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Introduction 
With the increasing cost and complexity involved in new SoC (System-on-Chip) designs, FPGA (Field Programmable 

Gate Array) prototyping is becoming an increasingly important, or even crucial, part of new SoC projects. By offering a 

way to get to hardware sooner, FPGA prototyping allows hardware verification and software work to begin earlier, 

before first silicon, effectively pipelining the design process. Modern reprogrammable FPGAs are flexible and versatile 

computing and prototyping platforms - the ease of reconfiguring the development system for testing successive passes at 

the overall design offers a major advantage to the developer and gives confidence in the design before committing to 

producing a costly ASIC. Prototyping in FPGA also allows for debug and observability techniques that would otherwise 

not be available, such as inserting signal probes directly in the FPGA fabric. However, prototyping an SoC by 

implementing it into an FPGA does present some unique challenges that need to be considered. The underlying FPGA 

architecture and resources offer both limitations and possibilities when mapping an SoC design onto FPGA.  

In FPGA, it is rarely possible to achieve the speeds that the IPs being implemented are intended to achieve in silicon. 

Due to various factors (such as pin multiplexing), the maximum frequency in a multi-FPGA design has traditionally been 

constrained to speeds well below the fabric limit of the FPGA. 

In the past, with smaller ARM cores and less complex systems, it was normally possible to fit an entire system onto a 

single FPGA. Currently, even given the greatly increased capacity and diverse set of resources available on modern 

FPGA platforms, with the current demand for more powerful application processors and larger ASSPs, all of the building 

blocks constituting a system might not always fit into a single FPGA – even if using the largest FPGAs commercially 

available at the time of writing. It is therefore sometimes necessary to break up the design into smaller blocks and fit 

them into several connected FPGAs. This presents the additional problem of how to best partition a system or design 

across multiple FPGAs.  

In this whitepaper, we discuss commonly encountered issues when prototyping ARM Cortex-A class processors using 

FPGA platforms. We show how to adapt ARM processor IP for implementation in FPGA, and give guidelines on how to 

approach partitioning a system across multiple FPGAs. FPGA platforms, boards and tools vary between vendors and 

versions. For documentation and support on these, it is advisable to contact the relevant vendor directly. 
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Clock Gating 
ARM processor designs use gated clock structures, which are used for both functional and power management 

purposes. For example, when a processor core is quiescent, its clock can be gated off and the core placed in a power-

saving mode. In ARM processors, these clock gating structures typically make use of latches to derive a gated version of 

a clock signal, as shown in Figure 1.  
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Figure 1. ARM clock gating 

This presents a problem when porting the processor to FPGA: latches are not available as resources in FPGA, and 

FPGA architectures feature a fixed global backbone clock tree distributing the clock to the logic fabric and other 

resources. In FPGA, the clock gating scheme shown in Figure 1 would result in separate clock signals, which would 

normally be routed on dedicated, low-skew clock nets, being re-routed onto the general routing pool. This adds delays 

to the clock(s) and can result in a large number of hold time errors when the FPGA design is implemented.  

Modern FPGA synthesis tools have features capable of recognizing gated clock structures within a design and converting 

them into functionally equivalent FPGA structures. This conversion prevents the synthesis tools from creating a new 

clock signal; instead, the enable signal is driven to the enable input of the relevant DFFs, as shown in Figure 2.  
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Figure 2. Converted clock gating structure 
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always @(clk or clk_en) 

   begin 

      if (clk == 1'b0) 

         clk_en_reg <= clk_en; 

   end 

 

assign clk_gated = clk & clk_en_reg; 

 

assign clk_gated = clk & clk_en; 

In order for this conversion to happen, it is sometimes necessary to modify a few key parts of the design (specifically the 

clock gating RTL modules), such that the FPGA synthesis tools recognize the clock gate. Clock gating constructs in ARM 

processor designs are typically implemented similarly to the behavioral RTL shown in Example 1, which also 

corresponds to Figure 1.  

 

 

 

 

 

 

 

It might be necessary to modify this RTL to remove the latch, such that the FPGA synthesis tools will be able to 

recognize the block as a clock gate and convert the clock gate to the adapted design shown in Figure 2. Typical RTL 

clock gate modifications may include simply using an AND gate as the clock gate logic. 

 

 

 

The modifications necessary will depend on the requirements of the FPGA synthesis tool used, and some tools also 

require the clocks to be specified in a constraints file. Because the options and requirements vary between tools, it is 

always advisable to refer to the relevant tool documentation for more information, or to contact the tool vendor 

directly. Some tools use special flags or options to enable automatic conversion of clock gating cells. The relevant 

options (at the time of writing) for some of the more commonly used tools are listed below. 

Altera Quartus  II See ‘Auto Gated Clock Conversion’   (15.1) 

Xilinx Vivado   See ‘-gated_clock_conversion’   (2015.4) 

Synopsys Synplify Pro  See ‘-fix_gated_and_generated_clocks’  (2016.03) 

It is always important to verify that the clock gate synthesis has been applied correctly by consulting the post-synthesis 

logs or by checking the actual synthesized design.  

  

Example 1. ARM clock gating construct RTL 

Example 2. Modified clock gating construct RTL 
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`ifdef SIMULATION 

  always @(clk or clk_en) 

    begin 

      if (clk == 1'b0) 

          clk_en_reg <= clk_en; 

    end 

 

  assign clk_gated = clk & clk_en_reg; 

`else 

  assign clk_gated = clk & clk_en; 

`endif 

 

It is also worth noting that the suggested clock gate modification might cause failures in simulation. Therefore, if both 

simulation and FPGA implementation are required for the same RTL, it might be preferable to use a Verilog parameter 

in a define-ifdef structure in the clock gate RTL to allow switching between the original clock gate functionality (for 

simulation) and the modified clock gate (for FPGA implementation).  This approach is shown in Example 3.  

 

 

 

 

 

 

 

 

 

 

 

Example 3. Modified clock gating construct supporting simulation and FPGA synthesis 
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RAM Implementation 
The L1 and L2 cache memory structures in ARM processors are built up hierarchically from behavioral RAM models. 

ARM processor deliverables are supplied with a set of generic RAM models. Allowing the FPGA tools to consume these 

and automatically map them onto the available FPGA resources typically results in very inefficient use of the FPGA logic 

fabric and routing nets. This can happen when the toolchain selects distributed RAM instead of the embedded RAM 

resources for modelling large SRAM areas. This wastes FPGA fabric that could otherwise be used to implement the 

processor logic. The generic RAM models should be replaced with implementation specific RAM models. Typically the 

most efficient way to do this for implementation in FPGA is by manually instantiating the appropriate FPGA primitives 

into the cache memory models. 

ARM processor cache models make extensive use of small RAM blocks with multiple bit-wise write enable signals. This 

presents a problem if the FPGA RAM primitives only support byte-wise write enable signals, for example as in the Block 

RAMs (BRAM) in Xilinx Virtex FPGAs. Allowing the FPGA toolchain to automatically map the processor RAMs onto 

BRAM resources would result in approximately eight times more RAM blocks being used than are actually needed. 

Because RAM blocks are in limited supply, we need a method of using them in a more efficient way. Figure 3 shows how 

bit-wise write enable functionality can be achieved using a dual-ported BRAM block. 
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Figure 3. BlockRAM write enable scheme 

Bit-wise write enable functionality is achieved by combining the new write data with data that has been read from the 

same location. The bits to be written from the externally attached module are substituted into the data read from the 

output port by means of a MUX block. A dual-port RAM block is required to achieve this functionality because the 

output data must be both read from and written back into the RAM array within the same clock cycle.   

When a write occurs, data is read from port A on the positive edge of the clock. On the following negative edge, the 

combined read and write data is written into the B port of the RAM block, due to the inversion of that clock input. This 

means that the correct updated data will be available for a subsequent read access to the same address on the next 

clock cycle. 

Some ARM processors use latches on the RAM read outputs. In an FPGA implementation, these latches can be replaced 

with DFFs. For further information, refer to the relevant Configuration and Sign-off Guide. 
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Design Partitioning 
It is sometimes necessary to partition a design across multiple FPGAs, especially when prototyping larger designs such 

as a complete processor system. Figure 4 shows an example of a typical ARM-based processor subsystem and some of 

the internal building blocks that might make up such a design. Such a system might contain the following elements: one 

or more clusters of ARM Cortex-A core processors with integrated level 2 cache memory, debug and trace logic, a 

quantity of peripherals and an interconnect subsystem. 
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Figure 4. Example ARM processor subsystem 

 

Each of these building blocks is typically made up of several RTL source code modules. In theory, these modules could 

be distributed between different FPGAs, but this is strongly discouraged. Doing so would risk adding unnecessary 

complexity to an already difficult task. It could also break the design by adding clock skew or signal timing delays inside a 

functional block unable to handle that additional delay.  

If partitioning is necessary, it is typically preferable to partition a design at natural device boundaries. For example, a 

single processor core and its private peripherals could be placed in a single FPGA. The design of ARM processors and 

associated peripheral and debug logic is appropriate for this approach, because the interfaces between the blocks are 

usually registered. This makes it easier to meet timing requirements and to achieve reliable operation in the resultant 

FPGA design(s). Another potential benefit of partitioning a design is to avoid over-utilization of the resources on any 

single FPGA, and the associated potential negative performance impact. However, this needs to be balanced with the 

cost of routing signals between FPGAs, because it is considerably slower than internal routing. 
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The dotted lines in Figure 5 show potential places to divide the design. Each dotted area represents the contents of one 

FPGA in the multi-FPGA system that would be needed to house the complete SoC. However, it is generally preferable 

to avoid over-partitioning the design, because of the issues related to routing signals between FPGAs. It should be noted 

that with contemporary large FPGAs, it is unlikely that the amount of partitioning shown in Figure 5 would be 

necessary, and as such it serves as an example only. 
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Figure 5. Partitioned system 

In Figure 5, the debug logic, SCU & L2 memory system and the interconnect subsystem are all shown as residing in one 

FPGA. We also show each Cortex-A processor core occupying one FPGA. The method for deciding which parts of the 

partitioned design will fit into which FPGA will depend on the architecture of the development system. It can be seen 

that the split system in Figure 5 would best fit in an FPGA platform which has five smaller devices: one central FPGA for 

the debug and memory system components, and four satellite FPGAs for each of the processor cores. Such a 

partitioning is illustrated in Figure 6. 
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Figure 6. FPGA partitioning 
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Signal Multiplexing  

With the partitioning shown in Figure 5, there are many signals going between the Cortex-A cores and the L2/SCU. 

Depending on the processor and the target FPGA, the number of signals might exceed the number of available I/O pins 

available on the FPGA. The solution to this is to multiplex inter-FPGA signals as efficiently as possible, while taking care 

not to cause timing problems. 

The number of multiplexed signals that can share one I/O pin depends on a number of factors, including the MUX ratio 

available on the FPGA, the system clock speed, and the quality of the transmission lines between the FPGAs. Figure 7 

shows an example of such a scenario, where a large number of signals need to be carried over a smaller number of 

physical wires between FPGAs or between boards. 

 

Figure 7. Signal multiplexing 

The basic principle illustrated in Figure 7 is that a large number of signals can be multiplexed onto a single wire that 

passes between two FPGAs. Those FPGAs may reside on the same physical PCB, or they may be on different PCBs with 

header connectors making the connection between the boards. 

In this simplified example, the upper left part of the diagram shows a group of signals being concentrated onto two 

physical wires. On each successive MUX_CLK clock edge, a different input to each MUX is selected by the block 

marked ‘Control / Counter’ and placed onto the wire that runs between the FPGAs. These blocks keep track of which 

cycle in the MUX process is currently active, and drive the MUX select inputs accordingly.  
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FPGA partitioning tools can typically insert these control blocks automatically into the design. In these cases, the 

developer often only needs to specify which internal FPGA signals are to be used for the MUX_CLK and MUX process 

synchronization. 

On the upper right side of the diagram in Figure 7, synchronous data elements are used to store the intermediate values 

that appear at the inputs on each MUX clock cycle. Eventually, all of these data elements will hold a value that 

corresponds to the original data. The data must be passed across the link and reassembled by the data elements before 

the next master clock edge (not shown). The master clock in this case is the main clock signal for the ARM processor 

that is being split between several FPGAs. The lower half of Figure 7 shows an equal number of multiplexed signals 

running in the opposite direction, and a group of combinatorial logic signals passed across non-multiplexed. 

Assuming an example MUX clock speed of 100MHz and a MUX ratio of 8:1, the multiplexing scheme in Figure 7 can be 

implemented with the timing shown in Figure 8. 
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10MHz (100ns) main CPU clock

 

Figure 8. MUX timing 

 

Allowing one MUX clock cycle each for the system output data to become valid at the source, and the de-multiplexed 

data to be ready at the destination, the 10:1 clock ratio shown would allow 8 successive sets of data to be sent across 

and registered. This simple method is known as Synchronous multiplexing. Depending on the FPGA model used, this 

multiplexing scheme will be limited by the MUX ratio and the clock frequency limitations of the FPGA MUX logic. 

There may also be upper and lower limits to the PLL clock generation modules in the FPGAs that are required to 

generate MUX_CLK. 

An alternative option is to employ a ‘Source Synchronous’ solution with DDR clocking on the multiplexed signals. 

Modern FPGAs feature DDR blocks, which are specialized elements present in the FPGA I/O pad blocks that combine 

the DDR and multiplexing structures needed. These blocks are normally also instantiable as primitives, and offer 

automatic multiplexing without the need for manual control of the MUX select. Many FPGA synthesis tools are also able 

to infer these. DDR logic blocks typically give very predictable and stable timing characteristics and allow the data to be 

sent at double the normal rate. Figure 9 illustrates this method. 
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Figure 9. DDR blocks 

 

To account for the board delay between the two FPGAs, the DMUX clock is shifted by 90°. This means that the DMUX 

clock edges coincide approximately with the center of the received data values, allowing reliable capture of the data. 

Figure 10 illustrates this principle. 

 

 
Figure 10. Clock edge shifting 

 

Some recent FPGA families also offer the possibility of implementing multiplexing based on I/O source-synchronous 

serialization/de-serialization (I/OSERDES) primitives. These blocks can be used with I/O delay primitives and calibration 

logic implemented in the normal FPGA logic fabric to build structures with high multiplexing ratios, making it possible to 

achieve significantly higher speeds per wire. 
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Route-through Signals 

In some instances it may be necessary to pass signals that originate in one FPGA straight through one or more 

intermediate FPGAs in order to get to a destination in another FPGA. This could for example be required where 

boards are stacked on top of each other with no direct PCB trace connections from the first FPGA in the chain to the 

last – such as is the case when stacking ARM LogicTile Express 20MG boards. 

Passing signals straight through an FPGA with a simple assignment statement in RTL may cause timing problems for the 

system design as a whole. The pad and routing delays from one side of an FPGA to the other can be enough to break 

the timing model for an inter-FPGA signal multiplexing scheme.  

One solution to this problem is to register the route-through signals in each FPGA and add them to the MUX. The 

signals can then be de-multiplexed and re-assembled at the target destination, in time for the next master clock edge. 

Figure 11 shows an example of this solution type. 
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Figure 11. Route-through scheme 

 

Figure 12 shows how the multiplexed data from points X, Y and Z in Figure 11 would appear at the destination, O. 
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Figure 12. Route-through timing diagram example 

It should be noted that while such a scheme is entirely possible to construct, the task of arranging the routing so that all 

relevant signals are multiplexed, de-multiplexed and re-assembled at the correct points in time can be a complex one. It 

should also be noted that depending on the FPGA partitioning tool used, it may not be possible for the tool to 

automatically recognize or handle the routing of route-through signals. Therefore, if this type of route-through scheme 

is used, additional care should be taken to ensure that timing is met. 
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Handling Asynchronous Resets 

It is quite common to have an asynchronously generated reset input to a development system. This reset input would 

normally be synchronized to the master clock by means of cascaded DFFs. The reset synchronizer construct should not 

be replicated into the other FPGAs that house part of a partitioned design. This is because each replicated synchronizer 

would get its asynchronous reset input at a slightly different point in time, due to board delays. 

With such a setup, we might get the scenario where different synchronizers align their respective copies of the 

asynchronous reset input to different master clock edges. This can happen where one synchronizer sees the 

asynchronous input change very close before a master clock edge, but due to board or FPGA routing delays, the other 

synchronizers see the asynchronous input change just after that clock edge. 

To avoid this scenario, there should be only one reset synchronizer, as shown in Figure 13. It is typically safe to export 

the synchronized reset signal from one FPGA to the others in the system, because the routing delay on that exported 

signal should be small in comparison to the master clock period. 

 

 

Figure 13. Reset synchronizers in partitioned system 
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Additional Clock Gating Considerations in Partitioned Systems 

If an SoC design is to be split between multiple FPGAs, modifications to the clock gating logic are necessary.  This is in 

addition to the process detailed in the Clock Gating section of this document. 

One master clock should be fed to all the FPGAs that contain the partitioned parts of a larger design. It is not advisable 

to export a clock signal that is being used in one FPGA and feed it into another, as this will cause clock skew between 

the FPGAs. To ensure that each FPGA uses a synchronized clock internally, it is necessary for the clock gating logic to 

be copied to each FPGA so that each internal clock signal has the same timing. Some partitioning tools are able to 

recognize the clock gating logic and replicate it into the other FPGAs. The exact tool flow will vary between FPGA 

tools, but typically involves the steps listed in Example 4. 

1. Perform a preliminary synthesis run on the entire design. 

2. Feed the preliminary netlist into the chosen partitioning tool. 

3. Partition the design using the partitioning tool. 

4. Replicate clock generation/gating blocks into the other FPGA(s). 

5. Re-synthesize each partitioned FPGA. 

 
Example 4. Clock gating replication flow 

 

The tool flow steps in Example 4 are illustrated in Figure 14 (step 1), Figure 15 (steps 2-4) and Figure 16 (step 5). 

 

Figure 14. Before partitioning (step 1) 
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Figure 15. Partitioned design (steps 2-4) 

 

 

 

Figure 16. Partitioned design with converted clock gates (step 5) 
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