Arm® Compiler

Version 6.6

User Guide

arm

Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved.
DUI1093B

Arm® Compiler

Arm® Compiler
User Guide
Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved.

Release Information

Document History

Issue |Date Confidentiality | Change

0606-00 | 04 November 2016 | Non-Confidential | Arm Compiler v6.6 Release

A 08 May 2017 Non-Confidential | Arm Compiler v6.6.1 Release. Document number has changed
from 100748 to DUI1093.

B 29 November 2017 | Non-Confidential | Arm Compiler v6.6.2 Release

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other

rights.
This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at

any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

®

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its

subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at /ttp://www.arm.com/company/policies/

trademarks.
Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved.
Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

DUI1093B

Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 2
Non-Confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks

Arm® Compiler

LES-PRE-20349
Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.
Web Address

http://'www.arm.com

DUI1093B Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 3
Non-Confidential

http://www.arm.com

Contents

Arm® Compiler User Guide

Preface
ABOUL TS DOOK ... ettt 9
Chapter 1 Getting Started
1.1 Introduction to Arm® COMPIIEE 6cccoeeee e eeeteaeaaaaaaaaaaaaeeeeas 1-12
1.2 Installing Arm® COMPIIEToooeiiieeeee e e 1-14
1.3 Accessing Arm® Compiler from Arm® DS-5 Development Studio 1-16
1.4 Accessing Arm® Compiler from Arm® Keil® uVision® IDEcc.. covveeeeeevennne.. 1-18
1.5 Compiling a Hello World eXxamplecccueeeiiiiiiiees e 1-19
1.6 Running bare-metal iMagesoocuuiiiiiieiiieeeeie s et 1-22
1.7 Arm® architectures supported by the to0IChaINcccccccovveciiiiiiiiiiiiiiiiieee 1-24
Chapter 2 Using Common Compiler Options
2.1 Mandatory armclang OPLONSc...oeii i e 2-26
2.2 Selecting source 1anguage OPLIONSc..eeeeeeiiieie e 2-28
2.3 Selecting optimization OPLIONScceieiiiiiiiiieeies et 2-30
2.4 Building to aid debuUggingccoom i e 2-32
2.5 Linker options for mapping code and data to target memorycccoeceeeeenni. 2-33
2.6 Controlling diagnoStiC MESSAQEScceeeiieiiee e e 2-34
2.7 Selecting floating-point OPLIONScccueii i 2-36
2.8 Compilation tools command-line Option rulescccccceeeeceieiisiiieisie e 2-38
Chapter 3 Writing Optimized Code
3.1 OPLIMUZING JOOPS ...t et e e e e e 3-40
DUI1093B Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 4

Non-Confidential

3.2 INHNING FUNCHIONS ... 3-44

3.3 EXamIining STACK USAQEccouuieiiie ettt 3-46
3.4 Packing data SIIUCKUIESuueeeeeeeieiiieiee e ettt aaaaaaaaens 3-48
Chapter 4 Using Assembly and Intrinsics in C or C++ Code
4.1 USING INEFINSICS ...t e e e e 4-53
4.2 Writing inline aSSembly COUEcuoiiiiiiiiiiiiiieet e 4-54
4.3 Calling assembly functions from C and CH+cccoeeveeieiciies e 4-56
Chapter 5 Mapping Code and Data to the Target
5.1 What the linker does to create an imagec.cccoueeeeeeieis e 5-59
5.2 Placing data items for target peripherals with a scatter filec... coocevervnee.n. 5-61
5.3 Placing the stack and heap with a SCatter fileccccovviiveciiiiiiiiisii e 5-62
5.4 L (0T0] 4= To (o] o RSP 5-63
5.5 Placing functions and data in @ named SECHIONccceevecieee v 5-66
5.6 Placing functions and data at specific addreSSescccooeeviieriiriciiisiiiesiieeas 5-68
5.7 Placement of Arm® C and C++ [ibrary COQEcocouiiiiiiiiis s 5-76
5.8 Placement of Unassigned SECHIONScceeeeiueeeeeeesiiees e eeesieea e escieae e 5-78
5.9 Placing veneers with @ SCAter fileccceeioeiieieeesies e 5-88
5.10 Preprocessing @ SCAEr fileccoooiuiiiiiiiiiiiiiiiies e 5-89
5.11 Reserving an empty blOCK Of MEMOIYcocuuiiiiiiiiiii et e 5-91
5.12 Aligning regions to page bOUNUAIIESccccuuuuuuuiririiiiies ceiiisisietevareaeaaanaaaaeens 5-93
5.13 Aligning execution regions and input SECLIONScceeeeecveees e 5-94
Appendix A Supporting reference information
A.1 Support level definitionsccoooiiiiiiiiiiiis e Appx-A-96
A2 Standards compliance in Arm® COMPIlErcccccveeeies cocieeieeeiiiiieeee Appx-A-99
A.3 Compliance with the ABI for the Arm® Architecture (Base Standard) Appx-A-100
A4 GCC compatibility provided by Arm® Compiler 6ccccccce oeeiiineeennns Appx-A-102
A5 Toolchain environment variablesccccocoieeiiis ciiiiiieisii e Appx-A-103
A6 Clang and LLVM documentationcccoucueeeccieesiiesiieeese e Appx-A-105
A7 FUNEI FEAMING ...ttt ettt ettt aaaaaaae s Appx-A-106
DUI1093B Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 5

Non-Confidential

List of Figures
Arm® Compiler User Guide

Figure 1-1 A typical tool usage fIOW dIQGIaMooo et 1-13
Figure 1-2 Accessing Arm Compiler settings from DS=5ooooiiiiiiiiie e 1-16
Figure 1-3 Accessing the Arm Compiler version from Keil IVISIONcoocceeeeeeeeiiiiiseeeiiiieaeeea 1-18
Figure 1-4 DebuUG CONFIGQUIALIONS ...ttt et e e e e e e saseae s 1-22
Figure 3-1 Structure without packing attribute Or Pragmacooeeueeeiieeiieeee e 3-49
Figure 3-2 Structure with attribute PACKEAc..eoiiiiee e 3-49
Figure 3-3 Structure with pragma pack with 1 byte alignmentcccccciiieiiiiiiiiicieee e 3-49
Figure 3-4 Structure with pragma pack with 2 byte alignmentccceeeeeeeieeeeeeeeiiiiieeeeeeieeeeeee, 3-50
Figure 3-5 Structure with pragma pack with 4 byte alignmentccccoeeiiioieee e 3-50
Figure 3-6 Structure with attribute packed on individual membercc.cccooeiiiiiiiiiieeeeeee 3-50
Figure 5-1 Memory map for fixed @XECULION FEQIONScccccueiieiieieieeee e 5-64
Figure 5-2 ANY CONLNGEINICY ettt ettt et et e e e e e e e e e e e e e e e s s sssssssnsnnnsnnnes 5-85
Figure 5-3 Reserving a region fOr the STACKeee i 5-92
Figure A-1 Integration boundaries in Arm COmPIler 6.ooocoeiieiiiiiee e Appx-A-97
DUI1093B Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 6

Non-Confidential

List of Tables
Arm® Compiler User Guide

Table 2-1 S0Urce 1anguage Varia@ntsooo oo 2-28
Table 2-2 OPHMIZAION @XAIMPIE ...ttt 2-31
Table 2-3 OPLIMIZAION ©XAIMPIE ...ttt 2-31
Table 2-4 Common diagNOSHIC OPLIONSeeeeeeeeeeee ettt e s e e seaaaea e 2-34
Table 2-5 Options for floating-point SEIECHONoooiiiieieee e 2-36
Table 2-6 Floating-point inkage fOr AAFCN32cooeee oo 2-37
Table 3-1 LOOP UNIOIIING PrAGIMAS ...ttt 3-40
Table 3-2 LOOP OPLMIZING EXAIMPIE ...ttt e e e e e e e e e e e e e e e e e s e s s sss e 3-40
Table 3-3 oo =)z T] o) (=1 3-41
Table 3-4 EXAMPIE IOOPS ...ttt 3-41
Table 3-5 Assembly code from vectorizable and non-vectorizable l00pScccccccevevciiviieesiieans 3-42
Table 3-6 FUNCHON INIINING oottt e e e ettt et et aanaaaaaaeeeeas 3-44
Table 3-7 Effect of -fNO-INIINE-TUNCEIONScooeiiiieeeee e 3-45
Table 3-8 Packing members in @ SIUCIUIE OF UNIONccocueiiiiiiiiiieeee e 3-48
Table 3-9 PACKING SITUCTUIES ...ttt 3-49
Table 3-10 Packing individual MEIMBEISoueeeee ettt aa e e e e e e e e e e e e e s e s e s s ansnes 3-50
Table 5-1 Input section properties for placement of . ANY SECLIONScccoeeeeeeeeeiiiiiiiieeeveaeae 5-80
Table 5-2 Input section properties for placement of sections with next_fitccccccooiieviiiiiiiiciicen. 5-82
Table 5-3 Input section properties and ordering for sections_a.o and sections_b.occc.......... 5-83
Table 5-4 Sort order for descending_Size algorithmccueeeveeeeciiiieeeeeeeeee e 5-83
Table 5-5 Sort order for cmdling algQorithmcc.eeeeiieee e 5-84
Table A-1 Environment variables used by the tooIChainc.ccccoovoieeiciiiniiiiiieese Appx-A-103
DUI1093B Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 7

Non-Confidential

Preface

This preface introduces the Arm® Compiler User Guide.

It contains the following:
* About this book on page 9.

DUI1093B Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Preface
About this book

About this book

The Arm® Compiler Compiler User Guide provides information for users new to Arm Compiler 6.

Using this book
This book is organized into the following chapters:

Chapter 1 Getting Started
This introduces Arm Compiler 6 and helps you start working with Arm Compiler 6 quickly. You
can use Arm Compiler 6 from Arm DS-5, Keil MDK, or as a standalone product.

Chapter 2 Using Common Compiler Options
There are many options that you can use to control how Arm Compiler 6 generates code for your
application. This section lists the mandatory and commonly used optional command-line
arguments, such as to control target selection, optimization, and debug view.

Chapter 3 Writing Optimized Code
To make best use of the optimization capabilities of Arm Compiler, there are various options,
pragmas, attributes, and coding techniques that you can use.

Chapter 4 Using Assembly and Intrinsics in C or C++ Code
All code for a single application can be written in the same source language. This is usually a
high-level language such as C or C++ that is compiled to instructions for Arm architectures.
However, in some situations you might need lower-level control than what C and C++ provide.

Chapter 5 Mapping Code and Data to the Target
There are various options in Arm Compiler to control how code, data and other sections of the
image are mapped to specific locations on the target.

Appendix A Supporting reference information
The various features in Arm Compiler might have different levels of support, ranging from fully
supported product features to community features.

Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

DUI1093B Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 9
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Feedback

Preface

About this book
<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:
MRC p15, @, <Rd>, <CRn>, <CRm>, <Opcode_2>
SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

* The product name.

* The product revision or version.

* An explanation with as much information as you can provide. Include symptoms and diagnostic
procedures if appropriate.

Feedback on content
If you have comments on content then send an e-mail to errata@arm.com. Give:

* The title Arm Compiler User Guide.

* The number DUI1093B.

» If applicable, the page number(s) to which your comments refer.
* A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

Other information

o Arm® Developer.

* Arm® Information Center.

o Arm® Technical Support Knowledge Articles.
o Technical Support.

o Arm® Glossary.

DUI1093B

Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 10
Non-Confidential

mailto:errata@arm.com
https://developer.arm.com/
http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/topic/com.arm.doc.faqs
http://www.arm.com/support/technical-support
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Chapter 1
Getting Started

This introduces Arm Compiler 6 and helps you start working with Arm Compiler 6 quickly. You can use
Arm Compiler 6 from Arm DS-5, Keil MDK, or as a standalone product.

It contains the following sections:

» 1.1 Introduction to Arm® Compiler 6 on page 1-12.

o 1.2 Installing Arm® Compiler on page 1-14.

* 1.3 Accessing Arm® Compiler from Arm® DS-5 Development Studio on page 1-16.
» 1.4 Accessing Arm® Compiler from Arm® Keil® uVision® IDE on page 1-18.

» 1.5 Compiling a Hello World example on page 1-19.

* 1.6 Running bare-metal images on page 1-22.

* 1.7 Arm® architectures supported by the toolchain on page 1-24.

DUI1093B

Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 1-11
Non-Confidential

1 Getting Started
1.1 Introduction to Arm® Compiler 6

1.1 Introduction to Arm® Compiler 6
Arm Compiler 6 is Arm's most advanced C and C++ compilation toolchain for Arm Cortex® processors.
Arm Compiler 6 is co-developed alongside the Arm architecture. This has enabled the toolchain to be
tuned to generate highly efficient code for embedded bare-metal applications ranging from small sensors
to 64-bit devices.
Arm Compiler 6 is a component of Arm® DS-5 Development Studio and Arm* Keil* MDK. Alternatively,
you can use Arm Compiler 6 as a standalone product. The list of features and processors that Arm
Compiler 6 supports depends on the product edition. See Arm® Developer for the specification of the
different standard products.
Arm Compiler 6 combines the optimized tools and libraries from Arm, with a modern LLVM-based
compiler framework. The components in Arm Compiler 6 are:
armclang
The compiler and integrated assembler that compiles C, C++, and GNU assembly language
sources.
The compiler is based on LLVM and Clang technology.
Clang is a compiler front end for LLVM that supports the C and C++ programming languages.
armasm
The legacy assembler. Only use armasm for legacy armasm-syntax assembly code. Use the
armclang assembler and GNU syntax for all new assembly files.
armlink
The linker combines the contents of one or more object files with selected parts of one or more
object libraries to produce an executable program.
armar
The archiver enables sets of ELF object files to be collected together and maintained in archives
or libraries. You can pass such a library or archive to the linker in place of several ELF files.
You can also use the archive for distribution to a third party application developer.
fromelf
The image conversion utility can convert Arm ELF images to binary formats and can also
generate textual information about the input image, such as its disassembly and its code and data
size.
Arm C++ libraries
The Arm C++ libraries are based on the LLVM libc++ project:
* The libct++abi library is a runtime library providing implementations of low-level language
features.
* The libct++ library provides an implementation of the ISO C++ library standard. It depends
on the functions that are provided by libc++abi.
Arm C libraries
The Arm C libraries provide:
* An implementation of the library features as defined in the C standards.
* Nonstandard extensions common to many C libraries.
+ POSIX extended functionality.
* Functions standardized by POSIX.
Application development
A typical application development flow might involve the following:
* Developing C/C++ source code for the main application (armclang).
* Developing assembly source code for near-hardware components, such as interrupt service routines
(armclang, or armasm for legacy assembly code).
» Linking all objects together to generate an image (armlink).
+ Converting an image to flash format in plain binary, Intel Hex, and Motorola-S formats (fromelf).
DUI1093B Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 1-12

Non-Confidential

https://developer.arm.com/products/software-development-tools/ds-5-development-studio
http://www2.keil.com/mdk5
https://developer.arm.com/products/software-development-tools/compilers/arm-compiler-6/downloads
https://developer.arm.com/products/software-development-tools/ds-5-development-studio/editions

1 Getting Started
1.1 Introduction to Arm® Compiler 6

The following figure shows how the compilation tools are used for the development of a typical
application.

armclang armlink fromelf
code \
C/C++ A32 .c — .0 data
and T32 debug code \
armasm Ta Plain binary
or \ data Intel Hex
armclang Motorola-S
code \4 /
Assembly s > 0 data debug
code G
debug
Source code Object code Image Flash format

Figure 1-1 A typical tool usage flow diagram

Arm Compiler 6 has more functionality than the set of product features that are described in the
documentation. The various features in Arm Compiler 6 can have different levels of support and
guarantees. For more information, see Support level definitions on page Appx-A-96.

Note

If you are migrating your toolchain from Arm Compiler 5 to Arm Compiler 6, then see the Arm"
Compiler Migration and Compatibility Guide for information on how to migrate your source code and
toolchain build options from Arm Compiler 5 to Arm Compiler 6. For a list of 4rm® Compiler 6
documents, see the documentation on Arm Developer.

DUI1093B

Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 1-13
Non-Confidential

https://developer.arm.com/docs/dui0742/i
https://developer.arm.com/docs/dui0742/i
https://developer.arm.com/products/software-development-tools/compilers/arm-compiler-6/docs
https://developer.arm.com/products/software-development-tools/compilers/arm-compiler-6/docs

1.2

1 Getting Started
1.2 Installing Arm® Compiler

Installing Arm® Compiler

This topic lists the system requirements for running Arm Compiler, and then guides you through the
installation process.

System Requirements

Arm Compiler 6 is available for the following operating systems:
* Windows 64-bit.

* Windows 32-bit.

* Linux 64-bit.

For more information on system requirements see the Arm® Compiler release note.

Installing Arm® Compiler

You can install Arm Compiler as a standalone product on supported Windows and Linux platforms. If
you use Arm Compiler as part of a development suite such as Arm DS-5 Development Studio or Arm
Keil pVision® IDE, then installing the development suite also installs Arm Compiler. The following
instructions are for installing Arm Compiler as a standalone product.

Prerequisites:

1. Download Arm® Compiler 6.
2. Obtain a license. Contact your Arm sales representative or request a license.
3. Set the ARMLMD_LICENSE_FILE environment variable to point to your license file or license server.

Note

This path must not contain double quotes on Windows. A path that contains spaces still works
without the quotes.

If you need to set any other environment variable, such as ARM_TOOL_VARIANT, see Toolchain environment
variables on page Appx-A-103 for more information.

Installing a standalone Arm® Compiler on Windows platforms

To install Arm Compiler as a standalone product on Windows, you need the setup.exe installer on your
machine. This is in the Arm® Compiler 6 download:

1. On 64-bit platforms, run win-x86_64\setup.exe. On 32-bit platforms, run win-x86_32\setup.exe.

2. Follow the on-screen installation instructions.

If you have an older version of Arm Compiler 6 and you want to upgrade, Arm recommends that you
uninstall the older version of Arm Compiler 6 before installing the new version of Arm Compiler 6.

Installing a standalone Arm® Compiler on Linux platforms

To install Arm Compiler as a standalone product on Linux platforms, you need the install_x86_64.sh
installer on your machine. This is in the 4rm® Compiler 6 download:

1. Run install_x86_64.sh normally, without using the source Linux command.

2. Follow the on-screen installation instructions.

Uninstalling a standalone Arm® Compiler

To uninstall Arm Compiler on Windows, use the Control Panel:

1. Select Control Panel > Programs and Features.

2. Select the version that you want to uninstall, for example Arm Compiler 6.5.
3. Click the Uninstall button.

To uninstall Arm Compiler on Linux, delete the Arm Compiler 6 installation directory for the compiler
version you want to delete.

For more information on installation, see the Arm"™ Compiler release note.

DUI1093B

Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 1-14
Non-Confidential

https://developer.arm.com/products/software-development-tools/compilers/arm-compiler-6/downloads
https://developer.arm.com/products/software-development-tools/compilers/arm-compiler-6/downloads
https://developer.arm.com/products/buy-arm-products
https://developer.arm.com/products/software-development-tools/compilers/arm-compiler-6/downloads
https://developer.arm.com/products/software-development-tools/compilers/arm-compiler-6/downloads
https://developer.arm.com/products/software-development-tools/compilers/arm-compiler-6/downloads

Related tasks
1.3 Accessing Arm® Compiler from Arm® DS-5 Development Studio on page 1-16.
1.4 Accessing Arm® Compiler from Arm® Keil® uVision® IDE on page 1-18.

1 Getting Started
1.2 Installing Arm® Compiler

DUI1093B

Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

1-15

1 Getting Started
1.3 Accessing Arm® Compiler from Arm® DS-5 Development Studio

1.3 Accessing Arm® Compiler from Arm® DS-5 Development Studio
Arm DS-5 is a development suite that provides Arm Compiler 6 as a built-in toolchain.

This task describes how to access and configure Arm Compiler from the DS-5 environment.

Prerequisites

Ensure you have DS-5 installed. Create a new C or C++ project in DS-5. For information on creating
new projects in DS-5, see Creating a new C or C++ project.

Procedure

1. Select the project in DS-5.

2. Select Project > Properties.

3. From the left-hand side menu, select C/C++ Build > Tool Chain Editor.

4. Inthe current toolchain options, select ARM Compiler 6 if this is not already selected.
5. From the left-hand side menu, select C/C++ Build > Settings.

& Properties for First AC6 = @
type filter text Settings = - =
- Resource i] .]]
Builders Configuration: lDEbUQ [Active 'J IManage Conﬂguratlons...‘ -

4 C/C++ Build

Build Variables

Environment & Tool Settings | 4 Build Steps | Build Artifact | Binary Parsers | @ Error Parsers|

Logging -

4 @ All Tools Settings Command: armclang

: . b .
Tool Chain Editor & Target All options: --target=aarch64-arm-none-eabi -00 -g -

@ Debugging
(22 Libraries

4 |i%3 ARM C Compiler 6
(22 Target
(2 Preprocessor
(22 Includes Expert settings:
(8 Source Language Command
(% Optimizations line pattern:
(8 Debugging
@ Warnings and Errors
(8 Miscellaneous

4 % ARM Assembler 6
(55 Target
(% Preprocessor
(2 Includes
@ Debugging
@ Warnings and Errors
@ Mizcellaneous

4 53 ARM Linker &
(25 Target
(2 Image Layout
@ Libraries
@ Optimizations
@ Additional Information
@ Warnings and Errors
@ Mizcellaneous

» Cf/C++ General
Project References
Run/Debug Settings

S{COMMAND} S{FLAGS} S{OUTPUT_FLAG} S{OUTPUT_PREFIX}S{OUTPUT} &

m

(?:' [OK l [Cancel]
Figure 1-2 Accessing Arm Compiler settings from DS-5
For information about using DS-5, see the Arm® DS-5 Getting Started Guide and Arm® DS-5
Debugger User Guide.
DUI1093B Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 1-16

Non-Confidential

https://developer.arm.com/docs/dui0480/latest/working-with-projects/creating-a-new-c-or-c-project
https://developer.arm.com/docs/dui0478/latest
https://developer.arm.com/docs/dui0446/latest
https://developer.arm.com/docs/dui0446/latest

1 Getting Started
1.3 Accessing Arm® Compiler from Arm® DS-5 Development Studio

6. After setting the compiler options, right-click on the project and select Build Project.

Related references
1.2 Installing Arm® Compiler on page 1-14.

DUI1093B

Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 1-17
Non-Confidential

1 Getting Started
1.4 Accessing Arm® Compiler from Arm® Keil® uVision® IDE

1.4 Accessing Arm® Compiler from Arm® Keil® pVision® IDE

The Arm Keil pVision IDE is a microprocessor development suite that provides Arm Compiler 6 as a
built-in toolchain.

This task describes how to access and configure Arm Compiler from the Keil pVision environment:

Prerequisites
Ensure you have the Keil pVision IDE installed. Create a new project in puVision.
Procedure

1. Select the project in pVision.

2. Select Project > Manage > Project 'project_name' Project Items.

Manage Project Items Iﬁ

Project tems Folders/Extensions l Books]
Development Tool Folders: Default File Extensions:
I C Source: |‘-'3
Tool Base Folder: |C:"-.Hei|_v5"-.-‘1'-.HI"-'1"-. C++ Source: |‘.n:|:u|:|
BIN: |C:"-.Kei|_vE"-.iH[vT'-.BIH"-. Aem Source: |*.s‘; “sctat
INC: | Object: [*obi
Le: | Library: |"lib
Redfile: | Document: |+-b'ii*-hi*-il'"3
[v sz ARM Compiler "ARMCCT; " AARMCLANG™

Setup Default ARM Compiler Version

[sz GCC Compiler (GMU) for ARM projects!

Prefix: |arrn-|'u:||'|E1eaI:ui- Folder: |C:"-.F‘n:ug|am Files {xB6/GNU Tools ARM Embedded’5.2 20

QK | Cancel Help

Figure 1-3 Accessing the Arm Compiler version from Keil yVision
3. Select the Folders/Extensions tab.
4. Click Setup Default ARM Compiler Version.
5. For each device, select the version of Arm Compiler you want to use. For example, v6.6.
6. Click OK to close each of the dialog boxes in turn.

Related references
1.2 Installing Arm® Compiler on page 1-14.

DUI1093B

Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 1-18
Non-Confidential

1 Getting Started
1.5 Compiling a Hello World example

1.5 Compiling a Hello World example

These examples show how to use the Arm Compiler toolchain to build and inspect an executable image

from C/C++ source files.

The source code

The source code that is used in the examples is a single C source file, hello.c, to display a greeting

message:

#include <stdio.h>

int main() {
printf("Hello World\n");
return 0;

}

Compiling in a single step

When compiling code, you must first decide which target the executable is to run on. An Armv8-A target

can run in different states:

* AArch64 state targets execute A64 instructions using 64-bit and 32-bit general-purpose registers.

* AArch32 state targets execute A32 or T32 instructions using 32-bit general-purpose registers.

The --target option determines which target state to compile for. This option is a mandatory option.

Compiling for an AArch64 target

To create an executable for an AArch64 target in a single step:

armclang --target=aarch64-arm-none-eabi hello.c
This command creates an executable, a.out.
This example compiles for an AArch64 state target. Because only - -target is specified, the
compiler defaults to generating code that runs on any Armv8-A target. You can also use -mcpu to
target a specific processor.

Compiling for an AArch32 target

To create an executable for an AArch32 target in a single step:

armclang --target=arm-arm-none-eabi -mcpu=cortex-a53 hello.c
There is no default target for AArch32 state. You must specify either -march to target an
architecture or -mcpu to target a processor. This example uses -mcpu to target the Cortex-AS3
processor. The compiler generates code that is optimized specifically for the Cortex-AS53, but
might not run on other processors.

Use -mcpu=1ist or -march=1ist to see all available processor or architecture options.

Beyond the defaults

Compiler options let you specify precisely how the compiler behaves when generating code.

The armclang Reference Guide describes all the supported options, but here are some of the most

common:

* Including debug information. The -g option tells the compiler to produce DWARF debug
information. You can then use a compatible debugger, such as Arm DS-5 Debugger, to load, run, and
debug images.

* Optimization. The -0Level option specifies the level of optimization to use when compiling source
files. The default is -0e, with no optimization. Different optimization levels let you control what type
of optimization the compiler performs. For example, -0s aims to reduce code size by balancing code

DUI1093B Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 1-19

Non-Confidential

https://developer.arm.com/docs/dui0774/i

1 Getting Started
1.5 Compiling a Hello World example

size against code speed, whereas -Omax uses aggressive optimizations to target performance
optimization.

» Instruction set. AArch32 targets support two instruction sets that you specify with the -m option. The
-marm option specifies A32, that is 32-bit instructions that emphasize performance. The -mthumb
option specifies T32, that is mixed 32-bit and 16-bit instructions, to emphasize code density.

Examining the executable

The fromelf tool lets you examine a compiled binary, extract information about it, or convert it.

For example, you can:
« Disassemble the code that is contained in the executable:

fromelf --text -c a.out

main

0x000081a0: €92d4800 .H-. PUSH {rii,1r}
0x000081a4: eladbeood boo0 MoV ril,sp
0x000081a8: e24ddo10 .M. SUB sp,sp,#0x10
0x000081lac: €3200000 e MOV ro,#0
0x000081b0: e50b0004 boo0 STR ro, [rll,#-4]

0x000081b4 : e30al9cc 5000 MOV rl,#0xa9%cc

¢ Examine the size of code and data in the executable:

fromelf --text -z a.out

Code (inc. data) RO Data RW Data ZI Data Debug Object Name
10436 492 596 16 348 3468 a.out
10436 492 596 16 (4] 0 ROM Totals for a.out

» Convert the ELF executable image to another format, for example a plain binary file:

fromelf --bin --output=outfile.bin a.out

See fromelf Command-Line Options for the options from the fromelf tool.

Compiling and linking as separate steps

For simple projects with small numbers of source files, compiling and linking in a single step might be
the simplest option:

armclang --target=aarch64-arm-none-eabi filel.c file2.c -o image.axf

This example compiles the two source files filel.c and file2.c for an AArch64 state target. The -o
option specifies that the filename of the generated executable is image. axf.

More complex projects might have many more source files. It is not efficient to compile every source file
at every compilation, because most source files are unlikely to change. To avoid compiling unchanged
source files, you can compile and link as separate steps. In this way, you can then use a build system
(such as make) to compile only those source files that have changed, then link the object code together.
The armclang -c option tells the compiler to compile to object code and stop before calling the linker:
armclang -c --target=aarch64-arm-none-eabi filel.c
armclang -c --target=aarché64-arm-none-eabi file2.c
armlink filel.o file2.o -o image.axf
These commands do the following:
* Compile filel.c to object code, and save using the default name filel.o.
+ Compile file2.c to object code, and save using the default name file2.o.
* Link the object files filel.o and file2.o to produce an executable that is called image.axf.

In the future, if you modify file2.c, you can rebuild the executable by recompiling only file2.c then
linking the new file2.o with the existing filel.o to produce a new executable:

armclang -c --target=aarch64-arm-none-eabi file2.c
armlink filel.o file2.o -o image.axf

DUI1093B

Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 1-20
Non-Confidential

https://developer.arm.com/docs/dui0805/i/fromelf-command-line-options

Related information
armclang --target option.
armclang -march option.

armclang -mcpu option.

1 Getting Started
1.5 Compiling a Hello World example

DUI1093B

Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

1-21

https://developer.arm.com/docs/dui0774/i/compiler-command-line-options/-target
https://developer.arm.com/docs/dui0774/i/compiler-command-line-options/-march
https://developer.arm.com/docs/dui0774/i/compiler-command-line-options/-mcpu

1 Getting Started
1.6 Running bare-metal images

1.6 Running bare-metal images

By default, Arm Compiler produces bare-metal images. Bare-metal images can run without an operating
system. The images can run on a hardware target or on a software application that simulates the target,
such as Fast Models or Fixed Virtual Platforms.

If you are using Arm DS-5, you can select Run > Debug Configurations to configure and load your
application image into either a model or hardware platform.

= Debug Configurations

Create, manage, and run configurations

&3 Configuration for connection type 'Bare Metal Debug’ is not valid - Connection cannot be empty.

= X | B~
type filter text

[T] C/C++ Application

C/C++ Attach to Application

pp
C/C++ Postmortern Debugge
99

[£] C/C++ Remote Application
5 D5-5 Debugger

#5 New_configuration

Name: Mew_configuration

H:- Connection Hﬁ. Files | 85 Debugger i 05 Awareness | (- Arguments | B Environment

Select target

Select the manufacturer, board, project type and debug operation to use. Currently selected:
ARM Development Boards / Juno ARM Development Platform (0] / Bare Metal Debug / Debug Cortex-A53_0

[9

Filter platforms

& IronPython Run

.5” IronPython unittest
G Java Applet

[3] Java Application

Ju JUnit

a7 Jython run

av Jythen unittest

= Launch Group

E] PyDev Django

43 PyDev Google App Run
eF Pythen Run

éj Python unittest

f_-’ Remote Java Application

4 m 2

Filter matched 19 of 19 items

4 Juno ARM Development Platform (0}
4 Bare Metal Debug
Debug Cortex-A53 0
Debug Cortex-A53_1
Debug Cortex-A53_2

DS-5 Debugger will connect to a DSTREAM to debug a bare metal application.

Target Connection

DTSL Options

Connections

Bare Metal Debug | Cennection

Configure DSTREAM trace or other target options, Using "default” configuration opti

Browse...

Apply

I

Revert I

Debug Close

Figure 1-4 Debug configurations

For more information on configuring and running the image using Arm DS-5, see the Arm" DS-5
Debugger User Guide.

By default, the C library in Arm Compiler uses special functions to access the input and output interfaces
on the host computer. These functions implement a feature called semihosting. Semihosting is useful
when the input and output on the hardware is not available during the early stages of application
development.

When you want your application to use the input and output interfaces on the hardware, you must
retarget the required semihosting functions in the C library.

For more information on configuring the DS-5 Debugger settings, see Configuring a connection to a
bare-metal hardware target.

DUI1093B Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 1-22

Non-Confidential

https://developer.arm.com/docs/dui0446/latest
https://developer.arm.com/docs/dui0446/latest
https://developer.arm.com/docs/dui0446/latest/configuring-debug-connections-in-ds-5-debugger/configuring-a-connection-to-a-bare-metal-hardware-target
https://developer.arm.com/docs/dui0446/latest/configuring-debug-connections-in-ds-5-debugger/configuring-a-connection-to-a-bare-metal-hardware-target

1 Getting Started
1.6 Running bare-metal images

Outputting debug messages from your application

The semihosting feature enables your bare-metal application, running on an Arm processor, to use the
input and output interface on a host computer. This feature requires the use of a debugger that supports
semihosting, for example Arm DS-5 Debugger, on the host computer.

A bare-metal application that uses semihosting does not use the input and output interface of the
development platform. When the input and output interfaces on the development platform are available,
you must reimplement the necessary semihosting functions to use the input and output interfaces on the
development platform.

For more information, see how to use the libraries in semihosting and nonsemihosting environments.

Related information
Arm DS-5 Debugger User Guide.

DUI1093B

Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 1-23
Non-Confidential

https://developer.arm.com/docs/dui0808/i/the-arm-c-and-c-libraries/support-for-building-an-application-with-the-c-library/using-the-c-and-c-libraries-with-an-application-in-a-semihosting-environment
https://developer.arm.com/docs/dui0808/i/the-arm-c-and-c-libraries/support-for-building-an-application-with-the-c-library/using-the-libraries-in-a-nonsemihosting-environment
https://developer.arm.com/docs/dui0446/latest

1 Getting Started
1.7 Arm® architectures supported by the toolchain

1.7 Arm?® architectures supported by the toolchain
Arm Compiler supports a number of different architecture profiles.
Arm Compiler supports the following architectures:

* Armv8-A bare-metal targets.

* Armv8.1-A bare metal targets.
* Armv8.2-A bare metal targets.
* Armv8.3-A bare metal targets.
* Armv8-R targets.

* Armv8-M targets.

e Armv7-A bare metal targets.

e Armv7-R targets.

* Armv7-M targets.

* Armv6-M targets.

When compiling code, the compiler needs to know which architecture to target in order to take advantage
of features specific to that architecture.

To specify a target, you must supply the target execution state (AArch32 or AArch64), together with
either a target architecture (for example Armv8-A) or a target processor (for example the Cortex-A53
processor).

To specify a target execution state (AArch64 or AArch32) with armclang, use the mandatory --target
command-line option:

--target=arch-vendor-os-ab1i
Supported targets include:

aarch64-arm-none-eabi
Generates A64 instructions for AArch64 state. Implies -march=armv8-a unless -march or -mcpu is
specified.

arm-arm-none-eabi
Generates A32 and T32 instructions for AArch32 state. Must be used in conjunction with -march
(to target an architecture) or -mcpu (to target a processor).

To generate generic code that runs on any processor with a particular architecture, use the -march option.
Use the -march=1ist option to see all supported architectures.

To optimize your code for a particular processor, use the -mcpu option. Use the -mcpu=1list option to see
all supported processors.
Note

The --target, -march, and -mcpu options are armclang options. For all of the other tools, such as armasm
and armlink, use the --cpu option to specify target processors and architectures.

Related information
armclang --target option.
armclang -march option.
armclang -mcpu option.
armlink --cpu option.

Arm Glossary.

DUI1093B Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 1-24
Non-Confidential

https://developer.arm.com/docs/dui0774/i/compiler-command-line-options/-target
https://developer.arm.com/docs/dui0774/i/compiler-command-line-options/-march
https://developer.arm.com/docs/dui0774/i/compiler-command-line-options/-mcpu
https://developer.arm.com/docs/dui0803/i/linker-command-line-options/-cpuname
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Chapter 2
Using Common Compiler Options

There are many options that you can use to control how Arm Compiler 6 generates code for your
application. This section lists the mandatory and commonly used optional command-line arguments,
such as to control target selection, optimization, and debug view.

It contains the following sections:

» 2.1 Mandatory armclang options on page 2-26.

» 2.2 Selecting source language options on page 2-28.

» 2.3 Selecting optimization options on page 2-30.

* 2.4 Building to aid debugging on page 2-32.

» 2.5 Linker options for mapping code and data to target memory on page 2-33.
* 2.6 Controlling diagnostic messages on page 2-34.

o 2.7 Selecting floating-point options on page 2-36.

» 2.8 Compilation tools command-line option rules on page 2-38.

DUI1093B Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 2-25
Non-Confidential

21

2 Using Common Compiler Options
2.1 Mandatory armclang options

Mandatory armclang options

When using armclang, you must specify a target on the command-line. Depending on the target you use,
you might also have to specify an architecture or processor.

Specifying a target

To specify a target, use the --target option. The following targets are available:

* To generate A64 instructions for AArch64 state, specify --target=aarch64-arm-none-eabi.
Note

For AArch64, the default architecture is Armv8-A.

* To generate A32 and T32 instructions for AArch32 state, specify --target=arm-arm-none-eabi. To
specify generation of either A32 or T32 instructions, use -marm or -mthumb respectively.

Note

AArch32 has no defaults. You must always specify an architecture or processor.

Specifying an architecture

To generate code for a specific architecture, use the -march option. The supported architectures vary
according to the selected target.

To see a list of all the supported architectures for the selected target, use -march=1ist.

Specifying a processor

To generate code for a specific processor, use the -mcpu option. The supported processors vary according
to the selected target.

To see a list of all the supported processors for the selected target, use -mcpu=1ist.

It is also possible to enable or disable optional architecture features, by using the +[no]feature notation.
For a list of the architecture features that your processor supports, see the processor product
documentation. See the armclang Reference Guide for a list of architecture features that Arm Compiler
supports.

Use +feature or +nofeature to explicitly enable or disable an optional architecture feature.
Note

You do not need to specify both the architecture and processor. The compiler infers the architecture from
the processor. If you only want to run code on one particular processor, you can specify the specific
processor. Performance is optimized, but code is only guaranteed to run on that processor. If you want
your code to run on a range of processors from a particular architecture, you can specify the architecture.
The code runs on any processor implementation of the target architecture, but performance might be
impacted.

Examples
These examples compile and link the input file helloworld.c:
* To compile for the Armv8-A architecture in AArch64 state, use:

armclang --target=aarch64-arm-none-eabi -march=armv8-a helloworld.c

* To compile for the Armv8-R architecture in AArch32 state, use:

armclang --target=arm-arm-none-eabi -march=armv8-r helloworld.c

* To compile for the Armv8-M architecture mainline profile, use:

armclang --target=arm-arm-none-eabi -march=armv8-m.main helloworld.c

DUI1093B

Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 2-26
Non-Confidential

https://developer.arm.com/docs/dui0774/i/compiler-command-line-options/-target
https://developer.arm.com/docs/dui0774/i/compiler-command-line-options/-marm
https://developer.arm.com/docs/dui0774/i/compiler-command-line-options/-mthumb
https://developer.arm.com/docs/dui0774/i/compiler-command-line-options/-march
https://developer.arm.com/docs/dui0774/i/compiler-command-line-options/-mcpu
https://developer.arm.com/docs/dui0774/i/compiler-command-line-options/-mcpu

2 Using Common Compiler Options
2.1 Mandatory armclang options

* To compile for a Cortex-A53 processor in AArch64 state, use:

armclang --target=aarch64-arm-none-eabi -mcpu=cortex-a53 helloworld.c

* To compile for a Cortex-AS53 processor in AArch32 state, use:

armclang --target=arm-arm-none-eabi -mcpu=cortex-a53 helloworld.c

* To compile for a Cortex-M4 processor, use:

armclang --target=arm-arm-none-eabi -mcpu=cortex-m4 helloworld.c

* To compile for a Cortex-M33 processor, with DSP disabled, use:

armclang --target=arm-arm-none-eabi -mcpu=cortex-m33+nodsp helloworld.c

Related information
armclang --target option.
armclang -march option.
armclang -mcpu option.
armclang -marm option.
armclang -mthumb option.

DUI1093B

Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 2-27
Non-Confidential

https://developer.arm.com/docs/dui0774/i/compiler-command-line-options/-target
https://developer.arm.com/docs/dui0774/i/compiler-command-line-options/-march
https://developer.arm.com/docs/dui0774/i/compiler-command-line-options/-mcpu
https://developer.arm.com/docs/dui0774/i/compiler-command-line-options/-marm
https://developer.arm.com/docs/dui0774/i/compiler-command-line-options/-mthumb

2 Using Common Compiler Options
2.2 Selecting source language options

2.2 Selecting source language options
Arm Compiler infers the source language, for example C or C++, from the filename extension. You can
force Arm Compiler to compile for a specific source language using the -x option. Arm Compiler can
also compile different variants of C and C++ source code. You can specify the variant using the -std
option.
Note
This topic includes descriptions of [BETA] and [COMMUNITY] features. See Support level definitions
on page Appx-A-96.
Source language
By default Arm Compiler treats files with .c extension as C source files. If you want to compile a . c file,
for example file.c, as a C++ source file, use the -xc++ option:
armclang --target=aarch64-arm-none-eabi -march=armv8-a -xc++ file.c
By default Arm Compiler treats files with . cpp extension as C++ source files. If you want to compile
a .cpp file, for example file.cpp, as a C source file, use the -xc option:
armclang --target=aarch64-arm-none-eabi -march=armv8-a -xc file.cpp
The -x option only applies to input files that follow it on the command line.
Source language standard
Arm Compiler supports Standard and GNU variants of source languages as shown in the following table.
Table 2-1 Source language variants
Standard C GNUC Standard C++ GNU C++
c90 gnu90 ct++98 gnu++98
c99 gnu99 c++03 -
cll [COMMUNITY] gnull ct++11 gnut++11
- - c++14 [BETA] gnu++14 [BETA]

The default language standard for C code is gnu11. The default language standard for C++ code is gnu+
+98. To specify a different source language standard, use the -std=name option.

Arm Compiler supports various language extensions, including GCC extensions, which you can use in
your source code. The GCC extensions are only available when you specify one of the GCC C or C++
language variants. For more information on language extensions, see the Arm"® C Language Extensions in
Arm Compiler.

Because Arm Compiler uses the available language extensions by default, it does not adhere to the strict
ISO Standard. To compile to strict ISO standard for the source language, use the -Wpedantic option. This
shows warnings where the source code violates the ISO Standard. Arm Compiler does not support strict
adherence to C++98 or C++03.

DUI1093B

Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 2-28
Non-Confidential

https://developer.arm.com/docs/dui0774/i/other-compiler-specific-features/acle-support

2 Using Common Compiler Options
2.2 Selecting source language options

If you do not use -wpedantic, Arm Compiler uses the available language extensions without warning.
However, where language variants produce different behavior, the behavior of the language variant
specified by -std will apply.

Note

Certain compiler optimizations can violate strict adherence to the ISO Standard for the language. To
identify when these violations happen, use the -Wpedantic option.

The following example shows the use of a variable length array, which is a C99 feature. In this example,
the function declares an array i, with variable length n.

#include <stdlib.h>

void function(int n) {
int i[n];
Arm Compiler does not warn when compiling the example for C99 with -Wpedantic:

armclang --target=aarch64-arm-none-eabi -march=armv8-a -c -std=c99 -Wpedantic file.c

Arm Compiler does warn about variable length arrays when compiling the example for C90 with -
Wpedantic:

armclang --target=aarch64-arm-none-eabi -march=armv8-a -c -std=c90 -Wpedantic file.c
In this case, armclang gives the following warning:

file.c:4:8: warning: variable length arrays are a C99 feature [-Wvla-extension]
int i[n];
A

1 warning generated.

DUI1093B

Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 2-29
Non-Confidential

2 Using Common Compiler Options
2.3 Selecting optimization options

2.3 Selecting optimization options

Arm Compiler performs several optimizations to reduce the code size and improve the performance of
your application. However, optimization techniques can result in the loss of debug information, increased
build time, or increase in image size. Optimization levels are always a trade-off between these three
parameters.

Arm Compiler provides optimization options for the different optimization trade-offs. Primarily, you can
optimize for performance or for image size. However, there are several options for finer control of the
optimizations techniques. The optimization options are:

-00
This is the default optimization setting. It turns off most optimizations, and gives the best
correlation between the built image and your application source code.

Use the following options to optimize performance:

-01
This results in more optimizations for performance, when compared to -oe. It also reduces the
information available for debugging, and might result in an increased image size. Arm
recommends this option for debugging.

-02
This results in more optimizations for performance, when compared to -01. It also reduces the
information available for debugging, and might result in an increased image size.

-03
This results in more optimizations for performance, when compared to -02. It also reduces the
information available for debugging, and might result in an increased image size.

-Ofast
This results in more optimizations for performance, when compared to -03. It also reduces the
information available for debugging, and might result in an increased image size. At this
optimization level, Arm Compiler might violate certain language standards.

-Omax

This results in more optimizations for performance, when compared to -0fast. It also reduces
the information available for debugging, and might result in an increased image size. At this
optimization level, Arm Compiler might violate certain language standards. Arm recommends
this option for best performance.

Use the following options to optimize for size:

-0s
This results in reduced code size, and also reduces the information available for debugging.
Using this option might make your code slower.

-0z
This results in more reduced image size, when compared to -0s, and also reduces the
information available for debugging. Using this option is likely to make your code slower than -
0s. Arm recommends this option for best code size.

The example shows the optimization performed with the -01 optimization option. To perform this
optimization, compile your source file using:

armclang --target=arm-arm-none-eabi -march=armv7-a -01 -c -S file.c

DUI1093B Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 2-30
Non-Confidential

2 Using Common Compiler Options
2.3 Selecting optimization options

Table 2-2 Optimization example

Source code in file.c

Optimized output from armclang

int

dummy ()

int x=10, y=20;
int z;

Z=X+Y;

return 0;

dummy :
.fnstart
movs re, #0
bx 1r

The example shows the optimization performed with the -O0 optimization option. To perform this
optimization, compile your source file using:

armclang --target=arm-arm-none-eabi -march=armv7-a -00 -c -S file.c

Table 2-3 Optimization example

Source code in file.c Unoptimized output from armclang
int dummy() dummy :
.fnstart
int x=10, y=20; .pad #12
int z; sub sp, sp, #12
Z=X+Y; mov ro, #10
return 9; str re, [sp, #8]
} mov re, #20
str ro, [sp, #4]
ldr ro, [sp, #8]
add ro, re, #20
str ro, [sp]
mov ro, #0
add sp, sp, #12
bx 1r
DUI1093B Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 2-31

Non-Confidential

2 Using Common Compiler Options
2.4 Building to aid debugging

24 Building to aid debugging

During application development, you must debug the image that you build. The Arm Compiler tools

have various features that provide a good debug view and enable source-level debugging, such as setting

breakpoints in C and C++ code. There are also some features you must avoid when building an image for
debugging.

Available command-line options

To build an image for debugging, you must compile with the -g option. This option allows you to specify

the DWARF format to use. The -g option is a synonym for -gdwarf-4. You can specify DWARF 2 or

DWAREF 3 if necessary, for example:

armclang -gdwarf-3

When linking, there are several armlink options available to help improve the debug view:

* --debug. This option is the default.

* --no_remove to retain all input sections in the final image even if they are unused.

* --bestdebug. When different input objects are compiled with different optimization levels, this option
enables linking for the best debug illusion.

Effect of optimizations on the debug view

To build an application that gives the best debug view, it is better to use options that give the fewest

optimizations. Arm recommends using optimization level -01 for debugging. This option gives good

code density with a satisfactory debug view.

Higher optimization levels perform progressively more optimizations with correspondingly poorer debug

views.

The compiler attempts to automatically inline functions at optimization levels -02 and -03. If you must

use these optimization levels, disable the automatic inlining with the armclang option -fno-inline-

functions. The linker inlining is disabled by default.

Support for debugging overlaid programs

The linker provides various options to support overlay-aware debuggers:

* --emit_debug_overlay_section

* --emit_debug_overlay_relocs

These options permit an overlay-aware debugger to track which overlay is active.

Features to avoid when building an image for debugging

Avoid using the following in your source code:

* The _ attribute_ ((always_inline)) function attribute. Qualifying a function with this attribute
forces the compiler to inline the function. If you also use the -fno-inline-functions option, the
function is inlined.

e The __declspec(noreturn) attribute and the __attribute__ ((noreturn)) function attribute. These
attributes limit the ability of a debugger to display the call stack.

Avoid using the following features when building an image for debugging:

* Link time optimization. This feature performs aggressive optimizations and can remove large chunks
of code.

* The armlink --no_debug option.

* The armlink --inline option. This option changes the image in such a way that the debug information
might not correspond to the source code.

DUI1093B Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 2-32

Non-Confidential

2 Using Common Compiler Options
2.5 Linker options for mapping code and data to target memory

2.5 Linker options for mapping code and data to target memory

For an image to run correctly on a target, you must place the various parts of the image at the correct
locations in memory. Linker command-line options are available to map the various parts of an image to
target memory.

The options implement the scatter-loading mechanism that describes the memory layout for the image.
The options that you use depend on the complexity of your image:
» For simple images, use the following memory map related options:
— --ro_base to specify the address of both the load and execution region containing the RO output
section.
— --rw_base to specify the address of the execution region containing the RW output section.
— --zi_base to specify the address of the execution region containing the ZI output section.

Note

For objects that include execute-only (XO) sections, the linker provides the --xo_base option to locate
the XO sections. These sections are objects that are targeted at Armv7-M or Armv8-M architectures,
or objects that are built with the armclang -mthumb option,

» For complex images, use a text format scatter-loading description file. This file is known as a scatter
file, and you specify it with the --scatter option.

Note

You cannot use the memory map related options with the --scatter option.

Examples
The following example shows how to place code and data using the memory map related options:

armlink --ro_base=0x0 --rw_base=0x400000 --zi_base=0x405000 --first="init.o(init)" init.o
main.o

Note

In this example, --first is also included to make sure that the initialization routine is executed first.

The following example shows a scatter file, scatter.scat, that defines an equivalent memory map:
LR1 0x0000 0x20000
{
ER_RO 0x0
{

init.o (INIT, +FIRST)
*(+R0O)

ER_RW ©x400000

*(+RW)
ER_ZI 0x405000
*(+Z1)
}
To link with this scatter file, use the following command:

armlink --scatter=scatter.scat init.o main.o

DUI1093B Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 2-33
Non-Confidential

2 Using Common Compiler Options
2.6 Controlling diagnostic messages

2.6 Controlling diagnostic messages

Arm Compiler provides diagnostics messages in the form of warnings and errors. You can use options to
suppress these messages or enable them as either warnings or errors.

Arm Compiler lists all the warnings and errors it encounters during the compiling and linking process.
However, if you specify multiple source files, and Arm Compiler encounters an error from a source file,
it does not report any diagnostic information from the other source files that it has not processed.

Diagnostic messages from Arm Compiler include the following information:

» Name of file that contains the error or warning.

* Line number in the file that contains the error or warning.

* Character in the line that is associated with the error or warning.

* Description of the error or warning.

* A diagnostic flag of the form -wflag, for example -Wvla-extension, to identify the error or warning.
Only the messages that you can suppress have an associated flag. Errors that you cannot suppress do
not have an associated flag.

An example warning diagnostic message is:
file.c:8:7: warning: variable length arrays are a C99 feature [-Wvla-extension]

int i[n];
N

This warning message tells you:

» The file that contains the problem is called file.c.

* The problem is on line 8 of file.c, and starts at character 7.

* The warning is about the use of a variable length array i[n].

» The flag to identify, enable or disable this diagnostic message is vla-extension.

The following are common options that control diagnostic output from Arm Compiler.

Table 2-4 Common diagnostic options

Option

Description

-Werror

Turn all warnings into errors.

-Werror=foo

Turn warning flag foo into an error.

-Wno-error=foo

Leave warning flag foo as a warning even if -Werror is specified.

-Wfoo Enable warning flag foo.
-Wno-foo Suppress warning flag foo.
-w Suppress all warnings. Note that this is a lowercase w.
-Weverything Enable all warnings.
See Controlling Errors and Warnings in the Clang Compiler User's Manual for full details about
controlling diagnostics with armclang.
Examples of controlling diagnostic messages
Copy the following code example to file.c and compile it with Arm Compiler to see example diagnostic
messages.
#include <stdlib.h>
#include <stdio.h>
void function (int x) {
int i;
int y=i+x;
DUI1093B Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 2-34

Non-Confidential

http://clang.llvm.org/docs/UsersManual.html#options-to-control-error-and-warning-messages
http://clang.llvm.org/docs/UsersManual.html

2 Using Common Compiler Options
2.6 Controlling diagnostic messages

printf("Result of %d plus %d is %d\n", i, x); /* Missing an input argument for the third
0 */

call(); /* This function has not been declared and is therefore an implicit declaration

return;

¥
Compile file.c using:
armclang --target=aarch64-arm-none-eabi -march=armv8 -c file.c

By default armclang checks the format of printf() statements to ensure that the number of % format
specifiers matches the number of data arguments. Therefore Arm Compiler generates this diagnostic
message:

file.c:9:36: warning: more '%' conversions than data arguments [-Wformat]
printf("Result of %d plus %d is %d\n", i, x);
Y
By default armclang compiles for the gnui1 standard for .c files. This language standard does not allow

implicit function declarations. Therefore Arm Compiler generates this diagnostic message:

file.c:11:3: warning: implicit declaration of function 'call' is invalid C99 [-Wimplicit-
function-declaration]
call();

To suppress all warnings, use -w:
armclang --target=aarch64-arm-none-eabi -march=armv8-a -c file.c -w
To suppress only the -Wformat warning, use -Wno-format:
armclang --target=aarch64-arm-none-eabi -march=armv8-a -c file.c -Wno-format
To enable the -wformat message as an error, use -Werror=format:
armclang --target=aarch64-arm-none-eabi -march=armv8-a -c file.c -Werror=format
Some diagnostic messages are suppressed by default. To see all diagnostic messages use -Weverything:

armclang --target=aarch64-arm-none-eabi -march=armv8-a -c file.c -Weverything

DUI1093B

Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 2-35
Non-Confidential

2 Using Common Compiler Options
2.7 Selecting floating-point options

2.7 Selecting floating-point options

Arm Compiler supports floating-point arithmetic and floating-point data types in your source code or
application. Arm Compiler supports floating-point arithmetic either by using libraries that implement
floating-point arithmetic in software, or by using the hardware floating-point registers and instructions
that are available on most Arm-based processors.

You can use various options that determine how Arm Compiler generates code for floating-point
arithmetic. Depending on your target, you might need to specify one or more of these options to generate
floating-point code that correctly uses floating-point hardware or software libraries.

Table 2-5 Options for floating-point selection

Option

Description

armclang -mfpu

Specify the floating point architecture to the compiler.

armclang -mfloat-abi Specify the floating-point linkage to the compiler.

armclang -march

Specify the target architecture to the compiler. This automatically selects the default
floating-point architecture.

armclang -mcpu

Specify the target processor to the compiler. This automatically selects the default floating-
point architecture.

armlink --fpu

Specify the floating-point architecture to the linker.

Benefits of using floating-point hardware versus software floating-point libraries

Code that uses floating-point hardware is more compact and faster than code that uses software libraries
for floating-point arithmetic. But code that uses the floating-point hardware can only be run on
processors that have the floating-point hardware. Code that uses software floating-point libraries can also
run on Arm-based processors that do not have floating-point hardware, for example Cortex-MO0, and this
makes the code more portable. You might also disable floating-point hardware to reduce power
consumption.

Enabling and disabling the use of floating-point hardware

By default, Arm Compiler uses the available floating-point hardware that is based on the target you
specify for -mcpu or -march. However, you can force Arm Compiler to disable the floating-point
hardware. This forces Arm Compiler to use software floating-point libraries, if available, to perform the
floating-point arithmetic in your source code.

When compiling for AArch64:

* By default, Arm Compiler uses floating-point hardware that is available on the target.
» To disable the use of floating-point arithmetic, use the +nofp extension on the -mcpu or -march options.

armclang --target=aarch64-arm-none-eabi -march=armv8-a+nofp
» Software floating-point library for AArch64 is not currently available. Therefore, Arm Compiler does
not support floating-point arithmetic in your source code, if you disable floating-point hardware when
compiling for AArch64 targets.
+ Disabling floating-point arithmetic does not disable all the floating-point hardware because the
floating-point hardware is also used for Advanced SIMD arithmetic. To disable all Advanced SIMD
and floating-point hardware, use the +nofp+nosimd extension on the -mcpu or -march options:

armclang --target=aarch64-arm-none-eabi -march=armv8-a+nofp+nosimd

See the armclang Reference Guide for more information on the -march option.

DUI1093B

Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 2-36
Non-Confidential

https://developer.arm.com/docs/dui0774/i/compiler-command-line-options/-march

2 Using Common Compiler Options
2.7 Selecting floating-point options

When compiling for AArch32:

* By default, Arm Compiler uses floating-point hardware that is available on the target, with the
exception for Armv6-M, which does not have any floating-point hardware.

» To disable the use of floating-point hardware instructions, use the -mfpu=none option.

armclang --target=arm-arm-none-eabi -march=armv8-a -mfpu=none

* On AArch32 targets, using -mfpu=none disables the hardware for both Advanced SIMD and floating-
point arithmetic. You can use -mfpu to selectively enable certain hardware features. For example, if
you want to use the hardware for Advanced SIMD operations on an Armv7 architecture-based
processor, but not for floating-point arithmetic, then use -mfpu=neon.

armclang --target=arm-arm-none-eabi -march=armv7-a -mfpu=neon

See the armclang Reference Guide for more information on the -mfpu option.

Floating-point linkage
Floating-point linkage refers to how the floating-point arguments are passed to and returned from

function calls.

For AArch64, Arm Compiler always uses hardware floating-point registers to pass and return floating-
point values. This is called hardware linkage.

For AArch32, Arm Compiler can use hardware linkage or software linkage. When using software
linkage, floating-point values are passed and returned using the general purpose registers. By default,
Arm Compiler uses software linkage. You can use the -mfloat-abi option to force hardware linkage or
software linkage.

Table 2-6 Floating-point linkage for AArch32

-mfloat-abi

Linkage Floating-point operations

hard

Hardware linkage. Use floating-point Use hardware floating-point instructions.
registers. But if -mfpu=none is specified for | But if -mfpu=none is specified for
AArch32, then use general-purpose AArch32, then use software libraries.
registers.

soft

Software linkage. Use general-purpose Use software libraries without floating-
registers. point hardware.

softfp (This is the default) Software linkage. Use general-purpose Use hardware floating-point instructions.

registers. But if -mfpu=none is specified for
AArch32, then use software libraries.

Code with hardware linkage can be faster than the same code with software linkage. However, code with
software linkage can be more portable because it does not require the hardware floating-point registers.
Hardware floating-point is not available on some architectures such as Armv6-M, or on processors where
the floating-point hardware might be powered down for energy efficiency reasons.

See the armclang Reference Guide for more information on -mfloat-abi option.
Note

All objects to be linked together must have the same type of linkage. If you link object files that have
hardware linkage with object files that have software linkage, then the image might have unpredictable
behavior. When linking objects, specify the armlink option - -fpu=name where name specifies the correct
linkage type and floating-point hardware. This enables the linker to provide diagnostic information if it
detects different linkage types.

See the armlink User Guide for more information on how the --fpu option specifies the linkage type and
floating-point hardware.

DUI1093B

Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 2-37
Non-Confidential

https://developer.arm.com/docs/dui0774/i/compiler-command-line-options/-mfpu
https://developer.arm.com/docs/dui0774/i/compiler-command-line-options/-mfloat-abi
https://developer.arm.com/docs/dui0803/i/linker-command-line-options/-fpuname

2 Using Common Compiler Options
2.8 Compilation tools command-line option rules

2.8 Compilation tools command-line option rules

You can use command-line options to control many aspects of the compilation tools' operation. There are

rules that apply to each tool.

armclang option rules

armclang follows the same syntax rules as GCC. Some options are preceded by a single dash -, others by

a double dash --. Some options require an = character between the option and the argument, others

require a space character.

armasm, armar, armlink, and fromelf command-line syntax rules

The following rules apply, depending on the type of option:

Single-letter options
All single-letter options, including single-letter options with arguments, are preceded by a single
dash -. You can use a space between the option and the argument, or the argument can
immediately follow the option. For example:
armar -r -a objl.o mylib.a obj2.0
armar -r -aobjl.o mylib.a obj2.0

Keyword options
All keyword options, including keyword options with arguments, are preceded by a double dash
--. An = or space character is required between the option and the argument. For example:
armlink myfile.o --cpu=list
armlink myfile.o --cpu list

Command-line syntax rules common to all tools

To compile files with names starting with a dash, use the POSIX option -- to specify that all subsequent

arguments are treated as filenames, not as command switches. For example, to link a file named

-ifile_1, use:

armlink -- -ifile_ 1
In some Unix shells, you might have to include quotes when using arguments to some command-line
options, for example:
armlink objl.o --keep='s.o(vect)'
DUI1093B Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 2-38

Non-Confidential

Chapter 3
Writing Optimized Code

To make best use of the optimization capabilities of Arm Compiler, there are various options, pragmas,
attributes, and coding techniques that you can use.

It contains the following sections:

» 3.1 Optimizing loops on page 3-40.

* 3.2 Inlining functions on page 3-44.

* 3.3 Examining stack usage on page 3-46.
» 3.4 Packing data structures on page 3-48.

DUI1093B Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

3-39

3.1 Optimizing loops

3 Writing Optimized Code
3.1 Optimizing loops

Loops can take a significant amount of time to complete depending on the number of iterations in the
loop. The overhead of checking a condition for each iteration of the loop can degrade the performance of

the loop.

Loop unrolling

You can reduce the impact of this overhead by unrolling some of the iterations, which in turn reduces the
number of iterations for checking the condition. Use #pragma unroll (n) to unroll time-critical loops in
your source code. However, unrolling loops has the disadvantage of increasing the codes size. These
pragmas are only effective at optimization -02, -03, -Ofast, and -Omax.

Table 3-1 Loop unrolling pragmas

Pragma

Description

#pragma unroll (n)

Unroll n iterations of the loop.

#pragma unroll_completely

Unroll all the iterations of the loop.

The examples below show code with loop unrolling and code without loop unrolling.

Table 3-2 Loop optimizing example

Bit counting loop without unrolling

Bit counting loop with unrolling

int countSetBitsl(unsigned int n)
int bits = 0;
while (n != 9)
if (n & 1) bits++;

int countSetBits2(unsigned int n)
int bits = @;
#pragma unroll (4)
while (n != 9)

if (n & 1) bits++;

n >»=1; n >»=1;
return bits; return bits;
} }
The code below shows the code that Arm Compiler generates for the above examples. Copy the
examples above into file.c and compile using:
armclang --target=arm-arm-none-eabi -march=armv8-a file.c -02 -c -S -o file.s
For the function with loop unrolling, countSetBits2, the generated code is faster but larger in size.
DUI1093B Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 3-40

Non-Confidential

3 Writing Optimized Code
3.1 Optimizing loops

Table 3-3 Loop examples

Bit counting loop without unrolling Bit counting loop with unrolling
countSetBits1: countSetBits2:
mov ri, re mov rl, ro
mov ro, #o0 mov ro, #0
cmp rl, #0 cmp rl, #0
bxeq 1r bxeq 1r
mov r2, #o0 mov r2, #0
mov ro, #o0 mov ro, #0
.LBBO_1: LBBO_1:
and r3, rl, #1 and r3, rl, #1
cmp r2, rl, asr #1 cmp r2, rl, asr #1
add re, re, r3 add re, re, r3
1sr r3, rl, #1 beq .LBBO_4
mov ri, r3 @ BB#2:
bne .LBBO_1 asr r3, rl, #1
bx 1r cmp r2, rl, asr #2
and r3, r3, #1
add re, re, r3

asrne r3, rl, #2
andne r3, r3, #1
addne re, re, r3
cmpne r2, rl, asr #3

beq .LBBO_4
@ BB#3:
asr r3, rl, #3
cmp r2, rl, asr #4
and r3, r3, #l
add re, re, r3
asr r3, rl, #4
mov ri, r3
bne .LBBO_1
.LBBO_4:
bx 1r

Arm Compiler can unroll loops completely only if the number of iterations is known at compile time.

Loop vectorization

If your target has the Advanced SIMD unit, then Arm Compiler can use the vectorizing engine to
optimize vectorizable sections of the code. At optimization level -01, you can enable vectorization using
-fvectorize. At higher optimizations, -fvectorize is enabled by default and you can disable it using -
fno-vectorize. See -fvectorize in the armclang Reference Guide for more information. When using -
fvectorize with -01, vectorization might be inhibited in the absence of other optimizations which might
be present at -02 or higher.

For example, loops that access structures can be vectorized if all parts of the structure are accessed
within the same loop rather than in separate loops. The following examples show code with a loop that
can be vectorized by Advanced SIMD, and a loop that cannot be vectorized easily.

Table 3-4 Example loops

Vectorizable by

Advanced SIMD Not vectorizable by Advanced SIMD

typedef struct
int a;
int b;
int c;

} tBuffer;

tBuffer { typedef struct tBuffer {
int a;
int b;
int c;

} tBuffer;

tBuffer buffer[8];
void DoubleBufferl (void)

int i;
for (i=0; i<8; i++)

tBuffer buffer[8];
void DoubleBuffer2 (void)
int i;
for (i=0; i<8; i++)
buffer[i].a *= 2;

buffer[i].a *= 2; for (i=0; i<8; i++)
buffer[i].b *= 2; buffer[i].b *= 2;
buffer[i].c *= 2; for (i=0; i<8; i++)
buffer[i].c *= 2;
¥
DUI1093B Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 3-41

Non-Confidential

https://developer.arm.com/docs/dui0774/i/compiler-command-line-options/-fvectorize-fno-vectorize

3 Writing Optimized Code
3.1 Optimizing loops

For each example above, copy the code into file.c and compile at optimization level 02 to enable auto-
vectorization:

armclang --target=arm-arm-none-eabi -march=armv8-a -02 file.c -c -S -o file.s

The vectorized assembly code contains the Advanced SIMD instructions, for example v1d1, vshl, and
vstl. These Advanced SIMD instructions are not generated when compiling the example with the non-
vectorizable loop.

Table 3-5 Assembly code from vectorizable and non-vectorizable loops

Vectorized assembly code Non-vectorized assembly code
DoubleBufferl: DoubleBuffer2:
.fnstart .fnstart
@ BB#0: @ BB#0:
movw ro, :lowerl6:buffer movw ro, :lowerl6:buffer
movt re, :upperl6:buffer movt re, :upperl6:buffer
vldl.e64 {di6, di17}, [r©:128] ldr ri, [re]
mov rl, ro 1s1 rl, rl, #1
vshl.i32 q8, g8, #1 str rl, [re]
vstl.32 {di6, di17}, [r1:128]! ldr rl, [ro, #12]
vldl.e4 {die, di17}, [r1:128] 1s1 rl, ri, #1
vshl.i32 q8, g8, #1 str rl, [ro, #12]
vstl.64 {di16, di17}, [r1:128] ldr rl, [re, #24]
add rl, ro, #32 1s1 rl, rl, #1
vldi.64 {d16, d17}, [r1:128] str ri, [ro, #24]
vshl.i32 q8, g8, #1 ldr rl, [re, #36]
vstl.64 {di6, d17}, [r1:128] 1s1 rl, ri, #1
add rl, ro, #48 str rl, [ro, #36]
vldl.64 {d16, d17}, [r1:128] ldr ri, [ro, #48]
vshl.i32 q8, g8, #1 1s1 rl, rl, #1
vstl.64 {d16, d17}, [r1:128] str ri, [ro, #48]
add rl, ro, #64 1ldr rl, [re, #60]
add ro, ro, #80 1s1 rl, rl, #1
vldi.64 {d16, d17}, [r1:128] str ri, [ro, #60]
vshl.i32 q8, g8, #1 ldr rl, [re, #72]
vstl.64 {di6, d17}, [rl:128] 1s1 rl, ri, #1
vldi.e4 {d16, d17}, [r@:128] str ri, [ro, #72]
vshl.i32 q8, g8, #1 ldr rl, [ro, #84]
vstl.64 {dil6, d17}, [r@:128] 1s1 rl, ri, #1
bx1lr str rl, [ro, #84]
ldr rl, [re, #4]
1s1 rl, rl, #1
str rl, [ro, #4]
ldr rl, [re, #16]
1s1 rl, rl, #1
bx 1r
Note

Advanced SIMD (Single Instruction Multiple Data), also known as Arm NEON™ technology, is a
powerful vectorizing unit on Armv7-A and later Application profile architectures. It enables you to write
highly optimized code. You can use intrinsics to directly use the Advanced SIMD capabilities from C or
C++ code. The intrinsics and their data types are defined in arm_neon.h. For more information on
Advanced SIMD, see the Arm® C Language Extensions, Cortex®-A Series Programmer's Guide, and
Arm® NEON™ Programmer's Guide.

Using -fno-vectorize does not necessarily prevent the compiler from emitting Advanced SIMD
instructions. The compiler or linker might still introduce Advanced SIMD instructions, such as when
linking libraries that contain these instructions.

To prevent the compiler from emitting Advanced SIMD instructions for AArch64 targets, specify
+nosimd using -march or -mcpu:

armclang --target=aarch64-arm-none-eabi -march=armv8-a+nosimd -02 file.c -c -S -o file.s

DUI1093B

Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

3-42

https://developer.arm.com/docs/ihi0053/c/arm-c-language-extensions-20-architecture-specification
https://developer.arm.com/products/architecture/a-profile/docs/den0024/latest/aarch64-floating-point-and-neon/neon-coding-alternatives
https://developer.arm.com/products/architecture/a-profile/docs/den0018/latest/neon-programmers-guide-version-10

3 Writing Optimized Code
3.1 Optimizing loops

To prevent the compiler from emitting Advanced SIMD instructions for AArch32 targets, set the option -
mfpu to the correct value that does not include Advanced SIMD, for example fp-armvs.

armclang --target=aarch32-arm-none-eabi -march=armv8-a -mfpu=fp-armv8 -02 file.c -c -S -o
file.s

Related information
armclang -O option.
pragma unroll.

armclang -fvectorize option.

DUI1093B

Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 3-43
Non-Confidential

https://developer.arm.com/docs/dui0774/i/compiler-command-line-options/-o-1
https://developer.arm.com/docs/dui0774/i/compiler-specific-pragmas/pragma-unrolln-pragma-unroll_completely
https://developer.arm.com/docs/dui0774/i/compiler-command-line-options/-fvectorize-fno-vectorize

3.2 Inlining functions

3 Writing Optimized Code
3.2 Inlining functions

Arm Compiler automatically inlines functions if it decides that inlining the function gives better
performance. This inlining does not significantly increase the code size. However, you can use compiler
hints and options to influence or control whether a function is inlined or not.

Table 3-6 Function inlining

Inlining options, keywords or
attributes

Description

__inline

Specify this keyword on a function definition or declaration as a hint to the compiler to
favor inlining of the function. However, for each function call, the compiler still decides
whether to inline the function. This is equivalent to __inline.

__attribute_ ((always_inline))

Specify this function attribute on a function definition or declaration to tell the compiler
to always inline this function, with certain exceptions such as for recursive functions.
This overrides the -fno-inline-functions option.

__attribute__ ((noinline))

Specify this function attribute on a function definition or declaration to tell the compiler
to not inline the function. This is equivalent to __declspec(noinline).

-fno-inline-functions

This is a compiler command-line option. Specify this option to the compiler to disable
inlining. This option overrides the __inline__ hint.

Note

* Arm Compiler only inlines functions within the same compilation unit, unless you use Link Time
Optimization. For more information, see Optimizing across modules with link time optimization in the
Software Development Guide.

¢ C++and C99 provide the inline language keyword. The effect of this inline language keyword is
identical to the effect of using the __inline__ compiler keyword. However, the effect in C99 mode is
different from the effect in C++ or other C that does not adhere to the C99 standard. For more
information, see /nline functions in the armclang Reference Guide.

* Function inlining normally happens at higher optimization levels, such as -02, except when you
specify __attribute_ ((always_inline)).

Examples of function inlining

This example shows the effect of __ attribute ((always_inline)) and -fno-inline-functions in C99
mode, which is the default behavior for C files. Copy the following code to file.c.

int bar(int a)

a=a*(a+l);

return a;

}

__attribute_ ((always_inline)) static int row(int a)

a=a*(a+l);

return a;

int foo (int i)

i=bar(i);
i=i-2;
i=bar(i);
i++;
i=row(i);
i++;
return i;

DUI1093B

Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 3-44

Non-Confidential

https://developer.arm.com/docs/dui0773/i/optimization/optimizing-across-modules-with-link-time-optimization
https://developer.arm.com/docs/dui0774/i/other-compiler-specific-features/inline-functions

3 Writing Optimized Code
3.2 Inlining functions

In the example code, functions bar and row are identical but function row is always inlined. Use the
following compiler commands to compile for -02 with -fno-inline-functions and without -fno-inline-

functions:

armclang --target=arm-arm-none-eabi -march=armv8-a -c -S file.c -02 -o file_no_inline.s -fno-

inline-functions

armclang --target=arm-arm-none-eabi -march=armv8-a -c -S file.c -02 -o file_with_inline.s

The generated code shows inlining:

Table 3-7 Effect of -fno-inline-functions

Compiling with -fno-inline-functions Compiling without -fno-inline-functions
foo: @ @foo foo: @ @foo
.fnstart .fnstart
@ BB#0: @ BB#9:
.save {ri11, 1lr} add rl, re, #1
push {ri1, 1r} mul re, ri, re
bl bar sub rl, re, #2
sub re, ro, #2 sub ro, re, #i
bl bar mul ro, re, ri
add rl, ro, #1 add rl, re, #1
add re, ro, #2 add ro, re, #2
mul re, ro, rl mul ro, re, ri
add re, ro, #1 add ro, re, #1
pop {r11, pc} bx 1r
.Lfunc_endo: .Lfunc_endo:
.size foo, .Lfunc_end@-foo .size foo, .Lfunc_end@-foo
.cantunwind .cantunwind
.fnend .fnend
When compiling with -fno-inline-functions, the compiler does not inline the function bar. When
compiling without -fno-inline-functions, the compiler inlines the function bar. However, the compiler
always inlines the function row even though it is identical to function bar.
Related information
armclang -fno-inline-functions option.
__inline keyword.
__attribute__((always_inline)) function attribute.
__attribute__((no_inline)) function attribute.
DUI1093B Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 3-45

Non-Confidential

https://developer.arm.com/docs/dui0774/i/compiler-command-line-options/-fno-inline-functions
https://developer.arm.com/docs/dui0774/i/compiler-specific-keywords-and-operators/__inline
https://developer.arm.com/docs/dui0774/i/compiler-specific-function-variable-and-type-attributes/__attribute__always_inline-function-attribute
https://developer.arm.com/docs/dui0774/i/compiler-specific-function-variable-and-type-attributes/__attribute__noinline-function-attribute

3 Writing Optimized Code
3.3 Examining stack usage

3.3 Examining stack usage
Processors for embedded applications have limited memory and therefore the amount of space available
on the stack is also limited. You can use Arm Compiler to determine how much stack space is used by
the functions in your application code.
The amount of stack that a function uses depends on factors such as the number and type of arguments to
the function, local variables in the function, and the optimizations that the compiler performs. For more
information on what the stack is used for, see Stack use in C and C++ in the Software Development
Guide.
It is good practice to examine the amount of stack used by the functions in your application. You can
then consider rewriting your code to reduce stack usage.
To examine the stack usage in your application, use the linker option --info=stack. The following
example code shows functions with different numbers of arguments:
__attribute_ ((noinline)) int fact(int n)
int £ = 1;
while (n>0@)
f *= n--;
return f;
int foo (int n)
return fact(n);
int foo_mor (int a, int b, int c, int d)
return fact(a);
int main (void)
return foo(10) + foo_mor(10,11,12,13);
Copy the code example to file.c and compile it using the following command:
armclang --target=arm-arm-none-eabi -march=armv8-a -c -g file.c -o file.o
Compiling with the -g option generates the DWARF frame information that armlink requires for
estimating the stack use. Run armlink on the object file using --info=stack:
armlink file.o --info=stack
For the example code, armlink shows the amount of stack used by the various functions. Function
foo_mor has more arguments than function foo, and therefore uses more stack.
Stack Usage for fact @xc bytes.
Stack Usage for foo 0x8 bytes.
Stack Usage for foo_mor 0x10 bytes.
Stack Usage for main @x8 bytes.
You can also examine stack usage using the linker option --callgraph:
armlink file.o --callgraph -o FileImage.axf
This outputs a file called FileImage.htm that contains the stack usage information for the various
functions in the application.
fact (ARM, 84 bytes, Stack size 12 bytes, file.o(.text))
[Stack]
Max Depth = 12
Call Chain = fact
[Called By]
DUI1093B Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 3-46

Non-Confidential

https://developer.arm.com/docs/dui0773/i/coding-considerations/stack-use-in-c-and-c

3 Writing Optimized Code
3.3 Examining stack usage

>> foo_mor
>> foo
foo (ARM, 36 bytes, Stack size 8 bytes, file.o(.text))

[Stack]

Max Depth = 20
Call Chain = foo >> fact

[Calls]
>> fact

[Called By]

>> main

foo_mor (ARM, 76 bytes, Stack size 16 bytes, file.o(.text))
[Stack]

Max Depth = 28
Call Chain = foo_mor >> fact

[Calls]
>> fact

[Called By]

>> main

main (ARM, 76 bytes, Stack size 8 bytes, file.o(.text))
[Stack]

Max Depth = 36
Call Chain = main >> foo_mor >> fact

[Calls]
>> foo_mor
>> foo

[Called By]
>> _ rt_entry_main (via BLX)

See --info and --callgraph in the armlink User Guide for more information on these commands.

DUI1093B

Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 3-47
Non-Confidential

https://developer.arm.com/docs/dui0803/i/linker-command-line-options/-infotopictopic
https://developer.arm.com/docs/dui0803/i/linker-command-line-options/-callgraph-no_callgraph

3.4

3 Writing Optimized Code
3.4 Packing data structures

Packing data structures

You can reduce the amount of memory that your application requires by packing data into structures.
This is especially important if you need to store and access large arrays of data in embedded systems.

If individual data members in a structure are not packed, the compiler can add padding within the
structure for faster access to individual members, based on the natural alignment of each member. Arm
Compiler 6 provides a pragma and attribute to pack the members in a structure or union without any
padding.

Table 3-8 Packing members in a structure or union

Pragma or attribute Description

#pragma pack (n) For each member, if n bytes is less than the natural alignment of

the member, then set the alignment to n bytes, otherwise the
alignment is the natural alignment of the member. For more
information see #pragma pack (n) and __alignof .

__attribute__ ((packed)) This is equivalent to #pragma pack (1). However, the attribute

can also be used on individual members in a structure or union.

Packing the entire structure

To pack the entire structure or union, use __attribute__ ((packed)) or #pragma pack(n) to the declaration
of the structure as shown in the code examples. The attribute and pragma apply to all the members of the
structure or union. If the member is a structure, then the structure has an alignment of 1-byte, but the
members of that structure continue to have their natural alignment.

When using #pragma pack(n), the alignment of the structure is the alignment of the largest member after
applying #pragma pack(n) to the structure.

Each example declares two objects ¢ and d. Copy each example into file.c and compile:
armclang --target=arm-arm-none-eabi -march=armv8-a -c file.c -o file.o

For each example use linker option --info=sizes to examine the memory used in file.o.
armlink file.o --info=sizes

The linker output shows the total memory used by the two objects ¢ and d. For example:

Code (inc. data) RO Data RW Data ZI Data Debug Object Name
36 0 (4] (4] str.o

36 [16 0 24 © Object Totals

DUI1093B

Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 3-48
Non-Confidential

https://developer.arm.com/docs/dui0774/i/compiler-specific-pragmas/pragma-pack
https://developer.arm.com/docs/dui0774/i/compiler-specific-keywords-and-operators/__alignof__

3 Writing Optimized Code
3.4 Packing data structures

Table 3-9 Packing structures

Code Packing Size of structure
struct stc 12. The alignment of the structure is the
Char Padding Short .
natural alignment of the largest member. In

char one; . . X
short two; char T this example, the largest member is an int.
char three;
int four;

} c,d; Int

int main (void)

Figure 3-1 Structure without
packing attribute or pragma

c.one=1;
return 0;
¥
struct __attribute__ ((packed)) char <o o 8. The alignment of the structure is 1 byte.
stc
{
char one; Int
short two;
ghar three;
}c ér.’t four; Figure 3-2 Structure with attribute
B)
packed
int main (void)
c.one=1;
return 0;
)
#pragma pack (1) char on o 8. The alignment of the structure is 1 byte.
struct stc
char one; I
short two;
char three;
}c ér.‘t four; Figure 3-3 Structure with pragma
B)

int main (void)

c.one=1;
return 0;

pack with 1 byte alignment

DUI1093B

Non-Confidential

Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 3-49

3 Writing Optimized Code
3.4 Packing data structures

Table 3-9 Packing structures (continued)

Code

Packing

Size of structure

#pragma pack (2)

struct stc

{
char one;
short two;
char three;
int four;

} c,d;

int main (void)

c.one=1;
return 0;

Char Padding Short

Char

Padding Int

Int

Figure 3-4 Structure with pragma
pack with 2 byte alignment

10. The alignment of the structure is 2
bytes.

#pragma pack (4)
struct stc

char one;
short two;
char three;
int four;

} cd;

int main (void)

Char Padding Short

Char

Padding

Int

Figure 3-5 Structure with pragma

12. The alignment of the structure is 4
bytes.

{ pack with 4 byte alignment
c.one=1;
return 0;
}
Packing individual members in a structure
To pack individual members of a structure, use __attribute_ ((packed)) on the member. This aligns the
member to a byte boundary and therefore reduces the amount of memory required by the structure as a
whole. It does not affect the alignment of the other members. Therefore the alignment of the whole
structure is equal to the alignment of the largest member without the __attribute_ ((packed)).
Table 3-10 Packing individual members
Code Packing Size
struct stc 10. The alignment of the structure is 2
Char Paddin Short
" . ’ bytes because the largest member without
ghg:tOESS; crar ” __attribute__((packed)) is short
char three;
int _ attribute__ ((packed))
‘FOUI"} Int Padding
} o,d;

int main (void)

Figure 3-6 Structure with attribute
packed on individual member

Non-Confidential

c.one=1;
return 0;
}
Accessing packed members from a structure
If a member of a structure or union is packed and therefore does not have its natural alignment, then to
access this member, you must use the structure or union that contains this member. You must not take the
address of such a packed member to use as a pointer, because the pointer might be unaligned.
DUI1093B Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 3-50

3 Writing Optimized Code
3.4 Packing data structures

Dereferencing such a pointer can be unsafe even when unaligned accesses are supported by the target,
because certain instructions always require word-aligned addresses.
Note

If you take the address of a packed member, in most cases, the compiler generates a warning.

struct __attribute__ ((packed)) foobar
{

char x;
short y;

3
short get_y(struct foobar *s)

// Correct usage: the compiler will not use unaligned accesses
// unless they are allowed.
return s->y;

short get2_y(struct foobar *s)
{

short *p = &s->y; // Incorrect usage: 'p' might be an unaligned pointer.
return *p; // This might cause an unaligned access.

Related information

pragma pack.

__attribute _((packed)) type attribute.
__attribute__((packed)) variable attribute.

DUI1093B

Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 3-51
Non-Confidential

https://developer.arm.com/docs/dui0774/i/compiler-specific-pragmas/pragma-pack
https://developer.arm.com/docs/dui0774/i/compiler-specific-function-variable-and-type-attributes/__attribute__packed-type-attribute
https://developer.arm.com/docs/dui0774/i/compiler-specific-function-variable-and-type-attributes/__attribute__packed-variable-attribute

Chapter 4
Using Assembly and Intrinsics in C or C++ Code

All code for a single application can be written in the same source language. This is usually a high-level
language such as C or C++ that is compiled to instructions for Arm architectures. However, in some
situations you might need lower-level control than what C and C++ provide.

For example:

» To access features which are not available from C or C++, such as interfacing directly with device
hardware.
* To generate highly optimized code by manually writing sections using intrinsics or inline assembly.

There are a number of different ways to have low-level control over the generated code:

» Intrinsics are functions provided by the compiler. An intrinsic function has the appearance of a
function call in C or C++, but is replaced during compilation by a specific sequence of low-level
instructions.

* Inline assembly lets you write assembly instructions directly in your C/C++ code, without the
overhead of a function call.

* Calling assembly functions from C/C++ lets you write standalone assembly code in a separate source
file. This code is assembled separately to the C/C++ code, and then integrated at link time.

It contains the following sections:

» 4.1 Using intrinsics on page 4-53.

* 4.2 Writing inline assembly code on page 4-54.

* 4.3 Calling assembly functions from C and C++ on page 4-56.

DUI1093B

Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 4-52
Non-Confidential

4 Using Assembly and Intrinsics in C or C++ Code
4.1 Using intrinsics

4.1 Using intrinsics

Compiler intrinsics are special functions whose implementations are known to the compiler. They enable

you to easily incorporate domain-specific operations in C and C++ source code without resorting to

complex implementations in assembly language.

The C and C++ languages are suited to a wide variety of tasks but they do not provide built-in support

for specific areas of application, for example, Digital Signal Processing (DSP).

Within a given application domain, there is usually a range of domain-specific operations that have to be

performed frequently. However, if specific hardware support is available, then these operations can often

be implemented using the hardware support than in C or C++. A typical example is the saturated add of
two 32-bit signed two’s complement integers, commonly used in DSP programming. The following
example shows a C implementation of a saturated add operation:
#include <limits.h>
int L_add(const int a, const int b)
int c;
c=a+b;
if (((a ~'b) & INT_MIN) == @)
if ((c ~ a) & INT_MIN)
{
c = (a < @) ? INT_MIN : INT_MAX;
}
return c;
}

Using compiler intrinsics, you can achieve more complete coverage of target architecture instructions

than you would from the instruction selection of the compiler.

An intrinsic function has the appearance of a function call in C or C++, but is replaced during

compilation by a specific sequence of low-level instructions. The following example shows how to

access the _ gadd saturated add intrinsic:
#include <arm_acle.h> /* Include ACLE intrinsics */
int foo(int a, int b)
return __gadd(a, b); /* Saturated add of a and b */

Using compiler intrinsics offers a number of performance benefits:

* The low-level instructions substituted for an intrinsic are either as efficient or more efficient than
corresponding implementations in C or C++. This results in both reduced instruction and cycle
counts. To implement the intrinsic, the compiler automatically generates the best sequence of
instructions for the specified target architecture. For example, the __gadd intrinsic maps directly to the
A32 assembly language instruction qadd:

QADD ro, ro, ri /* Assuming r@ = a, rl = b on entry */

* More information is given to the compiler than the underlying C and C++ language is able to convey.
This enables the compiler to perform optimizations and to generate instruction sequences that it
cannot otherwise perform.

These performance benefits can be significant for real-time processing applications. However, care is

required because the use of intrinsics can decrease code portability.

Related information

Compiler-specific intrinsics.

ACLE support.

DUI1093B Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 4-53

Non-Confidential

https://developer.arm.com/docs/dui0774/i/compiler-specific-intrinsics
https://developer.arm.com/docs/dui0774/i/other-compiler-specific-features/acle-support

4 Using Assembly and Intrinsics in C or C++ Code
4.2 Writing inline assembly code

4.2 Writing inline assembly code
The compiler provides an inline assembler that enables you to write assembly code in your C or C++
source code, for example to access features of the target processor that are not available from C or C++.
The __asm keyword can incorporate inline assembly code into a function using the GNU inline assembly
syntax. For example:
#include <stdio.h>
int add(int i, int j)
{
int res = 0;
__asm ("ADD %[result], %[input_i], %[input_j]"
: [(esult] "=p" (?es)]]]
: [input_i] "r" (i), [input_j] "r" (3)
réturn res;
¥
int main(void)
int a = 1;
int b = 2;
int ¢ = 0;
c = add(a,b);
printf("Result of %d + %d = %d\n", a, b, c);
}
Note
The inline assembler does not support legacy assembly code written in armasm assembler syntax. See the
Migration and Compatibility Guide for more information about migrating armasm syntax assembly code
to GNU syntax.
The general form of an __asm inline assembly statement is:
__asm [volatile] (code); /* Basic inline assembly syntax */
/* Extended inline assembly syntax */
__asm [volatile] (code_template
: output_operand_List
[: input_operand_Llist
[: clobbered _register List]]
)s
code is the assembly instruction, for example "ADD R@, R1, R2". code_template is a template for an
assembly instruction, for example "ADD %[result], %[input_i], %[input_j]1".
If you specify a code_template rather than code then you must specify the output_operand_List before
specifying the optional input_operand_List and clobbered_register List.
output_operand_List is a list of output operands, separated by commas. Each operand consists of a
symbolic name in square brackets, a constraint string, and a C expression in parentheses. In this example,
there is a single output operand: [result] "=r" (res). The list can be empty. For example:
__asm ("ADD RO, %[input_i], %[input_j]"
: Thi§ is an empty output operand list */
: [input_i] "r" (i), [input_j] "r" (3)
H
input_operand_L1ist is an optional list of input operands, separated by commas. Input operands use the
same syntax as output operands. In this example, there are two input operands: [input_i] "r" (i),
[input_j] "r" (j). The list can be empty.
clobbered_register_List is an optional list of clobbered registers whose contents are not preserved. The
list can be empty. In addition to registers, the list can also contain special arguments:
DUI1093B Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 4-54

Non-Confidential

https://developer.arm.com/docs/dui0742/i

4 Using Assembly and Intrinsics in C or C++ Code
4.2 Writing inline assembly code

\AJ cc "

The instruction affects the condition code flags.
"memory"

The instruction accesses unknown memory addresses.

The registers in clobbered_register_List must use lowercase letters rather than uppercase letters. An
example instruction with a cLobbered_register List is:

__asm ("ADD RO, %[input_i], %[input_j]"
: /* This is an empty output operand list */
¢ [input_i] "r" (i), [input_j] "r" (J)
: "r5","r6","cc", "memory" /*Use "r5" instead of "R5" */

)s

Use the volatile qualifier for assembler instructions that have processor side-effects, which the compiler
might be unaware of. The volatile qualifier disables certain compiler optimizations. The volatile
qualifier is optional.

Defining symbols and labels

You can use inline assembly to define symbols. For example:
__asm (".global __use_no_semihosting\n\t");

To define labels, use : after the label name. For example:

__asm ("my_label:\n\t");

Multiple instructions

You can write multiple instructions within the same __asm statement. This example shows an interrupt
handler written in one __asm statement, for an Armv8-M Mainline architecture.

void HardFault_Handler(void)

asm (

"TST LR, #0x40\n\t"

"BEQ from_nonsecure\n\t"
"from_secure:\n\t"

"TST LR, #0x04\n\t"

"ITE EQ\n\t"

"MRSEQ RO, MSP\n\t"

"MRSNE RO, PSP\n\t"

"B hard_fault_handler_c\n\t"
"from_nonsecure:\n\t"

"MRS RO, CONTROL_NS\n\t"

"TST RO, #2\n\t"

"ITE EQ\n\t"

"MRSEQ RO, MSP_NS\n\t"

"MRSNE RO, PSP_NS\n\t"

"B hard_fault_handler_c\n\t"
)

¥

Copy the above handler code to file.c and then you can compile it using:

armclang --target=arm-arm-none-eabi -march=armv8-m.main -c -S file.c -o file.s

Embedded assembly

You can write embedded assembly using _ attribute ((naked)). For more information, see

__attribute__((naked)) in the armclang Reference Guide.

DUI1093B

Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 4-55
Non-Confidential

https://developer.arm.com/docs/dui0774/i/compiler-specific-function-variable-and-type-attributes/__attribute__naked-function-attribute

4 Using Assembly and Intrinsics in C or C++ Code
4.3 Calling assembly functions from C and C++

4.3 Calling assembly functions from C and C++
Often, all the code for a single application is written in the same source language. This is usually a high-
level language such as C or C++.
However, in some situations you might want to make function calls from C/C++ code to assembly code.
For example:
» If you want to make use of existing assembly code, but the rest of your project is in C or C++.
+ If you want to manually write critical functions directly in assembly code that can produce better
optimized code than compiling C or C++ code.
« If you want to interface directly with device hardware and if this is easier in low-level assembly code
than high-level C or C++.
Note
For code portability, it is better to use intrinsics or inline assembly rather than writing and calling
assembly functions.
To call an assembly function from C or C++:
1. In the assembly source, declare the code as a global function using .globl and .type:
.globl myadd
.p2align 2
.type myadd, %function
myadd: // Function "myadd" entry point.
.fnstart
add re, r@, rl // Function arguments are in RO and R1l. Add together and put
the result in RO.
bx 1r // Return by branching to the address in the link register.
.fnend
Note
armclang requires that you explicitly specify the types of exported symbols using the .type directive.
If the .type directive is not specified in the above example, the linker outputs warnings of the form:
Warning: L6437W: Relocation #RELA:1 in test.o(.text) with respect to myadd...
Warning: L6318W: test.o(.text) contains branch to a non-code symbol myadd.
2. In C code, declare the external function using extern:
#include <stdio.h>
extern int myadd(int a, int b);
int main()
int a = 4;
int b = 5;
printf("Adding %d and %d results in %d\n", a, b, myadd(a, b));
return (9);
¥
In C++ code, use extern "C":
extern "C" int myadd(int a, int b);
3. Ensure that your assembly code complies with the Procedure Call Standard for the Arm® Architecture
(AAPCS).
The AAPCS describes a contract between caller functions and callee functions. For example, for
integer or pointer types, it specifies that:
» Registers RO-R3 pass argument values to the callee function, with subsequent arguments passed
on the stack.
» Register RO passes the result value back to the caller function.
DUI1093B Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 4-56

Non-Confidential

4 Using Assembly and Intrinsics in C or C++ Code
4.3 Calling assembly functions from C and C++

+ Caller functions must preserve R0-R3 and R12, because these registers are allowed to be
corrupted by the callee function.

+ Callee functions must preserve R4-R11 and LR, because these registers are not allowed to be
corrupted by the callee function.

For more information, see the Procedure Call Standard for the Arm® Architecture (AAPCS).
4. Compile both source files:

armclang --target=arm-arm-none-eabi -march=armv8-a main.c myadd.s

Related information
Procedure Call Standard for the Arm Architecture.
Procedure Call Standard for the Arm 64-bit Architecture.

DUI1093B

Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 4-57
Non-Confidential

https://developer.arm.com/products/architecture/a-profile/docs/ihi0042/latest/procedure-call-standard-for-the-arm-architecture-abi-r210
https://developer.arm.com/products/architecture/a-profile/docs/ihi0042/latest/procedure-call-standard-for-the-arm-architecture-abi-r210
https://developer.arm.com/docs/ihi0055/latest/procedure-call-standard-for-the-arm-64-bit-architecture-aarch64

Chapter 5
Mapping Code and Data to the Target

There are various options in Arm Compiler to control how code, data and other sections of the image are
mapped to specific locations on the target.

It contains the following sections:

* 5.1 What the linker does to create an image on page 5-59.

* 5.2 Placing data items for target peripherals with a scatter file on page 5-61.
* 5.3 Placing the stack and heap with a scatter file on page 5-62.

* 5.4 Root region on page 5-63.

* 5.5 Placing functions and data in a named section on page 5-66.

* 5.6 Placing functions and data at specific addresses on page 5-68.
* 5.7 Placement of Arm® C and C++ library code on page 5-76.

* 5.8 Placement of unassigned sections on page 5-78.

* 5.9 Placing veneers with a scatter file on page 5-88.

* 5.10 Preprocessing a scatter file on page 5-89.

* 5.11 Reserving an empty block of memory on page 5-91.

» 5.12 Aligning regions to page boundaries on page 5-93.

» 5.13 Aligning execution regions and input sections on page 5-94.

DUI1093B Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 5-58
Non-Confidential

5 Mapping Code and Data to the Target
5.1 What the linker does to create an image

51 What the linker does to create an image

The linker takes object files that a compiler or assembler produces and combines them into an executable

image. The linker also uses a memory description to assign the input code and data from the object files

to the required addresses in the image.

You can specify object files directly on the command line or specify a user library containing object files.

The linker:

» Resolves symbolic references between the input object files.

+ Extracts object modules from libraries to resolve otherwise unresolved symbolic references.

* Removes unused sections.

+ Eliminates duplicate common groups and common code, data, and debug sections.

» Sorts input sections according to their attributes and names, and merges sections with similar
attributes and names into contiguous chunks.

* Organizes object fragments into memory regions according to the grouping and placement
information that is provided in a memory description.

+ Assigns addresses to relocatable values.

* Generates either a partial object if requested, for input to another link step, or an executable image.

The linker has a built-in memory description that it uses by default. However, you can override this

default memory description with command-line options or with a scatter file. The method that you use

depends how much you want to control the placement of the various output sections in the image:

» Allow the linker to automatically place the output sections using the default memory map for the
specified linking model. armlink uses default locations for the RO, RW, execute-only (XO), and ZI
output sections.

» Use the memory map related command-line options to specify the locations of the RO, RW, XO, and
Z1 output sections.

» Use a scatter file if you want to have the most control over where the linker places various parts of
your image. For example, you can place individual functions at specific addresses or certain data
structures at peripheral addresses.

Note

XO sections are supported only for images that are targeted at Armv7-M or Armv8-M architectures.

This section contains the following subsection:

e 5.1.1 What you can control with a scatter file on page 5-59.

5.1.1 What you can control with a scatter file

A scatter file gives you the ability to control where the linker places different parts of your image for

your particular target.

You can control:

» The location and size of various memory regions that are mapped to ROM, RAM, and FLASH.

* The location of individual functions and variables, and code from the Arm standard C and C++
libraries.

* The placement of sections that contain individual functions or variables, or code from the Arm
standard C and C++ libraries.

* The priority ordering of memory areas for placing unassigned sections, to ensure that they get filled
in a particular order.

» The location and size of empty regions of memory, such as memory to use for stack and heap.

DUI1093B Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 5-59

Non-Confidential

5 Mapping Code and Data to the Target
5.1 What the linker does to create an image

If the location of some code or data lies outside all the regions that are specified in your scatter file, the
linker attempts to create a load and execution region to contain that code or data.

Note

Multiple code and data sections cannot occupy the same area of memory, unless you place them in
separate overlay regions.

DUI1093B

Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 5-60
Non-Confidential

5.2

5 Mapping Code and Data to the Target
5.2 Placing data items for target peripherals with a scatter file

Placing data items for target peripherals with a scatter file

To access the peripherals on your target, you must locate the data items that access them at the addresses
of those peripherals.

To make sure that the data items are placed at the correct address for the peripherals, use the
__attribute_ ((section(".ARM.__at_address"))) variable attribute together with a scatter file.

Procedure
1. Create peripheral.c to place the my_peripheral variable at address ox1ee00000.
#include "stdio.h"
int my_peripheral _ attribute__ ((section(".ARM.__at_0x10000000"))) = 0;
int main(void)
printf("%d\n",my_peripheral);
return 0;

}

2. Create the scatter file scatter.scat.
LR_1 0©x040000 ; load region starts at 0x40000
{ ; start of execution region descriptions
ER_RO 0x040000 ; load address = execution address

*(+RO +RW) ; all RO sections (must include section with
; initial entry point)

; rest of scatter-loading description
ARM_LIB_STACK @x40000 EMPTY -0x20000 ; Stack region growing down

{1}
ARM_LIB_HEAP ©x28000000 EMPTY 0Ox80000 ; Heap region growing up

{1
}

LR_2 0x01000000
ER_ZI +0 UNINIT
*(.bss)
}
LR_3 0x10000000
ER_PERIPHERAL 0x10000000 UNINIT
*(.ARM.__at_0x10000000)
¥
3. Build the image.
armclang --target=arm-arm-eabi-none -mcpu=cortex-a9 peripheral.c -g -c -o peripheral.o

armlink --cpu=cortex-a9 --scatter=scatter.scat --map --symbols peripheral.o --
output=peripheral.axf > map.txt

The memory map for load region LR_3 is:
Load Region LR_3 (Base: 0x10000000, Size: 0x00000004, Max: Oxffffffff, ABSOLUTE)

Execution Region ER_PERIPHERAL (Base: 0x10000000, Size: 0x00000004, Max: Oxffffffff,
ABSOLUTE, UNINIT)

Base Addr Size Type Attr Idx E Section Name Object

0x10000000 ©Ox00000004 Data RW 5 .ARM.__at_0x10000000 peripheral.o

DUI1093B

Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 5-61
Non-Confidential

5 Mapping Code and Data to the Target
5.3 Placing the stack and heap with a scatter file

5.3 Placing the stack and heap with a scatter file
The Arm C library provides multiple implementations of the function __user_setup_stackheap(), and can
select the correct one for you automatically from information that is given in a scatter file.
Note

» Ifyou re-implement _ user_setup_stackheap() then your version does not get invoked when stack
and heap are defined in a scatter file.

* You might have to update your startup code to use the correct initial stack pointer. Some processors,
such as the Cortex-M3 processor, require that you place the initial stack pointer in the vector table.
See Stack and heap configuration in AN179 - Cortex®-M3 Embedded Software Development for more
details.

Procedure

1. Define two special execution regions in your scatter file that is named ARM_LIB_HEAP and
ARM_LIB_STACK.

2. Assign the EMPTY attribute to both regions.

Because the stack and heap are in separate regions, the library selects the non-default implementation
of __user_setup_stackheap() that uses the value of the symbols:
* Image$$ARM LIB_STACK$$ZI$$Base.
* Image$$ARM LIB_STACK$$ZI$$Limit.
* Image$$ARM_LIB_HEAP$$ZI$$Base.
* Image$$ARM LIB_HEAP$$ZI$$Limit.
You can specify only one ARM_LIB_STACK or ARM_LIB_HEAP region, and you must allocate a size.
LOAD_FLASH ...
{
KRM_LIB_STACK 0x40000 EMPTY -0x20000 ; Stack region growing down
{1}
ARM_LIB_HEAP 0x28000000 EMPTY Ox80000 ; Heap region growing up
{1
¥

3. Alternatively, define a single execution region that is named ARM_LIB_STACKHEAP to use a combined
stack and heap region. Assign the EMPTY attribute to the region.

Because the stack and heap are in the same region, __user_setup_stackheap() uses the value of the
symbols Image$$ARM_LIB_STACKHEAP$$ZI$$Base and Image$$ARM_LIB_STACKHEAP$$ZI$$Limit.
DUI1093B Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 5-62

Non-Confidential

https://developer.arm.com/docs/dai0179/latest/cortex-m3-embedded-software-development

5 Mapping Code and Data to the Target
5.4 Root region

54 Root region

A root region is a region with the same load and execution address. The initial entry point of an image
must be in a root region.

If the initial entry point is not in a root region, the link fails and the linker gives an error message.

Example

Root region with the same load and execution address.

LR_1 0©x040000 ; load region starts at 0x40000
; start of execution region descriptions
ER_RO 0x040000 ; load address = execution address
* (+RO) ; all RO sections (must include section with

)
; initial entry point)

; rest of scatter-loading description

}

This section contains the following subsections:

* 5.4.1 Effect of the ABSOLUTE attribute on a root region on page 5-63.
* 5.4.2 Effect of the FIXED attribute on a root region on page 5-64.

5.41 Effect of the ABSOLUTE attribute on a root region

You can use the ABSOLUTE attribute to specify a root region. This attribute is the default for an execution
region.

To specify a root region, use ABSOLUTE as the attribute for the execution region. You can either specify the
attribute explicitly or permit it to default, and use the same address for the first execution region and the
enclosing load region.

To make the execution region address the same as the load region address, either:

» Specify the same numeric value for both the base address for the execution region and the base
address for the load region.
* Specify a +e offset for the first execution region in the load region.

If you specify an offset of zero (+0) for all subsequent execution regions in the load region, then all
execution regions not following an execution region containing ZI are also root regions.

Example
The following example shows an implicitly defined root region:

LR_1 0x040000 ; load region starts at 0x40000
; start of execution region descriptions
ER_RO 0©x040000 ABSOLUTE ; load address = execution address

* (+RO) ; all RO sections (must include the section
; containing the initial entry point)

; rest of scatter-loading description

DUI1093B Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 5-63
Non-Confidential

5 Mapping Code and Data to the Target
5.4 Root region

5.4.2 Effect of the FIXED attribute on a root region
You can use the FIXED attribute for an execution region in a scatter file to create root regions that load and
execute at fixed addresses.
Use the FIXED execution region attribute to ensure that the