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1 Conventions and Feedback 

The following describes the typographical conventions and how to give feedback: 

Typographical conventions 

The following typographical conventions are used: 

monospace denotes text that can be entered at the keyboard, such as 

commands, file and program names, and source code. 

monospace denotes a permitted abbreviation for a command or option. The 

underlined text can be entered instead of the full command or option 

name. 

monospace italic 

denotes arguments to commands and functions where the argument 

is to be replaced by a specific value. 

monospace bold  

denotes language keywords when used outside example code. 

italic highlights important notes, introduces special terminology, denotes 

internal cross-references, and citations. 

bold highlights interface elements, such as menu names. Also used for 

emphasis in descriptive lists, where appropriate, and for ARM® 

processor signal names. 

Feedback on this document 

If you have comments on this document, e-mail errata@arm.com. Give: 

 The title, First Time Chip Bring-up Success. 

 The number, ARM-ECM-0524950, A. 

 If viewing online, the topic names to which your comments apply. 

 If viewing a PDF version of a document, the page numbers to which your comments 

apply. 

 A concise explanation of your comments. 

ARM also welcomes general suggestions for additions and improvements. 

ARM periodically provides updates and corrections to its documentation on the ARM 

Information Center, together with knowledge articles and Frequently Asked Questions 

(FAQs). 

Other information  

 ARM Information Center, http://infocenter.arm.com/help/index.jsp. 

 ARM Technical Support Knowledge Articles, 

http://infocenter.arm.com/help/topic/com.arm.doc.faqs/index.html. 

http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/topic/com.arm.doc.faqs/index.html
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 ARM Support and Maintenance, http://www.arm.com/support/services/support-

maintenance.php. 

 ARM Glossary, http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html. 

 

http://www.arm.com/support/services/support-maintenance.php
http://www.arm.com/support/services/support-maintenance.php
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html
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2 Preface 

This Application Note is intended for partners developing an ARM processor who are 

interested in connecting a debugger to the processor for the first time.  

It contains the following chapters: 

 Introduction on page 10. 

 SoC Design Considerations on page 11. 

 System Design Considerations on page 18. 
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2.1 References 

 ARM Architecture Reference Manual ARMv8, for ARMv8-A architecture profile (ARM 

DDI 0487). 

 ARM CoreSight Architecture Specification v2.0 (ARM IHI 0029). 

 ARM CoreSight SoC-400 Technical Reference Manual (ARM DDI 0480). 

 ARM Debug Interface Architecture Specification ADI v5.0 to ADI v5.2 (ARM IHI 

0031). 

 CoreSight Connectors, http://www2.keil.com/coresight/coresight-connectors. 

 

http://www2.keil.com/coresight/coresight-connectors
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2.2 Terms and abbreviations 

AHB-AP 

Advanced High-performance Bus Access Port. 

AP 

Access Port. 

APB-AP 

Advanced Peripheral Bus Access Port. 

AXI-AP  

Advanced eXtensible Interface Access Port. 

DAP  

Debug Access Port. 

DP 

Debug Port. 

ETM 

Embedded Trace Macrocell. 

FPGA 

Field Programmable Gate Array. 

JTAG 

Joint Test Action Group. 

JTAG-AP 

JTAG Access Port. 

MEM-AP 

Memory Access Port. 

PADDR31  

APB-AP signal used to distinguish debugger accesses. 

PMU  

Performance Monitor Unit. 

SWD 

Serial Wire Debug. 

TRM 

Technical Reference Manual. 
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3 Introduction 

This application note discusses the common issues associated with the bring-up of new 

ARM-based designs in emulation, FPGA, and hardened silicon. A smooth chip bring-up is 

important for meeting project schedule demands. It also provides a stable target platform 

for the ensuing validation and software development efforts that are required for the 

launch of a new SoC. This application note describes how to connect a debugger to an 

ARM processor in a bare metal environment.   

Many pitfalls stand in the way of first time bring-up success, especially for partners that 

are new to ARM technology. This application note does not guarantee first time success, 

but it will help make it possible. 

             Note                                

This application note is written from the perspective of bring-up of an ARMv8-A class of 

processor. However the topics are relevant for any ARM processor. When processor 

registers are referenced, the v8-A register name is used, but usually there is a register 

with equivalent functionality for the other ARM architectures. 
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4 SoC Design Considerations 

Chip design is the most important factor to achieve first time bring-up success. Even 

though there are only a few signals that directly impact a target connection to a debugger, 

it is critical that they are correct. An improper tie-off or floating signal can result in a target 

that can’t be properly identified by debug tools or even debugged. 

This chapter covers elements of the SoC design that impact the ability of a debugger to 

establish a bare metal connection to the processor. It contains the following sections:  

 Authentication signals on page 12. 

 Reset on page 13. 

 Debug Access Port (DAP) on page 14. 
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4.1 Authentication signals 

The ARMv8-A architecture provides two security states: Secure state and Non-secure state. 

Each security state has authentication signals that are used to restrict invasive debug and 

non-invasive access to an ARM processor. The term “invasive debug” refers to the ability to 

affect the behavior of the system, such as writing internal registers or system memory. 

Conversely, “non-invasive debug” refers to real-time trace, the Performance Monitor Unit 

(PMU) and sample based profiling.  

These features do not affect the behavior of the system but still allow you to gather pertinent 

information about program execution. Table 4-1 shows the authentication signals. 

 

Table 4-1 External debug authentication signals 

Signal Purpose 

DBGEN Enable debug in Non-secure state 

SPIDEN Enable debug in Secure state 

NIDEN Enable non-invasive debug in Non-secure state 

SPNIDEN Enable non-invasive debug in Secure state 

             Note                                

Not all signal combinations are valid. Consult with ARM 

CoreSight Architecture Specification v2.0. 

                                                     

 

All authentication signals are active high. For example, if a processor is configured with 

DBGEN low and NIDEN high, then the core cannot enter debug state but it can still 

generate trace when in Non-secure state. 

For a device that supports security, the SPIDEN and SPNIDEN signals are provided to 

restrict access when the core is in Secure state. In early development, SPIDEN and 

SPNIDEN are customarily tied high to allow complete access to the device regardless of 

security state. However, in production systems, SPIDEN and SPNIDEN should be tied 

low to restrict debugger access to Secure state, secure memory and tracing secure 

software. The signals may also be driven by integrated authentication logic so that the 

signals may be changed dynamically, or by one-time programmable fuses which enable 

secure debug and trace only until the fuse is blown. 

Application software and a debugger can read the Debug Authentication Status Register 

(DBGAUTHSTATUS_EL1) to determine the state of the authentication signals. A 

debugger can also read the External Debug Status and Control Register (EDSCR) to 

determine the inverse of the state of SPIDEN. 
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4.2 Reset signals 

The processor reset logic is usually custom to the SoC, but an ARM processor has several 

different reset inputs to reset different components of the processor.  

Typical reset signals for an ARMv8-A processor are shown in Table 4-2.  

 

Table 4-2 Typical reset signals 

Signal Purpose 

nCPUPORESET  Initializes the entire core logic, including debug, ETM, breakpoint and 

watchpoint logic in the processor CLK domain. Each core has one 

nCPUPORESET reset input.  

nCORERESET  Initializes the entire core but excludes the debug, ETM, breakpoint and 

watchpoint logic. Each core has one nCORERESET reset input.  

nPRESETDBG  Initializes the shared Debug APB, cross trigger interface, and cross trigger 

matrix logic in the PCLKDBG domain.  

nL2RESET  Initializes the shared L2 memory system, generic interrupt controller, and 

timer logic.  

             Note                                

All reset signals are active low. 

                                                     

 

The reset signals are an important feature and are addressed in each processor’s Technical 

Reference Manual (TRM). From a debug and chip bring-up perspective, there is value in 

providing the capability to assert nCORERESET in isolation from the other reset signals. 

Asserting only nCORERESET is considered a warm reset as it will reset the core, but keep 

the debug logic intact. This capability is particularly useful when trying to debug a core that 

starts execution from uninitialized memory. This approach is frequently the case with initial 

board bring-up. 

A common method to gain control of a “runaway target” is to establish a debug connection to 

the DAP of the processor (while allowing the core to continue to execute), enable reset vector 

catch from the debugger, and then assert nCORERESET. This warm reset brings the 

processor back to the reset vector and when execution begins, the processor enters debug 

state due to vector catch. You can then initialize memory with the target halted. 

On many platforms, the nCORERESET signal is not accessible at the system level and one 

is only left with the ability to assert nCPUPORESET. This approach not only resets the 

processor, but it also resets the debug logic and prevents the use of vector catch or hardware 

breakpoints to enter debug state.   
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4.3 Debug Access Port (DAP) 

The Debug Access Port (DAP) provides an interface for the debugger to communicate with 

the processor. The DAP is consists of a Debug Port (DP) which supports a JTAG and/or 

Serial Wire interface to the debugger, and an Access Port (AP) which provides an interface to 

the processor debug logic and the implemented CoreSight components. Many CoreSight 

components are typically implemented in a processor design to support trace and cross 

triggering of cores in a processor. These components are accessible via the AP.   

A DAP can also include additional APs to access system memory and debug legacy ARM 

cores that are not CoreSight based. APs are classified into two groups: 

 MEM-APs access a memory subsystem  

 JTAG-APs access legacy ARM cores 

The DAP is an integral part of the processor’s debug infrastructure and is frequently the 

source of many errors when trying to establish a debugger connection to a processor. This 

section will highlight the most common pitfalls when implementing the DAP. 

 

4.3.1 Power domain handshaking 

The DAP provides the ability to work with processors that have multiple power domains, 

including even a power domain for the debug logic. To do this, the DAP has a small, always-

on power domain that can be used to request that the processor’s debug and system logic 

are powered on for debugging purposes. The DAP utilizes the handshake signals shown in 

Table 4-3 to perform this task. 

Table 4-3 DAP handshake signals 

Signal Purpose 

CDBGPWRUPREQ  Requests that the debug power domain receives clocks and power. 

CDBGPWRUPACK Acknowledge for CDBGPWRUPREQ.  

CSYSPWRUPREQ Requests that the system power domain receives clocks and power. 

CSYSPWRUPACK  Acknowledge for CSYSPWRUPREQ.  

             Note                                

All reset signals are active high. 

                                                     

 

The request signals are asserted by the debugger from the CTRL/STAT register in the DAP. 

The debugger expects to see the corresponding ACK signals become asserted after the 

request is made. The system power controller is responsible for responding to each REQ 

signal, enabling the appropriate clocks and power domain and only then asserting the 

respective ACK signal to indicate that the domain is receiving clocks and power. If there are 

no separate debug or system power domains, then the REQ signal can simply be routed back 

to generate the ACK.   
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Failure to acknowledge CDBGPWRUREQ properly results in an immediate fault response for 

any transfer requests made to an AP.  

Failure to acknowledge CSYSPWRUPREQ properly might result in the debugger not 

establishing a connection to the processor as it might assume that the processor’s primary 

power domain is off. The ACK signals should also remain asserted as long as the associated 

REQ signal is asserted. 

As a processor can support many power domains (including a separate domain for individual 

cores in a MP processor), the definition of the DAP system power domain is implementation 

defined. Therefore, even though the debugger requests that the system be powered, the 

system power controller can still power down cores on request by another entity (such as an 

operating system) as long as it retains system power.   

4.3.2 Topology detection and ROM tables 

Since each SoC contains a custom and unique debug topology, topology detection is an 

essential step of the chip bring-up process. Each MEM-AP in the DAP contains a ROM table 

which is used to identify the AP’s memory system connections. The ROM table is simply a list 

of offset addresses located sequentially in memory. The last entry in the table will be 0x0, 

which signifies the end of the table. The location of the ROM table is fixed and is set by the 

BASE register in the MEM-AP. It is the job of the development tools to determine what exists 

at each address specified in the table.   

Each valid entry in the table points to a 4KB block of memory. This provides the base register 

interface for a CoreSight component for identification purposes or the entry could point to 

another ROM table. From the perspective of topology detection, CoreSight components are 

classified into different categories such as trace source or trace sink. A processor core is also 

a class of CoreSight component. To simplify matters in this section, the term CoreSight 

component includes the processor core. 

To determine what components resides there, the topology detection inspects the 

identification registers in the specified block of memory. The ROM table is critical for proper 

topology detection of the processor. The CoreSight components in a processor must be 

properly identified such that a connection to the processor can be established for debugging. 

If the ROM table is incorrect, then the topology detection process fails. If the topology 

detection process fails, then the processor can still be debugged as long as the debugger 

provides a way of manually defining the debug topology.   

A more complex part of topology detection is determining how the various trace components 

are connected so the processor can be traced. Validating a processor’s trace functionality is 

often a secondary step in the bring-up process, but still a vital one. If the component 

connections cannot be detected by the tools, as with the identification process from the ROM 

table, then a manual configuration of the trace topology is required. 

Usually an APB-AP provides the processor debug interface for the processor and an AHB-AP 

or AXI-AP is added to support access to system memory. For MEM-APs that only provide 

access to system memory, the AP’s BASE register must be set correctly to indicate that it 

contains no debug components. Otherwise, the auto-discovery process fails as it attempts to 

read a non-existent ROM Table for the MEM-AP. 

 

4.3.3 PADDR31 of the APB-AP 

As mentioned in section 4.3.2 Topology Detection and ROM Tables, the APB-AP interface is 

usually used for the debug interface. Commonly, a processor design will grant the processor 

privileged access to the debug components by mapping the APB-AP address space to the 
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system address space. This mapping allows the processor to perform self-hosted debug and 

enables the privileged software running on the processor to program the trace infrastructure 

without the need for a debugger.    

Granting access to the CoreSight components to the system space opens the opportunity for 

application software to corrupt the debug environment, so a lock mechanism is used to 

protect the debug logic from errant system-side accesses. The ABP-AP only provides a 31-bit 

addressable interface and the most-significant address bit, PADDR31, is used to indicate if 

the access is coming from an external debugger (PADDR31=1) or from another on-chip 

master (PADDR31=0). If PADDR31 is set, then a CoreSight component can be accessed 

without needing to be unlocked. However, if the component access is made with 

PADDR31=0, then the component can only be programmed if its Lock Access Register is first 

programmed with 0xC5ACCE55.   

An external debugger assumes that PADDR31 will be properly managed in the system and 

that no unlock is required to access a component before it is accessed. Thus if PADDR31 is 

not high for accesses coming from the APB-AP, it’s likely that debugger access to the 

component will fail.   

This potential problem is further magnified on 64-bit address space ARMv8-A systems where 

you may elect to use an AXI-AP to interface with the debug logic. Here PADDR31 is 

obfuscated but the requirement still remains for the debugger to be able to make unlocked 

component accesses. One likely consequence of using the AXI-AP (or even AHB-AP) 

interface is that you could simply pull PADDR31 high at the component interface. This 

shortcut would appease the debugger, but provide no protection from errant system-side 

accesses.   

4.3.4 DAP tie offs 

The DAP can support up to 256 different APs. Any AP that is not in use should return 0x0 

when its ID register is read during the processor discovery phase of the development tools. If 

an AP fails to return 0x0 for an ID (indicating no AP is present), the tools continue to attempt 

reads from the AP. As these reads won’t be returned, this can lock up the DAP, leading to 

auto-discovery failure.       

A similar problem existed on early CoreSight designs, where the DAP contained a dedicated 

Auxiliary Port which was used to interface with Cortex-M3/M4 processors (as they contain an 

embedded AHB-AP interface). Even if the design didn’t contain a Cortex-M3/M4, the Auxiliary 

Port was still present and needed to be tied off. So that when it was read during discovery, it 

would return a value indicating that no Cortex-M3/M4 was present. As with the regular APs, 

failure to tie off the Auxiliary Port usually breaks the auto-discovery process as it likely results 

in an unrecoverable DAP bus error. 

 

4.3.5 MEM-APs for system memory access 

Having a MEM-AP available for system memory access is a useful feature during chip bring-

up and when debugging general issues after the bring-up process completes. There are no 

extra dangers to avoid when implementing a MEM-AP that have not already been addressed 

in the previous sections. This section has been added to highlight the benefits of having a 

MEM-AP. 

The MEM-AP offers the debugger a method to access system memory which doesn’t utilize 

the usual register-based mechanism through the processor. Normally the debugger accesses 

memory when the processor is in debug state by issuing a series of load or store instructions 

which are executed on the halted core. This has two notable drawbacks:   
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1. The processor must be halted  

2. Large accesses could potentially be slow as transactions through the DAP will run at 

the JTAG test clock frequency TCK.  

Conversely, MEM-AP accesses can be made while the core is running. This is a distinct 

advantage as it allows you to inspect and modify system state while the processor is running.  

In the situation of a hung processor, accesses over the MEM-AP may provide valuable 

information about the state of the system. If MEM-AP accesses fail while the system is hung, 

this can at least suggest on which memory interface the problem may exist. A secondary 

benefit of MEM-AP accesses is that they can be considerably faster than accesses through 

the core. This can prove beneficial if downloading a large image to memory. Note that the 

MEM-AP accesses physical memory while debug accesses through the core will utilize the 

MMU translation regime in effect. This can lead to coherency issues as accesses made over 

the MEM-AP bypass the cache(s) of the processor.   
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5 System Design Considerations 

Even with a properly designed SoC, there is still ample opportunity for chip bring-up to fail as 

the board design also plays a critical role in processor debugging. This section addresses 

system level issues that are frequently out of the hands of the SoC design team and the 

responsibility of the end users of the processor. 

This chapter covers elements of system design that impact the ability of a debugger to 

establish a bare metal connection to the processor. It contains the following sections:  

 JTAG circuitry and debug connectors on page 19. 

 JTAG reset signals on page 20. 

 JTAG/SWD clock frequency on page 21. 

 System memory at boot time on page 22. 
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5.1 JTAG circuitry and debug connectors 

The JTAG circuit is used to interface the debug adapter (sometimes called emulator or run 

control unit) to the host computer running the debugger software. The debug adapter 

connects to the processor board through a header which in turn drives the JTAG circuit with 

commands from the debugger. The circuit then interfaces with a standard TAP controller in 

the DP portion of the DAP.   

The DAP supports one or both of the following physical interfaces. The communication 

signals are shown in parenthesis: 

• Serial Wire Debug (SWDIO, SWDCLK) 

• JTAG (TDI, TDO, TCK, TMS) 

Debug adapter headers come in many different pin outs depending on the debugger vendor 

selected. It is imperative that the board designer always follows the guidelines, described in 

the debugger adapter user guide, for designing the JTAG circuit. The user guide should 

include detailed information on signal pull-ups/pull-downs, layout considerations and signal 

termination.   

For standard third-party boards provided, it is common to find one of three connectors defined 

by ARM: a CoreSight 10, CoreSight 20, or JTAG 20. These connectors might have slightly 

different names from tool vendors, but pinouts for these headers are readily available online. 

Table 5-1 highlights the primary differences between these connectors. 

Table 5-1 Debug connectors 

Property CoreSight 10 CoreSight 20 JTAG 20 

Pin Spacing 0.05” 0.05” 0.1” 

JTAG or SWD Both Both Both 

Reset Signal(s) nRESET nRESET nSRST and nTRST 

Serial Wire Output Yes Yes Yes 

External Trace Support No Yes (4-bit) No 

 

Recommendations can vary between tool vendors, but generally each JTAG communication 

signal should have a pull-up or pull-down resistor to keep the signals stable when no adapter 

is connected. In addition, reset signals must be pulled high.  

The JTAG 20 header supports a DBGREQ and DBGACK signal. These are used to request 

and acknowledge entry into debug state, but these signals are rarely brought out to the chip 

level by the processor. They also may not be supported by the debugger. If they are not 

brought out, they may be left as no connects. Otherwise they must be pulled low. 
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5.2 JTAG reset signals 

The topic of processor reset signals was addressed in Section 4.2 Reset signals. Advanced 

processors usually include an integrated power/reset management controller (such as a 

Cortex-M core) which provides cold and warm reset capability, while a basic design may only 

expose a single reset signal for the entire processor. The board designer must understand 

the reset signals exposed by a particular SoC and design an appropriate reset circuit which 

includes the available JTAG reset signal(s) as shown in Table 5-1.  

It is typical for a board design to have the nRESET or nSRST signal perform a system level 

reset. This resets the processor and other critical board-level components (such as other 

processors, coprocessors and memory controllers). This allows you to conveniently reset the 

system from a debugger. Remember that this very well could result in the equivalent of a 

power-on reset which prevents the ability of halting the processor with a hardware breakpoint 

or vector catch event as described in Section 4.2 Reset signals.  

The nRESET and nSRST signals are bidirectional; this has the benefit of the debugger 

detecting if the system was reset by some other logic. An asynchronous reset event will likely 

force the debugger connection to drop as it is possible a transaction through the DAP was in 

progress. However it is possible that the debugger could immediately re-establish the 

processor connection without any negative effect for the end user.    

If the JTAG 20 connector is used in JTAG operating mode, nTRST should be connected to 

the nTRST signal of the DAP. This allows the debugger to reset the TAP controller in the 

DAP if required. The DAP’s nTRST signal may not be exposed at the pin level of the SoC, in 

which case this would be a no-connect.   
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5.3 JTAG/SWD clock frequency  

The clock used for debugging (SWDCLK or TCK) is driven by the debug adapter and set by 

the debugger. The theoretical maximum frequency that a debug adapter supports will be 

documented in the adapter’s user guide. A typical maximum frequency is 20 MHz for JTAG 

interfaces and 50 MHz for SWD interfaces. There is no formal flow control in communications 

with the DAP. Ultimately, operations can swamp the processor and lead to communications 

failure, which results in debugger connection failure.  

The JTAG circuit, board layout and processor implementation play a role in the selection of 

an appropriate clock frequency. For example, a design in emulation or FPGA may only 

tolerate a very slow clock, such as 20kHz, as the processor will be running at a very slow 

frequency. A good approach is to start with a high clock frequency and gradually reduce it 

until you observe reliable JTAG communications. 

             Note                                

Legacy ARM processors (pre-CoreSight) had a RTCK signal which allowed for an adaptive 

JTAG clock to be driven by the debug adapter.  
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5.4 System memory at boot time  

The processor boot process is often overlooked at early stages of SoC development and this 

can lead to frustrating debugger connection failures for the bring-up team. If no mechanism 

exists to generate a proper warm reset (as described in Section 4.2 Reset signals), then it is 

imperative that the processor begins execution with an initialized memory system that 

contains a valid program. If the processor attempts to execute what is essentially random 

opcodes stored in memory, it could lead to a memory access that hangs the processor, and 

prevents the debugger from halting the core. 

For initial board bring-up, this often poses a Catch-22 dilemma – how can the board memory 

be programmed without a debugger connection? This is compounded by the fact that the 

processor may have internal non-volatile memory at the boot location. There are several 

solutions to this problem. For example, a system can provide alternative boot options which 

remap valid and initialized memory to the boot location. Another master in the system can 

program the boot memory or the debugger could even program RAM via the AXI-AP (if it is 

available and the system bus is not hung). In emulation or FPGA systems, the boot location 

will likely be implemented as RAM and the boot memory can be pre-initialized in the design 

with a valid program. 

Remember that the requirement is not for a meaningful program to reside in memory. A 

simple “branch to self” instruction at the boot location is adequate for the debugger to halt the 

processor.  
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