
Copyright 2008 ARM Limited. All rights reserved.
Non-Confidential Unrestricted Access

Application Note 214
Flash programming in the ARM Cortex-M1 FPGA

Development Kit Altera Edition

Document number: ARM DAI 0214A

Issued: 2nd September, 2008

Copyright ARM Limited 2008

ii Copyright 2008 ARM Limited. All rights reserved. ARM DAI 0214A
Non-Confidential Unrestricted Access

Application Note 214
Flash programming in the ARM Cortex-M1 FPGA Development Kit
Altera Edition

Copyright © 2008 ARM Limited. All rights reserved.

Release information

Change history

Date Issue Change

September 2008 A First release

Proprietary notice

Words and logos marked with and are registered trademarks owned by ARM Limited, except as
otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the
trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

Altera is a trademark and service mark of Altera Corporation in the United States and other countries. Altera
products contain intellectual property of Altera Corporation and are protected by copyright laws and one or
more U.S. and foreign patents and patent applications.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Confidentiality status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to
license restrictions in accordance with the terms of the agreement entered into by ARM and the party that
ARM delivered this document to.

Unrestricted Access is an ARM internal classification.

Feedback on this Application Note

If you have any comments on this Application Note, please send email to errata@arm.com giving:

 the document title

 the document number

 the page number(s) to which your comments refer

 an explanation of your comments.

General suggestions for additions and improvements are also welcome.

ARM web address

http://www.arm.com

mailto:errata@arm.com
http://www.arm.com/

ARM DAI 0214A Copyright 2008 ARM Limited. All rights reserved. iii
Non-Confidential Unrestricted Access

Table of Contents

1. Introduction ..1-1

2. Programming designs to flash ...2-1

2.1 Converting SOFs into POFs to program configuration flash2-1
2.2 Programming the configuration flash using the POF file.....................................2-3

3. Loading software into flash memory ...3-1

3.1 Requirements for loading software into flash memory ..3-1
3.2 Creating Intel Hexadecimal files for software flash initialization3-1
3.3 Combining SOF and Hex data in the POF file ..3-3
3.4 Programming the POF file ...3-4

4. Appendix 1: Converting hex files using hex2hex...4-1

4.1 Flash memory initialization file requirements ..4-1
4.2 Running hex2hex...4-1
4.3 Running hex2hex in RealView MDK ...4-2

5. References..5-1

Introduction

ARM DAI 0214A Copyright 2008 ARM Limited. All rights reserved. 1-1
Non-Confidential Unrestricted Access

1. Introduction

The ARM Cortex-M1 FPGA Development Kit allows systems based around the ARM Cortex-M1
processor to be created easily using the Altera Quartus II SOPC Builder environment. The
development kit also includes the Keil RealView MDK software development environment which
incorporates the ARM RealView Compiler Toolchain.

This Application Note describes how synthesized SOPC Builder designs can be loaded onto your
board’s configuration flash so that the design is loaded onto the FPGA automatically at power-on
time. It also describes how software images from RealView MDK can be included in the flash
configuration data.

This Application Note assumes that you are familiar with the Altera Quartus II toolchain and Keil
RealView MDK software. It applies to the following software versions:

 ARM Cortex-M1 FPGA Development Kit version 1.1

 Keil RealView MDK version 3.22a

 Altera Quartus II version 8.0

You should refer to the documentation for each tool for information about how to use the software.
You may also refer to the ARM Cortex-M1 FPGA Development Kit Cortex-M1 User Guide for
more information about the ARM Cortex-M1 processor in the ARM Cortex-M1 FPGA
Development Kit.

This document uses the Altera Cyclone III Starter Board in the examples. You will need to refer
to the documentation for your own development board for details about what flash memory is
available and how this is used to configure the FPGA at power-on.

Programming designs to flash

ARM DAI 0214A Copyright 2008 ARM Limited. All rights reserved. 2-1
Non-Confidential Unrestricted Access

2. Programming designs to flash

The Altera Quartus II software creates an SRAM Object File (SOF) and a Programmer Object File
(POF) when you compile a hardware design. You can use the Quartus II programmer to configure
the FPGA with the SOF file via a download cable, but the design does not persist after the device
is powered off.

The POF file that the Quartus II Assembler creates is used to program CPLD devices. You can
generate an alternative POF file from the SOF file and use this to program a configuration flash
device. The FPGA can be configured from the flash at power-on, avoiding the need to program
the device manually each time it is powered on.

Note

 Refer to your development board’s documentation for information about what flash
memory is available and how this is used for power-on configuration.

 You can not convert SOF files that contain time-limited evaluation IP into POF files
for flash configuration.

2.1 Converting SOFs into POFs to program configuration flash

Before programming your design into the configuration flash, you must convert your Quartus II
project’s SOF file into a POF file. To do this, after synthesizing your design successfully, select
the File menu in the main Quartus II window and choose Convert Programming Files. This
opens a window like the one shown in Figure 1 on page 2-2.

Note
You can also use the standalone Quartus II Programmer, available from Altera, if you
already have a SOF file for your design. You do not need to install the complete
Quartus II development environment if you only want to program and convert existing
SOF files. This Application Note uses the programmer module from the complete
Quartus II environment, but you can substitute this for the standalone Quartus II
Programmer if necessary.

In the Output programming file pane of the Convert Programming Files window, ensure that
the Programming file type is set to Programmer Object File (.pof) and choose an output
filename in the File name field. You should set the other options in this pane to suitable values for
your development board’s flash memory and configuration mode. For the Altera Cyclone III
Starter Board, you can use the following values:

 Configuration device: CFI_128MB

 Mode: Active Parallel

Programming designs to flash

2-2 Copyright 2008 ARM Limited. All rights reserved. ARM DAI 0214A
Non-Confidential Unrestricted Access

Figure 1 – Quartus II Convert Programming Files window

In the Input files to convert pane of the programming file conversion window, click on the
Configuration Master row of the table to select it. Then:

1. Press the Add File button and browse to your design’s SOF file.

2. Press the Open button in the file browser dialog when you have selected the SOF file.

3. Click on the SOF Data row of the table to select it, then click on the Properties button to
open the SOF Data Properties window as shown in Figure 2 on page 2-3.

Note
The Configuration Master is the first device in the configuration chain. If you have
multiple devices in your configuration chain, you can add more than one SOF file. Refer
to the Altera Quartus II help for further information.

Programming designs to flash

ARM DAI 0214A Copyright 2008 ARM Limited. All rights reserved. 2-3
Non-Confidential Unrestricted Access

Figure 2 – SOF Data Properties window

You should enter the appropriate configuration options for your target development board’s
configuration flash device in the SOF Data Properties window. For the Altera Cyclone III Starter
Board, you can use the following values:

 Pages: 0

 Address mode for selected pages: Start

 Start address (32-bit hexadecimal): 0x20000

These configuration options specify that the start address for the configuration data in flash
memory is 0x20000. This is the default address from which the Cyclone III Active Parallel
configuration loads configuration data.

Click on the OK button in the SOF Data Properties window, then click on Generate in the main
programming files conversion window to write the POF file.

2.2 Programming the configuration flash using the POF file

After creating the POF file, you can program it to the configuration flash device using the
Quartus II programmer. This process is similar to configuring the FPGA using a SOF file.

To program the POF to the configuration flash device, open the Quartus II programmer by clicking
the Tools menu in the main Quartus II window and selecting Programmer. The Quartus II
programmer window appears as shown in Figure 3 on page 2-4.

Programming designs to flash

2-4 Copyright 2008 ARM Limited. All rights reserved. ARM DAI 0214A
Non-Confidential Unrestricted Access

Figure 3 – Quartus II Programmer window

Note
If you have a project open and this has been fully compiled, the SOF file will
automatically appear in the programming list as shown in the example in Figure 3.

To program the configuration flash, ensure that the board is connected to the host workstation with
a download cable, then:

1. Press the Auto Detect button. This will clear any existing files from the programming
list and automatically detect the target board.

2. Select the detected device in the list. This will be an EP3C25 device if you are using the
Altera Cyclone III Starter Board.

3. From the Edit menu, select Attach Flash Device to open the Select Flash Device
window as shown in Figure 4 on page 2-5.

4. In the Select Flash Device window, choose the flash device that is on your development
board. The Altera Cyclone III Starter Board has a CFI_128MB device. You can select
this by clicking Flash Memory in the Device family pane and then CFI_128MB in the
Device name pane. Press OK to return to the main Quartus II programmer window.

Programming designs to flash

ARM DAI 0214A Copyright 2008 ARM Limited. All rights reserved. 2-5
Non-Confidential Unrestricted Access

Figure 4 – Select Flash Device window

5. In the Quartus II Programmer window, select the CFI_128MB device that has appeared in
the list.

6. Press the Change File button and browse to the POF file that was created in Section 2.1.
Press Open in the file dialog after selecting the POF file.

7. The POF file appears in the Quartus II programmer list. Turn on the Program/Configure
option for all devices in the list by clicking on the check-box under the
Program/Configure column for the row of the table corresponding to the POF file.
Enabling the option for the POF file automatically enables it for the other devices.

8. Click on the Start button to program the flash.

9. Turn off the board and then turn it on again. The FPGA will now be configured with the
new image from the configuration flash device.

Loading software into flash memory

ARM DAI 0214A Copyright 2008 ARM Limited. All rights reserved. 3-1
Non-Confidential Unrestricted Access

3. Loading software into flash memory

If the Cortex-M1 processor in your system contains initialized TCMs, or other initialized on-chip
memories, the initialization data for these memories will be embedded in the SOF file. When you
create a POF file for the configuration flash, the memory initialization data will also be embedded
in the configuration flash data. This means that initialized TCMs and on-chip memories will be re-
loaded with their initial data when the FPGA is configured.

You can also initialize other parts of the flash memory with separate data, such as Cortex-M1
instructions or program data. This might be useful if your hardware system contains a flash
memory interface that the processor can access. You can add extra data to the flash memory by
using Hex files when creating the POF file.

Note
The Cortex-M1 processor achieves the best performance when it is executing from its
TCMs. Executing code directly from flash memory will give lower performance.
However, for some applications you may wish to program software into the flash memory
and use a boot loader to copy it into the TCMs or volatile memory.

3.1 Requirements for loading software into flash memory

To create a POF file which contains software code or data in addition to the FPGA configuration
data, you can use the Quartus II programming file conversion utility. You will need:

 the SOF file for your compiled Quartus II project;

 software initialization data in the Intel Hexadecimal format.

You can use the Keil RealView MDK software to create Intel Hexadecimal format files from your
software project. Then you can combine the SOF and Hex data into an output POF file for flash
memory programming.

3.2 Creating Intel Hexadecimal files for software flash initialization

The RealView MDK software can produce Hex images in the Intel Hexadecimal format, and these
files can be read by the Quartus II programming file conversion utility.

You must describe the size and location of the flash memory in RealView MDK and write your
software to make use of this region. You must also enable Hex file output so that the software
image can be imported into the Quartus II programming file conversion utility.

When writing software that uses flash memory, you must consider:

 the base address of the flash memory in the processor’s memory map;

 the addresses within the flash memory that are used for FPGA configuration data.

Loading software into flash memory

3-2 Copyright 2008 ARM Limited. All rights reserved. ARM DAI 0214A
Non-Confidential Unrestricted Access

To configure the flash memory region in RealView MDK and enable Hex file output:

1. Open the MDK project options and select the Target tab.

2. Enter the details of your flash memory as it appears in the processor’s address map. You
must specify the base address and size in the memory layout pane. Figure 5 shows an
example where a 16MB block of flash memory is accessible at a base address of
0x60000000 in the processor’s address space.

Figure 5 – RealView MDK Target options

3. Select the Output tab of the MDK project options window.

4. Enable Hex file generation by checking the Create HEX File option.

5. Press OK in the MDK project options window.

Building the project will now create a Hex image in the Intel Hexadecimal format in the obj
subdirectory of your MDK project directory.

Note
This Hex image is not in the same format as the Hex images used to initialize Altera on-
chip memories such as those used for the Cortex-M1 TCMs. To find out how to initialize
on-chip memories in the ARM Cortex-M1 FPGA Development Kit, see Application
Note 213: Cortex-M1 TCM initialization in the ARM Cortex-M1 FPGA Development Kit
Altera Edition.

Each memory region that contains initialized data at power-on is known as a load region. The
MDK project Hex file contains the combined data for every load region. If you have multiple load
regions and do not want to program all of these to the flash memory, then you will need to extract
the appropriate regions from the Hex file. Read Appendix 1 for details about how to extract data
from and convert Hex files using the hex2hex utility.

Loading software into flash memory

ARM DAI 0214A Copyright 2008 ARM Limited. All rights reserved. 3-3
Non-Confidential Unrestricted Access

3.3 Combining SOF and Hex data in the POF file

To create the final POF file containing the SOF file and Hex data, follow the procedure in
Section 2.1 to add the SOF file. Instead of pressing OK in the Quartus II programming file
conversion utility, follow these additional steps to add the Hex data:

1. In the Input files to convert pane, click on the Add Hex Data button to open the Add
Hex Data window as shown in Figure 6.

Figure 6 – Add Hex Data window

2. In the Add Hex Data window, click on the … button in the Hex file pane. Select the
Hex file that you want to program into flash memory in the file selection dialog and press
Open.

3. In the Addressing mode pane of the Add Hex Data window, select either Absolute
addressing or Relative addressing:

 Choose Absolute addressing if you want the addresses in the Hex file to be
interpreted as absolute addresses. This means that data will be loaded into the exact
addresses that are specified in the Hex file, relative to the base address of the flash
memory.

 Choose Relative addressing if you want the addresses in the Hex file to be treated as
relative addresses. The addresses will be treated as relative to the end of the previous
Hex file, unless the Set start address option is enabled. In that case, the addresses in
the Hex file will be treated as relative to the address that you enter into the Set start
address field, which is also relative to the base address of the flash memory.

You must ensure that all software code that is loaded into flash memory is loaded to the
correct addresses that your software expects. The Quartus II programming file
conversion utility interprets all addresses as relative to the flash memory base address, so
depending on where your flash memory appears in the processor memory map, you may
need to re-base the addresses in the Hex file to a starting address of 0x00000000.

ARM recommends that you use hex2hex to re-base your flash initialization data to a
starting address of 0x0000000, as shown in Appendix 1, and use:

 Absolute addressing if your flash data starts at the flash memory base address;
or

 Relative addressing with an appropriate offset in the Set start address field if
your flash data does not start at the flash memory base address.

4. Repeat steps 1 to 3 for any other Hex files that you want to add.

5. Press Generate in the Quartus II programming file conversion utility to generate the POF
file.

Loading software into flash memory

3-4 Copyright 2008 ARM Limited. All rights reserved. ARM DAI 0214A
Non-Confidential Unrestricted Access

3.4 Programming the POF file

You can program the POF file as described in Section 2.2

When you program a POF file that contains Hex data in addition to SOF data, you can control
whether the Hex data is programmed by enabling or disabling the Program/Configure option for
your Hex file in the Quartus II Programmer window.

Appendix 1: Converting hex files using hex2hex

ARM DAI 0214A Copyright 2008 ARM Limited. All rights reserved. 4-1
Non-Confidential Unrestricted Access

4. Appendix 1: Converting hex files using hex2hex

The Keil RealView MDK software produces a single Intel Hexadecimal file containing all of the
software code and data. If you want to initialize different memories using different parts of the
software image, you will need to extract the appropriate parts of the Hex file for each memory.
For example, if part of your software is initialized in the Cortex-M1 processor’s Instruction
Tightly Coupled Memory (ITCM) and another part is initialized into flash memory you will need
to generate an ITCM initialization file and a flash memory initialization file.

Note
See Application Note 213: Cortex-M1 TCM initialization in the ARM Cortex-M1 FPGA
Development Kit Altera Edition for information about how to initialize the Cortex-M1
Tightly Coupled Memories.

4.1 Flash memory initialization file requirements

When you initialize flash memory with a Hex file using the Quartus II programmer, you must
consider the following requirements:

 The Hex file must be in the Intel Hexadecimal format.

 The addresses in the original Hex file might need to be re-based to a starting address of
0x00000000 because the Quartus II programmer loads flash relative to the flash memory
base address. Figure 7 shows how the addresses differ between the processor’s memory
map and the Quartus II programmer for a section of data in flash memory.

 Some parts of the flash memory might be used to store FPGA power-on configuration
information, so you must not load software into these regions.

Processor’s memory map Flash programmer’s view

Flash

Flash

+0x000000

+0xFFFFFF

0x60000000

0x60FFFFFF

+0x800000

0x60800000

Figure 7 – Re-based addresses for flash memory initialization

4.2 Running hex2hex

The hex2hex utility is installed in the Utilities subdirectory of the ARM Cortex-M1 FPGA
Development Kit installation. You can run it from a Windows command prompt using the
hex2hex.bat execution wrapper.

Note
hex2hex requires a valid installation of the Altera Quartus II software.

Appendix 1: Converting hex files using hex2hex

4-2 Copyright 2008 ARM Limited. All rights reserved. ARM DAI 0214A
Non-Confidential Unrestricted Access

The hex2hex utility takes several arguments and options. The complete set of options are
documented in Application Note 215: Converting memory initialization files in the ARM
Cortex-M1 FPGA Development Kit Altera Edition, which you should read to become familiar with
the utility. For most flash memory initialization tasks, you can use the following arguments:

 --infile=file, where file is the filename of the RealView MDK Hex file. This
tells the hex2hex utility the file from which it should read data.

 --outfile=file, where file is the output filename that will contain data for flash
memory initialization. The hex2hex utility will create this file.

 --oformat=ihex, which configures hex2hex to produce an Intel Hexadecimal
formatted output file.

 --saddr=address, where address is the start address of the flash data in the input
Hex file. The address is the byte address of the data as it appears in the processor’s
address map.

 --eaddr=address, where address is the address of the final data for flash memory
in the input Hex file. The address is the byte address of the data as it appears in the
processor’s address map.

The output file will be re-based to an address of 0x00000000 by default.

For example, if your input Hex file is named project.hex and contains flash memory
initialization data from 0x60000000 to 0x6000FFFF, you can use the following command line to
create a flash memory initialization Hex file named flash.hex:

hex2hex.bat --infile=project.hex --outfile=flash.hex
--oformat=ihex --saddr=0x60000000 --eaddr=0x6000FFFF

Note
Instead of using the saddr and eaddr arguments, you can use saddr and osize to
specify a base address and region size. Refer to Application Note 215: Converting
memory initialization files in the ARM Cortex-M1 FPGA Development Kit Altera Edition
for complete information about the hex2hex options.

4.3 Running hex2hex in RealView MDK

You can configure RealView MDK to run the hex2hex utility automatically each time your
software project is compiled. This means that your flash memory initialization files, as well as
other initialization files such as those for the Cortex-M1 TCMs, will be kept up-to-date.

To configure RealView MDK to run hex2hex automatically, follow these steps:

1. Open the RealView MDK project options for your current project.

2. In the project options window, select the User tab as shown in Figure 8 on page 4-3.

3. In the Run User Programs After Build/Rebuild section, place a tick in the box beside
Run #1 and enter your hex2hex command-line in the adjacent text field. You may use
#H as the value for the infile argument, which MDK will automatically replace with
the name of the project Hex file. For example:

C:\ARM\CortexM1_DevKit\Utilities\hex2hex.bat
--infile=”#H” --outfile=C:\MyProject\flash.hex
--oformat=ihex --saddr=0x60000000 --eaddr=0x6000FFFF

You should replace the output file name and the other options with your own preferences.

Note
The #H string is an example of a RealView MDK Key Sequence, which have
special meanings when entered into user commands. For a complete list of MDK
Key Sequences, refer to the RealView MDK help.

Appendix 1: Converting hex files using hex2hex

ARM DAI 0214A Copyright 2008 ARM Limited. All rights reserved. 4-3
Non-Confidential Unrestricted Access

Figure 8 – RealView MDK User options

When you build your project files, RealView MDK will run the user commands to create the
additional Hex files. If there are any errors or warnings from the user commands, these will be
printed in the RealView MDK output window.

References

ARM DAI 0214A Copyright 2008 ARM Limited. All rights reserved. 5-1
Non-Confidential Unrestricted Access

5. References

This Application Note refers to the following ARM documentation:

 ARM Cortex-M1 FPGA Development Kit Altera Cyclone III Edition Cortex-M1 User
Guide (ARM DUI 0395)

 Application Note 213: Cortex-M1 TCM initialization in the ARM Cortex-M1 FPGA
Development Kit Altera Edition (ARM DAI 0213)

 Application Note 215: Converting memory initialization files in the ARM Cortex-M1
FPGA Development Kit Altera Edition (ARM DAI 0215)

You can also refer to the following online resources for further related documentation:

 http://infocenter.arm.com for access to ARM documentation

 http://www.altera.com for access to Altera documentation

http://infocenter.arm.com/
http://www.altera.com/

	Application Note 214
	Table of Contents
	1.	Introduction
	2.	Programming designs to flash
	2.1	Converting SOFs into POFs to program configuration flash
	2.2	Programming the configuration flash using the POF file

	3.	Loading software into flash memory
	3.1	Requirements for loading software into flash memory
	3.2	Creating Intel Hexadecimal files for software flash initialization
	3.3	Combining SOF and Hex data in the POF file
	3.4	Programming the POF file

	4.	Appendix 1: Converting hex files using hex2hex
	4.1	Flash memory initialization file requirements
	4.2	Running hex2hex
	4.3	Running hex2hex in RealView MDK

	5.	References

