
Memory Protection Unit (MPU)
Version 1.0

Copyright © 2016 ARM. All rights reserved.
ARM 100699_0100_00_en

Memory Protection Unit (MPU)

Copyright © 2016 ARM. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

0100-00 08 July 2016 Non-Confidential First release

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of ARM. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is
not intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this
document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms.
This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective
owners. Please follow ARM’s trademark usage guidelines at http://www.arm.com/about/trademark-usage-guidelines.php

Copyright © 2016, ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Unrestricted Access is an ARM internal classification.

 Memory Protection Unit (MPU)

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 2
Non-Confidential

http://www.arm.com/about/trademark-usage-guidelines.php

Product Status

The information in this document is Final, that is for a developed product.

Web Address

http://www.arm.com

 Memory Protection Unit (MPU)

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 3
Non-Confidential

http://www.arm.com

Contents
Memory Protection Unit (MPU)

Preface
About this book 9
Feedback 11

Chapter 1 Introduction
1.1 About the MPU 1-13
1.2 Key features of the MPU 1-14
1.3 MPU programmers' model changes for the ARM®v8-M architecture 1-15

Chapter 2 Memory type definitions
2.1 Memory type definitions in the ARM®v8-M architecture 2-17
2.2 Memory system and memory partitioning .. 2-21

Chapter 3 Memory configuration
3.1 MPU registers .. 3-23
3.2 Attribute indirection .. 3-25

Chapter 4 Register definitions
4.1 MPU_TYPE 4-27
4.2 MPU_CTRL 4-28
4.3 MPU_RNR 4-30
4.4 MPU_RBAR .. 4-31
4.5 MPU_RLAR 4-33
4.6 MPU_RBAR_A1/2/3 and MPU_RLAR_A1/2/3 4-34

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 4
Non-Confidential

4.7 MPU_MAIR0, MPU_MAIR1 4-35
4.8 Configuring an MPU region 4-36

Chapter 5 CMSIS MPU support
5.1 CMSIS-CORE .. 5-39

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 5
Non-Confidential

List of Figures
Memory Protection Unit (MPU)

Figure 1 Key to timing diagram conventions ... 10
Figure 1-1 MPU memory regions .. 1-15
Figure 2-1 Shareability groups .. 2-19
Figure 3-1 Attribute indirection .. 3-25
Figure 4-1 MPU_TYPE bit assignments ... 4-27
Figure 4-2 MPU_CTRL bit assignments ... 4-28
Figure 4-3 MPU_RNR bit assignments ... 4-30
Figure 4-4 MPU_RBAR bit assignments ... 4-31
Figure 4-5 MPU_RLAR bit assignments ... 4-33
Figure 4-6 MPU_MAIR0, MPU_MAIR1 bit assignments ... 4-35
Figure 4-7 Configuring an MPU region ... 4-37

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 6
Non-Confidential

List of Tables
Memory Protection Unit (MPU)

Table 2-1 Cache attributes .. 2-18
Table 3-1 MPU registers .. 3-23
Table 4-1 MPU_TYPE bit assignments ... 4-27
Table 4-2 MPU_CTRL bit assignments ... 4-28
Table 4-3 MPU_RNR bit assignments ... 4-30
Table 4-4 MPU_RBAR bit assignments ... 4-31
Table 4-5 MPU_RLAR bit assignments ... 4-33
Table 5-1 Standardized names for MPU registers ... 5-39

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 7
Non-Confidential

Preface

This preface introduces the Memory Protection Unit (MPU) .

It contains the following:
• About this book on page 9.
• Feedback on page 11.

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 8
Non-Confidential

 About this book

 Product revision status

The rmpn identifier indicates the revision status of the product described in this book, for example, r1p2,
where:

rm Identifies the major revision of the product, for example, r1.
pn Identifies the minor revision or modification status of the product, for example, p2.

 Intended audience

 Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
The Memory Protection Unit (MPU) is a programmable unit that allows privileged software to
define memory access permissions for up to 16 separate memory regions. This chapter provides
an overview of the MPU programmers' model and summarizes its key features.

Chapter 2 Memory type definitions
In the ARMv8-M architecture, memory types are divided into Normal Memory and Device
Memory. If the ARMv8-M architecture with Security Extension is implemented, the memory
space is partitioned into Secure and Non-secure memory regions.

Chapter 3 Memory configuration
The MPU is configured by a series of memory mapped registers in the System Control Space
(SCS). This chapter lists the MPU registers, and describes the attribute indirect mechanism that
allows multiple MPU regions to share a set of memory attributes.

Chapter 4 Register definitions
This chapter shows the bit assignments for each of the MPU registers.

Chapter 5 CMSIS MPU support
ARMv8-M processors provide software support with an initiative called the Cortex
Microcontroller Software Interface Standard (CMSIS). This chapter lists the standardized names
for MPU registers, and provides configuration settings to initialize CMSIS MPU.

Glossary

The ARM Glossary is a list of terms used in ARM documentation, together with definitions for those
terms. The ARM Glossary does not contain terms that are industry standard unless the ARM meaning
differs from the generally accepted meaning.

See the ARM Glossary for more information.

Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

 Preface
 About this book

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 9
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
ARM glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

Timing diagrams

The following figure explains the components used in timing diagrams. Variations, when they occur,
have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded
area at that time. The actual level is unimportant and does not affect normal operation.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus

Figure 1 Key to timing diagram conventions

Signals

The signal conventions are:

Signal level
The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW.
Asserted means:
• HIGH for active-HIGH signals.
• LOW for active-LOW signals.

Lowercase n
At the start or end of a signal name denotes an active-LOW signal.

 Preface
 About this book

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 10
Non-Confidential

 Feedback

 Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

 Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Memory Protection Unit (MPU) .
• The number ARM 100699_0100_00_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.
 Note

ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Preface
 Feedback

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 11
Non-Confidential

mailto:errata@arm.com

Chapter 1
Introduction

The Memory Protection Unit (MPU) is a programmable unit that allows privileged software to define
memory access permissions for up to 16 separate memory regions. This chapter provides an overview of
the MPU programmers' model and summarizes its key features.

It contains the following sections:
• 1.1 About the MPU on page 1-13.
• 1.2 Key features of the MPU on page 1-14.
• 1.3 MPU programmers' model changes for the ARM®v8-M architecture on page 1-15.

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 1-12
Non-Confidential

1.1 About the MPU
The Memory Protection Unit (MPU) is a programmable unit that allows privileged software, typically an
OS kernel, to define memory access permission. It monitors transactions, including instruction fetches
and data accesses from the processor, which can trigger a fault exception when an access violation is
detected.

The Protected Memory System Architecture (PMSA) is the architecture that defines the operation of the
MPU inside the ARM® processors. With the development of the ARMv8-M architecture, the PMSA has
been updated to PMSAv8.

The MPU programmers’ model allows the privileged software to define memory regions and assign
memory access permission and memory attributes to each of them. Depending on the implementation of
the processor, the MPU on ARMv8-M processors supports up to 16 regions. The memory attributes
define the ordering and merging behaviors of that region, as well as caching and buffering attributes.
Cache attributes can be used by internal caches, if available, and can be exported for use by system
caches.

ARMv8-M architecture with Main Extension have a dedicated Memory Management Fault
(MemManage) that is triggered by accesses that violate the access permissions that are configured for an
MPU region. The Main Extension also provides the MemManage Fault Status Register (MMFSR) and
the MemManage Fault Address Register (MMFAR) which provide information about the cause of the
fault and the address being accessed in the case of data faults. These provide useful information to RTOS
implementations that isolate memory on a per-thread basis, or provide demand stack allocation.

If the MemManage fault is disabled or cannot be triggered because the current execution priority is too
high, the fault is escalated to a HardFault. ARMv8-M implementations without the Main Extension can
only use the HardFault exception.

If the ARMv8-M Security Extension is included, the Secure and Non-secure worlds have their own
MPU. The number of regions in the Secure and Non-secure MPU can be configured independently and
each can be programmed to protect memory for the associated Security state.

Certain memory accesses including exception vector fetches, accesses to System Control Space (SCS),
which include MPU, NVIC, and SysTick, and the Private Peripheral Bus (PPB), which includes internal
debug components, are not affected by the MPU settings. Also, the MPU configurations do not define the
access permissions and attributes for debug accesses.

1 Introduction
1.1 About the MPU

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 1-13
Non-Confidential

1.2 Key features of the MPU
The ARMv8-M MPU supports a configurable number of programmable regions with a typical
implementation supporting between zero and eight regions per security state.

• The smallest size that can be programmed for an MPU region is 32 bytes.
• The maximum size of any MPU region is 4GB, but must be a multiple of 32 bytes.
• All regions must begin on a 32 byte aligned address.
• Regions have independent read/write access permissions for privileged and unprivileged code.
• The eXecure Never (XN) attribute enables separation of code and data regions.

With ARMv8-M architecture with Security Extension it is possible to have one set of MPU configuration
registers for the Secure world and another set of MPU configuration registers for the Non-secure world.
It is also possible to have the MPU feature available in just one of the security states, or have no MPU at
all. Secure software can access a Non-secure MPU using an alias address (address 0xE002ED90).

1 Introduction
1.2 Key features of the MPU

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 1-14
Non-Confidential

1.3 MPU programmers' model changes for the ARM®v8-M architecture
Although the concepts for the MPU operations are similar, the MPU in the ARMv8-M architecture has a
different programmers’ model to the MPU in previous ARMv8-M architectures.

The following changes have been made to the MPU programmers' model for the ARMv8-M architecture:
• The MPU in the ARMv6-M and ARMv7-M architectures requires that an MPU memory region must

be aligned to an address which is a multiple of the region size, and that the region size must be a
power of two. For example, when creating a memory region from an address 0x3BC00-0x80400,
multiple MPU region registers are required, as in the following figure.

Figure 1-1 MPU memory regions
• In the ARMv8-M architecture the size of an MPU region can be any size (say 274KB) with a

granularity of 32 bytes.
• PMSEv8 does not include subregions as the region size is now more flexible.
• Regions are now not allowed to overlap. As the MPU region definition is much more flexible,

overlapping MPU regions are not necessary.
• Memory regions define memory attributes using an index value which is then looked up in a set of

memory attribute registers.

As the ARMv8-M architecture with Security Extension was not previously available, legacy
configuration code must also be updated to reflect the new features.

1 Introduction
1.3 MPU programmers' model changes for the ARM®v8-M architecture

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 1-15
Non-Confidential

Chapter 2
Memory type definitions

In the ARMv8-M architecture, memory types are divided into Normal Memory and Device Memory. If
the ARMv8-M architecture with Security Extension is implemented, the memory space is partitioned
into Secure and Non-secure memory regions.

It contains the following sections:
• 2.1 Memory type definitions in the ARM®v8-M architecture on page 2-17.
• 2.2 Memory system and memory partitioning on page 2-21.

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 2-16
Non-Confidential

2.1 Memory type definitions in the ARM®v8-M architecture
In the ARMv8-M architecture, memory types are divided into Normal Memory and Device Memory.

 Note

The Strongly Ordered (SO) device memory type in the ARMv6-M and ARMv7-M architectures is a
subset of the Device memory type in ARMv8-M architecture.

This section contains the following subsections:
• 2.1.1 Normal memory on page 2-17.
• 2.1.2 Device Memory on page 2-19.

2.1.1 Normal memory

The Normal memory type can be used for MPU regions that are used to access general instruction or data
memory. Normal memory allows the processor to perform some memory access optimizations, such as
access reordering or merging. Normal memory also allows memory to be cached and is suitable for
holding executable code.

Normal memory must not be used to access peripheral registers Memory Mapped I/O (MMIO); the
Device memory type is intended for that use.

 Note

The Normal memory definition remains largely unchanged from ARMv7-M architecture.

Normal memory can have several attributes that can be applied to it. The following memory attributes
are available:

Cacheability
Memories can be cacheable or non-cacheable.

Shareability
Normal memory can be shareable or Non-shareable.

eXecute Never
Memories can be marked as executable or eXecute Never (XN).

Cacheability

The cacheability can be further divided into cache policy, allocation, and transient hint.

Cache policy
Write-Through or Write-Back

Allocation
Cache line allocation hintas, for read and write access.

Transient hint
A hint to the cache that the data might only be needed in the cache temporarily.

The architecture supports two levels of cache attributes. These are the inner cache and outer cache
attributes.

Typically, the inner cache attribute is used by any integrated caches and the outer cache attributes are
exported using the bus system sideband signals. Depending on the processor implementation, the inner
cache attributes can also be exported to the memory system using extra sideband signals.

2 Memory type definitions
2.1 Memory type definitions in the ARM®v8-M architecture

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 2-17
Non-Confidential

For example, in the AMBA® 5 AHB5 specification, the HPROT signal is used to propagate cache
attributes:

Table 2-1 Cache attributes

HPROT[6]

Shareable

HPROT[5]

Allocate

HPROT[4]

Lookup

HPROT[3]

Modifiable

HPROT[2]

Bufferable

Memory Type

0 0 0 0 0 Device-nE

0 0 0 0 1 Device-E

0 0 0 1 0 Normal Non-
cacheable, Non-
shareable

0 0 or 1 1 1 0 Write-Through,
Non-shareable

0 0 or 1 1 1 1 Write-Back, Non-
shareable

1 0 0 1 0 Normal Non-
cacheable, shareable

1 0 or 1 1 1 0 Write-Through,
shareable

1 0 or 1 1 1 1 Write-Back,
shareable

 Note

The transient attribute is included in the architecture to be consistent with ARMv8-A processors. It
indicates that the benefit of caching is for a relatively short period. Therefore it might be better to restrict
allocation of transient entries, to avoid possibly casting-out other, less transient, entries.

Configuring an MPU region with a cacheable memory type does not mean that the data must be cached
but only indicates to the hardware that it might be cached. If a region is defined as cacheable software
takes responsibility for performing any necessary cache maintenance operations.

Shareability

Many systems have multiple bus masters, either multiple processors, or a mixture of processors and other
masters such as Direct Memory Access (DMA) engines. The shareability attribute allows software to
advertise to the hardware which of these devices must be able to see any updates to a particular area of
memory.

To manage shareability, the ARM architecture groups all masters into one of three domains of memory
shareability:

• Non-shareable memory.
• Inner shareable memory.
• Outer Shareable memory.

The following figure shows how masters are divided into shareability groups.

2 Memory type definitions
2.1 Memory type definitions in the ARM®v8-M architecture

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 2-18
Non-Confidential

Figure 2-1 Shareability groups

Defining the shareability of a memory region imposes some functional requirements on the hardware but
it does not restrict how the hardware implements that functionality.

The Memory Model Feature Register 0 (ID_MMFR0) provides some information about the available
shareability domains and their behaviors.

The Outer Shareable (OSH) requirement is that all masters in the outer sharable domain can see the
effects of any memory updates:
• In a system without caches and just on level of RAM, any master can see any memory update.
• In a system with caches, not all masters can access all caches and the system might either employ

hardware cache coherency to make updates visible, or treat any shareable memory as non-cacheable,
making updates visible.

Non-shareable memory

Non-shareable represents memory accessible only by a single processor or other agent, so memory
accesses never have to be synchronized with other processors. Only the processor itself must see the
information, though it can be made visible to other agents.

Inner shareable memory

Inner shareable memory represents a shareability domain that can be shared by multiple masters, but not
necessarily all the agents in the system. A system might have multiple Inner Shareable domains. An
operation that affects one Inner Shareable domain does not affect other Inner Shareable domains in the
system. All agents inside this domain might be able to see the memory.

Outer shareable memory

An Outer Shareable (OSH) domain reorder is shared by multiple agents and can consist of one or more
Inner shareable domains. An operation that affects an Outer Shareable domain also implicitly affects all
Inner shareable domains inside it. However, it does not otherwise behave as an inner shareable operation.

2.1.2 Device Memory

Device memory must be used for memory regions that cover peripheral control registers. Some of the
optimizations that are permitted for Normal memory, such as access merging or repeating, would be
unsafe for a peripheral register.

The Device memory type has several attributes:

• G or nG – Gathering or non-Gathering. Multiple accesses to a device can be merged into a single
transaction except for operations with memory ordering semantics, for example, memory barrier
instructions, load acquire/store release.

• R or nR – Reordering or Non-reordering.
• E or nE – Early Write Acknowledge (similar to bufferable).

2 Memory type definitions
2.1 Memory type definitions in the ARM®v8-M architecture

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 2-19
Non-Confidential

Only four combinations of these attributes are valid:

• Device-nGnRnE
• Device-nGnRE
• Device-nGRE
• Device-GRE

 Note

Device-nGnRnE is equivalent to ARMv7-M Strongly Ordered memory type and Device-nGnRE is
equivalent to ARMv7-M Device memory.

Device-nGRE and Device-GRE are new to ARMv8-M architecture.

Typically peripheral control registers must be either Device-nGnRE or Device-nGnRnE to prevent
reordering of the transactions in the programming sequences.

Device-nGRE and Device-GRE memory types can be useful for peripherals that memory access
sequence and ordering does not affect results. For example, bitmap or display buffers in display interface.
If the bus interface of such peripheral can only accept certain transfer sizes, the peripheral must be set to
Device-nGRE.

 Note

For most simple processor designs, reordering, and gathering (merging of transactions) do not occur even
if the memory attribute configuration allows it to do so.

2 Memory type definitions
2.1 Memory type definitions in the ARM®v8-M architecture

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 2-20
Non-Confidential

2.2 Memory system and memory partitioning
If the ARMv8-M architecture with Security Extension is implemented the 4GB memory space is
partitioned into Non-secure and Secure memory regions. The Secure memory space is further divided
into two types, Non-secure Callable and Non-secure.

Non-secure Callable (NSC)
NSC is a special type of Secure location. This type of memory is the only type which an
ARMv8-M processor permits to hold an SG instruction that enables software to transition from
Non-secure to Secure state. The inclusion of NSC memory locations removes the need for
Secure software creators to allow for the accidental inclusion of SG instructions, or data sharing
encoding values, in normal Secure memory by restricting the functionality of the SG instruction
to NSC memory only.

Non-secure (NS)
Non-secure transactions are those that originate from masters operating as, or deemed to be,
Non-secure or from Secure masters accessing a Non-secure address. Non-secure transactions are
only permitted to access NS addresses, and the system must ensure that NS transactions are
denied access to Secure addresses.

This section contains the following subsections:
• 2.2.1 Secure (S) on page 2-21.

2.2.1 Secure (S)

Secure addresses are used for memory and peripherals that are only accessible by Secure software or
Secure masters.

Secure transactions are those that originate from masters operating as, or deemed to be, Secure when
targeting a Secure address.

2 Memory type definitions
2.2 Memory system and memory partitioning

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 2-21
Non-Confidential

Chapter 3
Memory configuration

The MPU is configured by a series of memory mapped registers in the System Control Space (SCS). This
chapter lists the MPU registers, and describes the attribute indirect mechanism that allows multiple MPU
regions to share a set of memory attributes.

It contains the following sections:
• 3.1 MPU registers on page 3-23.
• 3.2 Attribute indirection on page 3-25.

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 3-22
Non-Confidential

3.1 MPU registers
The MPU is configured by a series of memory mapped registers in the System Control Space. The MPU
registers are banked between Secure and Non-secure states. The programmers’ model for Secure MPU
and Non-secure MPU are the same, but the number of MPU regions for the two MPUs can be different.

When accessing the MPU address between 0xE000ED90 and 0xE000EDC4, the type of MPU registers
accessed is determined by the current state of the processor. Secure access sees Secure MPU registers,
Non-secure access sees Non-secure MPU registers. Secure software can also access Non-secure MPU
registers using an alias address.

MPU registers are privileged access only (unprivileged accesses generate a fault exception). MPU
registers must be accessed using 32-bit aligned transfers. By default the MPU is disabled after reset.

The memory type is encoded as an 8-bit field that is stored in one of the Memory Attribute Indirection
Registers (MAIR). Each MAIR register has four 8-bit fields, allowing eight memory types to be defined
at any one time.

The following table lists the MPU registers.

Table 3-1 MPU registers

Register Address NS Address Alias Description

MPU_TYPE 0xE000ED90 0xE002ED90 MPU Type Register

MPU_CTRL 0xE000ED94 0xE002ED94 MPU Control Register

MPU_RNR 0xE000ED98 0xE002ED98 MPU Region Number Register

MPU_RBAR 0xE000ED9C 0xE002ED9C MPU Region Base Address
Register

MPU_RLAR 0xE000EDA0 0xE002EDA0 MPU Region Base Limit
Register

MPU_RBAR_A1 0xE000EDA4 0xE002EDA4 MPU Region Base Address
Register Alias 1

MPU_RBAR_A2 0xE000EDAC 0xE002EDAC MPU Region Base Address
Register Alias 2

MPU_RBAR_A3 0xE000EDB4 0xE002EDB4 MPU Region Base Address
Register Alias 3

MPU_RLAR_A1 0xE000EDA8 0xE002EDA8 MPU Region Limit Address
Register Alias 1

MPU_RLAR_A2 0xE000EDB0 0xE002EDB0 MPU Region Limit Address
Register Alias 2

MPU_RLAR_A3 0xE000EDA8 0xE002EDB8 MPU Region Limit Address
Register Alias 3

MPU_MAIR0 0xE000EDC0 0xE002EDC0 MPU Memory Attribute
Indirection Register 0

MPU_MAIR0 0xE000EDC4 0xE002EDC4 MPU Memory Attribute
Indirection Register 1

3 Memory configuration
3.1 MPU registers

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 3-23
Non-Confidential

 Note

In the ARMv8-M architecture the MPU_TYPE, MPU_CTRL and MPU_RNR registers are identical to
those same registers in the ARMv6-M or ARMv7-M architectures.

3 Memory configuration
3.1 MPU registers

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 3-24
Non-Confidential

3.2 Attribute indirection
The attribute indirection mechanism allows multiple MPU regions to share a set of memory attributes.

For example, in the following figure MPU regions 1, 2 and 3 are all assigned to SRAM, so they can
share cache-related memory attributes.

Figure 3-1 Attribute indirection

At the same time, regions 1, 2, and 3 can still have their own access permission, XN, and shareability
attributes. This is required as each region can have different uses in the application.

3 Memory configuration
3.2 Attribute indirection

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 3-25
Non-Confidential

Chapter 4
Register definitions

This chapter shows the bit assignments for each of the MPU registers.

It contains the following sections:
• 4.1 MPU_TYPE on page 4-27.
• 4.2 MPU_CTRL on page 4-28.
• 4.3 MPU_RNR on page 4-30.
• 4.4 MPU_RBAR on page 4-31.
• 4.5 MPU_RLAR on page 4-33.
• 4.6 MPU_RBAR_A1/2/3 and MPU_RLAR_A1/2/3 on page 4-34.
• 4.7 MPU_MAIR0, MPU_MAIR1 on page 4-35.
• 4.8 Configuring an MPU region on page 4-36.

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 4-26
Non-Confidential

4.1 MPU_TYPE
The MPU Type register indicates how many regions the MPU supports for the selected security state.
This register is read only.

Figure 4-1 MPU_TYPE bit assignments

Table 4-1 MPU_TYPE bit assignments

Bits Field Reset Description

[31:16] Reserved – read as 0 0 Reserved.

[15:8] DREGION Implementation defined Number of MPU regions that
are supported by the MPU in
the selected security state.

[7:1] Reserved – read as 0 0 Reserved.

[0] SEPARATE 0 Indicates support for separate
instruction data address regions.
ARMv8-M architecture only
supports unified MPU regions
and therefore this bit is set to 0.

4 Register definitions
4.1 MPU_TYPE

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 4-27
Non-Confidential

4.2 MPU_CTRL
The MPU Control register provides various programmable bit fields for MPU enable and features.

Figure 4-2 MPU_CTRL bit assignments

Table 4-2 MPU_CTRL bit assignments

Bits Field Reset Description

[31:3] Reserved – read as 0 0 Reserved.

[2] PRIVDEFENA 0 Privileged background region
enable:

0b1
Enables the default
memory map for
privilege code when
the address accessed
does not map into any
MPU region.
Unprivileged accesses
to unmapped
addresses result in
faults.

0b0
All accesses to
unmapped addresses
result in faults.

4 Register definitions
4.2 MPU_CTRL

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 4-28
Non-Confidential

Table 4-2 MPU_CTRL bit assignments (continued)

Bits Field Reset Description

[1] HFNMIENA 0 MPU Enable for HardFault and
NMI (Non-Maskable Interrupt):

0b1
MPU access rules
apply to HardFault
and NMI handlers.

0b0
HardFault and NMI
handlers bypass MPU
configuration as if
MPU is disabled.

[0] ENABLE 0 Enable control:

0b1
MPU is enabled.

0b0
MPU is disabled.

4 Register definitions
4.2 MPU_CTRL

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 4-29
Non-Confidential

4.3 MPU_RNR
The MPU Region Number Register selects the region that is accessed by the MPU_RBAR and
MPU_RLAR.

Figure 4-3 MPU_RNR bit assignments

Table 4-3 MPU_RNR bit assignments

Bits Field Reset Description

[31:8] Reserved – read as 0 0 Reserved.

[7:0] REGION Unknown Region number. Selects and
indicates the region that is
accessed by the MPU_RBAR
and MPU_RLAR.

Bit [7:2] of the region number is
also used to select region
number when accessing region
setup via alias registers
(MPU_RBAR_A{n} and
MPU_RLAR_A{n}).

4 Register definitions
4.3 MPU_RNR

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 4-30
Non-Confidential

4.4 MPU_RBAR
The MPU Region Base Address Register defines the starting address of an MPU region and access
permission.

Figure 4-4 MPU_RBAR bit assignments

Table 4-4 MPU_RBAR bit assignments

Bits Field Reset Description

[31:5] BASE Unknown Starting address of MPU region
address (bits [31:5] – the
address must be aligned to
multiple of 32 bytes).

[4:3] SH Unknown Shareability for Normal
memory:

0b00
Non-shareable.

01
Outer shareable.

10
Inner shareable.

This field is ignored if the
memory attribute is set to
Device memory type.

4 Register definitions
4.4 MPU_RBAR

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 4-31
Non-Confidential

Table 4-4 MPU_RBAR bit assignments (continued)

Bits Field Reset Description

[2:1] AP[2:1] Unknown Access permissions:

0b00
Read/write by
privileged code only.

0b01
Read/write by any
privilege level.

0b10
Read only by
privileged code only.

0b11
Read only by any
privilege level.

[0] XN Unknown eXecute Never attribute:

0b0
Allow program
execution in this
region.

0b1
Disallow program
execution in this
region.

4 Register definitions
4.4 MPU_RBAR

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 4-32
Non-Confidential

4.5 MPU_RLAR
The MPU Region Limit Address Register defines the ending address of an MPU region, region enable,
and an indirection index to memory attribute array.

Figure 4-5 MPU_RLAR bit assignments

Table 4-5 MPU_RLAR bit assignments

Bits Field Reset Description

31:5 LIMIT Unknown Ending address (upper inclusive
limit)of MPU region address
(bits [31:5] – the address must
be aligned to multiple of 32
bytes). Bit [4:0] of the address
value is assigned with 0x1F to
provide the limit address to be
checked against.

4 Reserved 0 Reserved.

3:1 AttrIndx Unknown Attribute Index. Select memory
attributes from attribute sets in
MPU_MAIR0 and
MPU_MAIR1.

0 EN 0 Region enable.

4 Register definitions
4.5 MPU_RLAR

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 4-33
Non-Confidential

4.6 MPU_RBAR_A1/2/3 and MPU_RLAR_A1/2/3
An alias of MPU_RBAR register to allow faster programming of different MPU regions. The region
number that is selected when using MPU_RBARn and MPU_RLARn is equal to (MPU_RNR[7:2]<<2)
+ n.

For example:

Condition When Accessing MPU Region accessed

MPU_RNR=0 MPU_RBAR / MPU_RLAR 0

MPU_RBAR_A1 / MPU_RLAR_A1 1

MPU_RBAR_A2 / MPU_RLAR_A2 2

MPU_RBAR_A3 / MPU_RLAR_A3 3

MPU_RNR=4 MPU_RBAR / MPU_RLAR 4

MPU_RBAR_A1 / MPU_RLAR_A1 5

MPU_RBAR_A2 / MPU_RLAR_A2 6

MPU_RBAR_A3 / MPU_RLAR_A3 7

MPU_RBAR_A1/2/3 and MPU_RLAR_A1/2/3 enables software to program multiple MPU regions
quickly without the need to reprogram MPU_RNR every time.

4 Register definitions
4.6 MPU_RBAR_A1/2/3 and MPU_RLAR_A1/2/3

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 4-34
Non-Confidential

4.7 MPU_MAIR0, MPU_MAIR1
The MPU Attribute Indirection Register 0 and 1 provide eight sets of 8-bit memory attributes, which can
be referenced by AttrIndx in MPU_RLAR to determine the memory attribute for an MPU region.

Figure 4-6 MPU_MAIR0, MPU_MAIR1 bit assignments

4 Register definitions
4.7 MPU_MAIR0, MPU_MAIR1

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 4-35
Non-Confidential

4.8 Configuring an MPU region
The MPU must be configured before it is enabled. A Data Memory Barrier (DMB) operation is
recommended to force any outstanding writes to memory before enabling the MPU.

The necessary memory types must be encoded into the MAIR registers so that can be referenced from the
MPU_RLAR register for each region. MPU_RNR selects which region MPU_RBAR and MPU_RLAR
are currently configuring. The start and end address of each region can be programmed into the
MPU_RBAR and MPU_RLAR registers, along with the required access permissions, shareability, and
executability.

When all the required regions have been configured, the MPU can be enabled by setting the ENABLE bit
in MPU_CTRL. To ensure that any subsequent memory accesses use the new MPU configuration,
software must execute a DMB followed by an Instruction Synchronization Barrier (ISB). The following
figure summaries the various stages that are required to configure an MPU region.

4 Register definitions
4.8 Configuring an MPU region

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 4-36
Non-Confidential

Figure 4-7 Configuring an MPU region

4 Register definitions
4.8 Configuring an MPU region

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 4-37
Non-Confidential

Chapter 5
CMSIS MPU support

ARMv8-M processors provide software support with an initiative called the Cortex Microcontroller
Software Interface Standard (CMSIS). This chapter lists the standardized names for MPU registers, and
provides configuration settings to initialize CMSIS MPU.

It contains the following sections:
• 5.1 CMSIS-CORE on page 5-39.

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 5-38
Non-Confidential

5.1 CMSIS-CORE
One of the projects within CMSIS is CMSIS-CORE, a standardized Hardware Abstraction Layer (HAL)
for accessing processor features. CMSIS-CORE is integrated in device driver code that is provided by
microcontroller vendors, and being integrated into various software development suites.

Inside the processor-specific header files in CMSIS-CORE, the MPU registers are defined with a data
structure (typedef) which provides standardized names for MPU registers.

Table 5-1 Standardized names for MPU registers

Register CMSIS symbols CMSIS symbols for Non-
secure alias

Descriptions

MPU_TYPE MPU->TYPE MPU_NS->TYPE MPU Type Register

MPU_CTRL MPU->CTRL MPU_NS ->CTRL MPU Control Register

MPU_RNR MPU->RNR MPU_NS ->RNR MPU Region Number Register

MPU_RBAR MPU->RBAR MPU_NS ->RBAR MPU Region Base Address
Register

MPU_RLAR MPU->RLAR MPU_NS ->RLAR MPU Region Base Limit
Register

MPU_MAIR0 MPU->MAIR0 MPU_NS ->MAIR0 MPU Memory Attribute
Indirection Register 0

MPU_MAIR1 MPU->MAIR1 MPU_NS ->MAIR1 MPU Memory Attribute
Indirection Register 1

The ARMv8-M architecture support in CMSIS starts from CMSIS version5.0.

The following settings are used to initialize the MPU in CMSIS:

__DMB(); /* Force any outstanding transfers to complete before disabling MPU */

/* Disable MPU */
MPU->CTRL = 0;

/* Configure memory types */

/* MPU_MAIR0 index 0: Normal-Outer-Non-cacheable-Inner-Non-cacheable */
MPU->MAIR0 |= (NORMAL_O_NC | NORMAL_I_NC);

/* MPU_MAIR0 index 1: Device-nGnRnE */
MPU->MAIR0 |= (DEVICE_NG_NR_NE << MPU_MAIR0_Attr1_Pos);

/* Configure region 0: Normal, Non-Shareable, RO, Any Privilege Level)*/
/* Region start = 0x0 Region end = 0x007FFFFF */
MPU->RNR = 0;
MPU->RBAR = (0x00000000 & MPU_RBAR_ADDR_Msk) | NON_SHAREABLE | RO_P_U;
MPU->RLAR = (0x007FFFFF & MPU_RLAR_LIMIT_Msk) | ((0 << MPU_RLAR_AttrIndx_Pos) &
MPU_RLAR_AttrIndx_Msk) | REGION_ENABLE;

/* Configure region 1: Device-nGnRnE, RW, Any Privilege Level, XN) */
/* Region start = 0x40010000 Region end = 0x40013FFF */
MPU->RNR = 1;
MPU->RBAR = (0x40010000 & MPU_RBAR_ADDR_Msk) | RW_P_U | EXEC_NEVER;
MPU->RLAR = (0x40013FFF & MPU_RLAR_LIMIT_Msk) | ((1 << MPU_RLAR_AttrIndx_Pos) &
MPU_RLAR_AttrIndx_Msk) | REGION_ENABLE;

MPU->CTRL |= 1; /* Enable the MPU */

__DSB(); /* Force memory writes before continuing */
__ISB(); /* Flush and refill pipeline with updated permissions */

5 CMSIS MPU support
5.1 CMSIS-CORE

ARM 100699_0100_00_en Copyright © 2016 ARM. All rights reserved. 5-39
Non-Confidential

	Memory Protection Unit (MPU)
	Contents
	List of Figures
	List of Tables
	Preface
	About this book
	Product revision status
	Intended audience
	Using this book
	Glossary
	Typographic conventions
	Timing diagrams
	Signals

	Feedback
	Feedback on this product
	Feedback on content

	1 : Introduction
	1.1 : About the MPU
	1.2 : Key features of the MPU
	1.3 : MPU programmers' model changes for the ARM®v8‑M architecture

	2 : Memory type definitions
	2.1 : Memory type definitions in the ARM®v8‑M architecture
	2.1.1 : Normal memory
	Cacheability
	Shareability
	Non-shareable memory
	Inner shareable memory
	Outer shareable memory

	2.1.2 : Device Memory

	2.2 : Memory system and memory partitioning
	2.2.1 : Secure (S)

	3 : Memory configuration
	3.1 : MPU registers
	3.2 : Attribute indirection

	4 : Register definitions
	4.1 : MPU_TYPE
	4.2 : MPU_CTRL
	4.3 : MPU_RNR
	4.4 : MPU_RBAR
	4.5 : MPU_RLAR
	4.6 : MPU_RBAR_A1/2/3 and MPU_RLAR_A1/2/3
	4.7 : MPU_MAIR0, MPU_MAIR1
	4.8 : Configuring an MPU region

	5 : CMSIS MPU support
	5.1 : CMSIS-CORE

