
ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 1 of 48

ARM® Debug Interface v5
Architecture Specification

ADIv5.1 Supplement
Document number: DSA09-PRDC-008772 1.0

Date of Issue: 17 August, 2009

Author: ARM Limited

Proprietary notice
This ARM Architecture Reference Manual is protected by copyright and the practice or implementation of the
information herein may be protected by one or more patents or pending applications. No part of this ARM
Architecture Reference Manual may be reproduced in any form by any means without the express prior written
permission of ARM. No license, express or implied, by estoppel or otherwise to any intellectual property
rights is granted by this ARM Architecture Reference Manual.

Your access to the information in this ARM Architecture Reference Manual is conditional upon your acceptance
that you will not use or permit others to use the information for the purposes of determining whether
implementations of the ARM architecture infringe any third party patents.

This ARM Architecture Reference Manual is provided “as is”. ARM makes no representations or warranties,
either express or implied, included but not limited to, warranties of merchantability, fitness for a particular
purpose, or non-infringement, that the content of this ARM Architecture Reference Manual is suitable for any
particular purpose or that any practice or implementation of the contents of the ARM Architecture Reference
Manual will not infringe any third party patents, copyrights, trade secrets, or other rights.

This ARM Architecture Reference Manual may include technical inaccuracies or typographical errors.

To the extent not prohibited by law, in no event will ARM be liable for any damages, including without limitation
any direct loss, lost revenue, lost profits or data, special, indirect, consequential, incidental or punitive damages,
however caused and regardless of the theory of liability, arising out of or related to any furnishing, practicing,
modifying or any use of this ARM Architecture Reference Manual, even if ARM has been advised of the
possibility of such damages.

Words and logos marked with ® or TM are registered trademarks or trademarks of ARM Limited, except as
otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the
trademarks of their respective owners.

Copyright © 2009 ARM Limited

110 Fulbourn Road Cambridge, England CB1 9NJ

Restricted Rights Legend: Use, duplication or disclosure by the United States Government is subject to the
restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

This document is Non-Confidential but any disclosure by you is subject to you providing notice to and
the acceptance by the recipient of, the conditions set out above.

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 2 of 48

Contents

1 ABOUT THIS DOCUMENT ..5

1.1 References... 5

1.2 Terms and abbreviations... 5

1.3 Introduction ... 7

2 ADIV5.0 ERRATA AND CLARIFICATIONS...8

2.1 Introduction ... 8

2.2 Erratum: ADIv5 gives wrong IDCODE value for SW-DPs (451413) .. 8

2.3 Erratum: Emulation of debug reset request (497727) .. 8

2.4 Erratum: References to asynchronous Serial Wire protocol (513764).. 8

2.5 Erratum: JTAG-DP and SW-DP responses when Sticky Overrun Detect is enabled (604567) 8

2.6 Erratum: Host must drive the Park bit HIGH (618567).. 9

2.7 Erratum: Line reset does not have to be detected asynchronously (625117)....................................... 9

2.8 Erratum: FAULT response to CTRL/STAT writes in SW-DP (628016) ... 9

2.9 Erratum: FAULT and WAIT responses to DLCR reads in SW-DP (628066) ..10

2.10 Erratum: Use of DP RDBUFF by Serial Wire debug ports (DE 643221) ..10

2.11 Erratum: Incorrect description of JTAG-DP TAP state machine (674167)..10

2.12 Clarification: UNPREDICTABLE use of transaction counter and transaction mode (414544)...............10

2.13 Clarification: Use of PWRUPREQ signals (424966) ...11

2.14 Clarification: Use of the RESEND register (DE 618517) ..12

2.15 Clarification: AP accesses following a DAP abort (DE 618519) ..12

2.16 Clarification: ReadResult following IDCODE and ABORT scans (DE 618570)12

2.17 Clarification: Unaligned access to Banked Data registers (DE 643218) ...12

3 ADIV5.1 UPDATES ..13

3.1 Introduction ..13

3.2 Debug Port architecture versions..13

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 3 of 48

3.3 The identification model for Access Ports ..13

3.4 Multiple Protocol Interoperability ..14

3.5 Multi-drop Serial Wire protocol extensions...14

3.6 Minimal Debug Port (MINDP) extensions ..15

3.7 Serial Wire protocol programmable turnaround period..15

3.8 Required support of Memory Access Port (MEM-AP) packed transfers ..16

3.9 Scope of ADIv5.1 ..16

4 POWER-UP AND RESET CONTROLS..16

4.1 Clarification of PWRUPREQ/ACK signals ...16

4.2 Limitations of CDBGRSTREQ/CDBGRSTACK...18

5 DEBUG PORT ARCHITECTURE VERSIONS ...19

5.1 The JTAG TAP ID Register, IDCODE..19

5.2 DP architecture version 0...19

5.3 DP architecture version 1...21

5.4 DP architecture version 2...26

6 MULTIPLE PROTOCOL INTEROPERABILITY ...30

6.1 The Serial Wire/JTAG Debug Port (SWJ-DP)...30

6.2 Serial Wire and JTAG select mechanism ..31

6.3 Dormant operation..33

6.4 Restriction on switching ..39

7 SERIAL WIRE PROTOCOL VERSION 2 ...40

7.1 Introduction to multi-drop ..40

7.2 Limitations of multi-drop..40

7.3 Target selection protocol ...40

7.4 Programmer's model ..41

8 APPENDIX: SERIAL WIRE PROTOCOL...42

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 4 of 48

8.1 Introduction ..42

8.2 Clocking..42

8.3 Overview of Serial Wire interface...42

9 APPENDIX: STANDARD MEMORY ACCESS PORT DEFINITIONS................................45

9.1 Introduction ..45

9.2 AMBA AHB..45

9.3 AMBA APB..46

10 APPENDIX: CROSS-OVER WITH THE ARM® ARCHITECTURE47

10.1 Introduction...47

10.2 ARMv6-M ...47

10.3 ARMv7-M ...47

10.4 ARMv7-A and ARMv7-R ..47

10.5 Summary ...48

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 5 of 48

1 ABOUT THIS DOCUMENT

1.1 References

This document refers to the following documents.

Doc No Author Title

ARM DDI 0211 ARM ARM1136JF-S™ and ARM1136J-S™ Technical Reference Manual*

ARM DDI 0314 ARM CoreSight™ Components Technical Reference Manual*

ARM DDI 0406 ARM ARM® Architecture Reference Manual ARM®v7-A and ARM®v7-R edition*

ARM IHI 0011 ARM AMBA™ Specification (Rev 2.0) *

ARM IHI 0024 ARM AMBA™ 3 APB Protocol Specification*

ARM IHI 0031 ARM ARM® Debug Interface v5 Architecture Specification*

ARM IHI 0033 ARM AMBA® 3 AHB-Lite Protocol Specification*

IEEE 1149.1-2001 IEEE IEEE Standard Test Access Port and Boundary Scan Architecture

* These documents can be accessed through the ARM website at http://infocenter.arm.com/. For further
information, contact ARM Limited.

1.2 Terms and abbreviations

This document uses the following terms and abbreviations.

Data Link
The layer of an ADIv5 implementation that provides the functional and procedural means to transfer data
between the external debugger and the Debug Port. ADIv5 defines two Data Link layers, one based on
the IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture, widely referred to as JTAG,
and one based on the ARM Serial Wire protocol interface.

DATA LINK DEFINED
Means that the behavior is not defined by the base architecture, but should be defined and documented
by individual Data Link layers of the architecture.

IMPLEMENTATION DEFINED
Means that the behavior is not architecturally defined, but should be defined and documented by
individual implementations.

RAZ/WI fields
 Read-As-Zero, Writes Ignored.

In any implementation, the bit must read as 0 (or all 0s for a bit field), and writes to the field must be
ignored. Software can rely on the field reading as zero, and on the write being ignored.

Read-As-One fields (RAO)
In any implementation, the bit must read as 1, or all 1s for a bit field.

Read-As-Zero fields (RAZ)
In any implementation, the bit must read as 0, or all 0s for a bit field.

Should-Be-One fields (SBO)
Software should write as 1, or all 1s for a bit field. Values other than 1 produce UNPREDICTABLE results.

Should-Be-Zero fields (SBZ)
Software should write as 0, or all 0s for a bit field. Values other than 0 produce UNPREDICTABLE results.

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 6 of 48

Should-Be-Zero-or-Preserved fields (SBZP)
Must be written as 0, or all 0s for a bit field, by software if the value is being written without having been
previously read, or if the register has not been initialized. Where the register was previously read on the
same processor, since the processor was last reset, the value in the field should be preserved by writing
the value that was previously read.

Hardware must ignore writes to these fields.

If a value is written to the field that is neither 0 (or all 0s for a bit field), nor a value previously read for the
same field on the same processor, the result is UNPREDICTABLE.

UNK
 Is an abbreviation indicating that software must treat a field as containing an UNKNOWN value.

In any implementation, the bit must read as 0, or all 0s for a bit field. Software must not rely on the field
reading as zero.

UNK/SBZP
UNKNOWN on reads, Should-Be-Zero-or-Preserved on writes.

In any implementation, the bit must read as zero, or all 0s for a bit field, and writes to the field must be
ignored. Software must not rely on the bit reading as zero, or all 0s for a bit field, and must use an SBZP
policy to write to the field.

UNKNOWN
An UNKNOWN value does not contain valid data, and can vary from moment to moment, and
implementation to implementation. An UNKNOWN value must not be a security hole.

UNKNOWN values must not be documented or promoted as having a defined value or effect.

UNPREDICTABLE
 Means the behavior cannot be relied upon. UNPREDICTABLE behavior must not represent security holes.

UNPREDICTABLE behavior must not halt or hang the device, or any parts of the system. UNPREDICTABLE

behopavior must not be documented or promoted as having a defined effect.

Note

In the ARM® Debug Interface v5 Architecture Specification, UNPREDICTABLE was also used to mean an
UNKNOWN value.

Write-One-To-Clear bits (W1C)
Writing a 1 to the bit clears it to zero. Writing a 0 to the bit has no effect.

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 7 of 48

1.3 Introduction
This document is an update to the ARM® Debug Interface v5 Architecture Specification. It includes errata and
new features for ADIv5.

Those new features represent a minor revision of the architecture specification, and hence the architecture
version number is v5.1. The new features are backwards compatible with v5.0; the version documented by the
ARM® Debug Interface v5 Architecture Specification. The terms ARM Debug Interface v5 and ADIv5 refer to the
major revision of ADI, that is, to v5.0, v5.1 or any future minor revision of ADIv5.

Section 2, ADIv5.0 Errata and Clarifications, starting on page 8, describes each of the errata and clarifications in
turn.

Section 3, ADIv5.1 Updates, starting on page 13, describes each of the new features in turn.

Sections 4, 5, 6, and 7 give more detailed information for some of the errata, clarifications and updates.

The final sections are new appendices to the ARM® Debug Interface v5 Architecture Specification. The
information provided is not architectural and hence not part of ADIv5, but is nevertheless useful reference material
for implementations and users of ADIv5.

Section 8, Appendix: Serial Wire Protocol starting on page 42 provides more background information on the Serial
Wire protocol that is required for compatibility with Serial Wire protocol implementations. The Serial Wire protocol
was previously described in the CoreSight™ Components Technical Reference Manual.

Section 9, Appendix: Standard Memory Access Port Definitions starting on page 45 provides reference material
for standard implementations of Memory Access Ports.

Section 10, Appendix: Cross-over with the ARM® Architecture starting on page 47 provides detail of how the
ADIv5 specification should be used when selecting or implementing Debug Access Ports for each of a variety of
ARM® architecture variants.

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 8 of 48

2 ADIV5.0 ERRATA AND CLARIFICATIONS

2.1 Introduction
This section corrects errata in the ARM® Debug Interface v5 Architecture Specification, and also provides some
clarifications where the ARM® Debug Interface v5 Architecture Specification might be ambiguous.

Please use the six-digit reference number provided in each section in any related correspondence with ARM
Limited.

2.2 Erratum: ADIv5 gives wrong IDCODE value for SW-DPs (451413)

The ARM® Debug Interface v5 Architecture Specification gives the required value for the Part Number field,
PARTNO: IDCODE[27:12], for an ARM implementation of a Serial Wire Debug Port (SW-DP) as 0xBA10. The
correct value for current ARM implementations of Serial Wire protocol version 1 is 0xBA01.

In this manual, the SW-DP IDCODE register is renamed DPIDR. See Debug Port architecture versions on
page 13. Also see Serial Wire Protocol Version 2 on page 40.

2.3 Erratum: Emulation of debug reset request (497727)

Table 6-7 of the ARM® Debug Interface v5 Architecture Specification directs the reader to section 3.4.4 for details
of how to emulate implementation of CDBGRSTACK and CDBGRSTREQ. Section 3.4.4 does not have that
information.

The correct behavior is that if the debug reset control is not supported then:
• CDBGRSTACK is RAZ
• it is IMPLEMENTATION DEFINED whether CDBGRSTREQ is read/write or RAZ.

That is, in a standard implementation, CDBGRSTACK can be tied LOW. Whether, in such a system,
CDBGRSTREQ registers values written to it is IMPLEMENTATION DEFINED.

See also Limitations of CDBGRSTREQ/CDBGRSTACK on page 18.

2.4 Erratum: References to asynchronous Serial Wire protocol (513764)

Several sections of the ARM® Debug Interface v5 Architecture Specification, including sections 2.2.2, 5.1, 5.2,
5.3, 5.4.6 and 6.2.6, refer to support for an asynchronous mode of operation for the CoreSight Serial Wire
interface.

The Serial Wire interface does not support an asynchronous mode of operation.

Bits [7:6] of the Data Link Control Register (DLCR, formerly the Wire Control Register or WCR) are reserved, read
as 0b01 and ignore writes. Bits [2:0] of the DLCR are reserved, RAZ/WI.

2.5 Erratum: JTAG-DP and SW-DP responses when Sticky Overrun Detect
is enabled (604567)

Section 3.1.2 of the ARM® Debug Interface v5 Architecture Specification states that when Sticky Overrun Detect
is enabled in the Debug Port CTRL/STAT register, the only permitted responses to transactions are OK/FAULT on
the JTAG-DP and OK on the SW-DP.

These responses should be described not as “permitted responses”, as this implies is that they are the only
responses generated in this state. However, the section goes on to correctly describe that when other responses
are generated, the STICKYORUN flag is set. That is, all responses can be generated in overrun detection mode.

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 9 of 48

That is, in overrun detection mode, the Sticky Overrun flag STICKYORUN in the Debug Port (DP) Control/Status
register is set to 1 if the response to any transaction is other than:

• OK/FAULT on the JTAG-DP
• OK on the SW-DP.

As the JTAG-DP and SW-DP protocols differ, the exact behavior is DATA LINK DEFINED:

For JTAG-DP:
The response is WAIT so long as the previous Access Port (AP) transaction remains not completed, and
OK/FAULT thereafter. This is correctly described in the section Sticky overrun behavior on DPACC and
APACC accesses in section 4.4.3 of the ARM® Debug Interface v5 Architecture Specification.

For SW-DP:
The first response to a transaction when a previous AP transaction has not completed is WAIT. Following
responses will be FAULT, since the STICKYORUN bit is set to 1. This is correctly described in the
section 5.4.5 of the ARM® Debug Interface v5 Architecture Specification.

Furthermore, when Sticky Overrun Detect is enabled, the STICKYORUN bit is also set to 1:
— when the DP issues a FAULT response
— following a protocol error.

2.6 Erratum: Host must drive the Park bit HIGH (618567)
Section 5.3.1 of the ARM® Debug Interface v5 Architecture Specification states that the host does not drive the
line for the Park bit of Serial Wire protocol, instead relying on the line being pulled HIGH by the Serial Wire
interface.

The host must in fact actively drive the line HIGH to park it before tri-stating the line for the turnaround period. This
ensures the line is HIGH and is read as HIGH by the target. This is required as the pull-up on the Serial Wire
interface is weak.

Section 5.4.6 of the ARM® Debug Interface v5 Architecture Specification further implies that a protocol error only
occurs on incorrect parity in a command header. The target will in fact signal protocol error if any of the Parity,
Stop or Park bits is not driven with the correct value.

2.7 Erratum: Line reset does not have to be detected asynchronously
(625117)
Section 5.4.1 of the ARM® Debug Interface v5 Architecture Specification states that the serial protocol requires
that any run of 50 consecutive 1s on the data input is detected as a line reset, regardless of the state of the
protocol.

This is incorrect. The target may not detect a line reset if it is not in the correct state. It must detect a sequence of
50 consecutive 1s as a line reset if it receives the sequence when it is expecting the initial Start bit of a packet
header.

However, regardless of what state the target is in, it will at least detect the sequence as a protocol error, as it will
interpret at least one bit of the sequence as an invalid Stop bit in a packet header.

Having detected a protocol error, the target may respond to the DP DPIDR register read that follows the line reset
sequence. However, if the target does not respond, the debugger must retry the line reset sequence.

For more information, see Line reset on page 43.

2.8 Erratum: FAULT response to CTRL/STAT writes in SW-DP (628016)
Table 5-3 of the ARM® Debug Interface v5 Architecture Specification correctly shows that SW-DP must issue a
FAULT response to a write to the CTRL/STAT register if any sticky flag is set.

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 10 of 48

However, section 5.4.4 of the ARM® Debug Interface v5 Architecture Specification states that a SW-DP must not
issue a FAULT response to an access to the IDCODE, CTRL/STAT or ABORT registers. The implication that this
includes writes to CTRL/STAT is incorrect. An SW-DP must only not issue a FAULT response for:

• reads of the IDCODE register (the IDCODE register is read-only)
• writes to the ABORT register (the ABORT register is write-only)
• reads of CTRL/STAT.

2.9 Erratum: FAULT and WAIT responses to DLCR reads in SW-DP (628066)
Sections 5.4.3 and 5.4.4 of the ARM® Debug Interface v5 Architecture Specification list the SW-DP register
accesses that must never return WAIT or FAULT responses.

However, Table 5-1 implies that reads of DLCR (formerly known as the WCR) will also return a result immediately
and never respond with FAULT. This is incorrect. Reads of DLCR return a FAULT response if a sticky error flag is
set.

Whether reads of a DLCR return a WAIT response if the AP is not ready is IMPLEMENTATION DEFINED. From Debug
Port (DP) architecture version 2, reads of DLCR return a WAIT response if the AP is not ready.

2.10 Erratum: Use of DP RDBUFF by Serial Wire debug ports (DE 643221)
Sections 5.4.2 and 6.2.5 of the ARM® Debug Interface v5 Architecture Specification states that, for SW-DP, to
obtain the result of an AP register read the next access must be either a second AP register read or a read of the
DP Read Buffer (RDBUFF) register.

This is incorrect. To allow the debugger to recover from line errors, the next transaction after an AP register read
can be any DP register read. If the next transaction is a DP register read other than a read of RDBUFF then a
following AP register read or read of RDBUFF will return the result of the first AP register read.

However, if the next transaction following an AP register read is an AP register write or a DP register write then
the result of the first AP register read is effectively lost, as any following AP register read or read of RDBUFF will
return an UNKNOWN value.

2.11 Erratum: Incorrect description of JTAG-DP TAP state machine
(674167)
Section 4.2.3 of the ARM® Debug Interface v5 Architecture Specification states that for the transition from the
Capture-IR state to the Shift-IR state, the instruction register scan chain advances one bit.

The IEEE 1149.1 JTAG specification, upon which the JTAG-DP is closely based, requires that the scan chain
advances for each rising edge of TCK whilst in the Shift state. That is, the scan chain does not advance for the
transition from Capture-IR to Shift-IR. The same is true for data register scan chains on transitions from Capture-
DR to Shift-DR.

For more information, see the IEEE Standard Test Access Port and Boundary Scan Architecture.

2.12 Clarification: UNPREDICTABLE use of transaction counter and
transaction mode (414544)

An Access Port (AP) is permitted to define that accesses to certain registers in the AP are UNPREDICTABLE when
the Debug Port’s (DP) Transaction Counter field, TRNCNT, CTRL/STAT[23:12] field is non-zero.

An AP is also permitted to define that the Sticky Compare flag, STICKYCMP, CTRL/STAT[4] is set to an UNKNOWN
value in response to an access made to certain registers in the AP when the Transfer Mode field, TRNMODE,
CTRL/STAT[3:2] is any value other than 0b00 (Normal operation), regardless of the value in the register.

In general, both UNPREDICTABLE behaviors are expected to be defined for any register that does not change its
value other than in response to an APACC or DPACC access.

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 11 of 48

Table 1 lists the register accesses defined by the ARM Debug Interface v5 to:
• be UNPREDICTABLE when the TRNCNT field is not zero
• set the STICKYCMP flag to an UNKNOWN value when the TRNMODE field is not zero.

Access Port type Register being accessed

Any Identification Register (IDR)

 Any reserved register location

Memory Access Port (MEM-AP) Control/Status Word (CSW)

 Transfer Address Register (TAR)

 ROM Table Base Register (BASE)

 Configuration Register (CFG)

JTAG Access Port (JTAG-AP) Control/Status Word (CSW)

 Port Select Register (PSEL)

Table 1: UNPREDICTABLE register accesses

If the DP SELECT register selects a non-existent AP, then register accesses:
• are UNPREDICTABLE when the TRNCNT field is not zero
• set the STICKYCMP flag to an UNKNOWN value when the TRNMODE field is not zero.

See also Minimal Debug Port (MINDP) extensions on page 15.

2.13 Clarification: Use of PWRUPREQ signals (424966)

CSYSPWRUPREQ and CDBGPWRUPREQ, bits [30,28] of the Debug Port CTRL/STAT register, can
independently request power up of debug functions in the debug and system power domains.

The system power domain includes the debug power domain. CDBGPWRUPREQ must be set to 1 whenever
CSYSPWRUPREQ is set to 1. Setting bits [30,28] to 0b10 gives UNPREDICTABLE system behavior.

Given this, the example circuit shown in Figure 3-5 of the ARM® Debug Interface v5 Architecture Specification
can be replaced with the simpler circuit shown in Figure 1.

Figure 1: Signal generation for single power domain

This manual also:
• gives clarification of the roles of these power-up request bits
• describes some limitations of these power-up request bits.

For more details, see Power-up and Reset Controls on page 16, which clarifies the descriptions of the power-up
request/acknowledge signals, and replaces parts of the descriptions in section 3.4 of the ARM® Debug Interface
v5 Architecture Specification.

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 12 of 48

2.14 Clarification: Use of the RESEND register (DE 618517)

ARM recommends that debuggers only access the SW-DP RESEND register when a failed read has been
indicated by the SW-DP, and not at other times. This is because an implementation is permitted to treat reads of
RESEND as a protocol error in the case where it cannot resend the information.

2.15 Clarification: AP accesses following a DAP abort (DE 618519)
Section 6.2.1 of the ARM® Debug Interface v5 Architecture Specification describes the behavior following a DAP
abort. The section states that, following a DAP abort:

• new transactions can be accepted by the DP
• an AP access to the AP that was aborted might return additional WAIT responses
• other APs can be accessed.

This is ambiguous, since the WAIT response is generated by the DP and is the DP’s mechanism to not accept a
new transaction. Section 6.2.1 should state that, following a DAP abort:

• An AP access to the AP that was aborted might not be accepted by the DP, with the DP returning a WAIT
response.

• A DP access or an AP access to any other AP will be accepted by the DP. This includes AP accesses to
non-existent APs, which are defined to behave as RAZ/WI.

2.16 Clarification: ReadResult following IDCODE and ABORT scans
(DE 618570)

On entering the Capture-DR state with the JTAG-DP instruction register (IR) set to the APACC or DPACC
instructions, the value captured for ReadResult is always UNKNOWN if either:

• the most recent DR scan was not made with IR set to one of the DPACC, APACC or BYPASS instructions
• there has been no DR scan since leaving the Test-Logic-Reset state.

2.17 Clarification: Unaligned access to Banked Data registers (DE 643218)
Section 8.1.3 of the ARM® Debug Interface v5 Architecture Specification requires that accesses to a MEM-AP’s
BD0 to BD3 access addresses starting at the address TAR[31:4].

The description in section 8.1.3 should further state that the value in TAR[3:0] is ignored in constructing the
access address for a banked register transfer, and:

• bits [3:2] of the access address depend solely on which of the four banked data registers is being
accessed.

• bits [1:0] of the access address will always be zero.

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 13 of 48

3 ADIV5.1 UPDATES

3.1 Introduction

This section describes the main changes in ADIv5 between version 5.0 and version 5.1.

3.2 Debug Port architecture versions
The ARM® Debug Interface v5 Architecture Specification describes two variants of the Debug Port (DP) linked to
two implementations, SW-DP and JTAG-DP. This manual formalizes those differences by introducing the concept
of a DP architecture version.

The definition of the DP identification registers is updated to allow for this change, and also to accommodate
future additions to the DP programmer’s model.

The ARM® Debug Interface v5 Architecture Specification describes a Debug Port register named IDCODE. For
SW-DP, this register is accessed as DP register 0; for JTAG-DP it is accessed via the JTAG IDCODE instruction.
The JTAG IDCODE is part of the IEEE 1149.1 Test Access Port specification, and therefore lies outside the scope
of the ADIv5 specification. This manual separates the two concepts.

The versions of the DP architecture described in the ARM® Debug Interface v5 Architecture Specification are DP
architecture version 0 for JTAG-DP and DP architecture version 1 for SW-DP. ADIv5.1 defines an additional DP
architecture version 2.

For full details, see Debug Port Architecture Versions on page 19.

3.3 The identification model for Access Ports

The ARM® Debug Interface v5 Architecture Specification defines a single, common identification register that
must be implemented by all Access Ports, IDR. In version 5.0, bit [16] of this register is defined as the Access Port
Class field and bits [15:8] as reserved, UNK. Version 5.1 redefines the bits in IDR, as shown in Figure 2.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Revision

JEP-106

continuation

code

JEP-106 identity code Class AP identification

 0 1 0 0 0 1 1 1 0 1 1

Figure 2: Access Port ID Register bit assignments

Revision, JEP-106 continuation code, and JEP-106 identity code, bits [31:17]
Unchanged. The codes for ARM Limited are shown. See the ARM® Debug Interface v5 Architecture
Specification.

Class, bits [16:13]
This field defines the class of Access Port. An Access Port belongs to a class if it follows a programmer’s
model defined as part of the ADIv5 specification or extensions to it.

Table 2 lists the Access Port classes defined by the ADIv5 specification. All other values are reserved.

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 14 of 48

Class Description

0b0000 No defined class

0b1000 Memory Access Port.

See Chapter 11 of the ARM® Debug Interface v5 Architecture Specification.

Table 2: Class field values

Bits [12:8]
Reserved, must-be-zero. This field is reserved for future ID register fields. If a debugger reads a non-zero
value in this field, it must treat the AP as unidentifiable.

AP identification, bits [7:0]
Access Port Identification. This field identifies the AP implementation. Each AP designer must maintain
their own list of implementations and associated Identification codes.

In an AP implementation by ARM Limited this field is sub-divided as bits [7:4] Variant, bits [3:0] Type.
Table 3 lists the possible values of the Type field for an AP designed by ARM Limited. The Variant field is
used to identify different implementations of the same Type.

Class Type Bus type

0b0000 0x0 Not used by MEM-APs; indicates JTAG-AP. Variant field must be non-zero.

0b1000 0x1 AMBA AHB bus

0b1000 0x2 AMBA APB bus

- - All other values are reserved.

Table 3: Interpretation of IDR[3:0] for ARM designed MEM-APs

Note

The ARM® Debug Interface v5 Architecture Specification required this designation of Variant and Type
for all ARM designed APs. In ADIv5.1, this interpretation of the AP Identification field is restricted.

ARM Limited will only assign IDR[3:0] values 0x0, 0x1 and 0x2 in a manner backwards compatible with
ADIv5. However, for all other IDR[3:0] values, the Type interpretation only applies for MEM-APs.

The AP Identification field must be unique for each Access Port designed by a given designer,
regardless of the value of IDR.Class.

3.4 Multiple Protocol Interoperability

The Serial Wire/JTAG Debug Port (SWJ-DP) allows for multiple protocol interoperability. An implementation of
SWJ-DP is described in the CoreSight™ Components Technical Reference Manual. This manual incorporates
those existing implementations within ADIv5.

A further extension, Dormant state, is introduced to increase interoperability with other protocol standards.

For full details, see Multiple Protocol Interoperability on page 30.

3.5 Multi-drop Serial Wire protocol extensions

Serial Wire protocol version 1 is a point-to-point architecture, supporting connection between a single host and a
single device. It allows connection to multiple devices only by providing additional connections from the host.

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 15 of 48

This has a number of disadvantages:

• It complicates the physical connection standard, by having variants with different numbers of connections.

• It increases the number of pins required for the connector on the device PCB. This is unacceptable where
size is a limiting factor.

• It increases the number of pins required on a package with multiple dies inside.

• It makes it difficult to integrate multiple platforms accessed by the Serial Wire protocol into the same chip.

Techniques to solve this require connections that are shared between multiple Serial Wire devices. This is
detrimental to the maximum speed of operation, but in many situations this is an acceptable trade-off.

Serial Wire protocol version 2 adds the multi-drop extension, which:

• enables a two wire host connection to communicate simultaneously with multiple devices

• permits an effectively unlimited number of devices to be connected simultaneously, subject to electrical
constraints

• is backwards-compatible: provision of multi-drop support in a device does not break point-to-point
compatibility with existing host equipment that does not support multi-drop extensions

• permits a device to power down completely while that device is not selected

• prevents multiple devices from driving the wire simultaneously, and continues to support the wire being
actively driven both HIGH and LOW, maintaining a high maximum clock speed

• also allows for multi-drop connections incorporating devices that do not implement the Serial Wire
protocol.

Serial Wire protocol version 2 is described in Serial Wire Protocol Version 2 starting on page 40.

3.6 Minimal Debug Port (MINDP) extensions

The Minimal Debug Port programmer’s model is a cut-down version of the Debug Port intended for low-gate-count
implementations.

For minimal DP implementations, the following Debug Port features are removed:
• the Transaction Counter
• Pushed Verify operation
• Pushed Find operation.

When MINDP is implemented:
• DPIDR.MIN, bit [16] of Debug Port ID Register, DPIDR, is RAO.
• The following fields, bits [23:8] and [4:3], of the Control/Status Register, CTRL/STAT, are reserved, RAZ:

— CTRL/STAT.TRNCNT
— CTRL/STAT.MASKLANE
— CTRL/STAT.STICKYCMP
— CTRL/STAT.TRNMODE

Writing a non-zero value to any of these fields is UNPREDICTABLE.
• ABORT.STKCMPCLR, bit [1] of the Abort Register, ABORT, is reserved, SBZ. Writing 1 to this bit is

UNPREDICTABLE.

3.7 Serial Wire protocol programmable turnaround period

Section 6.2.6 of the ARM® Debug Interface v5 Architecture Specification describes how the turnaround tri-state
period for the Serial Wire protocol can be programmed using the WCR.TURNROUND register.

In ADIv5.1 support for varying the turnaround tri-state period is IMPLEMENTATION DEFINED. An implementation that
does not support variable turnaround must treat writing a value other than 0b00 to WCR.TURNROUND as an
immediate protocol error.

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 16 of 48

ARM deprecates use of turnaround tri-state periods other than 1.

3.8 Required support of Memory Access Port (MEM-AP) packed transfers
Section 8.2.7 of the ARM® Debug Interface v5 Architecture Specification requires that if a MEM-AP supports
access sizes smaller than word it must also support packed transfers.

In ADIv5.1 that requirement is relaxed. Support for packed transfers is IMPLEMENTATION DEFINED.

From ADIv5.1, if a MEM-AP does not support packed transfers then writing 0b10 to CSW.AddrInc selects the
auto-increment off mode. Subsequently reading back CSW will return 0b00 for CSW.AddrInc.

This was not required by the definition of CSW.AddrInc in the ARM® Debug Interface v5 Architecture
Specification.

3.9 Scope of ADIv5.1

ADIv5 encompasses a range of technologies and architectures. ADIv5 version 5.0 and version 5.1 are packages
of versions of these technologies and architectures. Version 5.1 encompasses all that is defined in version 5.0: an
implementation of ADIv5.0 is also an implementation of ADIv5.1.

Figure 3 shows the main components of ADIv5, split between the two main areas of ADIv5: the Access Port
architecture and the Debug Port architecture. For each component, Figure 3 shows whether the component was
defined in ADIv5.0 or is introduced with ADIv5.1. ADIv5.1 adds a third major area of ADIv5: Debug Port
interoperability.

For example, Debug Port architecture version 1 is defined by ADIv5.0 but in that version only supports Serial Wire
protocol (version 1), and is called SW-DP. In ADIv5.1 it is formalized as Debug Port architecture version 1, and
also allows JTAG protocol.

ADIv5.1
ADIv5.0

“MEM-AP”
Memory
access

“JTAG-AP”
JTAG
access

Component
discovery

Debug Port
architecture
version 0

Debug Port
architecture
version 1

JTAG
protocol

Serial Wire
protocol

(version 2)

AP ID
model

Updated
AP ID
model

Standard
MEM-AP
definitions

Serial Wire/
JTAG

switching

“JTAG-DP”
JTAG protocol

“SW-DP” Serial
Wire protocol
(version 1)

Debug Port
architecture
version 2

JTAG
protocol

Dormant
mode

Debug Port
interoperability
extensions

“MINDP”
Minimal DP
extension

Minimal DP
extension

Access Port architecture

Figure 3: Scope of ADIv5.0 and ADIv5.1 and the architecture components defined by each

4 POWER-UP AND RESET CONTROLS

4.1 Clarification of PWRUPREQ/ACK signals

The ARM® Debug Interface v5 Architecture Specification defines two pairs of signals:
• CDBGPWRUPREQ and CDBGPWRUPACK
• CSYSPWRUPREQ and CSYSPWRUPACK

Table 4 summarizes the programmer’s model for CDBGPWRUPREQ/ACK and CSYSPWRUPREQ/ACK.

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 17 of 48

Signal Programmer’s model

CDBGPWRUPREQ Bit[28] of the CTRL/STAT register

CDBGPWRUPACK Bit[29] of the CTRL/STAT register

CSYSPWRUPREQ Bit[30] of the CTRL/STAT register

CSYSPWRUPACK Bit[31] of the CTRL/STAT register

Table 4: Debug Port programmer's model

These signals are expected to provide hints to the system power/clock controller. The following sections describe
these signal pairs in turn.

4.1.1 CDBGPWRUPREQ and CDBGPWRUPACK

The CDBGPWRUPREQ signal indicates that the debugger requires the debug resources to be communicative.
The power/clock controller must power-up and run the clocks of as many domains as necessary to comply with
this request.

Communicative means that the debugger can access at least enough registers of the debug resource for it to
determine the state of the resource. Whether the resource is active is IMPLEMENTATION DEFINED.

The power/clock controller must honor CDBGPWRUPREQ for as long as it is asserted. For example, if a
component in a debug power domain requests to have its clocks stopped, the request must be emulated. This
includes all components with a single shared debug / core power domain: power-down must be emulated for non-
debug logic within that power domain.

Components with a split debug / core power domains must have at least the minimal debug interface powered up.
Even if some debug resources are contained in the core power domain, then power can be removed from the core
power domain so long as both:

• there is some means to save and restore the state of these resources over the core power domain being
powered down

• the core power domain does not need to be powered for the debugger to be able to communicate with the
debug resources.

The means to save and restore these resources might include software means. If the debug resources do lose
their value when power is removed from the core power domain, then the debug logic must include means for the
debugger to discover that the programmed values have been lost.

CDBGPWRUPACK is the acknowledge signal for the CDBGPWRUPREQ request signal. CDBGPWRUPACK
must be asserted for as long as CDBGPWRUPREQ is asserted.

4.1.2 CSYSPWRUPREQ and CSYSPWRUPACK

The CSYSPWRUPREQ signal indicates that the debugger requires all debug resources to be active. The
power/clock controller must power-up and run the clocks of as many domains as necessary so that all debug
resources are active.

Active means that the debug resource is capable of performing its debug function. An active resource is also
communicative.

The power/clock controller must honor CSYSPWRUPREQ for as long as it is asserted.

CSYSPWRUPREQ will have no effect on debug components with a single power-domain, as CDBGPWRUPREQ
will ensure those components are powered. Similarly, it has no effect on components with a pure debug / core
power-domain split, as those components have no debug logic in the core power domain. However, for
components where some debug resources are in the core power domain, CSYSPWRUPREQ must be seen as a
request to emulate power saving in the core power domain.

CSYSPWRUPACK is the acknowledge signal for the CSYSPWRUPREQ request signal. CSYSPWRUPACK must
be asserted for as long as CSYSPWRUPREQ is asserted. Whenever CSYSPWRUPREQ is asserted by the
debugger, CDBGPWRUPREQ must also be asserted.

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 18 of 48

4.2 Limitations of CDBGRSTREQ/CDBGRSTACK

The DP provides two bits, CDBGRSTREQ and CDBGRSTACK, bits [27:26] of the CTRL/STAT register, for reset
control of the debug domain.

The ARM® Debug Interface v5 Architecture Specification shows how these bits can be used to drive the debug
reset signal, PRESETDBGn. In a real system there are likely to be other reset signals associated with other
debug buses. For example in an ARM CoreSight system, ATRESETn resets all register in the AMBA Trace Bus
domain.

Because debug logic might be accessible by the system, an implementation might have corner cases if
CDBGRSTACK is set whilst the system is using the debug logic. For example, the reset might reset a debug bus
whilst a transaction is in progress, causing a system or software malfunction.

ARM recommends that such approaches are not mixed without extreme care; that such system-level usage of
debug components is not combined with a reset system that allows those components to be reset without the
knowledge of the system.

For more details on this issue, contact ARM.

If the debug reset control is not implemented, CDBGRSTACK is RAZ and CDBGRSTREQ might be RAZ. See
Erratum: Emulation of debug reset request (497727) on page 8.

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 19 of 48

5 DEBUG PORT ARCHITECTURE VERSIONS
The ARM® Debug Interface v5 Architecture Specification describes two forms of Debug Port (DP): the JTAG
Debug Port and the Serial Wire Debug Port. This manual reclassifies these as different versions of a common DP
architecture. Table 5 lists the versions of the Debug Port (DP) architecture described by ADIv5.1.

Version number Description

0 DP architecture version 0 on page 19

1 DP architecture version 1 on page 21

2 DP architecture version 2 on page 26

Table 5: Debug Port architecture versions

JTAG-DP always implements a JTAG TAP ID Register, which is not related to the Debug Port architecture
version.

5.1 The JTAG TAP ID Register, IDCODE

The JTAG TAP ID Register, IDCODE, is always present on all JTAG-DP implementations. It provides identification
information about the JTAG-DP, such as which scan-chains are implemented.

It is accessed using its own scan chain. See the ARM® Debug Interface v5 Architecture Specification.

It is read-only and always accessible. Figure 4 shows the register bit assignment, with their values for an ARM
design.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Version PARTNO DESIGNER 1

 0 1 0 0 0 1 1 1 0 1 1

Figure 4: JTAG TAP ID Register bit assignments

Version, bits [31:28]
 Version code. The meaning of this field is IMPLEMENTATION DEFINED.

PARTNO, bits [27:12]
Part Number for the DP TAP. This value is provided by the designer of the Debug Port TAP and must not
be changed. Current DPs designed by ARM have the JTAG-DP PARTNO value 0xBA00.

DESIGNER, bits [11:1]
Designer ID. An 11-bit code formed from the JEDEC JEP-106 continuation code and identity code. The ID
identifies the designer of the JTAG-DP TAP. The ARM value for this field, shown above, is 0x23B. Other
designers must insert their own JEDEC assigned code here.

Bit [0] RAO.

5.2 DP architecture version 0

Architecture version 0 only supports JTAG-DPs. Whether a JTAG-DP implements version 0 of the architecture or
some other version can be determined by a table lookup based on the JTAG IDCODE value.

In DP architecture version 0:
• the SELECT register is read/write
• bits [5:4] of the CTRL/STAT register are R/W1C

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 20 of 48

• bits [31:1] of the ABORT register are reserved, SBZ and bit [0] SBO on writes.

Note

Debug Port architecture version 0 is the DP architecture defined for JTAG-DP in the ARM® Debug Interface v5
Architecture Specification.

The DP register map in version 0 of the DP architecture is shown in Table 6.

Address Access Description

0x0 UNPREDICTABLE Reserved

0x4 Read/write The Control/Status Register, CTRL/STAT (architecture version 0) on page 20

0x8 Read/write The AP Select Register, SELECT (architecture version 0) on page 21

0xC Read-only The Read Buffer, RDBUFF

Table 6: Debug Port register map, architecture version 0

The DP must implement an ABORT register. In DP architecture version 0, how this register is accessed is DATA

LINK DEFINED. In JTAG-DP this is implemented through the ABORT instruction.

5.2.1 The Control/Status Register, CTRL/STAT (architecture version 0)

In DP architecture version 0, the Control/Status Register, CTRL/STAT, is:
• a read/write register
• accessed by a read or write of DP register 0x4.

Figure 5 shows the register bit assignments.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 TRNCNT MASKLANE

CDBGRSTREQ WDATAERR

CDBGRSTACK READOK

CDBGPWRUPREQ STICKYERR

CDBGPWRUPACK STICKYCMP

CSYSPWRUPREQ TRNCMODE

CSYSPWRUPACK STICKYORUN

 ORUNDETECT

Figure 5: Control/Status Register (architecture version 0) bit assignments

Bits [31:8,3:2,0]
See the ARM® Debug Interface v5 Architecture Specification.

WDATAERR, bit [7] and READOK, bit [6]
Support for these bits is DATA LINK DEFINED:
— for JTAG-DP these bits are reserved, RAZ/WI.

DP architecture version 0 only supports JTAG-DP.

STICKYERR, bit [5], STICKYCMP, bit [4] and STICKYORUN, bit [1]
These bits are defined as R/W1C. For a definition of these bits, see the ARM® Debug Interface v5
Architecture Specification.

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 21 of 48

5.2.2 The AP Select Register, SELECT (architecture version 0)

In DP architecture version 0, the AP Select Register, SELECT, is:
• a read/write register
• accessed by a read or write of DP register 0x8.

Figure 6 shows the register bit assignments.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

APSEL APBANKSEL

Figure 6: AP Select Register (architecture version 0) bit assignments

APSEL and APBANKSEL, bits [31:24,7:4]
See the ARM® Debug Interface v5 Architecture Specification.

Bits [23:8,3:0]
Reserved, UNK/SBZP.

For compatibility with other DP architecture versions, ARM recommends that tools do not read the SELECT
register.

5.2.3 The AP Abort Register, ABORT (architecture version 0)

In DP architecture version 0, the AP Abort Register, ABORT, is
• a write-only register
• accessed in a DATA LINK DEFINED manner:

— for JTAG-DP it is accessed via its own scan-chain.

DP architecture version 0 only supports JTAG-DP.

Figure 7 shows the register bit assignments.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 DAPABORT

Figure 7: AP Abort Register (architecture version 0) bit assignments

Bits [31:1]
 Reserved, SBZ.

DAPABORT, bit [0]
 SBO. This bit must be written as 1. See the ARM® Debug Interface v5 Architecture Specification.

Note

For JTAG-DP, the ABORT register is written from bits [34:3] of the data register scan-chain selected by the
ABORT instruction. Writing a value other than 0x000000008 to the ABORT scan-chain gives UNPREDICTABLE
results.

For more details on the ABORT scan-chain see the ARM® Debug Interface v5 Architecture Specification

5.3 DP architecture version 1

Architecture version 1 extends version 0 with support for:
• the Debug Port Identification Register, DPIDR

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 22 of 48

• the AP Abort Register, ABORT
• the Data Link Control Register, DLCR.

The definition of other registers is also changed:
• the behavior on writing to bits [5:4,1] of the CTRL/STAT register is DATA LINK DEFINED
• bit [0] of the SELECT register is defined as DPBANKSEL
• the SELECT register is write-only.

Note

Debug Port architecture version 1 is the DP architecture defined for SW-DP in the ARM® Debug Interface v5
Architecture Specification.

The DP register map in version 1 of the DP architecture is shown in Table 7.

Address DPBANKSEL Access Description

0x0 - Read-only The Debug Port ID Register, DPIDR (architecture version 1) on
page 22

 Write-only DATA LINK DEFINED registers on page 26

0x4 0 Read/write The Control/Status Register, CTRL/STAT (architecture version 1) on
page 25

 1 Read/write The Data Link Control Register, DLCR on page 26

0x8 - Read-only DATA LINK DEFINED registers on page 26

 Write-only The AP Select Register, SELECT (architecture version 1) on page 25

0xC - Read-only The Read Buffer, RDBUFF

 Write-only DATA LINK DEFINED registers on page 26

Table 7: Debug Port register map, architecture version 1

5.3.1 The Debug Port ID Register, DPIDR (architecture version 1)

The Debug Port ID Register, DPIDR, provides identification information about the Debug Port, such as what
features are implemented.

The DPIDR is:
• a read-only register
• accessed by a read of DP register 0x0
• not affected by the value of SELECT.CTRLSEL.

Figure 8 shows the register bit assignment, with their values for an ARM design.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

REVISION PARTNO VERSION DESIGNER 1

 MIN 0 1 0 0 0 1 1 1 0 1 1

Figure 8: Debug Port ID Register (architecture version 1) bit assignments

REVISION, bits [31:28]
 Revision code. The meaning of this field is IMPLEMENTATION DEFINED.

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 23 of 48

PARTNO, bits [27:20]
Part Number for the Debug Port. This value is provided by the designer of the Debug Port and must not
be changed. Current DPs designed by ARM Limited have the PARTNO value 0xBA.

Bits [19:17]
 Reserved, UNK.

MIN, bit [16]
Minimal Debug Port functions implemented.
1 Transaction Counter, Pushed Verify and Pushed Find operations are not implemented.
0 Transaction Counter, Pushed Verify and Pushed Find operations are implemented.

VERSION, bits [15:12]
 Version of the Debug Port architecture implemented. The valid values for this field are:

0x0 Reserved. Implementations of DP architecture version 0 do not implement DPIDR.
 0x1 DP architecture version 1.

All other values are reserved.

DESIGNER, bits [11:1]
Designer ID. An 11-bit code formed from the JEDEC JEP-106 continuation code and identity code. The ID
identifies the designer of the Debug Port. The ARM Limited value for this field, shown above, is 0x23B.
Other designers must insert their own JEDEC-assigned code here.

Bit [0] RAO.

Note

JTAG-DP implementations of architecture version 1 are required to also implement the IDCODE instruction and
IDCODE scan-chain. The architecture does not require that the DPIDR value and JTAG IDCODE value are the
same. The JTAG IDCODE value identifies the JTAG-DP TAP and its designer. See The JTAG TAP ID Register,
IDCODE on page 19.

5.3.2 The AP Abort Register, ABORT (architecture version 1)

In DP architecture version 1, the ABORT register:
• is a write-only register
• accessed in a DATA LINK DEFINED manner:

— for SW-DP it is accessed by a write to DP register 0x0
— for JTAG-DP it is accessed via its own scan-chain

• has fields that are not defined for architecture version 0.

Figure 9 shows the register bit assignments.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ORUNERRCLR

WDERRCLR

STKERRCLR

STKCMPCLR

DAPABORT

Figure 9: AP Abort Register (architecture version 1) bit assignments

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 24 of 48

Bits [31:5]
 Reserved, SBZ.

ORUNERRCLR, WDERRCLR, STKERRCLR, STKCMPCLR, and DAPABORT, bits [4:0]
 See the ARM® Debug Interface v5 Architecture Specification.

ABORT scan-chain operation, JTAG-DP (architecture version 1)
As in DP architecture version 0, when the ABORT instruction is the current instruction in the IR, the serial path
between TDI and TDO is connected to a 35-bit scan chain that is used to access the AP Abort Register.

On Capture-DR, an UNKNOWN value is written to this scan chain. The debugger must scan 0 into bits [34:8,2:0] of
this scan chain. This value:

• writes the RnW bit as 0
• writes the A[3:2] field as 0
• writes the SBZ fields of the AP Abort Register as 0.

The effect of scanning a 1 into any of bits [34:8,2:0] of this scan chain is UNPREDICTABLE. On Update-DR,
bits [34:3] of this scan chain are written to the AP Abort Register.

Figure 10 shows the operation of this scan chain.

34 8 7 6 5 4 3 2 1 0

Capture-DR UNKNOWN

↓

TDI � 0 0 SBZ 0 0 0 0 0 � TDO

↓

31 5 4 3 2 1 0 1 0 0

Update-DR AP Abort Register A[3:2]

ORUNERRCLR RnW

WDERRCLR

STKERRCLR

STKCMPCLR

DAPABORT

Figure 10: JTAG-DP ABORT scan-chain operation

Note

For JTAG-DP, the ABORT register is written from bits [34:3] of the data register scan-chain selected by the
ABORT instruction. As in DP architecture version 0, this scan-chain returns an UNKNOWN value on Capture-DR,
and at Update-DR bits [2:0] are SBZ.

In DP architecture version 0, bits [34:4] of the scan-chain are SBZ and bit [3] is SBO, since ABORT[31:1] is SBZ
and ABORT[0] is SBO. Bits [2:0] of the scan-chain are SBZ.

In DP architecture version 1, bits [34:8] are SBZ and no bits are SBO, since ABORT[31:5] is SBZ and ABORT[4:0]
are as defined above.

For more details on the ABORT scan-chain see the ARM® Debug Interface v5 Architecture Specification.

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 25 of 48

5.3.3 The AP Select Register, SELECT (architecture version 1)

In DP architecture version 1, the SELECT register
• is a write-only register
• is accessed by a write of DP register 0x8
• has fields that are not defined for architecture version 0.

Figure 11 shows the register bit assignments.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

APSEL APBANKSEL

DPBANKSEL

Figure 11: AP Select Register (architecture version 1) bit assignments

APSEL, APBANKSEL, and DPBANKSEL, bits [31:24,7:4,0]
See the ARM® Debug Interface v5 Architecture Specification.

Note

In the ARM® Debug Interface v5 Architecture Specification DPBANKSEL is named CTRLSEL.

Bits [23:8,3:1]
Reserved, UNK/SBZP.

The reset value of the SELECT register is UNKNOWN. Tools must initialize SELECT before accessing any AP
registers or registers affected by DPBANKSEL.

5.3.4 The Control/Status Register, CTRL/STAT (architecture version 1)

In DP architecture version 1, the CTRL/STAT register:
• is a read/write register
• is accessed by a read or write of DP register 0x4 when SELECT.DPBANKSEL is 0x0
• has behavior for some fields that differs from that for architecture version 0.

Figure 12 shows the register bit assignments.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 TRNCNT MASKLANE

CDBGRSTREQ WDATAERR

CDBGRSTACK READOK

CDBGPWRUPREQ STICKYERR

CDBGPWRUPACK STICKYCMP

CSYSPWRUPREQ TRNCMODE

CSYSPWRUPACK STICKYORUN

 ORUNDETECT

Figure 12: Control/Status Register (architecture version 1) bit assignments

Bits [31:24:2,0]
 See the ARM® Debug Interface v5 Architecture Specification.

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 26 of 48

TRNCNT, MASKLANE and TRNMODE, bits [23:8,3:2]
Not supported in MINDP configuration. In MINDP configuration, writing a value other than zero to either
TRNCNT or TRNMODE is UNPREDICTABLE.

For a definition of these bits, see the ARM® Debug Interface v5 Architecture Specification.

WDATAERR and READOK, bits [7:6]
Support for these bits is DATA LINK DEFINED.
— For SW-DP these bits are RO/WI.
— For JTAG-DP these bits are reserved, RAZ/WI.

For a definition of these bits, see the ARM® Debug Interface v5 Architecture Specification.

STICKYERR, STICKYCMP, and STICKYORUN, bit [5:4,1]
The behavior on writing to these bits is DATA LINK DEFINED.
— For SW-DP, these bits are RO/WI.
— For JTAG-DP, these bits are R/W1C. Writing a 0 to these bits is ignored.

For a definition of these bits, see the ARM® Debug Interface v5 Architecture Specification.

STICKYCMP is not supported in MINDP configuration. In MINDP configuration, writing a 1 to
STICKYCMP is UNPREDICTABLE.

5.3.5 The Data Link Control Register, DLCR

The Data Link Control Register, DLCR, is:
• a DATA LINK DEFINED read/write register
• defined in architecture version 1
• accessed by a read or write of DP register 0x4 when SELECT.DPBANKSEL is 0x1.
The contents of the Data Link Control Register, DLCR, are DATA LINK DEFINED.

In the ARM® Debug Interface v5 Architecture Specification the Serial Wire definition of DLCR is named WCR.
The definition of DLCR for Serial Wire is unchanged.

For JTAG-DP, DLCR is reserved. Accessing the DLCR is UNPREDICTABLE.

5.3.6 DATA LINK DEFINED registers

For SW-DP the DATA LINK DEFINED registers are listed in Table 8.

Address Access Description

0x0 Write-only The AP Abort Register, ABORT (architecture version 1) on page 23

0x8 Read-only The Read Resend Register, RESEND. See the ARM® Debug Interface v5
Architecture Specification.

0xC Write-only Reserved

Table 8: SW-DP DATA LINK DEFINED registers

For JTAG-DP both DATA LINK DEFINED registers are reserved.

Accessing a reserved DATA LINK DEFINED register is UNPREDICTABLE.

5.4 DP architecture version 2

Architecture version 2 extends version 1 with support for:
• the Target Identifier Register, TARGETID
• the Data Link Protocol Identification Register, DLPIDR.

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 27 of 48

The definition of other registers is also changed:
• the DPBANKSEL field in the SELECT register is extended to bits [3:0].

The DP register map in version 2 of the DP architecture is shown in Table 9.

Address DPBANKSEL Access Description

0x0 - Read-only The Debug Port ID Register, DPIDR (architecture version 2) on
page 27

 Write-only DATA LINK DEFINED registers

0x4 0x0 Read/write The Control/Status Register, CTRL/STAT

 0x1 Read/write The Data Link Control Register, DLCR

 0x2 Read-only The Target Identification Register, TARGETID on page 28

 0x3 Read/write The Data Link Protocol Identification Register, DLPIDR on page 29

0x8 - Read-only DATA LINK DEFINED registers

 Write-only The AP Select Register, SELECT (architecture version 2) on page 28

0xC - Read-only The Read Buffer, RDBUFF

 Write-only DATA LINK DEFINED registers

Table 9: Debug Port register map, architecture version 2

5.4.1 The Debug Port ID Register, DPIDR (architecture version 2)

The DPIDR is:
• a read-only register
• accessed by a read of DP register 0
• not affected by the value of SELECT.CTRLSEL.

Figure 13 shows the register bit assignment, with their values for an ARM design.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

REVISION PARTNO VERSION DESIGNER 1

 MIN 0 1 0 0 0 1 1 1 0 1 1

Figure 13: Debug Port ID Register (architecture version 2) bit assignments

REVISION, PARTNO, and DESIGNER, bits [31:16,11:1]
 See The Debug Port ID Register, DPIDR (architecture version 1) on page 22.

Bits [19:7]
 Reserved, UNK.

MIN, bit [16]
See The Debug Port ID Register, DPIDR (architecture version 1) on page 22.

VERSION, bits [15:12]
 Version of the Debug Port architecture implemented. The valid values for this field are:

0x0 Reserved. Implementations of DP architecture version 0 do not implement DPIDR.
 0x1 DP architecture version 1.
 0x2 DP architecture version 2.

All other values are reserved.

Bit [0] RAO.

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 28 of 48

5.4.2 The AP Select Register, SELECT (architecture version 2)

In DP architecture version 2, the SELECT register is:
• a write-only register
• accessed by a write of DP register 0x8.

Figure 14 shows the register bit assignments.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

APSEL APBANKSEL DPBANKSEL

Figure 14: AP Select Register (architecture version 2) bit assignments

APSEL, bits [31:24], and APBANKSEL, bits [7:4]
See the ARM® Debug Interface v5 Architecture Specification.

Bits [23:8]
Reserved, UNK/SBZP.

DPBANKSEL, bits [3:0]
 Selects the register that appears at DP register 0x4:
 0x0 CTRL/STAT, read/write
 0x1 DLCR, read/write
 0x2 TARGETID, read-only
 0x3 DLPIDR, read-only.

 All other values are reserved. Writing a reserved value to DPBANKSEL is UNPREDICTABLE.

 This field replaces the previously defined DPBANKSEL, bit [0].

5.4.3 The Target Identification Register, TARGETID

The Target Identification Register, TARGETID, is:
• a read-only register
• defined in DP architecture version 2
• accessed by a read of DP register 0x4 when SELECT.DPBANKSEL is set to 0x2.

This register provides information about the target when the host is connected to a single device. Figure 15 shows
the register bit assignments.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TREVISION TPARTNO TDESIGNER 1

Figure 15: Target Identification Register bit assignments

TREVISION, bits [31:28]
 Target revision.

TPARTNO, bits [27:12]
IMPLEMENTATION DEFINED. The value is assigned by the designer of the part and should be unique to that
part.

TDESIGNER, bits [11:1]
IMPLEMENTATION DEFINED. An 11-bit code formed from the JEDEC JEP-106 continuation code and identity
code. The ID identifies the designer of the part. Designers must insert their own JEDEC-assigned code
here.

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 29 of 48

Note
The ARM Limited JEP-106 value is not shown for this field. Although ARM Limited might design a DP
containing the TARGETID register, the designer of part is typically another designer who takes that DP
and creates a part around it.
If the designer of the part is ARM Limited, then the value of this field is 0x23B.

Bit [0] RAO.

5.4.4 The Data Link Protocol Identification Register, DLPIDR

The Data Link Protocol Identification Register, DLPIDR is:
• a read-only register
• defined in DP architecture version 2
• accessed by a read of DP register 0x4 when SELECT.DPBANKSEL is set to 0x3.

The contents of the Data Link Protocol Identification Register, DLPIDR, are DATA LINK DEFINED.

For Serial Wire, DLPIDR gives Serial Wire protocol version information. Figure 16 shows the register bit
assignments for Serial Wire protocol.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Target Instance Protocol Version

Figure 16: Data Link Protocol Identification Register bit assignments, Serial Wire protocol

Target Instance, bits [31:28]
IMPLEMENTATION DEFINED. Defines an instance number for this device. This value must be unique for all
devices with identical TARGETID[28:0] fields that are connected together in a multi-drop system.

Bits [27:4]
Reserved, UNK.

Protocol Version, bits [3:0]
 Defines the Serial Wire protocol version. Valid values for this field are:

0x1 Serial Wire protocol version 2. Adds support for multi-drop extensions. See Serial Wire Protocol
Version 2 on page 40.

All other values are reserved.

Note
A Serial Wire Debug Port which implements DP architecture version 2 must implement at least Serial
Wire protocol version 2.

For JTAG-DP, DLPIDR is reserved. Accessing the DLPIDR is UNPREDICTABLE.

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 30 of 48

6 MULTIPLE PROTOCOL INTEROPERABILITY

6.1 The Serial Wire/JTAG Debug Port (SWJ-DP)

The SWJ-DP provides a mechanism to select between Serial Wire and JTAG Data Link protocols. This enables
the JTAG-DP and SW-DP to share pins.

SWJ-DP is a combined JTAG-DP and SW-DP that enables a probe to connect to the target using either the Serial
Wire protocol or JTAG. To make efficient use of package pins, the Serial Wire interface shares, or overlays, the
JTAG pins, and a mechanism is provided to switch between JTAG-DP and SW-DP, depending on which probe is
connected. The SWJ-DP behaves like a JTAG-DP device if normal JTAG sequences are sent to it.

6.1.1 Structure

The SWJ-DP logically consists of a wrapper around the JTAG-DP and SW-DP. Its function is to select JTAG or
Serial Wire as the Data Link protocol and enable either JTAG-DP or SW-DP as the interface to the DAP.

Figure 17 below shows such a logical arrangement.

Figure 17: SWJ-DP conceptual model

Notes

• There is no requirement to implement an SWJ-DP as separate JTAG-DP and SW-DP blocks with such a
wrapper.

• The JTAG-DP and SW-DP programmers’ models do not have to implement the same Debug Port
architecture version. See Debug Port Architecture Versions on page 19.

6.1.2 Operation

SWJ-DP enables an Application Specific Integrated Circuit (ASIC) to be designed which can be used in systems
that require either a JTAG interface or a Serial Wire interface. There is a trade-off between the number of pins
used and compatibility with existing hardware and test equipment.

There are several scenarios where the use of a JTAG debug interface must be maintained, including:
• to enable inclusion in an existing scan chain, generally on-chip TAPs used for test or other purposes.
• to enable the device to be cascaded with legacy devices which use JTAG for debug; although this can

also be supported using a JTAG Access Port (JTAG-AP)
• to enable use of existing debug hardware with the corresponding test TAPs, for example, in Automatic

Test Equipment (ATE).

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 31 of 48

An ASIC fitted with SWJ-DP support can be connected to legacy JTAG equipment without any requirement to
make changes. If a Serial Wire tool is available then only two pins are required, instead of the usual four used for
JTAG. Two pins are therefore released for alternative functions.

These two pins can only be used when there is no conflict with their use in JTAG operation. In addition, to support
use of SWJ-DP in a scan chain with other JTAG devices, the default state after reset must be to use these pins for
their JTAG operation. However, if the direction of the alternative function is compatible with being driven by a
JTAG debug device, the transition of the JTAG TAP to the Shift-DR or Shift-IR state can be used to transition
these pins from their alternative function to JTAG operation.

The alternate function cannot be used while the ASIC is being used in JTAG operation.

The switching scheme is arranged so that, provided there is no conflict on the TDI and TDO pins, a JTAG
debugger is able to connect by sending a specific sequence.

The connection sequence used for Serial Wire is safe when applied to the JTAG interface, even if hot-plugged,
enabling the debugger to continually retry its access sequence. A sequence with TMS HIGH ensures that all parts
of the SWJ-DP are in a known reset state. The pattern used to select Serial Wire has no effect on JTAG devices.

SWJ-DP is compatible with a free-running TCK, or a gated clock which is supplied by the external tools.

6.1.3 Serial Wire and JTAG interface

The external JTAG interface has four mandatory pins, TCK, TMS, TDI, and TDO, and an optional reset, nTRST.
Debug ports also require a separate system reset signal that is asserted, for example, at power-on.

The Serial Wire interface requires two pins:
• a bidirectional SWDIO signal
• a clock, which can be input or output from the target.

To enable sharing of the connector for either JTAG or Serial Wire, connections must be made external to the
SWJ-DP block, as shown in Figure 17. In particular, TMS must be a bidirectional pin to support the bidirectional
SWDIO pin for Serial Wire protocol.

Notes
• When Serial Wire protocol is being used, the JTAG pins TDI, TDO and nTRST are expected to be re-

used.
• An SWJ-DP can be implemented in a package where the JTAG pins TDI, TDO and nTRST are not

connected. The SWJ-DP is designed to allow selection of Serial Wire protocol without using these JTAG
pins.

6.2 Serial Wire and JTAG select mechanism

SWJ-DP enables either a Serial Wire or JTAG protocol to be used on the debug port. To do this, it implements a
watcher circuit that detects a specific 16-bit select sequence on SWDIOTMS:

• a first 16-bit sequence is used to switch from JTAG to Serial Wire operation
• a second 16-bit sequence is used to switch from Serial Wire to JTAG.

ARM deprecates use of these sequences on devices where the Dormant state of operation is implemented, and
recommends using a transition via Dormant state instead. See Dormant operation on page 33.

SWJ-DP defaults to JTAG operation on power-on reset and therefore the JTAG protocol can be used from reset
without sending a select sequence.

Switching from one protocol to the other can only occur when the selected interface is in its reset state. The JTAG
TAP state machine must be in its Test-Logic-Reset state and Serial Wire must be in line-reset. The power-on
reset state for a JTAG TAP state machine is the Test-Logic-Reset state.

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 32 of 48

Having detected a switching sequence, SWJ-DP does not detect further sequences until after a reset condition. If
JTAG is selected, the JTAG TAP state machine being in the Test-Logic-Reset state is the reset condition. If Serial
Wire is selected, a line reset is the reset condition.

Figure 18 is a simplified state diagram that shows how SWJ-DP transitions between selected, detecting, and
selection states.

JTAG-Sel
TLR

JTAG-Sel
selected

JTAG-Sel
detecting

JTAG-DP in TLR

sequence
mismatch

SWDIOTMS
LOW

initial state

SW-Sel
reset

SW-Sel
selected

SW-Sel
detecting

line reset

sequence
mismatch

SWDIOTMS
LOW

JTAG-to-SWD
sequence
complete

SWD-to-JTAG
sequence
complete

Figure 18: Serial Wire and JTAG select state diagram

Note on Figure 18

The JTAG-to-SWD and SWD-to-JTAG sequences are shown terminating in the SW-Sel reset and JTAG-Sel TLR
states respectively. The recommended sequences end with a reset sequence for the selected state, to ensure the
target is in the relevant reset state.

6.2.1 JTAG to Serial Wire switching

To switch SWJ-DP from JTAG to Serial Wire operation:

1. Send at least 50 SWCLKTCK cycles with SWDIOTMS HIGH. This ensures that the current interface is in
its reset state. The JTAG interface only detects the 16-bit JTAG-to-SWD sequence starting from the Test-
Logic-Reset state.

2. Send the 16-bit JTAG-to-SWD select sequence on SWDIOTMS.

3. Send at least 50 SWCLKTCK cycles with SWDIOTMS HIGH. This ensures that if SWJ-DP was already in
Serial Wire operation before sending the select sequence, the Serial Wire interface enters line reset state.

The 16-bit JTAG-to-SWD select sequence is 0b0111_1001_1110_0111, most-significant bit (MSB) first. This can
be represented as either:

• 0x79E7 transmitted MSB first
• 0xE79E transmitted least-significant bit (LSB) first.

SWCLKTCK
SWDIOTMS

at least 50 clocks
with SWDIOTMS

HIGH

0 1 1 1 0 0 1 1 1 0 0 1 1 1

JTAG-to-SWD sequence
at least 50 clocks
with SWDIOTMS

HIGH

1 1

Figure 19: JTAG-to-SWD sequence

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 33 of 48

This sequence has been chosen to ensure that the SWJ-DP switches to using Serial Wire whether it was
previously expecting JTAG or Serial Wire. As long as the 50 cycles with SWDIOTMS HIGH sequence is sent first,
the JTAG-to-SWD select sequence is benign to SW-DP, and is also benign to Serial Wire and JTAG protocols
used in the SWJ-DP, and any other TAP controllers that might be connected to SWDIOTMS.

Note

On selecting Serial Wire operation, the Serial Wire interface is in a reset state. See Line reset on page 43. To
leave the reset state, the debugger must read the DP DPIDR register.

6.2.2 Serial Wire to JTAG switching

To switch SWJ-DP from Serial Wire to JTAG operation:

1. Send at least 50 SWCLKTCK cycles with SWDIOTMS HIGH. This ensures that the current interface is in
its reset state. The Serial Wire interface only detects the 16-bit SWD-to-JTAG sequence when it is in the
reset state.

2. Send the 16-bit SWD-to-JTAG select sequence on SWDIOTMS.

3. Send at least 5 SWCLKTCK cycles with SWDIOTMS HIGH. This ensures that if SWJ-DP was already in
JTAG operation before sending the select sequence, the JTAG TAP enters the Test-Logic-Reset state.

The 16-bit SWD-to-JTAG select sequence is 0b0011_1100_1110_0111, MSB first. This can be represented as
either:

• 0x3CE7 transmitted MSB first
• 0xE73C transmitted LSB first.

SWCLKTCK
SWDIOTMS

at least 50 clocks
with SWDIOTMS

HIGH

0 0 1 1 1 1 0 0 1 1 1 0 0 1 1 1

SWD-to-JTAG sequence
at least 5 clocks
with SWDIOTMS

HIGH

Figure 20: SWD-to-JTAG sequence

This sequence has been chosen to ensure that the SWJ-DP switches to using JTAG whether it was previously
expecting JTAG or Serial Wire. If the SWDIOTMS HIGH sequence is sent first, the SWD-to-JTAG select
sequence is benign to SW-DP, and is also benign to Serial Wire and JTAG protocols used in the SWJ-DP, and
any other TAP controllers that might be connected to SWDIOTMS.

6.3 Dormant operation

An alternative to the selection mechanism for switching between JTAG and Serial Wire operation described in
Serial Wire and JTAG select mechanism on page 31 can be implemented using a third state of operation,
Dormant.

To switch between JTAG and Serial Wire operation, a debugger should first place the target into Dormant state,
and then transition to the required operating state.

Using Dormant state allows the target to be placed into a quiescent mode, allowing devices to interoperate with
other devices implementing other protocols. Those other protocols must also implement a quiescent state, with a
mechanism for entering and leaving that state that is compatible, but not necessarily compliant, with the SWJ-DP
and SW-DP protocols.

This third state of operation is required by SWJ-DP and SW-DP implementations that implement Serial Wire
protocol version 2. Serial Wire protocol version 2 is described in Serial Wire Protocol Version 2 on page 40.
Otherwise, support for Dormant state is IMPLEMENTATION DEFINED.

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 34 of 48

Selection of Dormant state is possible when either JTAG or Serial Wire operation is selected. Figure 21 extends
the state diagram of Figure 18 on page 32 to include selection of Dormant state.

Selection Alert

JTAG-Sel
TLR

JTAG-Sel
detecting

JTAG-DP
in TLR

sequence
mismatch

SWDIOTMS
LOW

initial state

SW-Sel
reset

SW-Sel
detecting

line reset

sequence
mismatch

SWDIOTMS
LOW

JTAG-to-SWD
sequence
complete

(deprecated)

SWD-to-JTAG
sequence
complete

(deprecated)

JTAG-to-DS
sequence
complete

DS-to-JTAG
activation code

complete
(see note)

unrecognized
code

JTAG-Sel
selected

SW-Sel
selected

Dormant

Activation
Code DS-to-SWD

activation code
complete

SWD-to-DS
sequence
complete

Figure 21: Selection of JTAG, Serial Wire and Dormant states (full SWJ-DP)

Notes on Figure 21

• Following the DS-to-JTAG activation code, the JTAG TAP is in either the Test-Logic-Reset state or Run-
Test/Idle state, and hence this state machine is in either the JTAG-Sel TLR state or the JTAG-Sel
selected state. Normally, the TAP state returned to is the TAP state left from. However, it is also possible
to reset the JTAG TAP state machine when JTAG is not the selected protocol.

ARM recommends the DS-to-JTAG sequence is followed by a single clock with SWDIOTMS LOW to
ensure the TAP is in the Run-Test/Idle state.

• The DS-to-SWD sequence is shown terminating in the SW-Sel reset state. The recommended sequence
ends with a line reset to ensure the target is in the reset state.

6.3.1 Use of Dormant state other than in SWJ-DP

A Serial Wire device that does not implement JTAG can nevertheless implement Dormant state, and interoperate
with SWJ-DP and other JTAG devices that also implement Dormant state.

This allows multi-drop SWJ-DP, SW-DP and JTAG TAPs to share a physical connection to a host, as shown in
Figure 22. These different devices may be in different physical packages, or on different dies in a single package,
or on a single die.

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 35 of 48

JTAG
TAP

JTAG
TAP

SW-DP
(multi-drop)

Other
protocol

SWJ-DP
(multi-drop)

SWJ-DP
(multi-drop)

wrapper

TMS
TCK
TDI

TDO

wrapper

T
M

S

T
C

K

T
D

I

T
D

O

D
at

a

C
lo

ck

S
W

D
IO

S
W

C
L

K

TD
I

T
D

O

S
W

D
IO

S
W

C
LK

S
W

D
IO

S
W

C
L

K

T
M

S

T
C

K

T
D

I

T
D

O

Figure 22: Multiple JTAG, SW, SWJ (multi-drop) and other protocol devices on shared connection

6.3.2 JTAG to Dormant switching

To switch from JTAG to Dormant a debugger should:

1. Send at least 5 SWCLKTCK cycles with SWDIOTMS HIGH. This places the JTAG TAP state machine
into the Test-Logic-Reset state, and selects the IDCODE instruction.

2. Send the recommended 31-bit JTAG-to-DS select sequence on SWDIOTMS.

The recommended 31-bit JTAG-to-DS select sequence is 0b010_1110_1110_1110_1110_1110_1110_0110,
MSB first. This can be represented as either:

• 0x2EEEEEE6 transmitted MSB first (that is, starting from bit 30)
• 0x33BBBBBA transmitted LSB first.

Figure 23: Recommended JTAG-to-DS sequence

Requirements for implementations
The JTAG-to-DS sequence is the shortest sequence that will switch from JTAG-to-DS. For compatibility with other
standards, all JTAG devices that implement Dormant state must recognize other sequences as valid JTAG-to-DS
select sequences.

The full sequence is defined around the concept of a zero-bit-DR-scan (ZBS or ZBS scan) which is in turn defined
by transitions of the JTAG TAP state machine. A ZBS is defined as any JTAG TAP state machine sequence that
starts at Capture-DR and ends in Update-DR without passing through Shift-DR.

Examples of a ZBS are:

• Capture-DR � Exit1-DR � Update-DR

• Capture-DR � Exit1-DR � Pause-DR � … � Pause-DR � Exit2-DR � Update-DR

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 36 of 48

The sequence also uses the ZBS count, which is defined as follows:

• The ZBS count is unlocked and reset to zero if the TAP state machine enters either the Select-IR-Scan or
Test-Logic-Reset state. This includes asynchronously entering Test-Logic-Reset following assertion of
nTRST. At reset, the ZBS count is unlocked and reset to zero.

• On entering Update-DR at the end of a ZBS scan, if the ZBS count is unlocked and less than seven, it is
incremented by one.

• The counter does not increment past seven. On entering Update-DR at the end of a ZBS scan, if the ZBS
count is unlocked and equal to seven, it is not incremented. The count does not wrap to zero.

• The ZBS count is locked if the TAP state machine enters the Shift-DR state and the ZBS count is not
zero.

The JTAG-to-DS sequence is defined as any sequence of TAP state machine transitions that terminates in the
Run-Test/Idle state with a locked ZBS count of six. On entering Run-Test/Idle, the target is placed into Dormant
state.

The behavior of the target on entering Run-Test/Idle with other locked ZBS counts is IMPLEMENTATION DEFINED.

Although the recommended JTAG-to-DS sequence starts by placing the JTAG TAP state machine in the Test-
Logic-Reset state, this is not a requirement for recognizing the JTAG-to-DS sequence. Tools must, however,
ensure the Instruction Register (IR) is loaded with either the BYPASS or IDCODE instruction before placing the
target into the Dormant state. If the IR is not loaded with either of these instructions when the target is put into
Dormant state, the behavior is UNPREDICTABLE.

The pseudocode function EnterDormantState describes the function of the JTAG-to-DS sequence detector. It is
notionally called on every TAP state machine transition. The function’s argument is the state being entered, and
the function’s result is a Boolean indicating whether Dormant state should be entered.

For details of the pseudocode language, see the ARM® Architecture Reference Manual ARM®v7-A and
ARM®v7-R edition.

enumeration TAPState {
 TestLogicReset, RunTestIdle,
 SelectDRScan, CaptureDR, ShiftDR, Exit1DR, PauseDR, Exit2DR, UpdateDR,
 SelectIRScan, CaptureIR, ShiftIR, Exit1IR, PauseIR, Exit2IR, UpdateIR};

boolean shiftDRflag = FALSE;
integer ZBScount = 0;
boolean ZBSlocked = FALSE;

// EnterDormantState
// =================

boolean EnterDormantState(TAPState state)

 case state of
 when CaptureDR: shiftDRflag = FALSE;

 when ShiftDR:
 shiftDRflag = TRUE;
 if ZBScount != 0 then ZBSlocked = TRUE;

 when UpdateDR:
 if !ZBSlocked && !shiftDRflag && ZBScount < 7 then
 ZBScount = ZBScount + 1;

 when SelectIRScan, TestLogicReset:
 ZBScount = 0; ZBSlocked = FALSE;

 return (state == RunTestIdle && ZBSlocked && ZBScount == 6);

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 37 of 48

Note

If the JTAG-to-DS sequence is terminated by a entering the Test-Logic-Reset state, an SWJ-DP can immediately
detect a JTAG-to-SWD sequence.

6.3.3 Serial Wire to Dormant switching

To switch from SW to Dormant:

1. Send at least 50 SWCLKTCK cycles with SWDIOTMS HIGH. This ensures the Serial Wire interface is in
the reset state. The target only detects the SWD-to-DS sequence when it is in the reset state.

2. Send the 16-bit SWD-to-DS select sequence on SWDIOTMS.

The 16-bit SWD-to-DS select sequence is 0b0011_1101_1100_0111, MSB first. This can be represented as
either:

• 0x3DC7 transmitted MSB first
• 0xE3BC transmitted LSB first.

Figure 24: SWD-to-DS sequence

6.3.4 Switching out of Dormant state

The sequence to switch out of Dormant state is considerably longer to avoid it being generated accidentally by
whichever alternative protocol is in use. The sequence is long enough that it is statistically highly improbable that it
will be generated any other way.

To switch out of Dormant state:

1. Send at least 8 SWCLKTCK cycles with SWDIOTMS HIGH. This is to ensure the target is not in the
middle of detecting a Selection Alert sequence. The target is permitted to detect the Selection Alert
sequence even if this 8-cycle sequence is not present.

2. Send the 128-bit Selection Alert sequence on SWDIOTMS.

3. Send 4 SWCLKTCK cycles with SWDIOTMS LOW. The target is permitted to ignore the value on
SWDIOTMS during these cycles.

4. Send the required activation code sequence on SWDIOTMS.

5. Send a sequence to place the target into a known state:

— If selecting JTAG, send one SWCLKTCK cycle with SWDIOTMS LOW. This is to ensure that the TAP
state machine is in the Run-Test/Idle state. Alternatively, send at least 5 SWCLKTCK cycles with
SWDIOTMS HIGH to ensure the TAP state machine is in the Test-Logic/Reset state.

— If selecting Serial Wire, send at least 50 SWCLKTCK cycles with SWDIOTMS HIGH. This is to ensure
the Serial Wire interface is in the line reset state.

The Selection Alert sequence is 0b0100_1001_1100_1111_1001_0000_0100_0110_1010_1001_1011_0100_10
10_0001_0110_0001_1001_0111_1111_0101_1011_1011_1100_0111_0100_0101_0111_0000_0011_1101_10
01_1000, MSB first. This can be represented as either:

• 0x49CF9046 A9B4A161 97F5BBC7 45703D98 transmitted MSB first
• 0x19BC0EA2 E3DDAFE9 86852D95 6209F392 transmitted LSB first.

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 38 of 48

SWCLKTCK

SWDIOTMS
0 0 01 1 0 0 1 1 0 0 0 (0) (0) (0) (0)...

At least 8 cycles with
SWDIOTMS HIGH Selection Alert sequence (128 cycles)

4 cycles with
SWDIOTMS

LOW

Activation
code

Selected
technology

...

Figure 25: Selection Alert sequence

Note

The Selection Alert sequence can be generated by implementing a Linear Feedback Shift Register (LFSR)
implementing feedback on bits 6, 5, 3 and 0, starting in the state 0b1001001 and shifting out one bit from bit 0
each cycle. The sequence starts with a zero start bit and continues with the output of the LFSR.

1 0 0 1 10 0

Selection
Alert

sequence

Figure 26: LFSR for generating Selection Alert sequence

The value of the activation code depends on whether Serial Wire and or JTAG operation is to be requested.
Table 10 defines the recommended activation codes a debugger should use for JTAG devices, SW-DP devices
and SWJ-DP devices. These sequences are sent MSB first.

Devices activated

ADIv5 Debug Ports Activation code Value (MSB first) Other
JTAG JTAG SW SWJ

Protocol
selected

JTAG-Serial 0b0000_0000_0000 Yes Yes No Yes JTAG

ARM CoreSight Serial Wire 0b0101_1000 No No Yes Yes Serial Wire

ARM CoreSight JTAG-DP 0b0101_0000 No Yes No Yes JTAG

Table 10: Activation codes

JTAG online activation codes
For compatibility with other standards, all JTAG devices that implement Dormant state using the ADIv5 defined
selection alert sequence, must recognize other sequences as valid JTAG-Serial activation codes.

Figure 27 shows, as a state diagram, the sequence that a JTAG device must recognize.

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 39 of 48

Dormant A

<128-bit-seq>

B

xxxx

C

00x0 00x

E

x

1

0

x

other

1

0

0

0

1

JTAG-Sel

x

Selection Alert Sequence Extended JTAG Activation Code

0101 xxxx

ARM CoreSight
activation codes

D2

D1

F2

F1

G1

G21 xxxxxxxx xxxxxxxx xxxxxxxx
JTAG TAP

reset
(see text)

x

Figure 27: Dormant to JTAG state diagram

Each of the bit-strings shown in Figure 27 are received MSB first. The transition out of state G2 requires a reset of
the JTAG TAP, but otherwise returns to Dormant state. For more information on this sequence, contact ARM.

ARM recommends that debuggers use the activation code sequence shown in Table 10.

ARM CoreSight activation codes
All activation codes starting 0b0101 are reserved for use by ARM CoreSight protocols, and must be followed by a
4-bit protocol selection code. The two protocol selection codes 0b0000 and 0b1000 are as defined by Table 10.
Any other protocol selection code must cause a return to Dormant state.

Note

ADIv5 does not define any other activation codes, but also does not prohibit an implementation from recognizing
other activation codes for compatibility with other standards. Implementations may also use alternative selection
alert mechanisms. Debuggers can generate multiple selection alert sequences to alert multiple devices, and then
use the common activation codes to select which devices to activate.

6.4 Restriction on switching

A debugger must not mix JTAG-DP and SW-DP reads and writes of DAP registers in a single debug session. A
single debug session is defined as from when a debugger connection is made with the system in a reset state
through to the debugger connection being broken. At the start of a debug session, the state of the target is
essentially UNKNOWN.

Attempting to mix JTAG-DP and SW-DP reads and writes of DAP registers while any component of the DAP is
active can have UNPREDICTABLE results.

A power-on reset cycle might be required to reset the DAP before a change in active Data Link protocol. However,
this is not required when switching between the active protocol and Dormant state.

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 40 of 48

7 SERIAL WIRE PROTOCOL VERSION 2

7.1 Introduction to multi-drop

Serial Wire protocol version 2 extends the Serial Wire protocol by the addition of multi-drop capability. Multi-drop
capability allows more than one Serial Wire interface to share the same connection to a debugger host.

This section describes the multi-drop extensions.

7.2 Limitations of multi-drop

7.2.1 System configuration

Each device must be configured with a unique target ID, which includes a 4-bit instance ID to differentiate
between otherwise identical devices. This places a limit of 16 such targets in any system, and means that
identical devices must be configured before they are connected together to ensure that their instance IDs do not
conflict.

7.2.2 Auto-detection

It is not possible to interrogate a multi-drop Serial Wire system to establish which devices are connected – no
communication with a device is possible without prior selection of that target using its target ID. Therefore
connection to a multi-drop Serial Wire system requires that either:

• The host is configured with knowledge of the devices in the system before connection.

• The host attempts auto-detection by issuing a target select command for each of the devices it has been
configured to support. While this is likely to involve a large number of target select commands, it should
be possible to iterate through all the supported devices in a reasonable time from the point of view of a
human user of the debug tools.

The practical implications of this restriction are that debug tools will not be able to seamlessly connect to targets in
a multi-drop Serial Wire system that they have never seen before. However, if the debug tools can be provided
with the target ID of such targets by the user then the contents of the target can be auto-detected as normal.

This limitation allows for significant savings in design complexity.

7.3 Target selection protocol

A host selects a new target by doing the following:

1. Perform a line reset.

2. Write to DP register 0xC, TARGETSEL, where the data indicates the selected target. The target response
must be ignored.

3. Read from the DP register 0x0, DPIDR, to verify that the target has been successfully selected. A write to
the TARGETSEL register must always be followed by a read of the DPIDR register or a line reset. If the
response is incorrect or there is no response, the host must start the sequence again.

In Serial Wire protocol version 1, the host can attempt a read of DPIDR to recover from a protocol error. With
Serial Wire protocol version 2, the host must reselect the target, including performing a line reset.

Note

A line reset will cause the STICKYORUN flag in the DP CTRL/STAT register to be set to 1 if overrun detection is
enabled, that is, if the ORUNDETECT bit is set to 1. The host must not switch targets when the ORUNDETECT bit
is set to 1.

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 41 of 48

The target is selected on receiving a line reset sequence.

If, following a line reset sequence, the target receives a write to the TARGETSEL which does not select the target,
the target is deselected. When deselected, the target ignores all accesses and must not drive the line. Only writes
to TARGETSEL immediately following a line reset sequence can select or deselect the target. Writes to
TARGETSEL at any other time are UNPREDICTABLE.
If the target encounters a protocol error at any time, it becomes deselected. It particular, it will not respond to a
read of the DPIDR register.

The target does not drive the wire during the response phase of the write to the TARGETSEL register. That is, it
provides the protocol error response. This prevents the wire from being driven in different directions by different
devices, as multiple devices might be selected at this point.
A parity error in the data phase of a write to the TARGETSEL register does not cause the WDATAERR flag to be
set to 1. Parity errors in the write phase of a TARGETSEL write are treated as protocol errors.
Accesses to the TARGETSEL register are not affected by the state of the CTRL/STAT WDATAERR,
STICKYERR, STICKYCMP or STICKYORUN flags.

Implementations of Serial Wire protocol version 2 must also support Dormant operation. See Dormant operation
on page 33.

7.4 Programmer's model

7.4.1 Target Selection Register, TARGETSEL

The Target Selection Register, TARGETSEL, is:
• a DATA LINK DEFINED write-only register
• defined by the Serial Wire protocol version 2
• accessed by a write of DP register 0xC
• previously reserved and named ROUTESEL.

On a write to TARGETSEL following a line reset sequence, the target is selected if bits [27:0] match
TARGETID[27:0] and bits [31:28] match DLPIDR[31:28]. Figure 28 shows the register bit assignments.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TINSTANCE TPARTNO TDESIGNER 1

Figure 28: Target Selection Register bit assignments

For a description of these fields, see The Target Identification Register, TARGETID on page 28 and The Data Link
Protocol Identification Register, DLPIDR on page 29.

Writing the value with all bits set deselects all targets. Writing any other value with bits [11:8] set to 0b1111 or
0b0000, or with bit [0] set to 0b0 is UNPREDICTABLE.

Accesses to TARGETSEL are treated differently to accesses to other DP registers. For more information see
Target selection protocol on page 40.

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 42 of 48

8 APPENDIX: SERIAL WIRE PROTOCOL

8.1 Introduction

This section describes the synchronous Serial Wire protocol.

Serial Wire operates with a synchronous serial interface. This uses a single bidirectional data signal, and a clock
signal.

8.2 Clocking

The Serial Wire interface clock can be asynchronous to any system clock, including the debug logic clock. The
Serial Wire interface clock can be stopped when the debug port is idle.

The host must continue to clock the interface for a number of cycles after the data phase of transactions. This
ensures that the transaction can be clocked through the Serial Wire interface. This means that after the data
phase of transactions the host must do one of the following:

• immediately start a new transaction
• continue to clock the Serial Wire interface until the host starts a new transaction, inserting idle cycles
• after clocking out the data parity bit, continue to clock the Serial Wire interface inserting idle cycles until it

has clocked out at least 8 more clock rising edges, before stopping the clock.

See also Idle cycles on page 43.

8.3 Overview of Serial Wire interface

This section gives an overview of the physical Serial Wire interface.

8.3.1 Line interface

The Serial Wire interface uses a single bidirectional data pin, SWDIO. That is, the same signal is used for both
host and target sourced signals. The host emulator drives the protocol timing: only the host emulator generates
packet headers.

The Serial Wire interface is synchronous, and requires a clock pin, SWCLK.

Synchronous operation uses a clock reference signal, which can be sourced from the target and exported, or
provided by the host. This clock is then used by the host as a reference for generation and sampling of data so
that the target is not required to perform any over-sampling.

Both the target and host are capable of driving the bus HIGH and LOW or tri-stating it. The ports must be able to
tolerate short periods of contention to allow for loss of synchronization.

8.3.2 Line pull-up

So that the line can be assumed to be in a known state when no interface is driving the line, a 100kΩ pull-up is
required at the target, but this can only be relied on to maintain the state of the wire. If the wire is driven LOW and
released, the pull-up resistor eventually brings the line to the HIGH state, but this takes many bit periods.

The pull-up is intended to prevent false detection of signals when no host is connected. It must be of a high value
to reduce current consumption from the target when the host actively pulls down the line.

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 43 of 48

Note

A small current drains from the target whenever the line is driven LOW. If the interface is left connected for
extended periods when the target has to use a low power mode, the line must be held HIGH, or reset, by the host
until the interface is activated.

8.3.3 Line turn-round

To avoid contention, a turnaround period is required when the device driving the wire changes.

8.3.4 Idle cycles

Following transactions, the host must either insert idle cycles or continue immediately with the start bit of a new
transaction. The host clocks the Serial Wire interface with the line LOW to insert idle cycles.

8.3.5 Protocol errors

If the Serial Wire interface detects a protocol error in a packet header it enters the protocol error state. A protocol
error is one of:

• the Parity bit does not match the parity of the packet header
• the Stop bit is not 0
• the Park bit is not 1.

In the protocol error state, the interface leaves the line not driven and waits for the host to re-try with a new
header, normally after a single idle cycle.

If overrun detection is enabled, the interface must wait until the data phase of the transaction has completed
before entering the protocol error state.

It is IMPLEMENTATION DEFINED whether the interface can leave the protocol error state on a read of the DP DPIDR
register. The interface can always leave the protocol error state on a line reset.

When in protocol error state, if the interface detects a valid packet header other than the read of the DP DPIDR
register, or the interface detects an IMPLEMENTATION DEFINED number of further protocol errors, it enters the lockout
state. ARM recommends that the interface locks out after one further protocol error in the protocol error state.

The Serial Wire interface only leaves the lockout state on a line reset. (If the interface cannot leave the protocol
error state on a read of the DP DPIDR register then the protocol error and line reset states are equivalent.)

If the Serial Wire interface implements Serial Wire protocol version 2, it must lock out after a single bad data
sequence immediately following line reset, and the host should attempt the line reset immediately after the
unexpected response. However, if the first sequence detected by the Serial Wire interface following line reset is
valid it may then revert to only locking out after multiple bad data sequences.

If the host does not see an expected response from the Serial Wire interface, it should leave the line not driven for
at least the length of any potential data phase and then attempt a line reset. The host may attempt reads of the
DP DPIDR register before attempting line reset, as the target may respond and leave the protocol error state as
described above, but this approach is not recommended.

8.3.6 Line reset

The Serial Wire interface does not include a reset signal. A line reset is achieved by holding the data signal HIGH
for at least 50 clock cycles, followed by at least one idle cycle.

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 44 of 48

SWCLKTCK

SWDIOTMS

at least 50 clocks with
SWDIOTMS HIGH

1
at least

one
Idle

cycle

S
ta

rt

A
P

nD
P

0 1

R
nW

A
[2

:3
]

0 0 1 0 1

P
ar

ity

S
to

p

P
ar

k

Figure 29: Line reset sequence, followed by read of DP DPIDR register

A line reset is required when first connecting to the target. A line reset is also required following an error. See
Protocol errors on page 43.

When waiting for a packet header, if the Serial Wire interface detects a sequence of 50 clock cycles with the data
signal held HIGH followed by at least one idle cycle, it must enter the reset state. It is IMPLEMENTATION DEFINED
whether a sequence of 50 clock cycles with the data signal held HIGH detected at any other time causes the
interface to enter the reset state.

The interface also enters reset state following a Serial Wire select sequence, as defined by Multiple Protocol
Interoperability on page 30.

The only valid transactions in reset state are:
• A read of the DP DPIDR register. This takes the connection out of reset state.
• One of the switching sequences defined by Multiple Protocol Interoperability on page 30.
• A write to the DP TARGETSEL register. If this selects the target, the interface remains in reset state.

Note

Only writes to TARGETSEL immediately after entry to the reset state can select or deselect the target.
See Target selection protocol on page 40 .

Any of these sequences can be aborted by a second line reset. The behavior of the target is UNPREDICTABLE if any
other transaction is made in reset state.

If the host does not see an expected response from reading the DPIDR register, it must retry the reset sequence.
This is because the interface may have been in a state where, for example, it treated the initial line reset as a data
phase of a transaction and so did not detect it as a valid line reset. If this is the case, the interface will have
detected the line reset as a protocol error and require a second line reset to correctly respond.

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 45 of 48

9 APPENDIX: STANDARD MEMORY ACCESS PORT DEFINITIONS

9.1 Introduction

The Memory Access Port (MEM-AP) programmer’s model contains some IMPLEMENTATION DEFINED features. This
appendix provides reference implementation options for implementers and users of MEM-APs when connecting to
standard memory interfaces. In particular, it provides the recommended interpretations of the Prot, AddrInc,
SPIDEN and Size fields of the CSW register.

9.2 AMBA AHB

For more information, see AMBA™ Specification (Rev 2.0), and AMBA® 3 AHB-Lite Protocol Specification. For
AMBA AHB implementations, the CSW register is implemented as follows:

Prot, bits [30:24]
The CSW.Prot field drives the AHB HPROT signals. The reset value of CSW.Prot is 0b0000011. The
settings for the CSW.Prot field are:

Bit [30]
Reserved, SBO. If this bit is written as 0 the behavior of AHB-AP transactions is UNPREDICTABLE.

MasterType, bit [29]
Master Type bit. MasterType allows the AHB-AP to mimic a second AHB master by driving a
different value on HMASTER[3:0]. Support for this function is IMPLEMENTATION DEFINED.
1 Drive HMASTER[3:0] with the bus master ID for the AHB-AP.
0 Drive HMASTER[3:0] with the bus master ID for the second bus master.

If this function is not implemented the bit is RAZ/WI.

HPROT[4], Allocate, bit [28]
Drives HPROT[4], Allocate. HPROT[4] is an ARMv6 extension to AHB. For further information,
see ARM1136JF-S™ and ARM1136J-S™ Technical Reference Manual.

If the AHB master interface does not support the ARMv6 extension to AHB, this bit is RAZ/WI.

HPROT[3:0], bits [27:24]
Drives HPROT[3:0]. See Table 11. Support for each HPROT signal in the AHB master interface
is IMPLEMENTATION DEFINED.

Bit HPROT signal Description Description if not implemented
at the AHB master interface

27 HPROT[3] Cacheable RAZ/WI

26 HPROT[2] Bufferable RAZ/WI

25 HPROT[1] Privileged RAO/WI

24 HPROT[0] Data RAO/WI

Table 11: CSW.Prot to HPROT mapping

SPIDEN, bit [23]
It is IMPLEMENTATION DEFINED whether the CSW.SPIDEN bit reflects the state of the CoreSight
authentication signal, SPIDEN. Otherwise, the CSW.SPIDEN bit is RAZ.

Note

AMBA AHB does not support Security Extensions.

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 46 of 48

AddrInc, bits [5:4]
Support for the Increment Packed mode of transfer is IMPLEMENTATION DEFINED. See Required support of
Memory Access Port (MEM-AP) packed transfers on page 16.

Size, bits[3:0]
CSW.Size must support word, half-word and byte sized accesses.

9.3 AMBA APB

For more information, see AMBA™ Specification (Rev 2.0), and AMBA™ 3 APB Protocol Specification. For AMBA
APB implementations, the CSW register is implemented as follows:

Prot, bits [30:24]
 Reserved, UNK/SBZP.

SPIDEN, bit [23]
 Reserved, UNK.

AddrInc, bits [5:4]
CSW.AddrInc does not support the Increment Packed mode of transfer. See Required support of Memory
Access Port (MEM-AP) packed transfers on page 16.

Size, bits [3:0]
CSW.Size only supports word accesses, and reads as 0b010. Writes to CSW.Size are ignored.

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 47 of 48

10 APPENDIX: CROSS-OVER WITH THE ARM® ARCHITECTURE

10.1 Introduction

The ARM Debug Interface v5 is the recommended external debug interface for ARMv6-M and all ARMv7
architecture profiles. This section describes the recommended or required options for each variant.

When designing with ARM Cortex™ processor cores and ARM CoreSight™ Design Kits, the choice of Debug
Access Port (DAP) features might be at the discretion of the system designer. ARM recommends that system
designers choose a DAP that implements all the recommended features for all ARM architecture processors
contained in the design.

ADIv5 might also be used with other architecture variants. For example, an ADIv5 JTAG Access Port (JTAG-AP)
might be used to access a Debug Test Access Port (DBGTAP), as defined by ARM Debug Interface v4 (ADIv4)
for ARMv6 architecture processors.

10.2 ARMv6-M

ARMv6-M requires an ADIv5-compliant DAP.

ARM recommends that the Debug Port (DP) implements the Serial Wire interface, either through a SW-DP or
SWJ-DP. A JTAG-DP is permitted. ARM recommends that the DP implements the MINDP model.

There must be one MEM-AP per processor. That MEM-AP must be capable of addressing the complete memory
space visible to the processor, including all debug peripherals and the NVIC. The MEM-AP must support byte,
half-word and word accesses to memory. The MEM-AP is not required to support the packed increment transfer
mode.

Other Access Ports (APs) may be connected to the DAP.

10.3 ARMv7-M

ARMv7-M requires an ADIv5-compliant DAP.

ARM recommends that the DP implements the Serial Wire interface, either through a SW-DP or SWJ-DP. A
JTAG-DP is permitted. ARM recommends that the DP does not implement the MINDP model.

There must be one MEM-AP per processor. That MEM-AP must be capable of addressing the complete memory
space visible to the processor, including all debug peripherals and the NVIC. The MEM-AP must support byte,
half-word and word accesses to memory. ARM recommends that the MEM-AP does support the packed
increment transfer mode.

Other APs may be connected to the DAP.

10.4 ARMv7-A and ARMv7-R

ARMv7-A and ARMv7-R do not require an ADIv5-compliant DAP. Although the ADIv5 interface is not required for
compliance with ARMv7, the ARM RealView® tools require this interface to be implemented.

Where an ADIv5-compliant DAP is implemented, ARM recommends that the DP implements the JTAG and Serial
Wire interfaces through an SWJ-DP. ARM recommends that the DP does not implement the MINDP model.

Many processors can be connected to a single MEM-AP. That MEM-AP need only be capable of addressing the
debug peripherals of those processors. If the MEM-AP can address only debug peripherals, it is only required to
support word accesses to memory, and therefore does not need to support the packed increment transfer mode.

ARM recommends that debug implementations include a MEM-AP that can address the complete memory space
visible to the processor or processors. This is typically a second MEM-AP in the DAP. ARM recommends that a

ARM® Debug Interface v5 Architecture Specification ADIv5.1 Supplement

DSA09-PRDC-008772 1.0 Copyright © 2007-2009 ARM Limited. All rights reserved. Page 48 of 48

MEM-AP that can access the complete memory space supports byte, half-word and word accesses to memory.
ARM recommends that this MEM-AP does support the packed increment transfer mode.

Other APs may also be connected to the DAP.

10.5 Summary

Table 12 summarizes the recommended and required elements of an ADIv5 implementation for each of the ARM
architecture variants for which ADIv5 is the required or recommended DAP.

 ARMv6-M ARMv7-M ARMv7-R and ARMv7-A

ADIv5-compliant DAP Required Required Recommended

Debug Port elements:

JTAG-DP Permitted Permitted Permitted

SW-DP - - Permitted

SWJ-DP - - Recommended

SWJ-DP or SW-DP Recommended Recommended -

Not MINDP Permitted Recommended Recommended

Memory Access Port elements:

One MEM-AP per processor Required Required Permitted

MEM-AP access to system memory Required Required Permitted

MEM-AP support for 8-bit and 16-bit accesses Required Required Required only if system
access is supported

MEM-AP support for 32-bit accesses Required Required Required

MEM-AP support for packed increment transfers Permitted Recommended Recommended

Table 12: Recommended ADIv5 implementations for ARM® Architecture variants

