Cortex®-A72 Software
Optimization Guide

Date of Issue: March 10, 2015

Copyright ARM Limited 2015. All rights reserved.

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A Page 1 of 42

Cortex®-A72

Software Optimisation Guide

Copyright © 2015 ARM. All rights reserved.

Release Information

The following changes have been made to this Software Optimisation Guide.

Change History

Date Issue Confidentiality Change

1 June 2015 Non-confidential First release

Proprietary Notice

Words and logos marked with ™ or ® are registered trademarks or trademarks of ARM® in the EU and other
countries except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein
may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars
of the product and its use contained in this document are given by ARM in good faith. However, all warranties
implied or expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are
excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for any loss
or damage arising from the use of any information in this document, or any error or omission in such information,
or any incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. This document has no restriction on distribution.

Product Status

The information in this document is final, that is for a developed product .

Web Address

http://www.arm.com

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A Page 2 of 42

Contents

1 ABOUT THIS DOCUMENT
1.1 References
1.2 Terms and abbreviations

1.3 Document Scope

2 INTRODUCTION

2.1 Pipeline Overview

3 INSTRUCTION CHARACTERISTICS

3.1 Instruction Tables

3.2 Branch Instructions

3.3 Arithmetic and Logical Instructions

3.4 Move and Shift Instructions

3.5 Divide and Multiply Instructions

3.6 Saturating and Parallel Arithmetic Instructions
3.7 Miscellaneous Data-Processing Instructions
3.8 Load Instructions

3.9 Store Instructions

3.10 FP Data Processing Instructions

3.11 FP Miscellaneous Instructions

3.12 FP Load Instructions

3.13 FP Store Instructions

3.14 ASIMD Integer Instructions

3.15 ASIMD Floating-Point Instructions

3.16 ASIMD Miscellaneous Instructions

3.17 ASIMD Load Instructions

3.18 ASIMD Store Instructions

10

11

12

15

16

18

19

20

22

26

28

30

33

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A

Page 3 of 42

3.19

3.20

Cryptography Extensions

CRC

4 SPECIAL CONSIDERATIONS

41

4.2

43

4.4

4.5

4.6

4.7

4.8

4.9

410

4.1

412

413

Dispatch Constraints

Conditional Execution

Conditional ASIMD

Register Forwarding Hazards

Load/Store Throughput

Load/Store Alignment

Branch Alignment

Setting Condition Flags

Special Register Access
AES Encryption/Decryption
Fast literal generation
PC-relative address calculation

FPCR self-synchronization

34

35

36

36

36

37

37

38

39

39

39

39

40

41

4

42

Copyright © 2015 ARM. All rights reserved.

ARM UAN 0016A

Page 4 of 42

1 ABOUT THIS DOCUMENT

1.1 References

This document refers to the following documents.

Title Location

ARM Cortex-A72 MPCore Processor Technical Reference Manual Infocenter.arm.com

1.2 Terms and abbreviations

This document uses the following terms and abbreviations.

Term Meaning

ALU Arithmetic/Logical Unit
ASIMD Advanced SIMD

Hop Micro-Operation

VFP Vector Floating Point

1.3 Document Scope

This document provides high-level information about the Cortex®-A72 processor pipeline, instruction performance
characteristics, and special performance considerations. This information is intended to aid those who are
optimizing software and compilers for the Cortex®-A72 processor. For a more complete description of the
Cortex®-A72 processor, please refer to the ARM Cortex®-A72 MPCore Processor Technical Reference Manual,
available at infocenter.arm.com.

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A Page 5 of 42

2 INTRODUCTION

2.1 Pipeline Overview

The following diagram describes the high-level Cortex®-A72 instruction processing pipeline. Instructions are first
fetched, then decoded into internal micro-operations (~ops). From there, the pops proceed through register
renaming and dispatch stages. Once dispatched, pops wait for their operands and issue out-of-order to one of
eight execution pipelines. Each execution pipeline can accept and complete one fop per cycle.

—» Branch

—» Integer O

—» Integer 1

Decode, o ¥ Integer Multi-Cycle

Fetch > Rename, ! 5

RERSl - ™ FP/ASIMD 0
g FP/ASIMD 1
> Load
—» Store

IN ORDER OUT OF ORDER

The execution pipelines support different types of operations, as shown below.

Pipeline (mnemonic)

Supported functionality

Branch (B)

Branch pops

Integer 0/1 (1)

Integer ALU pops

Multi-cycle (M)

Integer shift-ALU, multiply, divide, CRC and sum-of-absolute-differences
HopSs

Load (L)

Load and register transfer zops

Store (S)

Store and special memory pops

FP/ASIMD-0 (FO)

ASIMD ALU, ASIMD misc, ASIMD integer multiply, FP convert, FP misc,
FP add, FP multiply, FP divide, crypto pops

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A

Page 6 of 42

FP/ASIMD-1 (F1) ASIMD ALU, ASIMD misc, FP misc, FP add, FP multiply, FP sqrt, ASIMD
shift pops

3 INSTRUCTION CHARACTERISTICS

3.1 Instruction Tables

This chapter describes high-level performance characteristics for most ARMv8 A32, T32 and A64 instructions. It
includes a series of tables to summarize the effective execution latency and throughput, pipelines utilized, and
special behaviors associated with each group of instructions. Utilized pipelines correspond to the execution
pipelines described in chapter 2.

In the following tables:

* Exec Latency is defined as the minimum latency seen by an operation dependent on an instruction in the
described group.

e Execution Throughput is defined as the maximum throughput (in instructions / cycle) of the specified
instruction group that can be achieved in the entirety of the Cortex®-A72 microarchitecture.

3.2 Branch Instructions

Instruction Group AArch32 Instructions Exec Execution Utilized Notes
Latency Throughput | Pipelines

Branch, immed B 1 1 B

Branch, register BX 1 1 B

Branch and link, immed BL, BLX 1 1 10/11, B

Branch and link, register BLX 1 1 10/11, B

Compare and branch CBZ, CBNZ 1 1 B

Instruction Group AArch64 Instructions Exec Execution Utilized Notes
Latency Throughput | Pipelines

Branch, immed B 1 1 B

Branch, register BR, RET 1 1 B

Branch and link, immed BL 1 1 10/11, B

Branch and link, register BLR 1 1 10/11, B

Compare and branch CBZ, CBNZ, TBZ, TBNZ 1 1 B

3.3 Arithmetic and Logical Instructions

Instruction Group AArch32 Instructions Exec Execution Utilized Notes
Latency Throughput | Pipelines
ALU, basic ADD{S}, ADC{S}, ADR, AND{S}, 1 2 10/11
BIC{S}, CMN, CMP, EOR{S},

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A Page 7 of 42

ORN({S}, ORR{S}, RSB{S},

RSC{S}, SUB{S}, SBC{S}, TEQ,

TST
ALU, shift by immed (same as above) M
ALU, shift by register, (same as above) M
unconditional
ALU, shift by register, (same as above) 2 1 10/11
conditional
ALU, branch forms +2 1 +B 1

Note:

1. Branch forms are possible when the instruction destination register is the PC. For those cases, an

additional branch op is required. This adds 2 cycles to the latency.

Instruction Group AArch64 Instructions Exec Execution Utilized Notes
Latency Throughput Pipelines
ALU, basic ADD{S}, ADC{S}, AND{S}, 1 2 10/11
BIC{S}, EON, EOR, ORN, ORR,
SUB{S}, SBC{S}
ALU, extend and/or shift ADD{S}, AND{S}, BIC{S}, EON, 2 1 M
EOR, ORN, ORR, SUB{S}
Conditional compare CCMN, CCMP 10/11
Conditional select CSEL, CSINC, CSINV, CSNEG 10/11
3.4 Move and Shift Instructions
Instruction Group AArch32 Instructions Exec Execution Utilized Notes
Latency Throughput Pipelines
Move, basic MOV{S}, MOVW, MVN{S} 1 2 10/11 1
Move, shift by immed, no | ASR, LSL, LSR, ROR, RRX, MVN 1 2 10/11
setflags
Move, shift by immed, ASRS, LSLS, LSRS, RORS, RRXS, 2 1 M
setflags MVNS
Move, shift by register, no | ASR, LSL, LSR, ROR, RRX, MVN 1 2 10/11
setflags, unconditional
Move, shift by register, no | ASR, LSL, LSR, ROR, RRX, MVN 2 1 10/11
setflags, conditional
Move, shift by register, ASRS, LSLS, LSRS, RORS, RRXS, 2 1 M
setflags, unconditional MVNS
Move, shift by register, ASRS, LSLS, LSRS, RORS, RRXS, 2 1 10/11
setflags, conditional MVNS
Move, top MOVT 1 2 |

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A

Page 8 of 42

‘ (Move, branch forms) +2 1 +B ‘ 2
Instruction Group AArch64 Instructions Exec Execution Utilized Notes
Latency Throughput Pipelines
Address generation ADR, ADRP 1 2 10/11 3
Move immed MOVN, MOVK, MOVZ 1 2 10/11
Variable shift ASRV, LSLV, LSRV, RORV 1 2 10/11

Note:

1. Sequential MOVW/MOVT (AArch32) instruction pairs and certain MOVZ/MOVK, MOVK/MOVK (AArch64)
instruction pairs can be executed with one-cycle execute latency and four-instruction/cycle execution
throughput in 10/11. See Section 4.11 for more details on the instruction pairs that can be merged.

2. Branch forms are possible when the instruction destination register is the PC. For those cases, an
additional branch op is required. This adds two cycles to the latency.

3. Sequential ADRP/ADD instruction pairs can be executed with one-cycle execute latency and four
instruction/cycle execution throughput in 10/11. See Section 4.12 for more details on the instruction pairs

that can be merged.

3.5 Divide and Multiply Instructions

Instruction Group AArch32 Instructions Exec Execution Utilized Notes
Latency Throughput Pipelines
Divide SDIV, UDIV 4-12 1/12-1/4 M 1
Multiply MUL, SMULBB, SMULBT, 3 1 M
SMULTB, SMULTT, SMULWSB,
SMULWT, SMMUL{R},
SMUAD{X}, SMUSD{X}
Multiply accumulate MLA, MLS, SMLABB, SMLABT, 3(1) 1 M 2
SMLATB, SMLATT, SMLAWSB,
SMLAWT, SMLAD{X},
SMLSD{X}, SMMLA{R},
SMMLS{R}
Multiply accumulate long SMLAL, SMLALBB, SMLALBT, 4 (2) 1/2 M 2,3
SMLALTB, SMLALTT,
SMLALD{X}, SMLSLD{X},
UMAAL, UMLAL
Multiply long SMULL, UMULL 4 1/2 M 3
(Multiply, setflags forms) +1 (Same as +10/11
above)

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A

Page 9 of 42

Instruction Group AArch64 Instructions Exec Execution Utilized Notes
Latency Throughput pipelines

Divide, W-form SDIV, UbDIV 4-12 1/12-1/4 M 1

Divide, X-form SDIv, UbDIV 4-20 1/20-1/4 M 1

Multiply accumulate, W- MADD, MSUB 3(1) 1 M 2

form

Multiply accumulate, X- MADD, MSUB 5(3) 1/3 M 2,5

form

Multiply accumulate long SMADDL, SMSUBL, UMADDL, 3(1) 1 M 2
UMSUBL

Multiply high SMULH, UMULH 6 [3] 1/4 M 6

Note:

1. Integer divides are performed using a iterative algorithm and block any subsequent divide operations until
complete. Early termination is possible, depending upon the data values.

2. Multiply-accumulate pipelines support late-forwarding of accumulate operands from similar ops, allowing
a typical sequence of multiply-accumulate zops to issue one every N cycles (accumulate latency N shown

in parentheses).

o oA~ W

3.6 Saturating and Parallel Arithmetic Instructions

Multiplies that set the condition flags require an additional integer wop.
X-form multiply accumulates stall the multiplier pipeline for two extra cycles.

Long-form multiplies (which produce two result registers) stall the multiplier pipeline for one extra cycle.

Multiply high operations stall the multiplier pipeline for N extra cycles before any other type M rop can be
issued to that pipeline, with N shown in parentheses.

Instruction Group AArch32 Instructions Exec Execution Utilized Notes
Latency Throughput pipelines
Parallel arith, SADD16, SADDS, SSUB1S6, 2 1 M
unconditional SSUBS8, UADD16, UADDS,
USUB16, USUBS
Parallel arith, conditional SADD16, SADDS, SSUB16, 2 (4) 1/2 M, 10/11 1
SSUBS8, UADD16, UADDS,
USUB16, USUBS
Parallel arith with SASX, SSAX, UASX, USAX 3 1 10/11, M

exchange, unconditional

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A

Page 10 of 42

Instruction Group AArch32 Instructions Exec Execution Utilized Notes
Latency Throughput pipelines
Parallel arith with SASX, SSAX, UASX, USAX 3(5) 1/2 10/11, M 1
exchange, conditional
Parallel halving arith SHADD16, SHADDS, 2 1 M
SHSUB16, SHSUBS,
UHADD16, UHADDS,
UHSUB16, UHSUBS
Parallel halving arith with SHASX, SHSAX, UHASX, 3 1 10/11, M
exchange UHSAX
Parallel saturating arith QADD16, QADDS, QSUB16, 2 1 M
QSUB8, UQADD16, UQADDS,
UQsSuUB16, UQSUBS8
Parallel saturating arith QASX, QSAX, UQASX, UQSAX 3 1 10/11, M
with exchange
Saturate SSAT, SSAT16, USAT, USAT16 2 M
Saturating arith QADD, QSUB 2 M
Saturating doubling arith QDADD, QDSUB 10/11, M

Note:

1. Conditional GE-setting instructions require three extra fops and two additional cycles to conditionally
update the GE field (GE latency shown in parentheses).

3.7 Miscellaneous Data-Processing Instructions

Instruction Group AArch32 Instructions Exec Execution Utilized Notes
Latency Throughput Pipelines
Bit field extract SBFX, UBFX 1 2 10/11
Bit field insert/clear BFI, BFC 2 1 M
Count leading zeros CLz 1 2 10/11
Pack halfword PKH 2 1 M
Reverse bits/bytes RBIT, REV, REV16, REVSH 1 2 10/11
Select bytes, unconditional | SEL 1 2 10/11
Select bytes, conditional SEL 2 1 10/11
Sign/zero extend, normal SXTB, SXTH, UXTB, UXTH 1 2 10/11
Sign/zero extend, parallel SXTB16, UXTB16 2 1 M
Sign/zero extend and add, | SXTAB, SXTAH,UXTAB, UXTAH 2 1 M
normal
Sign/zero extend and add, | SXTAB16, UXTAB16 4 1/2 M
parallel
Sum of absolute USADS, USADAS8 3 1 M

differences

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A

Page 11 of 42

Instruction Group AArch64 Instructions Exec Execution Utilized Notes
Latency Throughput Pipelines

Bitfield extract, one reg EXTR 1 2 10/11

Bitfield extract, two regs EXTR 3 1 10/11, M

Bitfield move, basic SBFM, UBFM 1 2 10/11

Bitfield move, insert BFM 2 1 M

Count leading CLS, CLZ 1 2 10/11

Reverse bits/bytes RBIT, REV, REV16, REV32 1 2 10/11

3.8 Load Instructions

The latencies shown in the following table assume the memory access hits in the Level 1 Data Cache.

Instruction Group AArch32 Instructions Exec Execution Utilized Notes

Latency Throughput Pipelines

Load, immed offset LDR{T}, LDRB{T}, LDRD, 4 1 L
LDRH({T}, LDRSB{T}, LDRSH{T}

Load, register offset, plus LDR, LDRB, LDRD, LDRH, 4 1 L
LDRSB, LDRSH

Load, register offset, LDR, LDRB, LDRD, LDRH, 5 1 10/11, L

minus LDRSB, LDRSH

Load, scaled register LDR, LDRB 4 1 L

offset, plus LSL2

Load, scaled register LDR, LDRB, LDRH, LDRSB, 5 1 10/11, L

offset, other LDRSH

Load, immed pre-indexed | | DR, LDRB, LDRD, LDRH, 4(1) 1 L, 10/11 1
LDRSB, LDRSH

Load, register pre-indexed | | DR, LDRB, LDRH, LDRSB, 4(1) 1 L, 10/11 1
LDRSH

Load, register pre-indexed | | DRD 5(2) 1 10/11, L 1

Load, scaled register pre- LDR, LDRB 4(2) 1 10/11, L 1

indexed, plus LSL2

Load, scaled register pre- LDR, LDRB 5(2) 1 10/11, L 1

indexed, other

Load, immed post-indexed | | DR{T}, LDRB{T}, LDRD, 4(1) 1 L, 10/11 1
LDRH{T}, LDRSB{T}, LDRSH{T}

Load, register post- LDR, LDRB, LDRH{T}, 4 (1) 1 L, 10/11 1

indexed LDRSB{T}, LDRSH{T}

Load, register post- LDRD 4(2) 1 10/11, L 1

indexed

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A

Page 12 of 42

Instruction Group AArch32 Instructions Exec Execution Utilized Notes
Latency Throughput Pipelines
Load, register post- LDRT, LDRBT 4(3) 1 10/11, L, M 1
indexed
Load, scaled register post- | | DR, LDRB 4(2) 1 10/11, L 1
indexed
Load, scaled register post- | | DRT, LDRBT 4(3) 1 10/11, L, M 1
indexed
Preload, immed offset PLD, PLDW 4 L
Preload, register offset, PLD, PLDW 4 L
plus
Preload, register offset, PLD, PLDW 5 1 10/11, L
minus
Preload, scaled register PLD, PLDW 4 1 L
offset, plus LSL2
Preload, scaled register PLD, PLDW 5 1 10/11, L
offset, other
Load multiple, no LDMIA, LDMIB, LDMDA, 3+N 1/N L 2
writeback, base reg notin | LDMDB
list
Load multiple, no LDMIA, LDMIB, LDMDA, 4+N 1/N 10/11, L 2
writeback, base reg in list LDMDB
Load multiple, writeback LDMIA, LDMIB, LDMDA, 3+N(1) 1/N L, 10/11 1,2
LDMDB, POP
Load, branch forms with LDR 4(2) 1 LM 1
addressing mode as
register post-indexed
(scaled or unscaled) or
scaled, register pre-
indexed, plus, LSL2
Load, branch forms with LDR 5(2) 1 10/11, L 1
addressing modeas scaled
register, pre-indexed,
other
(Load, branch forms) +2 +B 3
Instruction Group AArch64 Instructions Exec Execution Utilized Notes
Latency Throughput Pipelines
Load register, literal LDR, LDRSW, PRFM 4 1 L
Load register, unscaled LDUR, LDURB, LDURH, 4 1 L
immed LDURSB, LDURSH, LDURSW,
PRFUM
Load register, immed post- | | DR, LDRB, LDRH, LDRSB, 4(1) 1 L, 10/11 1

index

LDRSH, LDRSW

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A

Page 13 of 42

Instruction Group AArch64 Instructions Exec Execution Utilized Notes
Latency Throughput Pipelines

Load register, immed pre- | | DR, LDRB, LDRH, LDRSB, 4 (1) 1 L, 10/11 1

index LDRSH, LDRSW

Load register, immed LDTR, LDTRB, LDTRH, 4 1 L

unprivileged LDTRSB, LDTRSH, LDTRSW

Load register, unsigned LDR, LDRB, LDRH, LDRSB, 4 1 L

immed LDRSH, LDRSW, PRFM

Load register, register LDR, LDRB, LDRH, LDRSB, 4 1 L

offset, basic LDRSH, LDRSW, PRFM

Load register, register LDR, LDRSW, PRFM 4 1 L

offset, scale by 4/8

Load register, register LDRH, LDRSH 5 1 10/11, L

offset, scale by 2

Load register, register LDR, LDRB, LDRH, LDRSB, 4 1 L

offset, extend LDRSH, LDRSW, PRFM

Load register, register LDR, LDRSW, PRFM 4 1 L

offset, extend, scale by

4/8

Load register, register LDRH, LDRSH 5 1 10/11, L

offset, extend, scale by 2

Load pair, immed offset, LDP, LDNP 4 1 L

normal

Load pair, immed offset, LDPSW 5 1/2 10/11, L

signed words, base !=SP

Load pair, immed offset, LDPSW 5 1/2 L

signed words, base = SP

Load pair, immed post- LDP 4 (1) 1 L, 10/11 1

index, normal

Load pair, immed post- LDPSW 5(1) 1/2 L, 10/11 1

index, signed words

Load pair, immed pre- LDP 4 (1) 1 L, 10/11 1

index, normal

Load pair, immed pre- LDPSW 5(1) 1/2 L, 10/11 1

index, signed words

Note:

1. Base register updates are typically completed in parallel with the load operation and with shorter latency
(update latency shown in parentheses).

2. For load multiple instructions, N=floor((num_regs+1)/2).
Branch forms are possible when the instruction destination register is the PC. For those cases, an

additional branch op is required. This adds two cycles to the latency.

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A

Page 14 of 42

3.9 Store Instructions

The following table describes performance characteristics for standard store instructions. Store pops can issue
after their address operands become available and do not need to wait for data operands. After they are executed,

stores are buffered and committed in the background.

Instruction Group AArch32 Instructions Exec Execution Utilized Notes
Latency Throughput Pipelines

Store, immed offset STR{T}, STRB{T}, STRD, 1 1 S

STRH{T}
Store, register offset, plus | STR, STRB, STRD, STRH 1 1 S
Store, register offset, STR, STRB, STRD, STRH 3 1 10/11, S
minus
Store, scaled register STR, STRB 1 1 S
offset, plus LSL2
Store, scaled register STR, STRB 3 1 10/11, S
offset, other
Store, immed pre-indexed | STR, STRB, STRD, STRH 1(1) 1 S, 10/11 1
Store, register pre- STR, STRB, STRD, STRH 1(1) 1 S, 10/11 1
indexed, plus
Store, register pre- STR, STRB, STRD, STRH 3(2) 1 10/11, S 1
indexed, minus
Store, scaled register pre- | STR, STRB 1(2) 1 S, M 1
indexed, plus LSL2
Store, scaled register pre- | STR, STRB 3(2) 1 10/11, S 1
indexed, other
Store, immed post- STR{T}, STRB{T}, STRD, 1(1) 1 S, 10/11 1
indexed STRH{T}
Store, register post- STRH{T}, STRD 1(1) 1 S, 10/11 1
indexed
Store, register post- STR{T}, STRB{T} 1(2) 1 S, M 1
indexed
Store, scaled register post- | STR{T}, STRB{T} 1(2) 1 S, M 1
indexed
Store multiple, no STMIA, STMIB, STMDA, N 1/N S 1,2
writeback STMDB
Store multiple, writeback STMIA, STMIB, STMDA, N (1) 1/N S, 10/11 1,2

STMDB, PUSH
Instruction Group AArch64 Instructions Exec Execution Utilized Notes

Latency Throughput Pipelines

Store register, unscaled STUR, STURB, STURH 1 1 S

immed

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A

Page 15 of 42

Instruction Group AArch64 Instructions Exec Execution Utilized Notes
Latency Throughput Pipelines

Store register, immed STR, STRB, STRH 1(1) 1 S, 10/11 1

post-index

Store register, immed pre- | STR, STRB, STRH 1(1) 1 S, 10/11 1

index

Store register, immed STTR, STTRB, STTRH 1 1 S

unprivileged

Store register, unsigned STR, STRB, STRH 1 1 S

immed

Store register, register STR, STRB, STRH 1 1 S

offset, basic

Store register, register STR 1 1 S

offset, scaled by 4/8

Store register, register STRH 3 1 10/11, S

offset, scaled by 2

Store register, register STR, STRB, STRH 1 1 S

offset, extend

Store register, register STR 1 1 S

offset, extend, scale by

4/8

Store register, register STRH 3 1 10/11, S

offset, extend, scale by 1

Store pair, immed offset, STP, STNP 1 1 S

W-form

Store pair, immed offset, STP, STNP 2 1/2 S

X-form

Store pair, immed post- STP 1(1) 1 S, 10/11 1

index, W-form

Store pair, immed post- STP 2 (1) 1/2 S, 10/11 1

index, X-form

Store pair, immed pre- STP 1(1) 1 S, 10/11 1

index, W-form

Store pair, immed pre- STP 2 (1) 1/2 S, 10/11 1

index, X-form

Note:

1. Base register updates are typically completed in parallel with the store operation and with shorter latency
(update latency is shown in parentheses).

2. For store multiple instructions, N=floor((num_regs+1)/2).

3.10 FP Data Processing Instructions

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A

Page 16 of 42

Instruction Group AArch32 Instructions Exec Execution Utilized Notes
Latency Throughput Pipelines
FP absolute value VABS 3 2 FO/F1
FP arith VADD, VSUB 4 2 FO/F1
FP compare, unconditional | VCMP, VCMPE 3 1 F1
FP compare, conditional VCMP, VCMPE 6 1/6 FO/F1, F1
FP convert VCVT{R}, VCVTB, VCVTT, 3 1 FO
VCVTA, VCVTM, VCVTN,
VCVTP
FP round to integral VRINTA, VRINTM, VRINTN, 3 1 FO
VRINTP, VRINTR, VRINTX,
VRINTZ
FP divide, S-form VDIV 6-11 2/9-1/2 FO 1
FP divide, D-form VDIV 6-18 1/16-1/4 FO 1
FP max/min VMAXNM, VMINNM 3 2 FO/F1
FP multiply VMUL, VNMUL 4 2 FO/F1 2
FP multiply accumulate VFMA, VEMS, VFNMA, 7 (3) 2 FO/F1 3
VFNMS, VMLA, VMLS,
VNMLA, VNMLS
FP negate VNEG 3 2 FO/F1
FP select VSELEQ, VSELGE, VSELGT, 3 2 FO/F1
VSELVS
FP square root, S-form VSQRT 6-17 2/15-1/2 F1 1
FP square root, D-form VSQRT 6-32 1/30-1/4 F1 1
Instruction Group AArch64 Instructions Exec Execution Utilized Notes
Latency Throughput Pipelines
FP absolute value FABS 3 2 FO/F1
FP arithmetic FADD, FSUB 4 2 FO/F1
FP compare FCCMP{E}, FCMP{E} 3 1 F1
FP divide, S-form FDIV 6-11 2/9-1/2 FO 1
FP divide, D-form FDIV 6-18 1/16-1/4 FO 1
FP min/max FMIN, FMINNM, FMAX, 3 2 FO/F1
FMAXNM
FP multiply FMUL, FNMUL 4 2 FO/F1 2
FP multiply accumulate FMADD, FMSUB, FNMADD, 7 (3) 2 FO/F1 3
FNMSUB
FP negate FNEG 3 2 FO/F1

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A

Page 17 of 42

Instruction Group AArch64 Instructions Exec Execution Utilized Notes
Latency Throughput Pipelines
FP round to integral FRINTA, FRINTI, FRINTM, 3 1 FO
FRINTN, FRINTP, FRINTX,
FRINTZ
FP select FCSEL 3 2 FO/F1
FP square root, S-form FSQRT 6-17 2/15-1/2 F1 1
FP square root, D-form FSQRT 6-32 1/30-1/4 F1 1

Note:

1. FP divide and square root operations are performed using an iterative algorithm and block subsequent

similar operations to the same pipeline until complete.

2. FP multiply-accumulate pipelines support late forwarding of the result from FP multiply #ops to the
accumulate operands of an FP multiply-accumulate zop. The latter can potentially be issued one cycle
after the FP multiply pop has been issued.

3. FP multiply-accumulate pipelines support late-forwarding of accumulate operands from similar zops,
allowing a typical sequence of multiply-accumulate pops to issue one every N cycles (accumulate latency
N is shown in parentheses).

3.11 FP Miscellaneous Instructions

Instruction Group AArch32 Instructions Exec Execution Utilized Notes
Latency Throughput Pipelines

FP move, immed VMOV 3 2 FO/F1

FP move, register VMOV 3 2 FO/F1

FP transfer, vfp to core reg | VMOV 5 1 L

FP transfer, core reg to VMOV 8 1 L, FO/F1

upper or lower half of vfp

D-reg

FP transfer, core reg to vfp | VMOV 5 1 L

Instruction Group AArch64 Instructions Exec Execution Utilized Notes
Latency Throughput Pipelines

FP convert, from vec to FCVT, FCVTXN 3 1 FO

vec reg

FP convert, from gen to SCVTF, UCVTF 8 1 L, FO

vec reg

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A

Page 18 of 42

Instruction Group AArch64 Instructions Exec Execution Utilized Notes
Latency Throughput Pipelines

FP convert, from vec to FCVTAS, FCVTAU, FCVTMS, 8 1 L, FO
genreg FCVTMU, FCVTNS, FCVTNU,

FCVTPS, FCVTPU, FCVTZS,

FCVTZU
FP move, immed FMOV 2 FO/F1
FP move, register FMOV 2 FO/F1
FP transfer, from gen to FMOV 1 L
vec reg
FP transfer, from vec to FMOV 5 1 L
genreg

3.12 FP Load Instructions

The latencies shown assume the memory access hits in the Level 1 Data Cache. Compared to standard loads, an
extra cycle is required to forward results to FP/ASIMD pipelines.

Instruction Group AArch32 Instructions Exec Execution Utilized Notes
Latency Throughput Pipelines
FP load, register VLDR 5 1 L
FP load multiple, unconditional | VLDMIA, VLDMDB, 4+N 1/N L 1
VPOP
FP load multiple, conditional VLDMIA, VLDMDB, 4+N 1/N L 2
VPOP
(FP load, writeback forms) (1) Same as before +10/11 3
Instruction Group AArch64 Exec Execution Utilized Notes
Instructions Latency Throughput Pipelines
Load vector reg, literal LDR 5 1 L
Load vector reg, unscaled immed LDUR 5 1 L
Load vector reg, immed post-index LDR 5(1) 1 L, 10/11
Load vector reg, immed pre-index LDR 5(1) 1 L, 10/11
Load vector reg, unsigned immed LDR 5 1 L
Load vector reg, register offset, basic LDR 5 1 L
Load vector reg, register offset, scale, | LDR 5 1 L
S/D-form
Load vector reg, register offset, scale, | LDR 6 1 10/11, L
H/Q-form
Load vector reg, register offset, LDR 5 1 L
extend

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A

Page 19 of 42

Instruction Group AArch64 Exec Execution Utilized Notes
Instructions Latency Throughput Pipelines

Load vector reg, register offset, LDR 5 1 L

extend, scale, S/D-form

Load vector reg, register offset, LDR 6 1 10/11, L

extend, scale, H/Q-form

Load vector pair, immed offset, S/D- LDP, LDNP 5 1 L

form

Load vector pair, immed offset, Q- LDP, LDNP 6 1/2 L

form

Load vector pair, immed post-index, LDP 5(1) 1 L, 10/11 3

S/D-form

Load vector pair, immed post-index, LDP 6 (1) 1/2 L, 10/11 3

Q-form

Load vector pair, immed pre-index, LDP 5(1) 1 L, 10/11 3

S/D-form

Load vector pair, immed pre-index, Q- | LDP 6 (1) 1/2 L, 10/11 3

form

Note:

1. For FP load multiple instructions, N=floor((num_regs+1)/2).

2. For conditional FP load multiple instructions, N = num_regs for conditional forms only.

3. Writeback forms of load instructions require an extra op to update the base address. This update is
typically performed in parallel with, or prior to, the load pop (update latency is shown in parentheses).

3.13 FP Store Instructions

Stores pops can issue after their address operands become available and do not need to wait for data operands.
After they are executed, stores are buffered and committed in the background.

Instruction Group Aarch32 Instructions Exec Execution Utilized Notes
Latency Throughput Pipelines
FP store, immed offset VSTR 1 1 S
FP store multiple, S-form VSTMIA, VSTMDB, N 1/N S 1
VPUSH
FP store multiple, D-form VSTMIA, VSTMDB, N 1/N S 1
VPUSH
(FP store, writeback forms) (1) Same as before +10/11 2
Instruction Group AArch64 Exec Execution Utilized Notes
Instructions Latency Throughput | Pipelines
Store vector reg, unscaled immed, STUR 1 1 S
B/H/S/D-form

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A

Page 20 of 42

Instruction Group AArch64 Exec Execution Utilized Notes
Instructions Latency Throughput | Pipelines

Store vector reg, unscaled immed, Q-form | STUR 2 1/2 S

Store vector reg, immed post-index, STR 1(1) 1 S, 10/11 2

B/H/S/D-form

Store vector reg, immed post-index, Q- STR 2 (1) 1/2 S, 10/11 2

form

Store vector reg, immed pre-index, STR 1(1) 1 S, 10/11 2

B/H/S/D-form

Store vector reg, immed pre-index, Q-form | STR 2 (1) 1/2 10/11, S 2

Store vector reg, unsigned immed, STR 1 1 S

B/H/S/D-form

Store vector reg, unsigned immed, Q-form | STR 1/2 10/11, S

Store vector reg, register offset, basic, STR 1 S

B/H/S/D-form

Store vector reg, register offset, basic, Q- STR 2 1/2 10/11, S

form

Store vector reg, register offset, scale, H- STR 3 1 10/11, S

form

Store vector reg, register offset, scale, S/D- | STR 1 1 S

form

Store vector reg, register offset, scale, Q- STR 4 1/2 10/11, S

form

Store vector reg, register offset, extend, STR 1 1 S

B/H/S/D-form

Store vector reg, register offset, extend, Q- | STR 4 1/2 M, S

form

Store vector reg, register offset, extend, STR 3 1 10/11, S

scale, H-form

Store vector reg, register offset, extend, STR 1 1 S

scale, S/D-form

Store vector reg, register offset, extend, STR 4 1/2 10/11, S

scale, Q-form

Store vector pair, immed offset, S-form STP 1 1 S

Store vector pair, immed offset, D-form STP 2 1/2 SS

Store vector pair, immed offset, Q-form STP 4 1/4 10/11, S

Store vector pair, immed post-index, S- STP 1(1) 1 S, 10/11 2

form

Store vector pair, immed post-index, D- STP 2 (1) 1/2 S, 10/11 2

form

Store vector pair, immed post-index, Q- STP 4 (1) 1/4 S, 10/11 2

form

Store vector pair, immed pre-index, S-form | STP 1(1) 1 S, 10/11

Store vector pair, immed pre-index, D- STP 2 (1) 1/2 S, 10/11

form

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A

Page 21 of 42

Instruction Group AArch64 Exec Execution Utilized Notes
Instructions Latency Throughput | Pipelines

Store vector pair, immed pre-index, Q- STP 4 (1) 1/4 10/11, S 2

form

Note:

1. For single-precision store multiple instructions, N=floor((num_regs+1)/2). For double-precision store
multiple instructions, N=(num_regs).

2. Writeback forms of store instructions require an extra pop to update the base address. This update is
typically performed in parallel with, or prior to, the store pop (address update latency is shown in

parentheses).

3.14 ASIMD Integer Instructions

Instruction Group AArch32 Instructions Exec Execution Utilized Notes
Latency Throughput | Pipelines
ASIMD absolute diff, D-form VABD 3 2 FO/F1
ASIMD absolute diff, Q-form VABD 3 1 FO/ F1
ASIMD absolute diff accum, D- VABA 4(1) 1 F1 2
form
ASIMD absolute diff accum, Q- VABA 5(2) 1/2 F1 2
form
ASIMD absolute diff accum long | VABAL 4 (1) 1 F1 2
ASIMD absolute diff long VABDL 3 2 FO/F1
ASIMD arith, basic VADD, VADDL, 3 2 FO/F1
VADDW, VNEG,
VPADD, VPADDL,
VSUB, VSUBL, VSUBW
ASIMD arith, complex VABS, VADDHN, 3 2 FO/F1
VHADD, VHSUB,
VQABS, VQADD,
VQNEG, VQSUB,
VRADDHN, VRHADD,
VRSUBHN, VSUBHN
ASIMD compare VCEQ, VCGE, VCGT, 3 2 FO/F1
VCLE, VTST
ASIMD logical VAND, VBIC, VMVN, 3 2 FO/F1
VORR, VORN, VEOR
ASIMD max/min VMAX, VMIN, VPMAX, 3 2 FO/F1
VPMIN
ASIMD multiply, D-form VMUL, VQDMULH, 4 1 FO

VOQRDMULH

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A

Page 22 of 42

Instruction Group AArch32 Instructions Exec Execution Utilized Notes
Latency Throughput | Pipelines
ASIMD multiply, Q-form VMUL, VQDMULH, 5 1/2 FO
VQRDMULH
ASIMD multiply accumulate, D- VMLA, VMLS 4 (1) 1 FO 1
form
ASIMD multiply accumulate, Q- VMLA, VMLS 5(2) 1/2 FO 1
form
ASIMD multiply accumulate long | VMLAL, VMLSL 4 (1) 1 FO 1
ASIMD multiply accumulate VQDMLAL, VQDMLSL 4(2) 1 FO 1
saturating long
ASIMD multiply long VMULL.S, VMULL.I, 4 1 FO
VMULL.P8, VQDMULL
ASIMD pairwise add and VPADAL 4 (1) 1 F1 2
accumulate
ASIMD shift accumulate VSRA, VRSRA 4(1) 1 F1 2
ASIMD shift by immed, basic VMOVL, VSHL, VSHLL, 3 1 F1
VSHR, VSHRN
ASIMD shift by immed, complex | VQRSHRN, VQRSHRUN, 4 1 F1
VQSHL{U}, VQSHRN,
VQSHRUN, VRSHR,
VRSHRN
ASIMD shift by immed and VSLI, VSRI 3 1 F1
insert, basic, D-form
ASIMD shift by immed and VSLI, VSRI 4 1/2 F1
insert, basic, Q-form
ASIMD shift by register, basic, D- | VSHL 3 1 F1
form
ASIMD shift by register, basic, Q- | VSHL 4 1/2 F1
form
ASIMD shift by register, VQRSHL, VQSHL, VRSHL 4 1 F1
complex, D-form
ASIMD shift by register, VQRSHL, VQSHL, VRSHL 5 1/2 F1
complex, Q-form
Instruction Group AArch64 Instructions Exec Execution Utilized Notes
Latency Throughput | Pipelines
ASIMD absolute diff, D-form SABD, UABD 3 2 FO/F1
ASIMD absolute diff, Q-form SABD, UABD 3 2 FO/F1
ASIMD absolute diff accum, D- SABA, UABA 4(1) 1 F1 2
form
ASIMD absolute diff accum, Q- SABA, UABA 5(2) 1/2 F1 2

form

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A

Page 23 of 42

Instruction Group

AArch64 Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD absolute diff accum long

SABAL(2), UABAL(2)

4(1)

1

F1

ASIMD absolute diff long

SABDL, UABDL

2

FO/F1

ASIMD arith, basic

ABS, ADD, ADDP, NEG,
SADDL(2), SADDLP,
SADDW(2), SHADD,
SHSUB, SSUBL(2),
SSUBW(2), SUB,
UADDL(2), UADDLP,
UADDW/(2), UHADD,
UHSUB, USUBW(2)

2

FO/F1

ASIMD arith, complex

ADDHN(2),
RADDHN(2),
RSUBHN(2), SQABS,
SQADD, SQNEG,
SQSUB, SRHADD,
SUBHN(2), SUQADD,
UQADD, UQSUB,
URHADD, USQADD

FO/F1

ASIMD arith, reduce, 4H/4S

ADDV, SADDLYV,
UADDLV

F1

ASIMD arith, reduce, 8B/8H

ADDV, SADDLYV,
UADDLV

F1, FO/F1

ASIMD arith, reduce, 16B

ADDV, SADDLYV,
UADDLV

1/2

F1

ASIMD compare

CMEQ, CMGE, CMGT,
CMHI, CMHS, CMLE,
CMLT, CMTST

FO/F1

ASIMD logical

AND, BIC, EOR, MOV,
MVN, ORN, ORR

FO/F1

ASIMD max/min, basic

SMAX, SMAXP, SMIN,
SMINP, UMAX,
UMAXP, UMIN, UMINP

FO/F1

ASIMD max/min, reduce, 4H/4S

SMAXYV, SMINV,
UMAXV, UMINV

F1

ASIMD max/min, reduce, 8B/8H

SMAXYV, SMINV,
UMAXV, UMINV

F1, FO/F1

ASIMD max/min, reduce, 16B

SMAXYV, SMINV,
UMAXV, UMINV

1/2

F1

ASIMD multiply, D-form

MUL, PMUL,
SQDMULH, SQRDMULH

FO

ASIMD multiply, Q-form

MUL, PMUL,
SQDMULH, SQRDMULH

1/2

FO

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A

Page 24 of 42

Instruction Group AArch64 Instructions Exec Execution Utilized Notes
Latency Throughput | Pipelines
ASIMD multiply accumulate, D- MLA, MLS 4 (1) 1 FO 1
form
ASIMD multiply accumulate, Q- MLA, MLS 5(2) 1/2 FO 1
form
ASIMD multiply accumulate long | SMLAL(2), SMLSL(2), 4(1) 1 FO 1
UMLAL(2), UMLSL(2)
ASIMD multiply accumulate SQDMLAL(2), 4(2) 1 FO 1
saturating long SQDMLSL(2)
ASIMD multiply long SMULL(2), UMULL(2), 4 1 FO
SQDMULL(2)
ASIMD polynomial (8x8) multiply | PMULL.8B, 4 1 FO 3
long PMULL2.16B
ASIMD pairwise add and SADALP, UADALP 4(1) 1 F1 2
accumulate
ASIMD shift accumulate SRA, SRSRA, USRA, 4 (1) 1 F1 2
URSRA
ASIMD shift by immed, basic SHL, SHLL(2), SHRN(2), 3 1 F1
SLI, SRI, SSHLL(2),
SSHR, SXTL(2),
USHLL(2), USHR,
UXTL(2)
ASIMD shift by immed and SLI, SRI 3 1 F1
insert, basic, D-form
ASIMD shift by immed and SLI, SRI 4 1/2 F1
insert, basic, Q-form
ASIMD shift by immed, complex | RSHRN(2), SRSHR, 4 1 F1
SQSHL{U},
SQRSHRN(2),
SQRSHRUN(2),
SQSHRN(2),
SQSHRUN(2), URSHR,
UQSHL, UQRSHRN(2),
UQSHRN(2)
ASIMD shift by register, basic, D- | SSHL, USHL 3 1 F1
form
ASIMD shift by register, basic, Q- | SSHL, USHL 4 1/2 F1
form
ASIMD shift by register, SRSHL, SQRSHL, SQSHL, 4 1 F1
complex, D-form URSHL, UQRSHL,
UQSHL
ASIMD shift by register, SRSHL, SQRSHL, SQSHL, 5 1/2 F1

complex, Q-form

URSHL, UQRSHL,
UQSHL

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A

Page 25 of 42

Note:

1. Multiply-accumulate pipelines support late-forwarding of accumulate operands from similar xops, allowing
a typical sequence of integer multiply-accumulate pops to issue one every cycle or one every other cycle
(accumulate latency is shown in parentheses).

2. Other accumulate pipelines also support late-forwarding of accumulate operands from similar ops,
allowing a typical sequence of such pops to issue one every cycle (accumulate latency is shown in

parentheses).

3. This category includes instructions of the form “PMULL Vd.8H, Vn.8B, Vm.8B” and “PMULL2 Vd.8H,

Vn.16B, Vm.16B”

3.15 ASIMD Floating-Point Instructions

Instruction Group AArch32 Instructions Exec Execution Utilized Notes
Latency | Throughput | Pipelines
ASIMD FP absolute value VABS 3 2 FO/F1
ASIMD FP arith, D-form VABD, VADD, VPADD, 4 2 FO/F1
VSUB
ASIMD FP arith, Q-form VABD, VADD, VSUB 4 1 FO/F1
ASIMD FP compare VACGE, VACGT, VACLE, 2 FO/F1
VACLT, VCEQ, VCGE,
VCGT, VCLE
ASIMD FP convert, integer, D- VCVT, VCVTA, VCVTM, 3 1 FO
form VCVTN, VCVTP
ASIMD FP convert, integer, Q- VCVT, VCVTA, VCVTM, 4 1/2 FO
form VCVTN, VCVTP
ASIMD FP convert, fixed, D-form | VCVT 3 1 FO
ASIMD FP convert, fixed, Q-form | VCVT 4 1/2 FO
ASIMD FP convert, half-precision | VCVT 7 1/2 FO, F1
ASIMD FP max/min, D-form VMAX, VMIN, VPMAX, 3 2 FO/F1
VPMIN, VMAXNM,
VMINNM
ASIMD FP max/min, Q-form VMAX, VMIN, VMAXNM, 3 1 FO/F1
VMINNM
ASIMD FP multiply, D-form VMUL 4 2 FO/F1 2
ASIMD FP multiply, Q-form VMUL 4 1 FO/F1 2
ASIMD FP multiply accumulate, | VMLA, VMLS, VFMA, 7 (3) 2 FO/F1 1
D-form VFMS
ASIMD FP multiply accumulate, | VMLA, VMLS, VFMA, 7 (3) 1 FO/F1 1
Q-form VFMS
ASIMD FP negate VNEG 3 2 FO/F1
ASIMD FP round to integral, D- VRINTA, VRINTM, 3 1 FO

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A

Page 26 of 42

Instruction Group AArch32 Instructions Exec Execution Utilized Notes
Latency Throughput | Pipelines
form VRINTN, VRINTP, VRINTX,
VRINTZ
ASIMD FP round to integral, Q- VRINTA, VRINTM, 4 1/2 FO
form VRINTN, VRINTP, VRINTX,
VRINTZ
Instruction Group AArch64 Instructions Exec Execution Utilized Notes
Latency Throughput | Pipelines
ASIMD FP absolute value FABS 3 2 FO/F1
ASIMD FP arith, normal, D-form | FABD, FADD, FSUB 4 2 FO/F1
ASIMD FP arith, normal, Q-form | FABD, FADD, FSUB 4 1 FO/F1
ASIMD FP arith, pairwise, D-form | FADDP 4 2 FO/F1
ASIMD FP arith, pairwise, Q- FADDP 7 2/3 FO/F1
form
ASIMD FP compare FACGE, FACGT, FCMEQ, 3 2 FO/F1
FCMGE, FCMGT, FCMLE,
FCMLT
ASIMD FP convert, long (F16 to FCVTL(2) 7 1/2 FO, FO/F1
F32)
ASIMD FP convert, long (F32 to FCVTL(2) 3 1 FO
F64)
ASIMD FP convert, narrow (F32 FCVTN(2), FCVTXN(2) 7 1/2 FO, FO/F1
to F16)
ASIMD FP convert, narrow (F64 FCVTN(2), FCVTXN(2) 3 1 FO
to F32)
ASIMD FP convert, other, D-form | FCVTAS, VCVTAU, 3 1 FO
F32 and Q-form F64 FCVTMS, FCVTMU,
FCVTNS, FCVTNU,
FCVTPS, FCVTPU, FCVTZS,
FCVTZU, SCVTF, UCVTF
ASIMD FP convert, other, Q- FCVTAS, VCVTAU, 4 1/2 FO
form F32 FCVTMS, FCVTMU,
FCVTNS, FCVTNU,
FCVTPS, FCVTPU, FCVTZS,
FCVTZU, SCVTF, UCVTF
ASIMD FP divide, D-form, F32 FDIV 6-11 1/9-1/4 FO 3
ASIMD FP divide, Q-form, F32 FDIV 12-22 1/18-1/10 FO 3

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A

Page 27 of 42

Instruction Group AArch64 Instructions Exec Execution Utilized Notes
Latency Throughput | Pipelines
ASIMD FP divide, Q-form, F64 FDIV 12-36 1/32-1/10 FO 3
ASIMD FP max/min, normal FMAX, FMAXNM, FMIN, 3 2 FO/F1
FMINNM
ASIMD FP max/min, pairwise FMAXP, FMAXNMP, 3 2 FO/F1
FMINP, FMINNMP
ASIMD FP max/min, reduce FMAXV, FMAXNMV, 6 1 FO/F1
FMINV, FMINNMV
ASIMD FP multiply, D-form FMUL, FMULX 4 2 FO/F1 2
ASIMD FP multiply, Q-form FMUL, FMULX 4 1 FO/F1 2
ASIMD FP multiply accumulate, FMLA, FMLS 7 (3) 2 FO/F1 1
D-form
ASIMD FP multiply accumulate, FMLA, FMLS 7 (3) 1 FO/F1 1
Q-form
ASIMD FP negate FNEG 3 2 FO/F1
ASIMD FP round, D-form FRINTA, FRINTI, FRINTM, 3 1 FO
FRINTN, FRINTP, FRINTX,
FRINTZ
ASIMD FP round, Q-form FRINTA, FRINTI, FRINTM, 4 1/2 FO

FRINTN, FRINTP, FRINTX,
FRINTZ

Note:

1. ASIMD multiply-accumulate pipelines support late-forwarding of accumulate operands from similar pops,

allowing a typical sequence of floating-point multiply-accumulate zops to issue one every N cycles

(accumulate latency N is shown in parentheses).

2. ASIMD multiply-accumulate pipelines support late forwarding of the result from ASIMD FP multiply zops to
the accumulate operands of an ASIMD FP multiply-accumulate op. The latter can potentially be issued
one cycle after the ASIMD FP multiply #op has been issued.

3. ASIMD divide operations are performed using an iterative algorithm and block subsequent similar

operations to the same pipeline until complete.

3.16 ASIMD Miscellaneous Instructions

Instruction Group AArch32 Instructions Exec Execution Utilized Notes
Latency Throughput | Pipelines

ASIMD bitwise insert, D-form VBIF, VBIT, VBSL 3 2 FO/F1

ASIMD bitwise insert, Q-form VBIF, VBIT, VBSL 3 1 FO/F1

ASIMD count, D-form VCLS, VCLZ, VCNT 3 2 FO/F1

ASIMD count, Q-form VCLS, VCLZ, VCNT 3 1 FO/F1

ASIMD duplicate, core reg VDUP 8 1 L, FO/F1

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A

Page 28 of 42

Instruction Group AArch32 Instructions Exec Execution Utilized Notes
Latency Throughput | Pipelines
ASIMD duplicate, scalar VDUP 3 2 FO/F1
ASIMD extract VEXT 3 2 FO/F1
ASIMD move, immed VMOV 3 2 FO/F1
ASIMD move, register VMOV 3 2 FO/F1
ASIMD move, narrowing VMOVN 3 2 FO/F1
ASIMD move, saturating VQMOVN, VOMOVUN 4 1 F1
ASIMD reciprocal estimate, D- VRECPE, VRSQRTE 3 1 FO
form
ASIMD reciprocal estimate, Q- VRECPE, VRSQRTE 4 1/2 FO
form
ASIMD reciprocal step, D-form VRECPS, VRSQRTS 7 2 FO/F1
ASIMD reciprocal step, Q-form VRECPS, VRSQRTS 7 1 FO/F1
ASIMD reverse VREV16, VREV32, 3 2 FO/F1
VREV64
ASIMD swap, D-form VSWP 3 2 FO/F1
ASIMD swap, Q-form VSWP 3 1 FO/F1
ASIMD table lookup, 1 reg VTBL, VTBX 3 2 FO/F1
ASIMD table lookup, 2 reg VTBL, VTBX 3 2 FO/F1
ASIMD table lookup, 3 reg VTBL, VTBX 6 2 FO/F1
ASIMD table lookup, 4 reg VTBL, VTBX 6 2 FO/F1
ASIMD transfer, scalar to core VMOV 5 1 L
reg, word
ASIMD transfer, scalar to core VMOV 6 1 L, 10/11
reg, byte/hword
ASIMD transfer, core reg to VMOV 8 1 L, FO/F1
scalar
ASIMD transpose, D-form VTRN 3 2 FO/F1
ASIMD transpose, Q-form VTRN 3 1 FO/F1
ASIMD unzip/zip, D-form VUZP, VZIP 3 FO/F1
ASIMD unzip/zip, Q-form VUZP, VZIP 6 2/3 FO/F1
Instruction Group AArch64 Instructions Exec Execution Utilized Notes
Latency Throughput | Pipelines
ASIMD bit reverse RBIT 3 2 FO/F1
ASIMD bitwise insert, D-form BIF, BIT, BSL 3 2 FO/F1
ASIMD bitwise insert, Q-form BIF, BIT, BSL 3 1 FO/F1
ASIMD count, D-form CLS, CLZ, CNT 3 2 FO/F1
ASIMD count, Q-form CLS, CLZ, CNT 3 1 FO/F1
ASIMD duplicate, gen reg DUP 8 1 L, FO/F1

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A

Page 29 of 42

Instruction Group AArch64 Instructions Exec Execution Utilized Notes
Latency Throughput | Pipelines

ASIMD duplicate, element DUP 3 2 FO/F1
ASIMD extract EXT 3 2 FO/F1
ASIMD extract narrow XTN 3 2 FO/F1
ASIMD extract narrow, saturating | SQXTN(2), SQXTUN(2), 4 1 F1

UQXTN(2)
ASIMD insert, element to INS 3 2 FO/F1
element
ASIMD move, integer immed MOVI FO/F1
ASIMD move, FP immed FMOV FO/F1
ASIMD reciprocal estimate, D- FRECPE, FRECPX, FO
form FRSQRTE, URECPE,

URSQRTE
ASIMD reciprocal estimate, Q- FRECPE, FRECPX, 4 1/2 FO
form FRSQRTE, URECPE,

URSQRTE
ASIMD reciprocal step, D-form FRECPS, FRSQRTS 2 FO/F1
ASIMD reciprocal step, Q-form FRECPS, FRSQRTS 1 FO/F1
ASIMD reverse REV16, REV32, REV64 2 FO/F1
ASIMD table lookup, D-form TBL, TBX 3xN FO/F1
ASIMD table lookup, Q-form TBL, TBX 3xN + 3 FO/F1
ASIMD transfer, element to gen umov 5 1 L
reg, word or dword
ASIMD transfer, element to gen SMOV, UMOoV 6 1 L, 10/11
reg, others
ASIMD transfer, gen reg to INS 8 1 L, FO/F1
element
ASIMD transpose, D-form TRN1, TRN2 FO/F1
ASIMD unzip/zip, D-form UZP1, UZP2, ZIP1, ZIP2 FO/F1

Note:

1. For table branches (TBL and TBX), N denotes the number of registers in the table.

3.17 ASIMD Load Instructions

The latencies shown assume the memory access hits in the Level 1 Data Cache. Compared to standard loads, an

extra cycle is required to forward results to FP/ASIMD pipelines.

Instruction Group AArch32 Exec Execution Utilized Notes
Instructions Latency Throughput | Pipelines
ASIMD load, 1 element, multiple, 1 reg | VLD1 5 1 L

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A

Page 30 of 42

Instruction Group AArch32 Exec Execution Utilized Notes
Instructions Latency Throughput | Pipelines
ASIMD load, 1 element, multiple, 2 reg | VLD1 5 1 L
ASIMD load, 1 element, multiple, 3 reg | VLD1 6 1/2 L
ASIMD load, 1 element, multiple, 4 reg | VLD1 6 1/2 L
ASIMD load, 1 element, one lane | VLD1 8 L, FO/F1
ASIMD load, 1 element, all lanes | VLD1 8 L, FO/F1
ASIMD load, 2 element, multiple, 2 reg | VLD2 8 L, FO/F1
ASIMD load, 2 element, multiple, 4 reg | VLD2 9 1/2 L, FO/F1
ASIMD load, 2 element, one lane, size 32 | VLD2 8 1 L, FO/F1
ASIMD load, 2 element, one lane, size | VLD2 8 1 L, FO/F1
8/16
ASIMD load, 2 element, all lanes | VLD2 8 1 L, FO/F1
ASIMD load, 3 element, multiple, 3 reg | VLD3 9 1/2 L, FO/F1
ASIMD load, 3 element, one lane, size 32 | VLD3 8 1 L, FO/F1
ASIMD load, 3 element, one lane, size | VLD3 9 2/3 L, FO/F1
8/16
ASIMD load, 3 element, all lanes | VLD3 8 1 L, FO/F1
ASIMD load, 4 element, multiple, 4 reg | VLD4 9 1/2 L, FO/F1
ASIMD load, 4 element, one lane, size 32 | VLD4 8 1 L, FO/F1
ASIMD load, 4 element, one lane, size | VLD4 9 1/2 L, FO/F1
8/16
ASIMD load, 4 element, all lanes | VLD4 8 1 L, FO/F1
(ASIMD load, writeback form) (2) Same as +10/11 1
before
Instruction Group AArch64 Exec Execution Utilized Notes
Instructions Latency | Throughput | Pipelines
ASIMD load, 1 element, multiple, 1 reg, D-form | LD1 5 1 L
ASIMD load, 1 element, multiple, 1 reg, Q-form | LD1 5 1 L
ASIMD load, 1 element, multiple, 2 reg, D-form | LD1 5 1 L
ASIMD load, 1 element, multiple, 2 reg, Q-form | LD1 6 1/2 L
ASIMD load, 1 element, multiple, 3 reg, D-form | LD1 6 1/2 L
ASIMD load, 1 element, multiple, 3 reg, Q-form | LD1 7 1/3 L
ASIMD load, 1 element, multiple, 4 reg, D-form | LD1 6 1/2 L
ASIMD load, 1 element, multiple, 4 reg, Q-form | LD1 8 1/4 L
ASIMD load, 1 element, one lane, B/H/S | LD1 8 1 L, FO/F1
ASIMD load, 1 element, one lane, D | LD1 5 1 L
ASIMD load, 1 element, all lanes, D-form, B/H/S | LD1R 8 1 L, FO/F1
ASIMD load, 1 element, all lanes, D-form, D | LD1R 5 1 L
ASIMD load, 1 element, all lanes, Q-form | LD1R 8 1 L, FO/F1

Copyright © 2015 ARM. All rights reserved.

ARM UAN 0016A

Page 31 of 42

Instruction Group AArch64 Exec Execution Utilized Notes
Instructions Latency | Throughput | Pipelines
ASIMD load, 2 element, multiple, D-form, B/H/S | LD2 8 1 L, FO/F1
ASIMD load, 2 element, multiple, Q-form, | LD2 9 1/2 L, FO/F1
B/H/S
ASIMD load, 2 element, multiple, Q-form, D | LD2 6 1/2 L
ASIMD load, 2 element, one lane, B/H | LD2 8 1 L, FO/F1
ASIMD load, 2 element, one lane, S | LD2 8 1 L, FO/F1
ASIMD load, 2 element, one lane, D | LD2 6 1 L
ASIMD load, 2 element, all lanes, D-form, B/H/S | LD2R 8 1 L, FO/F1
ASIMD load, 2 element, all lanes, D-form, D | LD2R 5 1 L
ASIMD load, 2 element, all lanes, Q-form | LD2R 8 1 L, FO/F1
ASIMD load, 3 element, multiple, D-form, B/H/S | LD3 9 1/2 L, FO/F1
ASIMD load, 3 element, multiple, Q-form, | LD3 10 1/3 L, FO/F1
B/H/S
ASIMD load, 3 element, multiple, Q-form, D | LD3 8 1/4 L
ASIMD load, 3 element, one lane, B/H | LD3 9 2/3 L, FO/F1
ASIMD load, 3 element, one lane, S | LD3 8 1 L, FO/F1
ASIMD load, 3 element, one lane, D | LD3 6 1/2 L
ASIMD load, 3 element, all lanes, D-form, B/H/S | LD3R 8 1 L, FO/F1
ASIMD load, 3 element, all lanes, D-form, D | LD3R 6 1/2 L
ASIMD load, 3 element, all lanes, Q-form, B/H/S | LD3R 9 2/3 L, FO/F1
ASIMD load, 3 element, all lanes, Q-form, D | LD3R 9 1/2 L, FO/F1
ASIMD load, 4 element, multiple, D-form, B/H/S | LD4 9 1/2 L, FO/F1
ASIMD load, 4 element, multiple, Q-form, | LD4 11 1/4 L, FO/F1
B/H/S
ASIMD load, 4 element, multiple, Q-form, D | LD4 8 1/4 L
ASIMD load, 4 element, one lane, B/H | LD4 9 1/2 L, FO/F1
ASIMD load, 4 element, one lane, S | LD4 8 1 L, FO/F1
ASIMD load, 4 element, one lane, D | LD4 6 1/2 L
ASIMD load, 4 element, all lanes, D-form, B/H/S | LD4R 8 1 L, FO/F1
ASIMD load, 4 element, all lanes, D-form, D | LD4R 6 1 L
ASIMD load, 4 element, all lanes, Q-form, B/H/S | LD4R 9 1/2 L, FO/F1
ASIMD load, 4 element, all lanes, Q-form, D | LD4R 9 2/5 L, FO/F1
(ASIMD load, writeback form) (1) Same as +10/11 1
before

Note:

1. Writeback forms of load instructions require an extra zop to update the base address. This update is

typically performed in parallel with the load op (update latency is shown in parentheses).

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A

Page 32 of 42

3.18 ASIMD Store Instructions

Stores pops can issue after their address operands are available and do not need to wait for data operands. After
they are executed, stores are buffered and committed in the background.

Instruction Group AArch32 Exec Execution Utilized Notes
Instructions Latency | Throughput | Pipelines
ASIMD store, 1 element, multiple, 1 reg VST1 1 1 S
ASIMD store, 1 element, multiple, 2 reg VST1 2 1/2 S
ASIMD store, 1 element, multiple, 3 reg VST1 3 1/3 S
ASIMD store, 1 element, multiple, 4 reg VST1 4 1/4 S
ASIMD store, 1 element, one lane VST1 3 1 FO/F1, S
ASIMD store, 2 element, multiple, 2 reg VST2 3 1/2 FO/F1, S
ASIMD store, 2 element, multiple, 4 reg VST2 4 1/4 FO/F1, S
ASIMD store, 2 element, one lane VST2 3 1 FO/F1, S
ASIMD store, 3 element, multiple, 3 reg VST3 3 1/3 FO/F1, S
ASIMD store, 3 element, one lane, size 32 VST3 3 1/2 FO/F1, S
ASIMD store, 3 element, one lane, size 8/16 VST3 3 1 FO/F1, S
ASIMD store, 4 element, multiple, 4 reg VST4 4 1/4 FO/F1, S
ASIMD store, 4 element, one lane, size 32 VST4 3 1/2 FO/F1, S
ASIMD store, 4 element, one lane, size 8/16 VST4 3 1 FO/F1, S
(ASIMD store, writeback form) +1 +10/11 1
Instruction Group AArch64 Exec Execution Utilized Notes
Instructions | Latency | Throughput | Pipelines
ASIMD store, 1 element, multiple, 1 reg, D-form ST1 1 1 S
ASIMD store, 1 element, multiple, 1 reg, Q-form | ST1 2 1/2 S
ASIMD store, 1 element, multiple, 2 reg, D-form ST1 2 1/2 S
ASIMD store, 1 element, multiple, 2 reg, Q-form | ST1 4 1/4 S
ASIMD store, 1 element, multiple, 3 reg, D-form ST1 3 1/3 S
ASIMD store, 1 element, multiple, 3 reg, Q-form | ST1 6 1/6 S
ASIMD store, 1 element, multiple, 4 reg, D-form ST1 4 1/4 S
ASIMD store, 1 element, multiple, 4 reg, Q-form | ST1 8 1/8 S
ASIMD store, 1 element, one lane, B/H/S ST1 3 1 FO/F1, S
ASIMD store, 1 element, one lane, D ST1 1 1 S
ASIMD store, 2 element, multiple, D-form, B/H/S | ST2 3 1/2 FO/F1, S
ASIMD store, 2 element, multiple, Q-form, B/H/S | ST2 4 1/4 FO/F1, S
ASIMD store, 2 element, multiple, Q-form, D ST2 4 1/4 S
ASIMD store, 2 element, one lane, B/H/S ST2 3 1 FO/F1, S

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A

Page 33 of 42

Instruction Group AArch64 Exec Execution Utilized Notes
Instructions | Latency | Throughput | Pipelines

ASIMD store, 2 element, one lane, D ST2 2 1/2 S

ASIMD store, 3 element, multiple, D-form, B/H/S | ST3 3 1/3 FO/F1, S

ASIMD store, 3 element, multiple, Q-form, B/H/S | ST3 6 1/6 FO/F1, S

ASIMD store, 3 element, multiple, Q-form, D ST3 6 1/6 S

ASIMD store, 3 element, one lane, B/H ST3 3 1 FO/F1, S

ASIMD store, 3 element, one lane, S ST3 3 1/2 FO/F1, S

ASIMD store, 3 element, one lane, D ST3 3 1/3 S

ASIMD store, 4 element, multiple, D-form, B/H/S | ST4 4 1/4 FO/F1, S

ASIMD store, 4 element, multiple, Q-form, B/H/S | ST4 8 1/8 FO/F1, S

ASIMD store, 4 element, multiple, Q-form, D ST4 8 1/8 S

ASIMD store, 4 element, one lane, B/H ST4 3 1 FO/F1, S

ASIMD store, 4 element, one lane, S ST4 3 1/2 FO/F1, S

ASIMD store, 4 element, one lane, D ST4 4 1/4 S

(ASIMD store, writeback form) (1) Same as +10/11 1

before

Note:

1. Writeback forms of store instructions require an extra op to update the base address. This update is
typically performed in parallel with the store op (update latency is shown in parentheses).

3.19 Cryptography Extensions

Instruction Group AArch32 Instructions Exec Execution Utilized Notes
Latency | Throughput | Pipelines
Crypto AES ops AESD, AESE, AESIMC, AESMC 3 1 FO 1,2
Cryp’Fo polynomial (64x64) 3 1 F0)
multiply long VMULL.P64
Crypto SHA1 xor ops SHA1SUO 6 2 FO/F1
Crypto SHA1 fast ops SHA1H, SHA1SU1 3 1 FO 2
Crypto SHA1 slow ops SHA1C, SHA1M, SHA1P 6 1/2 FO 2
Crypto SHA256 fast ops SHA256SU0 3 1 FO 2
Crypto SHA256 slow ops SHA256H, SHA256H2,
SHA256SU1 6 1/2 FO 2
Instruction Group AArch64 Instructions Exec Execution Utilized Notes
Latency | Throughput | Pipelines
Crypto AES ops AESD, AESE, AESIMC, AESMC 3 1 FO 1,2
Crypto polynomial (64x64)
3 1 FO 2
multiply long PMULL(2)

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A

Page 34 of 42

Instruction Group AArch64 Instructions Exec Execution Utilized Notes
Latency | Throughput | Pipelines

Crypto SHA1 xor ops SHA1SUO 6 2 FO/F1

Crypto SHAl schedule 3 1 Fo 5

acceleration ops SHA1H, SHA1SU1

Crypto SHA1 hash

acceleration ops SHA1C, SHA1M, SHA1P 6 1/2 FO 2

Crypto SHA256 schedule 3 1 Fo 5

acceleration op (1 pop) SHA256SU0

Crypto SHA256 schedule 6 1/2 Fo 5

acceleration op (2 pops) SHA256S5U1

Crypto SHA256 hash 6 1/2 Fo 5

acceleration ops

SHA256H, SHA256H2

Note:

1. Adjacent AESE/AESMC instruction pairs and adjacent AESD/AESIMC instruction pairs will exhibit the
described performance characteristics. See Section 4.10 for additional details.

2. Crypto execution support late forwarding of the result from a producer xop to a consumer gop. This results
in a one cycle reduction in latency as seen by the consumer.

3.20 CRC

Instruction Group AArch32 Instructions Exec Execution Utilized Notes
Latency | Throughput | Pipelines

CRC checksum ops CRC32, CRC32C 2 1 M 1

Instruction Group AArch64 Instructions Exec Execution Utilized Notes
Latency | Throughput | Pipelines

CRC checksum ops CRC32, CRC32C 2 1 M 1

Note:

1. CRC execution supports late forwarding of the result from a producer CRC op to a consumer CRC op. This
results in a one cycle reduction in latency as seen by the consumer.

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A

Page 35 of 42

4 SPECIAL CONSIDERATIONS

4.1 Dispatch Constraints

Dispatch of ops from the in-order portion to the out-of-order portion of the microarchitecture includes a number of
constraints. It is important to consider these constraints during code generation in order to maximize the effective
dispatch bandwidth and subsequent execution bandwidth of the Cortex®-A72 processor.

The dispatch stage can process up to three pops per cycle, with the following limitations on the number of xops of
each type that can be simultaneously dispatched.

* One wpop using the B pipeline

* Up to two pops using the | pipelines

* Up to two pops using the M pipeline

¢ One wop using the FO pipeline

* One wop using the F1 pipeline

e Up to two pops using the L or S pipeline

If there are more pops available to be dispatched in a given cycle than can be supported by the constraints above,
ops will be dispatched in oldest-to-youngest age order to the extent allowed by the above.

4.2 Conditional Execution

The ARMv8 architecture allows many types of A32 instructions to be conditionally executed based upon condition
flags (N, Z, C, V). If the condition flags satisfy a condition specified in the instruction encoding, an instruction has
its normal effect. If the flags do not satisfy this condition, the instruction acts as a NOP.

This leads to conditional register writes for most types of conditional instructions. In an out-of-order processor
such as Cortex®-A72 processor, this has two side-effects:

* The first side-effect is that the conditional instruction requires the old value of its destination register as an
input operand.

* The second side-effect is that all subsequent consumers of the conditional instruction destination register
depend upon this operation, regardless of the state of the condition flags (that is, even if the destination
register is unchanged in the event the condition is not met.).

These effects should be taken into account when considering whether to use conditional execution for long-
latency operations. The overheads of conditional execution might begin to outweigh the benefits. Consider the
following example.

MULEQ R1, R2, R3
MULNE R1, R2, R4

For this pair of instructions, the second multiply is dependent upon the result of the first multiply, not through one
of its normal input operands (R2 and R4), but through the destination register R1. The combined latency for these
instructions is six cycles, rather than the four cycles that would be required if these instructions were not
conditional (three cycles latency for the first, and one additional cycle for the second which is fully pipelined behind
the first). So if the condition is easily predictable (by the branch predictor), conditional execution can lead to a

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A Page 36 of 42

performance loss. But if the condition is not easily predictable, conditional execution can lead to a performance
gain because the latency of a branch mispredict is generally higher than the execution latency of conditional
instructions. In general, ARM recommends that conditional instruction forms be considered only for integer
instructions with latency less than or equal to two cycles, loads, and stores.

4.3 Conditional ASIMD

Conditional execution is architecturally possible for ASIMD instructions in Thumb state using IT blocks. However,
this type of encoding is considered abnormal and is not recommended for Cortex®-A72. It will likely perform
worse than the equivalent unconditional encodings.

4.4 Register Forwarding Hazards

The ARMv8-A architecture allows FP instructions to read and write 32-bit S-registers. In AArch32, each S-register
corresponds to one half (upper or lower) of an overlayed 64-bit D-register. Register forwarding hazards might
occur when one pop reads a D-register or Q-register operand that has recently been written with one or more ~ S-
register results. Consider the following abnormal scenario.

VMOV S0,R0
VMOV S1,R1
VADD D2, D1, DO

The first two instructions write SO and S1, which correspond to the bottom and top halves of DO. The third
instruction then requires DO as an input operand. In this scenario, Cortex®-A72 processor detects that at least one
of the upper or lower S0/S1 registers overlayed on DO were previously written, at which point the VADD instruction
is serialized until the prior S-register writes are guaranteed to have been architecturally committed, likely incurring
significant additional latency. Note that after the DO register has been written as a D-register or Q-register
destination, subsequent consumers of that register will no longer encounter this register-hazard condition, until the
next S-register write, if any.

The Cortex®-A72 processor is able to avoid this register-hazard condition for certain cases. The following rules
describe the conditions under which a register-hazard can occur.

e The producer writes an S-register (not a D[x] scalar)

* The consumer reads an overlapping D-register (not as a D[x] scalar, nor as an implicit operand caused by
conditional execution)

e The consumer is a FP/ASIMD pop (not a store xop)

To avoid unnecessary hazards, ARM recommends that the programmer use D[x] scalar writes when populating
registers prior to ASIMD operations. For example, either of the following instruction forms would safely prevent a
subsequent hazard:

VLD1.32 Dd[x], [address]
VMOV.32 Dd[x], Rt

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A Page 37 of 42

The Performance Monitor Unit (PMU) in the Cortex®-A72 processor can be used to determine when register
forwarding hazards are actually occuring. The implementation defined PMU event number 0x12C
(DISP_SWDW_STALL) has been assigned to count the number of cycles spent stalling due to these hazards.

4.5 Load/Store Throughput

The Cortex®-A72 processor includes separate load and store pipelines,which allow it to execute one load op and
one store p/op every cycle

To achieve maximum throughput for memory copy (or similar loops), do the following:

* Unroll the loop to include multiple load and store operations for each iteration, minimizing the overheads
of looping.

e Use discrete, non-writeback forms of load and store instructions (such as LDRD and STRD), interleaving
them so that one load and one store operation can be performed each cycle. Avoid load-multiple/store-

multiple instruction encodings (such as LDM and STM), which lead to separated bursts of load and store
Hops which might not allow concurrent use of both the load and store pipelines.

The following example shows a recommended instruction sequence for a long memory copy in AArch32 state:

Loop start:
SUBS r2,r2,#64
LDRD «r3,r4,[rl,#0

]

STRD r3,r4,[r0,#0]

LDRD r3,r4,[rl,#8]

STRD r3,r4, [r0,#8]
LDRD r3,r4,[rl,#16]
STRD r3,r4,[r0,#16]
LDRD r3,r4, [rl,#24]
STRD r3,r4,[r0,#24]
LDRD r3,r4, [rl,#32]
STRD r3,r4,[r0,#32]
LDRD r3,r4, [rl,#40]
STRD r3,r4,[r0,#40]
LDRD r3,r4, [rl,#48]
STRD r3,r4, [r0,#48]
LDRD r3,r4, [rl,#56]
]

STRD r3,r4,[r0,#56
ADD rl,rl, #64

ADD r0,r0, #64

BGT Loop start

A recommended copy routine for AArch64 would look similar to the sequence above, but would use LDP/STP
instructions.

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A Page 38 of 42

4.6 Load/Store Alignment

The ARMv8-A architecture allows many types of load and store accesses to be arbitrarily aligned. The
Cortex®-A72 processor handles most unaligned accesses without performance penalties. However, there are
cases which reduce bandwidth or incur additional latency, as described below.

* Load operations that cross a cache-line (64-byte) boundary
e Store operations that cross a 16-byte boundary

4.7 Branch Alighment

Branch instruction and branch target instruction alignment can affect performance. For best-case performance,
consider the following guidelines.

e Try not to include more than two taken branches within the same quadword-aligned quadword of
instruction memory.

e Consider aligning subroutine entry points and branch targets to quadword boundaries, within the bounds
of the code-density requirements of the program. This will ensure that the subsequent fetch can retrieve
four (or a full quadword’s worth of) instructions, maximizing fetch bandwidth following the taken branch.

4.8 Setting Condition Flags

The ARM instruction set includes instruction forms that set the condition flags. In addition to compares, many
types of data processing operations set the condition flags as a side-effect. Excessive use of flag-setting
instruction forms might result in performance degradation, therefore ARM recommends that, where possible, non-
flag-setting instructions and instruction-forms are used except where the condition-flag result is explicitly required
for subsequent branches or conditional instructions.

When using the Thumb instruction set, special attention should be given to the use of 16-bit instruction forms.
Many of those (such as moves, adds, shifts) automatically set the condition flags. For best performance, consider
using the 32-bit encodings which include forms that do not set the condition flags, within the bounds of the code-
density requirements of the program.

4.9 Special Register Access

The Cortex®-A72 processor performs register renaming for general purpose registers to enable speculative and
out-of-order instruction execution. However, most special-purpose registers are not renamed. Instructions that
read or write non-renamed registers are subjected to one or more of the following additional execution constraints:

* Non-speculative execution — Instructions can only execute non-speculatively.

* In-order execution — Instructions must execute in-order with respect to other similar instructions, or in
some cases with respect to all instructions.

* Flush side-effects — Instructions trigger a flush side-effect after executing for synchronization.

The table below summarizes various special instructions and the associated execution constraints or side-effects.

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A Page 39 of 42

Instructions Forms Non- In- Flush Notes

Speculative Order Side-

Effect

ISB Yes Yes Yes 1
CPS Yes Yes Yes 1
SETEND Yes Yes Yes 1
MRS (read) APSR, CPSR Yes Yes No 1
MRS (read) SPSR No Yes No 1
MSR (write) ASPR_nzcvq, CPSR_f No No No 1,2,3
MSR (write) APSR, CPSR other Yes Yes Yes 1
MSR (write) SPSR Yes Yes No 1
VMRS (read) FPSCR to APSR_nzcv No No No 1,2
VMRS (read) Other Yes Yes No 1
VMSR (write) Yes Yes Yes 1
VMSR (write) FPSCR, changing only NZCV Yes Yes No
MRC (read) Some Yes No 1,2,4
MCR (write) Yes Yes Some 1,4

Note:

1. Conditional forms of these instructions for which the condition is not satisfied will not access special
registers or trigger flush side-effects.

2. Conditional forms of these instructions are always executed non-speculatively and in-order to properly
resolve the condition.

3. MSR instructions that write APSR_nzcvqg generate a separate pop to write the Q bit. That zop executes
non-speculatively and in-order. But the main gop, which writes the NZCV bits, executes as shown in the
table above.

4. A subset of MCR instructions must be executed non-speculatively. A subset of MRC instructions trigger
flush side-effects for synchronization. Those subsets are not documented here.

4.10 AES Encryption/Decryption

The Cortex®-A72 processor can issue one AESE/AESMC/AESD/AESIMC instruction every cycle (fully pipelined)
with an execution latency of three cycles (see Section 3.19). This means encryption or decryption for at least
three data chunks should be interleaved for maximum performance:

AESE data0, keyO0
AESMC data0O, data0
AESE datal, keyO
AESMC datal, datal
AESE data2, key0
AESMC data2, data2
AESE data0, keyl
AESMC data0O, data0

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A Page 40 of 42

Pairs of dependent AESE/AESMC and AESD/AESIMC instructions provide higher performance when adjacent,
and in the described order, in the program code. Therefore it is important to ensure that these instructions come

in pairs in AES encryption/decryption loops, as shown in the code segment above.

4.11 Fast literal generation

The Cortex®-A72 processor supports optimized literal generation for 32- and 64-bit code. A typical literal

generation sequence in 32-bit code is:

MOV rX, #bottom 16 bits
MOVT rX, #top 16 bits

In 64-bit code, generating a 32-bit immediate:

MOV wX, #bottom 16 bits
MOVK wX, #top 16 bits, 1lsl #16

In 64-bit code, generating the bottom half of a 64-bit immediate:

MOV xX, #bottom 16 bits
MOVK xX, #top 16 bits, 1lsl #16

In 64-bit code, generating the top half of a 64-bit immediate:

MOVK xX, #bits 47 to 32, 1lsl #32
MOVK xX, #bits 63 to 48, 1sl #48

If any of these sequences appear sequentially and in the described order in program code, the two instructions
can be executed at lower latency and higher bandwidth than if they do not appear sequentially in the program
code, enabling 32-bit literals to be generated in a single cycle and 64-bit literals to be generated in two cycles.

Thus it is advantageous to ensure that compilers or programmers writing assembly code schedule these

instruction pairs sequentially.

4.12 PC-relative address calculation

The Cortex®-A72 processor supports optimized PC-relative address calculation using the following instruction

sequence:

ADRP xX, #label
ADD xY, xX, #imm

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A

Page 41 of 42

If this sequence appears sequentially and in the described order in program code, the two instructions can be
executed at lower latency and higher bandwidth than if they do not appear sequentially in the program code.

Thus it is advantageous to ensure that compilers or programmers writing assembly code schedule these
instruction pairs sequentially.

4.13 FPCR self-synchronization

Programmers and compiler writers should note that writes to the FPCR register are self-synchronizing, i.e. its
effect on subsequent instructions can be relied upon without an intervening context synchronizing operation.

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A Page 42 of 42

