

Document Number: ARM-ECM-0524950 Non-Confidential

Version: 2.2 Page 1 of 22

Application Note
First Time Chip Bring-up Success

Non-Confidential

Document Number: ARM-ECM-0524950 Non-Confidential

Version: 2.2 Page 2 of 22

First Time Chip Bring-up Success

Copyright © [2016], ARM Limited or its affiliates. All rights reserved.

Release Information

The following changes have been made to this Application Note.

Document History

Date Issue Confidentiality Change

06/06/2016 A Non-Confidential First release

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information
contained in this document may be protected by one or more patents or pending patent applications. No part of this
document may be reproduced in any form by any means without the express prior written permission of ARM. No
license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this
document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit
others to use the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with
respect to, and has undertaken no analysis to identify or understand the scope and content of, third party patents,
copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or
disclosure of this document complies fully with any relevant export laws and regulations to assure that this document
or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in
reference to ARM’s customers is not intended to create or refer to any partnership relationship with any other
company. ARM may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement
covering this document with ARM, then the signed written agreement prevails over and supersedes the conflicting
provisions of these terms. This document may be translated into other languages for convenience, and you agree that
if there is any conflict between the English version of this document and any translation, the terms of the English
version of the Agreement shall prevail.

Words and logos marked with
®
 or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU

and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of
their respective owners. Please follow ARM’s trademark usage guidelines at http://www.arm.com/about/trademark-
usage-guidelines.php

Copyright © [2016], ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

http://www.arm.com/about/trademark-usage-guidelines.php
http://www.arm.com/about/trademark-usage-guidelines.php

Document Number: ARM-ECM-0524950 Non-Confidential

Version: 2.2 Page 3 of 22

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

http://www.arm.com

http://www.arm.com/

Document Number: ARM-ECM-0524950 Non-Confidential

Version: 2.2 Page 4 of 22

Contents

First Time Chip Bring-up Success

1 Conventions and Feedback ... 5

2 Preface ... 7

2.1 References ... 8

2.2 Terms and abbreviations .. 9

3 Introduction ... 10

4 SoC Design Considerations ... 11

4.1 Authentication signals ... 12

4.2 Reset signals .. 13

4.3 Debug Access Port (DAP) .. 14

5 System Design Considerations ... 18

5.1 JTAG circuitry and debug connectors .. 19

5.2 JTAG reset signals ... 20

5.3 JTAG/SWD clock frequency ... 21

5.4 System memory at boot time .. 22

Document Number: ARM-ECM-0524950 Non-Confidential

Version: 2.2 Page 5 of 22

1 Conventions and Feedback

The following describes the typographical conventions and how to give feedback:

Typographical conventions

The following typographical conventions are used:

monospace denotes text that can be entered at the keyboard, such as

commands, file and program names, and source code.

monospace denotes a permitted abbreviation for a command or option. The

underlined text can be entered instead of the full command or option

name.

monospace italic

denotes arguments to commands and functions where the argument

is to be replaced by a specific value.

monospace bold

denotes language keywords when used outside example code.

italic highlights important notes, introduces special terminology, denotes

internal cross-references, and citations.

bold highlights interface elements, such as menu names. Also used for

emphasis in descriptive lists, where appropriate, and for ARM®

processor signal names.

Feedback on this document

If you have comments on this document, e-mail errata@arm.com. Give:

 The title, First Time Chip Bring-up Success.

 The number, ARM-ECM-0524950, A.

 If viewing online, the topic names to which your comments apply.

 If viewing a PDF version of a document, the page numbers to which your comments

apply.

 A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

ARM periodically provides updates and corrections to its documentation on the ARM

Information Center, together with knowledge articles and Frequently Asked Questions

(FAQs).

Other information

 ARM Information Center, http://infocenter.arm.com/help/index.jsp.

 ARM Technical Support Knowledge Articles,

http://infocenter.arm.com/help/topic/com.arm.doc.faqs/index.html.

http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/topic/com.arm.doc.faqs/index.html

Document Number: ARM-ECM-0524950 Non-Confidential

Version: 2.2 Page 6 of 22

 ARM Support and Maintenance, http://www.arm.com/support/services/support-

maintenance.php.

 ARM Glossary, http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html.

http://www.arm.com/support/services/support-maintenance.php
http://www.arm.com/support/services/support-maintenance.php
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Document Number: ARM-ECM-0524950 Non-Confidential

Version: 2.2 Page 7 of 22

2 Preface

This Application Note is intended for partners developing an ARM processor who are

interested in connecting a debugger to the processor for the first time.

It contains the following chapters:

 Introduction on page 10.

 SoC Design Considerations on page 11.

 System Design Considerations on page 18.

Document Number: ARM-ECM-0524950 Non-Confidential

Version: 2.2 Page 8 of 22

2.1 References

 ARM Architecture Reference Manual ARMv8, for ARMv8-A architecture profile (ARM

DDI 0487).

 ARM CoreSight Architecture Specification v2.0 (ARM IHI 0029).

 ARM CoreSight SoC-400 Technical Reference Manual (ARM DDI 0480).

 ARM Debug Interface Architecture Specification ADI v5.0 to ADI v5.2 (ARM IHI

0031).

 CoreSight Connectors, http://www2.keil.com/coresight/coresight-connectors.

http://www2.keil.com/coresight/coresight-connectors

Document Number: ARM-ECM-0524950 Non-Confidential

Version: 2.2 Page 9 of 22

2.2 Terms and abbreviations

AHB-AP

Advanced High-performance Bus Access Port.

AP

Access Port.

APB-AP

Advanced Peripheral Bus Access Port.

AXI-AP

Advanced eXtensible Interface Access Port.

DAP

Debug Access Port.

DP

Debug Port.

ETM

Embedded Trace Macrocell.

FPGA

Field Programmable Gate Array.

JTAG

Joint Test Action Group.

JTAG-AP

JTAG Access Port.

MEM-AP

Memory Access Port.

PADDR31

APB-AP signal used to distinguish debugger accesses.

PMU

Performance Monitor Unit.

SWD

Serial Wire Debug.

TRM

Technical Reference Manual.

Document Number: ARM-ECM-0524950 Non-Confidential

Version: 2.2 Page 10 of 22

3 Introduction

This application note discusses the common issues associated with the bring-up of new

ARM-based designs in emulation, FPGA, and hardened silicon. A smooth chip bring-up is

important for meeting project schedule demands. It also provides a stable target platform

for the ensuing validation and software development efforts that are required for the

launch of a new SoC. This application note describes how to connect a debugger to an

ARM processor in a bare metal environment.

Many pitfalls stand in the way of first time bring-up success, especially for partners that

are new to ARM technology. This application note does not guarantee first time success,

but it will help make it possible.

 Note

This application note is written from the perspective of bring-up of an ARMv8-A class of

processor. However the topics are relevant for any ARM processor. When processor

registers are referenced, the v8-A register name is used, but usually there is a register

with equivalent functionality for the other ARM architectures.

Document Number: ARM-ECM-0524950 Non-Confidential

Version: 2.2 Page 11 of 22

4 SoC Design Considerations

Chip design is the most important factor to achieve first time bring-up success. Even

though there are only a few signals that directly impact a target connection to a debugger,

it is critical that they are correct. An improper tie-off or floating signal can result in a target

that can’t be properly identified by debug tools or even debugged.

This chapter covers elements of the SoC design that impact the ability of a debugger to

establish a bare metal connection to the processor. It contains the following sections:

 Authentication signals on page 12.

 Reset on page 13.

 Debug Access Port (DAP) on page 14.

Document Number: ARM-ECM-0524950 Non-Confidential

Version: 2.2 Page 12 of 22

4.1 Authentication signals

The ARMv8-A architecture provides two security states: Secure state and Non-secure state.

Each security state has authentication signals that are used to restrict invasive debug and

non-invasive access to an ARM processor. The term “invasive debug” refers to the ability to

affect the behavior of the system, such as writing internal registers or system memory.

Conversely, “non-invasive debug” refers to real-time trace, the Performance Monitor Unit

(PMU) and sample based profiling.

These features do not affect the behavior of the system but still allow you to gather pertinent

information about program execution. Table 4-1 shows the authentication signals.

Table 4-1 External debug authentication signals

Signal Purpose

DBGEN Enable debug in Non-secure state

SPIDEN Enable debug in Secure state

NIDEN Enable non-invasive debug in Non-secure state

SPNIDEN Enable non-invasive debug in Secure state

 Note

Not all signal combinations are valid. Consult with ARM

CoreSight Architecture Specification v2.0.

All authentication signals are active high. For example, if a processor is configured with

DBGEN low and NIDEN high, then the core cannot enter debug state but it can still

generate trace when in Non-secure state.

For a device that supports security, the SPIDEN and SPNIDEN signals are provided to

restrict access when the core is in Secure state. In early development, SPIDEN and

SPNIDEN are customarily tied high to allow complete access to the device regardless of

security state. However, in production systems, SPIDEN and SPNIDEN should be tied

low to restrict debugger access to Secure state, secure memory and tracing secure

software. The signals may also be driven by integrated authentication logic so that the

signals may be changed dynamically, or by one-time programmable fuses which enable

secure debug and trace only until the fuse is blown.

Application software and a debugger can read the Debug Authentication Status Register

(DBGAUTHSTATUS_EL1) to determine the state of the authentication signals. A

debugger can also read the External Debug Status and Control Register (EDSCR) to

determine the inverse of the state of SPIDEN.

Document Number: ARM-ECM-0524950 Non-Confidential

Version: 2.2 Page 13 of 22

4.2 Reset signals

The processor reset logic is usually custom to the SoC, but an ARM processor has several

different reset inputs to reset different components of the processor.

Typical reset signals for an ARMv8-A processor are shown in Table 4-2.

Table 4-2 Typical reset signals

Signal Purpose

nCPUPORESET Initializes the entire core logic, including debug, ETM, breakpoint and

watchpoint logic in the processor CLK domain. Each core has one

nCPUPORESET reset input.

nCORERESET Initializes the entire core but excludes the debug, ETM, breakpoint and

watchpoint logic. Each core has one nCORERESET reset input.

nPRESETDBG Initializes the shared Debug APB, cross trigger interface, and cross trigger

matrix logic in the PCLKDBG domain.

nL2RESET Initializes the shared L2 memory system, generic interrupt controller, and

timer logic.

 Note

All reset signals are active low.

The reset signals are an important feature and are addressed in each processor’s Technical

Reference Manual (TRM). From a debug and chip bring-up perspective, there is value in

providing the capability to assert nCORERESET in isolation from the other reset signals.

Asserting only nCORERESET is considered a warm reset as it will reset the core, but keep

the debug logic intact. This capability is particularly useful when trying to debug a core that

starts execution from uninitialized memory. This approach is frequently the case with initial

board bring-up.

A common method to gain control of a “runaway target” is to establish a debug connection to

the DAP of the processor (while allowing the core to continue to execute), enable reset vector

catch from the debugger, and then assert nCORERESET. This warm reset brings the

processor back to the reset vector and when execution begins, the processor enters debug

state due to vector catch. You can then initialize memory with the target halted.

On many platforms, the nCORERESET signal is not accessible at the system level and one

is only left with the ability to assert nCPUPORESET. This approach not only resets the

processor, but it also resets the debug logic and prevents the use of vector catch or hardware

breakpoints to enter debug state.

Document Number: ARM-ECM-0524950 Non-Confidential

Version: 2.2 Page 14 of 22

4.3 Debug Access Port (DAP)

The Debug Access Port (DAP) provides an interface for the debugger to communicate with

the processor. The DAP is consists of a Debug Port (DP) which supports a JTAG and/or

Serial Wire interface to the debugger, and an Access Port (AP) which provides an interface to

the processor debug logic and the implemented CoreSight components. Many CoreSight

components are typically implemented in a processor design to support trace and cross

triggering of cores in a processor. These components are accessible via the AP.

A DAP can also include additional APs to access system memory and debug legacy ARM

cores that are not CoreSight based. APs are classified into two groups:

 MEM-APs access a memory subsystem

 JTAG-APs access legacy ARM cores

The DAP is an integral part of the processor’s debug infrastructure and is frequently the

source of many errors when trying to establish a debugger connection to a processor. This

section will highlight the most common pitfalls when implementing the DAP.

4.3.1 Power domain handshaking

The DAP provides the ability to work with processors that have multiple power domains,

including even a power domain for the debug logic. To do this, the DAP has a small, always-

on power domain that can be used to request that the processor’s debug and system logic

are powered on for debugging purposes. The DAP utilizes the handshake signals shown in

Table 4-3 to perform this task.

Table 4-3 DAP handshake signals

Signal Purpose

CDBGPWRUPREQ Requests that the debug power domain receives clocks and power.

CDBGPWRUPACK Acknowledge for CDBGPWRUPREQ.

CSYSPWRUPREQ Requests that the system power domain receives clocks and power.

CSYSPWRUPACK Acknowledge for CSYSPWRUPREQ.

 Note

All reset signals are active high.

The request signals are asserted by the debugger from the CTRL/STAT register in the DAP.

The debugger expects to see the corresponding ACK signals become asserted after the

request is made. The system power controller is responsible for responding to each REQ

signal, enabling the appropriate clocks and power domain and only then asserting the

respective ACK signal to indicate that the domain is receiving clocks and power. If there are

no separate debug or system power domains, then the REQ signal can simply be routed back

to generate the ACK.

Document Number: ARM-ECM-0524950 Non-Confidential

Version: 2.2 Page 15 of 22

Failure to acknowledge CDBGPWRUREQ properly results in an immediate fault response for

any transfer requests made to an AP.

Failure to acknowledge CSYSPWRUPREQ properly might result in the debugger not

establishing a connection to the processor as it might assume that the processor’s primary

power domain is off. The ACK signals should also remain asserted as long as the associated

REQ signal is asserted.

As a processor can support many power domains (including a separate domain for individual

cores in a MP processor), the definition of the DAP system power domain is implementation

defined. Therefore, even though the debugger requests that the system be powered, the

system power controller can still power down cores on request by another entity (such as an

operating system) as long as it retains system power.

4.3.2 Topology detection and ROM tables

Since each SoC contains a custom and unique debug topology, topology detection is an

essential step of the chip bring-up process. Each MEM-AP in the DAP contains a ROM table

which is used to identify the AP’s memory system connections. The ROM table is simply a list

of offset addresses located sequentially in memory. The last entry in the table will be 0x0,

which signifies the end of the table. The location of the ROM table is fixed and is set by the

BASE register in the MEM-AP. It is the job of the development tools to determine what exists

at each address specified in the table.

Each valid entry in the table points to a 4KB block of memory. This provides the base register

interface for a CoreSight component for identification purposes or the entry could point to

another ROM table. From the perspective of topology detection, CoreSight components are

classified into different categories such as trace source or trace sink. A processor core is also

a class of CoreSight component. To simplify matters in this section, the term CoreSight

component includes the processor core.

To determine what components resides there, the topology detection inspects the

identification registers in the specified block of memory. The ROM table is critical for proper

topology detection of the processor. The CoreSight components in a processor must be

properly identified such that a connection to the processor can be established for debugging.

If the ROM table is incorrect, then the topology detection process fails. If the topology

detection process fails, then the processor can still be debugged as long as the debugger

provides a way of manually defining the debug topology.

A more complex part of topology detection is determining how the various trace components

are connected so the processor can be traced. Validating a processor’s trace functionality is

often a secondary step in the bring-up process, but still a vital one. If the component

connections cannot be detected by the tools, as with the identification process from the ROM

table, then a manual configuration of the trace topology is required.

Usually an APB-AP provides the processor debug interface for the processor and an AHB-AP

or AXI-AP is added to support access to system memory. For MEM-APs that only provide

access to system memory, the AP’s BASE register must be set correctly to indicate that it

contains no debug components. Otherwise, the auto-discovery process fails as it attempts to

read a non-existent ROM Table for the MEM-AP.

4.3.3 PADDR31 of the APB-AP

As mentioned in section 4.3.2 Topology Detection and ROM Tables, the APB-AP interface is

usually used for the debug interface. Commonly, a processor design will grant the processor

privileged access to the debug components by mapping the APB-AP address space to the

Document Number: ARM-ECM-0524950 Non-Confidential

Version: 2.2 Page 16 of 22

system address space. This mapping allows the processor to perform self-hosted debug and

enables the privileged software running on the processor to program the trace infrastructure

without the need for a debugger.

Granting access to the CoreSight components to the system space opens the opportunity for

application software to corrupt the debug environment, so a lock mechanism is used to

protect the debug logic from errant system-side accesses. The ABP-AP only provides a 31-bit

addressable interface and the most-significant address bit, PADDR31, is used to indicate if

the access is coming from an external debugger (PADDR31=1) or from another on-chip

master (PADDR31=0). If PADDR31 is set, then a CoreSight component can be accessed

without needing to be unlocked. However, if the component access is made with

PADDR31=0, then the component can only be programmed if its Lock Access Register is first

programmed with 0xC5ACCE55.

An external debugger assumes that PADDR31 will be properly managed in the system and

that no unlock is required to access a component before it is accessed. Thus if PADDR31 is

not high for accesses coming from the APB-AP, it’s likely that debugger access to the

component will fail.

This potential problem is further magnified on 64-bit address space ARMv8-A systems where

you may elect to use an AXI-AP to interface with the debug logic. Here PADDR31 is

obfuscated but the requirement still remains for the debugger to be able to make unlocked

component accesses. One likely consequence of using the AXI-AP (or even AHB-AP)

interface is that you could simply pull PADDR31 high at the component interface. This

shortcut would appease the debugger, but provide no protection from errant system-side

accesses.

4.3.4 DAP tie offs

The DAP can support up to 256 different APs. Any AP that is not in use should return 0x0

when its ID register is read during the processor discovery phase of the development tools. If

an AP fails to return 0x0 for an ID (indicating no AP is present), the tools continue to attempt

reads from the AP. As these reads won’t be returned, this can lock up the DAP, leading to

auto-discovery failure.

A similar problem existed on early CoreSight designs, where the DAP contained a dedicated

Auxiliary Port which was used to interface with Cortex-M3/M4 processors (as they contain an

embedded AHB-AP interface). Even if the design didn’t contain a Cortex-M3/M4, the Auxiliary

Port was still present and needed to be tied off. So that when it was read during discovery, it

would return a value indicating that no Cortex-M3/M4 was present. As with the regular APs,

failure to tie off the Auxiliary Port usually breaks the auto-discovery process as it likely results

in an unrecoverable DAP bus error.

4.3.5 MEM-APs for system memory access

Having a MEM-AP available for system memory access is a useful feature during chip bring-

up and when debugging general issues after the bring-up process completes. There are no

extra dangers to avoid when implementing a MEM-AP that have not already been addressed

in the previous sections. This section has been added to highlight the benefits of having a

MEM-AP.

The MEM-AP offers the debugger a method to access system memory which doesn’t utilize

the usual register-based mechanism through the processor. Normally the debugger accesses

memory when the processor is in debug state by issuing a series of load or store instructions

which are executed on the halted core. This has two notable drawbacks:

Document Number: ARM-ECM-0524950 Non-Confidential

Version: 2.2 Page 17 of 22

1. The processor must be halted

2. Large accesses could potentially be slow as transactions through the DAP will run at

the JTAG test clock frequency TCK.

Conversely, MEM-AP accesses can be made while the core is running. This is a distinct

advantage as it allows you to inspect and modify system state while the processor is running.

In the situation of a hung processor, accesses over the MEM-AP may provide valuable

information about the state of the system. If MEM-AP accesses fail while the system is hung,

this can at least suggest on which memory interface the problem may exist. A secondary

benefit of MEM-AP accesses is that they can be considerably faster than accesses through

the core. This can prove beneficial if downloading a large image to memory. Note that the

MEM-AP accesses physical memory while debug accesses through the core will utilize the

MMU translation regime in effect. This can lead to coherency issues as accesses made over

the MEM-AP bypass the cache(s) of the processor.

Document Number: ARM-ECM-0524950 Non-Confidential

Version: 2.2 Page 18 of 22

5 System Design Considerations

Even with a properly designed SoC, there is still ample opportunity for chip bring-up to fail as

the board design also plays a critical role in processor debugging. This section addresses

system level issues that are frequently out of the hands of the SoC design team and the

responsibility of the end users of the processor.

This chapter covers elements of system design that impact the ability of a debugger to

establish a bare metal connection to the processor. It contains the following sections:

 JTAG circuitry and debug connectors on page 19.

 JTAG reset signals on page 20.

 JTAG/SWD clock frequency on page 21.

 System memory at boot time on page 22.

Document Number: ARM-ECM-0524950 Non-Confidential

Version: 2.2 Page 19 of 22

5.1 JTAG circuitry and debug connectors

The JTAG circuit is used to interface the debug adapter (sometimes called emulator or run

control unit) to the host computer running the debugger software. The debug adapter

connects to the processor board through a header which in turn drives the JTAG circuit with

commands from the debugger. The circuit then interfaces with a standard TAP controller in

the DP portion of the DAP.

The DAP supports one or both of the following physical interfaces. The communication

signals are shown in parenthesis:

• Serial Wire Debug (SWDIO, SWDCLK)

• JTAG (TDI, TDO, TCK, TMS)

Debug adapter headers come in many different pin outs depending on the debugger vendor

selected. It is imperative that the board designer always follows the guidelines, described in

the debugger adapter user guide, for designing the JTAG circuit. The user guide should

include detailed information on signal pull-ups/pull-downs, layout considerations and signal

termination.

For standard third-party boards provided, it is common to find one of three connectors defined

by ARM: a CoreSight 10, CoreSight 20, or JTAG 20. These connectors might have slightly

different names from tool vendors, but pinouts for these headers are readily available online.

Table 5-1 highlights the primary differences between these connectors.

Table 5-1 Debug connectors

Property CoreSight 10 CoreSight 20 JTAG 20

Pin Spacing 0.05” 0.05” 0.1”

JTAG or SWD Both Both Both

Reset Signal(s) nRESET nRESET nSRST and nTRST

Serial Wire Output Yes Yes Yes

External Trace Support No Yes (4-bit) No

Recommendations can vary between tool vendors, but generally each JTAG communication

signal should have a pull-up or pull-down resistor to keep the signals stable when no adapter

is connected. In addition, reset signals must be pulled high.

The JTAG 20 header supports a DBGREQ and DBGACK signal. These are used to request

and acknowledge entry into debug state, but these signals are rarely brought out to the chip

level by the processor. They also may not be supported by the debugger. If they are not

brought out, they may be left as no connects. Otherwise they must be pulled low.

Document Number: ARM-ECM-0524950 Non-Confidential

Version: 2.2 Page 20 of 22

5.2 JTAG reset signals

The topic of processor reset signals was addressed in Section 4.2 Reset signals. Advanced

processors usually include an integrated power/reset management controller (such as a

Cortex-M core) which provides cold and warm reset capability, while a basic design may only

expose a single reset signal for the entire processor. The board designer must understand

the reset signals exposed by a particular SoC and design an appropriate reset circuit which

includes the available JTAG reset signal(s) as shown in Table 5-1.

It is typical for a board design to have the nRESET or nSRST signal perform a system level

reset. This resets the processor and other critical board-level components (such as other

processors, coprocessors and memory controllers). This allows you to conveniently reset the

system from a debugger. Remember that this very well could result in the equivalent of a

power-on reset which prevents the ability of halting the processor with a hardware breakpoint

or vector catch event as described in Section 4.2 Reset signals.

The nRESET and nSRST signals are bidirectional; this has the benefit of the debugger

detecting if the system was reset by some other logic. An asynchronous reset event will likely

force the debugger connection to drop as it is possible a transaction through the DAP was in

progress. However it is possible that the debugger could immediately re-establish the

processor connection without any negative effect for the end user.

If the JTAG 20 connector is used in JTAG operating mode, nTRST should be connected to

the nTRST signal of the DAP. This allows the debugger to reset the TAP controller in the

DAP if required. The DAP’s nTRST signal may not be exposed at the pin level of the SoC, in

which case this would be a no-connect.

Document Number: ARM-ECM-0524950 Non-Confidential

Version: 2.2 Page 21 of 22

5.3 JTAG/SWD clock frequency

The clock used for debugging (SWDCLK or TCK) is driven by the debug adapter and set by

the debugger. The theoretical maximum frequency that a debug adapter supports will be

documented in the adapter’s user guide. A typical maximum frequency is 20 MHz for JTAG

interfaces and 50 MHz for SWD interfaces. There is no formal flow control in communications

with the DAP. Ultimately, operations can swamp the processor and lead to communications

failure, which results in debugger connection failure.

The JTAG circuit, board layout and processor implementation play a role in the selection of

an appropriate clock frequency. For example, a design in emulation or FPGA may only

tolerate a very slow clock, such as 20kHz, as the processor will be running at a very slow

frequency. A good approach is to start with a high clock frequency and gradually reduce it

until you observe reliable JTAG communications.

 Note

Legacy ARM processors (pre-CoreSight) had a RTCK signal which allowed for an adaptive

JTAG clock to be driven by the debug adapter.

Document Number: ARM-ECM-0524950 Non-Confidential

Version: 2.2 Page 22 of 22

5.4 System memory at boot time

The processor boot process is often overlooked at early stages of SoC development and this

can lead to frustrating debugger connection failures for the bring-up team. If no mechanism

exists to generate a proper warm reset (as described in Section 4.2 Reset signals), then it is

imperative that the processor begins execution with an initialized memory system that

contains a valid program. If the processor attempts to execute what is essentially random

opcodes stored in memory, it could lead to a memory access that hangs the processor, and

prevents the debugger from halting the core.

For initial board bring-up, this often poses a Catch-22 dilemma – how can the board memory

be programmed without a debugger connection? This is compounded by the fact that the

processor may have internal non-volatile memory at the boot location. There are several

solutions to this problem. For example, a system can provide alternative boot options which

remap valid and initialized memory to the boot location. Another master in the system can

program the boot memory or the debugger could even program RAM via the AXI-AP (if it is

available and the system bus is not hung). In emulation or FPGA systems, the boot location

will likely be implemented as RAM and the boot memory can be pre-initialized in the design

with a valid program.

Remember that the requirement is not for a meaningful program to reside in memory. A

simple “branch to self” instruction at the boot location is adequate for the debugger to halt the

processor.

	Application Note
	First Time Chip Bring-up Success
	First Time Chip Bring-up Success
	1 Conventions and Feedback
	2 Preface
	2.1 References
	2.2 Terms and abbreviations

	3 Introduction
	4 SoC Design Considerations
	4.1 Authentication signals
	4.2 Reset signals
	4.3 Debug Access Port (DAP)
	4.3.1 Power domain handshaking
	4.3.2 Topology detection and ROM tables
	4.3.3 PADDR31 of the APB-AP
	4.3.4 DAP tie offs
	4.3.5 MEM-APs for system memory access

	5 System Design Considerations
	5.1 JTAG circuitry and debug connectors
	5.2 JTAG reset signals
	5.3 JTAG/SWD clock frequency
	5.4 System memory at boot time

