

ARM1176JZ-S™ and
ARM1176JZF-S™

Programmer Advice Notice
Use of BLX (immediate)

ARM reference 760522

ARM UAN 0002A Copyright © 2011 ARM Limited. All rights reserved.
 Non-Confidential

Programmer Advice Notice ARM1176: Use of BLX (immediate) (760522)

ARM1176JZ-S and ARM1176JZF-S
Programmer Advice Notice
Use of BLX (immediate)
ARM reference 760522
Copyright © 2011 ARM. All rights reserved.

 Release Information
The following changes have been made to this document.

 Change history

Date Issue Confidentiality Change

12 July 2011 A Non-Confidential First release

 Proprietary notice
Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM® in the EU and
other countries except as otherwise stated below in this proprietary notice. Other brands and names
mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this
document may be adapted or reproduced in any material form except with the prior written permission of
the copyright holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith.
However, all warranties implied or expressed, including but not limited to implied warranties of
merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for
any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

 Confidentiality status
This document is Non-Confidential. The right to use, copy and disclose this document may be subject to
license restrictions in accordance with the terms of the agreement entered into by ARM and the party
that ARM delivered this document to.

Product Status
The information in this document is final, that is for a developed product.

 Feedback on content
If you have any comments on content, then send an e-mail to errata@arm.com. Give:

• the title

• the number

• the page numbers to which your comments apply

• a concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

 Web Address
http://www.arm.com

ARM UAN 0002A Copyright © 2011 ARM Limited. All rights reserved. 2
 Non-Confidential

mailto:errata@arm.com
http://www.arm.com/
http://www.arm.com/

Programmer Advice Notice ARM1176: Use of BLX (immediate) (760522)

Table of Contents
1 Preface ... 4
1.1 Intended audience .. 4
1.2 Document status ... 4
1.3 References ... 4

2 Terms and abbreviations ... 4

3 Introduction ... 4

4 Problem description ... 5
4.1 Processors affected .. 5
4.2 Instruction sequences affected ... 5
4.3 Example code ... 5

5 OS Developers ... 7
5.1 Dynamic linking .. 7

6 Application Developers .. 9
6.1 Workarounds .. 9

7 Static Toolchain Developers .. 11
7.1 ARM Compiler Toolchain support .. 11
7.2 Detecting the problem in a static toolchain .. 11
7.3 Use of BLX instruction by toolchains .. 11
7.4 Workarounds .. 12
7.5 Procedure for generating state change veneers .. 16

ARM UAN 0002A Copyright © 2011 ARM Limited. All rights reserved. 3
 Non-Confidential

Programmer Advice Notice ARM1176: Use of BLX (immediate) (760522)

1 Preface

1.1 Intended audience
This document is intended for operating system developers, application developers and static
toolchain developers who need to implement software workarounds for a possible issue,
identified as ARM reference 760522, that can apply to execution of a Thumb BLX
(immediate) instruction on an ARM1176JZ-S or ARM1176JZF-S processor.

1.2 Document status
This is a released document. However it might include technical inaccuracies or typographical
errors. See Feedback on content on page 2.

1.3 References
Document number Title

ARM IHI 0044 ELF for the ARM Architecture

ARM DUI 0493 ARM® Compiler toolchain Linker Reference

2 Terms and abbreviations
This document uses the following terms and abbreviations.

Term Description

Static toolchain Toochain consisting of at least a compiler or static linker. For example RVCT is a
static toolchain with armcc as the compiler, armlink as the linker.

Veneer A series of instructions inserted between a branch target and its destination. These
are often used to change state and or extend the range of branch instructions.

Object Producer A tool that generates an ELF Object. A compiler is an Object Producer.

Section An ELF section is the smallest unit of data on which a linker operates. An Object
Producer must make any inter-section references explicit by relocation directives.
Intra-section references are not required to be exposed to the linker.

Relocation Directive An instruction from the Object Producer to the linker to fix up code or data when
final addresses are known.

ABI Compliant ELF An Object that conforms to ELF for the ARM Architecture.

3 Introduction
This Programmer Advice Notice describes a problem that might occur when using the BLX
(immediate) instruction on the ARM1176JZ-S or ARM1176JZF-S processors. It describes
software and static toolchain workarounds for the problem.

ARM UAN 0002A Copyright © 2011 ARM Limited. All rights reserved. 4
 Non-Confidential

Programmer Advice Notice ARM1176: Use of BLX (immediate) (760522)

4 Problem description

4.1 Processors affected
All revisions of the ARM1176JZ-S and ARM1176JZF-S processors are affected.

This problem cannot affect any other ARM11 processor. This means that the following
processors are not affected:

• ARM1136
• ARM1156
• ARM11 MPCore.

4.2 Instruction sequences affected
The affected sequence is a BLX (immediate) instruction from Thumb to ARM to which all of
the following apply:

• the target ARM instruction is aligned on a doubleword boundary
• the target ARM instruction is not an unconditional branch
• the target ARM instruction is not an unconditional load to the PC

• the BLX instruction is aligned at 30 or 0 modulo 32, or is the target of a branch.

In very rare circumstances that depend on the validity of entries in the instruction cache, the
validity of entries in the branch target address cache (BTAC), and code alignments, an
instruction sequence that meets the above conditions can execute erroneously. Therefore,
software must avoid using these sequences.

Note: The problem does not exist for ARM to Thumb transitions when using BLX
(immediate).

4.3 Example code

4.3.1 Example of unsafe code
The following code might be unsafe:

thumb
blx arm_1

…

arm
arm_1 add r0,r0,#1
 add r1,r1,#2 ; instruction X
 bx lr

Under certain conditions, an incorrect bitpattern is fetched for instruction X.

ARM UAN 0002A Copyright © 2011 ARM Limited. All rights reserved. 5
 Non-Confidential

Programmer Advice Notice ARM1176: Use of BLX (immediate) (760522)

4.3.2 Example of safe code
The following code is safe:

thumb
blx arm_2

…

arm
arm_2 ldr pc,.+4
 dcd …

This sequence is safe because the destination of the BLX instruction branches unconditionally.

Note: Some dynamic program linkage sequences are of this form.

ARM UAN 0002A Copyright © 2011 ARM Limited. All rights reserved. 6
 Non-Confidential

Programmer Advice Notice ARM1176: Use of BLX (immediate) (760522)

5 OS Developers
Operating System developers that are affected by this problem must apply one of the
application code workarounds described in section 6 to any affected assembler code, and then
recompile any affected C code using an updated toolchain. A suitable updated toolchain is the
ARM Compiler toolchain version 4.1p5 or later, using the --no_blx_thumb_arm switch.

Static Toolchain Developers on page 11 describes the requirements for a third-party toolchain
workaround for this issue.

5.1 Dynamic linking
Many platforms support a procedure for calling functions in another link unit such as a shared
object or DLL. Often, these calls are indirected using a Procedure Linkage Table (PLT). The
PLT is a table of veneers that ensure that each call:

• finds the correct function
• is in range
• is in the correct state.

In software for an ARM1176 processor, PLT veneers are implemented in ARM state as they
require access to the high registers, R8-R12. This means a call from Thumb state using the
PLT must change state. This might involve a BLX instruction.

Applying the workarounds prevents the generation of the BLX. However, this can result in a
veneer that is between the Thumb call and the PLT, resulting in performance loss. With some
small changes, PLT sections can be generated such that veneers are not required.

5.1.1 ARM Linux style PLT sequences
An ARM Linux PLT consists of a special first entry to handle lazy loading using a call to the
Dynamic Loader. Control is passed to this entry only by another PLT entry that requires lazy
loading. The other PLT entries are potential ARM BLX targets from Thumb code.

The GCC implementation of these sequences is:

PLT entry PLT sequence

0 Entry 0
$a
 PUSH {lr}
 LDR lr,[pc,#4]
 ADD lr,pc,lr
 LDR pc,[lr,#8]!
$d
 DCD <GOT address>

1 .. N $a
 ADD ip, pc, #0
 ADD ip, ip, #<offset1>
 LDR pc, [ip, #<offset2>]!

In this table, the size of the first PLT entry is 5 words, and all other entries are 3 words.
Therefore, alternate PLT entries are doubleword aligned.

The following simple modifications to the PLT entries ensure that the BLX targets are non-
doubleword aligned:

1. Increase the section alignment of the .plt section to doubleword alignment.

2. Increase the size of the entries, other than entry 0, to four words, for example by
adding a word of padding after the LDR pc.

ARM UAN 0002A Copyright © 2011 ARM Limited. All rights reserved. 7
 Non-Confidential

Programmer Advice Notice ARM1176: Use of BLX (immediate) (760522)

5.1.2 Symbian style PLT entries
The Symbian PLT entries are a table of indirect branches. For example:

 LDR pc, [pc, #-4]
 DCD destination

The BLX target is itself an indirect branch, therefore the problem cannot occur. No change is
required to the PLT sequence.

5.1.3 Other possible PLT entries
Many platforms have a sequence similar to the one for Symbian but with the destination
address in read/write data. This requires an additional load.

 .plt
 LDR ip, [pc, #0]
 LDR pc, [ip, #0]
 DCD <address of GOT entry for function>
 ...
 .got
 DCD <address of function>

The BLX target is not a branch so the problem might occur. The entry size for the PLT is
3 words. This means that alternate words in the table are doubleword aligned.

The following simple modifications to the PLT entries ensure that the BLX targets are non-
doubleword aligned:

1. Increase the section alignment of the .plt section to doubleword alignment.

2. Increase the size of the entries, other than entry 0, to four words, for example by
adding a word of padding before the LDR ip.

ARM UAN 0002A Copyright © 2011 ARM Limited. All rights reserved. 8
 Non-Confidential

Programmer Advice Notice ARM1176: Use of BLX (immediate) (760522)

6 Application Developers
Application developers that are affected by this problem must apply one of the following
workarounds to any affected assembler code, and recompile any affected C code using an
updated toolchain. A suitable updated toolchain is the ARM Compiler toolchain version 4.1p5
or later, using the --no_blx_thumb_arm switch.

Static Toolchain Developers on page 11 describes the requirements for a third-party toolchain
workaround for this issue.

6.1 Workarounds
Workarounds for the problem involve modifying the code to remove one or more of the
preconditions for the problem. This can be done with minimal impact on application
performance.

6.1.1 BLX to an ARM branch instruction
Change the BLX (immediate) to transfer to an ARM unconditional branch instruction that
branches to the target ARM routine:

 thumb
 blx arm_1_jump

 …

 arm
arm_1 …

 …

 arm
arm_1_jump b arm_1

You can place the ARM branch instruction anywhere within range of the Thumb BLX
instruction (± 16Mb) and the target ARM routine (± 32Mb).

An instance of this workaround has:

• a code-size penalty of 4 bytes for each ARM routine called

• an execution-time penalty of 1 or 4 cycles per call, depending on whether the ARM
branch is predicted.

6.1.2 BL to a Thumb-to-ARM state-change instruction (BX PC)
Change t he BLX (immediate) into a BL (immediate) to a state-change instruction, that is,
Thumb BX PC followed by 2-byte padding. This is an alternative way to achieve the state-
change required when calling an ARM routine from Thumb code.

Note: The Thumb BX PC instruction must be word aligned.

If it is possible to recompile or reassemble, and there is no fallthrough from the preceding
code, place the state-change sequence immediately before the target ARM routine:

 thumb
 bl arm_1_bxpc

 …

 thumb
 align 4 ; align to word boundary

ARM UAN 0002A Copyright © 2011 ARM Limited. All rights reserved. 9
 Non-Confidential

Programmer Advice Notice ARM1176: Use of BLX (immediate) (760522)

 arm_1_bxpc bx pc ; change state
 nop ; padding
 arm
 arm_1 … ; original entry point

Otherwise, place the BX PC instruction at a different location, and follow it with a branch to
the target ARM routine:

 thumb
 bl arm_1_bxpc

 …

arm
arm_1 …

 …

 thumb
 align 4 ; align to word boundary
arm_1_bxpc bx pc ; change state
 nop ; padding
 arm
 b arm_1

If the Thumb BX PC can be placed immediately before the ARM routine, this workaround has
a code-size penalty of 4 bytes and an execution-time penalty of 5 cycles.

If the Thumb BX PC must be followed by an ARM branch to the ARM routine, this
workaround has a code-size penalty of 8 bytes and an execution-time penalty of 6 or 9 cycles,
depending on whether the ARM branch is predicted.

6.1.3 Align the ARM routine on an odd word
It might be possible to align the target routine on an odd word boundary. This generally
requires recompilation or reassembly of the source.

Using the ARM assembler:

 arm
 align 8,4
arm_1 …

If the routine is entered by fallthrough, make sure you define the section with the
CODEALIGN option introduced in RVCT 3.1, so that alignment padding uses NOP
instructions.

ARM UAN 0002A Copyright © 2011 ARM Limited. All rights reserved. 10
 Non-Confidential

Programmer Advice Notice ARM1176: Use of BLX (immediate) (760522)

7 Static Toolchain Developers

7.1 ARM Compiler Toolchain support
For details of workaround support in the ARM Compiler Toolchain, see the latest ARM
Compiler Toolchain documentation on the ARM website. The --no_blx_thumb_arm
switch provides this support, and is described in the ARM® Compiler toolchain Linker Reference.
This switch is supported in version 4.1p5 or later, of the ARM Compiler Toolchain. For earlier
versions, contact ARM support.

7.2 Detecting the problem in a static toolchain
The conditions for the ARM1176JZ-S and ARM1176JZF-S problem that can be detected by a
static toolchain are as follows. The problem can occur only when all of these conditions are
met:

Condition Description

3 The BLX (immediate) must be executed in Thumb state to switch to ARM
state

4 The BLX (immediate) must be either:
a. the target of a branch instruction
b. located at an address whose value modulo 32 is equal to 30 or 0

5 The target of the BLX (immediate) is a doubleword aligned address

6 The target of the BLX (immediate) is not an unconditional branch

Note: Conditions 1 and 2 are ARM internal designations that are not relevant to this
document.

7.3 Use of BLX instruction by toolchains
Software for execution on an ARM1176JZ-S or ARM1176JZF-S processor can contain only
ARM instructions, or a mixture of ARM and Thumb instructions.

To support mixed ARM and Thumb instructions, a toolchain must support state changes
between ARM and Thumb state. The ARM architecture provides a number of instructions that
change state, one of which is the BLX (immediate) instruction.

To safely use a BLX (immediate) instruction a toolchain must know:
1. The state of the caller.
2. The state of the callee.
3. The distance between the caller and the callee.

An object producer such as a compiler has information about:
1. The state of the caller.
2. The state of the callee, if it resides in the same source file.
3. The distance between the caller and the callee if the callee resides in the same ELF

section of the object file.

It is rare for a compiler to change state within a single object file. Instead of generating a BLX
instruction, the compiler generates a BL instruction with an appropriate relocation directive. A
linker can use the relocation directive to change a BL to a BLX if conditions permit this
change.

ARM UAN 0002A Copyright © 2011 ARM Limited. All rights reserved. 11
 Non-Confidential

Programmer Advice Notice ARM1176: Use of BLX (immediate) (760522)

This document assumes that a compiler encodes all function calls with a relocation directive.
The linker can then choose between the BL or BLX instruction. This assumption means a
linker can fix the problem without disassembling the image.

For toolchains that do not generate state change veneers at link time, see Procedure for
generating state change veneers on page 16.

7.3.1 Hidden BLX instructions
An assembler can generate a BLX instruction to change between ARM and Thumb
instructions within a single section. If this happens, whether a relocation directive makes the
BLX instruction visible to the linker is dependent on the assembler.

A compiler can produce a BLX instruction without a relocation directive when there is a state
change within an ELF section. However, ARM does not know any compilers that do this.

This document assumes that it is possible to hand-check assembly language for Thumb to
ARM BLX instructions that do not have a relocation directive.

A toolchain that generates many unrelocated BLX instructions might require the additional
step of disassembling the code to convert unrelocated BLX instructions to relocated BLX
instructions.

7.4 Workarounds
Workarounds for the problem involve modifying the code to remove one or more of the
preconditions for the problem. Toolchain developers can choose from the workarounds
described in this section. Each workaround has minimal impact on code size and application
performance.

7.4.1 Ensure Thumb BLX (immediate) targets are not doubleword aligned.
The problem can occur only if the target of a Thumb BLX (immediate) instruction is
doubleword aligned. Therefore, the problem can be fixed by ensuring that the target of any
Thumb BLX (immediate) instruction is not doubleword aligned.

ARM instructions must be at least word aligned. So in most programs alternate ARM
functions are doubleword aligned. There are a number of steps that a toolchain can make to
prevent doubleword alignment.

7.4.1.1 Compiler
The compiler places compiled code in sections. These sections have a required alignment that
the linker must follow when giving the section its final address. To ensure that an ARM
function is not doubleword aligned, the compiler must increase the alignment of each section
to at least doubleword alignment, and place all ARM code symbols so that they are not
doubleword aligned.

It is not always possible to apply this transformation. The programmer can request
doubleword or higher alignment for the address of the ARM function that the toolchain must
follow.

7.4.1.2 Assembler
There is no automatic fix that the assembler can make. You must manually apply the same
translation as the compiler.

7.4.1.3 Linker
A linker can automatically convert word-aligned sections to doubleword alignment. With the
addition of one word of padding at the start of the section, the linker can change the offset of
each instruction in the section. This means a linker can always transform a word-aligned

ARM UAN 0002A Copyright © 2011 ARM Limited. All rights reserved. 12
 Non-Confidential

Programmer Advice Notice ARM1176: Use of BLX (immediate) (760522)

section that contains only one ARM BLX target such that the ARM code symbol is not
doubleword aligned.

A linker can only modify the start position of a section in multiples of the original section
alignment. Therefore if the section containing the ARM code is already doubleword aligned,
the linker cannot change the doubleword alignment of any instructions within the section.

7.4.1.4 Libraries and third-party objects
A linker cannot guarantee the non-doubleword alignment of ARM BLX targets. Any binary-
only library code shipped with the toolchain must not have any instances of a doubleworld
aligned ARM BLX target.

There is no guaranteed solution for third-party objects that cannot be recompiled.

7.4.1.5 Recommendation
To use alignment changes alone, modifications are required in the compiler, linker, and
libraries. The workaround cannot fix third-party objects that cannot be recompiled. This
document recommends that you use this workaround only if the toolchain does not handle
state changes at link time.

7.4.2 Use ARM v4T interworking to change from Thumb to ARM state
The problem can be fixed by ensuring that Thumb BLX (immediate) instruction is not used.

A BLX (immediate) instruction cannot handle all the types of state transition that ELF for the
ARM Architecture requires. For example:

• the distance from source to target might exceed the range of the BLX instruction

• the source instruction might be a B instruction that cannot be transformed to a BLX
because of link register corruption.

Most toolchains already have support for Thumb to ARM transitions that do not involve a
BLX instruction.

The simplest possible change to a toolchain is to use one of the alternative interworking
transitions from Thumb to ARM. The smallest and fastest veneers that a toolchain can
generate are the Thumb to ARM inline veneer and the Thumb to ARM short veneer.

The following table shows example code for transforming all relocated BLX instructions to BL
instructions.

Original Replacement
$t ; Thumb state
 BLX arm_target
…
arm_target: ; Must be at offset 0
 ; from a Section start

$t ; Thumb state
 BL $Veneer$TA$I$$arm_target
 …
$Veneer$TA$I$$arm_target
 BX PC
 NOP
; Fall through
arm_target

$t ; Thumb state
 BLX arm_target
…
arm_target: ; Can be at any offset
 ; from a Section start
…

$t ; Thumb state
 BL $Veneer$TA$S$$arm_target
 …
$ VeneerTAS$$arm_target:
$t ; Thumb state
 BX PC
 NOP
$a ; ARM state
 B arm_target

ARM UAN 0002A Copyright © 2011 ARM Limited. All rights reserved. 13
 Non-Confidential

Programmer Advice Notice ARM1176: Use of BLX (immediate) (760522)

Transforming all relocated BLX instructions to BL instructions avoids the preconditions for the
problem. To minimize risk, this document recommends that modifications to toolchains that
are not in active development use this fix.

7.4.2.1 Impact of using ARM v4T interworking for Thumb to ARM state changes
Each BLX from a Thumb instruction to an ARM instruction must go through either an inline
or a short branch veneer. The performance impact of each varies. For example, an extra
instruction cache miss might occur because the veneer is not close to the target.

All Thumb callers in range of the veneer can share a veneer for an ARM target. In ideal
conditions, a linker can place the veneer within range of all of the original BLX instructions.

The following table shows the extra instructions required, the performance impact in cycles,
and the code size impact in bytes for an inline and short branch veneer.

Veneer Extra instructions executed Performance impact in cycles Code size impact in bytes

Inline BX PC 5-7 4

Short
branch

BX PC

B

5-7
1-4 depending on whether the branch is
predicted

8

7.4.3 Use a custom problem-avoiding veneer
Condition 6 for the problem to occur, given in Detecting the problem in a static toolchain, is
that the target of the BLX instruction is not an unconditional branch instruction. A toolchain
can use this condition to create an alternative state change veneer that makes use of BLX
safely.

The following table shows the original and replacement code.

Original Replacement
$t ; Thumb state
 BLX arm_target
 …
arm_target: ; Can be at any offset
 ; from a Section start
 …

$t ; Thumb state
 BLX $Veneer$AA$S$$arm_target
…
$Veneer$AA$S$$arm_target
 B arm_target
…
arm_target

7.4.3.1 Impact of using custom problem-avoiding veneer
The following table shows the extra instructions required, the performance impact in cycles,
and the code size impact in bytes for a custom veneer.

Veneer Extra instructions executed Performance impact in cycles Code size impact in
bytes

Custom B 1-4 depending on whether the branch
is predicted

4

The custom veneer is more efficient to use than the v4T interworking because it avoids
BX PC.

ARM UAN 0002A Copyright © 2011 ARM Limited. All rights reserved. 14
 Non-Confidential

Programmer Advice Notice ARM1176: Use of BLX (immediate) (760522)

7.4.4 Use a combination of alignment and veneer changes
Condition 5 for the problem to occur, given in Detecting the problem in a static toolchain, is
that the target of the BLX (immediate) instruction must be doubleword aligned. A linker can
use this condition, when making the decision to generate an interworking veneer, to avoid the
problem. There are two ways to do this:

1. If the linker can prove that the ARM target of a BLX instruction is not doubleword
aligned, then it can use the BLX (immediate) instruction as normal.

2. The linker can generate veneers in such a way that no BLX (immediate) instruction
branches to a doubleword aligned ARM target.

7.4.4.1 Prove that ARM target is not doubleword aligned
If the section that contains the ARM target is at least doubleword aligned and the ARM target
is not doubleword aligned in that section then the ARM target is not doubleword aligned. The
linker can use the BLX instruction as normal.

If all veneers that the linker can generate have a size that is a multiple of 8 bytes, and the
section addresses are fixed after veneer generation, then an ARM target that is not doubleword
aligned is not doubleword aligned after veneer generation. The linker can use the BLX
(immediate) instruction as normal.

7.4.4.2 Generate veneers so that no BLX instruction branches to a doubleword aligned target
With only word alignment of sections, it is not sufficient to test the address of the ARM target
to determine whether it is not doubleword aligned. Generated veneers must be added to the
image, and this can change the base address of sections. This can affect the doubleword
alignment of the ARM targets in the sections.

One way to avoid this problem is to iteratively convert BL instructions to BLX instructions in
multiple passes. If the veneers added in pass N cause some ARM targets to be doubleword
aligned, the linker must add new veneers on pass N + 1. The linker terminates the veneer
generation process when there are no remaining doubleword aligned ARM targets.

7.4.4.3 Impact of exploiting increased section alignment
A section with doubleword alignment must be placed at the start of a doubleword aligned
address. Given that sections contain word sized ARM instructions, on average 50% of these
sections require an extra word of padding to make them start at a doubleword aligned address.

A section that contains ARM code might contain a number of ARM targets of BLX
(immediate) instructions. On average, 50% of these ARM instructions are doubleword
aligned. Therefore by making the section alignment doubleword aligned, 50% of ARM targets
are not doubleword aligned.

In general, the linker can eliminate 50% of the veneers, for a cost of (0.5 * 4) bytes padding
for each ARM section with a BLX target.

7.4.4.4 Special case of one function per section
Most toolchains have an option to compile each function in its own section. The majority of
Thumb to ARM BLX instructions are function calls. Therefore, if each function is compiled in
its own section:

• The vast majority of Thumb to ARM BLX targets are at offset 0 from the start of the
section.

• There is only one ARM target in each section.

If the original section is only word aligned, the linker can add a word of padding to the start of
the section. This causes the ARM target to start at a word offset from the start of the section.

Almost all veneers can be avoided, for a small cost in padding for each section containing an
ARM target. This average cost is (0.5 * 4) bytes padding for the increased section alignment,
and 4 bytes padding to prevent the ARM target from being doubleword aligned.

ARM UAN 0002A Copyright © 2011 ARM Limited. All rights reserved. 15
 Non-Confidential

Programmer Advice Notice ARM1176: Use of BLX (immediate) (760522)

ARM UAN 0002A Copyright © 2011 ARM Limited. All rights reserved. 16
 Non-Confidential

7.4.5 Additional optimizations
7.4.5.1 BLX to branch target

Condition 6 for the problem to occur, given in Detecting the problem in a static toolchain, is
that the target of the BLX (immediate) instruction must not be an unconditional branch. If the
ARM target instruction is a direct or indirect branch, then the toolchain can generate a BLX
(immediate) instruction as normal. This applies to both workarounds.

7.4.5.2 Alignment of the Thumb BLX instruction
The problem is sensitive to the address of the BLX (immediate) instruction, providing that the
BLX instruction is not itself a target of a branch. In theory, a linker can exploit this. However,
doing so requires a more significant change than using the other workarounds. This subsection
describes the required change.

The BLX must be congruent to 0 or 30 modulo 32 bytes. To exploit this information, the
section alignment must be increased to 32. This requires, on average, the addition of 16 bytes
of padding to each section, to enforce the alignment constraints.

It is cheap for a linker to check that a BLX is a target of a relocatable branch. However, unlike
the BLX and BL instructions, the Thumb half-word unconditional and conditional branches do
not usually have relocations. This is because the small immediate prevents any useful kind of
redirection. A linker must disassemble the image to check for branch targets.

7.5 Procedure for generating state change veneers
This section contains a pseudocode description of the top level procedure for handling veneer
generating relocations, as described in ELF for the ARM Architecture. It shows how a
toolchain might use Veneer Generating Relocation Directives to identify and correct BLX
instructions, at the same time as generating state change veneers.

For Each Veneer Generating Relocation Directive

 Find Caller State

 Find Callee State

 Find Range between Caller and Callee

 If (State Change Required)

 If Call Relocation, BLX Available, range < call range

 Write BLX at Relocation Place

 Else

 Generate a range extension state change veneer

 Else if (range < relocation range)

 Generate a range extension veneer

	Use of BLX (immediate)
	1 Preface
	1.1 Intended audience
	1.2 Document status
	1.3 References

	2 Terms and abbreviations
	3 Introduction
	4 Problem description
	4.1 Processors affected
	4.2 Instruction sequences affected
	4.3 Example code
	4.3.1 Example of unsafe code
	4.3.2 Example of safe code

	5 OS Developers
	5.1 Dynamic linking
	5.1.1 ARM Linux style PLT sequences
	5.1.2 Symbian style PLT entries
	5.1.3 Other possible PLT entries

	6 Application Developers
	6.1 Workarounds
	6.1.1 BLX to an ARM branch instruction
	6.1.2 BL to a Thumb-to-ARM state-change instruction (BX PC)
	6.1.3 Align the ARM routine on an odd word

	7 Static Toolchain Developers
	7.1 ARM Compiler Toolchain support
	7.2 Detecting the problem in a static toolchain
	7.3 Use of BLX instruction by toolchains
	7.3.1 Hidden BLX instructions

	7.4 Workarounds
	7.4.1 Ensure Thumb BLX (immediate) targets are not doubleword aligned.
	7.4.1.1 Compiler
	7.4.1.2 Assembler
	7.4.1.3 Linker
	7.4.1.4 Libraries and third-party objects
	7.4.1.5 Recommendation

	7.4.2 Use ARM v4T interworking to change from Thumb to ARM state
	7.4.2.1 Impact of using ARM v4T interworking for Thumb to ARM state changes

	7.4.3 Use a custom problem-avoiding veneer
	7.4.3.1 Impact of using custom problem-avoiding veneer

	7.4.4 Use a combination of alignment and veneer changes
	7.4.4.1 Prove that ARM target is not doubleword aligned
	7.4.4.2 Generate veneers so that no BLX instruction branches to a doubleword aligned target
	7.4.4.3 Impact of exploiting increased section alignment
	7.4.4.4 Special case of one function per section

	7.4.5 Additional optimizations
	7.4.5.1 BLX to branch target
	7.4.5.2 Alignment of the Thumb BLX instruction

	7.5 Procedure for generating state change veneers

