

Copyright © 2013-2014 ARM Limited. All rights reserved.

The ARM logo is a registered trademark of ARM Ltd.
All other trademarks are the property of their respective owners and are acknowledged

Page 1 of 9

Critical Interrupt Prioritization

Using interrupt routing and prioritization to improve
responsiveness for critical interrupts

Michael Williams September 2014

Problem statement
This paper addresses the case of using interrupt routing and prioritization to improve the responsiveness for critical

interrupts.

Figure 1 shows the multiple Exception levels, EL0 to EL3, and two Security states implemented by an ARMv8-A

[1] processor
1
. Software executing at higher Exception levels has more privilege than software executing at lower

Exception levels. EL0 is the least privileged Exception level. EL3 is the most privileged Exception level.

Secure App2Secure App1App2App1App2App1

Guest OS1 Guest OS2 Secure OS

Hypervisor

Secure monitor

EL0

EL1

EL2

EL3

Non-secure state Secure state

Figure 1: ARMv8-A Exception levels and Security states

The ARMv8-A processor only changes Exception level on taking or returning from an exception:

 An exception can never be taken to a lower Exception level.

 An exception return can never be to a higher Exception level.

1 Implementations can include fewer Exception levels. Four is the maximum. Only a single Security state is implemented if EL3 is not
implemented. The ARMv7-A [6] exception model is similar. In ARMv7, and in ARMv8-A when EL3 is using AArch32, the Secure OS occupies

EL3 alongside the Secure monitor, and there is no Secure EL1. Although this paper focuses on ARMv8-A systems, the principles can be applied

to ARMv7-A.

Copyright © 2013-2014 ARM Limited. All rights reserved.

The ARM logo is a registered trademark of ARM Ltd.
All other trademarks are the property of their respective owners and are acknowledged

Page 2 of 9

ARMv8-A is a RISC architecture that:

 Uses banked syndrome and exception link registers to report exceptions to software.

 Does not manage tasks or virtual machines in hardware using microcode.

 Does not allow the uncontrolled nesting of exception handlers at the same level of privilege when

executing in AArch64 state
2
.

To control when interrupts can be taken, ARMv8-A provides process state (PSTATE) interrupt masks. The PSTATE

interrupt masks prevent interrupts from being taken to the current Exception level. The masks are set:

 By hardware on taking any exception to protect the syndrome registers. Software must clear the masks after

saving the syndrome register values to memory.

 By software prior to an exception return to protect the syndrome registers.

 By software to prevent reentering critical regions of software that might be shared with interrupt handlers,

such as software that sets operating system locks.

As a result, the processor does not respond to interrupts targeting a given Exception level when:

 The interrupt is masked because software is executing in a critical region.

 Software is executing at a higher Exception level.

This unresponsiveness is a factor in determining the total interrupt latency at the processor interface.

Note: The total interrupt latency also includes the time taken from the interrupt being asserted by hardware,

through the interrupt controller recognizing, prioritizing, and delivering the interrupt to the processor, to the

processor terminating the current thread of execution and taking the interrupt. On complex systems with

many interrupts and out-of-order processors with many instructions in flight, this is finite but might be

substantial.

Figure 2 shows how interrupts are masked.

1 (disabled)

0 (enabled)

irq_save

(set mask)

irq_restore

(restore mask)

enable_irq

(clear mask)

enable_irq

(clear mask)

Lock Synchronous exception IRQ exception

write

IAR

write

EOI

PSTATE

IRQ mask

Interrupts
masked

Interrupts
masked

Interrupts
masked

Figure 2: Interrupt masking

How this unresponsiveness manifests itself
There are cases when software requires an interrupt that can be taken even when software is executing in a critical

region. For example:

Code profiling:

A time-based or event-based interrupt handler collects samples to statistically measure performance.

Maskable interrupts create blind spots in the profile: regions of code that cannot be profiled in this way.

Furthermore, any sample in a blind spot will be wrongly attributed to the code that unmasks the interrupt,

creating false hot spots.

2 When an exception is taken to an Exception level using AArch32, limited nesting of exceptions is permitted, but otherwise ARMv7-A and

ARMv8-A using AArch32 have the same constraints.

Copyright © 2013-2014 ARM Limited. All rights reserved.

The ARM logo is a registered trademark of ARM Ltd.
All other trademarks are the property of their respective owners and are acknowledged

Page 3 of 9

Kernel debug:

An interrupt breaks into code to execute a debugger. Maskable interrupts create blind spots in the code:

regions of code that cannot be debugged by the kernel debugger.

Watchdog:

A timer interrupt breaks into code to reset a watchdog timer. Maskable interrupts might delay the interrupt

being taken. Usually this is not an issue, because the purpose of the watchdog is to detect faults when both

the hardware and the software are responsive. If interrupts are stuck in the masked state, this is a faulty

state.

Error interrupts:

Error interrupts can be time critical, and delaying the interrupt causes errors to unnecessarily propagate.

Note: This is only a valid concern if there is some guaranteed low-latency delivery of the interrupt. This

is not usually true for interrupts, but might be the case for certain classes of error interrupt.

In these cases, the main issue is masking the interrupt at the current Exception level. The interrupt is not required to

be truly non-maskable, but it must not be masked often. These interrupts are typically handled outside of the main

operating system kernel interrupt handling code. This means that, for example, the interrupt handlers would not

access critical operating system locks. Therefore these interrupts can be permitted to interrupt critical regions in the

kernel.

First and second class interrupts
It is desirable to add a second source of interrupts for those tasks that must be handled even when the processor is

executing in critical software regions. There are a number of ways to achieve this in the ARM architecture.

Some of these approaches are discussed in the following sections:

 Using a second physical interrupt.

 Routing interrupts to a higher Exception level.

 Using interrupt priorities.

The section Failure modes describes mechanisms to detect and recover from the rare case when the system remains

unresponsive even when these approaches are employed.

Using a second physical interrupt

The ARM architecture defines three physical interrupt exceptions:

 SError interrupt.

— SError is an ARMv8 concept. ARMv7 has the similar concept of asynchronous external aborts.

 FIQ interrupt.

 IRQ interrupt.

ARMv7-A, and ARMv8-A using AArch32, allows nesting of physical interrupt handlers at an Exception level. That

is, FIQ and IRQ interrupts are handled in separate modes with banked registers and the processor does not set the

PSTATE FIQ interrupt mask on most exception entries.

However, AArch64 supports only a single exception handling mode at each Exception level. There is no register

banking within an Exception level, and all PSTATE interrupt masks are set on taking an exception, meaning

interrupts targeting the current Exception level are masked.

In addition, an interrupt controller, such as GIC-400 or GIC-500, can multiplex many different interrupt sources to

the FIQ and IRQ interrupts. Each interrupt source is assigned to a group:

 GIC-400, which implements GICv2 [2], has two interrupt groups:

— Group 0 interrupts, which are always Secure.

Copyright © 2013-2014 ARM Limited. All rights reserved.

The ARM logo is a registered trademark of ARM Ltd.
All other trademarks are the property of their respective owners and are acknowledged

Page 4 of 9

— Group 1 interrupts, which are always Non-secure.

 GIC-500, which implements GICv3 [3], has three interrupt groups:

— Group 0 interrupts, which are always secure.

— Secure Group 1 interrupts.

— Non-secure Group 1 interrupts.

Each group is mapped to either FIQ or IRQ interrupts by the GIC. SError interrupts are not handled by the GIC.

In an ARMv8-A system using GICv3:

 Group 1 interrupts for the current Security state are mapped to the IRQ interrupt. The IRQ interrupt is:

— Taken to the Secure OS at EL1, if the current Security state is Secure state and the processor is not

executing at EL3.

— Taken to either the Non-secure OS at EL1 or the hypervisor at EL2 if the current Security state is

Non-secure. The hypervisor decides which of these Exception levels physical IRQ interrupts are

taken to. If the interrupts are taken to EL2, the hypervisor schedules virtual interrupts for its guest

operating systems. In this case, the physical interrupts are never masked inside the guest OS, but

the virtual interrupts can be.

 Secure Group 0 interrupts, and Group 1 interrupts for the other Security state, are mapped to the FIQ

interrupt. The FIQ interrupt is taken to the Secure monitor at EL3. If the interrupt is a Group 1 interrupts

for the other Security state then the Secure monitor must switch context to the other Security state.

There is effectively only a single physical interrupt source for each layer of software:

 Group 0 interrupts for the Secure monitor.

 Secure Group 1 interrupts for the Secure OS.

 Non-secure Group 1 interrupts for the Non-secure hypervisor and all its guest operating systems.

Therefore a second physical interrupt source is not available.

Routing interrupts to a higher Exception level

One mechanism to allow critical regions to be interrupted is to route the interrupt to a higher Exception level. This is

recommended for handling system critical interrupts such as system watchdogs and for error handling.

However, for less critical interrupts, such as debugging, profiling and OS watchdogs, it is preferable to keep the

interrupt handling at the same Exception level, because:

 The software at different Exception levels is usually supplied by different vendors.

 The Exception levels might not share a common virtual address space.

However, an exception handler at a higher Exception level can triage the interrupt and, if necessary, delegate the

interrupt to the lower Exception level for handling. This is an asynchronous entry to the lower Exception level and

software might have masked interrupt at the lower Exception for good reason. Software can emulate an exception-

like entry using a software delegated exception model.

Software delegated exception model

A software delegated exception (SDE) is a software contract between two Exception levels (the delegator and the

surrogate) to delegate certain types of exception from the delegator to the surrogate, and as such has no explicit

support in the architecture.

To implement an SDE:

 The surrogate, using an HVC or SMC instruction, must request that the delegator delegates exceptions. The

surrogate can also revoke this request using a second HVC or SMC call. See [4] for the recommended SMC

calling convention.

 The surrogate and the delegator must agree a surrogate exception entry vector address. This is a virtual

address in the translation regime of the surrogate. Preferably, this is an offset from the vector base address

register (VBAR) for the surrogate:

— Delegated IRQ and FIQ interrupts are taken to the FIQ interrupt vector offset.

Copyright © 2013-2014 ARM Limited. All rights reserved.

The ARM logo is a registered trademark of ARM Ltd.
All other trademarks are the property of their respective owners and are acknowledged

Page 5 of 9

— Delegated SError interrupt are taken through the SError interrupt vector offset.

The SDE might be used for synchronous external aborts, which are also used by hardware to signal errors.

These are also delegated through the SError interrupt vector offset.

 The delegator configures the processor to route the delegated exception to itself. When the exception is

taken, the processor enters the delegator.

 The delegator triages the exception and decides whether to delegate it to the surrogate. To delegate the

exception, the delegator:

— Writes any necessary syndrome information for the exception in the syndrome registers of the

surrogate, that is, ELR_ELx, SPSR_ELx, and, if applicable, ESR_ELx.

— Executes an exception return instruction that changes to the surrogate Exception level and

branches to the appropriate exception entry vector.

 To signal the end of the exception handler to the delegator, the surrogate executes an SMC or HVC

instruction.

 The delegator is then responsible for returning to the point from which the exception was taken, if

applicable.

In addition, software must consider:

 What to do if a new exception is taken to the delegator while the delegator and surrogate are already

processing a delegated exception. For example, this might be considered a fatal double fault event.

 Whether a hypervisor supports multiple guest OS contexts, where each OS implements delegated exception

handling. For example, interrupts taken to a Secure monitor might be first delegated to the hypervisor

which in turn delegates them to the correct guest OS.

For a hypervisor, this provides two mechanisms for delegating interrupts:

 The HCR_EL2.{VSEI, VF, VI} mechanisms to delegate maskable interrupts. The guest OS can mask these

interrupts using the PSTATE interrupt masks.

 The SDE model to delegate unmaskable interrupts.

Note that interrupts routed to a higher Exception level are not masked by the PSTATE interrupt masks whilst

executing in the surrogate. This is an advantage over “non-maskable” interrupt schemes.

Using interrupt priorities

In addition to assigning interrupts to a group, a GIC can assign a priority value to each interrupt source. Although a

maximum of 256 priority levels are supported, implementations might have fewer levels. The minimum number of

levels available for Non-secure interrupts is 16.

In the GIC prioritization scheme, smaller numbers have higher priority. This means that the smaller the assigned

priority value, the higher the priority of the interrupt. Priority value 0 always indicates the highest possible interrupt

priority, and the lowest priority depends on the number of implemented priority levels.

The priorities work as follows:

 On activating an interrupt, the running priority of the CPU interface is set to the group priority of the

interrupt. The ICC_RPR_EL1 register is used to discover the running priority.

 Software can set a GIC priority mask to mask higher priority interrupts. The ICC_PMR_EL1 register is

used to set the GIC priority mask.

 The GIC will signal a pending interrupt only if both:

— Its priority is higher than the GIC priority mask for that CPU interface.

— Its group priority is higher than that of the running priority on the CPU interface.

The priority numbering is shared by interrupts across all groups. Only software executing in Secure state can assign

a physical priority value that is less than 128 to an interrupt
3
.

3 Non-secure software can write any value from 0 to 255, but hardware compresses this to the range 128 to 255. For more information, see [2, 3].

Copyright © 2013-2014 ARM Limited. All rights reserved.

The ARM logo is a registered trademark of ARM Ltd.
All other trademarks are the property of their respective owners and are acknowledged

Page 6 of 9

Software is not required to use the priority scheme. However, it can make use of priorities to create a second source

of interrupts by:

 Using a low priority level, such as 240, for all OS interrupts.

 Using a higher priority level, such as 226, for all other interrupts.

When entering critical regions, rather than setting the PSTATE interrupt mask, or leaving the mask set, software

uses the GIC priority mask to mask only the OS interrupts. This is shown in Figure 3.

0 (disabled)

240 (enabled)

irq_save

(set PMR)

irq_restore

(restore PMR)

restore

PMR

Lock Synchronous exception IRQ exception

226 (irq off)

read

IAR

write

EOI

set

PMR

clear

mask

PSTATE mask
set

Running
Priority level

Priority
Mask level

Effective GIC

priority mask

clear

mask

set

PMR

restore

PMR

Figure 3: Using interrupt priority masks

Note that the PSTATE interrupt masks are still set on taking an exception, and must be set by software before an

exception return. ARM recommends that software sets the GIC priority mask and clears the PSTATE interrupt mask

as soon as possible on taking an exception, and sets the PSTATE interrupt mask and clears the GIC priority mask as

late as possible before an exception return. This not only reduces the period when interrupts are masked, but also

reduces the possibility of leaving interrupts permanently masked as a result of a software fault.

With GICv3, software can alter the GIC priority mask by writing to the ICC_PMR_EL1 system register, as shown in

Example 1 below.

MRS X0,ICC_PMR_EL1 ;; Read current priority mask

MOV X1,#224

MSR ICC_PMR_EL1,X1 ;; Set new priority mask

... ;; Critical region code

MSR ICC_PMR_EL1,X0 ;; Restore priority mask

Example 1: Setting and restoring the interrupt priority mask around a critical region, GICv3

The write to ICC_PMR_EL1 is self-synchronizing. This is a useful as it means that no additional instruction

synchronization barrier is required to ensure the priority mask is set. Instructions for changing the PSTATE interrupt

mask also have this property

Setting the GIC priority mask can be conditional on the current GIC priority mask level. Whether this is a

worthwhile optimization is heavily dependent on the processor microarchitecture.

Additional considerations for Secure monitors and hypervisors

Only software executing in Secure state can:

 Assign a physical priority value that is less than 128 to an interrupt
3
.

 Set the GIC priority mask to a priority value that is less than 128.

This means software executing in Secure state controls which are the highest priority interrupts. For example:

 Use a medium priority level, such as 112, for all Secure monitor interrupts.

 Use a higher priority level, such as 96, for a second source of Secure monitor interrupts.

In Non-secure state, when physical interrupts are routed to a hypervisor which triages and delegates them to a guest

OS using virtual interrupts, the processor uses the virtual priority mask register (GICV_PMR) as the GIC priority

mask for virtual interrupts. GICV_PMR does not affect physical interrupts and writes to ICC_PMR_EL1 by a guest

OS update GICV_PMR.

Copyright © 2013-2014 ARM Limited. All rights reserved.

The ARM logo is a registered trademark of ARM Ltd.
All other trademarks are the property of their respective owners and are acknowledged

Page 7 of 9

Additional considerations for idle and power-down code

A pending interrupt masked by a PSTATE interrupt mask is a wake-up event for a WFI instruction. This allows

software to enter a low-power idle state with interrupts masked, and on assertion of an interrupt, restore some state

before processing the interrupt.

1 (disabled)

0 (enabled)

irq_save

(set mask)

irq_restore

(clear mask)

Save

IRQ asserted IRQ exception taken

IRQ mask

WFI

RestoreLow-power state

Wake-up

event

Figure 4: Interrupt masking during low-power state

However, an interrupt with a lower priority than the current GIC priority mask is not a wake-up event for a WFI

instruction. Care must be taken not to mask any potential wake-up events by entering the low-power state with a

raised priority mask.

Software must consider why it is masking interrupts when deciding whether to the GIC priority mask or the

PSTATE interrupt mask, as shown in Table 1.

Use case Reason for masking interrupts Action

Critical region. Avoid taking interrupts in non-reentrant code. Use GIC priority mask.

Low power state. Recover from low-power state before servicing interrupt. Use PSTATE interrupt mask.

Table 1: Reasons for masking interrupts

Power states are usually controlled at the highest privilege level, either through use of a power-state co-ordination

interface [5], or by trapping use of the WFE and WFI instructions by software at lower Exception levels. ARM

recommends use of a power-state co-ordination interface.

Failure modes

If the processor does not respond to the highest priority interrupt, for example a watchdog, the system might:

 Escalate the interrupt directly to a baseboard management controller (BMC) or system control processor

(SCP) with guaranteed interrupt response.

 Force a processor to halt execution by asserting SPIDEN and EDBGRQ and put the processor into a

special Debug state where it can be examined by the BMC or SCP.

Note: This requires a mechanism for the BMC or SCP to control the debug interface of the processor.

Copyright © 2013-2014 ARM Limited. All rights reserved.

The ARM logo is a registered trademark of ARM Ltd.
All other trademarks are the property of their respective owners and are acknowledged

Page 8 of 9

Summary
The ARMv8 hierarchy of Exception levels avoids the need to mask the most critical types of interrupt, such as

system errors in all software apart from the deepest, most trusted levels

A software delegated exception model is proposed that allows these exceptions to be returned to less privileged

software for handling.

Software can use the GIC priority mechanisms to provide a “not-often-masked” interrupt source for operations such

as debugging and profiling, and for error handling at the most trusted software levels. The priority masks allow these

interrupts to be taken when general OS interrupts are masked.

Compared to a non-maskable interrupt, there are still pieces of code where the interrupts are masked:

 On taking an exception

 Before return from an exception.

Architectures that support non-maskable interrupts might use microcode to manage the interrupt, including saving

live register state to a stack in memory. ARMv8—a RISC architecture—requires that software performs this task.

This software can be as validated and certified to a similar degree as microcode, giving similar outcomes for

reliability.

Bibliography

[1] ARM Limited, ARM® Architecture Reference Manual; ARMv8, for ARMv8-A architecture profile, Issue A.c

ed., 2013, 2014.

[2] ARM Limited, ARM® Generic Interrupt Controller; Architecture version 2.0, Issue B ed., 2008, 2011.

[3] ARM Limited, GIC Architecture Specification (version 3), 2014.

[4] ARM Limited, SMC Calling Convention, issue A ed., 2013.

[5] ARM Limited, Power State Coordination Interface (PSCI), 2013.

[6] ARM Limited, ARM® Architecture Reference Manual; ARMv7-A and ARMv7-R edition, Issue C.c ed., 1996-

1998, 2000, 2004-2012, 2014.

Copyright © 2013-2014 ARM Limited. All rights reserved.

The ARM logo is a registered trademark of ARM Ltd.
All other trademarks are the property of their respective owners and are acknowledged

Page 9 of 9

Appendix: Example GICv3 sequences for interrupt prioritization

Entry to a critical region (“irq_save”)

 MRS X0,ICC_PMR_EL1 ;; Read current priority mask

 MOV X1,#224

 MSR ICC_PMR_EL1,X1 ;; Set new priority mask

Exit from a critical region (“irq_restore”)

 MSR ICC_PMR_EL1,X0 ;; Restore priority mask

Synchronous exception entry

 SUB SP,SP,#48 ;; Make a frame on the stack

 STP X0,X1,[SP,#32]

 MRS X0,ELR_EL1 ;; Exception Link Register

 MRS X1,SPSR_EL1 ;; Saved Program Status Register

 STP X0,X1,[SP,#16]

 MRS X0,ESR_EL1 ;; Exception Syndrome Register

 MRS X1,FAR_EL1 ;; Fault Address Register

 STP X0,X1,[SP,#0]

 MOV X0,#224

 MSR ICC_PMR_EL1,X0 ;; Priority Mask Register

 MSR DAIFClr,#0xF ;; Unmask interrupts

Asynchronous exception entry

 SUB SP,SP,#32 ;; Make a frame on the stack

 STP X0,X1,[SP,#16]

 MRS X0,ELR_EL1 ;; Exception Link Register

 MRS X1,SPSR_EL1 ;; Saved Program Status Register

 STP X0,X1,[SP,#0]

 MRS X0,ICC_IAR1_EL1 ;; Interrupt Acknowledge Register

 ISB

 MRS X1,ICC_RPR_EL1 ;; Running Priority Register

 CMP X1,#240

 BLT HighPriorityIRQVector

 MSR DAIFClr,#0xF ;; Unmask interrupts

	Critical Interrupt Prioritization
	Using interrupt routing and prioritization to improve responsiveness for critical interrupts
	Michael Williams September 2014
	Problem statement
	How this unresponsiveness manifests itself
	Code profiling:
	Kernel debug:
	Watchdog:
	Error interrupts:

	First and second class interrupts
	Using a second physical interrupt
	Routing interrupts to a higher Exception level
	Software delegated exception model

	Using interrupt priorities
	Additional considerations for Secure monitors and hypervisors
	Additional considerations for idle and power-down code

	Failure modes

	Summary
	Bibliography
	Appendix: Example GICv3 sequences for interrupt prioritization
	Entry to a critical region (“irq_save”)
	Exit from a critical region (“irq_restore”)
	Synchronous exception entry
	Asynchronous exception entry

