Secure software guidelines

Version 1.0

for ARM®v8-M based platforms

arm

Copyright © 2016 Arm Limited or its affiliates. All rights reserved.
100720_0100_0100_en



Secure software guidelines

Secure software guidelines
for ARM®v8-M based platforms

Copyright © 2016 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

0100 23 August 2016 Non-Confidential First release

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of ARM. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is
not intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this
document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms.
This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective

owners. Please follow ARM’s trademark usage guidelines at Attp://www.arm.com/about/trademark-usage-guidelines.php
Copyright © 2016, ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Unrestricted Access is an ARM internal classification.

100720_0100_0100_en Copyright © 2016 Arm Limited or its affiliates. All rights reserved. 2
Non-Confidential


http://www.arm.com/about/trademark-usage-guidelines.php

Secure software guidelines

Product Status
The information in this document is Final, that is for a developed product.
Web Address

http://'www.arm.com

100720_0100_0100_en Copyright © 2016 Arm Limited or its affiliates. All rights reserved.
Non-Confidential


http://www.arm.com

Contents

Secure software guidelines for ARM®v8-M based
platforms

Preface
ADBDOUL RIS DOOK ...t ettt 6
L T=T0 o Lo - GRS 8

Chapter 1 Secure Software Guidelines

1.1 ARM®VE-M Security EXENSION ..........cccccuiiiiiiiiiiiieeiiiies e 1-10
1.2 Security state changes usSing CMSE ............cccooooiiiiiiiieeiit e 1-11
1.3 TeSt TArget INSIIUCHION .......ooeeeeeieieeee e ettt et aaaaaaaaeeens 1-16
1.4 CMSE SUPPOIT ...t ettt ettt 1-18
100720_0100_0100_en Copyright © 2016 Arm Limited or its affiliates. All rights reserved. 4

Non-Confidential



Preface

This preface introduces the Secure software guidelines for ARM®*v8-M based platforms.

It contains the following:
*  About this book on page 6.
» Feedback on page 8.

100720_0100_0100_en Copyright © 2016 Arm Limited or its affiliates. All rights reserved.
Non-Confidential



Preface
About this book

About this book

Product revision status

The rmpn identifier indicates the revision status of the product described in this book, for example, r1p2,
where:

rm Identifies the major revision of the product, for example, rl.
pn Identifies the minor revision or modification status of the product, for example, p2.

Intended audience

Using this book
This book is organized into the following chapters:

Chapter 1 Secure Software Guidelines
You must meet several requirements when creating Secure software for an ARM®v8-M based
platform. These include requirements to generate special instructions (BXNS and BLXNS) to branch
to Non-secure code and the requirement to preserve and protect Secure register values before
calling Secure functions. CMSE is an extension to the C language that can be implemented by
tool vendors to provide a standard way to generate this code.

Glossary

The ARM Glossary is a list of terms used in ARM documentation, together with definitions for those
terms. The ARM Glossary does not contain terms that are industry standard unless the ARM meaning
differs from the generally accepted meaning.

See the ARM Glossary for more information.

Timing diagrams

The following figure explains the components used in timing diagrams. Variations, when they occur,
have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded
area at that time. The actual level is unimportant and does not affect normal operation.

Clock
HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

e

High impedance to stable bus
Figure 1 Key to timing diagram conventions

Signals

The signal conventions are:

(o))

100720_0100_0100_en Copyright © 2016 Arm Limited or its affiliates. All rights reserved.
Non-Confidential


http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Preface
About this book
Signal level

The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW.
Asserted means:

* HIGH for active-HIGH signals.
+  LOW for active-LOW signals.

Lowercase n

At the start or end of a signal name denotes an active-LOW signal.

100720_0100_0100_en Copyright © 2016 Arm Limited or its affiliates. All rights reserved. 7
Non-Confidential



Preface
Feedback

Feedback

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

* The product name.

* The product revision or version.

* An explanation with as much information as you can provide. Include symptoms and diagnostic
procedures if appropriate.

Feedback on content
If you have comments on content then send an e-mail to errata@arm.com. Give:

* The title Secure software guidelines for ARMvS-M based platforms.
* The number 100720 0100 0100 en.

» If applicable, the page number(s) to which your comments refer.

* A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Note

ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

100720_0100_0100_en Copyright © 2016 Arm Limited or its affiliates. All rights reserved. 8
Non-Confidential


mailto:errata@arm.com

Chapter 1
Secure Software Guidelines

You must meet several requirements when creating Secure software for an ARM®v8-M based platform.
These include requirements to generate special instructions (BXNS and BLXNS) to branch to Non-secure
code and the requirement to preserve and protect Secure register values before calling Secure functions.
CMSE is an extension to the C language that can be implemented by tool vendors to provide a standard
way to generate this code.

It contains the following sections:

» 1.1 ARM*v8-M Security Extension on page 1-10.

» 1.2 Security state changes using CMSE on page 1-11.
e 1.3 Test Target instruction on page 1-16.

* 1.4 CMSE Support on page 1-18.

100720_0100_0100_en Copyright © 2016 Arm Limited or its affiliates. All rights reserved. 1-9
Non-Confidential



1 Secure Software Guidelines
1.1 ARM®v8-M Security Extension

1.1 ARM®v8-M Security Extension

The Security Extension is an optional part of the ARMv8-M architecture. It defines a system-wide
division of physical memory into Secure regions and Non-secure regions, and two system-wide security
states that are enforced by hardware.

The architecture supports the creation of a Trusted software stack that provides features such as Secure
remote firmware updates, while significantly reducing the attack surface of such code. This is an
important feature for any network-connected device that can be updated after deployment, including any
IoT device.

The ARMvS8-M architecture does not support the A32 instruction set.

The ARMvS8-M architecture is designed to combine Secure and Non-secure software. It gives vendors
the ability to protect their software assets, both code and data, by restricting access to the memory where
their software assets reside, except for a set of explicitly exported entry points that are defined by the
vendor.

There is a direct relation between the memory regions and the security states:

* Code that is executed from a Non-secure region (Non-secure code) is executed in Non-secure state
and can only access memory in Non-secure regions.

* Code that is executed from a Secure region (Secure code) is executed in Secure state and can access
memory in both Secure and Non-secure regions.

Attempts to access Secure regions from Non-secure code or a mismatch between the (Secure or Non-
secure) code that is executed and the security state of the system results in a SecureFault in the
ARMVvV8-M architecture with Main Extension, or a HardFault in the ARMv8-M architecture.

The security states are orthogonal to the processor mode, as the following figure shows:

Secure MNon-secure

MNon-secure handler

Secure handler

Handler (Privileged) (Privileged)
Privileged Privileged
Secure thread Non-secure thread
Thread

Unprivileged

Unprivileged

Secure thread Mon-secure thread

Memory regions can be defined by the system through the Implementation Defined Attribution Unit
(IDAU) or can be controlled in software through the memory mapped Secure Attribution Unit (SAU)
registers.

Parts of the system are banked between the security states. The Stack Pointer is banked, resulting in a
Stack Pointer for each combination of security state and mode. All parts of the system accessible in Non-
secure state can be accessed in Secure state as well, including the banked parts.

100720_0100_0100_en Copyright © 2016 Arm Limited or its affiliates. All rights reserved. 1-10
Non-Confidential



1 Secure Software Guidelines
1.2 Security state changes using CMSE

1.2 Security state changes using CMSE

Transitions from Secure to Non-secure state can be initiated by software by using either a BXNS or BLXNS
instruction that has the Least Significant Bit (LSB) of the target address unset. This enables the LSB of
an address to denote the security state.

The system boots in Secure state and can change security states using branches, as the following figure
shows:

BLXMS call
to Mon-secure function

| BL to SG call |

to entry function

MNen-secure

state

BAMNS return
from entry function

BX to FNC_RETURN return
from Non-secure function

Note

» Transitions from Non-secure to Secure state can be initiated by software in two ways:

— A branch to a Secure gateway.
— A branch to the reserved value FNC_RETURN.

A Secure gateway is an occurrence of the Secure Gateway instruction (SG) in a special type of Secure
region, named a Non-secure Callable (NSC) region. When branching to a Secure Gateway from Non-
secure state, the SG instruction switches to the Secure state and clears the LSB of the return address in the
LR. In any other situation, the SG instruction does not change the security state or modify the return
address. The SG instruction must be fetched from NSC memory.

A branch to the reserved value FNC_RETURN causes the hardware to switch to Secure state, read an
address from the top of the Secure stack, and branch to that address. The reserved value FNC_RETURN is
written to the LR when executing the BLXNS instruction.

Security state transitions can be caused by hardware through the handling of interrupts. Those transitions
are transparent to software.

This section contains the following subsections:

* 1.2.1 Secure code requirements on page 1-11.
» 1.2.2 Development tools on page 1-13.

1.21 Secure code requirements

To prevent Secure code and data from being accessed from Non-secure state, Secure code must meet
several requirements. The responsibility for meeting these security requirements is shared between
hardware, toolchain, and software developer.

100720_0100_0100_en Copyright © 2016 Arm Limited or its affiliates. All rights reserved. 1-1
Non-Confidential



1 Secure Software Guidelines
1.2 Security state changes using CMSE

Information leakage

Information leakage from the Secure state to the Non-secure state can occur through parts of the system
that are not banked between the security states.

The unbanked registers that are accessible by software are:

* General purpose registers except for the Stack Pointer (R0-R12, R14-R15).
» Floating-point registers (S0-S31, D0-D15).

« TheN,Z,C,V,Q, and GE bits of the xPSR register.

* The FPSCR register.

Secure code must clear secret information from unbanked registers before initiating a transition from
Secure to Non-secure state.

Non-secure memory access

When Secure code has to access Non-secure memory using an address that is calculated by the Non-
secure state, it cannot trust that the address lies in a Non-secure memory region. Furthermore, the
Memory Processing Unit (MPU) is banked between the security states. Secure and Non-secure code
might have different access rights to Non-secure memory.

Secure code that accesses Non-secure memory on behalf of the Non-secure state must only do so if the
Non-secure state has permission to perform the same access itself. The Secure code can use the TT
instruction to check Non-secure memory permissions.

Take care when using Secure code to access Non-secure memory unless it does so on behalf of the Non-
secure state. Data belonging to Secure code must reside in Secure memory.

Volatility of Non-secure memory

Non-secure memory can be changed asynchronously to the execution of Secure code.

There are two possible causes:

* Interrupts that are handled in Non-secure state can change Non-secure memory.
* The debug interface can be used to change Non-secure memory.

There can be unexpected consequences when Secure code accesses Non-secure memory. For example:

int array[N]

void foo(int *p) {
if (*p >= 0 && *p < N) {
// Non-secure memory (*p) is changed at this point
array[*p] = ©;

}
Secure code must treat Non-secure memory as volatile memory.

When the pointer p points to Non-secure memory, it is possible for its value to change after the memory
accesses used to perform the array bounds check, but before the memory access used to index the array.
Such an asynchronous change to Non-secure memory would render this array bounds check useless.

You can handle this as follows:

int array[N]

void foo(volatile int *p) {
int 1 = *p;
if (1 >= 0 & i < N) {
array[i] = 0;

100720_0100_0100_en Copyright © 2016 Arm Limited or its affiliates. All rights reserved. 1-12
Non-Confidential



1 Secure Software Guidelines
1.2 Security state changes using CMSE

Inadvertent Secure Gateway

An SG instruction can occur inadvertently. If an inadvertent SG instruction occurs in an NSC region, the
result is an inadvertent Secure Gateway.

An inadvertent SG instruction can occur in the following cases:

*  Uninitialized memory.

* General data in executable memory, for example jump tables.

* A 32-bit wide instruction that contains the bit pattern 8b1110100101111111 in its first halfword that
follows an SG instruction, for example two successive SG instructions.

* A 32-bit wide instruction that contains the bit pattern 0b1110100101111111 in its last halfword that is
followed by an SG instruction, for example an SG instruction that follows an LDR (immediate)
instruction.

If an inadvertent SG instruction occurs in an NSC region, the result is an inadvertent Secure Gateway.
Memory in an NSC region must not contain an inadvertent SG instruction.

The Secure Gateway veneers limit the instructions that must be placed in NSC regions. If the NSC
regions contain only these veneers, an inadvertent Secure Gateway cannot occur.

1.2.2 Development tools

Development tools are expected to provide C and assembly language support for interacting between the
security states. Code that is written in C++ must use the extern C linkage for any inter-state interaction.

Security state changes must be expressed through function calls and returns.
This use of the extern C linkage provides an interface that fits naturally with the C language.

A function in Secure code that can be called from the Non-secure state through its Secure gateway is
called an entry function. A function call from Secure state to the Non-secure state is called a Non-secure
function call.

The following figure shoes security state transitions:

BLXNS call
to NMon-secure function

| BL to SG call

to entry function

Secure Mon-secure

state state

BXNS return
from entry function I

BX to FNC_RETURN return
from Non-secure function

Executable files

There are two different types of executable files, one for each security state. The Secure state executes
Secure code from a Secure executable file. The Non-secure state executes Non-secure code from a Non-
secure executable file. The Secure and Non-secure executable files are developed independently of each
other.

100720_0100_0100_en Copyright © 2016 Arm Limited or its affiliates. All rights reserved. 1-13
Non-Confidential



1 Secure Software Guidelines
1.2 Security state changes using CMSE

A Non-secure executable is unaware of security states.

From the point of view of the Non-secure state, a call to a Secure gateway is a regular function call, as is
the return from a Non-secure function call. You can develop Non-secure code with a toolchain that is not
CMSE aware, that is, you do not require new tool features when you are only building Non-secure code.

Developing a Secure executable file requires toolchain support whenever a function is called from, calls,
or returns to Non-secure state and whenever memory is accessed through an address that is provided by
the Non-secure state. The Secure code ABI is otherwise identical to the Non-secure code ABI.

The following figure shows the interaction between developers of Secure code, Non-secure code, and
(optional) security agnostic library code:

Library headers Archive library

MNon-secure code
developers

Secure code
developers

i

Secure
executable file

Secure gateway
import library

Entry function Mon-secure

handlers executable file

The Secure gateway import library contains the addresses of the Secure gateways of the Secure code.
This import library consists of or contains a relocatable file that defines symbols for all the Secure
gateways. The Non-secure code links against this import library to use the functionality that is provided
by the Secure code.

A relocatable file containing only copies of the (absolute) symbols of the Secure gateways in the Secure
executable must be available to link Non-secure code against.

Linking against this import library is the only requirement on the toolchain that is used to develop the
Non-secure code. This functionality is similar to calling ROM functions, and is expected to be available
in existing toolchains.

100720_0100_0100_en Copyright © 2016 Arm Limited or its affiliates. All rights reserved. 1-14
Non-Confidential



1 Secure Software Guidelines
1.2 Security state changes using CMSE

Secure gateway veneers

A toolchain must support generating a Secure gateway veneer for each entry function with external
linkage. It consists of an SG instruction followed by a B.W instruction that targets the entry function it
veneers.

Secure gateway veneers decouple the addresses of Secure gateways (in NSC regions) from the rest of the
Secure code. By maintaining a vector of Secure gateway veneers at a forever-fixed address, the rest of
the Secure code can be updated independently of Non-secure code. This also limits the amount of code in
NSC regions that potentially can be called by the Non-secure state.

Vectors of Secure gateway veneers are expected to be placed in NSC memory. All other code in the
Secure executable is expected to be placed in Secure memory regions. This placement is under the
control of the developer.

Preventing inadvertent Secure gateways is a responsibility that is shared between a developer and their
toolchain. A toolchain must make it possible for a developer to avoid creating inadvertent Secure
gateways.

Excluding the first instruction of a Secure gateway veneer, a veneer must not contain the bit pattern of
the SG instruction on a 2-byte boundary.

A vector of Secure gateway veneers must be aligned to a 32-byte boundary, and must be zero padded to a
32-byte boundary.

The developer must take care that the code or data before the vector of Secure gateway veneers does not
create an inadvertent Secure gateway with the first Secure gateway veneer in the vector. ARM
recommends placing the vector of Secure gateway veneers at the start of an NSC region.

The position of Secure gateway veneers in a vector must be controllable by the developer.

This last requirement gives the developer complete control over the address of a Secure gateway veneer.
It allows the developer to fix the addresses of the Secure gateway veneers so that Secure code can be
updated independently of Non-secure code.

The following figure shows the memory layout of a Secure executable:

Mon-secure Callable region Secure region

veneer entry function

Internal
functions of
executable

chain and the
toolchain

veneer entry function

veneer entry function

Secure code

w
=
=
Ll
@
41
-
0
e
¥
o
el

gateway veneers

veneer entry function

Secure data

Heap Global data

100720_0100_0100_en Copyright © 2016 Arm Limited or its affiliates. All rights reserved. 1-15
Non-Confidential



1 Secure Software Guidelines
1.3 Test Target instruction

1.3 Test Target instruction

To allow software to determine the security attribute of a memory location, the Test Target (TT)
instruction is used.

TT queries the security state and access permissions of a memory location.

Test Target Unprivileged (TTT) queries the security state and access permissions of a memory location for
an unprivileged access to that location.

Test Target Alternate Domain (TTA) and Test Target Alternate Domain Unprivileged (TTAT) query the
security state and access permissions of a memory location for a Non-secure access to that location.
These instructions are only valid when executing in Secure state, and are UNDEFINED if used from Non-
secure state.

When executed in the Secure state the result of this instruction is extended to return the Security
Attribution Unit (SAU) and Implementation Defined Attribution Unit (IDAU) configurations at the
specific address.

For each memory region defined by the SAU and IDAU, there is an associated region number that is
generated by the SAU or by the IDAU. This region number is used by software to determine whether a
contiguous range of memory shares common security attributes.

The TT instruction returns the security attributes and region number, and the MPU region number, from
an address value. By using a TT instruction on the start and end addresses of the memory range, and
identifying that both reside in the same region number, software can quickly determine that the memory
range, for example, for data array or data structure, is located entirely in Non-secure space.

The TT instruction is useful for determining the security state of the MPU at that address. Although the
instruction cannot be accessed in C/C++ code there are several intrinsics which make this functionality
available to the developer.

The <arm_cmse.h> header must be included before using the TT intrinsics.

This section contains the following subsections:
* [.3.1 TT intrinsics on page 1-16.
* [.3.2 Address range check intrinsic on page 1-17.

1.3.1 TT intrinsics

The result of the TT instruction is described by a C type containing bit-fields. This type is used as the
return type of the TT intrinsics.

Table 1-1 TT intrinsics

Intrinsic Semantics
cmse_address_info_t cmse_TT(void *p) Generates a TT instruction.
cmse_address_info_t cmse_TT_fptr(p) Generates a TT instruction. The argument p can be any function
pointer type.
cmse_address_info_t cmse_TTT(void *p) Generates a TT instruction with the T flag.
cmse_address_info_t cmse_TTT_fptr(p) Generates a TT instruction with the T flag. The argument p can be
any function pointer type.
Note
ARM recommends that a toolchain behaves as if these intrinsics would write the pointed-to memory.
This prevents subsequent accesses to this memory being scheduled before this intrinsic.
100720_0100_0100_en Copyright © 2016 Arm Limited or its affiliates. All rights reserved. 1-16

Non-Confidential



1 Secure Software Guidelines
1.3 Test Target instruction

The exact type signatures for cmse_TT_fptr() and cmse_TTT_fptr() are implementation-defined
because there is no type that is defined by the C propgramming language that can hold all function
pointers.

Note

ARM recommends implementing these intrinsics as macros.

1.3.2 Address range check intrinsic

Checking the result of the TT instruction on an address range is essential for programming in C. It is used
to check permissions on objects larger than a byte. The address range check intrinsic defined in this
section can be used to perform permission checks on C objects.

Some Secure Attribution Unit (SAU), Implementation Defined Attribution Unit (IDAU), and Memory
Protection Unit (MPU) configurations block the efficient implementation of an address range check. This
intrinsic operates under the assumption that the configuration of the SAU, IDAU, and MPU is
constrained as follows:

* An object is allocated in a single region.

* A stack is allocated in a single region.

These points imply that a region does not overlap other regions.

The TT instruction returns an SAU, IDAU, and MPU region number. When the region numbers of the
start and end of the address range match, the complete range is contained in one SAU, IDAU, and MPU
region. In this case two TT instructions are executed to check the address range.

Regions are aligned at 32-byte boundaries. If the address range fits in one 32-byte address line, a single
TT instruction suffices.

ARM recommends that software developers use the returned pointer to access the checked memory
range. This generates a data dependency between the checked memory and all its subsequent accesses
and prevents these accesses from being scheduled before the check.

100720_0100_0100_en Copyright © 2016 Arm Limited or its affiliates. All rights reserved. 1-17
Non-Confidential



1 Secure Software Guidelines
1.4 CMSE Support

1.4 CMSE Support

The <arm_cmse.h> header defines the language extension that provides support for Secure executable
files that are written in the C language. Non-secure executable files do not require any additional
toolchain support.

The <arm_cmse. h> header must be included before using CMSE support, except for using the
__ARM_FEATURE_CMSE macro.

Bits 0 and 1 of feature macro _ ARM_FEATURE_CMSE are set if CMSE support for Secure executable files
is available.

The availability of CMSE implies availability of the TT instruction.

A compiler might provide a switch to enable support for creating CMSE Secure executable files. ARM
recommends such a switch to be named -mcmse.

This section contains the following subsections:
* [.4.1 Non-secure memory usage on page 1-18.
e [.4.2 Non-secure function call on page 1-20.

141 Non-secure memory usage

Secure code must only use Secure memory except when communicating with the Non-secure state. The
security implications of accessing Non-secure memory through a pointer are the responsibility of the
developer.

Arguments and return value

A caller from the Non-secure state is not aware it is calling an entry function. If it must use the stack to
write arguments or read a result value that uses the Non-secure stack.

If a toolchain supports stack-based arguments, it must be aware of the volatile behavior of Non-secure
memory and the requirements of using Non-secure memory.

In practice, a compiler might generate code that:

» Copies stack-based arguments from the Non-secure stack to the parameter on the Secure stack in the
prologue of the entry function.
» Copies the stack-based return value from the Secure stack to the Non-secure stack in the epilogue.

A possible optimization would be to access the Non-secure stack directly for arguments that read at most
once, but accessibility checks are still required.

The following figure shows the stack use of an entry function:

100720_0100_0100_en Copyright © 2016 Arm Limited or its affiliates. All rights reserved. 1-18
Non-Confidential



1 Secure Software Guidelines
1.4 CMSE Support

Mon-secure stack Secure stack

Secure caller

#include =arm.cmse.h>
#define CA omse_nonsecure_call Before the call

#define NS __atribute__(({CA))

Struct s { int a[4]; } o; val
:cn‘d foo(vaid) Start of body

3;1mftn ifﬂﬁl Eg} ; val val
S gal3]

val val

A pointer for the (Non-secure) result value ga[3]
Sen
g.a[0] o g.a[2] are passed in registers R|-R3 val val
Uninitialized space is highlighted in blue. ga[3]

Return from an entry function
An entry function must use the BXNS instruction to return to its Non-secure caller.

This instruction switches to Non-secure state if the target address has its LSB unset. The LSB of the
return address in the LR is automatically cleared by the SG instruction when it switches the state from
Non-secure to Secure.

Note

To prevent information leakage when an entry function returns, the registers that contain secret
information must be cleared.

The code sequence directly preceding the BXNS instruction that transitions to Non-secure code must:

¢ Clear all caller-saved registers except:

— Registers that hold the result value and the return address of the entry function.

— Registers that do not contain secret information.

Clear all registers and flags that have UNDEFINED values at the return of a procedure, according to
the Procedure Call Standard for the ARM Architecture (AAPCS).

* Restore all callee-saved registers as required by the AAPCS.

Floating-point registers can be cleared conditionally by checking the SFPA bit of the special-purpose
CONTROL register.

A toolchain could provide the developer with the means to specify that some types of variables never
hold secret information, for example by setting the TS bit of FPCCR. The Security Extension assumes
that floating-point registers never hold secret information.

Because of these requirements, performing tail-calls from an entry function is difficult.

Security state of the caller

An entry function can be called from Secure or Non-secure state. Software must distinguish between
these cases.

To enable this the Security Extension defines an intrinsic:

100720_0100_0100_en Copyright © 2016 Arm Limited or its affiliates. All rights reserved. 1-

-

9
Non-Confidential

Time



1 Secure Software Guidelines
1.4 CMSE Support

Table 1-2 Security state of the caller intrinsic

Intrinsic Semantics

int cmse_nonsecure_caller(void) Returns non-zero if entry function is called from Non-secure state
and zero otherwise.

1.4.2 Non-secure function call

A call to a function that switches state from Secure to Non-secure is called a Non-secure function call. A
Non-secure function call must use function pointers. This is a consequence of separating Secure and
Non-secure code into separate executable files.

A Non-secure function type must be declared using the function attribute
__attribute_ ((cmse_nonsecure_call)).

A Non-secure function type must only be used as a base type of a pointer. This restriction disallows
function definitions with this attribute and ensures that a Secure executable file only contains Secure
function definitions.

Performing a call

A function call through a pointer with a Non-secure function type as its base type must switch to the
Non-secure state. To create a function call that switches to the Non-secure state, an implementation must
emit code that clears the LSB of the function address and branches using the BLXNS instruction.

Note

A Non-secure function call to an entry function is possible. This call to an entry function behaves like
any other Non-secure function call.

All registers that contain secret information must be cleared to prevent information leakage when
performing a Non-secure function call. Registers that contain values that are used after the Non-secure
function call must be restored after the call returns. Secure code cannot depend on the Non-secure state
to restore these registers.

The code sequence directly preceding the BLXNS instruction that transitions to Non-secure code must:

+ Save all callee- and live caller-saved registers by copying them to Secure memory.
¢ Clear all callee- and caller-saved registers except:
— The LR.
— The registers that hold the arguments of the call.
— Registers that do not hold secret information.
e Clear all registers and flags that have UNDEFINED values at the entry to a procedure according to
the AAPCS.

A toolchain could provide the developer with the means to specify that some types of variables never
hold secret information.

When the Non-secure function call returns, caller and callee that are saved registers that are saved before
the call must be restored.

An implementation need does not have to save and restore a register if its value is not live across the call.
However, callee-saved registers are live across the call in almost all situations. These requirements
specify behavior that is similar to a regular function call, except that:

* Callee-saved registers must be saved as if they are caller-saved registers.

» Registers that are not banked and potentially contain secret information must be cleared.

The floating-point registers can efficiently be saved and cleared using the VLSTM instruction, and restored
using VLLDM instruction.

100720_0100_0100_en Copyright © 2016 Arm Limited or its affiliates. All rights reserved. 1-20
Non-Confidential



1 Secure Software Guidelines
1.4 CMSE Support

Arguments and return value

The callee of a Non-secure function call is called in Non-secure state. If stack usage is required
according to the AAPCS, the Non-secure state expects the arguments on the Non-secure stack and writes
the return value to Non-secure memory.

The stack usage during a Non-secure function call is shown in the following figure.

Mon-secure caller Mon-secure stack Secure stack

Jf interface of secure code rt of prologue
struct 5 { int af4]; 1 g; P g
struct s entryfunc{struct s);

|

val

Jfcalls the entry function

void foo(void) g.a[3]

i
struct s val; )
val = entryfunc(g); Start of de}f
g=-5;

! val val

ga[3] ga[3]

Return of call

val val

ga[3] ga[3]

A pointer for the result value is passed in RO

g.a[0] o g.a[2] are passed in registers R1-R3

End of epilogue

Uninitialized space is highlighted in blue. val

gaf3]

Table 1-3 Non-secure function call intrinsics

Intrinsic Semantics

cmse_nsfptr_create(p) Returns the value of p with its LSB cleared. The argument p can
be any function pointer type.

cmse_is_nsfptr(p) Returns non-zero if p has LSB unset, zero otherwise. The
argument p can be any function pointer type.

Note

The exact type signatures of these intrinsics are implementation-defined because there is no type defined
by the C programming language that can hold all function pointers. ARM recommends implementing
these intrinsics as macros and recommends that the return type of cmse_nsfptr_create() is identical to
the type of its argument.

A Non-secure returning function must be declared by using the attribute
__attribute__((cmse_nonsecure_return)) on a function declaration.

A Non-secure returning function has a special epilogue, identical to that of an entry function.

100720_0100_0100_en Copyright © 2016 Arm Limited or its affiliates. All rights reserved. 1-21
Non-Confidential

Time



	Secure software guidelines for ARM®v8‑M based platforms
	Table of Contents
	Preface
	About this book
	Product revision status
	Intended audience
	Using this book
	Glossary
	Timing diagrams
	Signals


	Feedback
	Feedback on this product
	Feedback on content


	1 : Secure Software Guidelines
	1.1 : ARM®v8‑M Security Extension
	1.2 : Security state changes using CMSE
	1.2.1 : Secure code requirements
	Information leakage
	Non-secure memory access
	Volatility of Non-secure memory
	Inadvertent Secure Gateway

	1.2.2 : Development tools
	Executable files
	Secure gateway veneers


	1.3 : Test Target instruction
	1.3.1 : TT intrinsics
	1.3.2 : Address range check intrinsic

	1.4 : CMSE Support
	1.4.1 : Non-secure memory usage
	Arguments and return value
	Return from an entry function
	Security state of the caller

	1.4.2 : Non-secure function call
	Performing a call
	Arguments and return value




