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1. Preface 
1.1 Intended audience 

This document is intended for programmers and compiler developers who deploy a software 
workaround for a possible issue, identified as ARM Reference 761319 on Cortex-A9 MPCore 
processors. 

1.2 Document status 
 This document is final, that is for a developed product. 

1.3 References 
This document refers to the following documents: 

References 

Document number or reference Title 

http://en.wikipedia.org/wiki/Non-
blocking_algorithm 

Non-blocking algorithms 

ARM DDI 0406 ARM Architecture Reference Manual ARMv7-A and 
ARMv7-R edition 

 

1.4 Terms and abbreviations 
This document uses the following terms and abbreviations: 

Terms and abbreviations 

Term Description 

Lock-free programming A multi-threaded programming methodology that avoids the use of lock 
variables when communicating between threads of execution. 

Volatile (storage class qualifier) In C and C++ this is the volatile storage class qualifier.  In other languages 
the syntax and semantics might vary slightly if the concept is supported at all.  
The intent is to cover all storage locations that might be used for inter-
processor communication variables that can be used for lock-free 
programming. 

2. Introduction 
This Programmer Advice Notice describes a problem that can occur, in rare circumstances, when 
performing successive reads from the same memory location on a Cortex-A9 MPCore processor. 
This document describes changes that can be applied to toolchains. These changes avoid the 
problem in any code generated for and executed on a Cortex-A9 MPCore processor.  However, 
depending on the design of the toolchain, applying these suggestions might not be possible. 
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3. Problem description 
3.1 Processors affected 

This problem affects all revisions of the Cortex-A9 MPCore processor. 

3.2 Instruction sequences affected 
On all versions of the Cortex-A9 MPCore processor, in very rare circumstances, successive reads 
from the same location in Normal Write-Back Shared memory that is being modified by another 
processor can result in the read values not appearing in program order. 

3.3 Example code 

3.3.1 Example of unsafe code 
The following code might be unsafe: 
On processor 1 
 STR <valueA>, [loc] 
 … 
 STR <valueB>, [loc] 

On processor 2 
 LDR Rx, [loc] 
 …   // No barriers 
 LDR Ry, [loc] 

The result of executing these code sequences is that processor 2 might occasionally incorrectly 
observe Rx == <valueB> and Ry == <valueA>. 
The problem can affect all forms of memory load instruction except LDREX, LDREXB, LDREXH 
and LDREXD. 
For high-level languages, compilers often optimize away or otherwise re-order multiple accesses to 
the same memory location, so only memory locations that are declared volatile (see Volatile 
(storage class qualifier) in Terms and abbreviations on page 4) can be considered to be susceptible 
to this problem.  Furthermore, any barrier operation between the two loads is sufficient to prevent 
the conditions for triggering the problem, so only lock-free programming methodologies are 
affected (see Non-blocking algorithms in References on page 4). 

3.3.2 Examples of safe code 
The following code is safe: 
On processor 2 

LDR Rx, [loc] 
DMB 
… 
LDR Ry, [loc] 
DMB 

Or, on processor 2 
LDREX Rx, [loc] 
… 
LDREX Ry, [loc] 

Note: the use of LDREX is UNPREDICTABLE unless accessing Normal memory, so the second 
sequence cannot be used as a general workaround for accessing all volatile objects in memory. 
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4. Workaround 
It is impractical to work around this problem in a linker because the number of load instructions is 
too large to make binary patching feasible.  In addition, the majority of load instructions can never 
be affected by this problem because they are never used for inter-thread communication, but a 
linker cannot distinguish the different classes of access.  Instead compiler developers must 
implement the following workaround and programmers must recompile affected code with the 
workaround enabled. 
Programmers must manually fix hand-written assembly language and inline assembly instructions 
in source code. 
The workaround is to intercept all volatile memory reads in the compiler and issue a DMB 
instruction immediately afterwards.  This ensures that all such accesses are ordered correctly. 
It is possible that device drivers will have their performance materially affected by this solution, so 
ARM recommends that this workaround is only enabled as a result of a command-line option. 
 


