
ARM UAN 0004A Copyright © 2011 ARM Limited. All rights reserved.
 Non-Confidential

Cortex-A9 MPCore™

Programmer Advice Notice
Read-after-Read Hazards

ARM Reference 761319

Programmer Advice Notice Cortex-A9 MPCore Read-after-Read Hazards (761319)

ARM UAN 0004A Copyright © 2011 ARM Limited. All rights reserved. 2
 Non-Confidential

Cortex-A9 MPCore

Programmer Advice Notice
 Read-after-Read Hazards

ARM Reference 761319
Copyright © 2011 ARM. All rights reserved.

 Release Information
The following changes have been made to this document.

 Change history

Date Issue Confidentiality Change

22 September 2011 A Non-Confidential First release

 Proprietary Notice
Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM® in the EU and other
countries except as otherwise stated below in this proprietary notice. Other brands and names mentioned
herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for any
loss or damage arising from the use of any information in this document, or any error or omission in such
information, or any incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

 Confidentiality Status
This document is Non-Confidential. The right to use, copy and disclose this document may be subject to
license restrictions in accordance with the terms of the agreement entered into by ARM and the party that
ARM delivered this document to.

 Product Status
The information in this document is final, that is for a developed product.

 Feedback on Content
If you have any comments on content, then send an e-mail to errata@arm.com. Give:

• the title
• the document number, ARM UAN 0004A
• the page numbers to which your comments apply
• a concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

 Web Address
http://www.arm.com

Programmer Advice Notice Cortex-A9 MPCore Read-after-Read Hazards (761319)

ARM UAN 0004A Copyright © 2011 ARM Limited. All rights reserved. 3
 Non-Confidential

Table of Contents
1. Preface ... 4
1.1 Intended audience .. 4
1.2 Document status ... 4
1.3 References ... 4
1.4 Terms and abbreviations .. 4

2. Introduction ... 4

3. Problem description ... 5
3.1 Processors affected .. 5
3.2 Instruction sequences affected ... 5
3.3 Example code ... 5

4. Workaround ... 6

Programmer Advice Notice Cortex-A9 MPCore Read-after-Read Hazards (761319)

ARM UAN 0004A Copyright © 2011 ARM Limited. All rights reserved. 4
 Non-Confidential

1. Preface
1.1 Intended audience

This document is intended for programmers and compiler developers who deploy a software
workaround for a possible issue, identified as ARM Reference 761319 on Cortex-A9 MPCore
processors.

1.2 Document status
 This document is final, that is for a developed product.

1.3 References
This document refers to the following documents:

References

Document number or reference Title

http://en.wikipedia.org/wiki/Non-
blocking_algorithm

Non-blocking algorithms

ARM DDI 0406 ARM Architecture Reference Manual ARMv7-A and
ARMv7-R edition

1.4 Terms and abbreviations
This document uses the following terms and abbreviations:

Terms and abbreviations

Term Description

Lock-free programming A multi-threaded programming methodology that avoids the use of lock
variables when communicating between threads of execution.

Volatile (storage class qualifier) In C and C++ this is the volatile storage class qualifier. In other languages
the syntax and semantics might vary slightly if the concept is supported at all.
The intent is to cover all storage locations that might be used for inter-
processor communication variables that can be used for lock-free
programming.

2. Introduction
This Programmer Advice Notice describes a problem that can occur, in rare circumstances, when
performing successive reads from the same memory location on a Cortex-A9 MPCore processor.
This document describes changes that can be applied to toolchains. These changes avoid the
problem in any code generated for and executed on a Cortex-A9 MPCore processor. However,
depending on the design of the toolchain, applying these suggestions might not be possible.

Programmer Advice Notice Cortex-A9 MPCore Read-after-Read Hazards (761319)

ARM UAN 0004A Copyright © 2011 ARM Limited. All rights reserved. 5
 Non-Confidential

3. Problem description
3.1 Processors affected

This problem affects all revisions of the Cortex-A9 MPCore processor.

3.2 Instruction sequences affected
On all versions of the Cortex-A9 MPCore processor, in very rare circumstances, successive reads
from the same location in Normal Write-Back Shared memory that is being modified by another
processor can result in the read values not appearing in program order.

3.3 Example code

3.3.1 Example of unsafe code
The following code might be unsafe:
On processor 1
 STR <valueA>, [loc]
 …
 STR <valueB>, [loc]

On processor 2
 LDR Rx, [loc]
 … // No barriers
 LDR Ry, [loc]

The result of executing these code sequences is that processor 2 might occasionally incorrectly
observe Rx == <valueB> and Ry == <valueA>.
The problem can affect all forms of memory load instruction except LDREX, LDREXB, LDREXH
and LDREXD.
For high-level languages, compilers often optimize away or otherwise re-order multiple accesses to
the same memory location, so only memory locations that are declared volatile (see Volatile
(storage class qualifier) in Terms and abbreviations on page 4) can be considered to be susceptible
to this problem. Furthermore, any barrier operation between the two loads is sufficient to prevent
the conditions for triggering the problem, so only lock-free programming methodologies are
affected (see Non-blocking algorithms in References on page 4).

3.3.2 Examples of safe code
The following code is safe:
On processor 2

LDR Rx, [loc]
DMB
…
LDR Ry, [loc]
DMB

Or, on processor 2
LDREX Rx, [loc]
…
LDREX Ry, [loc]

Note: the use of LDREX is UNPREDICTABLE unless accessing Normal memory, so the second
sequence cannot be used as a general workaround for accessing all volatile objects in memory.

Programmer Advice Notice Cortex-A9 MPCore Read-after-Read Hazards (761319)

ARM UAN 0004A Copyright © 2011 ARM Limited. All rights reserved. 6
 Non-Confidential

4. Workaround
It is impractical to work around this problem in a linker because the number of load instructions is
too large to make binary patching feasible. In addition, the majority of load instructions can never
be affected by this problem because they are never used for inter-thread communication, but a
linker cannot distinguish the different classes of access. Instead compiler developers must
implement the following workaround and programmers must recompile affected code with the
workaround enabled.
Programmers must manually fix hand-written assembly language and inline assembly instructions
in source code.
The workaround is to intercept all volatile memory reads in the compiler and issue a DMB
instruction immediately afterwards. This ensures that all such accesses are ordered correctly.
It is possible that device drivers will have their performance materially affected by this solution, so
ARM recommends that this workaround is only enabled as a result of a command-line option.

