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1 ABOUT THIS DOCUMENT 

1.1 Change History  

Issue Date Change 

0.1 9/6/2001 First Draft for Domino.Doc 

1.0 9/28/2001 First Release on Domino 

2.0 9/28/2001 Update to document title 

3.0 10/10/2001 Changed header to 1022E 

4.0 5/1/2002 Added SMULxy errata 

Added AHB HTRANS errata 

5.0 6/25/2001 Changed title on Domino 

6.0 6/25/2002 Added CP15 LT bit errata 

7.0 9/12/2002 Added Breakpoint and Incorrect Halting erratas 

8.0 10/24/2002 Added Qflag Errata 

9.0 5/13/2003 Added Erroneous BIU read 

Added unable to entry Debug state 

10.0 5/20/2003 Updated the English in above errata entry 

11.0 

12.0 

5/21/2003 

6/17/2003 

Changed minor error in Abstract 

Added r0p2 into table to show cat 1 errata fix 

   

1.2 References 

This document refers to the following documents. 

Ref.  Document No Author(s) Title 

    

1.3 Scope 

This document describes the errata discovered in the implementation of the ARM1022E Rev 0.0, categorised by 
level of severity. Each description includes: 

• where the implementation deviates from the specification 

• the conditions under which erroneous behaviour occurs 

• the implications of the erratum with respect to typical applications 

• the application and limitations of a ‘work-around’ where possible 

• the status of corrective action. 
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1.4 Terms and Abbreviations 

This document uses the following terms and abbreviations. 

Term Meaning 
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2 CATEGORISATION OF ERRATA 
Errata recorded in this document are split into three groups: 

 

Category 1 Features which are impossible to work around and severely restricts the use of 
the device in all or the majority of applications rendering the device unusable. 
 

Category 2 Features which contravene the specified behaviour and may limit or severely 
impair the intended use of specified features but does not render the device 
unusable in all or the majority of applications. 

 
Category 3 Features that were not the originally intended behaviour but should not cause any 

problems in applications. 

 

2.1 Errata Summary 

The ARM1022E r0p2 is the current revision available and has known errata, as indicated by the table in the 
section below. 

2.2 Product Revision and Errata Summary Table 

The errata associated with this product are categorised in the following way.  

 

Errata Description  Rev r0p0 Rev r0p1 Rev r0p2 

Category 1     

3.1) Erroneous Data Bus Interface AHB read preceding a buffered write/data 
cache eviction sequence in all HCLK:GCLK ratios 

Yes Yes No 

Category 2    

4.1) Erroneous Q Flag Value for Enhanced DSP Multiply-Accumulate 
Following Bounced Coprocessor Instructions/Hardware Watchpoints 

Yes Yes Yes 

4.2) Breakpoint Instructions and Branch Prediction in Halt (Hardware) 
Debug  Mode 

Yes Yes Yes 

4.3) ARMV5TE SMULxy multiply instruction failure under special conditions Yes No No 

4.4) Incorrect halting (hardware) debug interaction with exceptions Yes Yes Yes 

4.5) Unable to enter debug state on EDBGRQ or JTAG HALT in a predicted 
branch-to-self loop 

Yes Yes Yes 

Category 3    

5.1) AHB Compliance Problem With HLOCK Signal Yes Yes Yes 

5.2) AHB AMBA Rev 2.0 Compliance Problem With HTRANS Yes No No 

5.3) CP15 control register 1 LT bit set causes erroneous behaviour Yes Yes Yes 

5.4) DFT: HRESPI[1], HESPI[0], HRESTP[1], HRESPD[0] input ports do not 
have wrapper cells 

Yes Yes Yes 
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3 CATEGORY 1 ERRATA 

3.1 Erroneous Data Bus Interface AHB read preceding a buffered write/data 
cache eviction sequence in all HCLK:GCLK ratios (r0p0, r0p1) 

3.1.1 Summary 

Under certain conditions, the processor may issue a data AHB read transaction, which does not represent any 
executed instruction. The read is an error in the processor behaviour and will result when the processor executes 
a load instruction, which misses and causes a data cache linefill, which generates an eviction/castout, followed by 
a buffered store. If the buffered store timing is correct, the erroneous data AHB read will result. 

Note that the behaviour has been found to be present for all clock ratios (integer multiples) between the data AHB 
clock, HCLK, and the processor clock, GCLK. 

3.1.2 Description 

The conditions which generate the errata can be described using the following instruction sequence and one other 
sequence which will be described later. 

 

  LDR rX      * generates a cache linefill and castout/eviction 

  STR rY      * placed into the write buffer 

 (B rZ or NOP or LDR rZ or STR rZ)  * optional instruction 

 

The correct behaviour of the executed instructions on the data AHB interface can be seen below, when excluding 
the optional instructions: 

 … -> LINEFILL rX -> IDLE -> EVICTION rA -> IDLE -> STORE rY -> … 

In the diagram above the LDR rX instruction generates a cache linefill followed by a cache eviction at address rA. 
The processor will then detect the presence of the STR rY instruction in the write buffer. The data BIU will then 
issue a buffered write. Depending on the optional instruction, the processor may execute a non-load/store 
instruction (NOP, B rZ, other), it may execute a LDR rZ instruction (memory regions CB, CNB, NCB, or NCNB), or 
it may execute a STR rZ instruction (memory regions CB, CNB, NCB, or NCNB). The optional instruction 
executed, if a load or store which needs to access the data AHB interface, will then generate a transfer on AHB 
corresponding to the load or store. 

If the erroneous behaviour arises, the processor will issue an additional data AHB load prior to the STR rY 
operation being presented onto the data AHB interface. This erroneous data AHB load can be to two distinct 
addresses depending upon the timing of the optional instruction with respect to the STR rY instruction, the 
processor clock ratio and the behaviour of the data AHB signals (HGRANTD, HREADYD, HRESPD[1:0], …). 

It has been found that four possible scenarios can be generated which always results in an erroneous data AHB 
load transfer. 

1. A load is issued from the processor onto the data AHB interface to address rY with the following data AHB 
outputs: HTRANS=NSEQ, HBURST=SINGLE, HPROT=attributes of STR rY, HWRITE=read, 
HSIZE=BYTE. The buffered write, STR rY, will be adjacent and following the erroneous load to address rY 
on the data AHB interface. The sequence is shown below which represents data AHB transfers: 

IDLE -> LOAD rY -> STORE rY -> IDLE 

2. A load is issued from the processor onto the data AHB interface to address rY with the following data AHB 
outputs: HTRANS=NSEQ, HBURST=SINGLE, HPROT=attributes of STR rY, HWRITE=read, 
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HSIZE=BYTE. The buffered write, STR rY, will be not be adjacent, but following an IDLE transfer which 
follows the erroneous load to address rY on the data AHB interface:  

IDLE -> LOAD rY -> IDLE -> STORE rY -> IDLE 

3. A load is issued from the processor onto the data AHB interface to address rZ with the following data AHB 
outputs: HTRANS=NSEQ, HBURST=SINGLE, HPROT=attributes of LDR/STR rZ, HWRITE=read, 
HSIZE=BYTE. The buffered write, STR rY, will be adjacent and following the erroneous load to address rZ 
on the data AHB interface. The sequence is shown below which represents data AHB transfers:  

IDLE -> LOAD rZ -> STORE rY -> IDLE -> LOAD/STORE rZ 

4. A load is issued from the processor onto the data AHB interface to address rZ with the following data AHB 
outputs: HTRANS=NSEQ, HBURST=SINGLE, HPROT=attributes of LDR/STR rZ, HWRITE=read, 
HSIZE=BYTE. The buffered write, STR rY, will be not be adjacent, but following an IDLE transfer which 
follows the erroneous load to address rZ on the data AHB interface:  

IDLE -> LOAD rZ -> IDLE -> STORE rY -> IDLE -> LOAD/STORE rZ 

From the four possible scenarios, it can be noted that the erroneous load to either address rY or rZ is not a 
random address but a predictable address. It can also be noted that the erroneous load to address rY will always 
be to a region of memory that is cacheable. Further, it can be noted that the erroneous load to address rZ can be 
to any memory region: CB, CNB, NCB, or NCNB. The last thing to note is that the erroneous transfer will never be 
a store. 

A new fifth case can also occur and is a result of the “optional” instruction being a branch or a MRC/MCR to 
coprocessor 15. In these cases, the mangling of the address, as will be described, will be presented on the data 
BIU interface and will be the address of the phantom load. 

5. A load is issued from the processor onto the data AHB interface to address rZ with the following data AHB 
outputs: HTRANS=NSEQ, HBURST=SINGLE, HWRITE=read, HSIZE=BYTE. The buffered write, STR rY, 
may or may not be adjacent:  

IDLE -> LOAD rZ [-> IDLE] -> STORE rY -> IDLE 

Using the code sequence below, the branch issue will be detailed to describe all operations that can possibly 
mangle the address to the data BIU. 

 
   Loop_41 
         LDR     r5,[r1]          ; generate write data 
         29 NOPs 
         STR     r11,[r8] 
         LDR     r7,[r12]         ; 
         B  loop_41a              ;  continue 
         NOP 
   Loop_41a 
         STRB    r4,[r1],#0x20    ; write 1 byte and increment address by 32 
         B  loop_41               ;  continue 
 

There are two cases that have been identified and have been reviewed by ARM which cause the phantom read 
operation to result in a mangling of a branch target address and a previous load/store lookup. To discuss these, 
lets first review the issue of how the phantom read is constructed. 

 

The phantom read can only be produced in the ARM1020E/ARM1022E macrocell due to a missing 
qualifier in the data AHB bus interface unit. The data BIU must be completing a cache eviction, as a result 
of a cache linefill, and at the end of that eviction a bufferable store must be placed into an empty write 
buffer. Upon completing the eviction on the data AHB interface, the macrocell will under certain conditions 
issue a read to some address (to be known as a phantom read). The phantom read due to AHB 
conditions may be adjacent to the buffered write from a bus transaction perspective. If it is not, the cycles 
between the phantom and the buffered write will always be IDLE transfer cycles. 
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The address of the phantom read is in question. Due to the severity of the bug (category 1), a design modification 
must be performed. However, ARM has been determining whether there is a possible software work-around for 
any partner which has a closed looped system (i.e. complete control over the software and hardware). To this end 
the conditions that have been defined are as follows in the software and hardware: 

 
  1a) all memory regions and page entries fall into two categories: 
        a) write back  
        b) non-cacheable non-bufferable (NCNB) 
  2a) any read destructive regions of memory must be safe guarded due 
      to the phantom read corrupting that region.  
  3b) read destructive regions only all into category NCNB. 
 

With these restrictions, the expected address of the phantom read should be restricted to load/store instructions; 
however, revisiting the load/store adder usage, the load store unit can be used to calculate addresses for the 
following set of instruction: 

 
  1b) LDR/STR 
  2b) LDC/STC 
  3b) LDM/STM 
  4b) LDRD/STRD 
  5b) PLD 
  6b) SWP 
  7b) MRC/MCR to coprocessor 15 
  8b) B,BL,BX,BLX (branches) 
  9b) MOV RC, Rx, <sh> #0 
 

The instructions of interest are items 7b, 8b, and 9b. These are non-load/store operations. Item 7b is an 
interesting case since the operation is to coprocessor 15. The instructions that utilize the load/store adder are 
shown below, with rX being the register used to hold the address for the coprocessor 15 instruction: 

 
  MCR/MRC p15,0,rX, c7,cY,Z => CP15 cache ops   
  MCR/MRC p15,0,rX, c8,cY,Z => CP15 MMU ops 
  MCR/MRC p15,0,rX, c9,cY,Z => CP15 cache lockdown control 
  MCR/MRC p15,0,rX,c10,cY,Z => CP15 MMU lockdown control 
  MCR/MRC p15,0,rX,c15,cY,Z => CP15 test ops 
 

Items 8b and 9b are operations which use the PC of the machine, implying that the destination of the operation 
will be in a segment of code and not a read destructive location of memory. Note that in these particular cases, the 
load/store adder is used to calculate the target of a branch. Note that in the original instruction sequence 
described, the sequence of  

 
               LDR a -> BR x -> ... -> STR b -> BR y 
 

is described. The branch target will get mangled with a historical load/store access which used the memory 
management unit, MMU, where the MMU is holding the historical access address and page information. So in the 
case of the access being to a 1MB section, the combined address would be a combination of the historical 
load/store access address bits [31:20] with the branch target address bits [19:2] and bits [1:0] being zeros. Note 
that the following combinations of address can be realized: 

 
                    historical    branch   constant 
                    load/store    target    zero 
   1MB section  =>    [31:20]     [19:2]    [1:0] 
  64KB page     =>    [31:16]     [15:2]    [1:0] 
  16KB sub-page =>    [31:14]     [13:2]    [1:0] 
   4KB page     =>    [31:12]     [11:2]    [1:0] 
   1KB page     =>    [31:10]     [ 9:2]    [1:0] 
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In the example code shown above and in all cases due to timing, key word being timing, of the executed branch 
instructions relative to the bufferable store instruction, the phantom read address may be to the following and only 
the following: 

 
  1c) (B loop_41a) combined with (STR r4, [r1], #0x20) 
  2c) (STR r4, [r1], #0x20) 
  3c) (B loop_41) combined with (STR r4, [r1], #0x20) 
  4c) (B loop_41a) combined with (LDR r7, [r12]) 
  5c) any load/store operation following (STR r4, [r1], #0x20) 
 

Note that every scenario is 100% a function of timing and cannot be controlled by the processor during the 
execution of a particular code segment. This is due to the many conditions which arise. For example, when and 
how often do cache evictions occur, timing of linefills, clock ratio of core-to-bus, stalls on the bus, stalls in the 
processor pipeline, conditional execution of instructions, asynchronous events presented to the processor, etc. 

To further analyse the issue, one must question whether item 5c above can be a mangling of a load/store 
operation with a branch target. The data BIU construction is such that it will block all subsequent addresses, 
excluding a bufferable store, and will cause the data BIU to stop sampling a new physical address. Therefore, the 
phantom can additionally be to the load/store address for item 5c. In the case of the buffered write for item 5c, 
timing will permit a mangled address to be presented for the bufferable store. Note that the address will always be 
limited to the same page as the bufferable store and, hence, will have the same memory characteristics as the 
bufferable store in terms of memory region type.  

A possible software fix for a closed loop system is to do the following: 

 
  1d) determine in software and hardware all memory accesses which can cause 
      a read of that memory to be read destructive. this may be a peripheral 
      register as well. 
  2d) modify using the code template below all read destructive access as  
      follows: 
 
                < disable all interrupts > 
                LDR rA, [rY]                 ; non-cacheable load to an area 
                                             ; of memory that is not read 
                                             ; destructive 
                LDR rB, [rZ]                 ; read destructive access 
                < enable all interrupts > 
 

This fix will force the phantom's address, if phantom present, to become the address of item 2d's load to address 
rY. Note that this is not the read destructive address of items 2d's load to address rZ. Interrupts have to be 
disabled in order to remove the possibility of the asynchronous interrupt re-creating the behaviour. 

3.1.3 Conditions 

This problem can only occur if the processor has enabled the memory management unit, MMU, the data cache, 
and the write buffer. The MMU must have page entries programmed such that they support CB memory regions in 
order to produce a data cache eviction/castout.  

3.1.4 Implications 

If the erroneous data AHB load operation is to a read destructive region of memory, reading memory can cause 
loss of program data. An example of this is the reading of an interrupt vector register or a peripheral shift register. 
If the erroneous data AHB load is not to a read destructive region of memory, reading memory should cause no 
loss of program data. 

An important point to note is that the erroneous data AHB load will never return the read data on HRDATAD or 
response of error on HRESPD to the processor. Hence, there will never be corruption of the register file or 
signalling of a data abort to the processor. 
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3.1.5 Workaround 

Known solutions to the erroneous data AHB load are as follows: 

• the MMU page tables can only be programmed to support NCNB, NCB, and CNB. CB must be converted 
to CNB. 

• the write buffer must be disabled using CP15 register 1 bit 3, W bit. This will in turn cause all buffered 
stores to become non-buffered stores. 

• software must safe-guard all read destructive operations by using the following sequence: 

1. execute the buffered store at rY 

2. disable all interrupts 

3. perform a NCNB load to a memory location that is not read-destructive 

4. perform the optional LDR/STR at rZ, where this operation is read-destructive 

5. enable all interrupts 

All known solutions require a dramatic impact to the performance of the processor. Or the solution will require 
extreme modifications to software. 

 

 



  ARM1022E Rev0 Errata  

 

 Copyright © 2001, 2002, 2003 ARM Limited. All rights reserved. Page 12 of 12. 

4 CATEGORY 2 ERRATA 

4.1 Erroneous Q Flag Value for Enhanced DSP Multiply-Accumulate 
Following Bounced Coprocessor Instructions/Hardware Watchpoints  
(r0p0, r0p1) 

4.1.1 Summary 

Certain events that occur on an instruction that is followed by a DSP multiply-accumulate instruction that sets the 
Q flag (SMLAWx or SMLAxy) will show the Q flag set in the CPSR and SPSR_und upon entering the event handler.   
These events include bounced (thrown to software via the undefined instruction handler) coprocessor instructions, 
and watchpoints in hardware debug mode. 

4.1.2 Description 
If a coprocessor instruction (MCR/MRC/STC/LDC/CDP) is executed with the coprocessor number being 0 through 
13, this coprocessor instruction is sent to external coprocessors.  If the given coprocessor does not exist or rejects 
the instruction, the instruction is said to be BOUNCEed.  Likewise, a CP14/15 coprocessor instruction can be 
internally rejected due to permission violations like attempting to run CP15 instructions in user mode or write 
certain CP14 registers in hardware debug mode. 

In these cases, any instructions that are in the pipeline will be flushed and the undefined instruction handler will be 
entered.  However, the flush of the DSP multiply-accumulate instruction is not completed correctly, and the 
resultant Q-flag value generated by this instruction is updated. 

Additionally, if a load or store instruction attempts to read or write from an address that has a watchpoint set on it, 
and the debug is in hardware (halt) mode, and a DSP multiply- accumulate instruction follows the watchpointed 
instruction, the Q-flag will also be set before the watchpoint halts the processor. 

The DSP multiply- accumulate instructions affected by this problem are: SMLABB, SMLABT, SMLATB, 
SMLATT, SMLAWB, and SMLAWT.  The DSP add and subtract instructions are NOT affected. 

4.1.3 Conditions 

This problem can be encountered whenever there is a back-to-back sequence of these two classes of instructions.  
This problem may not be exhibited for all rejected CP14 or CP15 instructions. 

Additionally, if branch prediction is enabled, the two instructions can be separated by a predicted unconditional or 
conditional branch and still exhibit the problem if the branch is predicted properly. 

4.1.4 Implications 

Under most program conditions, a BOUNCEd coprocessor instruction will be either emulated or cause an error 
condition.  In the case of emulation, the coprocessor emulation code must appear transparent to the main 
program and therefore will save and restore the state of the processor before modifying any registers.  
Coprocessors cannot directly read the Q flag, so emulation code will not rely on the Q flag state of the initial 
program.  The emulation code will return to the instruction following the coprocessor instruction, in this case the 
DSP multiply- accumulate instruction.  This instruction will be repeated with identical operands, so the resultant Q 
flag state will be correct after the DSP multiply- accumulate instruction is executed.  Under these conditions, the 
bug is benign, since to the main program code stream will maintain the proper Q flag and the emulation code does 
not rely on a specific value of the Q flag. 

A single exception to this rule is the following code sequence, which contains a move from coprocessor instruction 
followed by a DSP multiply-accumulate instruction that has the source accumulate value Rn dependent on the 
coprocessor instruction: 
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In this case, the SMLABB instruction will initially erroneously generate the Q flag based on the value of r2 prior to 
the MRC instruction.  The emulation code will update r2 with the correct value, and return to the SMLABB 
instruction.  However, the Q flag is sticky, and if the initial r2 prior to the MRC caused an overflow, and the value 
of r2 written by the MRC emulation code does not, then the Q flag will remain set, potentially causing a failure in 
the main program code. 

Note This problem is not exhibited if the dependency is in either of the multiply operand source registers Rm or 
Rs.  These are the second or third field of the SMLABB instruction shown above. 

For the case of hardware debug watchpoints, the user should be aware that the state of the Q bit read out from 
the processor may be prematurely set if a watchpoint is hit on a load or store instruction that occurs directly before 
a DSP multiply-accumulate instruction.  This can be determined by inspection of the code stream around the 
halted program counter address. 

4.1.5 Workaround 

The workaround is to place at least one instruction, like a NOP, between the coprocessor and the DSP multiply- 
accumulate instruction. 

4.2 Breakpoint Instructions and Branch Prediction in Halt (Hardware) 
Debug  Mode (r0p0, r0p1) 

4.2.1 Summary 

  When debugging using halt (hardware) mode such as when attached to Multi-ICE™, one must be aware of 
issues with using the software breakpoint instruction BKPT when branch prediction is enabled.  A breakpoint 
instruction placed at the speculatively issued target instruction of a predicted branch will trigger irrespective of 
whether the prediction is correct or not.   

4.2.2 Description 

  The BKPT instruction is an ARM or Thumb mode instruction, with encoding of E12xxx7x in ARM mode and 
BExx in Thumb mode, where ‘x’ represents an immediate value.  If branch prediction is enabled, and halt mode 
debugging has been enabled, a BKPT instruction inserted in the code stream as the first instruction following a 
predicted conditional branch will always halt the core.  This occurs when the BKPT instruction is inserted: 

1. At the address immediately following a forward conditional branch.  This branch is predicted not taken, so 
the instruction immediately following the branch is speculatively issued. 

2. At the target address of a backwards conditional branch.   This branch is predicted taken, so the 
instruction pointed to as the target of the branch is speculatively issued. 

BKPT instructions placed after unconditional, predictable branches or branch-and-link instructions do not trigger 
this problem.  A BKPT instruction inserted as or after the 2nd instruction speculatively issued as the target of a 
predicted branch will not trigger this problem. 

 

4.2.3 Conditions 

This problem can only occur during use of halting (hardware) debug.  It cannot occur in normal operation or when 
using monitor mode (non-stop) debug. It will occur only when a software BKPT instruction is placed at the target of 
a predicted conditional branch, as described above.  

MRC p9, 0, r2, c0, c0, 0 
SMLABB r7, r9, r0, r2 
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4.2.4 Implications 

  The failure mechanism associated with this errata is a disruption of the program flow.  Assume the following code 
sequence is being debugged in halt mode: 

 

   CMP r0, #0 
   BNE Forward 
   BKPT 0 
   … 
   … 
  Forward … 
   … 

 

  This errata causes the ARM1020E to always halt at the breakpoint instruction irrespective of the value of r0.  The 
debugger reads out the current program counter (pc) value to determine where the code execution was stopped, 
and the pc will point to the breakpoint instruction. Code resumption would occur at the address immediately 
following the breakpoint instruction, leading to the incorrect code stream being executed. 

  There are no implications for the use of hardware (CP14 register) breakpoints in any debug mode. 

  There are no implications for monitor mode (non-stop) debug or normal operational mode. 

4.2.5 Workaround 

The ideal solution would be to disallow BKPT instructions that exist as the target of a predicted branch.  However, 
in practice, this is difficult to enforce, as backwards conditional branches are predicted taken, and a debugger 
usually cannot determine whether an instruction is a predicted target of a branch. 

 So two workable solutions exist: 

  1.  When doing halt-mode debugging and utilizing BKPT instructions, branch prediction should be turned off. 

  2. The halt-mode debugger should only use hardware (register) breakpoints when debugging the ARM1020E 
target. 
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4.3 ARMV5TE SMULxy multiply instruction failure under special conditions 
(r0p0) 

4.3.1 Summary 

The ARMV5TE SMULxy multiply instruction may fail when followed by any multi-cycle multiply instruction. 

4.3.2 Description 

When any ARMV5TE SMULxy, the only single-cycle multiply instruction, is held over in Execute by a previous 
instruction AND the next instruction is a multi-cycle multiply or multiply-accumulate, the ARMV5TE SMULxy 
multiply will fail. 

4.3.3 Conditions 

All of these failures require that the first ARMV5TE SMULxy multiply be held in Execute by a preceding instruction. 
Holding the next instruction in the Execute stage can happen for many reasons; the example below illustrates one. 
The reason LDMIA holds the next instruction in the Execute stage is because r7 is also in the register list. Since it 
is possible for a data abort occur on the transfer, internal core hold signals prevent the overwriting of r7 until the 
transfer is successful. The side effect of this is to hold off the next instruction in the pipeline. 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scenarios: 
1)   SMULBB   ; Held in Ex by preceding instruction.  
     SMLATT   ; Fails. // ARMV5TE: 16 x 16 + 32 
 
2)   SMULBT   ; Held in Ex by preceding instruction.  
     SMULWT   ; Fails. // ARMV5TE: 32 x 16  
 
3)   SMULTB   ; Held in Ex by preceding instruction.  
     SMLAWB   ; Fails. // ARMV5TE: 32 x 16 + 32  
 
4)   SMULTT   ; Held in Ex by preceding instruction.  
     SMLALTT  ; Fails. // ARMV5TE: 16 x 16 + 64  
   
5)   SMULBT   ; Held in Ex by preceding instruction.  
     SMULTT   ; Passes… // ARMV5TE: 16 x 16 (single-cycle) 
 
6)   SMULTB   ; Held in Ex by preceding instruction.  
     MUL      ; Fails. // ARMV4T:  32 x 32  
 
7)   SMULTT   ; Held in Ex by preceding instruction.  
     MLA      ; Fails. // ARMV4T:  32 x 32 + 32  
 
8)   SMULBB   ; Held in Ex by preceding instruction.  
     UMULL    ; Fails. // ARMV4T:  32 x 32  
 
9)   SMULBB   ; Held in Ex by preceding instruction.  
     UMLAL    ; Fails. // ARMV4T:  32 x 32 + 64  

Example:  

        LDMIA    r7,{r3,r4,r7} ; Holds next instruction because of possible abort.  
        SMULBB   r10,r13,r13  ; Held in Ex by preceding instruction.  
        UMLAL    r1,r9,r2,r6   ; Multi-cycle multiply instruction. 
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Situations which will fail are:  

• ARMV5TE SMULxy multiply followed by any ARMV4T multiply.  

• ARMV5TE SMULxy multiply followed by any ARMV5TE multiply other than a SMULxy. 

Situations which operate correctly are:  

• Any ARMV4T or ARMV5TE multiply followed by ARMV5TE SMULxy multiply.  

• Any ARMV4T multiply followed by any ARMV4T or ARMV5TE multiply. 

4.3.4 Implications 

If the conditions of this errata are met, the ARMV5TE SMULxy multiply instruction will produce the wrong result. 
Code containing ARMV5TE SMULxy multiply instructions with other multi-cycle multiply instructions immediately 
afterwards should be scrutinized. 

Note that a very common sequence of instructions (particularly in DSP algorithms) is 

 

 

 

 
 

 
where data and coefficients are multiplied and summed in an accumulator, usually within the context of a loop. 
Although adding an additional cycle with a NOP instruction will decrease the performance of the algorithm, the 
effect should be relatively small. Multi-cycle multiple such as SMLAxy are generally grouped together, allowing an 
issue rate of one multiply every two cycles. In a long sequence of multiply-add instructions, an extra cycle should 
not severely impact code performance. 

4.3.5 Workaround 

Insert a NOP instruction between the ARMV5TE SMULxy multiply instruction and any adjacent multi-cycle multiply 
instruction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example: 
  

LDR      r6,[r8]       ; Holds next instruction of data cache miss. 
SMULBT   r10,r12,r13   ; Held in Ex by preceding instruction.  
AND      r0,r0,r0      ; NOP to hold off multi-cycle multiply.  
UMLAL    r1,r2,r10,r12 ; Multi-cycle multiply instruction. 

LDMIA 
SMULTT 
SMLABB 
SMLATT 
. 
. 
. 
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4.4 Incorrect halting (hardware) debug interaction with exceptions  
(r0p0, r0p1) 

4.4.1 Summary 

An interaction between certain exceptions and debug triggers can cause unexpected halting and entry into 
hardware debug state.  In this event the debugger will see the core halt with MOE (method of entry) bits set 
according to the debug event but PC, R14, CPSR and SPSR set according to the exception.  This may prevent 
the debugger from returning execution to the correct point in the program. This problem can only occur during use 
of halting (hardware) debug.  It cannot occur in normal operation or when using monitor mode (non-stop) debug. 

4.4.2 Description 

The bug occurs when a load or store instruction that Data Aborts is closely followed by an event that could trigger 
entry into hardware debug state.  Relevant evens that trigger entry into hardware debug state are: breakpoint 
comparator hit, breakpoint instruction, JTAG halt request and external debug request (EDBQRQ) 

When an instruction that Data Aborts is ahead of a debug entry trigger in the pipeline the Data Abort exception 
should take priority over hardware debug state debug entry.  This bug causes hardware debug state to be entered 
at the same time the Data Abort exception sequence starts.  The bug also occurs when an Interrupt (IRQ or FIQ) 
occurs just before an event that would trigger entry into hardware debug state. 

When the bug occurs R14, the SPSR and CPSR are updated (correctly) according to the exception, but the core 
also (incorrectly) enters hardware debug state and sets the MOE (method of entry) field for the debug state entry 
trigger condition.  

Conditions identified: 

• A load or Store instruction that Data Aborts followed by breakpoint comparator hit. In this case the 
following occurs: 
 R14_abort_bank    <= Address of load or store instruction that aborted+8 
 SPSR_abort_bank <= CPSR at the point the load or store instruction that aborted 
 CPSR <= Abort mode 
 PC <= Data Abort Vector+8 
 MOE <= Breakpoint hit (incorrect) 
 Normal execution halts and hardware debug state is entered (incorrect) 
For correct operation the core would not halt, the Abort handler should execute, this should return to re-
execute the load or store (that should not abort this time), after this execution should continue until the 
debug trigger is reached again. 
 
During incorrect operation the debugger will see entry into hardware debug state with the MOE field set to 
breakpoint and the PC pointing to the Data Abort vector. In cases where the debugger returns to normal 
program execution by rerunning the instruction that halted it will jump to the instruction at the vector and 
the program will restart correctly with the abort handler (albeit after an unexpected entry into debug state).  
The abort handler will execute and return to the main code where the debug trigger (if it is still set) will 
cause debug state to be re-entered (as would be expected for correctly operation).  In cases where the 
debugger returns by jumping to the instruction following the halted one the program will not restart 
correctly. In this case the instruction at the Data abort vector is skipped and the instruction at the reserved 
vector (0x000_0014) is then executed in error. 

• A load or Store instruction that Data Aborts followed by breakpoint instruction results a similar set of 
events to those described above. 

• A load or Store instruction that Data Aborts followed by a JTAG Halt or EDBGQ results a similar set of 
events to those described above. However, after these debug triggers, execution is almost certain to 
return to the instruction that halted so program execution will restart correctly. The halt may occur slightly 
earlier than might be expected but as JTAG Halt or EDBGQ are unlikely to be closely correlated to a 
particular instruction this is unlikely to be a problem.  
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• An Interrupt request (IRQ) of Fast Interrupt Request (FIQ) followed by breakpoint, JTAG Halt or EDBGQ. 
This results a similar set of events to those described above with IRQ or FIQ mode substituted for Abort 
and the IRQ or FIQ vector substituted for the Abort vector. 

 

4.4.3 Conditions 

This problem can only occur during use of halting (hardware) debug.  It cannot occur in normal operation or when 
using monitor mode (non-stop) debug. It will occur for: 

1) Data Aborted Load or Store instruction followed by a breakpoint comparator hit.  

2) Data Aborted Load or Store instruction followed by a breakpoint instruction.  

3) Data Aborted Load or Store instruction followed by a JTAG Halt 

4) Data Aborted Load or Store instruction followed by an external debug request 

5) Interrupted instruction (IRQ or FIQ) followed by a breakpoint comparator hit 

6) Interrupted instruction (IRQ or FIQ) followed by a breakpoint instruction 

7) Interrupted instruction (IRQ or FIQ) followed by a JTAG Halt 

8) Interrupted instruction (IRQ or FIQ) followed by an external debug request 

4.4.4 Implications 

The most common result of this bug will be an unexpected early debug halt.  In some cases (in particular those 
involving Breakpoints) the debugger may return to the wrong instruction on exiting hardware debug state.  This 
may cause some confusing behaviour during the use of halting mode debug. There are no implications for normal 
program operation or monitor mode (non-stop) debug. 

4.4.5 Workaround 

In cases where the run time to the debug even is relatively short and debug trigger is not correlated to the 
exception the simplest workaround is to re-run the debug experiment.  It is unlikely the combination of events 
required to exhibit this bug will re-occur.  This workaround is most likely to work for conditions involving IRQ, 
JTAG Halt and external debug request as these are least likely to be correlated to a specific instruction.  

In cases where the debug trigger is correlated to a specific instruction  (eg. breakpoint instruction) that is also 
correlated to a Data Abort it is possible to work around the bug by moving the breakpoint to a nearby instruction, 
or even the aborted instruction, provided this still allows the desired debug task to be completed.  

In many cases it should be also possible to simply return to normal execution from an unexpected or suspicious 
halt. For example when the MOE bits indicate JTAG Halt, external debug request and the (adjusted) PC points to 
the Abort, IRQ or FIQ vector.  

For cases where the MOE bits indicate a breakpoint and the PC points to the Abort or IRQ vector (or any address 
for which a breakpoint has not been set) it should be possible to return to normal program execution by adjusting 
the PC so that the debugger returns to and re-executes the instruction upon which it halted.   

 

4.5 Unable to enter debug state on EDBGRQ or JTAG HALT in a predicted 
branch-to-self loop (r0p0, r0p1) 

4.5.1 Summary 

In halt mode, the processor may not be able to enter debug state if EDBGRQ or JTAG HALT occur in a predicted 
branch-to-self loop. 
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4.5.2 Description 

In halt mode, if branch prediction is enabled, the processor may not be able to halt and enter into debug state if an 
external EDBGRQ is asserted or a HALT instruction is scanned in through the JTAG interface while the processor 
is executing a branch-to-self loop.  

The branch-to-self instruction must be predicted for the problem to occur. This will generally be true for branch-to-
self scenarios where the branch instruction address is odd-word aligned, i.e. bit 2 of the address is 1. 

Both ARM and Thumb conditional and unconditional branches to itself exhibit this problem. 

Example 1)  loop B   loop 
 

Example 2)  loop B<cond> loop 
 
Branch-and-link instructions, BLs and BLXs, do not exhibit this problem. 

4.5.3 Conditions 

This problem can only occur if branch prediction is enabled and the EDBGRQ or JTAG HALT occur in a predicted 
branch-to-self loop, as described above. 

The problem will not occur if branch prediction is disabled or if another instruction, like a NOP, is in the loop. 

4.5.4 Implications 

An external debugger, such as Multi-ICE, may not be able to halt the processor in a branch-to-self loop if branch 
prediction is enabled. 

4.5.5 Workaround 

There are two workarounds that will allow the processor to recognize the EDBGRQ or JTAG HALT and enter into 
debug state.  

The first workaround is to place at least one NOP instruction in the loop. 

 Workaround 1) loop NOP 
B loop 

 
The second workaround is to replace the branch instruction with a SUB to PC. 
 
 Workaround 2) loop SUB PC,PC,#8  //#8 for ARM, #4 for Thumb 
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5 CATEGORY 3 ERRATA 

5.1 AHB Compliance Problem With HLOCK Signal (r0p0, r0p1) 

5.1.1 Summary 

The HLOCK signal may assert for a single cycle near SWPs under very specific circumstances. 

5.1.2 Description 

The setup to this problem is the following execution stream: 

  store   (to a bufferable region of memory) 

  store   (to a bufferable region of memory) 

  swap  (to a non-cacheable region of memory) 

The two stores that are inserted into the Write-buffer need to be drained before the swap can take place. Hence, 
there is a small latency from when the swap is presented to the Bus Interface Unit (BIU) and the actual locked 
transfer takes place on the AHB. 

 

 

 

 

 

 

 

 

 

 

 

5.1.3 Conditions 

Executing Swap instructions to non-cacheable memory regions when there are multiple buffered stores still 
pending in the write buffer. 

5.1.4 Implications 

There should be no functional impact as a result of this behaviour. The arbiter should constantly monitor HLOCK, 
such that bus master handover are only prevented from happening during locked transfers. As the blip on HLOCK 
is only one cycle, the arbiter should not be prevented from changing the grants if need be. Worst case in terms of 
performance would be a one cycle 'freeze' in terms of which master is driving the bus. 

5.1.5 Workaround 

None required. 

The following waveform shows the AHB signals to/from the arbiter. It is worth noting, that the compliance 
problem is solely related to the communication between the ARM1022E and the AHB arbiter. None of the 
address/control or data signals are involved. 
           ____      ____      ____      ____      ____      ____     
HCLK    __/    \____/    \____/    \____/    \____/    \____/    \___ 
            _________________________________________________________ 
HBUSREQ ___/                                                          
            __________                                        _______ 
HLOCK   ___/   (1)    \______________________________________/        
                         ____________________________________________ 
HGRANT  ________________/    (2) (3)          (4)                (5)  
                                                                      
(1) HLOCK is erroneously asserted along with HBUSREQ for one HCLK cycle due to the pending swap instruction. 
(2) The AHB verifier complains, that HLOCK is removed before being granted via HGRANT!!! 
(3) The first store out of the Write-buffer takes place. 
(4) The second store out of the Write-buffer takes place. 
(5) The swap takes place as one locked (atomic) transfer. 
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5.2 AHB AMBA Rev 2.0 Compliance Problem With HTRANS (r0p0) 

5.2.1 Summary 

During burst of sequential writes on the AHB, it is possible, under very specific conditions, for the HTRANS to 
indicate a transition from IDLE to SEQ. 

5.2.2 Description 

 

 

 

 

This is an illegal burst sequence and is not in compliance with the AMBA Rev 2.0 specification. The burst is not 
compliant because HTRANS should always transition from IDLE to NSEQ, never IDLE to SEQ. However, the data 
and address information for this transfer is still correct.  

5.2.3 Conditions 

The Write Buffer (WB) is full and the BIU is requesting the bus. After some time, the DBIU gets granted and the 
first write goes out correctly, the NSEQ transfer. Coincidently with the first write going out, the DBIU loses the 
grant. The DBIU then responds correctly by indicating IDLE in the next HCLK cycle. One cycle after the grant was 
removed from the DBIU, the arbiter re-grants the DBIU the bus again. Due the original loss of grant, the BIU 
should now restart the write burst with a NSEQ transfer. However, the DBIU resumes the original burst with a 
SEQ transfer instead. 

Note: This errata can only occur if the HGRANT was de-asserted for one cycle. If the HGRANT is deasserted for 
more than one cycle, the correct HTRANS transfer will be correctly observed, IDLE to NSEQ. Additionally, for 
systems that implement multi-layer AHB or even AHB Lite protocol, this errata will not occur. This is because the 
HGRANT will not be de-asserted for the ARM1022E, thus preventing the IDLE cycle from being inserted between 
the NSEQ and SEQ transfers. 

5.2.4 Implications 

This incorrect HTRANS behaviour impacts AHB peripherals using HTRANS control signals to decide how to 
handle incoming write data. Whether the incorrect HTRANS transition, IDLE to SEQ, will really cause a problem is 
hard to quantify since the 2 transfers, NSEQ and SEQ, are actually sequential. Any peripherals using the 
HTRANS signals will be using address information anyway because the burst type, HBURST, is indicating INCR 
and there exists a possibility the transfer might be crossing a cache line boundary.  This errata would have been 
more severe if the transfers were actually non- sequential.  

5.2.5 Workaround 

A workaround is only needed for systems containing AHB peripherals using HTRANS bus to steer the write data 
for burst transfers. For these systems, software should set the processor to Fast Interrupt mode. One effect of the 
Fast Interrupt mode is that the Write Buffer size changes from 8 entries to 4. A side effect of shrinking the WB size 
happens to restrict a statemachine, internal to the design, from reaching a state which cause this errata. 

Systems that implement multi-layer AHB or AHB Lite will not have this errata and do not need this workaround. 

The following burst of sequential writes is initiated by the ARM1022E DBIU: 
 
    HTRANS  | IDLE | NSEQ | IDLE | SEQ  |  
            |   ___|_     |  ____|______|_ 
    HGRANT__|__/   | \____|_/    |      |  
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5.3 CP15 control register 1 LT bit set causes erroneous behaviour  
(r0p0, r0p1) 

5.3.1 Summary 

Whilst in hardware debug mode, if the LT bit is set, the core incorrectly changes execution state, Thumb to ARM, 
when an LDR/LDM PC is executed. 

5.3.2 Description 

When the CP15 control register 1 bit, LT or L4 bit, is set, the core is expected to ignore execution state information 
that is encoded on bit[0] during loads to the PC and doesn’t. The setting of the CP15 LT bit should have 
suppressed the action of a possible execution state change. In the case of loads to the PC, while executing 
Thumb instructions in hardware mode, the execution state incorrectly transitions to ARM mode when exiting 
debug mode. 

5.3.3 Conditions 

Upon exit of debug mode, the processor should be in Thumb mode, however it is in ARM mode instead. 

5.3.4 Implications 

When debugging Thumb code using a hardware debug system, it is possible that processor will resume execution 
into ARM mode when exiting debug. The code now executed will be combined Thumb half-words instructions 
interpreted as 32-bit ARM instructions wherein the intended code sequence different than originally expected. 

5.3.5 Workaround 

Leave the CP15 LT bit left cleared, i.e. LDR/LDM to PC setting T-bit behaviour will NOT suppressed. Debugger 
code should then be modified to have bit[0] of the data for any loads to the PC match the expected execution 
mode processor upon exit from debug mode. 

 

The following actions will demonstrate the erroneous behaviour: 

1) Set the CP15 LT bit to disable LDR PC from setting T bit. 

2) Enable Global Debug and Hardware mode. 

3) Switch into Thumb state. 

4) Execute a Thumb BKPT instruction in Hardware mode with debugger. 
 

R15 saved should be PC+4 
 

5) Within the Hardware debugger’s BKPT handler, execute 
 

STR PC,[Rn] 
… 
LDR PC,[Rn] 
 

6) Exit debug state by doing a data processing operation with the PC, e.g. 
 

SUB PC,PC,#n 
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5.4 DFT: HRESPI[1], HRESPI[0], HRESTP[1], HRESPD[0] Input Ports Do Not 
Have Wrapper Cells (r0p0, r0p1) 

5.4.1 Summary 

HRESPI[1], HRESPI[0], HRESTP[1], HRESPD[0] input ports do not have wrapper cells. This prevents 
observability of any logic connected to these ports during tests occurring external to the core that use the 
ARM1020E wrapper. 

5.4.2 Description 

All functional inputs and outputs should have wrapper cells. HRESPI[1], HRESPI[0], HRESTP[1], HRESPD[0] 
input ports do not have wrapper cells.  These cells are used to observe logic external to the core during external 
test mode.  If the wrapper cells are not there and the wrapper is utilized during test, any logic connected to these 
ports cannot be observed and test coverage is affected. 

5.4.3 Conditions 

External scan test mode. 

5.4.4 Implications 

Test coverage loss will occur without these wrapper cells. 

5.4.5 Workaround 

Any logic external to the core connected to these inputs must be registered right before the affected ports in order 
to prevent test coverage loss. 

 


