
Advanced RISC Machines

ARM

Document Number: ARM DDI 0033D

Issued: September 1995

Copyright Advanced RISC Machines Ltd (ARM) 1995

All rights reserved

ARM 710a

Preliminary Data Sheet

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

macrocell

Proprietary Notice
ARM and the ARM Powered logo are trademarks of Advanced RISC Machines Ltd.

Neither the whole nor any part of the information contained in, or the product described in, this
datasheet may be adapted or reproduced in any material form except with the prior written
permission of the copyright holder.

The product described in this datasheet is subject to continuous developments and
improvements. All particulars of the product and its use contained in this datasheet are given by
ARM in good faith. However, all warranties implied or expressed, including but not limited to
implied warranties or merchantability, or fitness for purpose, are excluded.

This datasheet is intended only to assist the reader in the use of the product. ARM Ltd shall not
be liable for any loss or damage arising from the use of any information in this datasheet, or any
error or omission in such information, or any incorrect use of the product.

Change Log
Issue Date By Change

A (Draft 0.1) Dec 1994 AW Created using ARM710a version C and
ARM710C version C Data Sheets.

B Jan 1995 AW First formal release.
C draft1 Aug 1995 AP Changes as a result of review.
D Sep 1995 AP Bus modified.

ii
ARM710a macrocell Data Sheet

ARM DDI 0033D

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

ARM710a macrocell Data Sheet
ARM DDI 0033D

Contents-i

111

Contents

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

1 Introduction 1-1
1.1 Introduction 1-2
1.2 Block Diagram 1-4
1.3 Functional Diagram 1-5

2 Signal Description 2-1
2.1 Signal Descriptions 2-2

3 Programmer's Model 3-1
3.1 Register Configuration 3-2
3.2 Operating Mode Selection 3-4
3.3 Registers 3-4
3.4 Exceptions 3-7
3.5 Reset 3-11

4 Instruction Set 4-1
4.1 Instruction Set Summary 4-2
4.2 The Condition Field 4-3
4.3 Branch and Branch with link (B, BL) 4-4
4.4 Data Processing 4-6
4.5 PSR Transfer (MRS, MSR) 4-15
4.6 Multiply and Multiply-Accumulate (MUL, MLA) 4-19
4.7 Single Data Transfer (LDR, STR) 4-21
4.8 Block Data Transfer (LDM, STM) 4-27
4.9 Single Data Swap (SWP) 4-34
4.10 Software Interrupt (SWI) 4-36
4.11 Coprocessor Instructions on ARM710a macrocell 4-38
4.12 Coprocessor Data Operations (CDP) 4-39
4.13 Coprocessor Data Transfers (LDC, STC) 4-41
4.14 Coprocessor Register Transfers (MRC, MCR) 4-45
4.15 Undefined instruction 4-48
4.16 Instruction Set Examples 4-49
4.17 Instruction Speed Summary 4-53

Contents

ARM710a macrocell Data Sheet
ARM DDI 0033D

Contents-ii

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

5 Configuration 5-1
5.1 Internal Coprocessor Instructions 5-2
5.2 Registers 5-3

6 Instruction and Data Cache (IDC) 6-1
6.1 Cacheable Bit 6-2
6.2 IDC Operation 6-2
6.3 IDC Validity 6-2
6.4 Read-lock-write 6-3
6.5 IDC Enable/Disable and Reset 6-3

7 Write Buffer (WB) 7-1
7.1 Bufferable Bit 7-2
7.2 Write Buffer Operation 7-2

8 Coprocessors 8-1
8.1 Coprocessors 8-2

9 Memory Management Unit 9-1
9.1 MMU Program Accessible Registers 9-3
9.2 Address Translation 9-4
9.3 Translation Process 9-5
9.4 Level One Descriptor 9-6
9.5 Page Table Descriptor 9-6
9.6 Section Descriptor 9-7
9.7 Translating Section References 9-8
9.8 Level Two Descriptor 9-9
9.9 Translating Small Page References 9-10
9.10 Translating Large Page References 9-11
9.11 MMU Faults and CPU Aborts 9-12
9.12 Fault Address & Fault Status Registers (FAR & FSR) 9-12
9.13 Domain Access Control 9-14
9.14 Fault Checking Sequence 9-15
9.15 External Aborts 9-17
9.16 Interaction of the MMU, IDC and Write Buffer 9-18
9.17 Effect of Reset 9-19

10 Bus Clocking 10-1
10.1 Fastbus Extension 10-2
10.2 Standard Mode 10-4

11 Bus Interface 11-1
11.1 ARM710a macrocell Cycle Speed 11-2
11.2 Bus Interface Signals 11-2
11.3 Cycle Types 11-3
11.4 Addressing Signals 11-8
11.5 Memory Request Signals 11-9
11.6 Data Signal Timing 11-10
11.7 Maximum Sequential Length 11-11
11.8 Read-lock-write 11-12
11.9 Use of the nWAIT pin 11-13
11.10 Use of the ALE Pin 11-14
11.11 Use of the nENDOUT Output 11-17
11.12 Bus interface Sampling Points 11-17

Contents

ARM710a macrocell Data Sheet
ARM DDI 0033D

Contents-iii

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

11.13 Big-endian / Little-endian Operation 11-20
11.14 Use of Byte Lane Selects (nBLS[3:0]) 11-21
11.15 Memory Access Sequence Summary 11-23
11.16 ARM710a macrocell Cycle Type Summary 11-28

12 DC Parameters 12-1
12.1 Absolute Maximum Ratings 12-2
12.2 DC Operating Conditions 12-2
12.3 DC Characteristics 12-3

13 AC Parameters in Standard Mode 13-1
13.1 Test Conditions 13-2
13.2 Relationship between FCLK & MCLK in

Synchronous Mode 13-2
13.3 Main Bus Signals 13-4

14 AC Parameters with Fastbus Extension 14-1
14.1 Test Conditions 14-2
14.2 Main Bus Signals 14-3

Contents

ARM710a macrocell Data Sheet
ARM DDI 0033D

Contents-iv

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

ARM710a macrocell Data Sheet
ARM DDI 0033D

1-1

111

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
sIntroduction

This chapter provides an introduction to the ARM710a macrocell.

1.1 Introduction 1-2

1.2 Block Diagram 1-4

1.3 Functional Diagram 1-5

1

Introduction

ARM710a macrocell Data Sheet
ARM DDI 0033D

1-2

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

1.1 Introduction
The ARM710a macrocell is a general purpose 32-bit microprocessor with 8kByte
cache, enlarged write buffer and Memory Management Unit (MMU) for use as a
macrocell in highly integrated, high-performance system solutions. The CPU within
ARM710a macrocell is the ARM7. The ARM710a macrocell is software compatible
with the ARM processor family.

The ARM710a macrocell architecture is based on 'Reduced Instruction Set Computer'
(RISC) principles, and the instruction set and related decode mechanism are greatly
simplified compared with microprogrammed 'Complex Instruction Set Computers'
(CISC).

The mixed data and instruction cache together with the write buffer substantially raise
the average execution speed and reduce the average amount of memory bandwidth
required by the processor. This allows the external bus structure to support additional
processors or Direct Memory Access (DMA) channels with minimal performance loss.

The MMU supports a conventional two-level page-table structure and a number of
extensions which make it ideal for embedded control, UNIX and Object Oriented
systems.

The instruction set comprises ten basic instruction types:

• Two of these make use of the on-chip arithmetic logic unit, barrel shifter and
multiplier to perform high-speed operations on the data in a bank of 31
registers, each 32 bits wide;

• Three classes of instruction control data transfer between memory and the
registers, one optimised for flexibility of addressing, another for rapid context
switching and the third for swapping data;

• Two instructions control the flow and privilege level of execution; and

• Three types are dedicated to the control of external coprocessors which allow
the functionality of the instruction set to be extended off-chip in an open and
uniform way.

The ARM instruction set is a good target for compilers of many different high-level
languages. Where required for critical code segments, assembly code programming
is also straightforward, unlike some RISC processors which depend on sophisticated
compiler technology to manage complicated instruction interdependencies.

The memory interface has been designed to allow the performance potential to be
realised without incurring high costs in the memory system. Speed-critical control
signals are pipelined to allow system control functions to be implemented in standard
low-power logic, and these control signals permit the exploitation of paged mode
access offered by industry standard DRAMs.

ARM710a macrocell is a fully static macrocell and has been designed to minimise its
power requirements. This makes it ideal for portable applications where both these
features are essential.

Introduction

ARM710a macrocell Data Sheet
ARM DDI 0033D

1-3

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

Datasheet notation:

0x marks a Hexadecimal quantity

BOLD external signals are shown in bold capital letters

binary where it is not clear that a quantity is binary it is followed by the word
binary

ARM710a macrocell is a macrocell variant of the ARM710a, differing from it in
the following respects:

• no IEEE 1149.1 test interface

• it is an unpackaged macrocell

• CMOS signal interface

• separate data in and data out buses

See also ➲Appendix A, Differences between ARM610 and ARM710a macrocell for
further details.

Introduction

ARM710a macrocell Data Sheet
ARM DDI 0033D

1-4

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

1.2 Block Diagram

 Figure 1-1: ARM710a macrocell block diagram

MMU Cache CPU

Write
Buffer

Address Buffer
C
o
n
t
r
o
l

Clock

ABE nWAIT MCLK SnA FCLK FASTBUS nRESET

nMREQ

SEQ

ABORT

nIRQ

nFIQ

Internal Data Bus

DIN[31:0]DBE

Internal Address Bus

ALEA[31:0] nR/W nB/W LOCK

COPROC
 #15

nBLS[3:0]

8 kByte ARM7

TESTOUT[2:0]

TESTIN[7:0]

DOUT[31:0]

nENDOUT

Introduction

ARM710a macrocell Data Sheet
ARM DDI 0033D

1-5

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

1.3 Functional Diagram

 Figure 1-2: Functional diagram

nIRQ

nFIQInterrupts

nRESET

SnA

FCLK

MCLK

nWAIT

Clocks

VDD

VSS
Power

nRW

nBW

LOCK

DOUT[31:0]

A[31:0]
Address

Bus

Data
Bus

Control
Bus

nMREQ

SEQ

ABORT

Memory
Interface

Chip
Test

ABE

DBE

ALE

Bus
Controls

FASTBUS

TESTOUT[2:0]

TESTIN[7:0]

BLS[3:0]

ARM710a

ARM710a
macrocell

DIN[31:0]

nENDOUT

Introduction

ARM710a macrocell Data Sheet
ARM DDI 0033D

1-6

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

ARM710a macrocell Data Sheet
ARM DDI 0033D

2-1

111

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
sSignal Description

This chapter describes the signals.

2.1 Signal Descriptions 2-2

2

Signal Description

ARM710a macrocell Data Sheet
ARM DDI 0033D

2-2

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

2.1 Signal Descriptions

Name Type Description:

A[31:0] OCZ Address bus. This bus signals the address requested for memory accesses.
Normally it changes during MCLK HIGH, subject to ALE .

ABE IC Address bus enable. When this input is LOW, the address bus A[31:0] , nRW,
nBLS[3:0] , nBW and LOCK are put into a high impedance state (Note 1).

ABORT IC External abort. Allows the memory system to tell the processor that a requested
access has failed. Only monitored when ARM710a macrocell is accessing
external memory.

ALE IC Address latch enable. This input is used to control transparent latches on the
address bus A[31:0] , nBW, nBLS[3:0] , nRW & LOCK . Normally these signals
change during MCLK HIGH, but they may be held by driving ALE LOW. The
functionality of this signal changes with and without Fastbus extension, see
➲11.10 Use of the ALE Pin on page 11-14.

DIN[31:0] IC Input data bus. During read operations (when nRW is LOW), the input data must
be valid before the falling edge of MCLK . To avoid disipating static current, ensure
that this bus is always driven to a known value.

DOUT[31:0] OC Output data bus. During write operations (when nRW is HIGH), the output data will
become valid during MCLK LOW. At high clock frequencies the data may not
become valid until just after the rising edge of MCLK (see ➲13.3 Main Bus Sig-
nals on page 13-4). The value of this bus is undefined when the signal
nENDOUT is HIGH.

DBE IC Data bus enable. When this input is LOW, the nENDOUT output is forced HIGH.
This can be used to force the ARM710a macrocell off the system databus. DBE
should be HIGH at all times when the ARM is allowed to drive the system bus.

FCLK ICK Fast clock input, only used without fastbus extension.
When the ARM710a macrocell CPU is accessing the cache or performing an
internal cycle in this mode, it is clocked with the Fast Clock, FCLK .

FASTBUS IC Bus mode select signal. Selects between the standard mode bus interface, and
clocking, and the ARM710a macrocell fastbus mode. When LOW selects ARM710
bus, when HIGH selects fastbus mode.

LOCK OCZ Locked operation. LOCK is driven HIGH, to signal a “locked” memory access
sequence, and the memory manager should wait until LOCK goes LOW before
allowing another device to access the memory. LOCK changes while MCLK is
HIGH and remains HIGH during the locked memory sequence. LOCK is latched by
ALE.

MCLK ICK Memory clock input. This clock times all ARM710a macrocell memory accesses.
The LOW or HIGH period of MCLK may be stretched for slow peripherals;
alternatively, the nWAIT input may be used with a free-running MCLK to achieve
similar effects.

 Table 2-1: Signal descriptions

Signal Description

ARM710a macrocell Data Sheet
ARM DDI 0033D

2-3

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

nBLS[3:0] OCZ Not Byte Lane Selects. These are active LOW and signify which bytes of the
memory are being accessed. For a word access all will be LOW. Normally they
change during MCLK HIGH, subject to ALE (see ➲11.14 Use of Byte Lane
Selects (nBLS[3:0]) on page 11-21).

nBW OCZ Not byte / word. An output signal used by the processor to indicate to the external
memory system when a data transfer of a byte length is required. nBW is HIGH for
word transfers and LOW for byte transfers, and is valid for both read and write
operations. The signal changes while MCLK is HIGH. nBW is latched by ALE.

nENDOUT OC Not enable data out. This active LOW signal can be used to control tri-state drivers
connected to DOUT[31:0] . It will be LOW during write cycles on the bus. It is
conditioned by the DBE input, and will be HIGH when DBE is LOW.

nFIQ IC Not fast interrupt request. If FIQs are enabled, the processor will respond to a LOW
level on this input by taking the FIQ interrupt exception. This is an asynchronous,
level-sensitive input, and must be held LOW until a suitable response is received
from the processor.

nIRQ IC Not interrupt request. As nFIQ, but with lower priority. May be taken LOW
asynchronously to interrupt the processor when the IRQ enable is active.

nMREQ OC Not memory request. A pipelined signal that changes while MCLK is LOW to
indicate whether or not in the following cycle, the processor will be accessing
external memory. When nMREQ is LOW, the processor will be accessing external
memory

nRESET IC Not reset. This is a level sensitive input which is used to start the processor from a
known address. A LOW level will cause the current instruction to terminate
abnormally, and the on-chip cache, MMU, and write buffer to be disabled. When
nRESET is driven HIGH, the processor will re-start from address 0. nRESET must
remain LOW for at least 2 full FCLK cycles or 5 full MCLK cycles which ever is
greater. While nRESET is LOW the processor will perform idle cycles with
incrementing addresses and nWAIT must be HIGH.

nRW OCZ Not read/write. When HIGH this signal indicates a processor write operation; when
LOW, a read. The signal changes while MCLK is HIGH. nRW is latched by ALE.

nWAIT IC Not wait. When LOW this allows extra MCLK cycles to be inserted in memory
accesses. It must change during the LOW phase of the MCLK cycle to be
extended.

SEQ OC Sequential address. This signal is the inverse of nMREQ, and is provided for
compatibility with existing ARM memory systems.

SnA IC Synchronous / not Asynchronous. In standard ARM bus mode this signal
determines the bus interface mode and should be wired HIGH or LOW depending
on the desired relationship between FCLK and MCLK in the application. See
➲Chapter 11, Bus Interface. This signal is ignored when operating with the
fastbus extension.

Name Type Description:

 Table 2-1: Signal descriptions (Continued)

Signal Description

ARM710a macrocell Data Sheet
ARM DDI 0033D

2-4

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s Notes

1 When outputs are placed in the high impedance state for long periods, care
must be taken to ensure that they do not float to an undefined logic level, as
this can dissipate power.

Key to signal types:

IC Input, CMOS threshold

OC Output, CMOS levels

OCZ Output, CMOS levels, tri-stateable

ICK Clock input, CMOS levels

TESTIN[7:0] IC Test bus input. This bus is used for testing of the device. When in normal
operation, all of these signals must be tied LOW.

TESTOUT[2:0] OC Test bus output. This bus is used for testing of the device. When all the
TESTIN[7:0] signals are driven LOW, these three outputs will be driven LOW.

VDD Positive supply.

VSS Ground supply.

Name Type Description:

 Table 2-1: Signal descriptions (Continued)

ARM710a macrocell Data Sheet
ARM DDI 0033D

3-1

111

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
sProgrammer's Model

This chapter describes the programmer’s model.

3.1 Register Configuration 3-2

3.2 Operating Mode Selection 3-4

3.3 Registers 3-4

3.4 Exceptions 3-7

3.5 Reset 3-11

3

Programmer's Model

ARM710a macrocell Data Sheet
ARM DDI 0033D

3-2

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

ARM710a macrocell supports a variety of operating configurations. Some are
controlled by register bits and are known as the register configurations. Others may
be controlled by software and these are known as operating modes.

3.1 Register Configuration
The ARM710a macrocell processor provides 3 register configuration settings which
may be changed while the processor is running and which are discussed below.

3.1.1 Big and little-endian (the bigend bit)

The bigend bit in the Control Register sets whether the ARM710a macrocell treats
words in memory as being stored in big-endian or little-endian format. See ➲Chapter
5, Configuration for more information on the Control Register. Memory is viewed as a
linear collection of bytes numbered upwards from zero. Bytes 0 to 3 hold the first
stored word, bytes 4 to 7 the second and so on.

In the little-endian scheme the lowest numbered byte in a word is considered to be the
least significant byte of the word and the highest numbered byte is the most significant.
Byte 0 of the memory system should be connected to data lines 7 through 0 (D[7:0])
in this scheme.

 Figure 3-1: Little-endian addresses of bytes within word

In the big-endian scheme the most significant byte of a word is stored at the lowest
numbered byte and the least significant byte is stored at the highest numbered byte.
Byte 0 of the memory system should therefore be connected to data lines 31 through
24 (D[31:24]). Load and store are the only instructions affected by the endian-ness:
see ➲4.7 Single Data Transfer (LDR, STR) on page 4-21 for more details.

Little-endian

Higher Address 31 24 23 16 15 8 7 0 Word Address

11 10 9 8 8

7 6 5 4 4

3 2 1 0 0

Lower Address

 • Least significant byte is at lowest address

 • Word is addressed by byte address of least significant byte

Programmer's Model

ARM710a macrocell Data Sheet
ARM DDI 0033D

3-3

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s Figure 3-2: Big-endian addresses of bytes within words

3.1.2 Configuration bits for backward compatibility

The other two configuration bits, prog32 and data32, are used for backward
compatibility with earlier ARM processors but should normally be set to 1. This
configuration extends the address space to 32 bits, introduces major changes in the
programmer's model as described below, and provides support for running existing 26
bit programs in the 32 bit environment. This mode is recommended for compatibility
with future ARM processors and all new code should be written to use only the 32 bit
operating modes.

Because the original ARM instruction set has been modified to accommodate 32 bit
operation there are certain additional restrictions which programmers must be aware
of. These are indicated in the text by the words shall and shall not. Reference should
also be made to the ARM Application Notes “Rules for ARM Code Writers” and “Notes
for ARM Code Writers”, available from your supplier.

Big-endian

Higher Address 31 24 23 16 15 8 7 0 Word Address

8 9 10 11 8

4 5 6 7 4

0 1 2 3 0

Lower Address

 • Most significant byte is at lowest address

 • Word is addressed by byte address of most significant byte

Programmer's Model

ARM710a macrocell Data Sheet
ARM DDI 0033D

3-4

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

3.2 Operating Mode Selection
ARM710a macrocell has a 32 bit data bus and a 32 bit address bus. The processor
supports byte (8 bit) and word (32 bit) data types, where words must be aligned to four
byte boundaries. Instructions are exactly one word, and data operations (eg ADD) are
only performed on word quantities. Load and store operations can transfer either bytes
or words.

ARM710a macrocell supports six modes of operation:

1 User mode (usr): the normal program execution state

2 FIQ mode (fiq): fast interrupt for data transfer or channel processes

3 IRQ mode (irq): used for general purpose interrupt handling

4 Supervisor mode (svc): a protected mode for the operating system

5 Abort mode (abt): entered after a data or instruction prefetch abort

6 Undefined mode (und): entered when an undefined instruction is executed

Mode changes may be made under software control or may be brought about by
external interrupts or exception processing. Most application programs will execute in
User mode. The other modes, known as privileged modes, will be entered to service
interrupts or exceptions or to access protected resources.

3.3 Registers
The processor has a total of 37 registers made up of 31 general 32 bit registers and 6
status registers. At any one time 16 general registers (R0 to R15) and one or two
status registers are visible to the programmer. The visible registers depend on the
processor mode. The other registers, known as the banked registers, are switched in
to support IRQ, FIQ, Supervisor, Abort and Undefined mode processing. ➲Figure 3-3:
Register organisation on page 3-5 shows how the registers are arranged, with the
banked registers shaded.

In all modes 16 registers, R0 to R15, are directly accessible. All registers except R15
are general purpose and may be used to hold data or address values. Register R15
holds the Program Counter (PC). When R15 is read, bits [1:0] are zero and bits [31:2]
contain the PC. A seventeenth register (the CPSR - Current Program Status Register)
is also accessible. It contains condition code flags and the current mode bits and may
be thought of as an extension to the PC.

R14 is used as the subroutine link register and receives a copy of R15 when a Branch
and Link instruction is executed. It may be treated as a general purpose register at all
other times. R14_svc, R14_irq, R14_fiq, R14_abt and R14_und are used similarly to
hold the return values of R15 when interrupts and exceptions arise, or when Branch
and Link instructions are executed within interrupt or exception routines.

Programmer's Model

ARM710a macrocell Data Sheet
ARM DDI 0033D

3-5

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

 Figure 3-3: Register organisation

FIQ mode has seven banked registers mapped to R8-14 (R8_fiq-R14_fiq). Many FIQ
programs will not need to save any registers. User mode, IRQ mode, Supervisor
mode, Abort mode and Undefined mode each have two banked registers mapped to
R13 and R14. The two banked registers allow these modes to each have a private
stack pointer and link register. Supervisor, IRQ, Abort and Undefined mode programs
which require more than these two banked registers are expected to save some or all
of the caller's registers (R0 to R12) on their respective stacks. They are then free to
use these registers which they will restore before returning to the caller. In addition
there are also five SPSRs (Saved Program Status Registers) which are loaded with
the CPSR when an exception occurs. There is one SPSR for each privileged mode.

General Registers and Program Counter Modes

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

R13_fiq

R14_fiq

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_svc

R14_svc

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_abt

R14_abt

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_irq

R14_irq

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_und

R14_und

R15 (PC)

User32 FIQ32 Supervisor32 Abort32 IRQ32 Undefined32

CPSR CPSR

SPSR_fiq

CPSR

SPSR_svc

CPSR

SPSR_abt

CPSR

SPSR_irq

CPSR

SPSR_und

Program Status Registers

= banked register

Programmer's Model

ARM710a macrocell Data Sheet
ARM DDI 0033D

3-6

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s Figure 3-4: Format of the program status registers (PSRs)

The format of the Program Status Registers is shown in ➲Figure 3-4: Format of the
program status registers (PSRs). The N, Z, C and V bits are the condition code flags.
The condition code flags in the CPSR may be changed as a result of arithmetic and
logical operations in the processor and may be tested by all instructions to determine
if the instruction is to be executed.

The I and F bits are the interrupt disable bits. The I bit disables IRQ interrupts when it
is set and the F bit disables FIQ interrupts when it is set. The M0, M1, M2, M3 and M4
bits (M[4:0]) are the mode bits, and these determine the mode in which the processor
operates. The interpretation of the mode bits is shown in ➲Table 3-1: The mode bit.
Not all bit combinations define a valid processor mode. Only those explicitly described
shall be used. The user should be aware that if any illegal value is programmed into
the mode bits, M[4:0], the processor will enter an unrecoverable state. If this occurs,
reset should be applied.

The bottom 28 bits of a PSR (incorporating I, F and M[4:0]) are known collectively as
the control bits. These will change when an exception arises and in addition can be
manipulated by software when the processor is in a privileged mode. Unused bits in
the PSRs are reserved and their state shall be preserved when changing the flag or
control bits. Programs shall not rely on specific values from the reserved bits when
checking the PSR status, since they may read as one or zero in future processors.

M[4:0] Mode Accessible Register Set

 10000 User PC, R14..R0 CPSR

 10001 FIQ PC, R14_fiq..R8_fiq, R7..R0 CPSR, SPSR_fiq

 10010 IRQ PC, R14_irq..R13_irq, R12..R0 CPSR, SPSR_irq

 10011 Supervisor PC, R14_svc..R13_svc, R12..R0 CPSR, SPSR_svc

 10111 Abort PC, R14_abt..R13_abt, R12..R0 CPSR, SPSR_abt

 11011 Undefined PC, R14_und..R13_und, R12..R0 CPSR, SPSR_und

 Table 3-1: The mode bit

0123456782728293031

M0M1M2M3M4.FIVCZN

Overflow
Carry / Borrow / Extend
Zero
Negative / Less Than

Mode bits
FIQ disable
IRQ disable

. ..

flags control

Programmer's Model

ARM710a macrocell Data Sheet
ARM DDI 0033D

3-7

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

3.4 Exceptions
Exceptions arise whenever there is a need for the normal flow of program execution
to be broken, so that (for example) the processor can be diverted to handle an interrupt
from a peripheral. The processor state just prior to handling the exception must be
preserved so that the original program can be resumed when the exception routine
has completed. Many exceptions may arise at the same time.

ARM710a macrocell handles exceptions by making use of the banked registers to
save state. The old PC and CPSR contents are copied into the appropriate R14 and
SPSR and the PC and mode bits in the CPSR bits are forced to a value which depends
on the exception. Interrupt disable flags are set where required to prevent otherwise
unmanageable nestings of exceptions. In the case of a re-entrant interrupt handler,
R14 and the SPSR should be saved onto a stack in main memory before re-enabling
the interrupt; when transferring the SPSR register to and from a stack, it is important
to transfer the whole 32 bit value, and not just the flag or control fields. When multiple
exceptions arise simultaneously, a fixed priority determines the order in which they are
handled. This is listed later in ➲3.4.7 Exception priorities on page 3-11.

3.4.1 FIQ

The FIQ (Fast Interrupt reQuest) exception is externally generated by taking the nFIQ
input LOW. This input can except asynchronous transitions, and is delayed by one
clock cycle for synchronisation before it can affect the processor execution flow. FIQ
is designed to support a data transfer or channel process, and has sufficient private
registers to remove the need for register saving in such applications (thus minimising
the overhead of context switching). The FIQ exception may be disabled by setting the
F flag in the CPSR (but note that this is not possible from User mode). If the F flag is
clear, ARM710a macrocell checks for a LOW level on the output of the FIQ
synchroniser at the end of each instruction.

When a FIQ is detected, ARM710a macrocell:

1 Saves the address of the next instruction to be executed plus 4 in R14_fiq;
saves CPSR in SPSR_fiq

2 Forces M[4:0]=10001 (FIQ mode) and sets the F and I bits in the CPSR

3 Forces the PC to fetch the next instruction from address 0x1C

To return normally from FIQ, use SUBS PC, R14_fiq,#4 which will restore both the PC
(from R14) and the CPSR (from SPSR_fiq) and resume execution of the interrupted
code.

Programmer's Model

ARM710a macrocell Data Sheet
ARM DDI 0033D

3-8

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

3.4.2 IRQ

The IRQ (Interrupt ReQuest) exception is a normal interrupt caused by a LOW level
on the nIRQ input. It has a lower priority than FIQ, and is masked out when a FIQ
sequence is entered. Its effect may be masked out at any time by setting the I bit in
the CPSR (but note that this is not possible from User mode). If the I flag is clear,
ARM710a macrocell checks for a LOW level on the output of the IRQ synchroniser at
the end of each instruction. When an IRQ is detected, ARM710a macrocell:

1 Saves the address of the next instruction to be executed plus 4 in R14_irq;
saves CPSR in SPSR_irq

2 Forces M[4:0]=10010 (IRQ mode) and sets the I bit in the CPSR

3 Forces the PC to fetch the next instruction from address 0x18

To return normally from IRQ, use SUBS PC,R14_irq,#4 which will restore both the PC
and the CPSR and resume execution of the interrupted code.

3.4.3 Abort

An abort can be signalled by either the internal Memory Management Unit or from the
external ABORT input. An abort indicates that the current memory access cannot be
completed. For instance, in a virtual memory system the data corresponding to the
current address may have been moved out of memory onto a disc, and considerable
processor activity may be required to recover the data before the access can be
performed successfully. ARM710a macrocell checks for aborts during memory access
cycles. When successfully aborted ARM710a macrocell will respond in one of two
ways:

1 If the abort occurred during an instruction prefetch (a Prefetch Abort), the
prefetched instruction is marked as invalid but the abort exception does not
occur immediately. If the instruction is not executed, for example as a result
of a branch being taken while it is in the pipeline, no abort will occur. An abort
will take place if the instruction reaches the head of the pipeline and is about
to be executed.

2 If the abort occurred during a data access (a Data Abort), the action depends
on the instruction type.

a) Single data transfer instructions (LDR, STR) will write back modified base
registers and the Abort handler must be aware of this.

b) The swap instruction (SWP) is aborted as though it had not executed,
though externally the read access may take place.

c) Block data transfer instructions (LDM, STM) complete, and if write-back is
set, the base is updated. If the instruction would normally have overwritten
the base with data (i.e. LDM with the base in the transfer list), this
overwriting is prevented. All register overwriting is prevented after the
Abort is indicated, which means in particular that R15 (which is always last
to be transferred) is preserved in an aborted LDM instruction.

Programmer's Model

ARM710a macrocell Data Sheet
ARM DDI 0033D

3-9

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

If the MMU is enabled, an encoded 4-bit status value and the 4-bit domain number are
placed in the FSR (fault status register). The virtual address which caused the abort is
placed in the FAR (fault address register). See ➲9.12 Fault Address & Fault Status
Registers (FAR & FSR) on page 9-12.

When either a prefetch or data abort occurs, ARM710a macrocell:

1 Saves the address of the aborted instruction plus 4 (for prefetch aborts) or 8
(for data aborts) in R14_abt; saves CPSR in SPSR_abt.

2 Forces M[4:0]=10111 (Abort mode) and sets the I bit in the CPSR.

3 Forces the PC to fetch the next instruction from either address 0x0C (prefetch
abort) or address 0x10 (data abort).

To return after fixing the reason for the abort, use SUBS PC,R14_abt,#4 (for a prefetch
abort) or SUBS PC,R14_abt,#8 (for a data abort). This will restore both the PC and the
CPSR and retry the aborted instruction.

The abort mechanism allows a demand paged virtual memory system to be
implemented when suitable memory management software is available. The
processor is allowed to generate arbitrary addresses, and when the data at an address
is unavailable the MMU signals an abort. The processor traps into system software
which must work out the cause of the abort, make the requested data available, and
retry the aborted instruction. The application program needs no knowledge of the
amount of memory available to it, nor is its state in any way affected by the abort.

Note The ARM710a macrocell only implements the late abort configuration. ARM610
designs should be directly compatible as long as they used late aborts.

Note that there are restrictions on the use of the external abort signal. See ➲9.15
External Aborts on page 9-17.

3.4.4 Software interrupt

The software interrupt instruction (SWI) is used for getting into Supervisor mode,
usually to request a particular supervisor function. When a SWI is executed, ARM710a
macrocell:

1 Saves the address of the SWI instruction plus 4 in R14_svc; saves CPSR in
SPSR_svc

2 Forces M[4:0]=10011 (Supervisor mode) and sets the I bit in the CPSR

3 Forces the PC to fetch the next instruction from address 0x08

To return from a SWI, use MOVS PC,R14_svc. This will restore the PC and CPSR and
return to the instruction following the SWI.

Programmer's Model

ARM710a macrocell Data Sheet
ARM DDI 0033D

3-10

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

3.4.5 Undefined instruction trap

When the ARM710a macrocell comes across an instruction which it cannot handle
(see ➲Chapter 4, Instruction Set), it will take the undefined instruction trap. This
includes all coprocessor instructions, except MCR and MRC operations which access
the internal control coprocessor.

The trap may be used for software emulation of a coprocessor in a system which does
not have the coprocessor hardware, or for general purpose instruction set extension
by software emulation.

When ARM710a macrocell takes the undefined instruction trap it:

1 Saves the address of the Undefined or coprocessor instruction plus 4 in
R14_und; saves CPSR in SPSR_und.

2 Forces M[4:0]=11011 (Undefined mode) and sets the I bit in the CPSR

3 Forces the PC to fetch the next instruction from address 0x04

To return from this trap after emulating the failed instruction, use MOVS PC,R14_und.
This will restore the CPSR and return to the instruction following the undefined
instruction.

3.4.6 Vector summary

These are byte addresses, and will normally contain a branch instruction pointing to
the relevant routine.

The FIQ routine might reside at 0x1C onwards, and thereby avoid the need for (and
execution time of) a branch instruction.

Address Exception Mode on Entry

0x00000000 Reset Supervisor

0x00000004 Undefined instruction Undefined

0x00000008 Software interrupt Supervisor

0x0000000C Abort (prefetch) Abort

0x00000010 Abort (data) Abort

0x00000014 -- reserved -- --

0x00000018 IRQ IRQ

0x0000001C FIQ FIQ

 Table 3-2: Vector summary

Programmer's Model

ARM710a macrocell Data Sheet
ARM DDI 0033D

3-11

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

3.4.7 Exception priorities

When multiple exceptions arise at the same time, a fixed priority system determines
the order in which they will be handled:

1 Reset (highest priority)

2 Data abort

3 FIQ

4 IRQ

5 Prefetch abort

6 Undefined Instruction, Software interrupt (lowest priority)

Note that not all exceptions can occur at once. Undefined instruction and software
interrupt are mutually exclusive since they each correspond to particular (non-
overlapping) decodings of the current instruction.

If a data abort occurs at the same time as a FIQ, and FIQs are enabled (i.e. the F flag
in the CPSR is clear), ARM710a macrocell will enter the data abort handler and then
immediately proceed to the FIQ vector. A normal return from FIQ will cause the data
abort handler to resume execution. Placing data abort at a higher priority than FIQ is
necessary to ensure that the transfer error does not escape detection; the time for this
exception entry should be added to worst case FIQ latency calculations.

3.5 Reset
When the nRESET signal goes LOW, ARM710a macrocell abandons the executing
instruction and then performs idle cycles from incrementing word addresses.

When nRESET goes HIGH again, ARM710a macrocell does the following:

1 Overwrites R14_svc and SPSR_svc by copying the current values of the PC
and CPSR into them. The value of the saved PC and CPSR is not defined.

2 Forces M[4:0]=10011 (Supervisor mode) and sets the I and F bits in the
CPSR.

3 Forces the PC to fetch the next instruction from address 0x00

At the end of the reset sequence, the MMU is disabled and the TLB is flushed, so
forces “flat” translation (i.e. the physical address is the virtual address, and there is no
permission checking); alignment faults are also disabled; the cache is disabled and
flushed; the write buffer is disabled and flushed; the ARM7 CPU core is put into 26 bit
data and address mode and little-endian mode.

Note that due to the reset synchronisers, there will be approximately 4 cycles between
nRESET going HIGH and the fetch from 0x00.

Programmer's Model

ARM710a macrocell Data Sheet
ARM DDI 0033D

3-12

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-1

111

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
sInstruction Set

This chapter describes the instruction set.

4.1 Instruction Set Summary 4-2

4.2 The Condition Field 4-3

4.3 Branch and Branch with link (B, BL) 4-4

4.4 Data Processing 4-6

4.5 PSR Transfer (MRS, MSR) 4-15

4.6 Multiply and Multiply-Accumulate (MUL, MLA) 4-19

4.7 Single Data Transfer (LDR, STR) 4-21

4.8 Block Data Transfer (LDM, STM) 4-27

4.9 Single Data Swap (SWP) 4-34

4.10 Software Interrupt (SWI) 4-36

4.11 Coprocessor Instructions on ARM710a macrocell 4-38

4.12 Coprocessor Data Operations (CDP) 4-39

4.13 Coprocessor Data Transfers (LDC, STC) 4-41

4.14 Coprocessor Register Transfers (MRC, MCR) 4-45

4.15 Undefined instruction 4-48

4.16 Instruction Set Examples 4-49

4.17 Instruction Speed Summary 4-53

4

Instruction Set - Summary

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-2

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4.1 Instruction Set Summary
A summary of the ARM710a macrocell instruction set is shown in ➲Figure 4-1:
Instruction set summary.

Note: Some instruction codes are not defined but do not cause the Undefined instruction trap
to be taken, for instance a Multiply instruction with bit 6 changed to a 1. These
instructions shall not be used, as their action may change in future ARM
implementations.

 Figure 4-1: Instruction set summary

31 28 27 24 23 20 19 16 15 12 11 8 7 5 4 3 0

Cond 0 0 Opcode

21

S Rn Rd Operand 2
Data Processing
PSR Transfer

Multiply

Single Data Swap

Single Data Transfer

Undefined

Block Data Transfer

Coproc Data Transfer

Branch

Coproc Data Operation

Coproc Register Transfer

Software Interrupt

26 25 22

I

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

0 0 0 0 0 0 SA Rd Rn Rs 1 0 0 1 Rm

1 0 0 1 Rm0 0 0 0RdRn0 0 0 1 0 B 0 0

offsetRdRnB W LI P U0 1

0 1 1 XXXXXXXXXXXXXXXXXXXX 1 XXXX

1 0 0 S W LP U Rn Register List

1 0 1 L

1 1 0

offset

1 1 1 0 0 CRm

1 1 1 0 LCP Opc

N W LP U Rn offset CRd CP#

1 1 1 1

CP Opc CRn CRd

 CRn Rd

 CP#

 CP#

 CP

 CP 1 CRm

ignored by processor

Instruction Set - Condition Field

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-3

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4.2 The Condition Field

 Figure 4-2: Condition codes

All ARM710a macrocell instructions are conditionally executed, which means that their
execution may or may not take place depending on the values of the N, Z, C and V
flags in the CPSR. The condition encoding is shown in ➲Figure 4-2: Condition codes.

If the always (AL) condition is specified, the instruction will be executed irrespective of
the flags. The never (NV) class of condition codes shall not be used as they will be
redefined in future variants of the ARM architecture. If a NOP is required, MOV R0,R0
should be used. The assembler treats the absence of a condition code as though
always had been specified.

The other condition codes have meanings as detailed in ➲Figure 4-2: Condition
codes, for instance code 0000 (EQual) causes the instruction to be executed only if
the Z flag is set. This would correspond to the case where a compare (CMP)
instruction had found the two operands to be equal. If the two operands were different,
the compare instruction would have cleared the Z flag and the instruction will not be
executed.

Cond

31 28 27 0

Condition field
0000 = EQ - Z set (equal)
0001 = NE - Z clear (not equal)
0010 = CS - C set (unsigned higher or same)
0011 = CC - C clear (unsigned lower)
0100 = MI - N set (negative)
0101 = PL - N clear (positive or zero)
0110 = VS - V set (overflow)
0111 = VC - V clear (no overflow)
1000 = HI - C set and Z clear (unsigned higher)
1001 = LS - C clear or Z set (unsigned lower or same)
1010 = GE - N set and V set, or N clear and V clear (greater or equal)
1011 = LT - N set and V clear, or N clear and V set (less than)
1100 = GT - Z clear, and either N set and V set, or N clear and V clear (greater than)
1101 = LE - Z set, or N set and V clear, or N clear and V set (less than or equal)
1110 = AL - always
1111 = NV - never

Instruction Set - B, BL

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-4

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4.3 Branch and Branch with link (B, BL)
The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in ➲Figure
4-3: Branch instructions on page 4-4.

Branch instructions contain a signed 2's complement 24 bit offset. This is shifted left
two bits, sign extended to 32 bits, and added to the PC. The instruction can therefore
specify a branch of +/- 32Mbytes. The branch offset must take account of the prefetch
operation, which causes the PC to be 2 words (8 bytes) ahead of the current
instruction.

 Figure 4-3: Branch instructions

Branches beyond +/- 32Mbytes must use an offset or absolute destination which has
been previously loaded into a register. In this case the PC should be manually saved
in R14 if a Branch with Link type operation is required.

4.3.1 The link bit

Branch with Link (BL) writes the old PC into the link register (R14) of the current bank.
The PC value written into R14 is adjusted to allow for the prefetch, and contains the
address of the instruction following the branch and link instruction. Note that the CPSR
is not saved with the PC.

To return from a routine called by Branch with Link use MOV PC,R14 if the link register
is still valid or LDM Rn!,{..PC} if the link register has been saved onto a stack
pointed to by Rn.

4.3.2 Instruction cycle times

Branch and Branch with Link instructions take 3 instruction fetches. For more
information see ➲4.17 Instruction Speed Summary on page 4-53.

Cond 101 L offset

31 28 27 25 24 23 0

Link bit
0 = Branch
1 = Branch with Link

Condition field

Instruction Set - B, BL

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-5

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4.3.3 Assembler syntax

B{L}{cond} <expression>

{L} is used to request the Branch with Link form of the instruction.
If absent, R14 will not be affected by the instruction.

{cond} is a two-character mnemonic as shown in ➲Figure 4-2:
Condition codes on page 4-3 (EQ, NE, VS etc). If absent then
AL (ALways) will be used.

<expression> is the destination. The assembler calculates the offset.

Items in {} are optional. Items in <> must be present.

4.3.4 Examples

here BAL here ; assembles to 0xEAFFFFFE (note effect
B there of PC offset) ALways condition used as

 default

CMP R1,#0 ; compare R1 with zero and branch to fred
BEQ fred if R1 was zero otherwise continue to

; next instruction

BL sub+ROM ; call subroutine at computed address

ADDS R1,#1 ; add 1 to register 1, setting CPSR flags
BLCC sub ; on the result then call subroutine if

; the C flag is clear, which will be the
; case unless R1 held 0xFFFFFFFF

Instruction Set - Data processing

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-6

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4.4 Data Processing
The instruction is only executed if the condition is true, defined at the beginning of this
chapter. The instruction encoding is shown in ➲Figure 4-4: Data processing
instructions on page 4-7.

The instruction produces a result by performing a specified arithmetic or logical
operation on one or two operands. The first operand is always a register (Rn). The
second operand may be a shifted register (Rm) or a rotated 8 bit immediate value
(Imm) according to the value of the I bit in the instruction. The condition codes in the
CPSR may be preserved or updated as a result of this instruction, according to the
value of the S bit in the instruction. Certain operations (TST, TEQ, CMP, CMN) do not
write the result to Rd. They are used only to perform tests and to set the condition
codes on the result and always have the S bit set. The instructions and their effects
are listed in ➲Table 4-1: ARM data processing instructions on page 4-8

Instruction Set - Data processing

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-7

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

.

 Figure 4-4: Data processing instructions

4.4.1 CPSR flags

The data processing operations may be classified as logical or arithmetic. The logical
operations (AND, EOR, TST, TEQ, ORR, MOV, BIC, MVN) perform the logical action
on all corresponding bits of the operand or operands to produce the result. If the S bit
is set (and Rd is not R15, see below) the V flag in the CPSR will be unaffected, the C
flag will be set to the carry out from the barrel shifter (or preserved when the shift
operation is LSL #0), the Z flag will be set if and only if the result is all zeros, and the
N flag will be set to the logical value of bit 31 of the result.

Cond 00 I OpCode Rn Rd Operand 2

011121516192021242526272831

Destination register
1st operand register
Set condition codes

Operation Code

0 = do not alter condition codes
1 = set condition codes

0000 = AND - Rd:= Op1 AND Op2

0010 = SUB - Rd:= Op1 - Op2
0011 = RSB - Rd:= Op2 - Op1
0100 = ADD - Rd:= Op1 + Op2
0101 = ADC - Rd:= Op1 + Op2 + C
0110 = SBC - Rd:= Op1 - Op2 + C
0111 = RSC - Rd:= Op2 - Op1 + C
1000 = TST - set condition codes on Op1 AND Op2
1001 = TEQ - set condition codes on Op1 EOR Op2
1010 = CMP - set condition codes on Op1 - Op2
1011 = CMN - set condition codes on Op1 + Op2
1100 = ORR - Rd:= Op1 OR Op2
1101 = MOV - Rd:= Op2
1110 = BIC - Rd:= Op1 AND NOT Op2
1111 = MVN - Rd:= NOT Op2

Immediate Operand
0 = operand 2 is a register

1 = operand 2 is an immediate value

Shift Rm

Rotate

S

Unsigned 8 bit immediate value

2nd operand register
shift applied to Rm

shift applied to Imm

Imm

Condition field

11 8 7 0

03411

0001 = EOR - Rd:= Op1 EOR Op2

- 1
- 1

Instruction Set - Data processing

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-8

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

The arithmetic operations (SUB, RSB, ADD, ADC, SBC, RSC, CMP, CMN) treat each
operand as a 32 bit integer (either unsigned or 2's complement signed, the two are
equivalent). If the S bit is set (and Rd is not R15) the V flag in the CPSR will be set if
an overflow occurs into bit 31 of the result; this may be ignored if the operands were
considered unsigned, but warns of a possible error if the operands were 2's
complement signed. The C flag will be set to the carry out of bit 31 of the ALU, the Z
flag will be set if and only if the result was zero, and the N flag will be set to the value
of bit 31 of the result (indicating a negative result if the operands are considered to be
2's complement signed).

Assembler
Mnemonic

OpCode Action

AND 0000 operand1 AND operand2

EOR 0001 operand1 EOR operand2

SUB 0010 operand1 - operand2

RSB 0011 operand2 - operand1

ADD 0100 operand1 + operand2

ADC 0101 operand1 + operand2 + carry

SBC 0110 operand1 - operand2 + carry - 1

RSC 0111 operand2 - operand1 + carry - 1

TST 1000 as AND, but result is not written

TEQ 1001 as EOR, but result is not written

CMP 1010 as SUB, but result is not written

CMN 1011 as ADD, but result is not written

ORR 1100 operand1 OR operand2

MOV 1101 operand2 (operand1 is ignored)

BIC 1110 operand1 AND NOT operand2 (Bit clear)

MVN 1111 NOT operand2 (operand1 is ignored)

 Table 4-1: ARM data processing instructions

Instruction Set - Shifts

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-9

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4.4.2 Shifts

When the second operand is specified to be a shifted register, the operation of the
barrel shifter is controlled by the Shift field in the instruction. This field indicates the
type of shift to be performed (logical left or right, arithmetic right or rotate right). The
amount by which the register should be shifted may be contained in an immediate field
in the instruction, or in the bottom byte of another register (other than R15). The
encoding for the different shift types is shown in ➲Figure 4-5: ARM shift operations.

 Figure 4-5: ARM shift operations

Instruction specified shift amount

When the shift amount is specified in the instruction, it is contained in a 5 bit field which
may take any value from 0 to 31. A logical shift left (LSL) takes the contents of Rm and
moves each bit by the specified amount to a more significant position. The least
significant bits of the result are filled with zeros, and the high bits of Rm which do not
map into the result are discarded, except that the least significant discarded bit
becomes the shifter carry output which may be latched into the C bit of the CPSR when
the ALU operation is in the logical class (see above). For example, the effect of LSL
#5 is shown in ➲Figure 4-6: Logical shift left.

 Figure 4-6: Logical shift left

Note that LSL #0 is a special case, where the shifter carry out is the old value of the
CPSR C flag. The contents of Rm are used directly as the second operand.

0 0 1Rs

11 8 7 6 5 411 7 6 5 4

Shift type

Shift amount
5 bit unsigned integer

00 = logical left
01 = logical right
10 = arithmetic right
11 = rotate right

Shift type

Shift register

00 = logical left
01 = logical right
10 = arithmetic right
11 = rotate right

Shift amount specified in
bottom byte of Rs

0 0 0 0 0

contents of Rm

value of operand 2

31 27 26 0

carry out

Instruction Set - Shifts

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-10

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

A logical shift right (LSR) is similar, but the contents of Rm are moved to less
significant positions in the result. LSR #5 has the effect shown in ➲Figure 4-7: Logical
shift right on page 4-10.

 Figure 4-7: Logical shift right

The form of the shift field which might be expected to correspond to LSR #0 is used to
encode LSR #32, which has a zero result with bit 31 of Rm as the carry output. Logical
shift right zero is redundant as it is the same as logical shift left zero, so the assembler
will convert LSR #0 (and ASR #0 and ROR #0) into LSL #0, and allow LSR #32 to be
specified.

An arithmetic shift right (ASR) is similar to logical shift right, except that the high bits
are filled with bit 31 of Rm instead of zeros. This preserves the sign in 2's complement
notation. For example, ASR #5 is shown in ➲Figure 4-8: Arithmetic shift right.

 Figure 4-8: Arithmetic shift right

The form of the shift field which might be expected to give ASR #0 is used to encode
ASR #32. Bit 31 of Rm is again used as the carry output, and each bit of operand 2 is
also equal to bit 31 of Rm. The result is therefore all ones or all zeros, according to the
value of bit 31 of Rm.

Rotate right (ROR) operations reuse the bits which 'overshoot' in a logical shift right
operation by reintroducing them at the high end of the result, in place of the zeros used
to fill the high end in logical right operations. For example, ROR #5 is shown in ➲Figure
4-9: Rotate right.

contents of Rm

value of operand 2

31 0

carry out

0 0 0 0 0

5 4

contents of Rm

value of operand 2

31 0

carry out

5 430

Instruction Set - Shifts

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-11

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

 Figure 4-9: Rotate right

The form of the shift field which might be expected to give ROR #0 is used to encode
a special function of the barrel shifter, rotate right extended (RRX). This is a rotate right
by one bit position of the 33 bit quantity formed by appending the CPSR C flag to the
most significant end of the contents of Rm as shown in ➲Figure 4-10: Rotate right
extended.

 Figure 4-10: Rotate right extended

Register specified shift amount

Only the least significant byte of the contents of Rs is used to determine the shift
amount. Rs can be any general register other than R15.

If this byte is zero, the unchanged contents of Rm will be used as the second operand,
and the old value of the CPSR C flag will be passed on as the shifter carry output.

If the byte has a value between 1 and 31, the shifted result will exactly match that of
an instruction specified shift with the same value and shift operation.

If the value in the byte is 32 or more, the result will be a logical extension of the shift
described above:

1 LSL by 32 has result zero, carry out equal to bit 0 of Rm.

2 LSL by more than 32 has result zero, carry out zero.

3 LSR by 32 has result zero, carry out equal to bit 31 of Rm.

contents of Rm

value of operand 2

31 0

carry out

5 4

contents of Rm

value of operand 2

31 0

carry
out

1

C
in

Instruction Set - TEQ, TST, CMP & CMN

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-12

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4 LSR by more than 32 has result zero, carry out zero.

5 ASR by 32 or more has result filled with and carry out equal to bit 31 of Rm.

6 ROR by 32 has result equal to Rm, carry out equal to bit 31 of Rm.

7 ROR by n where n is greater than 32 will give the same result and carry out
as ROR by n-32; therefore repeatedly subtract 32 from n until the amount is
in the range 1 to 32 and see above.

Note that the zero in bit 7 of an instruction with a register controlled shift is compulsory;
a one in this bit will cause the instruction to be a multiply or undefined instruction.

4.4.3 Immediate operand rotates

The immediate operand rotate field is a 4 bit unsigned integer which specifies a shift
operation on the 8 bit immediate value. This value is zero extended to 32 bits, and then
subject to a rotate right by twice the value in the rotate field. This enables many
common constants to be generated, for example all powers of 2.

4.4.4 Writing to R15

When Rd is a register other than R15, the condition code flags in the CPSR may be
updated from the ALU flags as described above.

When Rd is R15 and the S flag in the instruction is not set the result of the operation
is placed in R15 and the CPSR is unaffected.

When Rd is R15 and the S flag is set the result of the operation is placed in R15 and
the SPSR corresponding to the current mode is moved to the CPSR. This allows state
changes which atomically restore both PC and CPSR. This form of instruction shall not
be used in User mode.

4.4.5 Using R15 as an operand

If R15 (the PC) is used as an operand in a data processing instruction the register is
used directly.

The PC value will be the address of the instruction, plus 8 or 12 bytes due to instruction
prefetching. If the shift amount is specified in the instruction, the PC will be 8 bytes
ahead. If a register is used to specify the shift amount the PC will be 12 bytes ahead.

4.4.6 TEQ, TST, CMP & CMN opcodes

These instructions do not write the result of their operation but do set flags in the
CPSR. An assembler shall always set the S flag for these instructions even if it is not
specified in the mnemonic.

The TEQP form of the instruction used in earlier processors shall not be used in the
32 bit modes, the PSR transfer operations should be used instead. If used in these
modes, its effect is to move SPSR_<mode> to CPSR if the processor is in a privileged
mode and to do nothing if in User mode.

Instruction Set - TEQ, TST, CMP & CMN

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-13

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4.4.7 Instruction cycle times

Data Processing instructions vary in the number of incremental cycles taken as
follows:

Normal Data Processing 1instruction fetch

Data Processing with register specified shift

1 instruction fetch + 1 internal cycle

Data Processing with PC written 3 instruction fetches

Data Processing with register specified shift and PC written

3 instruction fetches and 1 internal cycle

See ➲4.17 Instruction Speed Summary on page 4-53 for more information.

4.4.8 Assembler syntax

1 MOV,MVN - single operand instructions

<opcode>{cond}{S} Rd,<Op2>

2 CMP,CMN,TEQ,TST - instructions which do not produce a result.

<opcode>{cond} Rn,<Op2>

3 AND,EOR,SUB,RSB,ADD,ADC,SBC,RSC,ORR,BIC

<opcode>{cond}{S} Rd,Rn,<Op2>

where <Op2> is Rm{,<shift>} or,<#expression>

{cond} two-character condition mnemonic, see Figure 4-2: Condition codes

{S} set condition codes if S present (implied for CMP, CMN, TEQ, TST).

Rd,Rn,Rm expressions evaluating to a register number.

If <#expression> is used, the assembler will attempt to generate a shifted immediate
8-bit field to match the expression. If this is impossible, it will give an error.

<shift> is <shiftname> <register> or <shiftname> #expression, or RRX (rotate right
one bit with extend).

<shiftname>s are: ASL, LSL, LSR, ASR, ROR. (ASL is a synonym for LSL, they
assemble to the same code.)

Instruction Set - TEQ, TST, CMP & CMN

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-14

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4.4.9 Examples

ADDEQ R2,R4,R5 ; if the Z flag is set make R2:=R4+R5

TEQS R4,#3 ; test R4 for equality with 3
; (the S is in fact redundant as the
; assembler inserts it automatically)

SUB R4,R5,R7,LSR R2 ; logical right shift R7 by the number
; in the bottom byte of R2, subtract
; result from R5, and put the answer
; into R4

MOV PC,R14 ; return from subroutine

MOVS PC,R14 ; return from exception and restore
; CPSR from SPSR_mode

Instruction Set - MRS, MSR

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-15

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4.5 PSR Transfer (MRS, MSR)
The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter.

The MRS and MSR instructions are formed from a subset of the Data Processing
operations and are implemented using the TEQ, TST, CMN and CMP instructions
without the S flag set. The encoding is shown in ➲Figure 4-11: PSR transfer on page
4-16.

These instructions allow access to the CPSR and SPSR registers. The MRS
instruction allows the contents of the CPSR or SPSR_<mode> to be moved to a
general register. The MSR instruction allows the contents of a general register to be
moved to the CPSR or SPSR_<mode> register.

The MSR instruction also allows an immediate value or register contents to be
transferred to the condition code flags (N,Z,C and V) of CPSR or SPSR_<mode>
without affecting the control bits. In this case, the top four bits of the specified register
contents or 32 bit immediate value are written to the top four bits of the relevant PSR.

4.5.1 Operand restrictions

In User mode, the control bits of the CPSR are protected from change, so only the
condition code flags of the CPSR can be changed. In other (privileged) modes the
entire CPSR can be changed.

The SPSR register which is accessed depends on the mode at the time of execution.
For example, only SPSR_fiq is accessible when the processor is in FIQ mode.

R15 shall not be specified as the source or destination register.

A further restriction is that no attempt shall be made to access an SPSR in User mode,
since no such register exists.

Instruction Set - MRS, MSR

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-16

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

 Figure 4-11: PSR transfer

Cond

01112151621272831

Condition field

P

2223

0 = CPSR
1 = SPSR_<current mode>

00010 000000000000s 001111 Rd

Destination register

Source PSR

Condition field

MRS

021272831 2223

MSR

RmPdCond 00010

4 3

Condition field

272831 2223

MSR

PdCond

1010011111 00000000

12 11

Source register

21 12

101000111100 I 10

011

Source operand

Immediate Operand

Rm

Rotate

Unsigned 8 bit immediate value

shift applied to Imm

Imm

11 8 7 0

03411

Destination PSR
0 = CPSR
1 = SPSR_<current mode>

Destination PSR
0 = CPSR
1 = SPSR_<current mode>

0 = Source operand is a register

1 = Source operand is an immediate value

00000000

Source register

(transfer PSR contents to a register)

(transfer register contents to PSR)

(transfer register contents or immediate value to PSR flag bits only)

Instruction Set - MRS, MSR

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-17

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4.5.2 Reserved bits

Only eleven bits of the PSR are defined in ARM710a macrocell (N,Z,C,V,I,F & M[4:0]);
the remaining bits (PSR[27:8,5]) are reserved for use in future versions of the
processor. To ensure the maximum compatibility between ARM710a macrocell
programs and future processors, the following rules should be observed:

1 The reserved bits shall be preserved when changing the value in a PSR.

2 Programs shall not rely on specific values from the reserved bits when
checking the PSR status, since they may read as one or zero in future
processors.

 A read-modify-write strategy should therefore be used when altering the control bits
of any PSR register; this involves transferring the appropriate PSR register to a
general register using the MRS instruction, changing only the relevant bits and then
transferring the modified value back to the PSR register using the MSR instruction.

e.g. The following sequence performs a mode change:

MRS R0,CPSR ; take a copy of the CPSR
BIC R0,R0,#0x1F ; clear the mode bits
ORR R0,R0,#new_mode ; select new mode
MSR CPSR,R0 ; write back the modified CPSR

When the aim is simply to change the condition code flags in a PSR, a value can be
written directly to the flag bits without disturbing the control bits. e.g. The following
instruction sets the N,Z,C & V flags:

MSR CPSR_flg,#0xF0000000 ; set all the flags regardless of
 ; their previous state (does not
 ; affect any control bits)

No attempt shall be made to write an 8 bit immediate value into the whole PSR since
such an operation cannot preserve the reserved bits.

4.5.3 Instruction cycle times

PSR Transfers take 1 instruction fetch. For more information see ➲4.17 Instruction
Speed Summary on page 4-53.

4.5.4 Assembler syntax

1 MRS - transfer PSR contents to a register

MRS{cond} Rd,<psr>

2 MSR - transfer register contents to PSR

MSR{cond} <psr>,Rm

3 MSR - transfer register contents to PSR flag bits only

MSR{cond} <psrf>,Rm

The most significant four bits of the register contents are written to the N,Z,C
& V flags respectively.

Instruction Set - MRS, MSR

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-18

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4 MSR - transfer immediate value to PSR flag bits only

MSR{cond} <psrf>,<#expression>

 The expression should symbolise a 32 bit value of which the most significant
four bits are written to the N,Z,C & V flags respectively.

{cond} two-character condition mnemonic, see Figure 4-2: Condition codes

Rd, Rm expressions evaluating to a register number other than R15

<psr> CPSR, CPSR_all, SPSR or SPSR_all. (CPSR and CPSR_all are
synonyms as are SPSR and SPSR_all)

<psrf> CPSR_flg or SPSR_flg

Where <#expression> is used, the assembler will attempt to generate a shifted
immediate 8-bit field to match the expression. If this is impossible, it will give an error.

4.5.5 Examples

In User mode the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]

MSR CPSR_flg,#0xA0000000 ; CPSR[31:28] <- 0xA
; (i.e. set N,C; clear Z,V)

MRS Rd,CPSR ; Rd[31:0] <- CPSR[31:0]

In privileged modes the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:0] <- Rm[31:0]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]

MSR CPSR_flg,#0x50000000 ; CPSR[31:28] <- 0x5
; (i.e. set Z,V; clear N,C)

MRS Rd,CPSR ; Rd[31:0] <- CPSR[31:0]

MSR SPSR_all,Rm ; SPSR_<mode>[31:0] <- Rm[31:0]
MSR SPSR_flg,Rm ; SPSR_<mode>[31:28] <- Rm[31:28]

MSR SPSR_flg,#0xC0000000 ; SPSR_<mode>[31:28] <- 0xC
; (i.e. set N,Z; clear C,V)

MRS Rd,SPSR ; Rd[31:0] <- SPSR_<mode>[31:0]

Instruction Set - MUL, MLA

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-19

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4.6 Multiply and Multiply-Accumulate (MUL, MLA)
The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in ➲Figure
4-12: Multiply instructions.

The multiply and multiply-accumulate instructions use an 2 bit Booth's algorithm to
perform integer multiplication. They give the least significant 32 bits of the product of
two 32 bit operands, and may be used to synthesize higher precision multiplications.

 Figure 4-12: Multiply instructions

The multiply form of the instruction gives Rd:=Rm*Rs. Rn is ignored, and should be
set to zero for compatibility with possible future upgrades to the instruction set.

The multiply-accumulate form gives Rd:=Rm*Rs+Rn, which can save an explicit ADD
instruction in some circumstances.

Both forms of the instruction work on operands which may be considered as signed
(2’s complement) or unsigned integers.

4.6.1 Operand restrictions

Due to the way multiplication was implemented, certain combinations of operand
registers should be avoided. (The assembler will issue a warning if these restrictions
are overlooked.)

The destination register (Rd) should not be the same as the operand register (Rm), as
Rd is used to hold intermediate values and Rm is used repeatedly during multiply. A
MUL will give a zero result if Rm=Rd, and an MLA will give a meaningless result. R15
shall not be used as an operand or as the destination register.

All other register combinations will give correct results, and Rd, Rn and Rs may use
the same register when required.

Cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm

034781112151619202122272831

Operand registers
Destination register
Set condition code

Accumulate

0 = do not alter condition codes
1 = set condition codes

0 = multiply only
1 = multiply and accumulate

Condition Field

Instruction Set - MUL, MLA

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-20

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4.6.2 CPSR flags

Setting the CPSR flags is optional, and is controlled by the S bit in the instruction. The
N (Negative) and Z (Zero) flags are set correctly on the result (N is made equal to bit
31 of the result, and Z is set if and only if the result is zero). The C (Carry) flag is set
to a meaningless value and the V (oVerflow) flag is unaffected.

4.6.3 Instruction cycle times

The Multiply instructions take 1 instruction fetch and m internal cycles. For more
information see section 4.17 Instruction Speed Summary on page 53.

m is the number of cycles required by the multiply algorithm, which is
determined by the contents of Rs. Multiplication by any number
between 2^(2m-3) and 2^(2m-1)-1 takes 1S+mI cycles for 1<m>16.
Multiplication by 0 or 1 takes 1S+1I cycles, and multiplication by any
number greater than or equal to 2^(29) takes 1S+16I cycles. The
maximum time for any multiply is thus 1S+16I cycles.

4.6.4 Assembler syntax

MUL{cond}{S} Rd,Rm,Rs

MLA{cond}{S} Rd,Rm,Rs,Rn

{cond} two-character condition mnemonic, see ➲Figure 4-2: Condition codes
on page 4-3

{S} set condition codes if S present

Rd, Rm, Rs and Rn

expressions evaluating to a register number other than R15.

4.6.5 Examples

MUL R1,R2,R3 ; R1:=R2*R3
MLAEQS R1,R2,R3,R4 ; conditionally R1:=R2*R3+R4,

; setting condition codes

Instruction Set - LDR, STR

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-21

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4.7 Single Data Transfer (LDR, STR)
The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in ➲Figure
4-13: Single data transfer instructions on page 4-21.

The single data transfer instructions are used to load or store single bytes or words of
data. The memory address used in the transfer is calculated by adding an offset to or
subtracting an offset from a base register. The result of this calculation may be written
back into the base register if `auto-indexing' is required.

 Figure 4-13: Single data transfer instructions

Cond I Rn Rd

011121516192021242526272831

01 P U B W L Offset

2223

011

Source/Destination register
Base register
Load/Store bit

0 = Store to memory
1 = Load from memory

Write-back bit

Byte/Word bit

0 = no write-back
1 = write address into base

0 = transfer word quantity
1 = transfer byte quantity

Up/Down bit

Pre/Post indexing bit

0 = offset is an immediate value
Immediate offset

Immediate offset

Unsigned 12 bit immediate offset
1 = offset is a register

11 0

shift applied to Rm

34

Condition field

0 = down; subtract offset from base
1 = up; add offset to base

0 = post; add offset after transfer
1 = pre; add offset before transfer

Offset register

Shift Rm

Instruction Set - LDR, STR

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-22

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4.7.1 Offsets and auto-indexing

The offset from the base may be either a 12 bit unsigned binary immediate value in
the instruction, or a second register (possibly shifted in some way). The offset may be
added to (U=1) or subtracted from (U=0) the base register Rn. The offset modification
may be performed either before (pre-indexed, P=1) or after (post-indexed, P=0) the
base is used as the transfer address.

The W bit gives optional auto increment and decrement addressing modes. The
modified base value may be written back into the base (W=1), or the old base value
may be kept (W=0). In the case of post-indexed addressing, the write back bit is
redundant and is always set to zero, since the old base value can be retained by
setting the offset to zero. Therefore post-indexed data transfers always write back the
modified base. The only use of the W bit in a post-indexed data transfer is in privileged
mode code, where setting the W bit forces non-privileged mode for the transfer,
allowing the operating system to generate a user address in a system where the
memory management hardware makes suitable use of this hardware.

4.7.2 Shifted register offset

The 8 shift control bits are described in the data processing instructions section.
However, the register specified shift amounts are not available in this instruction class.
See ➲4.4.2 Shifts on page 4-9.

4.7.3 Bytes and words

This instruction class may be used to transfer a byte (B=1) or a word (B=0) between
an ARM710a macrocell register and memory.

The action of LDR(B) and STR(B) instructions is influenced by the 3 instruction
fetches. For more information see ➲4.17 Instruction Speed Summary on page 4-53.
The two possible configurations are described below.

Little-endian configuration

A byte load (LDRB) expects the data on data bus inputs 7 through 0 if the
supplied address is on a word boundary, on data bus inputs
15 through 8 if it is a word address plus one byte, and so on.
The selected byte is placed in the bottom 8 bits of the
destination register, and the remaining bits of the register are
filled with zeros. Please see ➲Figure 3-2: Big-endian
addresses of bytes within words on page 3-3.

A byte store (STRB)repeats the bottom 8 bits of the source register four times
across data bus outputs 31 through 0. The external memory
system should activate the appropriate byte subsystem to
store the data.

A word load (LDR) will normally use a word aligned address. However, an
address offset from a word boundary will cause the data to be
rotated into the register so that the addressed byte occupies
bits 0 to 7. This means that half-words accessed at offsets 0
and 2 from the word boundary will be correctly loaded into

Instruction Set - LDR, STR

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-23

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

bits 0 through 15 of the register. Two shift operations are then
required to clear or to sign extend the upper 16 bits. This is
illustrated in ➲Figure 4-14: Little-endian offset addressing on
page 4-23.

 Figure 4-14: Little-endian offset addressing

A word store (STR) should generate a word aligned address. The word presented
to the data bus is not affected if the address is not word
aligned. That is, bit 31 of the register being stored always
appears on data bus output 31.

Big-endian configuration

A byte load (LDRB) expects the data on data bus inputs 31 through 24 if the
supplied address is on a word boundary, on data bus inputs
23 through 16 if it is a word address plus one byte, and so on.
The selected byte is placed in the bottom 8 bits of the
destination register and the remaining bits of the register are
filled with zeros. Please see ➲Figure 3-2: Big-endian
addresses of bytes within words on page 3-3.

A byte store (STRB)repeats the bottom 8 bits of the source register four times
across data bus outputs 31 through 0. The external memory
system should activate the appropriate byte subsystem to
store the data.

A

B

C

D

memory

A+3

A+2

A+1

A

24

16

8

0

A

B

C

D

register

24

16

8

0

LDR from word aligned address

A

B

C

D

A+3

A+2

A+1

A

24

16

8

0

A

B

C

D

24

16

8

0

LDR from address offset by 2

Instruction Set - LDR, STR

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-24

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

A word load (LDR) should generate a word-aligned address. An address offset
of 0 or 2 from a word boundary will cause the data to be
rotated into the register so that the addressed byte occupies
bits 31 through 24. This means that half-words accessed at
these offsets will be correctly loaded into bits 16 through 31
of the register. A shift operation is then required to move (and
optionally sign extend) the data into the bottom 16 bits. An
address offset of 1 or 3 from a word boundary will cause the
data to be rotated into the register so that the addressed byte
occupies bits 15 through 8.

A word store (STR) should generate a word aligned address. The word presented
to the data bus is not affected if the address is not word
aligned. That is, bit 31 of the register being stored always
appears on data bus output 31.

4.7.4 Use of R15

Write-back shall not be specified if R15 is specified as the base register (Rn). When
using R15 as the base register you must remember it contains an address 8 bytes on
from the address of the current instruction.

R15 shall not be specified as the register offset (Rm).

When R15 is the source register (Rd) of a register store (STR) instruction, the stored
value will be address of the instruction plus 12.

4.7.5 Restriction on the use of base register

The following example code is difficult to unwind as the base register, Rn, gets
updated before the abort handler starts. Sometimes it may be impossible to calculate
the initial value.

For example:

LDR R0,[R1],R1

Therefore a post-indexed LDR/STR where Rm is the same register as Rn shall not be
used.

4.7.6 Data aborts

A transfer to or from a legal address may cause problems for a memory management
system. For instance, in a system which uses virtual memory the required data may
be absent from main memory. The memory management unit or external hardware
connected to the ABORT input can signal an abort, whereupon the Data Abort trap will
be taken. It is up to the system software to resolve the cause of the problem, then the
instruction can be restarted and the original program continued. The address that was
accesses at the time of the abort is stored in the FAR, the cause of the abort is stored
in the FSR and R14_abt stores the address of the instruction that caused the abort +8.
For more detailed information about aborts, see ➲3.4.3 Abort on page 3-8.

Instruction Set - LDR, STR

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-25

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4.7.7 Instruction cycle times

Normal LDR instructions take 1 instruction fetch, 1 data read and 1 internal cycle and
LDR PC take 3 instruction fetches, 1 data read and 1 internal cycle. For more
information see ➲4.17 Instruction Speed Summary on page 4-53.

STR instructions take 1 instruction fetch and 1 data write incremental cycles to
execute.

4.7.8 Assembler syntax

<LDR|STR>{cond}{B}{T} Rd,<Address>

LDR load from memory into a register

STR store from a register into memory

{cond} two-character condition mnemonic, see ➲Figure 4-2: Condition codes
on page 4-3

{B} if B is present then byte transfer, otherwise word transfer

{T} if T is present the W bit will be set in a post-indexed instruction, forcing
non-privileged mode for the transfer cycle. T is not allowed when a
pre-indexed addressing mode is specified or implied.

Rd an expression evaluating to a valid register number.

<Address> can be:

1 An expression which generates an address:

<expression>

The assembler will attempt to generate an instruction using the PC as a base
and a corrected immediate offset to address the location given by evaluating
the expression. This will be a PC relative, pre-indexed address. If the address
is out of range, an error will be generated.

2 A pre-indexed addressing specification:

[Rn] offset of zero

[Rn,<#expression>]{!} offset of <expression> bytes

[Rn,{+/-}Rm{,<shift>}]{!} offset of +/- contents of index register, shifted by
<shift>

3 A post-indexed addressing specification:

[Rn],<#expression> offset of <expression> bytes

[Rn],{+/-}Rm{,<shift>} offset of +/- contents of index register, shifted as by
<shift>.

Rn, Rm expressions evaluating to a register number. If Rn is R15 then the
assembler will subtract 8 from the offset value to allow for ARM710a
macrocell pipelining. In this case base write-back shall not be
specified.

Instruction Set - LDR, STR

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-26

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

<shift> a general shift operation (see section on data processing instructions)
but note that the shift amount may not be specified by a register.

{!} writes back the base register (set the W bit) if ! is present.

4.7.9 Examples

STR R1,[R2,R4]! ; store R1 at R2+R4 (both of which are
; registers) and write back address to R2

STR R1,[R2],R4 ; store R1 at R2 and write back
; R2+R4 to R2

LDR R1,[R2,#16] ; load R1 from contents of R2+16
; Don't write back

LDR R1,[R2,R3,LSL#2] ; load R1 from contents of R2+R3*4

LDREQB R1,[R6,#5] ; conditionally load byte at R6+5 into
; R1 bits 0 to 7, filling bits 8 to 31
; with zeros

STR R1,PLACE ; generate PC relative offset to address
• ; PLACE
•

PLACE

Instruction Set - LDM, STM

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-27

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4.8 Block Data Transfer (LDM, STM)
The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in ➲Figure
4-15: Block data transfer instructions on page 4-27.

Block data transfer instructions are used to load (LDM) or store (STM) any subset of
the currently visible registers. They support all possible stacking modes, maintaining
full or empty stacks which can grow up or down memory, and are very efficient
instructions for saving or restoring context, or for moving large blocks of data around
main memory.

4.8.1 The register list

The instruction can cause the transfer of any registers in the current bank (and non-
user mode programs can also transfer to and from the user bank, see below). The
register list is a 16 bit field in the instruction, with each bit corresponding to a register.
A 1 in bit 0 of the register field will cause R0 to be transferred, a 0 will cause it not to
be transferred; similarly bit 1 controls the transfer of R1, and so on.

Any subset of the registers, or all the registers, may be specified. The only restriction
is that the register list should not be empty.

Whenever R15 is stored to memory the stored value is the address of the STM
instruction plus 12.

 Figure 4-15: Block data transfer instructions

Cond Rn

015161920212425272831

P U W L

2223

100 S Register list

Base register
Load/Store bit

0 = Store to memory
1 = Load from memory

Write-back bit
0 = no write-back
1 = write address into base

Up/Down bit

Pre/Post indexing bit

0 = down; subtract offset from base
1 = up; add offset to base

0 = post; add offset after transfer
1 = pre; add offset before transfer

PSR & force user bit
0 = do not load PSR or force user mode
1 = load PSR or force user mode

Condition field

Instruction Set - LDM, STM

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-28

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4.8.2 Addressing modes

The transfer addresses are determined by the contents of the base register (Rn), the
pre/post bit (P) and the up/down bit (U). The registers are transferred in the order
lowest to highest, so R15 (if in the list) will always be transferred last. The lowest
register also gets transferred to/from the lowest memory address. By way of
illustration, consider the transfer of R1, R5 and R7 in the case where Rn=0x1000 and
write back of the modified base is required (W=1). Figures 4-16, 4-17, 4-18 and 4-19
show the sequence of register transfers, the addresses used, and the value of Rn after
the instruction has completed.

In all cases, had write back of the modified base not been required (W=0), Rn would
have retained its initial value of 0x1000 unless it was also in the transfer list of a load
multiple register instruction, when it would have been overwritten with the loaded
value.

4.8.3 Address alignment

The address should normally be a word aligned quantity and non-word aligned
addresses do not affect the instruction. The bottom 2 address bits are ignored by the
LDM instruction. No rotating of data will occur for an LDM from a non-aligned address.
If this is required then a series of LDRs should be used instead. However, the bottom
2 bits of the address will appear on A[1:0] and might be interpreted by the memory
system.

 Figure 4-16: Post-increment addressing

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

Instruction Set - LDM, STM

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-29

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

 Figure 4-17: Pre-increment addressing

 Figure 4-18: Post-decrement addressing

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

Instruction Set - LDM, STM

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-30

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

 Figure 4-19: Pre-decrement addressing

4.8.4 Use of the S bit

When the S bit is set in a LDM/STM instruction its meaning depends on whether or not
R15 is in the transfer list and on the type of instruction. The S bit should only be set if
the instruction is to execute in a privileged mode.

LDM with R15 in transfer list and S bit set (Mode changes)

 If the instruction is a LDM then SPSR_<mode> is transferred to CPSR at the same
time as R15 is loaded.

STM with R15 in transfer list and S bit set (User bank transfer)

The registers transferred are taken from the User bank rather than the bank
corresponding to the current mode. This is useful for saving the user state on process
switches. Base write-back shall not be used when this mechanism is employed.

R15 not in list and S bit set (User bank transfer)

For both LDM and STM instructions, the User bank registers are transferred rather
than the register bank corresponding to the current mode. This is useful for saving the
user state on process switches. Base write-back shall not be used when this
mechanism is employed.

When the instruction is LDM, care must be taken not to read from a banked register
during the following cycle (inserting a dummy instruction such as MOV R0, R0 after
the LDM will ensure safety).

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

Instruction Set - LDM, STM

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-31

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4.8.5 Use of R15 as the base

R15 shall not be used as the base register in any LDM or STM instruction.

4.8.6 Inclusion of the base in the register list

When write-back is specified, the base is written back at the end of the second cycle
of the instruction. During a STM, the first register is written out at the start of the
second cycle. A STM which includes storing the base, with the base as the first register
to be stored, will therefore store the unchanged value, whereas with the base second
or later in the transfer order, will store the modified value. A LDM will always overwrite
the updated base if the base is in the list.

4.8.7 Data aborts

Some legal addresses may be unacceptable to a memory management system. This
can happen on any transfer during a multiple register store or load, and must be
recoverable if ARM710a macrocell is to be used in a virtual memory system. The
memory management unit or external hardware connected to the ABORT input can
signal an abort, whereupon the Data Abort trap will be taken. It is up to the system
software to resolve the cause of the problem, then the instruction can be restarted and
the original program continued. The address that was accessed at the time of the abort
is stored in the FAR, the cause of the abort is stored in the FSR and r14_abt strores
the address of the instruction that caused the abort +8. For more detailed information
about aborts, see ➲3.4.3 Abort on page 3-8

Aborts during STM instructions

If the abort occurs during a store multiple instruction, ARM710a macrocell takes little
action until the instruction completes, whereupon it enters the data abort trap. The
external memory controller is responsible for preventing erroneous writes to the
memory if external hardware has generated the abort. The only change to the internal
state of the processor will be the modification of the base register if write-back was
specified, and this must be reversed by software (and the cause of the abort resolved)
before the instruction may be retried.

Aborts during LDM instructions

 When ARM710a macrocell detects a data abort during a load multiple instruction, it
modifies the operation of the instruction to ensure that recovery is possible.

1 Overwriting of registers stops when the abort happens. The aborting load will
not take place but earlier ones may have overwritten registers. The PC is
always the last register to be written and so will always be preserved. In the
case of MMU generated aborts, no registers will be overwritten and the abort
occurs on the first word. The only exception to this is LDMs across platform
boundaries when the abort may occur on the first word in the new section or
page.

Instruction Set - LDM, STM

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-32

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

2 The base register is restored, to its modified value if write-back was
requested. This ensures recoverability in the case where the base register is
also in the transfer list, and may have been overwritten before the abort
occurred.

The data abort trap is taken when the load multiple has completed, and the system
software must undo any base modification (and resolve the cause of the abort) before
restarting the instruction.

4.8.8 Instruction cycle times

Normal LDM instructions take 1 instruction fetch, n data reads and 1 internal cycle and
LDM PC takes 3 instruction fetches, n data reads and 1 internal cycle. For more
information see ➲4.17 Instruction Speed Summary on page 4-53.

STM instructions take 1 instruction fetch, n data reads and 1 internal cycle to execute.

n is the number of words transferred.

4.8.9 Assembler syntax

<LDM|STM>{cond}<FD|ED|FA|EA|IA|IB|DA|DB> Rn{!},<Rlist>{^}

{cond} two character condition mnemonic, see ➲Figure 4-2: Condition codes
on page 4-3

Rn an expression evaluating to a valid register number

<Rlist> a list of registers and register ranges enclosed in {} (eg {R0,R2-
R7,R10}).

{!} if present requests write-back (W=1), otherwise W=0

{^} if present set S bit to load the CPSR along with the PC, or force
transfer of user bank when in privileged mode

Addressing mode names

There are different assembler mnemonics for each of the addressing modes,
depending on whether the instruction is being used to support stacks or for other
purposes. The equivalences between the names and the values of the bits in the
instruction are shown in the following table.

Instruction Set - LDM, STM

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-33

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

FD, ED, FA, EA define pre/post indexing and the up/down bit by reference to the form
of stack required. The F and E refer to a “full” or “empty” stack, i.e. whether a pre-index
has to be done (full) before storing to the stack. The A and D refer to whether the stack
is ascending or descending. If ascending, a STM will go up and LDM down, if
descending, vice-versa.

IA, IB, DA, DB allow control when LDM/STM are not being used for stacks and simply
mean Increment After, Increment Before, Decrement After, Decrement Before.

4.8.10 Examples

LDMFD SP!,{R0,R1,R2} ; unstack 3 registers

STMIA R0,{R0-R15} ; save all registers

LDMFD SP!,{R15} ; R15 <- (SP),CPSR unchanged
LDMFD SP!,{R15}^ ; R15 <- (SP), CPSR <- SPSR_mode (allowed

; only in privileged modes)
STMFD R13,{R0-R14}^ ; Save user mode regs on stack (allowed

; only in privileged modes)

These instructions may be used to save state on subroutine entry, and restore it
efficiently on return to the calling routine:

STMED SP!,{R0-R3,R14} ; save R0 to R3 to use as workspace
; and R14 for returning

BL somewhere ; this nested call will overwrite R14

LDMED SP!,{R0-R3,R15} ; restore workspace and return

name stack other L bit P bit U bit

pre-increment load LDMED LDMIB 1 1 1

post-increment load LDMFD LDMIA 1 0 1

pre-decrement load LDMEA LDMDB 1 1 0

post-decrement load LDMFA LDMDA 1 0 0

pre-increment store STMFA STMIB 0 1 1

post-increment store STMEA STMIA 0 0 1

pre-decrement store STMFD STMDB 0 1 0

post-decrement store STMED STMDA 0 0 0

 Table 4-2: Addressing mode names

Instruction Set - SWP

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-34

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4.9 Single Data Swap (SWP)

 Figure 4-20: Swap instruction

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in ➲Figure
4-20: Swap instruction.

The data swap instruction is used to swap a byte or word quantity between a register
and external memory. This instruction is implemented as a memory read followed by
a memory write which are “locked” together (the processor cannot be interrupted until
both operations have completed, and the memory manager is warned to treat them as
inseparable). This class of instruction is particularly useful for implementing software
semaphores.

The swap address is determined by the contents of the base register (Rn). The
processor first reads the contents of the swap address. Then it writes the contents of
the source register (Rm) to the swap address, and stores the old memory contents in
the destination register (Rd). The same register may be specified as both the source
and destination.

The LOCK output goes HIGH for the duration of the read and write operations to signal
to the external memory manager that they are locked together, and should be allowed
to complete without interruption. This is important in multi-processor systems where
the swap instruction is the only indivisible instruction which may be used to implement
semaphores; control of the memory must not be removed from a processor while it is
performing a locked operation.

4.9.1 Bytes and words

This instruction class may be used to swap a byte (B=1) or a word (B=0) between an
ARM710a macrocell register and memory. The SWP instruction is implemented as a
LDR followed by a STR and the action of these is as described in the section on single
data transfers. In particular, the description of big and little-endian configuration
applies to the SWP instruction.

0111215161920272831 23 78 4 3

Condition field

Cond Rn Rd 10010000 Rm00B00010

22 21

Destination register
Source register

Base register
Byte/Word bit

0 = swap word quantity
1 = swap byte quantity

Instruction Set - SWP

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-35

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4.9.2 Use of R15

R15 shall not be used as an operand (Rd, Rn or Rs) in a SWP instruction.

4.9.3 Data aborts

The memory management unit or external hardware connected to the ABORT input
can signal an abort, whereupon the Data Abort trap will be taken. It is up to the system
software to resolve the cause of the problem, then the instruction can be restarted and
the original program continued. The address that was accessed at the time of the abort
is stored in the FAR, the cause of the abort is stored in the FSR and R14_abt stores
the address of the instruction that caused the abort +8. For more detailed information
about aborts, see ➲3.4.3 Abort on page 3-8

4.9.4 Instruction cycle times

Swap instructions take 1 instruction fetch, 1 data read, 1 data write and 1 internal
cycle. For more information see ➲4.17 Instruction Speed Summary on page 4-53.

4.9.5 Assembler syntax

<SWP>{cond}{B} Rd,Rm,[Rn]

{cond} - two-character condition mnemonic, see ➲Figure 4-2: Condition codes on
page 4-3

{B} - if B is present then byte transfer, otherwise word transfer

Rd,Rm,Rn are expressions evaluating to valid register numbers

4.9.6 Examples

SWP R0,R1,[R2] ; load R0 with the word addressed by R2, and
; store R1 at R2

SWPB R2,R3,[R4] ; load R2 with the byte addressed by R4, and
; store bits 0 to 7 of R3 at R4

SWPEQ R0,R0,[R1] ; conditionally swap the contents of the
; Software interrupt (SWI)

Instruction Set - SWI

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-36

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4.10 Software Interrupt (SWI)

 Figure 4-21: Software interrupt instruction

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in ➲Figure
4-21: Software interrupt instruction on page 4-36.

The software interrupt instruction is used to enter Supervisor mode in a controlled
manner. The instruction causes the software interrupt trap to be taken, which effects
the mode change. The PC is then forced to a fixed value (0x08) and the CPSR is
saved in SPSR_svc. If the SWI vector address is suitably protected (by the memory
management unit) from modification by the user, a fully protected operating system
may be constructed.

4.10.1 Return from the supervisor

The PC is saved in R14_svc upon entering the software interrupt trap, with the PC
adjusted to point to the word after the SWI instruction. MOVS PC,R14_svc will return
to the calling program and restore the CPSR.

Note that the link mechanism is not re-entrant, so if the supervisor code wishes to use
software interrupts within itself it must first save a copy of the return address and
SPSR.

4.10.2 Comment field

The bottom 24 bits of the instruction are ignored by the processor, and may be used
to communicate information to the supervisor code. For instance, the supervisor may
look at this field and use it to index into an array of entry points for routines which
perform the various supervisor functions.

4.10.3 Instruction cycle times

Software interrupt instructions take 3 instruction fetches. For more information see
➲4.17 Instruction Speed Summary on page 4-53.

31 28 27 24 23 0

Condition field

1111Cond Comment field (ignored by Processor)

Instruction Set - SWI

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-37

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4.10.4 Assembler syntax

SWI{cond} <expression>

{cond} two character condition mnemonic, see ➲Figure 4-2:
Condition codes on page 4-3

<expression> is evaluated and placed in the comment field (which is
ignored by ARM710a macrocell).

4.10.5 Examples

SWI ReadC ; get next character from read stream
SWI WriteI+”k” ; output a “k” to the write stream
SWINE 0 ; conditionally call supervisor

; with 0 in comment field

The above examples assume that suitable supervisor code exists, for instance:

0x08 B Supervisor ; SWI entry point

EntryTable ; addresses of supervisor routines
DCD ZeroRtn
DCD ReadCRtn
DCD WriteIRtn

 . . .

Zero EQU 0
ReadC EQU 256
WriteI EQU 512

Supervisor

; SWI has routine required in bits 8-23 and data (if any) in
; bits 0-7.
; Assumes R13_svc points to a suitable stack

STMFD R13,{R0-R2,R14} ; save work registers and return
address

LDR R0,[R14,#-4] ; get SWI instruction
BIC R0,R0,#0xFF000000 ; clear top 8 bits
MOV R1,R0,LSR#8 ; get routine offset
ADR R2,EntryTable ; get start address of entry table
LDR R15,[R2,R1,LSL#2] ; branch to appropriate routine

WriteIRtn ; enter with character in R0 bits 0-7
.

LDMFD R13,{R0-R2,R15}^ ; restore workspace and return
; restoring processor mode and flags

Instruction Set - SWI

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-38

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4.11 Coprocessor Instructions on ARM710a macrocell
The ARM710a macrocell, unlike some other ARM processors, does not have an
external coprocessor interface. The ARM710a macrocell only supports a single on
chip coprocessor, #15, which is used to program the on-chip control registers. This
only supports the Coprocessor Register Transfer instructions (MRC and MCR).

All other coprocessor instructions will cause the ARM710a macrocell to take the
undefined instruction trap. These coprocessor instructions can be emulated in
software by the undefined trap handler. Even though external coprocessors cannot be
connected to ARM710a macrocell, the coprocessor instructions are still described
here in full for completeness. Any external coprocessor referred to will be a software
emulation.

Instruction Set - CDP

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-39

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4.12 Coprocessor Data Operations (CDP)
Use of the CDP instruction on the ARM710a macrocell will cause an undefined
instruction trap to be taken, which may be used to emulate the coprocessor instruction.

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in ➲Figure
4-22: Coprocessor data operation instruction.

This class of instruction is used to tell a coprocessor to perform some internal
operation. No result is communicated back to the ARM710a macrocell, and it will not
wait for the operation to complete. The coprocessor could contain a queue of such
instructions awaiting execution, and their execution can overlap other activity, allowing
the coprocessor and the ARM710a macrocell to perform independent tasks in parallel.

 Figure 4-22: Coprocessor data operation instruction

4.12.1 The coprocessor fields

Only bit 4 and bits 24 to 31 are significant to the processor. The remaining bits are
used by coprocessors. The above field names are used by convention, and particular
coprocessors may redefine the use of all fields except CP# as appropriate. The CP#
field is used to contain an identifying number (in the range 0 to 15) for each
coprocessor, and a coprocessor will ignore any instruction which does not contain its
number in the CP# field.

The conventional interpretation of the instruction is that the coprocessor should
perform an operation specified in the CP Opc field (and possibly in the CP field) on the
contents of CRn and CRm, and place the result in CRd.

Cond

011121516192024272831 23

CRd CP#

78

1110 CP Opc CRn CP 0 CRm

5 4 3

Coprocessor number

Condition field

Coprocessor information
Coprocessor operand register

Coprocessor destination register
Coprocessor operand register
Coprocessor operation code

Instruction Set - CDP

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-40

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4.12.2 Instruction cycle times

All CDP instructions are emulated in software: the number of cycles taken will depend
on the coprocessor support software.

4.12.3 Assembler syntax

CDP{cond} p#,<expression1>,cd,cn,cm{,<expression2>}

{cond} two character condition mnemonic, see ➲Figure 4-2:
Condition codes on page 4-3

p# the unique number of the required coprocessor

<expression1> evaluated to a constant and placed in the CP Opc field

cd, cn and cm evaluate to the valid coprocessor register numbers CRd,
CRn and CRm respectively

<expression2> where present is evaluated to a constant and placed in the
CP field

4.12.4 Examples

CDP p1,10,c1,c2,c3 ; request coproc 1 to do operation 10
; on CR2 and CR3, and put the result in CR1

CDPEQ p2,5,c1,c2,c3,2 ; if Z flag is set request coproc 2 to do
; operation 5 (type 2) on CR2 and CR3,
; and put the result in CR1

Instruction Set - LDC, STC

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-41

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4.13 Coprocessor Data Transfers (LDC, STC)
Use of the LDC or STC instruction on the ARM710a macrocell will cause an undefined
instruction trap to be taken, which may be used to emulate the coprocessor instruction.

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in ➲Figure
4-23: Coprocessor data transfer instructions on page 4-41.

This class of instruction is used to load (LDC) or store (STC) a subset of a
coprocessors’s registers directly to memory. The processor is responsible for
supplying the memory address, and the coprocessor supplies or accepts the data and
controls the number of words transferred.

 Figure 4-23: Coprocessor data transfer instructions

Cond Rn

0111215161920212425272831

P U W L

2223

110 N CRd CP# Offset

78

Coprocessor number
Unsigned 8 bit immediate offset

Base register
Load/Store bit

0 = Store to memory
1 = Load from memory

Write-back bit
0 = no write-back
1 = write address into base

Coprocessor source/destination register

Pre/Post indexing bit

Up/Down bit
0 = down; subtract offset from base
1 = up; add offset to base

0 = post; add offset after transfer

Transfer length

Condition field
1 = pre; add offset before transfer

Instruction Set - LDC, STC

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-42

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4.13.1 The coprocessor fields

The CP# field is used to identify the coprocessor which is required to supply or accept
the data, and a coprocessor will only respond if its number matches the contents of
this field.

The CRd field and the N bit contain information for the coprocessor which may be
interpreted in different ways by different coprocessors, but by convention CRd is the
register to be transferred (or the first register where more than one is to be
transferred), and the N bit is used to choose one of two transfer length options. For
instance N=0 could select the transfer of a single register, and N=1 could select the
transfer of all the registers for context switching.

4.13.2 Addressing modes

The processor is responsible for providing the address used by the memory system
for the transfer, and the addressing modes available are a subset of those used in
single data transfer instructions. Note, however, that for coprocessor data transfers the
immediate offsets are 8 bits wide and specify word offsets, whereas for single data
transfers they are 12 bits wide and specify byte offsets.

The 8 bit unsigned immediate offset is shifted left 2 bits and either added to (U=1) or
subtracted from (U=0) the base register (Rn); this calculation may be performed either
before (P=1) or after (P=0) the base is used as the transfer address. The modified
base value may be overwritten back into the base register (if W=1), or the old value of
the base may be preserved (W=0). Note that post-indexed addressing modes require
explicit setting of the W bit, unlike LDR and STR which always write-back when post-
indexed.

The value of the base register, modified by the offset in a pre-indexed instruction, is
used as the address for the transfer of the first word. The second word (if more than
one is transferred) will go to or come from an address one word (4 bytes) higher than
the first transfer, and the address will be incremented by one word for each
subsequent transfer.

4.13.3 Address alignment

The base address should normally be a word aligned quantity. The bottom 2 bits of the
address will appear on A[1:0] and might be interpreted by the memory system.

4.13.4 Use of R15

If Rn is R15, the value used will be the address of the instruction plus 8 bytes. Base
write-back to R15 shall not be specified.

Instruction Set - LDC, STC

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-43

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4.13.5 Data aborts

If the address is legal but the MMU generates an abort, the data abort trap will be
taken. The write-back of the modified base will take place, but all other processor state
will be preserved. The coprocessor is partly responsible for ensuring that the data
transfer can be restarted after the cause of the abort has been resolved, and must
ensure that any subsequent actions it undertakes can be repeated when the
instruction is retried.

4.13.6 Instruction cycle times

All LDC instructions are emulated in software: the number of cycles taken will depend
on the coprocessor support software.

4.13.7 Assembler syntax

<LDC|STC>{cond}{L} p#,cd,<Address>

LDC load from memory to coprocessor

STC store from coprocessor to memory

{L} when present perform long transfer (N=1), otherwise perform short
transfer (N=0)

{cond} two character condition mnemonic, see Figure 4-2: Condition codes

p# the unique number of the required coprocessor

cd an expression evaluating to a valid coprocessor register number that
is placed in the CRd field

<Address> can be:

1 An expression which generates an address:

<expression>

The assembler will attempt to generate an instruction using the PC as a base
and a corrected immediate offset to address the location given by evaluating the
expression. This will be a PC relative, pre-indexed address. If the address is out of
range, an error will be generated.

2 A pre-indexed addressing specification:

[Rn] offset of zero

[Rn,<#expression>]{!} offset of <expression> bytes

3 A post-indexed addressing specification:

[Rn],<#expression> offset of <expression> bytes

Rn is an expression evaluating to a valid processor register number. Note, if Rn is R15
then the assembler will subtract 8 from the offset value to allow for processor
pipelining.

{!} write back the base register (set the W bit) if ! is present

Instruction Set - LDC, STC

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-44

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4.13.8 Examples

LDC p1,c2,table ; load c2 of coproc 1 from address table,
; using a PC relative address.

STCEQLp2,c3,[R5,#24]!; conditionally store c3 of coproc 2 into
; an address 24 bytes up from R5, write this
; address back to R5, and use long transfer
; option (probably to store multiple words)

Note that though the address offset is expressed in bytes, the instruction offset field is
in words. The assembler will adjust the offset appropriately.

Instruction Set - MRC, MCR

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-45

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4.14 Coprocessor Register Transfers (MRC, MCR)
Use of the MRC or MCR instruction on the ARM710a macrocell to a coprocessor other
than number 15 will cause an undefined instruction trap to be taken, which may be
used to emulate the coprocessor instruction.

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in ➲Figure
4-24: Coprocessor register transfer instructions on page 4-45.

This class of instruction is used to communicate information directly between
ARM710a macrocell and a coprocessor. An example of a coprocessor to processor
register transfer (MRC) instruction would be a FIX of a floating point value held in a
coprocessor, where the floating point number is converted into a 32 bit integer within
the coprocessor, and the result is then transferred to a processor register. A FLOAT of
a 32 bit value in a processor register into a floating point value within the coprocessor
illustrates the use of ARM710a macrocella processor register to coprocessor transfer
(MCR).

An important use of this instruction is to communicate control information directly from
the coprocessor into the processor CPSR flags. As an example, the result of a
comparison of two floating point values within a coprocessor can be moved to the
CPSR to control the subsequent flow of execution.

Note the ARM710a macrocell has an internal coprocessor (#15) for control of on-chip
functions. Accesses to this coprocessor are performed by coprocessor register
transfers.

 Figure 4-24: Coprocessor register transfer instructions

21

Cond

011121516192024272831 23

CP#

78

1110 CRn CP CRm

5 4 3

1LCP Opc Rd

Coprocessor number
Coprocessor information
Coprocessor operand register

Coprocessor operation mode
Condition field

Load/Store bit
0 = Store to Co-Processor
1 = Load from Co-Processor

ARM source/destination register
Coprocessor source/destination register

Instruction Set - MRC, MCR

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-46

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4.14.1 The coprocessor fields

The CP# field is used, as for all coprocessor instructions, to specify which coprocessor
is being called upon. The CP Opc, CRn, CP and CRm fields are used only by the
coprocessor, and the interpretation presented here is derived from convention only.
Other interpretations are allowed where the coprocessor functionality is incompatible
with this one. The conventional interpretation is that the CP Opc and CP fields specify
the operation the coprocessor is required to perform, CRn is the coprocessor register
which is the source or destination of the transferred information, and CRm is a second
coprocessor register which may be involved in some way depending on the particular
operation specified.

4.14.2 Transfers to R15

When a coprocessor register transfer to ARM710a macrocell has R15 as the
destination, bits 31, 30, 29 and 28 of the transferred word are copied into the N, Z, C
and V flags respectively. The other bits of the transferred word are ignored, and the
PC and other CPSR bits are unaffected by the transfer.

4.14.3 Transfers from R15

A coprocessor register transfer from ARM710a macrocell with R15 as the source
register will store the PC+12.

4.14.4 Instruction cycle times

Access to the internal configuration register takes 1 instruction fetch cycle and 3
internal cycles. All other MRC instructions default to software emulation, and the
number of cycles taken will depend on the coprocessor support software.

4.14.5 Assembler syntax

<MCR|MRC>{cond} p#,<expression1>,Rd,cn,cm{,<expression2>}

MRC move from coprocessor to ARM710a macrocell register (L=1)

MCR move from ARM710a macrocell register to coprocessor (L=0)

{cond} two character condition mnemonic, see ➲Figure 4-2:
Condition codes on page 4-3

p# the unique number of the required coprocessor

<expression1> evaluated to a constant and placed in the CP Opc field

Rd an expression evaluating to a valid ARM710a macrocell
register number

cn and cm expressions evaluating to the valid coprocessor register
numbers CRn and CRm respectively

<expression2> where present is evaluated to a constant and placed in the
CP field

Instruction Set - MRC, MCR

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-47

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4.14.6 Examples

MRC 2,5,R3,c5,c6 ; request coproc 2 to perform operation 5
; on c5 and c6, and transfer the (single
; 32 bit word) result back to R3

MCR 6,0,R4,c6 ; request coproc 6 to perform operation 0
; on R4 and place the result in c6

MRCEQ 3,9,R3,c5,c6,2 ; conditionally request coproc 3 to perform
; operation 9 (type 2) on c5 and c6, and
; transfer the result back to R3

Instruction Set - Undefined

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-48

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4.15 Undefined instruction

 Figure 4-25: Undefined instruction

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction format is shown in Figure 4-
25: Undefined instruction.

If the condition is true, the undefined instruction trap will be taken.

Note that the undefined instruction mechanism involves offering this instruction to any
coprocessors which may be present, and all coprocessors must refuse to accept it by
driving CPA and CPB HIGH.

4.15.1 Assembler syntax

At present the assembler has no mnemonics for generating this instruction. If it is
adopted in the future for some specified use, suitable mnemonics will be added to the
assembler. Until such time, this instruction shall not be used.

Cond

024272831 5 4 3

1011 xxxx

25

xxxxxxxxxxxxxxxxxxxx

Instruction Set - Examples

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-49

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4.16 Instruction Set Examples
The following examples show ways in which the basic ARM710a macrocell
instructions can combine to give efficient code. None of these methods saves a great
deal of execution time (although they may save some), mostly they just save code.

4.16.1 Using the conditional instructions

1 using conditionals for logical OR

CMP Rn,#p ; if Rn=p OR Rm=q THEN GOTO Label
BEQ Label
CMP Rm,#q
BEQ Label

can be replaced by

CMP Rn,#p
CMPNE Rm,#q ; if condition not satisfied try other test
BEQ Label

2 absolute value

TEQ Rn,#0 ; test sign
RSBMI Rn,Rn,#0 ; and 2's complement if necessary

3 multiplication by 4, 5 or 6 (run time)

MOV Rc,Ra,LSL#2 ; multiply by 4
CMP Rb,#5 ; test value
ADDCS Rc,Rc,Ra ; complete multiply by 5
ADDHI Rc,Rc,Ra ; complete multiply by 6

4 combining discrete and range tests

TEQ Rc,#127 ; discrete test
CMPNE Rc,#” “-1 ; range test
MOVLS Rc,#”.” ; IF Rc<=” “ OR Rc=ASCII(127)

; THEN Rc:=”.”

5 division and remainder

A number of divide routines for specific applications are provided in source form as
part of the ANSI C library provided with the ARM Cross Development Toolkit, available
from your supplier. A short general purpose divide routine follows.

; enter with numbers in Ra and Rb
;

MOV Rcnt,#1 ; bit to control the division
Div1 CMP Rb,#0x80000000 ; move Rb until greater than Ra

CMPCC Rb,Ra
MOVCC Rb,Rb,ASL#1
MOVCC Rcnt,Rcnt,ASL#1
BCC Div1
MOV Rc,#0

Div2 CMP Ra,Rb ; test for possible subtraction
SUBCS Ra,Ra,Rb ; subtract if ok

Instruction Set - Examples

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-50

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

ADDCS Rc,Rc,Rcnt ; put relevant bit into result
MOVS Rcnt,Rcnt,LSR#1 ; shift control bit
MOVNE Rb,Rb,LSR#1 ; halve unless finished
BNE Div2

;
; divide result in Rc
; remainder in Ra

4.16.2 Pseudo random binary sequence generator

It is often necessary to generate (pseudo-) random numbers and the most efficient
algorithms are based on shift generators with exclusive-OR feedback rather like a
cyclic redundancy check generator. Unfortunately the sequence of a 32 bit generator
needs more than one feedback tap to be maximal length (i.e. 2^32-1 cycles before
repetition), so this example uses a 33 bit register with taps at bits 33 and 20. The basic
algorithm is newbit:=bit 33 eor bit 20, shift left the 33 bit number and put in newbit at
the bottom; this operation is performed for all the new bits needed (i.e. 32 bits). The
entire operation can be done in 5 S cycles:

; enter with seed in Ra (32 bits),
 Rb (1 bit in Rb lsb), uses Rc
;

TST Rb,Rb,LSR#1 ; top bit into carry
MOVS Rc,Ra,RRX ; 33 bit rotate right
ADC Rb,Rb,Rb ; carry into lsb of Rb
EOR Rc,Rc,Ra,LSL#12 ; (involved!)
EOR Ra,Rc,Rc,LSR#20 ; (similarly involved!)

;
; new seed in Ra, Rb as before

4.16.3 Multiplication by constant using the barrel shifter

1 Multiplication by 2^n (1,2,4,8,16,32..)

MOV Ra, Rb, LSL #n

2 Multiplication by 2^n+1 (3,5,9,17..)

ADD Ra,Ra,Ra,LSL #n

3 Multiplication by 2^n-1 (3,7,15..)

RSB Ra,Ra,Ra,LSL #n

4 Multiplication by 6

ADD Ra,Ra,Ra,LSL #1; multiply by 3
MOV Ra,Ra,LSL#1 ; and then by 2

Instruction Set - Examples

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-51

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

5 Multiply by 10 and add in extra number

ADD Ra,Ra,Ra,LSL#2; multiply by 5
ADD Ra,Rc,Ra,LSL#1 ; multiply by 2 and add in next digit

6 General recursive method for Rb := Ra*C, C a constant:

a) If C even, say C = 2^n*D, D odd:

D=1: MOV Rb,Ra,LSL #n
D<>1: {Rb := Ra*D}

MOV Rb,Rb,LSL #n

b) If C MOD 4 = 1, say C = 2^n*D+1, D odd, n>1:

D=1: ADD Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}

ADD Rb,Ra,Rb,LSL #n

c) If C MOD 4 = 3, say C = 2^n*D-1, D odd, n>1:

D=1: RSB Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}

RSB Rb,Ra,Rb,LSL #n

This is not quite optimal, but close. An example of its non-optimality is multiply by 45
which is done by:

RSB Rb,Ra,Ra,LSL#2; multiply by 3
RSB Rb,Ra,Rb,LSL#2; multiply by 4*3-1 = 11
ADD Rb,Ra,Rb,LSL# 2; multiply by 4*11+1 = 45

rather than by:

ADD Rb,Ra,Ra,LSL#3; multiply by 9
ADD Rb,Rb,Rb,LSL#2; multiply by 5*9 = 45

4.16.4 Loading a word from an unknown alignment

; enter with address in Ra (32 bits)
; uses Rb, Rc; result in Rd.
; Note d must be less than c e.g. 0,1
;

BIC Rb,Ra,#3 ; get word aligned address
LDMIA Rb,{Rd,Rc} ; get 64 bits containing answer
AND Rb,Ra,#3 ; correction factor in bytes
MOVS Rb,Rb,LSL#3 ; ...now in bits and test if aligned
MOVNE Rd,Rd,LSR Rb ; produce bottom of result word

; (if not aligned)
RSBNE Rb,Rb,#32 ; get other shift amount
ORRNE Rd,Rd,Rc,LSL Rb; combine two halves to get result

Instruction Set - Examples

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-52

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4.16.5 Loading a halfword (little-endian)

LDR Ra, [Rb,#2] ; Get halfword to bits 15:0
MOV Ra,Ra,LSL #16 ; move to top
MOV Ra,Ra,LSR #16 ; and back to bottom

; use ASR to get sign extended version

4.16.6 Loading a halfword (big-endian)

LDR Ra, [Rb,#2] ; Get halfword to bits 31:16
MOV Ra,Ra,LSR #16 ; and back to bottom

; use ASR to get sign extended version

Instruction Set - Examples

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-53

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

4.17 Instruction Speed Summary
Due to the pipelined architecture of the CPU, instructions overlap considerably. In a
typical cycle one instruction may be using the data path while the next is being
decoded and the one after that is being fetched. For this reason the following table
presents the incremental number of cycles required by an instruction, rather than the
total number of cycles for which the instruction uses part of the processor. Elapsed
time (in cycles) for a routine may be calculated from these figures which are shown in
➲Table 4-3: ARM Instruction speed summary on page 4-53. These figures assume
that the instruction is actually executed. Unexecuted instructions take one instruction
fetch cycle.

Instruction Cycle count

Data Processing - normal
 with register specified shift
 with PC written
 with register specified shift & PC written

1 instruction fetch
1 instruction fetch and 1 internal cycle
3 instruction fetches
3 instruction fetches and 1 internal cycle

MSR, MRS 1 instruction fetch

LDR - normal
 if the destination is the PC

1 instruction fetch, 1 data read and 1 internal cycle
3 instruction fetches, 1 data read and 1 internal cycle

STR 1 instruction fetch and 1 data write

LDM - normal
 if the destination is the PC

1 instruction fetch, n data reads and 1 internal cycle
3 instruction fetches, n data reads and 1 internal cycle

STM 1 instruction fetch and n data writes

SWP 1 instruction fetch, 1 data read, 1 data write and 1 internal cycle

B,BL 3 instruction fetches

SWI, trap 3 instruction fetches

MUL,MLA 1 instruction fetch and m internal cycles

CDP the undefined instruction trap will be taken

LDC the undefined instruction trap will be taken

STC the undefined instruction trap will be taken

MCR 1 instruction fetch and 3 internal cycles for coproc 15

MRC 1 instruction fetch and 3 internal cycles for coproc 15

 Table 4-3: ARM Instruction speed summary

Instruction Set - Examples

ARM710a macrocell Data Sheet
ARM DDI 0033D

4-54

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

Where:

n is the number of words transferred.

m is the number of cycles required by the multiply algorithm, which is
determined by the contents of Rs. Multiplication by any number
between 2^(2m-3) and 2^(2m-1)-1 takes 1S+mI cycles for 1<m>16.
Multiplication by 0 or 1 takes 1S+1I cycles, and multiplication by any
number greater than or equal to 2^(29) takes 1S+16I cycles. The
maximum time for any multiply is thus 1S+16I cycles.

The time taken for:

• an internal cycle - will always be one FCLK cycle

• an instruction fetch and data read - will be FCLK if a cache hit occurs,
otherwise a full memory access is performed.

• a data write - will be FCLK if the write buffer (if enabled) has available space,
otherwise the write will be delayed until the write buffer has free space. If the
write buffer is not enabled a full memory access is always performed.

• Co-processor cycles - all coprocessor operations except MCR or MRC to
registers 0 to 7 on coprocessor #15 (used for internal control) will cause the
undefined instruction trap to be taken.

• memory accesses - can be found in the Bus Interface section.

Due to the presence of the cache and MMU, it is not possible to predict exactly the
number of cycles required for the execution of a piece of cache.

An access may hit or miss the cache and a cache miss to a cacheable area will cause
a linefetch. An MMU translation table walk may also be required. These will increase
the number of cycles taken by a section of code.

ARM710a macrocell Data Sheet
ARM DDI 0033D

5-1

111

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
sConfiguration

This chapter describes the configuration.

5.1 Internal Coprocessor Instructions 5-2

5.2 Registers 5-3

5

Configuration

ARM710a macrocell Data Sheet
ARM DDI 0033D

5-2

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

The operation and configuration of ARM710a macrocell is controlled both directly via
coprocessor instructions and indirectly via the Memory Management Page tables. The
coprocessor instructions manipulate a number of on-chip registers which control the
configuration of the Cache, write buffer, MMU and a number of other configuration
options.

To ensure backwards compatibility of future CPUs, all reserved or unused bits in
registers and coprocessor instructions should be programmed to '0'. Invalid registers
must not be read/written. The following bits shall be programmed to '0':

Register 1 bits[31:11]

Register 2 bits[13:0]

Register 5 bits[31:0]

Register 6 bits[11:0]

Register 7 bits[31:0]

Note The grey areas in the register and translation diagrams are reserved and should be
programmed 0 for future compatibility.

5.1 Internal Coprocessor Instructions
The on-chip registers may be read using MRC instructions and written using MCR
instructions. These operations are only allowed in non-user modes and the undefined
instruction trap will be taken if accesses are attempted in user mode.

The CP15 register map may change in later ARM processors. We strongly
recommend you structure software such that any code accessing coprocessor 15 is
contained in a single module. It can then be updated easily.

 Figure 5-1: Format of internal coprocessor instructions MRC and MCR

1 1 1 0 n 1 1 1 1 1

034578111215161920212324272831

Cond CRn Rd

Cond
Crn
Rd
n

ARM condition codes
ARMxxx Register
ARM Register
1 MRC register read
0 MRC register write

Configuration

ARM710a macrocell Data Sheet
ARM DDI 0033D

5-3

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

5.2 Registers
ARM710a macrocell contains registers which control the cache and MMU operation.
These registers are accessed using CPRT instructions to Coprocessor #15 with the
processor in a privileged mode. Only some of registers 0-7 are valid: an access to an
invalid register will cause neither the access nor an undefined instruction trap, and
therefore should never be carried out; an access to any of the registers 8-15 will cause
the undefined instruction trap to be taken.

5.2.1 Register 0 ID

Register 0 is a read-only identity register that returns the ARM Ltd code for this chip:
0x4104710x.

5.2.2 Register 1 Control

Register 1 is write only and contains control bits. All bits in this register are forced LOW
by reset.

Register Register Reads Register Writes

0 ID Register Reserved

1 Reserved Control

2 Reserved Translation Table Base

3 Reserved Domain Access Control

4 Reserved Reserved

5 Fault Status Flush TLB

6 Fault Address Purge TLB

7 Reserved Flush IDC

8-15 Reserved Reserved

 Table 5-1: Cache & MMU control register

0341516232431

41 Revision04 710

01234567893031

0 S B L D P W AC M10 0 0 0 R S B

2829 2627 1011

Configuration

ARM710a macrocell Data Sheet
ARM DDI 0033D

5-4

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

M Bit 0 Enable/disable

0 - on-chip Memory Management Unit turned off

1 - on-chip Memory Management Unit turned on.

A Bit 1 Address fault enable/disable

0 - alignment fault disabled

1 - alignment fault enabled

C Bit 2 Cache enable/disable

0 - Instruction / data cache turned off

1 - Instruction / data cache turned on

W Bit 3 Write buffer enable/disable

0 - Write buffer turned off

1 - Write buffer turned on

P Bit 4 ARM 32/26-bit program space

0 - 26 bit Program Space selected

1 - 32 bit Program Space selected

D Bit 5 ARM 32/26-bit data space

0 - 26 bit Data Space selected

1 - 32 bit Data Space selected

B Bit 7 Big/little -endian

0 - Little-endian operation

1 - Big-endian operation

S Bit 8 System

This bit controls the ARM710a macrocell permission system. Refer to

➲9.6 Section Descriptor on page 9-7.

R Bit 9 ROM
This bit controls the ARM710a macrocell permission system. Refer to
➲9.6 Section Descriptor on page 9-7.

Configuration

ARM710a macrocell Data Sheet
ARM DDI 0033D

5-5

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

5.2.3 Register 2 Translation Table Base

Register 2 is a write-only register which holds the base of the currently active Level
One page table.

5.2.4 Register 3 Domain Access Control

Register 3 is a write-only register which holds the current access control for domains
0 to 15. See ➲9.13 Domain Access Control on page 9-14 for the access permission
definitions and other details

.

5.2.5 Register 4 Reserved

Register 4 is Reserved. Accessing this register has no effect, but should never be
attempted.

5.2.6 Register 5

Read: fault status

Reading register 5 returns the status of the last data fault. It is not updated for a
prefetch fault. See ➲Chapter 9, for more details. Note that only the bottom 12 bits are
returned. The upper 20 bits will be the last value on the internal data bus, and therefore
will have no meaning. Bits 11:8 are always returned as zero

.

Write: translation lookaside buffer flush

Writing Register 5 flushes the TLB. (The data written is discarded).

0131431

Translation Table Base

012345678910111213141516171819202122232425262728293031

0123456789101112131415

0 0 0 0 Domain Status

03478111231

Configuration

ARM710a macrocell Data Sheet
ARM DDI 0033D

5-6

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

5.2.7 Register 6

Read: fault address

Reading register 6 returns the virtual address of the last data fault.

Write: TLB purge

Writing Register 6 purges the TLB; the data is treated as an address and the TLB is
searched for a corresponding page table descriptor. If a match is found, the
corresponding entry is marked as invalid. This allows the page table descriptors in
main memory to be updated and invalid entries in the on-chip TLB to be purged without
requiring the entire TLB to be flushed

.

5.2.8 Register 7 IDC Flush

Register 7 is a write-only register. The data written to this register is discarded and the
IDC is flushed.

5.2.9 Registers 8 - 15 Reserved

Accessing any of these registers will cause the undefined instruction trap to be taken.

031

Fault Address

031

Purge Address

1314

ARM710a macrocell Data Sheet
ARM DDI 0033D

6-1

111

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
sInstruction and Data Cache (IDC)

This chapter describes Instruction and Data Cache.

6.1 Cacheable Bit 6-2

6.2 IDC Operation 6-2

6.3 IDC Validity 6-2

6.4 Read-lock-write 6-3

6.5 IDC Enable/Disable and Reset 6-3

6

Instruction and Data Cache (IDC)

ARM710a macrocell Data Sheet
ARM DDI 0033D

6-2

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

ARM710a macrocell contains a 8kByte mixed instruction and data cache. The IDC has
512 lines of 16 bytes (4 words), arranged as a 4 way set associative cache, and uses
the virtual addresses generated by the processor core. The IDC is always reloaded a
line at a time (4 words). It may be enabled or disabled via the ARM710a macrocell
Control Register and is disabled on nRESET. The operation of the cache is further
controlled by the Cacheable, or C, bit stored in the Memory Management Page Table
(see➲Chapter 9, Memory Management Unit). For this reason, in order to use the IDC,
the MMU must be enabled. The two functions may, however, be enabled
simultaneously, with a single write to the Control Register.

6.1 Cacheable Bit
The Cacheable bit determines whether data being read may be placed in the IDC and
used for subsequent read operations. Typically main memory will be marked as
Cacheable to improve system performance, and I/O space as Non-cacheable to stop
the data being stored in ARM710a macrocell's cache. For example if the processor is
polling a hardware flag in I/O space, it is important that the processor is forced to read
data from the external peripheral, and not a copy of initial data held in the cache. The
Cacheable bit can be configured for both pages and sections.

6.2 IDC Operation
The C bit in the ARM710a macrocell Control Register and the Cacheable bit in the
MMU page tables only affect loading data into the Cache. The Cache will always be
searched regardless of these two bits, and if the data is found it will be used, so when
the cache is disabled it should also be flushed.

6.2.1 Cacheable reads C = 1

A linefetch of 4 words will be performed when a cache miss occurs in a cacheable area
of memory and it will be randomly placed in a cache bank.

6.2.2 Uncacheable reads C = 0

An external memory access will be performed and the cache will not be written.

6.3 IDC Validity
The IDC operates with virtual addresses, so care must be taken to ensure that its
contents remain consistent with the virtual to physical mappings performed by the
Memory Management Unit. If the Memory Mappings are changed, the IDC validity
must be ensured.

6.3.1 Software IDC flush

The entire IDC may be marked as invalid by writing to the ARM710a macrocell IDC
Flush Register (Register 7). The cache will be flushed immediately the register is
written, but note that the following two instruction fetches may come from the cache
before the register is written.

Instruction and Data Cache (IDC)

ARM710a macrocell Data Sheet
ARM DDI 0033D

6-3

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

6.3.2 Doubly mapped space

Since the cache works with virtual addresses, it is assumed that every virtual address
maps to a different physical address. If the same physical location is accessed by
more than one virtual address, the cache cannot maintain consistency, since each
virtual address will have a separate entry in the cache, and only one entry will be
updated on a processor write operation. To avoid any cache inconsistencies, both
doubly-mapped virtual addresses should be marked as uncacheable.

6.4 Read-lock-write
The IDC treats the Read-Locked-Write instruction as a special case. The read phase
always forces a read of external memory, regardless of whether the data is contained
in the cache. The write phase is treated as a normal write operation (and if the data is
already in the cache, the cache will be updated). Externally the two phases are flagged
as indivisible by asserting the LOCK signal.

6.5 IDC Enable/Disable and Reset
The IDC is automatically disabled and flushed on nRESET. Once enabled, cacheable
read accesses will cause lines to be placed in the cache.

6.5.1 To enable the IDC

To enable the IDC, make sure that the MMU is enabled first by setting bit 0 in the
Control Register, then enable the IDC by setting bit 2 in Control Register. The MMU
and IDC may be enabled simultaneously with a single control register write.

6.5.2 To disable the IDC

To disable the IDC clear bit 2 in the Control Register and perform a flush by writing to
the flush register.

Instruction and Data Cache (IDC)

ARM710a macrocell Data Sheet
ARM DDI 0033D

6-4

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

ARM710a macrocell Data Sheet
ARM DDI 0033D

7-1

111

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

Write Buffer (WB)

This chapter describes the Write Buffer.

7.1 Bufferable Bit 7-2

7.2 Write Buffer Operation 7-2

7

Write Buffer (WB)

ARM710a macrocell Data Sheet
ARM DDI 0033D

7-2

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

The ARM710a macrocell write buffer is provided to improve system performance. It
can buffer up to 8 words of data, and 4 independent addresses. It may be enabled or
disabled via the W bit (bit 3) in the ARM710a macrocell Control Register and the buffer
is disabled and flushed on reset. The operation of the write buffer is further controlled
by one bit, B, or Bufferable, which is stored in the Memory Management Page Tables.
For this reason, in order to use the write buffer, the MMU must be enabled. The two
functions may however be enabled simultaneously, with a single write to the Control
Register. For a write to use the write buffer, both the W bit in the Control Register, and
the B bit in the corresponding page table must be set.

It is not possible to abort buffered writes externally; the ABORT signal will be ignored.
Areas of memory which may generate aborts should be marked as unbufferable in the
MMU page tables.

7.1 Bufferable Bit
This bit controls whether a write operation may or may not use the write buffer.
Typically main memory will be bufferable and I/O space unbufferable. The Bufferable
bit can be configured for both pages and sections.

7.2 Write Buffer Operation
When the CPU performs a write operation, the translation entry for that address is
inspected and the state of the B bit determines the subsequent action. If the write
buffer is disabled via the ARM710a macrocell Control Register, bufferable writes are
treated in the same way as unbuffered writes.

7.2.1 Bufferable write

If the write buffer is enabled and the processor performs a write to a bufferable area,
the data is placed in the write buffer at FCLK (MCLK if running with fastbus extension)
speeds and the CPU continues execution. The write buffer then performs the external
write in parallel. If however the write buffer is full (either because there are already 8
words of data in the buffer, or because there is no slot for the new address) then the
processor is stalled until there is sufficient space in the buffer.

7.2.2 Unbufferable writes

If the write buffer is disabled or the CPU performs a write to an unbufferable area, the
processor is stalled until the write buffer empties and the write completes externally,
which may require synchronisation and several external clock cycles.

7.2.3 Read-lock-write

The write phase of a read-lock-write sequence is treated as an Unbuffered write, even
if it is marked as buffered.

Write Buffer (WB)

ARM710a macrocell Data Sheet
ARM DDI 0033D

7-3

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

Note A single write requires one address slot and one data slot in the write buffer; a
sequential write of n words requires one address slot and n data slots. The total of 8
data slots in the buffer may be used as required. So for instance there could be 3 non-
sequential writes and one sequential write of 5 words in the buffer, and the processor
could continue as normal: a 5th write or a 6th word in the 4th write would stall the
processor until the first write had completed.

7.2.4 To enable the write buffer

To enable the write buffer, ensure the MMU is enabled by setting bit 0 in the Control
Register, then enable the write buffer by setting bit 3 in the Control Register. The MMU
and write buffer may be enabled simultaneously with a single write to the Control
Register.

7.2.5 To disable the write buffer

To disable the write buffer, clear bit 3 in the Control Register.

Note Any writes already in the write buffer will complete normally.

Write Buffer (WB)

ARM710a macrocell Data Sheet
ARM DDI 0033D

7-4

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

ARM710a macrocell Data Sheet
ARM DDI 0033D

8-1

111

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
sCoprocessors

This chapter describes the coprocessors.

8.1 Coprocessors 8-2

8

Coprocessors

ARM710a macrocell Data Sheet
ARM DDI 0033D

8-2

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

8.1 Coprocessors
ARM710a macrocell has no external coprocessor bus, so it is not possible to add
external coprocessors to this device.

ARM710a macrocell still has an internal coprocessor designated #15 for internal
control of the device. All coprocessor operations except MCR or MRC to registers 0
through 7 on coprocessor #15 will cause the undefined instruction trap to be taken.

ARM710a macrocell Data Sheet
ARM DDI 0033D

9-1

111

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
sMemory Management Unit

This chapter describes the Memory Management Unit.

9.1 MMU Program Accessible Registers 9-3

9.2 Address Translation 9-4

9.3 Translation Process 9-5

9.4 Level One Descriptor 9-6

9.5 Page Table Descriptor 9-6

9.6 Section Descriptor 9-7

9.7 Translating Section References 9-8

9.8 Level Two Descriptor 9-9

9.9 Translating Small Page References 9-10

9.10 Translating Large Page References 9-11

9.11 MMU Faults and CPU Aborts 9-12

9.12 Fault Address & Fault Status Registers (FAR & FSR) 9-12

9.13 Domain Access Control 9-14

9.14 Fault Checking Sequence 9-15

9.15 External Aborts 9-17

9.16 Interaction of the MMU, IDC and Write Buffer 9-18

9.17 Effect of Reset 9-19

9

Memory Management Unit

ARM710a macrocell Data Sheet
ARM DDI 0033D

9-2

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

The Memory Management MMU performs two primary functions: it translates virtual
addresses into physical addresses, and it controls memory access permissions. The
MMU hardware required to perform these functions consists of a Translation Look-
aside Buffer (TLB), access control logic, and translation table walking logic.

The MMU supports memory accesses based on Sections or Pages. Sections are
comprised of 1MB blocks of memory. Two different page sizes are supported: Small
Pages consist of 4kB blocks of memory and Large Pages consist of 64kB blocks of
memory. (Large Pages are supported to allow mapping of a large region of memory
while using only a single entry in the TLB). Additional access control mechanisms are
extended within Small Pages to 1kB Sub-Pages and within Large Pages to 16kB Sub-
Pages.

The MMU also supports the concept of domains - areas of memory that can be defined
to possess individual access rights. The Domain Access Control Register is used to
specify access rights for up to 16 separate domains.

The TLB caches 64 translated entries. During most memory accesses, the TLB
provides the translation information to the access control logic.

If the TLB contains a translated entry for the virtual address, the access control logic
determines whether access is permitted. If access is permitted, the MMU outputs the
appropriate physical address corresponding to the virtual address. If access is not
permitted, the MMU signals the CPU to abort.

If the TLB misses (it does not contain a translated entry for the virtual address), the
translation table walk hardware is invoked to retrieve the translation information from
a translation table in physical memory. Once retrieved, the translation information is
placed into the TLB, possibly overwriting an existing value. The entry to be overwritten
is chosen by cycling sequentially through the TLB locations.

When the MMU is turned off (as happens on reset), the virtual address is output
directly onto the physical address bus.

Memory Management Unit

ARM710a macrocell Data Sheet
ARM DDI 0033D

9-3

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

9.1 MMU Program Accessible Registers
The ARM710a macrocell Processor provides several 32-bit registers which determine
the operation of the MMU. The format for these registers is shown in ➲Figure 9-1:
MMU register summary on page 9-3. A brief description of the registers is provided
below. Each register will be discussed in more detail within the section that describes
its use.

Data is written to and read from the MMU's registers using the ARM CPU's MRC and
MCR coprocessor instructions.

The Translation Table Base Register holds the physical address of the base of the
translation table maintained in main memory. Note that this base must reside on a
16kB boundary.

The Domain Access Control Register consists of sixteen 2-bit fields, each of which
defines the access permissions for one of the sixteen Domains (D15-D0).

 Figure 9-1: MMU register summary

Note The registers not shown are reserved and should not be used.

The Fault Status Register indicates the domain and type of access being attempted
when an abort occurred. Bits 7:4 specify which of the sixteen domains (D15-D0) was
being accessed when a fault occurred. Bits 3:1 indicate the type of access being
attempted. The encoding of these bits is different for internal and external faults (as
indicated by bit 0 in the register) and is shown in ➲Table 9-4: Priority encoding of fault
status on page 9-13. A write to this register flushes the TLB.

The Fault Address Register holds the virtual address of the access which was
attempted when a fault occurred. A write to this register causes the data written to be
treated as an address and, if it is found in the TLB, the entry is marked as invalid. (This
operation is known as a TLB purge). The Fault Status Register and Fault Address
Register are only updated for data faults, not for prefetch faults.

Domain Access Control

0 Control 1 D P W AC M

Translation Table Base

0123456789101112131415

0 0 0 0 Domain Status

012345678910111213141516171819202122232425262728293031

Flush TLB

Purge Address

Fault Address

Register

1 write

2 write

3 write

5 read

5 write

6 read

6 write

Fault Status

S B0Control0 0 0 0 R

Memory Management Unit

ARM710a macrocell Data Sheet
ARM DDI 0033D

9-4

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

9.2 Address Translation
The MMU translates virtual addresses generated by the CPU into physical addresses
to access external memory, and also derives and checks the access permission.
Translation information, which consists of both the address translation data and the
access permission data, resides in a translation table located in physical memory. The
MMU provides the logic needed to traverse this translation table, obtain the translated
address, and check the access permission.

There are three routes by which the address translation (and hence permission check)
takes place. The route taken depends on whether the address in question has been
marked as a section-mapped access or a page-mapped access; and there are two
sizes of page-mapped access (large pages and small pages). However, the translation
process always starts out in the same way, as described below, with a Level One fetch.
A section-mapped access only requires a Level One fetch, but a page-mapped access
also requires a Level Two fetch.

Memory Management Unit

ARM710a macrocell Data Sheet
ARM DDI 0033D

9-5

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

9.3 Translation Process

9.3.1 Translation table base

The translation process is initiated when the on-chip TLB does not contain an entry for
the requested virtual address. The Translation Table Base (TTB) Register points to the
base of a table in physical memory which contains Section and/or Page descriptors.
The 14 low-order bits of the TTB Register are set to zero as illustrated in ➲Figure 9-2:
Translation table base register; the table must reside on a 16kB boundary.

 Figure 9-2: Translation table base register

9.3.2 Level one fetch

Bits 31:14 of the Translation Table Base register are concatenated with bits 31:20 of
the virtual address to produce a 30-bit address as illustrated in ➲Figure 9-3: Accessing
the translation table first level descriptors. This address selects a four-byte translation
table entry which is a First Level Descriptor for either a Section or a Page (bit1 of the
descriptor returned specifies whether it is for a Section or Page)

.

 Figure 9-3: Accessing the translation table first level descriptors

0131431

Translation Table Base

0192031

031

Table Index Section Index

Virtual Address

Translation Base

1314

Translation Table Base

031

Translation Base

1314

0 0

12

Table Index

18
12

First Level Descriptor
031

Memory Management Unit

ARM710a macrocell Data Sheet
ARM DDI 0033D

9-6

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

9.4 Level One Descriptor
The Level One Descriptor returned is either a Page Table Descriptor or a Section
Descriptor, and its format varies accordingly. The following figure illustrates the format
of Level One Descriptors.

 Figure 9-4: Level one descriptors

The two least significant bits indicate the descriptor type and validity, and are
interpreted as shown below..

9.5 Page Table Descriptor
Bits 3:2 are always written as 0.

Bit 4 should be written to 1 for backward compatibility.

Bits 8:5 specify one of the sixteen possible domains (held in the Domain Access
Control Register) that contain the primary access controls.

Bits 31:10 form the base for referencing the Page Table Entry. (The page table index
for the entry is derived from the virtual address as illustrated in ➲Figure 9-7: Small
page translation on page 9-10).

If a Page Table Descriptor is returned from the Level One fetch, a Level Two fetch is
initiated as described below.

Value Meaning Notes

 0 0 Invalid Generates a Section Translation Fault

 0 1 Page Indicates that this is a Page Descriptor

 1 0 Section Indicates that this is a Section Descriptor

 1 1 Reserved Reserved for future use

 Table 9-1: Interpreting level one descriptor bits [1:0]

01234589101112192031

0 Fault

Page

Section

Reserved

0

0 1

1 0

1 1

C B

Domain

DomainAP

Page Table Base Address

Section Base Address 1

1

Memory Management Unit

ARM710a macrocell Data Sheet
ARM DDI 0033D

9-7

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

9.6 Section Descriptor
Bits 3:2 (C, & B) control the cache- and write-buffer-related functions as follows:

C - Cacheable : indicates that data at this address will be placed in the cache (if the
cache is enabled).

B - Bufferable : indicates that data at this address will be written through the write
buffer (if the write buffer is enabled).

Bit 4 should be written to 1 for backward compatibility.

Bits 8:5 specify one of the sixteen possible domains (held in the Domain Access
Control Register) that contain the primary access controls.

Bits 11:10 (AP) specify the access permissions for this section and are interpreted as
shown in ➲Table 9-2: Interpreting access permission (AP) Bits on page 9-7. Their
interpretation is dependent upon the setting of the S and R bits (control register bits 8
and 9). Note that the Domain Access Control specifies the primary access control; the
AP bits only have an effect in client mode. Refer to section on access permissions

Bits 19:12 are always written as 0.

Bits 31:20 form the corresponding bits of the physical address for the 1MByte section.

Note The meaning of the C and B bits may change in later ARM processors. We strongly
recommend you structure software such that code which manipulates the MMU page
tables is contained in a single module. It can then be updated easily when you port it
to a different ARM processor.

AP S R Permissions
Supervisor User

Notes

00 0 0 No Access No Access Any access generates a permission fault

00 1 0 Read Only No Access Supervisor read only permitted

00 0 1 Read Only Read Only Any write generates a permission fault

00 1 1 Reserved

01 x x Read/Write No Access Access allowed only in Supervisor mode

10 x x Read/Write Read Only Writes in User mode cause permission
fault

11 x x Read/Write Read/Write All access types permitted in both
modes.

xx 1 1 Reserved

 Table 9-2: Interpreting access permission (AP) Bits

Memory Management Unit

ARM710a macrocell Data Sheet
ARM DDI 0033D

9-8

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

9.7 Translating Section References
➲Figure 9-5: Section translation illustrates the complete Section translation sequence.
Note that the access permissions contained in the Level One Descriptor must be
checked before the physical address is generated. The sequence for checking access
permissions is described below.

 Figure 9-5: Section translation

0192031

1 0C BDomainAPSection Base Address

031

Table Index Section Index

Virtual Address

Translation Base

01234589101112192031

1314

Translation Table Base

031

Translation Base

1314

0 0

12

Table Index

First Level Descriptor

0192031

Section Base Address Section Index

Physical Address
12

20

18
12

1

Memory Management Unit

ARM710a macrocell Data Sheet
ARM DDI 0033D

9-9

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

9.8 Level Two Descriptor
If the Level One fetch returns a Page Table Descriptor, this provides the base address
of the page table to be used. The page table is then accessed as described in ➲Figure
9-7: Small page translation on page 9-10, and a Page Table Entry, or Level Two
Descriptor, is returned. This in turn may define either a Small Page or a Large Page
access. The figure below shows the format of Level Two Descriptors

.

 Figure 9-6: Page table entry (level two descriptor)

The two least significant bits indicate the page size and validity, and are interpreted as
follows.

Bit 2 B - Bufferable : indicates that data at this address will be written through the write
buffer (if the write buffer is enabled).

Bit 3 C - Cacheable : indicates that data at this address will be placed in the IDC (if the
cache is enabled).

Bits 11:4 specify the access permissions (ap3 - ap0) for the four sub-pages and
interpretation of these bits is described earlier in ➲Table 9-1: Interpreting level one
descriptor bits [1:0] on page 9-6.

For large pages, bits 15:12 are programmed as 0.

Bits 31:12 (small pages) or bits 31:16 (large pages) are used to form the
corresponding bits of the physical address - the physical page number. (The page
index is derived from the virtual address as illustrated in ➲Figure 9-7: Small page
translation on page 9-10 and ➲Figure 9-8: Large page translation on page 9-11).

Value Meaning Notes

 0 0 Invalid Generates a Page Translation Fault

 0 1 Large Page Indicates that this is a 64 kB Page

 1 0 Small Page Indicates that this is a 4 kB Page

 1 1 Reserved Reserved for future use

 Table 9-3: Interpreting page table entry bits 1:0

01234589101112192031

0 Fault

Large Page

Small Page

Reserved

0

0 1

1 0

1 1

C Bap3

Large Page Base Address

Small Page Base Address

671516

ap3

ap2

ap2

ap1

ap1

ap0

ap0 C B

Memory Management Unit

ARM710a macrocell Data Sheet
ARM DDI 0033D

9-10

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

9.9 Translating Small Page References
➲Figure 9-7: Small page translation illustrates the complete translation sequence for
a 4kB Small Page. Page translation involves one additional step beyond that of a
section translation: the Level One descriptor is the Page Table descriptor, and this is
used to point to the Level Two descriptor, or Page Table Entry. (Note that the access
permissions are now contained in the Level Two descriptor and must be checked
before the physical address is generated. The sequence for checking access
permissions is described later).

 Figure 9-7: Small page translation

0192031

031

Table Index Page Index

Virtual Address

Translation Base

1314

Translation Table Base

031

Translation Base

1314

0 0

12

Table Index

First Level Descriptor

18

12

0 1DomainPage Table Base Address

01245891031

0 0Page Table Base Address

01291031

L2 Table Index

1112

L2 Table Index

1 0C Bap3Page Base Address

0123458910111231

Second Level Descriptor
67

ap2 ap1 ap0

Page Base Address

0111231

Page Index

Physical Address

12

8

1

Memory Management Unit

ARM710a macrocell Data Sheet
ARM DDI 0033D

9-11

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

9.10 Translating Large Page References
➲Figure 9-8: Large page translation illustrates the complete translation sequence for
a 64 kB Large Page. Note that since the upper four bits of the Page Index and low-
order four bits of the Page Table index overlap, each Page Table Entry for a Large
Page must be duplicated 16 times (in consecutive memory locations) in the Page
Table.

 Figure 9-8: Large page translation

0192031

031

Table Index Page Index

Virtual Address

Translation Base

1314

Translation Table Base

031

Translation Base

1314

0 0

12

Table Index

First Level Descriptor

18

12

0 1DomainPage Table Base Address

01245891031

0 0Page Table Base Address

01291031

L2 Table Index

1112

L2 Table Index

0 1C Bap3Page Base Address

0123458910111231

Second Level Descriptor
67

ap2 ap1 ap0

Page Base Address

031

Page Index

Physical Address

12

8

1516

1516

1516

1

Memory Management Unit

ARM710a macrocell Data Sheet
ARM DDI 0033D

9-12

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

9.11 MMU Faults and CPU Aborts
The MMU generates four types of faults:

Alignment Fault

Translation Fault

Domain Fault

Permission Fault

In addition, an external abort may be raised on external data access.

The access control mechanisms of the MMU detect the conditions that produce these
faults. If a fault is detected as the result of a memory access, the MMU will abort the
access and signal the fault condition to the CPU. The MMU is also capable of retaining
status and address information about the abort. The CPU recognises two types of
abort: data aborts and prefetch aborts, and these are treated differently by the MMU.

If the MMU detects an access violation, it will do so before the external memory access
takes place, and it will therefore inhibit the access. External aborts will not necessarily
inhibit the external access, as described in the section on external aborts.

If the ARM710a macrocell is operating in fastbus mode an internally aborting access
may cause the address on the external address bus to change, even though the
external bus cycle has been cancelled. The address that is placed on the bus will be
the translation of the address that caused the abort, though in the case of the a
Translation Fault the value of this address will be undefined. No memory access will
be performed to this address.

9.12 Fault Address & Fault Status Registers (FAR & FSR)
Aborts resulting from data accesses (data aborts) are acted upon by the CPU
immediately, and the MMU places an encoded 4 bit value FS[3:0], along with the 4 bit
encoded Domain number, in the Fault Status Register (FSR). In addition, the virtual
processor address which caused the data abort is latched into the Fault Address
Register (FAR). If an access violation simultaneously generates more than one source
of abort, they are encoded in the priority given in ➲Table 9-4: Priority encoding of fault
status on page 9-13.

CPU instructions on the other hand are prefetched, so a prefetch abort simply flags
the instruction as it enters the instruction pipeline. Only when (and if) the instruction is
executed does it cause an abort; an abort is not acted upon if the instruction is not
used (i.e. it is branched around). Because instruction prefetch aborts may or may not
be acted upon, the MMU status information is not preserved for the resulting CPU
abort; for a prefetch abort, the MMU does not update the FSR or FAR.

The sections that follow describe the various access permissions and controls
supported by the MMU and detail how these are interpreted to generate faults.

Memory Management Unit

ARM710a macrocell Data Sheet
ARM DDI 0033D

9-13

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

x is undefined, and may read as 0 or 1

Notes

1 Any abort masked by the priority encoding may be regenerated by fixing the
primary abort and restarting the instruction.

2 In fact this register will contain bits[8:5] of the Level 1 entry which are
undefined, but would encode the domain in a valid entry.

3 The FAR will contain the address of the start of the linefetch.

Source FS[3210] Domain[3:0] FAR

Highest Alignment 00x1 x valid

Bus Error (translation) level1
level2

1100
1110

x
valid

valid
valid

Translation Section
Page

0101
0111

Note 2
valid

valid
valid

Domain Section
Page

1001
1011

valid
valid

valid
valid

Permission Section
Page

1101
1111

valid
valid

valid
valid

Bus Error (linefetch) Section
Page

0100
0110

valid
valid

Note 3
Note 3

Lowest Bus Error (other) Section
Page

1000
1010

valid
valid

valid
valid

 Table 9-4: Priority encoding of fault status

Memory Management Unit

ARM710a macrocell Data Sheet
ARM DDI 0033D

9-14

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

9.13 Domain Access Control
MMU accesses are primarily controlled via domains. There are 16 domains, and each
has a 2-bit field to define it. Two basic kinds of users are supported: Clients and
Managers. Clients use a domain; Managers control the behaviour of the domain. The
domains are defined in the Domain Access Control Register. ➲Figure 9-9: Domain
access control register format on page 9-14 illustrates how the 32 bits of the register
are allocated to define the sixteen 2-bit domains.

 Figure 9-9: Domain access control register format

➲Table 9-5: Interpreting access bits in domain access control register defines how the
bits within each domain are interpreted to specify the access permissions.

Value Meaning Notes

00 No Access Any access will generate a Domain Fault.

01 Client Accesses are checked against the access permission bits in the Section or Page
descriptor.

10 Reserved Reserved. Currently behaves like the no access mode.

11 Manager Accesses are NOT checked against the access Permission bits so a Permission
fault cannot be generated.

 Table 9-5: Interpreting access bits in domain access control register

012345678910111213141516171819202122232425262728293031

0123456789101112131415

Memory Management Unit

ARM710a macrocell Data Sheet
ARM DDI 0033D

9-15

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

9.14 Fault Checking Sequence
The sequence by which the MMU checks for access faults is slightly different for
Sections and Pages. The figure below illustrates the sequence for both types of
accesses. The sections and figures that follow describe the conditions that generate
each of the faults.

 Figure 9-10: Sequence for checking faults

violation

no access(00)
reserved(10)

Virtual Address

Check Address Alignment

get Level One Descriptor

Section Page

misaligned Alignment
Fault

invalid
Section

Translation
Fault

get Page
Table Entry

check Domain Status

invalid
Page

Translation
Fault

no access(00) Page
Domain

Fault
reserved(10)

Section
Domain

Fault

Section Page

client(01)client(01)

manager(01)

Check Access
Permissions

Check Access
Permissions

Physical Address

Section
Permission

Fault
violation

sub-Page
Permission

Fault

Memory Management Unit

ARM710a macrocell Data Sheet
ARM DDI 0033D

9-16

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

9.14.1 Alignment fault

If Alignment Fault is enabled (bit 1 in Control Register set), the MMU will generate an
alignment fault on any data word access the address of which is not word-aligned
irrespective of whether the MMU is enabled or not; in other words, if either of virtual
address bits [1:0] are not 0. Alignment fault will not be generated on any instruction
fetch, nor on any byte access. Note that if the access generates an alignment fault, the
access sequence will abort without reference to further permission checks.

9.14.2 Translation fault

There are two types of translation fault: section and page.

1 A Section Translation Fault is generated if the Level One descriptor is marked
as invalid. This happens if bits[1:0] of the descriptor are both 0 or both 1.

2 A Page Translation Fault is generated if the Page Table Entry is marked as
invalid. This happens if bits[1:0] of the entry are both 0 or both 1.

9.14.3 Domain fault

There are two types of domain fault: section and page. In both cases the Level One
descriptor holds the 4-bit Domain field which selects one of the sixteen 2-bit domains
in the Domain Access Control Register. The two bits of the specified domain are then
checked for access permissions as detailed in ➲Table 9-2: Interpreting access
permission (AP) Bits on page 9-7. In the case of a section, the domain is checked once
the Level One descriptor is returned, and in the case of a page, the domain is checked
once the Page Table Entry is returned.

If the specified access is either No Access (00) or Reserved (10) then either a Section
Domain Fault or Page Domain Fault occurs.

9.14.4 Permission fault

There are two types of permission fault: section and sub-page. Permission fault is
checked at the same time as Domain fault. If the 2-bit domain field returns client (01),
then the permission access check is invoked as follows:

section

If the Level One descriptor defines a section-mapped access, then the AP bits of the
descriptor define whether or not the access is allowed according to ➲Table 9-2:
Interpreting access permission (AP) Bits on page 9-7. Their interpretation is
dependent upon the setting of the S bit (Control Register bit 8). If the access is not
allowed, then a Section Permission fault is generated.

Memory Management Unit

ARM710a macrocell Data Sheet
ARM DDI 0033D

9-17

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

sub-page

If the Level One descriptor defines a page-mapped access, then the Level Two
descriptor specifies four access permission fields (ap3..ap0) each corresponding to
one quarter of the page. Hence for small pages, ap3 is selected by the top 1kB of the
page, and ap0 is selected by the bottom 1kB of the page; for large pages, ap3 is
selected by the top 16kB of the page, and ap0 is selected by the bottom 16kB of the
page. The selected AP bits are then interpreted in exactly the same way as for a
section (see ➲Table 9-2: Interpreting access permission (AP) Bits on page 9-7), the
only difference being that the fault generated is a sub-page permission fault.

9.15 External Aborts
In addition to the MMU-generated aborts, ARM710a macrocell has an external abort
signal which may be used to flag an error on an external memory access. However,
not all accesses can be aborted in this way, so this signal must be used with great
care. The following section describes the restrictions.

The following accesses may be aborted and restarted safely. If any of the following are
aborted the external access will cease on the next cycle. In the case of a read-lock-
write sequence in which the read aborts, the write will not happen.

Reads

Unbuffered writes

Level One descriptor fetch

Level Two descriptor fetch

read-lock-write sequence

Cacheable reads (linefetches)

A linefetch may be safely aborted on any word in the transfer. If an abort occurs during
the linefetch then the cache will be purged, so it will not contain invalid data. If the abort
happens on a word that has been requested by the ARM710a macrocell, it will be
aborted, otherwise the cache line will be purged but program flow will not be
interrupted. The line is therefore purged under all circumstances.

Buffered writes

Buffered writes cannot be externally aborted. Therefore, the system should be
configured such that it does not do buffered writes to areas of memory which are
capable of flagging an external abort.

Note Areas of memory which can generate an external abort on a location which has
previously been read successfully must not be marked a cacheable or unbufferable.
This applies to both the MMU page tables and the configuration register. If all writes
to an area of memory abort, we recommend that you mark it as read only in the MMU,
otherwise mark it as uncacheable and unbufferable.

Memory Management Unit

ARM710a macrocell Data Sheet
ARM DDI 0033D

9-18

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

9.16 Interaction of the MMU, IDC and Write Buffer
The MMU, IDC and WB may be enabled/disabled independently. However, in order for
the write buffer or the cache to be enabled the MMU must also be enabled. There are
no hardware interlocks on these restrictions, so invalid combinations will cause
undefined results.

The following procedures must be observed.

 To enable the MMU:

1 Program the Translation Table Base and Domain Access Control Registers

2 Program Level 1 and Level 2 page tables as required

3 Enable the MMU by setting bit 0 in the Control Register.

Note Care must be taken if the translated address differs from the untranslated address as
the two instructions following the enabling of the MMU will have been fetched using
“flat translation” and enabling the MMU may be considered as a branch with delayed
execution. A similar situation occurs when the MMU is disabled. Consider the following
code sequence:

MOV R1, #0x1
MCR 15,0,R1,0,0 ; Enable MMU
Fetch Flat
Fetch Flat
Fetch Translated

To disable the MMU:

1 Disable the WB by clearing bit 3 in the Control Register.

2 Disable the IDC by clearing bit 2 in the Control Register.

3 Disable the MMU by clearing bit 0 in the Control Register.

Note If the MMU is enabled, then disabled and subsequently re-enabled the contents of the
TLB will have been preserved. If these are now invalid, the TLB should be flushed
before re-enabling the MMU.

Disabling of all three functions may be done simultaneously.

MMU IDC WB

off off off

on off off

on on off

on off on

on on on

 Table 9-6: Valid MMU, IDC & write buffer combinations

Memory Management Unit

ARM710a macrocell Data Sheet
ARM DDI 0033D

9-19

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

9.17 Effect of Reset
See ➲3.5 Reset on page 3-11.

Memory Management Unit

ARM710a macrocell Data Sheet
ARM DDI 0033D

9-20

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

ARM710a macrocell Data Sheet
ARM DDI 0033D

10-1

111

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
sBus Clocking

This chapter describes the bus interface clocking:

10.1 Fastbus Extension 10-2

10.2 Standard Mode 10-4

10

Bus Clocking

ARM710a macrocell Data Sheet
ARM DDI 0033D

10-2

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

The ARM710a macrocell bus interface can be operated either using the standard
mode of operation or using the new fastbus extension:

Standard mode

• backwards Compatible with ARM610

• two clocks, FCLK and MCLK

• synchronous or fully asynchronous operation

Fastbus extension

• single device clock

• enhanced ALE functionality to ease design

• increased maximum MCLK frequency

For new designs it is possible to operate the device using the fastbus extension. In this
fastbus mode, the device is clocked off a single clock, and the bus is operated at the
same frequency as the core. This will allow the bus interface to be clocked faster than
if the device is operated in standard mode. It is recommended that this mode of
operation be used in systems with high speed memory, and a single clock.

For designs using low cost, low speed memory, and wishing to operate the core at a
faster speed it is recommended that standard mode is used.

As the ARM710a macrocell is a fully static design the clock can be stopped indefinitely
in either mode of operation. Care should be taken though to ensure that the memory
system will not dissipate power in the state in which it is stopped.

10.1 Fastbus Extension
Using the fastbus extension, the ARM710a macrocell has a single input clock, MCLK .
It is used to clock the internals of the device, and qualified by nWAIT, controls the
memory interface:

 Figure 10-1: Conceptual device clocking using the fastbus extension

CPU Cache

Bus Interface
MCLK
nWAIT

Bus Clocking

ARM710a macrocell Data Sheet
ARM DDI 0033D

10-3

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

The signal nWAIT is used to insert entire MCLK cycles into the bus cycle timing.
nWAIT may only change when MCLK is LOW, and extends the memory access by
inserting MCLK cycles into the access whilst nWAIT is asserted. ➲11.9 Use of the
nWAIT pin on page 11-13 describes the use of nWAIT in detail.

It is preferable to use nWAIT to extend memory cycles, rather than stretching MCLK
externally to the device because it is possible for the core to be accessing the Cache
while bus activity is occurring. This allows the maximum performance, as the Core can
continue execution in parallel with the memory bus activity. All MCLK cycles are
available to the CPU and Cache, regardless of the state of nWAIT.

In some circumstances, it may be desirable to stretch MCLK phases in order to match
memory timing which is not an integer multiple of MCLK cycles. There are certain
cases when this results in a higher performance than using nWAIT to extend the
access by an integer number of cycles. CPU and Cache operation can only continue
in parallel with buffered writes to the external bus. For all external read accesses the
CPU will be stalled until the bus activity has completed. So if read accesses can be
achieved faster by stretching MCLK rather than using nWAIT, this will result in
improved performance. An example of where this may be useful would be to interface
to a ROM which has a cycle time of 2.5 times the MCLK period.

When operating the device with FASTBUS HIGH, the input FCLK and SnA are not
used. To prevent unwanted power dissipation ensure that they do not float to an
undefined level. New designs should tie these signals LOW for compatibility with
future products.

Operating using the fastbus extension changes the operation of the ALE input. Instead
of directly controlling the address latches, it is used to select between conventional
address timing, (ALE HIGH) and delayed address timing (ALE LOW). This is
described in ➲11.10 Use of the ALE Pin on page 11-14.

If using the device in fastbus mode (FASTBUS HIGH) use the AC parameters as given
in ➲Chapter 14, AC Parameters with Fastbus Extension.

Bus Clocking

ARM710a macrocell Data Sheet
ARM DDI 0033D

10-4

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

10.2 Standard Mode
Using the standard mode of operation (without the fastbus extension), FASTBUS tied
LOW, the ARM710a macrocell has two input clocks FCLK and MCLK .

The bus interface is always controlled by the memory clock, MCLK , qualified by
nWAIT. However the core and cache will be clocked by the fast clock, FCLK .

In standard mode the FCLK frequency must be greater than or equal to the MCLK
frequency at all times. This relationship must be maintained on a cycle by cycle basis.

When running in this mode, memory access cycles can be stretched either by using
nWAIT, or by stretching phases of MCLK . The resulting performance will be
determined by the access time, regardless of which method is used.

 Figure 10-2: Conceptual device clocking in standard mode

When using standard mode, the ARM710a macrocell bus interface has two distinct
modes of operation: synchronous and asynchronous, which are selected by tying SnA
either HIGH or LOW. The two modes differ in the relationship between FCLK and
MCLK :

• in asynchronous mode (SnA LOW) the clocks may be completely
asynchronous and of unrelated frequency

• in synchronous mode (SnA HIGH) MCLK may only make transitions before
the falling edge of FCLK .

In systems where a satisfactory relationship exists between FCLK and MCLK ,
synchronization penalties can be avoided by selecting the synchronous mode of
operation.

If using the device in standard mode (FASTBUS LOW) please use the AC parameters
as given in ➲Chapter 13, AC Parameters in Standard Mode.

CPU Cache

Bus Interface
MCLK
nWAIT

FCLK

Bus Clocking

ARM710a macrocell Data Sheet
ARM DDI 0033D

10-5

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

10.2.1 Asynchronous mode

In this mode FCLK and MCLK may be completely asynchronous. This mode should
be selected, by tying SnA LOW, when the two clocks are of unrelated frequency. There
is a synchronisation penalty whenever the internal core clock switches between the
two input clocks. This penalty is symmetric, and varies between nothing and a whole
period of the clock to which the core is resynchronising so when changing from FCLK
to MCLK , the average resynchronisation penalty is half an MCLK period, and similarly
when changing from MCLK to FCLK , it is half an FCLK period.

10.2.2 Synchronous mode

In this mode, selected by tying SnA HIGH, there is a tightly defined relationship
between FCLK and MCLK . MCLK may only make transitions on the falling edge of
FCLK . Some jitter between the two clocks is permitted, but MCLK must meet the
setup and hold requirements relative to FCLK. See ➲Figure 11-12: Sampling points
at maximum frequency on page 11-18.

 Figure 10-3: Relationship of FCLK and MCLK in synchronous mode

FCLK

MCLK

Tfclkl Tfclkh

Tfmh
Tfms

Bus Clocking

ARM710a macrocell Data Sheet
ARM DDI 0033D

10-6

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

ARM710a macrocell Data Sheet
ARM DDI 0033D

11-1

111

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
sBus Interface

This chapter describes the operation of the bus interface:

11.1 ARM710a macrocell Cycle Speed 11-2

11.2 Bus Interface Signals 11-2

11.3 Cycle Types 11-3

11.4 Addressing Signals 11-8

11.5 Memory Request Signals 11-9

11.6 Data Signal Timing 11-10

11.7 Maximum Sequential Length 11-11

11.8 Read-lock-write 11-12

11.9 Use of the nWAIT pin 11-13

11.10 Use of the ALE Pin 11-14

11.11 Use of the nENDOUT Output 11-17

11.12 Bus interface Sampling Points 11-17

11.13 Big-endian / Little-endian Operation 11-20

11.14 Use of Byte Lane Selects (nBLS[3:0]) 11-21

11.15 Memory Access Sequence Summary 11-23

11.16 ARM710a macrocell Cycle Type Summary 11-28

11

Bus Interface

ARM710a macrocell Data Sheet
ARM DDI 0033D

11-2

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

11.1 ARM710a macrocell Cycle Speed
The bus interface is controlled by MCLK , and all timing parameters are referenced
with respect to this clock. The speed of the memory may be controlled in one of two
ways.

1 The LOW and HIGH phases of the clock may be stretched.

2 nWAIT can be used to insert entire MCLK cycles into the access. When LOW,
this signal maintains the LOW phase of the cycle by gating out MCLK .
See➲11.9 Use of the nWAIT pin on page 11-13.

When using the fastbus extension it is recommended that nWAIT is used to extend
memory accesses rather than stretching MCLK directly. This is discussed in ➲10.1
Fastbus Extension on page 10-2.

11.2 Bus Interface Signals
The signals in the Bus interface can be grouped into 3 categories:

Addressing signals:

A[31:0]

nRW

nBW

LOCK

nBLS[3:0]]

Memory Request signals:

nMREQ

SEQ

Data sampled signals:

DIN[31:0]

DOUT[31:0]

ABORT

Tri-state control signal:

nENDOUT

Each of these groups shares a common timing relationship to the bus interface cycles.
The ARM bus interface addressing signals and memory request signals are pipelined
ahead of the data. nMREQ and SEQ are pipelined by a whole bus cycle, and the
address timed signals by 1/2 a cycle. The timing of the address timed signal can be
altered by the ALE pin.

Note Unless otherwise specified, all diagrams in this chapter show the ARM710a macrocell
operating with the ALE pin held HIGH.

Bus Interface

ARM710a macrocell Data Sheet
ARM DDI 0033D

11-3

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es

11.3 Cycle Types
The ARM710a bus interface can perform 2 types of cycle, idle cycles and memory
cycles. These cycles are differentiated by the pipelined signals nMREQ and SEQ.
Conventionally cycles are considered to start from the falling edge of MCLK , and this
is how they are shown in all diagrams.

The Addressing and Memory Request signals are pipelined ahead of the Data.
Addressing by a phase (1/2 a cycle), and nMREQ and SEQ by a cycle. This advance
information allows the implementation of efficient memory systems. SEQ is the inverse
of nMREQ and is provided for backwards compatibility with earlier memory controllers.

A simplified single word memory access is shown in ➲Figure 11-1: Simplified single
cycle access. The Access starts with the Address being broadcast. This can be used
for decoding, but the access is not committed until nMREQ (Not Memory Request)
goes LOW the following phase. This indicates that the next cycle will be a memory
cycle. In the example, nMREQ returns HIGH after a single cycle, indicating that there
will be a single memory cycle, followed by an idle cycle. The Data is transferred on the
falling edge of MCLK at the end of the memory cycle.

 Figure 11-1: Simplified single cycle access

So a memory access consists of an idle cycle, with a valid address, followed by a
memory cycle with the same address. The initial idle cycle allows the memory
controller more time to decode the address.

The ARM710a can perform sequential bursts of accesses. These consist of an idle
cycle and a memory cycle, as shown previously, followed by further memory cycles to
incrementing word addresses (i.e. a, a+4, a+8 etc.). See➲Figure 11-2: Simplified
sequential access on page 11-4. After the initial idle cycle, the address is pipelined by
1/2 a bus cycle from the data.

Note Unless otherwise stated all of the diagrams in this section depict operation with ALE
held HIGH. The operation of ALE is described in ➲11.10 Use of the ALE Pin on
page 11-14.

MCLK

A[31:0]

nMREQ

DOUT[31:0]

Address

Request

Data

Idle Cycle Memory Cycle Idle Cycle

Bus Interface

ARM710a macrocell Data Sheet
ARM DDI 0033D

11-4

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

nMREQ and SEQ are pipelined by a bus cycle from the data. If nWAIT is being used
to stretch cycles, then nMREQ and SEQ will no longer refer to the next MCLK cycle,
but the next bus cycle. See ➲11.9 Use of the nWAIT pin on page 11-13.

 Figure 11-2: Simplified sequential access

Sequential bursts can only occur on word accesses, and will always be in the same
direction, ie. Read (nRW LOW) or Write (nRW HIGH).

A memory controller should always qualify the use of the address with nMREQ. There
are certain circumstances in which a new address can be broadcast on the address
bus, but nMREQ will not go LOW to signal a memory access. This will only happen
when an internal (MMU generated) abort occurs.

MCLK

A[31:0]

nMREQ

DIN[31:0]

Address Address+4

Request 1 Request 2

Data 1 Data 2

Idle Cycle Memory Cycle Memory Cycle Idle Cycle

Bus Interface

ARM710a macrocell Data Sheet
ARM DDI 0033D

11-5

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es

A single cycle memory access is shown in more detail in ➲Figure 11-3: Single word
read or write. The timing parameters are defined in ➲Chapter 13, AC Parameters in
Standard Mode and ➲Chapter 14, AC Parameters with Fastbus Extension.

 Figure 11-3: Single word read or write

MCLK

A[31:0]

nRW, nBW

nMREQ

DOUT[31:0]

nENDOUT

DIN[31:0]

Taddr Tah

Taddr Tah

Tmsd Tmsh

Tdout
Tdoh

Tnd

Tdis
Tdih

Idle Cycle Memory Cycle Idle Cycle

Bus Interface

ARM710a macrocell Data Sheet
ARM DDI 0033D

11-6

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

After a non-sequential access as shown in ➲Figure 11-3: Single word read or write on
page 11-5 the interface can perform sequential memory cycles. See➲Figure 11-4:
Two word sequential read or write on page 11-6.

 Figure 11-4: Two word sequential read or write

MCLK

A[31:0]

nRW, nBW

nMREQ

DOUT[31:0]

nENDOUT

DIN[31:0]

Taddr Tah

Taddr Tah

Tmsd Tmsh

Tdout
Tdoh

Tnd

Tdis
Tdih

Addr Addr+4

Idle Cycle Memory Cycle Memory Cycle Idle Cycle

Bus Interface

ARM710a macrocell Data Sheet
ARM DDI 0033D

11-7

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es

The minimum interval between bus accesses can occur after a buffered write. In this
case there may only be a single idle cycle between two memory cycles to non-
sequential addresses. This means that the address for the second access is broadcast
on A[31:0] during the HIGH phase of the final memory cycle of the buffered write. See
➲Figure 11-5: Minimum interval between bus accesses on page 11-7

 Figure 11-5: Minimum interval between bus accesses

This is the closest case of back to back cycles on the bus, and the memory controller
should be designed to handle this case. In high speed systems one solution is to use
nWAIT to increase the decode and access time available for the second access. See
➲Figure 11-10: Use of nWAIT to increase memory decode time on page 11-16. The
case shown is that of a write followed by a read. It could also have been a pair of back
to back writes.

A further result is that memory and peripheral strobes should not be direct decodes of
the address bus. This could result in them changing during the last cycle of a write
burst. Either ALE should be used to modify the address timing, see ➲11.10 Use of the
ALE Pin on page 11-14, or the memory controller must ensure that the address used
is held until after the end of the cycle.

Where to sample the signals on the ARM710a macrocell bus interface is discussed in
➲11.12 Bus interface Sampling Points on page 11-17.

MCLK

A[31:0]

nRW

nMREQ

DOUT[31:0]

nENDOUT

DIN[31:0]

Taddr Tah

Taddr Tah

Tdout
Tdoh

Tnd

Tdis
Tdih

Address 1 (Buffered Write) Address 2 (Read)

Idle Cycle Mem. Cycle Idle Cycle Mem. Cycle Idle Cycle

Bus Interface

ARM710a macrocell Data Sheet
ARM DDI 0033D

11-8

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

11.4 Addressing Signals
The timing of the addressing signals can be modified using the ALE pin. If this pin is
HIGH the addressing signals will be timed from the rising edge of the memory clock
MCLK.

This in considered to be the standard timing of the interface, and is shown in the
diagrams unless otherwise specified.

Memory accesses may be read or write, and are differentiated by the signal nRW.
nRW may not change during a sequential access, so if a read from address A is
followed immediately by a write to address (A+4), then the write to address (A+4)
would be performed on the bus as a non-sequential access.

Likewise, any memory access may be of a word or a byte quantity. These are
differentiated by the signal nBW. Again, nBW may not change during sequential
accesses. It is not possible to perform sequential byte accesses.

In order to reduce system power consumption, at the end of an access the addressing
signals will be left with their current values until the next access occurs.

After a buffered write there may be only a single idle cycle between the two memory
cycles. In this case the next non-sequential address will be broadcast in the last cycle
of the previous access. This is the worst case for address decoding, see ➲Figure 11-
5: Minimum interval between bus accesses on page 11-7.

If the FASTBUS pin is LOW, the ALE pin directly controls the latches on the
addressing signals. These latches are closed, and all of the addressing signals held
in their current state when ALE is LOW. When ALE is HIGH the latches are open, and
the addressing signals are free to change.

 When operating the device with the FASTBUS pin HIGH, and the ALE pin LOW, the
addresses are latched until the LOW phase of MCLK . See ➲Figure 11-6: Single word
read or write with delayed addressing on page 11-9. This is discussed further in
➲11.10 Use of the ALE Pin on page 11-14.

Bus Interface

ARM710a macrocell Data Sheet
ARM DDI 0033D

11-9

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es

 Figure 11-6: Single word read or write with delayed addressing

11.5 Memory Request Signals
The memory request signals, nMREQ and SEQ, are pipelined by 1 bus cycle, and
refer to the next bus cycle. A LOW value on nMREQ indicates that next cycle on the
ARM710a macrocell bus interface will be a memory cycle. Conversely, a HIGH value
on nMREQ indicates that the next bus cycle will be an idle cycle.

Care must be taken when de-pipelining these signals if nWAIT is being used, as they
always refer to the following bus cycle, rather than the following MCLK cycle. nWAIT
will stretch the bus cycle by an integer number of MCLK cycles. See ➲11.9 Use of the
nWAIT pin on page 11-13.

The signal SEQ is the inverse of nMREQ, and is provided for backwards compatibility
with earlier memory controllers. SEQ may be left unconnected in new designs.

MCLK

FASTBUS

ALE

A[31:0]

nRW, nBW

nMREQ

DOUT[31:0]

nENDOUT

DIN[31:0]

Taddr2 Tah2

Taddr2 Tah2

Tmsd Tmsh

Tdout
Tdoh

Tnd

Tdis
Tdih

FASTBUS HIGH

ALE LOW

Idle Cycle Memory Cycle Idle Cycle

Bus Interface

ARM710a macrocell Data Sheet
ARM DDI 0033D

11-10

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

11.6 Data Signal Timing

11.6.1 DIN[31:0]

During a read access the data is sampled on the falling edge of MCLK at the end of
the memory cycle. The setup and hold timings are given in ➲Chapter 13, AC
Parameters in Standard Mode and ➲Chapter 14, AC Parameters with Fastbus
Extension.

In a low power system it is important to ensure that DIN[31:0] is not allowed to float to
an undefined level. This will cause power to be dissipated in the inputs of devices
connected to the bus. This is particularly important when a system is put into a low
power sleep mode. We recommend that one set of databus drivers are left enabled
during sleep to hold the bus at a defined level.

11.6.2 DOUT[31:0]

During a write access, the data on DOUT[31:0] is timed off the falling edge of MCLK
at the start of the memory cycle. If nWAIT is being used to stretch this cycle, the data
will be valid from the falling edge of MCLK at the end of the previous cycle, when
nWAIT was HIGH. See ➲11.9 Use of the nWAIT pin on page 11-13.

11.6.3 ABORT

The ABORT signal is sampled at the end of the memory cycle, on both read and write
accesses.The effect of ABORT on the operation of the ARM710a macrocell is
discussed in ➲Chapter 3, Programmer's Model.

An ABORT can be flagged on any memory cycle, however it will be ignored on
buffered writes, which cannot be aborted.

The effect of ABORT during linefetches is slightly different to that during other access.
During a linefetch the ARM710a macrocell will fetch 4 words of data regardless of
which words of data were requested by the ARM core, the rest of the words are
fetched speculatively. If ABORT is asserted on a word which was requested by the
ARM core, the abort will function normally. If the abort is signalled on a word which was
not requested by the ARM core, the access will not be aborted, and program flow will
not be interrupted. Regardless of which word was aborted, the line of data will not be
placed in the cache as it is assumed to contain invalid data.

Bus Interface

ARM710a macrocell Data Sheet
ARM DDI 0033D

11-11

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es

11.7 Maximum Sequential Length
The ARM710a macrocell may perform sequential memory accesses whenever the
cycle is of the same type (i.e. read/write) as the previous cycle, and the addresses are
consecutive. However, sequential accesses are interrupted on a 256 word boundary.
This is to allow the MMU to check the translation protection as the address crosses a
sub-page boundary. If a sequential access is performed over a 256 word boundary, the
access to word 256 is turned into a non-sequential access, and further accesses
continue sequentially as before.

This also simplifies the design of the memory controller. Provided that peripherals and
areas of memory are aligned to 256 word boundaries sequential bursts will always be
local to one peripheral or memory device. This means that all accesses to a device will
always start with a non-sequential access.

A DRAM controller can take advantage of the fact that sequential cycles will always
be within a DRAM page, provided the page size is greater than 256 words.

Bus Interface

ARM710a macrocell Data Sheet
ARM DDI 0033D

11-12

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

11.8 Read-lock-write
The read-lock-write sequence is generated by a SWP instruction. On the bus it
consists of a read access followed by a write access to the same address. This
sequence is differentiated by the LOCK signal. LOCK has addressing signal timing
and is controlled similarly by ALE . If ALE is HIGH, LOCK will go HIGH in the HIGH
phase of MCLK at the start of the read access. It will always go LOW at the end of the
write access.

The LOCK signal indicates that the two accesses should be treated as an atomic unit.
A memory controller should ensure that no other bus activity is allowed to happen in
between the accesses while LOCK is asserted. When the ARM has started a read-
lock-write sequence it cannot be interrupted until it has completed.

 Figure 11-7: Read - locked - write

The read cycle will always be performed as a single, non-sequential, external read
cycle, regardless of the contents of the cache. The write will be forced to be
unbuffered, so that it can be aborted if necessary. The cache will be updated on the
write.

MCLK

A[31:0]

nRW

LOCK

nMREQ

DOUT[31:0]

nENDOUT

DIN[31:0]

Taddr Tah

Taddr Tah

Taddr Tah

Tmsd Tmsh

Tdout
Tdoh

Tnd

Tdis
Tdih

Idle Cycle Mem. Cycle Idle Cycle Idle Cycle Idle Cycle Mem. Cycle Idle Cycle

Read Write

Bus Interface

ARM710a macrocell Data Sheet
ARM DDI 0033D

11-13

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es

11.9 Use of the nWAIT pin
The nWAIT pin can be used to extend memory accesses in whole cycle increments.
nWAIT may only change during the LOW phase of MCLK and when low gates out
MCLK HIGH phases. nWAIT will not prevent changes in nMREQ, SEQ and a write on
D[31:0] during the phase in which it was taken LOW. Changes in these signals will
then be prevented until the MCLK HIGH phase after nWAIT was taken HIGH. All other
outputs cannot change from the time nWAIT goes LOW until the next MCLK HIGH
phase after nWAIT returns HIGH.

In standard mode, if ALE is being used to latch an address when nWAIT is taken LOW,
the address and control signals will change when ALE returns HIGH, regardless of the
state of nWAIT. See ➲Figure 11-8: Use of the nWAIT pin to stop ARM710a macrocell
for 1 MCLK cycle on page 11-13.

In fastbus mode the address timing is dependant on nWAIT as follows:

• If ALE is LOW, nWAIT will not prevent changes on A[31:0] during the phase
in which it was taken LOW. A[31:0] will be prevented from changing until the
MCLK LOW phase after nWAIT becomes HIGH again.

• If ALE is HIGH, A[31:0] will be prevented from changing from the time nWAIT
goes LOW until the next MCLK HIGH phase after nWAIT returns HIGH.

 Figure 11-8: Use of the nWAIT pin to stop ARM710a macrocell for 1 MCLK cycle

MCLK

nWAIT

A[31:0]

nRW, nBW

nMREQ

DOUT[31:0]

nENDOUT

DIN[31:0]

Taddr Tah

Taddr Tah

Tmsd Tmsh

Tdout
Tdoh

Tnd

Tdis
Tdih

Idle Cycle Memory Cycle Idle Cycle

Bus Interface

ARM710a macrocell Data Sheet
ARM DDI 0033D

11-14

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

The heavy bars indicate the cycle for which signals will be stable as a result of
asserting nWAIT.

The signals nMREQ and SEQ are pipelined by one bus cycle. This pipelining should
be taken into account when these signals are being decoded. The value of nMREQ
indicates whether the next bus cycle is a data cycle or an Idle Cycle. As bus cycles are
stretched by nWAIT, the boundary between bus cycles is determined by the falling
edge of MCLK when nWAIT is HIGH. A useful rule of thumb is to sample the value of
nMREQ only when nWAIT is HIGH.

When nWAIT is used to stretch a memory cycle, nMREQ will return HIGH during the
first phase of the memory cycle if a single word access is occurring. In this case it is
important that the memory controller does not interpret the HIGH value on nMREQ as
indicating that an idle cycle is signalled when in fact it is a stretched memory cycle.
See ➲Figure 11-8: Use of the nWAIT pin to stop ARM710a macrocell for 1 MCLK cycle
on page 11-13

11.10 Use of the ALE Pin
The ALE pin operates differently with and without fastbus extension. In both cases it
is used to modify the timing of the addressing signals.

Without fastbus extension (FASTBUS LOW), ALE directly controls the address
latches If ALE is held HIGH the address will flow out during the HIGH phase of MCLK .
By taking ALE LOW, the current address is latched, and further transitions on A[31:0],
nBLS[3:0],nRW,nBW and LOCK are prevented. The falling edge of ALE can be up
to Tald after the rising edge of MCLK to guarantee that the Address and associated
signals will not change.

With fastbus extension (FASTBUS HIGH), ALE is used to modify the address timing.

• If ALE is HIGH the address timing seen on A[31:0], nBLS[3:0],nRW,nBW
and LOCK will be the standard pipelined address timing, with the addresses
changing during the HIGH phase of MCLK .

• If ALE is LOW the address timing is modified, and the address changes during
the following LOW phase of MCLK . See ➲Figure 14-2: ARM710a macrocell
bus timing, ALE LOW on page 14-4.

It is possible to change ALE in the LOW phase of MCLK to vary the address timing
during a cycle. For example, it may be desirable to have the addresses held when
accessing a ROM, but to normally have early addresses for address decoding. In this
case ALE would be taken LOW in the first cycle of the ROM access to switch to late
address timing. This would hold the addresses as required by the ROM. In the LOW
phase, after the access completes, ALE could be taken HIGH to switch back to normal
address timing.

➲Figure 11-9: Use of ALE in fastbus mode shows the use of ALE to alter the address
timing within a burst access.

Bus Interface

ARM710a macrocell Data Sheet
ARM DDI 0033D

11-15

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es

 Figure 11-9: Use of ALE in fastbus mode

Note Back to back buffered writes can occur with only a single idle cycle between the two
write cycles. This means that the second address will be delayed if this technique is
used. A wait state may be required to allow sufficient time for memory decoding.
➲Figure 11-10: Use of nWAIT to increase memory decode time shows a pair of single
cycle buffered writes, with nWAIT being used to add an extra cycle after the first
access.

MCLK

ALE

A[31:0]

nRW, nBW

nMREQ

DOUT[31:0]

nENDOUT

Taddr2Taddr1 Tah1

Taddr Tah

Tmsd Tmsh

Tdout
Tdoh

Tnd
Tnd

A1 A1+4 A2

Idle Cycle Mem. Cycle Mem. Cycle Idle Cycle Idle Cycle Mem. Cycle

Early Address timing Delayed Address timing Early Delayed Address timing

Bus Interface

ARM710a macrocell Data Sheet
ARM DDI 0033D

11-16

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

 Figure 11-10: Use of nWAIT to increase memory decode time

MCLK

nWAIT

ALE

A[31:0]

nMREQ

DOUT[31:0]

nENDOUT

Taddr2Taddr1 Tah2

Tmsd Tmsh

Tdout
Tdoh

Tnd
Tnd

A1 A1+4 A2

Idle Cycle Mem. Cycle Mem. Cycle Idle Cycle Mem. Cycle

Early Address timing Delayed Address timing

Bus Interface

ARM710a macrocell Data Sheet
ARM DDI 0033D

11-17

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es

11.11 Use of the nENDOUT Output
The signal nENDOUT can be used directly to drive a set -f tri-state drivers connected
to the DOUT[31:0] bus. nENDOUT will only go LOW during valid write cycles, and will
always be forced HIGH by DBE LOW.

The use of external bus drivers allows the drive strangth to be matched to the
capacitive load of the system bus, which will allow the selection of the optimum speed/
power consumption trade-off for each system.

 Figure 11-11: Connection of external tri-state drivers

11.12 Bus interface Sampling Points
The following two sections describe the recommended sampling points for bus
interface signals, the first section when operating at or near the maximum frequency,
and the second section when operating at a lower frequency. Recommended sampling
points are denoted by the heavy bars (transfer bars) on signals in the figures, and the
earliest recommended sampling point is also given in the tables.

The signals nMREQ and SEQ are pipelined with respect to the bus interface. This
pipelining should be taken into account when these signals are being decoded. The
value of nMREQ indicates whether the next bus cycle is a data cycle or an idle cycle.
As bus cycles are stretched by nWAIT the boundary between bus cycles is
determined by the falling edge of MCLK when nWAIT is HIGH. A useful technique is
to sample the value of nMREQ only when nWAIT is HIGH. This is shown by the
transfer bars in ➲Figure 11-12: Sampling points at maximum frequency and ➲Figure
11-13: Sampling points at reduced frequency.

ARM710a
macrocell

DOUT[31:0]

nENDOUT

DIN[31:]

Bidirectional
System
Bus

Bus Interface

ARM710a macrocell Data Sheet
ARM DDI 0033D

11-18

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

The MCLK frequencies at which these differing methodologies should be used will
depend on the device parameters. Please consult the AC timings to determine which
sampling points should be used. These can be obtained from your Semiconductor
supplier.

11.12.1Fast Operation

If the ARM710a macrocell is being operated at, or near, its maximum operating
frequency the output delays on the bus interface mean that the signals must be
sampled as late as is possible.

 Figure 11-12: Sampling points at maximum frequency

Signal Earliest Recommended Sample Point

A[31:0] Set-up to MCLK RISING

nBLS[3:0],nRW, nBW, LOCK Set-up to MCLK RISING

nMREQ, SEQ Set-up to MCLK FALLING

DOUT[31:0] Set-up to MCLK FALLING

 Table 11-1: Sampling points at maximum frequency

MCLK

nWAIT

A[31:0]

nRW, nBW

nMREQ

DOUT[31:0]

nENDOUT

DIN[31:0]

Taddr Taddr Tah

Taddr Tah

Tmsd Tmsh Tmsd

Tdout
Tdoh

Tdout

Tnd

Tdis
Tdih
Tdis

Tdih

Idle Cycle Memory Cycle Memory Cycle Idle Cycle

Bus Interface

ARM710a macrocell Data Sheet
ARM DDI 0033D

11-19

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es

Sampling the signals at these points will result in the most robust system design, which
will scale to faster clock speeds. However, it does reduce the time available to the
memory controller.

11.12.2Reduced frequency operation

When operating the bus interface at a reduced frequency it is possible to sample the
bus interface signals at earlier points in the cycle. This allows the memory system to
make more efficient use of the cycles.

It is strongly recommended that nWAIT is derived from nMREQ as shown in the
diagram. Trying to generate nWAIT in the previous cycle is liable to result in a critical
path which will limit the maximum frequency of operation of the design unnecessarily.

.

 Figure 11-13: Sampling points at reduced frequency

Signal Earliest Recommended Sample Point

A[31:0] MCLK FALLING

nBLS[3:0],nRW, nBW, LOCK MCLK FALLING

nMREQ, SEQ MCLK RISING

DOUT[31:0] MCLK RISING

 Table 11-2: Sampling points at Reduced frequency

MCLK

nWAIT

A[31:0]

nRW, nBW

nMREQ

DOUT[31:0]

nENDOUT

DIN[31:0]

Taddr Taddr Tah

Taddr Tah

Tmsd Tmsh Tmsd

Tdout
Tdoh

Tdout

Tnd

Tdis
Tdih
Tdis

Tdih

Idle Cycle Memory Cycle Memory Cycle Idle Cycle

Bus Interface

ARM710a macrocell Data Sheet
ARM DDI 0033D

11-20

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

11.13 Big-endian / Little-endian Operation
The ARM710a macrocell treats words in memory as being stored in big-endian or little-
endian format depending on the value of the bigend bit in the control register.

In the little-endian scheme the lowest numbered byte in a word is considered to be the
least significant byte of the word and the highest numbered byte is the most significant.
Byte 0 of the memory system should be connected to data lines 7 through 0 (D[7:0])
in this scheme.

 Figure 11-14: Little-endian addresses of bytes within word

In the Big Endian scheme the most significant byte of a word is stored at the lowest
numbered byte and the least significant byte is stored at the highest numbered byte.
Byte 0 of the memory system should therefore be connected to data lines 31 through
24 (D[31:24]). Load and store are the only instructions affected by the endianness:
see ➲4.7 Single Data Transfer (LDR, STR) on page 4-21 for more details.

 Figure 11-15: Big-endian addresses of bytes within words

Little-endian scheme

Databus Bits

Higher Address 31 24 23 16 15 8 7 0 Word Address

11 10 9 8 8

7 6 5 4 4

3 2 1 0 0

Lower Address

 • Least significant byte is at lowest address

Big-endian scheme

Databus Bits

Higher Address 31 24 23 16 15 8 7 0 Word Address

8 9 10 11 8

4 5 6 7 4

0 1 2 3 0

Lower Address

 • Most significant byte is at lowest address

Bus Interface

ARM710a macrocell Data Sheet
ARM DDI 0033D

11-21

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es

11.13.1Word operations

All word operations expect the data to be presented on data bus inputs 31 through 0.
The external memory system should ignore the bottom two bits of the address if a word
operation is indicated.

11.13.2Byte operations

A byte store (STRB) repeats the bottom 8 bits of the source register four times across
the DOUT[31:0] outputs. The external memory system should activate the appropriate
byte subsystem to store the data.

Little-endian operation

A byte load (LDRB) expects the data on DIN[31:0] inputs 7 through 0 if the supplied
address is on a word boundary, on data bus inputs 15 through 8 if it is a word address
plus one byte, and so on. The selected byte is placed in the bottom 8 bits of the
destination register, and the remaining bits of the register are filled with zeros. See
➲Figure 11-14: Little-endian addresses of bytes within word on page 11-20.

Big-endian operation

A byte load (LDRB) expects the data on DIN[31:0] inputs 31 through 24 if the supplied
address is on a word boundary, on data bus inputs 23 through 16 if it is a word address
plus one byte, and so on. The selected byte is placed in the bottom 8 bits of the
destination register and the remaining bits of the register are filled with zeros. See
➲Figure 11-15: Big-endian addresses of bytes within words on page 11-20.

11.14 Use of Byte Lane Selects (nBLS[3:0])
The Byte Lane Selects are active low signals which indicate which bytes of the
memory system are being accessed during a memory cycle. They are generated by a
combinatorial decode of the bottom 2 address bits, and have the same timing as the
address:

nBW A[1:0] nBLS[3:0]

1 XX 0000

0 00 1110

0 01 1101

0 10 1011

0 11 0111

 Table 11-3: Selected bytes within the memory

Bus Interface

ARM710a macrocell Data Sheet
ARM DDI 0033D

11-22

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

This decoding is independent of whether big-endian or little-endian operation is
selected. Currently only 5 combinations of these signals are used. Further
combinations may be used in future ARM processors. We recommend that you use
the nBLS[] signals in new designs. The Byte Lane Selects relate to the Databus as
follows:

The memory system should decode the Byte Lane Selects as appropriate for the area
of memory which is being accessed.

Note that during byte reads it should be ensured that all of the bytes of the databus
are driven to a defined level. Floating input levels on the other bytes of the databus
may result in increased power consumption.

Signal Byte

nBLS[0] DIN[7:0] /DOUT[7:0]

nBLS[1] DIN[15:8] /DOUT[15:8]

nBLS[2] DIN[23:16] /DOUT[23:16]

nBLS[3] DIN[31:24] /DOUT[31:24]

 Table 11-4: Little-endian operation

Signal Byte

nBLS[0] DIN[31:24] /DOUT[31:24]

nBLS[1] DIN[23:16] /DOUT[23:16]

nBLS[2] DIN[15:8] /DOUT[15:8]

nBLS[3] DIN[7:0] /DOUT[7:0]

 Table 11-5: Big-endian operation

Bus Interface

ARM710a macrocell Data Sheet
ARM DDI 0033D

11-23

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es

11.15 Memory Access Sequence Summary
ARM710a macrocell performs many different bus access sequences, and all are
constructed out of combinations of non-sequential and sequential accesses. There
may be any number of idle cycles between two other memory accesses. If a memory
access is followed by an idle period on the bus (as opposed to another non-sequential
access), then the address, and the signal nRW and nBW will remain at their previous
value in order to avoid unnecessary bus transitions.

The accesses performed by an ARM710a macrocell are:

Unbuffered Write Level 1 translation fetch

Uncached Read Level 2 translation fetch

Buffered Write Read-Lock-Write sequence

Linefetch

See also ➲11.16 ARM710a macrocell Cycle Type Summary on page 11-28.

11.15.1Unbuffered writes / uncacheable reads

These are the most basic access types. Apart from the difference between read and
write, they are the same. Each may consist of a single (LDR/STR) or multiple (LDM/
STM) access. A multiple access consists of a non-sequential access followed by a
sequential access. These cycles always reflect the type (ie. read/write, byte/word) of
the instruction requesting the cycle.

 Figure 11-16: Two single word non-sequential unbuffered accesses

MCLK

A[31:0]

nRW, nBW

nMREQ

DOUT[31:0]

nENDOUT

DIN[31:0]

Taddr Tah

Taddr Tah

Tdout
Tdoh

Tnd
Tnd

Tdis
Tdih

Idle Cycle Mem. Cycle Idle Cycle Idle Cycle Mem. Cycle Idle Cycle

Bus Interface

ARM710a macrocell Data Sheet
ARM DDI 0033D

11-24

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

11.15.2Buffered write

The external bus cycle of a buffered write is identical to and indistinguishable from the
bus cycle of an unbuffered write. However there may only be a single idle cycle
between a buffered write, and the next access on the bus. These cycles always reflect
the type (byte/word) of the instruction requesting the cycle. Note that if several write
accesses are stored concurrently within the write buffer, then each burst will start with
a non-sequential access, followed by subsequent sequential cycles.

 Figure 11-17: Two single word non-sequential buffered writes

Note that in the case of a pair of buffered writes, there may only be a single idle cycle
between the two accesses. Refer to ➲Figure 11-10: Use of nWAIT to increase memory
decode time on page 11-16.

MCLK

A[31:0]

nRW, nBW

nMREQ

DOUT[31:0]

nENDOUT

Taddr Tah

Taddr Tah

Tdout
Tdoh

Tnd
Tnd

Address 1 Address 2

Idle Cycle Mem. Cycle Idle Cycle Mem. Cycle Idle Cycle

Bus Interface

ARM710a macrocell Data Sheet
ARM DDI 0033D

11-25

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es

11.15.3Linefetch

This access appears on the bus as a non-sequential access followed by three
sequential accesses. Note that linefetch accesses always start on a 4-word boundary,
and are always word accesses. Even if the instruction which caused the linefetch was
a byte load instruction (eg. LDRB), the linefetch access will be a series of word
accesses on the bus. ➲Figure 11-18: Linefetch shows a linefetch.

 Figure 11-18: Linefetch

A linefetch may be safely aborted on any word in the transfer. If an abort occurs on any
word during the linefetch, the line will not be placed in the Cache, as it is assumed to
be invalid. If the abort occurs on a word that has been requested by the ARM core, the
core will be aborted, otherwise the cache line will be purged but program flow will not
be interrupted.

MCLK

A[31:0]

nRW, nBW

nMREQ

DIN[31:0]

Taddr Tah

Taddr Tah

Tmsd Tmsh

Tdis
Tdih

Addr Addr+4 Addr+8 Addr+12

Idle Cycle Mem. Cycle Mem. Cycle Mem. Cycle Mem. Cycle Idle Cycle Idle Cycle

Bus Interface

ARM710a macrocell Data Sheet
ARM DDI 0033D

11-26

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

11.15.4Translation fetches

These accesses are required to obtain the translation data for an access. There are
two types, level 1 and level 2. A level 1 access is required for a section-mapped
memory location, and a level 2 access is required for a page mapped memory
location. A Level 2 access is always preceded by a level 1 access. Note that these
translation fetches are often immediately followed by a data access. In fact the
translation fetch held up the data access because the translation was not contained in
the Translation Lookaside Buffer (TLB). Translation fetches are always read word
accesses. So if a byte or write (or both) access was not possible because the address
was not contained in the TLB, the access would be preceded by the translation
fetch(es) which would always be word read accesses.

 Figure 11-19: Translation table-walking sequence for page

The translation fetch diagrams show a page table walk caused by a write access that
missed the TLB. The diagrams show the relationship of the page table walk and the
access. The access could have equally well been a read.

MCLK

A[31:0]

nRW

nMREQ

DOUT[31:0]

nENDOUT

DIN[31:0]

Taddr Tah

Taddr Tah

Tnd

Tdis
Tdih

Level 1 Address Level 2 Address Translated Address

Idle Cycle Mem. Cycle Idle Cycle Idle Cycle Mem. Cycle Idle Cycle Idle Cycle Mem. Cycle Idle Cycle

Level 1 descriptor Level 2 descriptor Write Data

Bus Interface

ARM710a macrocell Data Sheet
ARM DDI 0033D

11-27

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es

 Figure 11-20: Translation table-walking sequence for section

MCLK

A[31:0]

nRW

nMREQ

DOUT[31:0]

nENDOUT

DIN[31:0]

Taddr Tah

Taddr Tah

Tnd

Tdis
Tdih

Level 1 Address Translated Address

Idle Cycle Mem. Cycle Idle Cycle Idle Cycle Mem. Cycle Idle Cycle

Level 1 descriptor Write Data

Bus Interface

ARM710a macrocell Data Sheet
ARM DDI 0033D

11-28

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es

11.16 ARM710a macrocell Cycle Type Summary

Operation nRW A[31:0] nMREQ D[31:0]

Idle old old i

Linefetch read a idle

read a memory

read a+4 memory data

read a+8 memory data

read a+12 memory data

read a+12 idle data

 Start r/w a idle

r/w a memory

data

Uncacheable Read /

Unbuffered Write Repeat r/w a+n memory

data

End r/w old idle

Start write a idle

write a memory

Buffered Write data

Repeat write a+n memory

data

Read phase read aL idle

read aL memory

read aL idle data

read aL idle

Write phase write aL idle

write aL memory

Read-Lock-Write write aL idle data

Write phase read aL idle

after aborted read read aL idle

read aL idle

Start read l1a idle

Section Translation Fetch read l1a memory

read l1a idle data

 Table 11-6: Cycle type summary

Bus Interface

ARM710a macrocell Data Sheet
ARM DDI 0033D

11-29

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es

Key to cycle type summary:

read Read (nRW LOW)

r/w applies equally to Read and Write

write Write (nRW HIGH)

old signal remains at previous value

a first Address

a+n next sequential address

aL Read-Lock-Write Address

l1a Level 1 translation Table address

l2a Level 2 translation Table address

idle Idle cycle (nMREQ HIGH)

memory Memory cycle (nMREQ LOW)

data valid data on data bus

Each line in ➲Table 11-6: Cycle type summary on page 11-28 shows the state of the
bus interface during a single MCLK cycle. It illustrates the pipelining of nMREQ and
the address. Each operation type section shows the sequence of cycles which make
up that type of access, with each line down the diagram showing successive clock
cycles.

The uncached read / unbuffered write is shown in three sections. The start and end
are always present, with the repeat section repeated as many times as required when
a multiple access is being performed.

Buffered Writes are also of variable length and consist of the start section plus as
many consecutive repeat sections as are necessary.

A swap instruction consists of the read phase, followed by one of the two possible write
phases.

Activity on the memory interface is the succession of these access sequences.

Start read l1a idle

read l1a memory

Page Translation Fetch read l1a idle data

read l2a idle

read l2a memory

read l2a idle data

Operation nRW A[31:0] nMREQ D[31:0]

 Table 11-6: Cycle type summary

Bus Interface

ARM710a macrocell Data Sheet
ARM DDI 0033D

11-30

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

ARM710a macrocell Data Sheet
ARM DDI 0033D

12-1

111

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
sDC Parameters

This chapter describes the DC Parameters.The information in this chapter is provided
as a guide only. Refer to your semiconductor vendor for definitive DC parameters.

12.1 Absolute Maximum Ratings 12-2

12.2 DC Operating Conditions 12-2

12.3 DC Characteristics 12-3

12

DC Parameters

ARM710a macrocell Data Sheet
ARM DDI 0033D

12-2

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

12.1 Absolute Maximum Ratings

Note

1 These are stress ratings only. Exceeding the absolute maximum ratings may
permanently damage the device. Operating the device at absolute maximum
ratings for extended periods may affect device reliability.

12.2 DC Operating Conditions

Notes

1 Voltages measured with respect to VSS.

2 OCZ - Output, CMOS levels, tri-stateable.

3 This parameter is process dependent.

4 Operating the device with Vih less than VDD or Vil greater than VSS will result
in increased power consumption.

Symbol Parameter Min Max Units Note

Vip Voltage applied to any signal VSS-0.3 VDD+0.3 V 1

 Ts Storage temperature -40 125 deg C 1

 Table 12-1: ARM710a macrocell DC maximum ratings

Symbol Parameter Min Typ Max Units Notes

VDD Supply voltage V 3

Vihc IC input HIGH voltage 0.8xVDD VDD V 1,4

Vilc IC input LOW voltage 0.0 0.2xVDD V 1,4

Vohc OCZ output HIGH voltage 0.9xVDD VDD V 1,2

Volc OCZ output LOW voltage 0.0 0.1xVDD V 1,2

Ta Ambient operating temperature 0 70 °C

 Table 12-2: ARM710a macrocell DC operating conditions

DC Parameters

ARM710a macrocell Data Sheet
ARM DDI 0033D

12-3

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

12.3 DC Characteristics

Notes

1 These parameters are process dependent.

Symbol Parameter Nom Units Note

IDD Static Supply current µA 1

Isc Output short circuit current mA 1

Ilu DC latch-up current mA 1

Iin IC input leakage current µA 1

Ioh Output HIGH current (Vout = VDD-0.4V) mA 1

Iol Output LOW current (Vout = VSS+0.4V) mA 1

Cin Input capacitance pF 1

 Table 12-3: ARM710a macrocell DC characteristics

DC Parameters

ARM710a macrocell Data Sheet
ARM DDI 0033D

12-4

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

ARM710a macrocell Data Sheet
ARM DDI 0033D

13-1

111

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

AC Parameters
in Standard Mode

This chapter describes the AC Parameters in Standard Mode.

13.1 Test Conditions 13-2

13.2 Relationship between FCLK & MCLK in Synchronous Mode 13-2

13.3 Main Bus Signals 13-4

13

AC Parameters in Standard Mode

ARM710a macrocell Data Sheet
ARM DDI 0033D

13-2

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

13.1 Test Conditions
The AC timing diagrams presented in this section assume that the outputs of
ARM710a macrocell have been loaded with the capacitive loads shown in the `Test
Load' column of the table below; these loads have been chosen as typical of the
system in which ARM710a macrocell might be employed. The output pads of
ARM710a macrocell are CMOS drivers which exhibit a propagation delay that
increases linearly with the increase in load capacitance. An `Output derating' figure is
given for each output pad, showing the approximate rate of increase of output time
with increasing load capacitance.

Note

1 These parameters are process dependent.

13.2 Relationship between FCLK & MCLK in Synchronous Mode

 Figure 13-1: Clock timing relationship

Output Signal Test Load (pF) Output Derating (ns/pF) Note

A[31:0] 2 1

DOUT[31:0] 2 1

nR/W 2 1

nB/W 2 1

LOCK 2 1

nMREQ 2 1

SEQ 2 1

 Table 13-1: ARM710a macrocell AC test conditions

FCLK

MCLK

Tfclkl Tfclkh

Tfmh
Tfms

AC Parameters in Standard Mode

ARM710a macrocell Data Sheet
ARM DDI 0033D

13-3

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
sNB: FCLK frequency must be strictly greater than or equal to MCLK at all times.

Notes

1 FCLK timings measured at 50% of Vdd. This applies to both synchronous and
asynchronous operation.

2 Applicable in Synchronous mode only

13.2.1 Tald measurement

Tald is the maximum delay allowed in the ALE input transition to guarantee that neither
address nor byte lane strobes will change.

 Figure 13-2: Tald measurement

Symbol Parameter 5V Min 5V Max 3.3V Min 3.3V Max Unit Note

Tfckl FCLK LOW time ns 1

Tfckh FCLK HIGH time ns 1

Tfckc FCLK cycle time ns 1

Tfmh FCLK - MCLK hold time ns 2

Tmfs MCLK - FCLK setup ns 2

 Table 13-2: ARM710a macrocell FCLK timing

MCLK

ALE

A[31:0]

Tald

AC Parameters in Standard Mode

ARM710a macrocell Data Sheet
ARM DDI 0033D

13-4

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

13.3 Main Bus Signals

 Figure 13-3: ARM710a macrocell main bus timing

 Figure 13-4: ARM710a macrocell bus enable timing

MCLK

A[31:0]
nBW, nRW
LOCK

nBLS[3:0]

nMREQ,
SEQ

DOUT[31:0]

nENDOUT

DIN[31:0] (In)

ABORT

Tclkh Tclkl Tclkh Tclkl Tclkh

Tah
Taddr

Tah
Taddr

Tblh
Tbls

Tblh
Tbls

Tmsh
Tmsd

Tmsh
Tmsd

Tdout
Tdoh

Tnd
Tndh

Tdis
Tdih

Tabts2
Tabts1 Tabth

MCLK

ALE

ABE

A[31:0]
nBW, nRW
LOCK

nBLS[3:0]

DBE

nENDOUT

Tale
Tble

Tabe TabzTabe Tabz

Tdbe Tdbe

AC Parameters in Standard Mode

ARM710a macrocell Data Sheet
ARM DDI 0033D

13-5

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

 Figure 13-5: ARM710a macrocell nWAIT timing

The following timings are supplied as a guide only. Please refer to your semiconductor
vendor for definitive parameters.

Symbol Parameter 5V Min 5V Max 3.3V Min 3.3V Max Unit Note

Tmckl MCLK LOW time ns 1

Tmckh MCLK HIGH time ns

Tmckc MCLK cycle time 1

Tws nWAIT setup to MCLK ns

Twh nWAIT hold from MCLK ns

Tale address latch enable ns 3

Tble Byte lane latch enable ns

Tald address latch disable ns

Tabe address bus enable ns 2

Tabz address bus disable ns

Taddr MCLK to address delay ns 2

Tah address hold time ns 2

 Table 13-3: ARM710a macrocell bus timing

MCLK

nWAIT

A[31:0]
nBW, nRW
LOCK

nBLS[3:0]

nMREQ,
SEQ

DOUT[31:0]

nENDOUT

DIN[31:0]

ABORT

Tclkh Tclkl Tclkh Tclkl Tclkh Tclkl Tclkh

Tws
Twh

Tah
Taddr

Tah
Taddr

Tblh
Tbls

Tblh
Tbls

Tmsh
Tmsd

Tmsh
Tmsd

Tdout
Tdoh

Tnd
Tndh

Tdis
Tdih

Tabts2
Tabts1 Tabth

AC Parameters in Standard Mode

ARM710a macrocell Data Sheet
ARM DDI 0033D

13-6

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

Please refer to your semiconductor vendor for definitive AC Parameters.

 Notes

1 MCLK timings measured between clock edges at 50% of Vdd.

2 The timings of these buses are measured to 50% of Vdd.

3 See ➲13.2.1 Tald measurement on page 13-3.

4 Tabts1 is required by this device. To ensure compatibility with future ARM
processors, we recommend that designs should meet Tabts2. Tabts2 is not
tested on this device, and is given as a recommendation only.

Tbls MCLK to byte lane delay ns 2

Tblh byte lane hold time ns 2

Tnd nENDOUT delay ns

Tndh nENDOUT hold time ns

Tdbe DBE to nENDOUT delay ns

Tdout data out delay ns 2

Tdoh data out hold ns 2

Tdis data in setup ns

Tdih data in hold ns

Tabts1 ABORT setup time ns 4

Tabts2 ABORT setup time ns 4

Tabth ABORT hold time ns

Tmsd nMREQ & SEQ delay ns

Tmsh nMREQ & SEQ hold ns

Symbol Parameter 5V Min 5V Max 3.3V Min 3.3V Max Unit Note

 Table 13-3: ARM710a macrocell bus timing (Continued)

ARM710a macrocell Data Sheet
ARM DDI 0033D

14-1

111

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

AC Parameters
with Fastbus Extension

This chapter describes the AC Parameters with the Fastbus extension. The information
in this chapter is provided as a guide only. Refer to your semiconductor vendor for
definitive AC Parameters.

14.1 Test Conditions 14-2

14.2 Main Bus Signals 14-3

14

AC Parameters with Fastbus Extension

ARM710a macrocell Data Sheet
ARM DDI 0033D

14-2

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

14.1 Test Conditions
The AC timing diagrams presented in this section assume that the outputs of
ARM710a macrocell have been loaded with the capacitive loads shown in the `Test
Load' column of the table below; these loads have been chosen as typical of the
system in which ARM710a macrocell might be employed. The output pads of
ARM710a macrocell are CMOS drivers which exhibit a propagation delay that
increases linearly with the increase in load capacitance. An `Output derating' figure is
given for each output pad, showing the approximate rate of increase of output time
with increasing load capacitance.

Note

1 These parameters are process dependent.

Output Signal Test Load (pF) Output Derating (ns/pF) Note

A[31:0] 2 1

DOUT[31:0] 2 1

nR/W 2 1

nB/W 2 1

LOCK 2 1

nMREQ 2 1

SEQ 2 1

 Table 14-1: ARM710a macrocell AC test conditions

AC Parameters with Fastbus Extension

ARM710a macrocell Data Sheet
ARM DDI 0033D

14-3

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

14.2 Main Bus Signals

 Figure 14-1: ARM710a macrocell bus timing, ALE HIGH

MCLK

A[31:0]
nBW, nRW
LOCK

nBLS[3:0]

nMREQ,
SEQ

DOUT[31:0]

nENDOUT

DIN[31:0]

ABORT

Tclkh Tclkl Tclkh Tclkl Tclkh

Tah1
Taddr1

Tah1
Taddr1

Tblh1
Tbls1

Tblh1
Tbls1

Tmsh
Tmsd

Tmsh
Tmsd

Tdout
Tdoh

Tnd
Tndh

Tdis
Tdih

Tabts2
Tabts1 Tabth

AC Parameters with Fastbus Extension

ARM710a macrocell Data Sheet
ARM DDI 0033D

14-4

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

 Figure 14-2: ARM710a macrocell bus timing, ALE LOW

 Figure 14-3: ARM710a macrocell bus enable timing

MCLK

A[31:0]
nBW, nRW
LOCK

nBLS[3:0]

nMREQ,
SEQ

DOUT[31:0]

nENDOUT

DIN[31:0]

ABORT

Tclkh Tclkl Tclkh Tclkl Tclkh

Tah2
Taddr2

Tah2
Taddr2

Tblh2
Tbls2

Tblh2
Tbls2

Tmsh
Tmsd

Tmsh
Tmsd

Tdout
Tdoh

Tnd
Tndh

Tdis
Tdih

Tabts2
Tabts1 Tabth

MCLK

ABE

A[31:0]
nBLS[3:0]
nBW, nRW
LOCK

DBE

nENDOUT

Tabe Tabz

Tdbe Tdbe

AC Parameters with Fastbus Extension

ARM710a macrocell Data Sheet
ARM DDI 0033D

14-5

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

 Figure 14-4: ARM710a macrocell nWAIT timing

The following timings are supplied as a guide only. Please refer to your semiconductor
vendor for definitive parameters.

Symbol Parameter 5V
Min

5V
Max

3.3V
Min

3.3V
Max

Unit Note

Tmckl MCLK LOW time ns 1

Tmckh MCLK HIGH time ns

Tmckc MCLK cycle time ns 1

Tws nWAIT setup to MCLK ns

Twh nWAIT hold from MCLK ns

Tabe address bus enable ns 2

Tabz address bus disable ns

Taddr1 MCLK to addr. delay ALE High ns 2,3

Taddr2 MCLK to addr. delay ALE Low ns 2,4

Tah1 address hold time ALE High ns 2,3

Tah2 address hold time ALE Low ns 2,4

 Table 14-2: ARM710a macrocell bus timing

MCLK

nWAIT

A[31:0]
nBW, nRW
LOCK

nBLS[3:0]

nMREQ,
SEQ

DOUT[31:0]

nENDOUT

DIN[31:0

ABORT

Tclkh Tclkl Tclkh Tclkl Tclkh Tclkl Tclkh

Tws
Twh

Tah1
Taddr1

Tah1
Taddr1

Tblh1
Tbls1

Tblh1
Tbls1

Tmsh
Tmsd

Tmsh
Tmsd

Tdout
Tdoh

Tnd
Tndh

Tdis
Tdih

Tabts2
Tabts1 Tabth

AC Parameters with Fastbus Extension

ARM710a macrocell Data Sheet
ARM DDI 0033D

14-6

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

Notes

1 MCLK timings measured between clock edges at 50% of Vdd.

2 The timings of these buses are measured to 50% Vdd.

3 Address timing with ALE HIGH.

4 Address timing with ALE LOW.

5 Tabts1 is required by this device. To ensure compatibility with future ARM
processors, we recommend that designs should meet Tabts2. Tabts2 is not
tested on this device, and is given as a recommendation only.

Tbls1 MCLK to byte lane delay ALE HIGH ns 2,3

Tbls2 MCLK to byte lane delay ALE LOW ns 2,4

Tblh1 byte lane hold time ALE HIGH ns 2,3

Tblh2 byte lane hold time ALE LOW ns 2,4

Tnd nENDOUT delay ns

Tndh nENDOUT hold time ns

Tdbe DBE to nENDOUT delay ns

Tdout data out delay ns 2

Tdoh data out hold ns 2

Tdis data in setup ns

Tdih data in hold ns

Tabts1 ABORT setup time ns 5

Tabts2 ABORT setup time ns 5

Tabth ABORT hold time ns

Tmsd nMREQ & SEQ delay ns

Tmsh nMREQ & SEQ hold ns

Symbol Parameter 5V
Min

5V
Max

3.3V
Min

3.3V
Max

Unit Note

 Table 14-2: ARM710a macrocell bus timing

ARM710a macrocell Data Sheet
ARM DDI 0033D

A-1

111

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

 Differences between ARM610
and ARM710a macrocell

The ARM710a macrocell is designed to be compatible with the ARM610 when used in
Standard Mode. This document describes the changes between the ARM710a
macrocell operating in this mode, and the ARM610.

A.1 Differences ARM610 and ARM710a macrocell A-2

A

Differences between ARM610 and ARM710a macrocell

ARM710a macrocell Data Sheet
ARM DDI 0033D

A-2

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

A.1 Differences ARM610 and ARM710a macrocell

Fastbus input

An extra input has been added to the ARM710a macrocell, the FASTBUS input. This
configures the device clocking and the operation of ALE .

Updateable bit removed from MMU tables

The U (Updateable) bit in the MMU page tables has been removed. This bit is now
ignored and will have no effect, all areas are defined as updateable. On the ARM610
this bit allowed Read only, and Write only peripherals to be mapped into the same
address space. When the U bit was set the Cache was not updated on Writes.

R bit added to CP0 R15

An extra bit has been added to the Control register (CP15 R0). This is the R or ROM
bit. This modifies the MMU permission system to allow ROM emulation for system
debugging.

Cache must be flushed when disabled

On the ARM710a macrocell the Cache must be flushed after it has been disabled. The
instructions sequence for this is given in the datasheet. The flushing of the Cache is a
new requirement from ARM610.

Changed ID code

The ARM710a macrocell has an ID code in the new format. The ID code for ARM710a
macrocell is (in hex):

4106710x

Where x is the revision code.

Late abort timing

ARM710a macrocell only supports late abort timing. This changes the programmer’s
model of the device, as well as the external signal timing. Provided the signal timing
recommendations in the ARM610 datasheet were followed the ARM710a macrocell
will be compatible with the external abort timing. Software compatability is maintained
with ARM610 software which used the late abort timing model. Changes will be
required to software which assumed the early abort model.

Enhanced aborts support during linefetches

Any word in a linefetch may now safely be aborted. On ARM610 only the first word in
a linefetch could be aborted safely, without corrupting data in the cache.

Spurious addresses may be broadcast

In the case of an internally aborting access, a spurious address may be broadcast
externally, but no access will be performed to this location. The memory system should
ignore this address.

Differences between ARM610 and ARM710a macrocell

ARM710a macrocell Data Sheet
ARM DDI 0033D

A-3

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

External aborts ignored on buffered writes

The Abort input is now ignored on buffered writes, and will have no affect on the bus
cycle. ARM610 allowed external aborts on buffered writes, and generated an non-
restartable abort to the CPU.

As a consequence of this, the FSR code 00x0 cannot be generated.

Enlarged cache

The Instruction and Data Cache has been increased in size to 8kB from the 4kB Cache
in ARM610.

The Associativity of the Cache has been reduced to 4 way set associative from the 64
way set associative Cache used on ARM610.

When an internal Abort occurs lines may be purged from Cache to remove invalid
data.

Enhanced write buffer

The Address section of the Write buffer has been increased in size to contain 4
addresses rather then the 2 address FIFO in ARM610. This will provide improved
performance for sequences of short stores, eg Byte operations

The data FIFO is unchanged at 8 entries.

Enhanced TLB

The TLB has been increased to 64 Entries from 32 entries on the ARM610. This will
improve performance, and is transparent to the programmer.

Lower voltage operation

The ARM710a macrocell core can operate at 3.3V for reduced power consumption or
at 5v for maximum performance, dependent on the semiconductor process used.

nBLS[3:0] outputs added

The nBLS[3:0] outputs are additional functionality to that of ARM610. They are an
active low combinatorial decode of A[1:0] . For a word access all will be Low, for a byte
access a single bit will be low indicating the selected Byte lane.

Differences between ARM610 and ARM710a macrocell

ARM710a macrocell Data Sheet
ARM DDI 0033D

A-4

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

ARM710a macrocell Data Sheet
ARM DDI 0033D

Index-i

111

Index

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

A
Abort operating mode 3-4
AC parameters

in standard mode 13-1
with fastbus extension 14-1

Access faults
checking 9-15

Address translation 9-4
ALE pin

use of 11-14

B
Backward compatibility

configuration bits 3-3
with ARM610 A-1

Branch instructions 4-4
Bus interface

asynchronous mode 10-5
synchronous mode 10-5

Byte lane Selects
use of 11-21

C
CDP instruction 4-39
Condition codes 4-3

Configuration bits
for backward compatibility 3-3

Configuration settings
register 3-2

Control register
big endian format 3-2
little endian format 3-2

Coprocessor data operations 4-39
Coprocessor instructions 4-38
Coprocessors 8-1
CPSR flags 4-7
Cycle speed

bus interface 11-2
Cycle types

bus interface 11-3

D
Data processing instructions 4-6
DC parameters 12-1
Domain access control 9-14
Domain access control register 9-3

E
Examples

instruction set 4-49
Exceptions 3-7

ARM710a macrocell

ARM710a macrocell Data Sheet
ARM DDI 0033D

Index-ii

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

abort 3-8
FIQ 3-7
IRQ 3-8
priorities 3-11

External aborts 9-17

F
FAR 9-3, 9-12
Fastbus extension 10-2
Fault address register 9-3, 9-12
Fault checking 9-15
Fault status register 9-3, 9-12
FIQ exception 3-7
FIQ operating mode 3-4
FSR 9-3, 9-12

I
IDC

cacheable bit 6-2
disable 6-3
enable 6-3
interaction with MMU and write buffer 9-18
operation 6-2
read-lock-write 6-3
reset 6-3
validity 6-2

Instruction set examples
loading a halfword 4-52
loading a word from an unknown alignment 4-

51
multiply by constant 4-50
pseudo random binary sequence generator 4-

50
using conditional instructions 4-49

Instruction set summary 4-2
Instruction speed summary 4-53
Internal coprocessor instructions 5-2
IRQ exception 3-8
IRQ operating mode 3-4

L
LDC instruction 4-41
LDM instruction 4-27
LDR instruction 4-21

M
MCR instruction 4-45
Memory access

types of 11-23
use of byte lane selects 11-21
use of the ALE pin 11-14
use of the nWAIT pin 11-13

MLA instruction 4-19
MMU 9-1

interaction with IDC and write buffer 9-18
MRC instruction 4-45
MRS instruction 4-15
MSR instruction 4-15
MUL instruction 4-19

N
nWAIT pin

use of 11-13

O
Operating modes

selecting 3-4

P
Parameters

AC in standard mode 13-1
AC with Fastbus extension 14-1
DC 12-1

R
Register confidurations 3-2
Registers 3-4, 5-3

MMU 9-3

S
Shifts 4-9
Signal descriptions 2-2
Software interrupt instruction 3-9, 4-36
STC instruction 4-41
STM instruction 4-27

Index

ARM710a macrocell Data Sheet
ARM DDI 0033D

Index-iii

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

STR instruction 4-21
Supervisor operating mode 3-4
SWP instruction 4-34

T
Translating references 9-5
Translation table base register 9-3

U
Undefined instruction 4-48
Undefined instruction trap 3-10
Undefined operating mode 3-4
User operating mode 3-4

W
Write buffer 7-1

interaction with MMU and IDC 9-18

ARM710a macrocell

ARM710a macrocell Data Sheet
ARM DDI 0033D

Index-iv

P
re

lim
in

ar
y

-
O

pe
n

A
cc

es
s

