
Thumb® 16-bit Instruction Set
Quick Reference Card

This card lists all Thumb instructions available on Thumb-capable processors earlier than ARM®v6T2. In addition, it lists all Thumb-2 16-bit instructions.
The instructions shown on this card are all 16-bit in Thumb-2, except where noted otherwise.
All registers are Lo (R0-R7) except where specified. Hi registers are R8-R15.

Key to Tables

§ See Table ARM architecture versions. <loreglist+LR> A comma-separated list of Lo registers. plus the LR, enclosed in braces, { and }.

<loreglist> A comma-separated list of Lo registers, enclosed in braces, { and }. <loreglist+PC> A comma-separated list of Lo registers. plus the PC, enclosed in braces, { and }.

Operation § Assembler Updates Action Notes
Move Immediate MOVS Rd, #<imm> N Z Rd := imm imm range 0-255.

Lo to Lo MOVS Rd, Rm N Z Rd := Rm Synonym of LSLS Rd, Rm, #0

Hi to Lo, Lo to Hi, Hi to Hi MOV Rd, Rm Rd := Rm Not Lo to Lo.

Any to Any 6 MOV Rd, Rm Rd := Rm Any register to any register.

Add Immediate 3 ADDS Rd, Rn, #<imm> N Z C V Rd := Rn + imm imm range 0-7.

All registers Lo ADDS Rd, Rn, Rm N Z C V Rd := Rn + Rm

Hi to Lo, Lo to Hi, Hi to Hi ADD Rd, Rd, Rm Rd := Rd + Rm Not Lo to Lo.

Any to Any T2 ADD Rd, Rd, Rm Rd := Rd + Rm Any register to any register.

Immediate 8 ADDS Rd, Rd, #<imm> N Z C V Rd := Rd + imm imm range 0-255.

With carry ADCS Rd, Rd, Rm N Z C V Rd := Rd + Rm + C-bit

Value to SP ADD SP, SP, #<imm> SP := SP + imm imm range 0-508 (word-aligned).

Form address from SP ADD Rd, SP, #<imm> Rd := SP + imm imm range 0-1020 (word-aligned).

Form address from PC ADR Rd, <label> Rd := label label range PC to PC+1020 (word-aligned).

Subtract Lo and Lo SUBS Rd, Rn, Rm N Z C V Rd := Rn – Rm

Immediate 3 SUBS Rd, Rn, #<imm> N Z C V Rd := Rn – imm imm range 0-7.

Immediate 8 SUBS Rd, Rd, #<imm> N Z C V Rd := Rd – imm imm range 0-255.

With carry SBCS Rd, Rd, Rm N Z C V Rd := Rd – Rm – NOT C-bit

Value from SP SUB SP, SP, #<imm> SP := SP – imm imm range 0-508 (word-aligned).

Negate RSBS Rd, Rn, #0 N Z C V Rd := – Rn Synonym: NEGS Rd, Rn

Multiply Multiply MULS Rd, Rm, Rd N Z * * Rd := Rm * Rd * C and V flags unpredictable in §4T,
unchanged in §5T and above

Compare CMP Rn, Rm N Z C V update APSR flags on Rn – Rm Can be Lo to Lo, Lo to Hi, Hi to Lo, or Hi to Hi.

Negative CMN Rn, Rm N Z C V update APSR flags on Rn + Rm

Immediate CMP Rn, #<imm> N Z C V update APSR flags on Rn – imm imm range 0-255.

Logical AND ANDS Rd, Rd, Rm N Z Rd := Rd AND Rm

Exclusive OR EORS Rd, Rd, Rm N Z Rd := Rd EOR Rm

OR ORRS Rd, Rd, Rm N Z Rd := Rd OR Rm

Bit clear BICS Rd, Rd, Rm N Z Rd := Rd AND NOT Rm

Move NOT MVNS Rd, Rd, Rm N Z Rd := NOT Rm

Test bits TST Rn, Rm N Z update APSR flags on Rn AND Rm

Shift/rotate Logical shift left LSLS Rd, Rm, #<shift> N Z C* Rd := Rm << shift Allowed shifts 0-31. * C flag unaffected if shift is 0.

LSLS Rd, Rd, Rs N Z C* Rd := Rd << Rs[7:0] * C flag unaffected if Rs[7:0] is 0.

Logical shift right LSRS Rd, Rm, #<shift> N Z C Rd := Rm >> shift Allowed shifts 1-32.

LSRS Rd, Rd, Rs N Z C* Rd := Rd >> Rs[7:0] * C flag unaffected if Rs[7:0] is 0.

Arithmetic shift right ASRS Rd, Rm, #<shift> N Z C Rd := Rm ASR shift Allowed shifts 1-32.

ASRS Rd, Rd, Rs N Z C* Rd := Rd ASR Rs[7:0] * C flag unaffected if Rs[7:0] is 0.

Rotate right RORS Rd, Rd, Rs N Z C* Rd := Rd ROR Rs[7:0] * C flag unaffected if Rs[7:0] is 0.

Thumb 16-bit Instruction Set
Quick Reference Card

Operation § Assembler Action Notes
Load with immediate offset, word LDR Rd, [Rn, #<imm>] Rd := [Rn + imm] imm range 0-124, multiple of 4.

halfword LDRH Rd, [Rn, #<imm>] Rd := ZeroExtend([Rn + imm][15:0]) Clears bits 31:16. imm range 0-62, even.

byte LDRB Rd, [Rn, #<imm>] Rd := ZeroExtend([Rn + imm][7:0]) Clears bits 31:8. imm range 0-31.

with register offset, word LDR Rd, [Rn, Rm] Rd := [Rn + Rm]

halfword LDRH Rd, [Rn, Rm] Rd := ZeroExtend([Rn + Rm][15:0]) Clears bits 31:16

signed halfword LDRSH Rd, [Rn, Rm] Rd := SignExtend([Rn + Rm][15:0]) Sets bits 31:16 to bit 15

byte LDRB Rd, [Rn, Rm] Rd := ZeroExtend([Rn + Rm][7:0]) Clears bits 31:8

signed byte LDRSB Rd, [Rn, Rm] Rd := SignExtend([Rn + Rm][7:0]) Sets bits 31:8 to bit 7

PC-relative LDR Rd, <label> Rd := [label] label range PC to PC+1020 (word-aligned).

SP-relative LDR Rd, [SP, #<imm>] Rd := [SP + imm] imm range 0-1020, multiple of 4.

Multiple, not including base LDM Rn!, <loreglist> Loads list of registers (not including Rn) Always updates base register, Increment After.

Multiple, including base LDM Rn, <loreglist> Loads list of registers (including Rn) Never updates base register, Increment After.

Store with immediate offset, word STR Rd, [Rn, #<imm>] [Rn + imm] := Rd imm range 0-124, multiple of 4.

halfword STRH Rd, [Rn, #<imm>] [Rn + imm][15:0] := Rd[15:0] Ignores Rd[31:16]. imm range 0-62, even.

byte STRB Rd, [Rn, #<imm>] [Rn + imm][7:0] := Rd[7:0] Ignores Rd[31:8]. imm range 0-31.

with register offset, word STR Rd, [Rn, Rm] [Rn + Rm] := Rd

halfword STRH Rd, [Rn, Rm] [Rn + Rm][15:0] := Rd[15:0] Ignores Rd[31:16]

byte STRB Rd, [Rn, Rm] [Rn + Rm][7:0] := Rd[7:0] Ignores Rd[31:8]

SP-relative, word STR Rd, [SP, #<imm>] [SP + imm] := Rd imm range 0-1020, multiple of 4.

Multiple STM Rn!, <loreglist> Stores list of registers Always updates base register, Increment After.

Push Push PUSH <loreglist> Push registers onto full descending stack

Push with link PUSH <loreglist+LR> Push LR and registers onto full descending stack

Pop Pop POP <loreglist> Pop registers from full descending stack

Pop and return 4T POP <loreglist+PC> Pop registers, branch to address loaded to PC

Pop and return with exchange 5T POP <loreglist+PC> Pop, branch, and change to ARM state if address[0] = 0

If-Then If-Then T2 IT{pattern} {cond} Makes up to four following instructions conditional,
according to pattern. pattern is a string of up to three
letters. Each letter can be T (Then) or E (Else).

The first instruction after IT has condition cond. The following
instructions have condition cond if the corresponding letter
is T, or the inverse of cond if the corresponding letter is E.

See Table Condition Field.

Branch Conditional branch B{cond} <label> If {cond} then PC := label label must be within – 252 to + 258 bytes of current instruction.
See Table Condition Field.

Compare, branch if (non) zero T2 CB{N}Z Rn,<label> If Rn {== | !=} 0 then PC := label label must be within +4 to +130 bytes of current instruction.

Unconditional branch B <label> PC := label label must be within ±2KB of current instruction.

Long branch with link BL <label> LR := address of next instruction, PC := label This is a 32-bit instruction.
label must be within ±4MB of current instruction (T2: ±16MB).

Branch and exchange BX Rm PC := Rm AND 0xFFFFFFFE Change to ARM state if Rm[0] = 0.

Branch with link and exchange 5T BLX <label> LR := address of next instruction, PC := label
Change to ARM

This is a 32-bit instruction.
label must be within ±4MB of current instruction (T2: ±16MB).

Branch with link and exchange 5T BLX Rm LR := address of next instruction,
PC := Rm AND 0xFFFFFFFE

Change to ARM state if Rm[0] = 0.

Extend Signed, halfword to word 6 SXTH Rd, Rm Rd[31:0] := SignExtend(Rm[15:0])

Signed, byte to word 6 SXTB Rd, Rm Rd[31:0] := SignExtend(Rm[7:0])

Unsigned, halfword to word 6 UXTH Rd, Rm Rd[31:0] := ZeroExtend(Rm[15:0])

Unsigned, byte to word 6 UXTB Rd, Rm Rd[31:0] := ZeroExtend(Rm[7:0])

Reverse Bytes in word 6 REV Rd, Rm Rd[31:24] := Rm[7:0], Rd[23:16] := Rm[15:8], Rd[15:8] := Rm[23:16], Rd[7:0] := Rm[31:24]

Bytes in both halfwords 6 REV16 Rd, Rm Rd[15:8] := Rm[7:0], Rd[7:0] := Rm[15:8], Rd[31:24] := Rm[23:16], Rd[23:16] := Rm[31:24]

Bytes in low halfword, sign extend 6 REVSH Rd, Rm Rd[15:8] := Rm[7:0], Rd[7:0] := Rm[15:8], Rd[31:16] := Rm[7] * &FFFF

www.arm.com

Thumb 16-bit Instruction Set
Quick Reference Card

Operation § Assembler Action Notes

Processor
state
change

Supervisor Call SVC <immed_8> Supervisor Call processor exception 8-bit immediate value encoded in instruction. Formerly SWI.

Change processor state 6 CPSID <iflags> Disable specified interrupts

6 CPSIE <iflags> Enable specified interrupts

Set endianness 6 SETEND <endianness> Sets endianness for loads and saves. <endianness> can be BE (Big Endian) or LE (Little Endian).

Breakpoint 5T BKPT <immed_8> Prefetch abort or enter debug state 8-bit immediate value encoded in instruction.

No Op No operation NOP None, might not even consume any time. Real NOP available in ARM v6K and above.

Hint Set event T2 SEV Signal event in multiprocessor system. Executes as NOP in Thumb-2. Functionally available in ARM v7.

Wait for event T2 WFE Wait for event, IRQ, FIQ, Imprecise abort, or Debug entry request. Executes as NOP in Thumb-2. Functionally available in ARM v7.

Wait for interrupt T2 WFI Wait for IRQ, FIQ, Imprecise abort, or Debug entry request. Executes as NOP in Thumb-2. Functionally available in ARM v7.

Yield T2 YIELD Yield control to alternative thread. Executes as NOP in Thumb-2. Functionally available in ARM v7.

Condition Field

Mnemonic Description In Thumb code for processors earlier than ARMv6T2, cond must not appear anywhere except
in Conditional Branch (B{cond}) instructions.

EQ Equal

NE Not equal

CS / HS Carry Set / Unsigned higher or same In Thumb-2 code, cond can appear in any of these instructions (except CBZ, CBNZ, CPSID,
CPSIE, IT, and SETEND).

The condition is encoded in a preceding IT instruction (except in the case of B{cond}
instructions).

If IT instructions are explicitly provided in the Assembly language source file, the
conditions in the instructions must match the corresponding IT instructions.

CC / LO Carry Clear / Unsigned lower

MI Negative

PL Positive or zero

VS Overflow

VC No overflow

HI Unsigned higher ARM architecture versions

LS Unsigned lower or same 4T All Thumb versions of ARM v4 and above.

GE Signed greater than or equal 5T All Thumb versions of ARM v5 and above.

LT Signed less than 6 All Thumb versions of ARM v6 and above.

GT Signed greater than T2 All Thumb-2 versions of ARM v6 and above.

LE Signed less than or equal

AL Always. Do not use in B{cond}

Proprietary Notice
Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited in the EU
and other countries, except as otherwise stated below in this proprietary notice. Other brands and names
mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the
copyright holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith.
However, all warranties implied or expressed, including but not limited to implied warranties of
merchantability, or fitness for purpose, are excluded.

This reference card is intended only to assist the reader in the use of the product. ARM Ltd shall not be
liable for any loss or damage arising from the use of any information in this reference card, or any error
or omission in such information, or any incorrect use of the product.

Document Number
ARM QRC 0006E

Change Log
Issue Date Change
A Nov 2004 First Release
B May 2005 RVCT 2.2 SP1
C March 2006 RVCT 3.0
D March 2007 RVCT 3.1
E Sept 2008 RVCT 4.0

