and enabling the MMU .. 12

4 Translation tables in Armv8-A ... 13

4.1 AArch64 descriptor format ... 13

4.2 Effect of granule sizes on translation tables .. 14

4KB ... 14

16KB .. 14

64KB .. 15

4.3 Cache configuration ... 15

4.4 Cache policies .. 16

4.5 Memory attributes .. 17

5 Translation table configuration .. 18

5.1 Virtual address tagging ... 18

6 Multiple Address Spaces .. 20

6.1 Two Stage Translations ... 20

6.2 EL2 and EL3 Address Spaces .. 21

7 Access permissions ... 22

8 OS use of translation table descriptors ... 24

9 Security and the MMU ... 26

9.1 Kernel access with user permissions ... 26

10 The Translation Lookaside Buffer ... 27

11 Context switching ... 30

12 System MMU .. 32

Armv8-A Address Translation

Copyright © 2017-2019 Arm Limited or its affiliates. All rights reserved.

Page 4 of 32 Arm 100940_0101_en

1 Armv8-A Address translation
Armv8-A uses a Virtual Memory system where the addresses used by code (virtual addresses) are
translated into physical addresses which are used by the memory system. This translation is
performed by a part of the processor that is called a Memory Management Unit (MMU). MMUs in
the Arm architecture use translation tables stored in memory to translate virtual addresses to
physical addresses. The MMU will automatically read the translation tables when necessary, this
process is known as a Table Walk.

An important function of the MMU is to enable the system to run multiple tasks, as independent
programs running in their own private virtual memory space. They do not need any knowledge of
the physical memory map of the system, that is, the addresses that are used by the hardware, or
about other programs that might execute at the same time.

You can use the same virtual memory address space for each program. You can also work with a
contiguous virtual memory map, even if the physical memory is fragmented. This virtual address
space is separate from the actual physical map of memory in the system. You can write, compile,
and link applications to run in the virtual memory space. Different processors and devices in a
single system might have different virtual and physical address maps. Privileged software, such as an
Operating System, programs the MMU to translate between these two views of memory as the
following figure shows.

Virtual memory

0xFFFFFFFF_FFFFFFFF

0x00000000_00000000

Peripherals

Reserved

ROM

Reserved

RAM

Physical memory

Reserved

RAM

Reserved

Kernel
space

User
space

Reserved

Peripherals

Reserved

RAM

Reserved

ROM

Reserved

RAM

To do this, the hardware in a virtual memory system must provide address translation, which is the
translation of the virtual address that is issued by the processor to a physical address in the main
memory.

Virtual addresses are those used by you, and the compiler and linker, when placing code in
memory. Physical addresses are those used by the actual hardware system.

Armv8-A Address Translation

Copyright © 2017-2019 Arm Limited or its affiliates. All rights reserved.

Page 5 of 32 Arm 100940_0101_en

The MMU uses the most significant bits of the virtual address to index entries in a translation table
and establish which block is being accessed. The MMU translates the virtual addresses of code and
data to the physical addresses in the actual system. The translation is carried out automatically in
hardware and is transparent to the application. In addition to address translation, the MMU
controls memory access permissions, memory ordering, and cache policies for each region of
memory.

Address translation using translation tables is shown in the following figure:

Virtual memory

0xFFFFFFFF_FFFFFFFF

0x00000000_00000000

Peripherals

Reserved

ROM

Reserved

RAM

Physical memory

Reserved

Kernel
space

User
space

Translation table

TTBR1_EL1

Translation table

TTBR0_EL0

0x0000FFFF_FFFFFFFF

0xFFFF0000_00000000

Not available
in EL2 or EL3

Reserved

Peripherals

Reserved

RAM

Reserved

ROM

Reserved

RAM

The MMU enables tasks or applications to be written in a way that requires them to have no
knowledge of the physical memory map of the system, or about other programs that might be
running simultaneously. This enables the same virtual memory address space to be used for each
program. It also works with a contiguous virtual memory map, even if the physical memory is
fragmented. This virtual address space is separate from the actual physical map of memory in the
system. Applications are written, compiled, and linked to run in the virtual memory space.

Armv8-A Address Translation

Copyright © 2017-2019 Arm Limited or its affiliates. All rights reserved.

Page 6 of 32 Arm 100940_0101_en

2 Separation of kernel and application virtual
address spaces
Operating systems typically have several applications or tasks running concurrently. Each of these
has its own unique set of translation tables and the kernel switches from one to another as part of
the process of context switching between one task and another. However, much of the memory
system is used only by the kernel and has fixed virtual to physical address mappings where the
translation table entries rarely change. The Armv8-A architecture provides several features to
efficiently handle this requirement.

The table base addresses are specified in the Translation Table Base Registers (TTBR0_EL1) and
(TTBR1_EL1). The translation table pointed to by TTBR0 is selected when the upper bits of the
virtual address (VA) are all set to 0. TTBR1 is selected when the upper bits of the VA are all set to
1. You can enable VA tagging to exclude the top 8 bits from the check.

The virtual address from the processor of an instruction fetch or data access is 64 bits. However,
you must map both of the two regions that are defined within a single 48-bit physical address
memory map.

EL2 and EL3 have a TTBR0, but no TTBR1. This means that is either EL2 or EL3 is using AArch64,
they can only use virtual addresses in the range 0x0 to 0x0000FFFF_FFFFFFFF.

The following figure shows an example of how the kernel space can be mapped to the most
significant area of memory while the virtual address space associated with each application can be
mapped to the least significant area of memory. However, both of these can be mapped to a much
smaller physical address space, as the following figure shows:

FAULT

TTBR0

0x0000FFFF_FFFFFFFF

0x00000000_00000000

TTBR1

0xFFFFFFFF_FFFFFFFF

Kernel
space

App
space

0xFFFF0000_00000000

Virtual address space Physical address space

The Translation Control Register TCR_EL1 defines the exact number of most significant bits that are
checked. TCR_EL1 contains the size fields T0SZ[5:0] and T1SZ[5:0]. The integer in the field gives
the number of the most significant bits that must be either all 0s or all 1s. There are specified

Armv8-A Address Translation

Copyright © 2017-2019 Arm Limited or its affiliates. All rights reserved.

Page 7 of 32 Arm 100940_0101_en

minimum and maximum values for these fields, which vary with granule size and starting table level.
Therefore, you must always use both spaces and at least two translation tables are required in all
systems. A simple bare metal system without an OS still requires a small upper table that contains
only fault entries. This is shown in the following figure:

TG1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T1SZ SH0 T0SZ

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

IPS sizeTBI
0/1

IRGN
 0

ORGN
0TG0SH1 IRGN

 1
ORGN

1

TCR_EL1 controls other memory management features at EL1 and EL0. The following figure shows
only those fields that control address ranges and granule size.

TG1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T1SZ TG0 T0SZ

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

IPA size

The Intermediate Physical Address Size (IPS) field controls the maximum output address size. If
translations specify output addresses outside this range, then access is faulted, 000=32 bits of
physical address, 101=48 bits. The two-bit Translation Granule (TG) TG1 and TG0 fields give the
granule size for kernel or user space respectively, 00=4KB, 01=16KB, 11=64KB. The size of the
Translation Granule indicates the smallest block of memory that can be independently mapped in
the translation tables.

You can configure the level of translation table that is used for the first lookup. The full translation
process can require three or four levels of tables. You need not implement all levels. The first level
of lookup is, in effect, determined by the granule size and TCR_ELn.TxSZ fields. You can configure
it separately for TTBR0_EL1 and TTBR1_EL1.

Armv8-A Address Translation

Copyright © 2017-2019 Arm Limited or its affiliates. All rights reserved.

Page 8 of 32 Arm 100940_0101_en

3 Translating a virtual address to a physical address
When the processor issues a virtual address for an instruction fetch, or data access, the MMU
hardware translates the virtual address to the corresponding physical address. For a virtual address
in an n -bit address space, the top 64-n bits VA[63:n] must be all 0s or 1s, otherwise the address
triggers a fault.

The least significant bits are then used to give an offset within the selected section, so that the
MMU combines the physical address bits from the block table entry with the least significant bits
from the original address to produce the final address.

 In a simple address translation involving only one level of look-up, and assumes that we are using a
64KB granule with a 42-bit virtual address space. The MMU translates a virtual address as follows:

 If VA[63:42] = 1 then TTBR1 is used for the base address for the first translation table. When
VA[63:42] = 0, TTBR0 is used for the base address for the first translation table.

 The translation table contains 8192 ×64-bit translation table entries, and is indexed using
VA[41:29]. The MMU reads the pertinent Level 2 translation table entry from the table.

 The MMU checks the translation table entry for validity and whether the requested memory
access is allowed. Assuming it is valid, the memory access is allowed.

 In the following figure, the translation table entry refers to a 512MB page (it is a block
descriptor).

63 0

Level 2 index Physical address [28:0]
63 0

Index in table

Virtual address from core

Level 2 page table with 8192 entries

TTBRx
Low bits of virtual
address form low bits of
physical address

282941

...

Physical address [28:0]

Page table
base address

TTBR select

PA[47:29]

...

Page table entry
contains PA [47:29]

Page table entry

PA

VA

Armv8-A Address Translation

Copyright © 2017-2019 Arm Limited or its affiliates. All rights reserved.

Page 9 of 32 Arm 100940_0101_en

Bits [47:29] are taken from this translation table entry and form bits [47:29] of the physical
address.

 Because we have a 512MB page, bits [28:0] of the VA are taken to form PA[28:0].

The full PA[47:0] is returned, along with additional information from the translation table entry.

In practice, such a simple translation process severely limits how finely the address space can be
divided.

Instead of using only this first-level translation table, a first-level table entry can also point to a
second-level translation table. In this way, an OS can further divide a large section of virtual
memory into smaller pages. For a second-level table, the first-level descriptor contains the physical
base address of the second-level translation table. The physical address that corresponds to the
virtual address requested by the processor is found in the second-level descriptor.

The following figure shows an example of translation for a 64KB granule starting at stage 1, level 2
for a normal 64KB page. It describes a situation where there are two levels of look-up. Again, this
assumes a 64KB granule and 42-bit virtual address space.

...

63 0

Level 2 index PA [15:0]
63 0

Index in table

Virtual address from core

L2 page table

TTBRx
Low bits of virtual
address form low bits of
physical address

282941

...

PA [15:0]

Page table
base address

TTBR select

PA[47:16]

...

Page table entry
contains PA [47:29]

PA

VA Level 3 index
1516

63 0

Page table
base address

L3 page table

...

Each second-level table is associated with one or more first-level entries. You can have multiple
first-level descriptors that point to the same second-level table, which means you can alias several
virtual locations to the same physical address.

 If VA[63:42] = 1 then TTBR1 is used for the base address for the first translation table. When
VA[63:42] = 0, TTBR0 is used for the base address for the first translation table.

 The translation table contains 8192 64-bit translation table entries, and is indexed via
VA[41:29]. The MMU reads the pertinent level 2 translation table entry from the table.

 The MMU checks the level 2 translation table entry for validity and whether the requested
memory access is allowed. Assuming it is valid, the memory access is allowed.

Armv8-A Address Translation

Copyright © 2017-2019 Arm Limited or its affiliates. All rights reserved.

Page 10 of 32 Arm 100940_0101_en

 In the figure, the level 2 translation table entry refers to the address of the level 3 translation
table (it is a table descriptor).

 Bits [47:16] are taken from the level 2 translation table entry and form the base address of the
level 3 translation table.

 Bits [28:16] of the VA are used to index the level 3 translation table entry. The MMU reads the
pertinent level 3 translation table entry from the table.

 The MMU checks the level 3 translation table entry for validity and whether the requested
memory access is allowed. Assuming it is valid, the memory access is allowed.

 In the figure, the level 3 translation table entry refers to a 64KB page (it is a page descriptor).

 Bits [47:16] are taken from the level 3 translation table entry and used to form PA[47:16].

 Because there is a 64KB page, VA[15:0] is taken to form PA[15:0].

 The full PA[47:0] is returned, along with additional information from the translation table
entries.

3.1 Secure and Non-secure addresses
The Arm architecture defines two physical address spaces. A Secure address space and a Non-
secure address space. In theory the Secure and Non-secure physical address spaces are
independent of each other, and exist in parallel. A system could be designed to have two entirely
separate memory systems. However, most real systems treat Secure and Non-secure as an
attribute for access control. The Normal (Non-secure) world can only access the Non-secure
physical address space. The Secure world can access both physical address spaces when the MMU
is enabled. This is controlled through translation tables.

This also has cache coherency implications. For example, because Secure 0x8000 and Non-secure
0x8000 are, technically speaking, different physical addresses, they could both be in the cache at
the same time.

In a system where Secure and Non-secure memory are in different locations, there would be no
problem. It is more likely that they would be in the same location. Ideally a memory system would
block Secure accesses to Non-secure memory and Non-secure accesses to Secure memory.

In practice most only block Non-secure access to Secure memory. Again, this means you could end
up with the same physical memory in the cache twice, Secure, and Non-secure. This is always a
programming error. To avoid this the Secure world must always use Non-secure accesses to Non-
secure memory.

Armv8-A Address Translation

Copyright © 2017-2019 Arm Limited or its affiliates. All rights reserved.

Page 11 of 32 Arm 100940_0101_en

Secure EL1/EL0

Secure
peripherals

Secure data

Non-secure data

Secure code

Non-secure
peripherals

Non-secure data

Non-secure code

Non-secure EL1/EL0

Translation tables

Translation tables

Secure physical address space

RAM

Peripherals

FLASH

Non-secure physical address space

RAM

Peripherals

FLASH

3.2 Multiple virtual address spaces
At any one time, only one virtual address space is being used (that for the current security state
Exception level). However, conceptually, because there are three different TTBRs, there are three
parallel virtual address spaces (EL0/1, EL2, and EL3).

App/OS virtual
address space

Peripherals

OS

Fault

Application

Non-secure
peripherals

Non-secure data

Non-secure code

Hypervisor virtual
address space

Translation tables

Translation tables

Physical address space

Peripherals

FLASH

RAM

Translation tables

OS and applications
 - TTBR0_EL1
 - TTBR1_EL1
 - TCR_EL1

Hypervisor
 - TTBR0_EL2
 - TCR_EL2

Secure monitor
 - TTBR0_EL3
 - TCR_EL3

You can also have a Secure and Non-secure EL1/0. However, there is only one physical set of
TTBR0_EL1, TTBR1_EL1 and TCR_EL1. So when switching between worlds, the Secure monitor
has to save and restore these registers.

Armv8-A Address Translation

Copyright © 2017-2019 Arm Limited or its affiliates. All rights reserved.

Page 12 of 32 Arm 100940_0101_en

3.3 Operation when the Memory Management Unit
is disabled
When the MMU is enabled the translation tables control the memory type and attributes of
memory. When the MMU is not enabled, such as immediately after reset, memory takes a default
type.

The default type used for instruction fetches is Normal memory with a cacheability attribute
controlled by SCTLR_ELx.I:

• When I=0, fetches use the Non-cacheable and Outer Shareable attributes.

• When I=1, the Cacheable, Inner Write-Through Read-Allocate No Write-Allocate, Outer
Write-Through Read-Allocate No Write-Allocate Outer Shareable attribute is used.

In systems that use virtualization it might be necessary to allow the Hypervisor to override the
default memory types used by guests. When the stage 1 MMU is disabled, for Non-secure EL0 and
EL1 accesses when the HCR_EL2.DC bit is set to enable the data cache, the default memory type
is Normal, Non-shareable, Inner Write-Back, read and Write Allocate, Outer Write-Back read and
Write Allocate. This might be useful in situations where caches have already been configured by a
Hypervisor.

3.4 Configuring and enabling the MMU
Writes to the system registers controlling the MMU are context-changing events and there are no
ordering requirements between them. The results of these events are not guaranteed to be seen
until a context synchronization event.

MSR TTBR0_EL1, X0 // Set TTBR0
MSR TTBR1_EL1, X1 // Set TTBR1
MSR TCR_EL1, X2 // Set TCR
ISB // The ISB forces these changes to be
 // seen before the MMU is enabled.
MRS X0, SCTLR_EL1 // Read System Control Register
 // configuration data
ORR X0, X0, #1 // Set [M] bit and enable the MMU.
MSR SCTLR_EL1, X0 // Write System Control Register
 // configuration data
ISB // The ISB forces these changes to be
 // seen by the next instruction

This is separate from the requirement for flat mapping, which is to make sure that we know which
instruction is executed directly after the write to SCTLR_EL1.M. If we see the result of the write it
is the instruction at VA+4 using the new translation regime. If the result is not seen, it is still the
instruction at VA+4 but where the VA = PA. The ISB does not help here as it cannot be
guaranteed to be the next instruction that is executed unless memory is flat mapped.

Armv8-A Address Translation

Copyright © 2017-2019 Arm Limited or its affiliates. All rights reserved.

Page 13 of 32 Arm 100940_0101_en

4 Translation tables in Armv8-A
Armv8-A supports three different sets of translation table format:

• The Armv8-A AArch64 Long Descriptor format.

• The Armv7-A Long Descriptor format such as the Large Physical Address Extension (LPAE) to the
Armv7-A architecture, found in, for example, the Arm Cortex-A15 processor.

• The Armv7-A Short Descriptor format.

In AArch32 state, the existing Armv7-A long and short descriptor formats can be used to run
existing guest operating systems and existing application code without modification. The Armv7-A
short descriptors can only be used at EL0 and EL1 stage 1 translations. They cannot be used by
hypervisors or Secure monitor code.

The Armv8-A long descriptor format is always used in AArch64 Execution state. This is similar to
the Armv7-A long descriptor format with Large Physical Address Extensions. It uses the same 64-
bit long-descriptor format, but with some changes. It introduces a Level 0 table index, which uses
the same descriptor format as the level 1 table. There is added support for up to 48-bit input and
output addresses. The input virtual address is now 64-bit.

However, as the architecture does not support full 64-bit addressing, bits [63:48] of the address
must all be the same, that is, all 0s or all 1s, or the top 8 bits can be used for VA tagging.

AArch64 supports three different translation granules. These define the block size at the lowest
level of translation table and control the size of translation tables in use. Larger granule sizes
reduce the number of levels of translation table required and this can become an important
consideration in systems using a hypervisor to provide virtualization.

The supported granule sizes are 4KB, 16KB, and 64KB, and it is IMPLEMENTATION DEFINED which
of the three are supported. Code that creates translation tables is able to read the Memory Model
Feature Register 0 system register (ID_AA64MMFR0_EL1), to find out which are the supported
sizes. The size is configurable for each translation table within the Translation Control Register
(TCR_EL1).

4.1 AArch64 descriptor format
The AArch64 descriptor format is used in all levels of table, from Level 0 to Level 3. Level 0
descriptors can only output the address of a Level 1 table. Level 3 descriptors cannot point to
another table and can only output block addresses. The format of the table is therefore slightly
different for Level 3.

The following figure shows that the table descriptor type is identified by bits 1:0 of the entry and
can refer to either:

• The address of a next level table, in which case memory can be further subdivided into smaller
blocks.

• The address of a variable sized block of memory.

• Table entries, which can be marked Fault, or Invalid.

Armv8-A Address Translation

Copyright © 2017-2019 Arm Limited or its affiliates. All rights reserved.

Page 14 of 32 Arm 100940_0101_en

Lower attributes

63 0
Attributes Next level table address 11

Upper attributes Output block address 01

Ignored X0

Lower attributesUpper attributes Output block address 11

Table descriptor (levels 0, 1, and 2)

Block entry (levels 1 and 2)

Invalid entry (all levels)

Table entry (levels 1 and 2)

Note

For clarity, this diagram does not specify the width of bit fields.

4.2 Effect of granule sizes on translation tables
The three different granule sizes can affect the number and size of translation tables required.

Note

• In all cases, the first level of table is omitted if the VA input range is restricted to 39 bits.

• Depending on the size of the possible VA range, there can be even fewer levels. With a
4KB granule, for example, if the TTBCR is set so that low addresses span only 1GB, then
levels 0 and 1 are not required and the translation starts at level 2, going down to level 3
for 4KB pages.

4KB
In the case of a 4kB granule, the hardware can use a 4-level look up process. The 48-bit address
has nine address bits for each level translated (that is, 512 entries each), with the final 12 bits
selecting a byte within the 4kB coming directly from the original address.

Bits [47:39] of the virtual address index into the 512 entry L0 table. Each of these table entries
spans a 512GB range and points to an L1 table. Within that 512 entry L1 table, bits [38:30] are
used as index to select an entry and each entry points to either a 1GB block or an L2 table.

Bits [29:21] index into a 512 entry L2 table and each entry points to a 2MB block or next table
level. At the last level, bits [20:12] index into a 512 entry L2 table and each entry points to a 4kB
block.

Level 0 Table Index
Each entry contains:

Pointer to L1 table
(No block entry)

VA bits [47:39]

Level 1 Table Index
Each entry contains:

Pointer to L2 table
Base address of 1GB

block (IPA)

VA bits [38:30]

Level 2 Table Index
Each entry contains:

Pointer to L3 table
Base address of 2MB

block (IPA)

VA bits [29:21]

Level 3 Table Index
Each entry contains:

Base address off 4KB
block (IPA)

VA bits [20:12]

Block offset
and PA [11:0]

VA bits [11:0]

16KB
In the case of a 16kB granule, the hardware can use a 4-level look up process.

Armv8-A Address Translation

Copyright © 2017-2019 Arm Limited or its affiliates. All rights reserved.

Page 15 of 32 Arm 100940_0101_en

The 48-bit address has 11 address bits per level that is translated, that is 2048 entries each, with
the final 14 bits selecting a byte within the 4kB coming directly from the original address.

The level 0 table contains only two entries. Bit [47] of the virtual address selects a descriptor from
the two entry L0 table. Each of these table entries spans a 128TB range and points to an L1 table.
Within that 2048 entry L1 table, bits [46:36] are used as an index to select an entry and each entry
points to an L2 table. Bits [35:25] index into a 2048 entry L2 table and each entry points to a 32MB
block or next table level.

At the final translation stage, bits [24:14] index into a 2048 entry L2 table and each entry points to
a 16kB block.

Level 0 Table Index
Each entry contains:

Pointer to L1 table
(No block entry)

VA bit [47]

Level 1 Table Index
Each entry contains:

Pointer to L2 table

VA bits [46:36]

Level 2 Table Index
Each entry contains:

Pointer to L3 table
Base address of 32MB

block (IPA)

VA bits [35:25]

Level 3 Table Index
Each entry contains:

Base address off
16KB block (IPA)

VA bits [24:14]

Block offset
and PA [13:0]

VA bits [13:0]

64KB
In the case of a 64kB granule, the hardware can use a 3-level look up process. The level 1 table
contains only 64 entries. Bits [47:42] of the virtual address select a descriptor from the 64 entry L1
table. Each of these table entries spans a 4TB range and points to an L2 table. Within that 8192
entry L2 table, bits [41:29] are used as index to select an entry and each entry points to either a
512MB block or an L2 table. At the final translation stage, bits [28:16] index into an 8192 entry L3
table and each entry points to a 64kB block.

Level 1 Table Index
Each entry contains:

Pointer to L2 table
(No block entry)

VA bit [47:42]

Level 2 Table Index
Each entry contains:

Pointer to L2 table
Base address of

512MB block (IPA)

VA bits [41:29]

Level 3 Table Index
Each entry contains:

Base address of 64KB
block (IPA)

VA bits [28:16]

Block offset
and PA [15:0]

VA bits [15:0]

4.3 Cache configuration
The MMU uses translation tables and translation registers to control which memory locations are
Cacheable. The MMU controls the cache policy, memory attributes, and access permissions, and
provides Virtual to physical address translation.

Armv8-A Address Translation

Copyright © 2017-2019 Arm Limited or its affiliates. All rights reserved.

Page 16 of 32 Arm 100940_0101_en

AMBA interconnect

L2 cache

Coherency groups

Core

L1 D-cacheL1 I-cache

MMU

Core

L1 D-cacheL1 I-cache

MMU

Bus interface unit

AMBA interconnect

SRAM

External
DRAM

APB
peripherals

L3 cache
(SRAM or DRAM)

External L4 cache
(memory card or

disk drive)

Software configuration is performed by system registers.

In some designs, the external memory system might contain further implementation-specific caches
of external memories.

4.4 Cache policies
The memory type is not directly encoded in the translation table entry. Instead, each block entry
specifies a 3-bit index into a table of memory types. This table is stored in the Memory Attribute
Indirection Register MAIR_ELn. This table has eight entries and each of those entries has 8 bits, as
shown in the following figure.

7 6 5 4 3 2 1 0

Type encoding

63 0

MAIR_ELn

Although the translation table block entry itself does not directly contain the memory type
encoding, the TLB entry inside the processor usually stores this information for a specific entry.
Therefore, changes to MAIR_ELn might not be observed until after both an ISB instruction barrier
and a TLB invalidate operation.

The MMU translation tables also define the cache policy for each block within the memory system.
Memory regions that are defined as Normal might be marked as Cacheable or Non-cacheable. Bits
[4:2] from the translation table entry refer to one of the eight memory attribute encodings in the

Armv8-A Address Translation

Copyright © 2017-2019 Arm Limited or its affiliates. All rights reserved.

Page 17 of 32 Arm 100940_0101_en

MAIR_ELn. The memory attribute encodings then specify the cache policies to use when accessing
that memory. These are hints to the processor and it is IMPLEMENTATION DEFINED whether all
cache policies are supported in a particular implementation and which cache data is regarded as
coherent. A memory region can be defined in terms of its shareability property.

4.5 Memory attributes
The following figure shows how memory attributes are specified in a stage 1 block entry. The block
entry in the translation table defines the attributes for each memory region. Stage 2 entries have a
different layout.

Upper attributes Output block address Lower attributes

Reserved for software
use U

XN

PX
N

[58:55] 54 53

63 0

AF SH

10 9:8

AP

7:6

N
S

5

Indx

4:2

• Unprivileged eXecute Never (UXN) and Privileged eXecute Never (PXN) are execution
permissions.

• AF is the access flag.

• SH is the shareable attribute.

• AP is the access permission.

• NS is the security bit, but only at EL3 and Secure EL1.

• Indx is the index into the MAIR_ELn.

Note

For clarity, not all bits are shown in the figure.

The descriptor format supports hierarchical attributes, so that an attribute set at one level can be
inherited by lower levels. It means that a table entry in an L0, L1, or L2 table can override one or
more attributes that are specified in the table that it points to. This can be used for access
permissions, security, and execution permissions. For example, an entry in the L1 table that has
NSTable = 1 means that the NS bits in the L2 and L3 tables that it points to are ignored and all the
entries are treated as having NS = 1. This feature only restricts subsequent levels of look-up for
the same stage of translation.

Armv8-A Address Translation

Copyright © 2017-2019 Arm Limited or its affiliates. All rights reserved.

Page 18 of 32 Arm 100940_0101_en

5 Translation table configuration
In addition to storing individual translations within the TLB, the MMU can be configured to store
translation tables in Cacheable memory. This usually provides much faster access to tables than
always reading from external memory. TCR_EL1 has fields that control this. These fields specify
the cacheability and shareability of translation tables for TTBR0 and TTBR1. The relevant fields are
called SH0/1 Shareability, IRGN0/1 Inner Cacheable, and ORGN0/1 Outer Cacheable.

The following table shows the permitted settings for cacheability.

IRGN/ORGN bits for TTBR0/TTBR1 Cacheable Property

00 Normal memory, Inner Non-cacheable

01 Normal memory, Inner Write-Back Write-Allocate
Cacheable

10 Normal memory, Inner Write-Through Cacheable

11 Normal memory, Inner Write-Back no Write-
Allocate Cacheable

The corresponding table for shareability of memory is associated with translation table walks. For a
device region, the value is ignored.

SH0 bits[13:12] Shareability

00 Non-shareable

01 UNPREDICTABLE

10 Outer Shareable

11 Inner Shareable

The attributes that are specified in the TCR_EL1 must be the same as those specified for the
virtual memory region in which the translation tables are stored. Caching the translation tables is
the normal default behavior.

5.1 Virtual address tagging
The Translation Control Register (TCR_ELn) has an extra field that is called Top Byte Ignore (TBI) that
provides tagged addressing support. The most significant 16 bits of an address in a 64-bit general-
purpose register must be 0xFFFF or 0x0000. Any attempt to use a different bit value triggers a
fault.

When tagged addressing support is enabled, the top eight bits [63:56] of the virtual address are
ignored by the processor. It internally sets bit [55] to sign-extend the address to 64-bit format. The
top 8 bits can then be used to pass data. These bits are ignored for addressing and translation
faults. The TCR_EL1 has separate enable bits for EL0 and EL1.

One example use case might be in support of object-oriented programming languages. In addition
to having a pointer to an object, you might have to keep a reference count of the number of
references or pointers or handles that refer to the object, for example, so that automatic garbage
collection code can de-allocate objects that are no longer referenced. This reference count can be

Armv8-A Address Translation

Copyright © 2017-2019 Arm Limited or its affiliates. All rights reserved.

Page 19 of 32 Arm 100940_0101_en

stored as part of the tagged address, rather than in a separate table, speeding up the process of
creating or destroying objects.

Armv8-A Address Translation

Copyright © 2017-2019 Arm Limited or its affiliates. All rights reserved.

Page 20 of 32 Arm 100940_0101_en

6 Multiple Address Spaces

6.1 Two Stage Translations
Armv8-A virtualization introduces a second stage of translation. When a hypervisor is present in
the system, there can be one or more guest operating systems present. These use TTBRn_EL1 as
previously described and MMU operation appears unchanged.

In a two-stage process, the hypervisor must perform some extra translation steps to share the
physical memory system between the different guest operating systems. In the first stage, the VA is
translated to an Intermediate Physical Address (IPA). This is usually under OS control. A second
stage, which is controlled by the hypervisor, translates the IPA to the final physical address (PA).

The following figure summarizes this two stage translation process.

The hypervisor and Secure monitor also have their set of stage 1 translation tables for their own
code and data, which perform mapping directly from VA to PA.

OS (EL1)

Application (EL0)

Hypervisor (EL2)

Secure Monitor (EL3)

Virtual memory map
Under control of guest OS

Virtual memory space seen
By Hypervisor and Secure monitor

Guest OS
Translation tables
TTBRn_EL1

Hypervisor
Translation tables
TTBR0_EL2

Monitor
Translation tables
TTBR0_EL3

Peripherals

Flash

RAM

Translation tables
VTTBR0_EL2 Peripherals

Flash

RAM

Peripherals

RAM

Physical memory map
seen by guest (IPA)

Real physical memory map

Stage 2 translations, which convert an intermediate physical address into a physical address, use an
extra set of tables under control of the hypervisor. For Non-secure EL1/0 accesses, these must be
explicitly enabled by writing to the Hypervisor Configuration Register HCR_EL2.

The base address of the Stage 2 translation table is specified in the Virtualization Translation Table
Base Register (VTTBR0_EL2). It specifies a single contiguous address space at the bottom of
memory. The size of the supported address space is specified in the T0SZ[5:0] field of the
Virtualization Translation Control Register, VTCR_EL2.

31 0578111213 9141516181930

PS TG0 SH0 SL0 T0SZ

The TG0 field of VTCR_EL2 specifies the granule size while the SL0 field controls the first-level of
table lookup. Any access outside the defined address range causes a translation fault.

Armv8-A Address Translation

Copyright © 2017-2019 Arm Limited or its affiliates. All rights reserved.

Page 21 of 32 Arm 100940_0101_en

6.2 EL2 and EL3 Address Spaces

FAULT

VTTBR0
0x0000FFFF_FFFFFFFF

0x00000000_00000000

FAULT

TTBR0
EL2/3

0x0000FFFF_FFFFFFFF

0x00000000_00000000

Hypervisor or Secure monitor

Maximum VA space Maximum IPA space

The hypervisor EL2 and Secure monitor EL3 have their own level 1 tables, which map directly from
virtual to physical address space. The table base address is specified in TTBR0_EL2 and
TTBR0_EL3 respectively, enabling a single contiguous address space of variable size at the bottom
of memory. The TG field specifies the granule size and the SL0 field controls the first level of table
lookup. Any access outside the defined address range causes a translation fault.

The Secure monitor EL3 also has its own dedicated translation tables. The table base address is
specified in TTBR0_EL3 and configured via TCR_EL3. Translation tables are capable of accessing
both Secure and Non-secure physical addresses. TTBR0_EL3 is used only in Secure monitor EL3
mode, not by the trusted kernel itself.

When the transition to Secure world has completed, the trusted kernel uses the EL1 translations,
that is, the translation tables pointed to by TTBR0_EL1 and TTBR1_EL1. As these registers are not
banked in AArch64, Secure monitor code must configure new tables for the Secure world and save
and restore copies of TTBR0_EL1 or TTBR1_EL1.

The EL1 translation regime behaves differently in Secure state, compared to its normal operation in
Non-secure state. The second stage of translation is disabled and the EL1 translation regime now
points to both Secure and Non-secure physical addresses. There is no virtualization in the Secure
world, so the IPA is always the same as the final PA.

Entries in the TLB are tagged as Secure or Non-secure, so that no TLB maintenance is ever
required when moving between Secure and Normal worlds.

Armv8-A Address Translation

Copyright © 2017-2019 Arm Limited or its affiliates. All rights reserved.

Page 22 of 32 Arm 100940_0101_en

7 Access permissions
Access permissions are controlled through translation table entries. Access permissions control
whether a region is readable or writeable, or both, and can be set separately to EL0 for
unprivileged and access to EL1, EL2, and EL3 for privileged accesses, as shown in the following
table.

AP Unprivileged (EL0) Privileged (EL1/2/3)

00 No access Read and write

01 Read and write Read and write

10 No access Read-only

11 Read-only Read-only

The operating system kernel, as normal, runs in EL1. The OS defines the translation table
mappings, which are used by the kernel itself and by the applications that run at EL0. Some
distinction between unprivileged and privileged access permissions is required as the kernel
specifies different permissions for its own code and for applications.

The hypervisor, which runs at EL2, and the EL3 Secure monitor only have translation schemes for
their own use and there is no need for a split in permissions between privileged and unprivileged.

Another kind of access permission is the executable attribute. Blocks can be marked as executable
or non-executable (Execute Never (XN)). The Unprivileged Execute Never (UXN) and Privileged Execute
Never (PXN) attributes can be set separately. This is used to prevent, for example, application code
running with kernel privilege, or attempts to execute kernel code while in an unprivileged state.
Setting these attributes prevents the processor from performing speculative instruction fetches to
the memory location and ensures that speculative instruction fetches do not accidentally access
locations that might be perturbed by such an access, for example, a First in, First out (FIFO) page
replacement queue. As a result, device regions must always be marked as XN.

Peripherals

OS

Application data

Application data

Ex
ec

ut
ab

le
Ex

ec
ut

ab
le

N
ot executable

You can configure the processor to treat writeable regions as Execute Never, using the following
bits in the SCTLR registers:

• SCTLR_EL1.WXN. Regions writeable at EL0 are treated as XN at EL0 and EL1. Regions
writeable at EL1 are treated as XN at EL1.

• SCTLR_EL2 and 3.WXN. Regions writeable at ELn are treated as XN at ELn.

Armv8-A Address Translation

Copyright © 2017-2019 Arm Limited or its affiliates. All rights reserved.

Page 23 of 32 Arm 100940_0101_en

• SCTLR.UWXN. Regions writeable at EL0 are treated as XN at EL1. This is for AArch32 only.

The SCTLR_ELn bits can be cached in a TLB entry. Changing the bit in the SCTLR might not affect
entries already in the TLBs. When modifying these bits, a TLB invalidate and ISB sequence is
necessary.

Armv8-A Address Translation

Copyright © 2017-2019 Arm Limited or its affiliates. All rights reserved.

Page 24 of 32 Arm 100940_0101_en

8 OS use of translation table descriptors
Operating systems use an access flag bit to keep track of which pages are being used. Software
manages the flag. When the page is first created, its entry has AF set to 0. The first time the page is
accessed by code, if it has AF at 0, this triggers an MMU fault. The Page fault handler records that
this page is now being used and manually sets the AF bit in the table entry.

For example, the Linux kernel uses the [AF] bit for PTE_AF on ARM64 (the Linux kernel name for
AArch64), which is used to check whether a page has ever been accessed. This influences some of
the kernel memory management choices. For example, when a page must be swapped out of
memory, it is less likely to swap out pages that are being actively used.

Upper attributes Output block address Lower attributes

Reserved for software
use

[58:55]

63

Table attributes Next level table address

Reserved for software
use

[58:55]

63

Block entry

Table entry

0

0

The following figure shows how memory attributes are specified in a stage 1 block entry.

Upper attributes Output block address Lower attributes

Reserved for software
use U

XN

PX
N

[58:55] 54 53

63 0

AF SH

10 9:8

AP

7:6

N
S

5

Indx

4:2

A memory attribute bit in the descriptor, the Access Flag (AF), indicates when a block entry is used
for the first time.

• AF = 0: This block entry has not yet been used.

• AF = 1: This block entry has been used.

Armv8-A Address Translation

Copyright © 2017-2019 Arm Limited or its affiliates. All rights reserved.

Page 25 of 32 Arm 100940_0101_en

Bits [58:55] of the descriptor are marked as reserved for Software Use and can be used to record
OS-specific information in the translation tables. For example, the Linux kernel uses one of these
bits to mark an entry as clean or dirty. The dirty status records whether the page has been written
to. If the page is later swapped out of memory, a clean page can simply be discarded, but a dirty
page must have its contents saved first.

Armv8-A Address Translation

Copyright © 2017-2019 Arm Limited or its affiliates. All rights reserved.

Page 26 of 32 Arm 100940_0101_en

9 Security and the MMU
In Non-secure state, the NS bits and NSTable bits in translation tables are ignored. Only Non-
secure memory can be accessed. In Secure state, the NS bits and NSTable bits control whether a
virtual address translates to a Secure or Non-secure physical address. You can use SCR_EL3.CIF to
prevent the Secure world from executing from any virtual address that translates to a Non-secure
physical address. Also, when in the Secure world, you can use the SCR.CIF bit to control whether
Secure instruction fetches can be made to Non-secure physical memory.

9.1 Kernel access with user permissions
The LDTR or STTR instructions allow code executing at EL1 (for example, an OS) to perform
memory accesses with EL0 or application permissions. This can be used, for example, to de-
reference pointers that are provided with system calls, and enable the OS to check that only data
accessible to the application is accessed. When executed at EL1, these instructions perform the
load or store as if executed at EL0. At all other Exception levels, LDTR, and STTR behave like
regular LDR or STR instructions. These are the usual size and have the same signed and unsigned
variants as normal load and store instructions, but with smaller offset and restricted indexing
options.

Armv8-A Address Translation

Copyright © 2017-2019 Arm Limited or its affiliates. All rights reserved.

Page 27 of 32 Arm 100940_0101_en

10 The Translation Lookaside Buffer
The Translation Lookaside Buffer (TLB) is a cache of recently accessed page translations in the MMU.
For each memory access performed by the processor, the MMU checks whether the translation is
cached in the TLB. If the requested address translation causes a hit within the TLB, the translation
of the address is immediately available.

Each TLB entry typically contains not only physical and virtual addresses, but also attributes such as
memory type, cache policies, access permissions, the Address Space ID (ASID), and the Virtual
Machine ID (VMID). If the TLB does not contain a valid translation for the virtual address that is
issued by the processor, which is known as a TLB miss, an external translation table walk or
lookup is performed. Dedicated hardware within the MMU enables it to read the translation tables
in memory. The newly loaded translation can then be cached in the TLB for possible reuse if the
translation table walk does not result in a page fault. The exact structure of the TLB differs
between implementations of the Arm processors.

If the OS modifies translation entries that have been cached in the TLB, it is the responsibility of
the OS to invalidate these stale TLB entries.

When executing A64 code, there is a TLBI, which is a TLB invalidate instruction. It has the form:

TLBI <type><level>{IS} {, <Xt>}

The following list gives some of the more common selections for the type field.

ALL All TLB entries.

VMALL All TLB entries. This is stage 1 for current guest OS.

VMALLS12 All TLB entries. This is stage 1 and 2 for current guest OS.

ASID Entries that match ASID in Xt.

VA Entry for virtual address and ASID specified in Xt.

VAA Entries for virtual address that is specified in Xt, with any ASID.

Each Exception level, that is EL3, EL2, or EL1, has its own virtual address space that the operation
applies to. The IS field specifies that this is only for Inner Shareable entries.

The <level> field simply specifies the Exception level virtual address space (can be 3, 2 or 1) that
the operation must apply to.

The IS field specifies that this is only for Inner Shareable entries.

The following table lists TLB configuration instructions:

TLB invalidate Variant Description

TLBI ALLEn TLB invalidate All, ELn.

ALLEnIS TLB invalidate All, ELn, Inner Shareable.

ASIDE1 TLB invalidate by ASID, EL1.

ASIDE1IS TLB invalidate by ASID, EL1, Inner Shareable.

IPAS2E1 TLB invalidate by IPA, Stage 2, EL1.

Armv8-A Address Translation

Copyright © 2017-2019 Arm Limited or its affiliates. All rights reserved.

Page 28 of 32 Arm 100940_0101_en

IPAS2E1IS TLB invalidate by IPA, Stage 2, EL1, Inner Shareable.

IPAS2LE1IS TLB invalidate by IPA, Stage 2, Last level, EL1, Inner Shareable.

VAAE1 TLB invalidate by VA, All ASID, EL1.

VAAE1IS TLB invalidate by VA, All ASID, EL1, Inner Shareable.

VAALE1IS TLB invalidate for the Last level, by VA, All ASID, EL1, Inner
Shareable.

VAEn TLB invalidate by VA, ELn.

VAEnIS TLB invalidate by VA, ELn, Inner Shareable.

VALEn TLB invalidate by VA, Last level, ELn.

VALEnIS TLB invalidate by VA, Last level, ELn, Inner Shareable.

VMALLE1 TLB invalidate by VMID, All at stage 1, EL1.

VMALLE1IS TLB invalidate by VMID, EL1, Inner Shareable.

VMALLS12E1 TLB invalidate by VMID, All at Stage 1 and 2, EL1.

VMALLS12E1 TLB invalidate by VMID, All at Stage 1 and 2, EL1.

VMALLS12E1IS TLB invalidate by VMID, All at Stage 1 and 2, EL1 Inner Shareable.

VMALLS12E1IS TLB invalidate by VMID, All at Stage 1 and 2, EL1 Inner Shareable.

The following code example shows a sequence for writes to translation tables backed by Inner
Shareable memory:

<< Writes to translation tables >>
DSB ISHST // ensure write has completed
TLBI ALLE1 // invalidate all TLB entries
DSB ISH // ensure completion of TLB invalidation
ISB // synchronize context and ensure that no
 // instructions are fetched using the old
 // translation

For a change to a single entry, for example, use the instruction:

TLBI VAE1, X0

Which invalidates an entry that is associated with the address that is specified in the register X0.

The TLB can hold a fixed number of entries. You can achieve best performance by minimizing the
number of external memory accesses caused by translation table traversal and obtaining a high TLB
hit rate. The Armv8-A architecture provides a feature known as contiguous block entries to
efficiently use TLB space. Translation table block entries each contain a contiguous bit. When set,
this bit signals to the TLB that it can cache a single entry covering translations for multiple blocks.
A lookup can index anywhere into an address range covered by a contiguous block. The TLB can
therefore cache one entry for a defined range of addresses, making it possible to store a larger
range of virtual addresses within the TLB than is otherwise possible.

To use a contiguous bit, the contiguous blocks must be adjacent, that is they must correspond to a
contiguous range of virtual addresses. They must start on an aligned boundary, have consistent
attributes, and point to a contiguous output address range at the same level of translation. The

Armv8-A Address Translation

Copyright © 2017-2019 Arm Limited or its affiliates. All rights reserved.

Page 29 of 32 Arm 100940_0101_en

required alignment is that VA[20:16] for a 4KB granule or VA[28:21] for a 64KB granule, are the
same for all addresses. The following numbers of contiguous blocks are required:

• 16 × 4KB adjacent blocks giving a 64KB entry with 4KB granule.

• 32 ×32MB adjacent blocks giving a 1GB entry for L2 descriptors.

• 128 ×16KB giving a 2MB entry for L3 descriptors when using a 16KB granule.

• 32 ×64Kb adjacent blocks giving a 2MB entry with a 64KB granule.

If these conditions are not met, a programming error occurs, which can cause TLB aborts or
corrupted lookups. Possible examples of such an error include:

• One or more of the table entries do not have the contiguous bit set.

• The output of one of the entries points outside the aligned range.

With the Armv8-A architecture, incorrect use does not allow permissions checks outside of EL0
and EL1 valid address space to be escaped, or to erroneously provide access to EL3 space.

Armv8-A Address Translation

Copyright © 2017-2019 Arm Limited or its affiliates. All rights reserved.

Page 30 of 32 Arm 100940_0101_en

11 Context switching
Processors that implement the Armv8-A architecture are typically used in systems running a
complex operating system with many applications or tasks that run concurrently. When an
application starts, the operating system allocates it a set of translation table entries that map both
the code and data that is used by the application to physical memory. Each application therefore
has its own unique translation tables residing in physical memory. These tables can be modified
later by the kernel, for example, to map in extra memory space, and are removed when the
application is no longer running.

Normally, it is likely that there are multiple tasks present in the memory system. The kernel
scheduler periodically transfers execution from one task to another. This is called a context switch
and requires the kernel to save all Execution state that is associated with the process and to
restore the state of the process to be run next. The kernel also switches translation table entries
to those of the next process to be run. The memory of the tasks that are not currently running is
protected from the task that is running.

Exactly what has to be saved and restored varies between different operating systems, but typically
a process context switch includes saving or restoring some or all of the following elements:

• General-purpose registers (X0 - X30).

• Advanced SIMD and floating-point registers (V0 - V31).

• Some status registers.

• TTBR0_EL1 and TTBR0.

• Thread Process ID (TPIDxxx) Registers.

• Address Space ID (ASID).

For EL0 and EL1, there are two translation tables. TTBR0_EL1 provides translations for the
bottom of the virtual address space, which is typically application space and TTBR1_EL1 covers the
top of the virtual address space, typically kernel space. This split means that the OS mappings do
not have to be replicated in the translation tables of each task.

Translation table entries contain a non-global (nG) bit. If the nG bit is set for a particular page, it is
associated with a specific task or application. If the bit is marked as 0, then the entry is global and
applies to all tasks.

For non-global entries, when the TLB is updated and the entry is marked as non-global, a value is
stored in the TLB entry in addition to the normal translation information. This value is called the
Address Space ID, which is a number that is assigned by the OS to each individual task.

Subsequent TLB look-ups only match on that entry if the current ASID matches with the ASID
stored in the entry. This enables multiple valid TLB entries to be present for a particular page that
is marked as non-global, but with different ASID values. In other words, it is not necessary to clean
or invalidate the TLBs when context switching takes place.

This ASID value can be specified as either an 8-bit or 16-bit value, which is controlled by the
TCR_EL1.AS bit. The current ASID value is specified in either TTBR0_EL1 or TTBR1_EL1.
TCR_EL1 controls which TTBR holds the ASID, but typically, it is TTBR0_EL1, as this corresponds
to application space.

Armv8-A Address Translation

Copyright © 2017-2019 Arm Limited or its affiliates. All rights reserved.

Page 31 of 32 Arm 100940_0101_en

Note

Having the current value of the ASID stored in the translation table register means that
both the translation tables and the ASID can be atomically modified in a single instruction.
This simplifies the process of changing the table and ASID when compared with the Armv7-
A architecture.

Additionally, the Armv8-A architecture provides Thread ID registers for use by operating system
software. These have no hardware significance and are typically used by threading libraries as a
base pointer to per-thread data. This is often referred to as Thread Local Storage (TLS). For
example, the Pthreads library uses this feature and includes the following registers:

• User Read and Write Thread ID Register (TPIDR_EL0).

• User Read-Only Thread ID Register (TPIDRRO_EL0).

• Thread ID Register, privileged accesses only (TPIDR_EL1).

Armv8-A Address Translation

Copyright © 2017-2019 Arm Limited or its affiliates. All rights reserved.

Page 32 of 32 Arm 100940_0101_en

12 System MMU
Devices like a DMA or GPU in a compute system see the physical address space, so when they are
programmed, you must use the PA to specify the source and destination addresses for a DMA, or
the frame buffer location for a GPU. This is normally handled by kernel level code, which makes
calls into the kernel to get the VA to PA mappings.

When second stage translation is added, the kernel no longer sees ‘real’ physical addresses. It sees
IPAs instead. This means that if a pointer is passed from the kernel module to the GPU or DMA it
could be the wrong address.

One solution to this is for a hypervisor to intercept all communication between the OS and the
device, with the Hypervisor translating passed addresses from the IPA to the PA. This approach is
potentially expensive, as it would mean that you had to take an exception (to enter the
Hypervisor) every time you wrote to one of the memory mapped registers of the device.

The alternative approach is to make the device see the same IPA space as the kernel, which is
where the System MMU (SMMU) comes in.

Application

Guest OS

SMMU

Hypervisor

Memory system/peripherals

DMAVA

IPA

PA

The SMMU is effectively an external copy of the MMU inside the processor. It can be placed in
your system between a device (like a DMA or GPU) and the interconnect. Any transaction passing
through the SMMU can then be translated, meaning that the DMA or GPU sees a translated
address space.

The SMMU architecture uses the same translation table formats as Armv7-A and Armv8-A. So an
SMMU is typically pointed at the same set of tables in memory as the processor is using. This
means that the DMA or GPU can have the same view of memory as the guest OS, removing the
need for the costly trapping by the Hypervisor in software. The SMMU architecture allows for
designs that do stage 1 translation (VA to IPA), stage 2 (IPA to PA) or both (VA to IPA to PA). Not
all implementations support all these options.

Second stage translation only gives the DMA or GPU the same view of memory as the guest OS,
so that the same drive code can be used in a virtualized or non-virtualized system.

	1 Armv8-A Address translation
	2 Separation of kernel and application virtual address spaces
	3 Translating a virtual address to a physical address
	3.1 Secure and Non-secure addresses
	3.2 Multiple virtual address spaces
	3.3 Operation when the Memory Management Unit is disabled
	3.4 Configuring and enabling the MMU

	4 Translation tables in Armv8-A
	4.1 AArch64 descriptor format
	4.2 Effect of granule sizes on translation tables
	4KB
	16KB
	64KB

	4.3 Cache configuration
	4.4 Cache policies
	4.5 Memory attributes

	5 Translation table configuration
	5.1 Virtual address tagging

	6 Multiple Address Spaces
	6.1 Two Stage Translations
	6.2 EL2 and EL3 Address Spaces

	7 Access permissions
	8 OS use of translation table descriptors
	9 Security and the MMU
	9.1 Kernel access with user permissions

	10 The Translation Lookaside Buffer
	11 Context switching
	12 System MMU

