
ARM Management Mode Interface Specification

Page 1 of 12 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. ARM DEN 0060A
 Non-Confidential

ARM® Management Mode Interface Specification
Document number: ARM DEN 0060A

Copyright © 2016 ARM Limited or its affiliates

ARM Management Mode Interface Specification

Page 2 of 12 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. ARM DEN 0060A
 Non-Confidential

ARM Management Mode Interface Specification
System Software on ARM
Copyright © 2016 ARM Limited. All rights Reserved.

Release information
The Change History table lists the changes that are made to this document.

Table 1-1 Change history

Date Issue Confidentiality Change

06 December 2016 A Non-Confidential First release

Non-Confidential Proprietary Notice
This document is protected by copyright and the practice or implementation of the information herein
may be protected by one or more patents or pending applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of ARM. No
license, express or implied, by estoppel or otherwise to any intellectual property rights is
granted by this document.
This document is Non-Confidential but any disclosure by you is subject to you providing the recipient
the conditions set out in this notice and procuring the acceptance by the recipient of the conditions set
out in this notice.
Your access to the information in this document is conditional upon your acceptance that you will not
use, permit or procure others to use the information for the purposes of determining whether
implementations infringe your rights or the rights of any third parties.
Unless otherwise stated in the terms of the Agreement, this document is provided “as is”. ARM makes
no representations or warranties, either express or implied, included but not limited to, warranties of
merchantability, fitness for a particular purpose, or non-infringement, that the content of this document
is suitable for any particular purpose or that any practice or implementation of the contents of the
document will not infringe any third party patents, copyrights, trade secrets, or other rights. Further,
ARM makes no representation with respect to, and has undertaken no analysis to identify or
understand the scope and content of such third party patents, copyrights, trade secrets, or other
rights.
This document may include technical inaccuracies or typographical errors.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY
DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT LOSS, LOST REVENUE, LOST
PROFITS OR DATA, SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE
DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Words and logos marked with ® or TM are registered trademarks or trademarks, respectively, of ARM
Limited. Other brands and names mentioned herein may be the trademarks of their respective
owners. Unless otherwise stated in the terms of the Agreement, you will not use or permit others to
use any trademark of ARM Limited.
This document consists solely of commercial items. You shall be responsible for ensuring that any
use, duplication or disclosure of this document complies fully with any relevant export laws and
regulations to assure that this document or any portion thereof is not exported, directly or indirectly, in
violation of such export laws.
In this document, where the term ARM is used to refer to the company it means “ARM or any of its
subsidiaries as appropriate”.

Copyright © 2016 ARM Limited or its affiliates. All rights reserved.
ARM Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

ARM Management Mode Interface Specification

Page 3 of 12 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. ARM DEN 0060A
 Non-Confidential

Contents

1 ABOUT THIS DOCUMENT 4
1.1 References 4
1.2 Terms and abbreviations 4
1.3 Feedback 5

1.3.1 Feedback on this manual 5

2 INTRODUCTION 6
2.1 Security state considerations 6
2.2 Execution state considerations 6
2.3 Conduits 6
2.4 Calling conventions 7

3 INTERFACE 8
3.1 MM_VERSION 8

3.1.1 Usage 8
3.1.2 Implementation responsibilities 8

3.2 MM_COMMUNICATE 9
3.2.1 Usage 9
3.2.2 Parameters 9
3.2.3 Communication buffer attributes 10
3.2.4 Caller responsibilities 10

3.3 Return codes 11

4 INTEROPERABILITY WITH PI MM SPECIFICATION 12

ARM Management Mode Interface Specification

Page 4 of 12 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. ARM DEN 0060A
 Non-Confidential

1 About this Document
This document describes standard SMC functions to be used for software invocation of Management Mode (MM)
services.

1.1 References
This document refers to the following documents and links.

Reference Document name Document number
[1] VOLUME 4: Platform Initialization Specification.

Management Mode Core Interface
UEFI Platform Initialization Specification
Version 1.5

[2] Unified Extensible Firmware Interface Specification UEFI version 2.6
[3] SMC Calling Conventions specification ARM DEN 0028
[4] Advanced Configuration and Power Interface

Specification
ACPI 6.1

[5] ARM Trusted Firmware repository https://github.com/ARM-software/arm-
trusted-firmware

[6] Tianocore EDK2 repository https://github.com/tianocore/edk2
[7] ARM Architecture Reference Manual ARMv8, for

ARMv8-A architecture profile
ARM DDI 0487A

1.2 Terms and abbreviations
This document uses the following terms and abbreviations.

Term Description

DXE Driver Execution Environment

EDK EFI Developer Kit

MM Management mode. A mode of execution agnostic to the operating system used to
provide platform management firmware. For more details see [1] .

Non-secure state The ARM Execution state that restricts access to only the Non-secure system
resources such as memory, peripherals, and System registers

Normal World The execution environment when the core is in the Non-secure state

OS Operating System

PEI Pre-EFI Initialization

PI Platform Initialization

PIWG Platform Initialization Working Group

Secure state The ARM Execution state that enables access to the Secure and Non-secure systems
resources, such as memory, peripherals, and System registers

Secure world The execution environment when the core is in the Secure state

UEFI Unified Extensible Firmware Interface. For more details, see Unified Extensible
Firmware Interface Specification .

https://github.com/ARM-software/arm-trusted-firmware
https://github.com/ARM-software/arm-trusted-firmware
https://github.com/tianocore/edk2

ARM Management Mode Interface Specification

Page 5 of 12 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. ARM DEN 0060A
 Non-Confidential

1.3 Feedback
ARM welcomes feedback on its documentation.

1.3.1 Feedback on this manual
If you have comments on the content of this manual, send an e-mail to errata@arm.com. Give:

• The title.
• The document and version number, ARM DEN 0060A.
• The page numbers to which your comments apply.
• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

ARM Management Mode Interface Specification

Page 6 of 12 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. ARM DEN 0060A
 Non-Confidential

2 Introduction
Management Mode (MM) provides an environment for implementing OS agnostic services (MM services) like RAS
error handling, secure variable storage, and firmware updates in system firmware. The services can be invoked
synchronously and asynchronously.

An example of a synchronous invocation could be an access to secure storage, from the OS or hypervisor, to read
or write data. This document describes interfaces for invoking MM services synchronously.

An example of asynchronous invocation could be a RAS event signaled as an exception. A description of how MM
services can be invoked asynchronously is beyond the scope of this specification.

2.1 Security state considerations
ARMv8-A architecture describes multiple Exception levels (ELs) across the Secure and Non-secure Security
states. If EL3 is not implemented or the services are being virtualized in EL2, MM services can be implemented
either in the Secure world or in the Normal world in EL2..

This document describes the MM interface and implementation considerations for invoking MM services from the
Normal world. It does not preclude access to MM services that are implemented in the Secure world from other
software components that are also in the Secure world.

The PIWG in the UEFI forum maintains [1], which describes an MM environment in which MM services can be
implemented. An implementation of this specification and MM services exists in the Tianocore EDK2 repository.

The ARM Trusted Firmware repository provides a reference implementation of secure system firmware for
ARMv8-A platforms. One approach to implementing MM services on ARMv8-A platforms is to:

1. Implement an ARM Trusted Firmware managed MM environment that is based on EDK2 sources in the
Secure world.

2. Use the MM interfaces that are described in this document from the Normal world, for example, UEFI DXE
drivers, to access this environment and services.

2.2 Execution state considerations
The ARMv8 architecture defines two Execution states, AArch32 and AArch64 (See [7]). It is possible for the
Execution state to differ between the caller and the implementation. MM services are only supported if the
implementation uses an Execution state that is higher than or equal to the Execution state of the caller. Table 2
details which combinations are permitted.

Table 2 Permitted MM implementations

Exception level of caller
Execution state

MM implementation level
Execution state Validity

AArch32 AArch32 Permitted

AArch32 AArch64 Permitted

AArch64 AArch64 Permitted

AArch64 AArch32 Not permitted

2.3 Conduits
The SMC Calling Conventions specification describes the SMC and HVC conduits for accessing firmware services
and their availability depending on the implemented Exception levels.

ARM Management Mode Interface Specification

Page 7 of 12 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. ARM DEN 0060A
 Non-Confidential

If EL3 is implemented, ARM recommends that the SMC conduit is used. When MM services are accessed from
the Normal world at EL1, SMC execution can be trapped by a hypervisor at EL2. This means that the SMC
conduit provides the flexibility that is required to support implementations with and without a hypervisor.

If EL2 is implemented and EL3 is not implemented, the HVC conduit must be used. In this case, it is the only
conduit available.

2.4 Calling conventions
The SMC Calling Conventions specification describes the 32-bit and 64-bit calling conventions for the SMC and
HVC conduits. If the conduit is HVC, this document assumes that the 32-bit (SMC32) and 64-bit (SMC64) calling
conventions are equivalent to the HVC32 and HVC64 calling conventions, respectively.

ARM Management Mode Interface Specification

Page 8 of 12 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. ARM DEN 0060A
 Non-Confidential

3 Interface
This specification reserves function IDs for Fast calls (See [3]), in the Standard Secure Service (See [3]) calls
range, for each interface to access MM services. This section defines the function prototypes for each function ID.
The function IDs specify whether one or both of the SMC32 and SMC64 calling conventions can be used to invoke
the corresponding interface.

3.1 MM_VERSION

Description

Returns the version of the MM implementation

Parameters

Declaration Value

uint32 Function ID • 0x8400 0040

Return

Declaration Value

int32 On success, the format of the value is as follows:
• Bit [31]: Must be 0
• Bits [30:16] Major Version: Must be 1 for this revision of MM
• Bits [15:0] Minor Version: Must be 0 for this revision of MM

On error, the format of the value is as follows:
• NOT_SUPPORTED: MM is not supported or not available for

the client
See Section 3.3 for integer values that are associated with each
return code.

3.1.1 Usage
This function returns the version of the MM interface implementation. Each implemented MM interface must
support this call and return its implementation version. For this revision of the MM interface, the major version is 1
and the minor version is 0.

The version number is a 31-bit unsigned integer, with the upper 15 bits denoting the major revision, and the lower
16 bits denoting the minor revision. The following rules apply to the version numbering:

• Different major revision values indicate possibly incompatible functions.
• For two revisions, A and B, for which the major revision values are identical, if the minor revision value of

revision B is greater than the minor revision value of revision A, then every function in revision A must work in
a compatible way with revision B. However, it is possible for revision B to have a higher function count than
revision A.

3.1.2 Implementation responsibilities
If this function returns a valid version number, all the functions that are described in this specification must be
implemented, unless it is explicitly stated that a function is optional.

ARM Management Mode Interface Specification

Page 9 of 12 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. ARM DEN 0060A
 Non-Confidential

3.2 MM_COMMUNICATE

Description

Invokes an MM service

Parameters

Declaration Value

uint32 Function ID
• 0x8400 0041
• 0xC400 0041

uint32/uint64
Cookie

Reserved for future use. Must be zero.

uint32/uint64
comm_buffer_address

See section 3.2.2
For the SMC64 version, this parameter is a 64-bit Physical Address
(PA) or Intermediate Physical Address (IPA).
For the SMC32 version, this parameter is a 32-bit PA or IPA.

unit32/unit64
comm_size_address

See section 3.2.2
For the SMC64 version, this parameter is a 64-bit PA or IPA.
For the SMC32 version, this parameter is a 32-bit PA or IPA.

Return

Declaration Value

int32

On success, the format of the value is as follows:
• SUCCESS

On error, the format of the value is as follows:
• NOT_SUPPORTED
• INVALID_PARAMETER
• NO_MEMORY
• DENIED
See Section 3.3 for integer values that are associated with each
return code.

3.2.1 Usage
Calling this function invokes an MM service that is implemented in EL2 or the Secure world. If multiple services
are implemented, the service that is targeted by this call must be identified through an IMPLEMENTATION DEFINED
mechanism. For example, the communication buffer that is addressed by the comm_buffer_address
parameter could contain data to identify and invoke an MM service.

3.2.2 Parameters
In addition to the function ID and the cookie field, the function takes the following parameters:

• comm_buffer_address is a PA or an IPA to a communication buffer. The buffer must be allocated in
physically contiguous memory. See Section 3.2.3 for more details about the attributes of this parameter.

ARM Management Mode Interface Specification

Page 10 of 12 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. ARM DEN 0060A
 Non-Confidential

• comm_size_address is a PA or an IPA that holds the size of the communication buffer being passed
in.
This parameter is optional and can be omitted by passing a zero. ARM does not recommend using it since
this might require the implementation to create a separate memory mapping for the parameter. ARM
recommends storing the buffer size in the buffer itself. An example of this approach is provided in
Section 4.

If this parameter is used, see Section 3.2.3 for more details about its attributes.

3.2.3 Communication buffer attributes
The communication buffer is a subset of a memory region that is allocated specifically for MM communication. It is
accessed from separate translation regimes by the caller and the implementation of the MM_COMMUNICATE
function. To avoid a mismatch of memory attributes, both the caller and the implementation must use the
attributes that are described in this section to map this memory region in their respective translation regimes. The
same attributes must be used for the region of memory that is referenced by the comm_size_address
parameter, if it is used.

• The memory region must be mapped with the following memory region attributes and data access
permissions:

o Normal Write-Back Cacheable.
o Non-transient Read-Allocate.
o Non-transient Write-Allocate.
o Inner Shareable.
o Read-Write.

• The memory region must be mapped with Execute-Never instruction access permissions in the
implementation translation regime. ARM recommends that the same is done in the caller translation
regime.

• The base address of the memory region must be aligned to the maximum translation granule size that is
specified in the ID_AA64MMFR0_EL1 System register. See ARM Architecture Reference Manual ARMv8,
for ARMv8-A architecture profile.

• The size of the memory region must be a multiple of the size of the maximum translation granule size that
is specified in the ID_AA64MMFR0_EL1 System register.

3.2.4 Caller responsibilities
The caller must be able to handle the following potential return error codes, which are described in Section 3.3:

• NOT_SUPPORTED is returned when MM services that are capable of being invoked synchronously are
not present.

• INVALID_PARAMETER is returned if comm_buffer_address is 0.
• DENIED is returned when the address passed is known to be in an address range that must not be

accessed by MM services.
NO_MEMORY is returned when MM services do not have sufficient memory resources to deal with the
size of the incoming buffer. If comm_size_address is passed, then the address pointed to must be
updated with the size of the overall communication buffer that the implementation can tolerate.

ARM Management Mode Interface Specification

Page 11 of 12 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. ARM DEN 0060A
 Non-Confidential

3.3 Return codes
Table 3 defines the values for return codes that are used with the interface functions. The error return type is a 32-
bit signed integer. Zero and positive values denote success and negative values indicate error.

Table 3 Return codes and values

Name Value

SUCCESS 0

NOT_SUPPORTED -1

INVALID_PARAMETER -2

DENIED -3

NO_MEMORY -5

ARM Management Mode Interface Specification

Page 12 of 12 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. ARM DEN 0060A
 Non-Confidential

4 Interoperability with PI MM specification
[1] describes protocols that export interfaces for communicating with MM services. The PEI phase describes the
EFI_PEI_MM_COMMUNICATION_PPI protocol which exports the EFI_PEI_MM_COMMUNICATE interface. The
DXE phase describes the EFI_MM_COMMUNICATION_PROTOCOL which exports the EFI_MM_COMMUNICATE
interface. Both interfaces are similar semantically, and are responsible for:

1. Preparing input parameters for consumption by the MM environment. The parameters identify the MM
service and provide arguments for the service.

2. Invoking the MM environment by effecting a mode transition, since the MM environment executes in a
different mode to the UEFI and the OS.

The CommBuffer and CommSize parameters of these interfaces map to the comm_buffer_address and
comm_size_address parameters of the MM_COMMUNICATE call that is described in Section 3.2. The
implementation of the function must use an HVC or SMC conduit as determined from the ARM_BOOT_ARCH
field in the ACPI FADT. See Advanced Configuration and Power Interface Specification. Table 4 shows the
mapping of parameters and error return codes between the PI communication interfaces described in this section
and the MM_COMMUNICATE SMC.

Table 4 Parameter and error return code mapping

EFI_MM_COMMUNICATE
function MM_COMMUNICATE SMC

CommSize comm_size_address

CommBuffer comm_buffer_address

EFI_SUCCESS SUCCESS

EFI_BAD_BUFFER_SIZE NO_MEMORY

EFI_INVALID_PARAMETER INVALID_PARAMETER

EFI_ACCESS_DENIED DENIED

The comm_buffer_address must start with an EFI_MM_COMMUNICATE_HEADER. See [1] for details. The
MessageLength field of the header must be populated and correct prior to the call.

ARM recommends not using the optional comm_size_address parameter, or, if used, placing the pointer in the
same page as the comm_buffer_address parameter, so that the implementation does not have to create an
additional memory mapping. If the parameter is passed, the address that is specified must contain the full size of
the communication buffer, including the EFI_MM_COMMUNICATE_HEADER.

If NO_MEMORY is returned when comm_size_address is passed, then the address pointed to is updated with
the size of the communication buffer that the implementation can accept. This includes the size of the header. The
header contains native fields where the size of the field depends on the Execution state of the caller, AArch32 or
AArch64. The size of the header that is considered when updating the address must be relative to the Execution
state of the caller.

	ARM Management Mode Interface Specification
	System Software on ARM
	Release information
	1 About this Document
	1.1 References
	1.2 Terms and abbreviations
	1.3 Feedback
	1.3.1 Feedback on this manual

	2 Introduction
	2.1 Security state considerations
	2.2 Execution state considerations
	2.3 Conduits
	2.4 Calling conventions

	3 Interface
	3.1 MM_VERSION
	3.1.1 Usage
	3.1.2 Implementation responsibilities

	3.2 MM_COMMUNICATE
	3.2.1 Usage
	3.2.2 Parameters
	3.2.3 Communication buffer attributes
	3.2.4 Caller responsibilities

	3.3 Return codes

	4 Interoperability with PI MM specification

