Application Note 210

Running FreeRTOS on the Keil MCBSTM32 Board
with the RVMDK Evaluation Tools

Document number: ARM DAI 0210A
Issued: June, 2008
Copyright ARM Limited 2008

ARM

Running FreeRTOS on the Keil MCBSTM32 Board with the RVMDK Evaluation Tools

Application Note 210
Running FreeRTOS on the Keil MCBSTM32 Board with the RVMDK Evaluation Tools

Copyright © 2008 ARM Limited. All rights reserved.

Release information

Change history

Date Issue Change

June 2008 A First release

Proprietary notice

Words and logos marked with © and ™ are registered trademarks owned by ARM Limited, except as otherwise
stated below in this proprietary notice. Other brands and names mentioned herein may be the trademarks of their
respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars
of the product and its use contained in this document are given by ARM in good faith. However, all warranties
implied or expressed, including but not limited to implied warranties of merchantability, or fithess for purpose, are
excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable for
any loss or damage arising from the use of any information in this document, or any error or omission in such
information, or any incorrect use of the product.

Confidentiality status
This document is Open Access. This document has no restriction on distribution.

Feedback on this Application Note
If you have any comments on this Application Note, please send email to errata@arm.com giving:

) the document title

o the document number

. the page number(s) to which your comments refer
. an explanation of your comments.

General suggestions for additions and improvements are also welcome.

ARM web address

http://ww. armcom

Copyright © 2008 ARM Limited. All rights reserved. ARM DAI 0201A
Open Access

Table of Contents

1 Ta) (e Te [UTox 1T] o FU TP PPRTT PP 1
2 Obtaining the Necessary MaterialS.........cccuuuiiiieiiiiiiiie e e e 1
2.1 PC and Keil MCBSTM32 Evaluation Kit..........cccccoiiiiiiiiiiiiee e 1
2.2 FreeRTOS Source Code and LM3S102 Keil/RVDS Demo Applicationccccccvvvvereeennn. 2
2.3 RS232 DB9 LOOPDACK CONNECLON ...coeiiiiiiiieie ettt e e e e 3
3 Connecting and Configuring the Hardware and Softwareccccccveevvvieiiee i 3
3.1 Setting UP the HArAWAIEcooi it e e e et e e e e e e e nnnneeees 3
3.2 Starting RVMDK and Opening the Demo Project.........cuuvvivveeiiiiiiiiiieee e 4
4 Modifying the LM3S102 FreeRTOS Port Demo to Run on the MCBSTM32ccceeeineees 5
4.1 Changing Target Processor INfOrmMation..............coooo i 6
41.1 Renaming the Project FOIAer NaME.........cooi i e e s srreee e e e e e s 6
4.1.2 Changing the Target PrOCESSONcccuuviiiiiee e e eestieer e e s et r e e e e e s s e e e e e e s enanraeeeeaeeen 6
4.1.3 Modifying the Compiler Include Paths...........ccuviiiiiei i 7
4.1.4 Changing the Preprocessor SYMDBOIoovviiiiiiiiiiic e 7
4.2 Adding and Removing Existing Target-specific FileSccccviviie i 8
421 [T o] = LY 11 PR 8
4.2.2 INILANIZALION FIIES ...t e e e e e e e e e e sneeee s 8
4.2.3 Startup Files and Exception Vector Table ... 8
4.3 MOdifyiNg the SOUICE FlESeeeeiiiiee e e e e 9
431 Hardware Setup/INtialiZation..............uiiiii e 10
4.3.2 Getting the Status LEDS 10 WOTKuuiiiiiiiii ettt 12
4.3.3 LED CO-TOULINESeeeeiiiiie e eiieee ettt ettt e e e sttt e s sttt e e s et e e e snbb e e e s anbbeeesanbreeesnnnes 13
4.3.4 Creating the QUEUES fOr the USARTviiii et e e ee e 14
4.3.5 USART TX CO-TOULINE ...eiiiiiiiieeiiiiee ettt ettt e ettt e e s st e e s snbre e e s snbee e e e nneees 15
4.3.6 [0 5 R I T PRSP 18
4.3.7 USART RX TASK c.tttiieitiiie ettt sttt ettt e et e e e st e e e s snbb e e e s snbbeeeennnes 19
4.3.8 USART Interrupt SErviCe ROULINEcciieiiiiiiieieiee e e e e e e e seee e e e e e s e 19
4.3.9 Testing the Modified DEMOeeiiiiii e e 20

5 New Task/Co-routine Creation and EXErCiSES.....ccccciiuiiiiiiiiiieiiiiie e 21
5.1 More LED Task FUNCHONANLYccooiiiiiiiiiie ittt 21
5.2 Analogue-To-Digital CONVEISION........ccoiiiiiiiiiiee ettt e e snees 21
6 (0701 1 To] [V E] Lo o PR UTT RPN 21
ARM DAI 0201A Copyright © 2008 ARM Limited. All rights reserved. iii

Open Access

Running FreeRTOS on the Keil MCBSTM32 Board with the RVMDK Evaluation Tools

1 Introduction

This application note describes how to modify an existing port demo of the FreeRTOS operating
system that targets the Luminary Micro LM3S102 evaluation board. It uses Keil's (an ARM company)
RealView Microcontroller Development Kit (RVMDK) evaluation tools. The modifications will be made
so that the operating system can run on the Keil MCBSTM32 board using the RVMDK evaluation
software. The MCBSTM32 is Keil's first board based on the Cortex-M3 processor core.

FreeRTOS was the first real-time kernel to be available for production Cortex-M3 based
microcontrollers.

Note: Although this document does not describe the complete details and functionality of the
FreeRTOS kernel, they are not required to complete the modifications. Information on the operating
system should be obtained from www.FreeRTOS.org.

In addition to being targeted for the evaluation version of RVMDK, the original port is also targeted at
ARM'’s RealView Development Suite (RVDS) because both environments use the same compilation
tools, (the compiler, linker, and assembler).. The main difference between the two sets of tools is the
debugger and code editor. For the modified demo in this note, RVMDK will be the tool set used.

The modifications made to the OS port demonstration in this application note can also be used as
general guidelines on how to modify other OS port demonstrations so that they can run on a different
development platform, with the same or similar processor.

This application note contains the following sections:

. Obtaining the Necessary Materials describes the required materials and where to get them.
This includes the Keil MCBSTM32 evaluation board (which includes an evaluation version of
RVMDK, the ULINK-ME JTAG interface, and other necessary cables), serial cable(s) for
testing purposes, and the FreeRTOS source and LM3S102 demonstration code.

. Connecting and Configuring the Hardware and Software explains how to connect and
configure the necessary materials.

. Modifying the LMS3102 FreeRTOS Port Demo to Run on the MCBSTM32 describes
modifications to the existing LM3S102 FreeRTOS port demo that enables it to run on the
MCBSTM32.

. New Task/Co-routine Creation and Exercises provides some ideas for exercises that can be

added on to the modified port demonstration.

2 Obtaining the Necessary Materials

This section describes the necessary materials for modifying and running the FreeRTOS demo on the
Keil MCBSTM32 evaluation board.

2.1 PC and Keil MCBSTM32 Evaluation Kit

The Keil MCBSTM32 is based on the STMicroelectronics Cortex-M3 family of ARM devices, and
enables you to create and test working programs for this advanced architecture. Specifically, the
board includes the STM32F103RB microcontroller, one serial interface, one analog input (via
potentiometer), an SD Card interface, a CAN interface, an LCD, a USB interface, and eight LEDs.

ARM DAI 0201A Copyright © 2008 ARM Limited. All rights reserved. 1
Open Access

Running FreeRTOS on the Keil MCBSTM32 Board with the RVMDK Evaluation Tools

RVMDK supports out-of-box ARM7, ARM9, and Cortex-M3 technology-based microcontrollers from
many different vendors, and includes a code editor, compilation/link tools, a debugger, and other
utilities.

The MCBSTM32 evaluation kit includes the MCBSTM32 evaluation board, a ULINK-ME USB-JTAG
interface, and an evaluation version of RVMDK. The kit can be ordered directly from Keil at academic
pricing, or through a local Keil distributor.

Note: The evaluation version of RVMDK will enable the building and debugging of the FreeRTOS port
demonstrations referenced in this application note, and will be used throughout. See the section that
follows for more information.

2.2 FreeRTOS Source Code and LM3S102 Keil/RVDS Demo Application

FreeRTOS is a royalty-free, open-source, real-time operating system kernel. There are many ports
and demos available for various processor architectures and development tools from
www.FreeRTOS.org.

Depending on the architecture and chip being used, it might be easier to modify an existing port
demonstration based on the processor/board itself rather than the software tools. This depends on
what ports are already available and if the port layer itself must be changed, as opposed to just
changing a demo application. For example, although STM32 ports/demos already exist from
www.FreeRTOS.org, they are not targeted at RVMDK, These existing port/demo project files were
built specifically for other toolsets, and might have differing assembler/compiler syntax. All of the
existing port/demos can be found in the Port/Demo list at www.FreeRTOS.org.

There is an STM32 port for the IAR tools, but the FreeRTOS port layer for RVMDK is required (and
happens to be available in another port), However, the demonstration files can be compiled and
assembled with RVMDK as is, although a new Keil project file must be created with all of these files.
Fortunately, the Cortex-M3 port layer of FreeRTOS is the same over different chip implementations
such as an ST part vs. a Luminary part. For these reasons, you might think it would be easiest to
create a new RVMDK project with the RVMDK FreeRTOS port layer and the demo files from the
STM32 IAR port demo. That's probably correct, assuming that you are using a full version (not
evaluation version) of RVMDK. The problem is the way memory is allocated by the STM32 IAR
FreeRTOS port. This can cause the code size to go over the 16K limitation of the evaluation version
of RVMDK. For more information, see User Documentation = Configuration - Memory
Management from the FreeRTOS.org Menu at www.FreeRTOS.org.

However, there are other Cortex-M3-based ports and demos targeted at RVMDK that can be used as
a work around. These can be found in the Port/Demo list under the FreeRTOS.org Menu. The
LM3S102 Keil/RVDS port’s kernel allocates heap memory a bit differently. Instead of declaring a
fixed-sized array of memory, a pointer is set at the end of RAM and accesses are made from offsets
of the pointer as if it was an array. This is in fact more consistent with traditional heap allocation, and
the kernel can allocate RAM up to the point where the heap clashes with the compiler allocated
memory. With this method, the heap does not show up as a large block of RAM and is not included in
the actual code size. Because of this, the base port used in this note will be the LM3S102 Keil/RVDS
port.

Instructions on how to download and install the FreeRTOS source code and demo applications can
be found on the website as well.

Note: All of the source and demos are downloaded together in one package, and it is not necessary
to download only specific files.

2 Copyright © 2008 ARM Limited. All rights reserved. ARM DAI 0201A
Open Access

Running FreeRTOS on the Keil MCBSTM32 Board with the RVMDK Evaluation Tools

2.3 RS232 DB9 Loopback Connector

Both the existing and modified demos include an interrupt-driven USART test where a co-routine
transmits characters that are then received by a task, so a loopback serial connector will be needed
for testing purposes. A loopback connector can be made from a standard male-to-female serial cable
by simply shorting pins 2 and 3 on the female side with a paperclip. The male connector is for the
MCBSTM32 USART port. More information about this and how to test a homemade loopback
connector can be found at http://zone.ni.com/devzone/cda/tut/p/id/3450.

If the USART transmission portion must be verified, for example, if you want to actually see the
characters being transmitted on the host PC, and the host PC does not have a serial port, a converter
will be needed. Parallel-to-serial and USB-to-serial converters can be built or purchased

3 Connecting and Configuring the Hardware and

Software

This section describes how to connect the MCBSTM32 and JTAG interface to a host PC running
RVMDK. It also describes how to open the FreeRTOS base demo application for editing in RVMDK.

3.1 Setting up the Hardware

Use the following steps to setup your hardware:

1. Connect the ULINK-ME directly to the 20- pin JTAG connector on the MCBSTM32. Power the
ULINK-ME by connecting the appropriate end of the included USB cable into it, and the other end
into an open USB port on the host PC.

Figure 1. Hardware connections between ULINK-ME and MCBSTM32

ARM DAI 0201A Copyright © 2008 ARM Limited. All rights reserved.
Open Access

Running FreeRTOS on the Keil MCBSTM32 Board with the RVMDK Evaluation Tools

If you are using a ULINK2 interface, it powers and connects the same way. If you are using a
different JTAG interface, see the appropriate documentation for information on how to connect
and power it.

Do the same with the included USB cable to power the MCBSTM32. When you power the board,
the code that is already in flash memory (perhaps the included demo application) should run.

Fit the male side of one of the above described RS232 DB9 cables into the serial port of the
MCBSTM32 labelled COM.

3.2 Starting RVMDK and Opening the Demo Project

Use the following steps to start RVMDK and open the project:

1.

If RVMDK is not already installed on the host PC, insert the RVDMK evaluation CD into the CD-
ROM drive of the PC and follow the on-screen instructions to complete the installation. If you do
not have the CD, you can download the tools from www.keil.com.

The editor portion of RVMDK is called the Keil uVision3 (this is also the same name as the
debugger). Launch uVision3 from its installed location or shortcut on the PC. RVMDK will startup
initially in the uVision3 IDE. This is the editor and project management portion of the tools.

To open the LM3S102 demo uVision3 project file, click Project = Open Project from the
uVision3 IDE menu options, and open the project file located at
\...\FreeRTOS\Demo\CORTEX_LM3S102_KEIL\FreeRTOS.uV2. At this point, it is possible to
compile, debug, and run this port and demo via the simulator. To do this, click on the Options for

T

Target icon AN click on the Debug tab, and ensure that Use Simulator is selected.

Copyright © 2008 ARM Limited. All rights reserved. ARM DAI 0201A
Open Access

Running FreeRTOS on the Keil MCBSTM32 Board with the RVMDK Evaluation Tools

Options for Target ‘LM35%xac

Device : Target] Elutput] Listing] Uszer] CAC++ B : Linker Debug E thilities]

i+ |Jza Simulator Settings E { Use: |ULINK Cortex Debuager | Seftings

[Lirnit Speed ta Beal-Time

v Load Application at Startup v Bur ha main(] W Load &pplication at Startup [v Bur ta mainl]
Initialization File: Initialization File:
Restore Debug Seszion Sethings Restare Debug Sezzion Settings
v Breakpoints v Toolbox W Breakpoints W Toolbox
v Watchpoints & Pa v wWatchpoints
W Memary Display W Memary Dizplay
CPU DLL: Farameter; Diriver DLL: Farameter;
SARMCMIDLL ES.&HMEME.DLL
Dialog DLL: Parameter; Dialog DLL: Parameter;
DLM.DLL -pLk:35101 ETLM.DLL |-|:|Lh-1351EI1

Ok | Cancel | Defaults Help :

Figure 2. Options for Target Debug dialogue with “Use Simulator” selected

For information on how to compile, debug, and run applications with RVMDK, see the RealView
Compilation Tools for uVision documentation, and the uVision User Guide.

For details about FreeRTOS source code and specific demo applications, see www.FreeRTOS.org.

4 Modifying the LM3S102 FreeRTOS Port Demo to Run
on the MCBSTM32

This section describes the modifications required to run the existing LM3S102 port demo on the
MCBSTM32. Although these modifications are specific to these two platforms, this section can also
be used as general guidelines on how to modify other existing OS ports to run on different hardware
platforms based on the same core architecture.

The LM3S102 demo application includes an interrupt-driven UART test where a co-routine transmits
characters that are then received by a task via a loopback serial connector. LEDs on-board are used
to indicate status, and some are controlled by a co-routine that does nothing but flash some LEDs.
The LCD display is also used to display a message. The demo for the MCBSTM32 will have the
same functionality, but of course, this can be extended. For more information, see the LM3S102
Keil/RVDS port demo application explanation at www.FreeRTOS.org.

ARM DAI 0201A Copyright © 2008 ARM Limited. All rights reserved. 5
Open Access

Running FreeRTOS on the Keil MCBSTM32 Board with the RVMDK Evaluation Tools

4.1 Changing Target Processor Information

41.1

4.1.2

The first steps of the modification process include renaming some of the project folders, in addition to
changing some of the target and project settings within uVision3.

Renaming the Project Folder Name

To avoid confusion, either change the name of the \...\FreeRTOS\Demo\CORTEX LM3S102_KEIL
folder, or create a new folder at that level and copy everything into it. For this application note, the
CORTEX_LMS3102_KEIL folder was simply renamed to CORTEX_STM32F103RB_KEIL because
the LMS3102 port demo was no longer needed.

Note: The project must be closed in order to change the directory name.

Changing the Target Processor

The next step is to change the target processor information because it is currently set to LMS3S1xx.
Re-open the project from the new folder, and click Components, Environment, and Books button

& Under Prﬁ:t Targets, highlight LM3S1xx and delete it by clicking the delete icon . Click

the insert icon and input the new target name STM32F103RB. Click OK. Now the
STM32F103RB target should be the only one in the list of targets.

Up to this point, nothing has actually changed other than the names of the folder and target. To

actually change the target processor in the uVision3 IDE, click on the Options for Target icon AN
click the Device tab, and change the selected device from the Luminary Micro LM3S101 to the
STMicroelectronics STM32F103RB. After the choice is highlighted, the specs and peripherals for
this microcontroller are listed.

Copyright © 2008 ARM Limited. All rights reserved. ARM DAI 0201A
Open Access

Running FreeRTOS on the Keil MCBSTM32 Board with the RVMDK Evaluation Tools

Options for Target ‘5STM32F103RB

Device l Target] Elutput] Listing] Uszer] E.-"':++] B] Linker] Debug] Utilities]

[atabaze; | J

Wendor STMicroelectonics
Device: STM32F103RE

Toolzel: ARM
£1 STMIZF101TE A ARk 32-bit Cortes-kd 3 Microcontroller, 72Hz, 128kE Flash, 20kE SRAM.
£ STMIFI0Twe FLL. Embedded Intemal RC 8MHz and 32kHz, Real-Time Clock,
€ STMIZFI01VE Mested Interru_pt I_Znntrn:nlln_ar, Power Saving Modes, JTAG and SWwW D,
e 3 Sunch. 16-bit Timerz with Input Capture, Output Compare and Pk,
L4 STMIZFT04CE 16-bit B-ch Advanced Timer, 2 16-bit Watchdog Timers, SusTick Timer,
£4 STM3IZF103C3 25P 212C. 3USART, USB 20 Full Speed Interface, CAM 2 0B Active,
£ STM3I2F103CE 2 12-bit 16-ch A/0 Converter, Fast [/0 Forts
£1 STM32F103RE
£1 STM3ZF103RE
%0 STh32F103RB
£1 STM3IZF103TE
£1 STM3azFoaTe
£31 STMIZF103ve
£1 STMIZF103vE
£1 STRTI0FZ1
£ STRPINFZ? s

K | Cancel Detaults Help

Figure 3. STM32F103RB Options for Target Device selection

Click OK to select the device and exit the Options for Target.

4.1.3 Modifying the Compiler Include Paths

The next step is to modify a few of the current compiler include paths to have the relevant library
functions. To do this, click on the C/C++ tab under Options for Target, then click on the Include

Paths button El and change the \...\KeilNARM\RV31\LIB\Luminary path to
\...\KeilNARM\RV31\LIB\ST, and change the \...\CORTEX_ LM3S102_KEIL path to
\..\CORTEX_STM32F103RB_KEIL.

4.1.4 Changing the Preprocessor Symbol

The current LM3S102 preprocessor symbol must be changed. To do this, click on the C/C++ tab
under Options for Target, and change the name of the defined preprocessor symbol

RVDS ARMCM3_LM3S102 to RVDS_ARMCM3_STM32F103RB. The preprocessor symbols are
defined in a file that is part of the source directory called portable.h. This determines the relevant
macro file that will be used for a particular port. The macro file used for all Cortex-M3 ports is the
same, so simply change the line that reads:

#i f def RVDS_ARMCMB_LMBS102

to:

ARM DAI 0201A Copyright © 2008 ARM Limited. All rights reserved. 7
Open Access

Running FreeRTOS on the Keil MCBSTM32 Board with the RVMDK Evaluation Tools

#i f def RVDS_ARMCMB_STMB2F103RB

in portable.h. This step is mostly to keep nhaming consistency.

Note: RVDS is a completely different set of tools from RVMDK; however, they use the exact same
compilation tools. Therefore, many similarities exist in files used by both RvDS and RVMDK for
FreeRTOS ports and demos.

4.2 Adding and Removing Existing Target-specific Files

42.1

4.2.2

4.2.3

The next step of the modification process is to add or modify the necessary library, initialization, and
startup files for the new target processor, and remove any unnecessary files.

Library Files

At this point, a build of the project using the build button should display two major errors in the
code. There are two references to the LM3S102 library file LM3Sxxx.h in main.c and pdc.c.
LM3Sxxx.h was part of the library compiler include path that we changed in the last section, so
change the line #i ncl ude "LM3Sxxx. h" to#i ncl ude "stnB2f10x_Iib. h".

To reflect the new library file that defines peripheral register addresses, register bit definitions, and
peripheral function prototypes, we also must add a firmware library file. This file defines many useful
subroutines for writing software on the STM32F103RB. Keil provides this file that is configured for
RVMDK, and can be found in \..\KeilNARM\RV31\LIB\ST\. Copy and paste the file
STM32F10xR.LIB into \...\FreeRTOS\Demo\CORTEX_STM32F103RB_KEIL\include\.

For simplicity, we are also adding an even higher level of abstraction by using MCBSTM32-specific
library files for the USART and LCD interfaces. Keil provided these files, and you can find them in
most of the MCBSTM32 project folders, such as \...\KeilARM\Boards\Keil\MCB STM32\Blinky\.
Copy and paste the files serial.c, LCD_4bit.c, and LCD.h from an MCBSTM32 project folder into
\...\FreeRTOS\Demo\CORTEX_ STM32F103RB_KEIL\include\. We will use routines from these files
later on.

Initialization Files

The file pdc.c is a peripheral control file specific to the LM3S102, so remove that file from the project
by right-clicking on the file from the Project Workspace tree in the uVision3 IDE and selecting
Remove File ‘pdc.c’. Because this file and pdc.h are no longer needed, delete these two files from
\...\FreeRTOS\Demo\CORTEX_ STM32F103RB_KEIL\include\. New initialization source and
header files for the MCBSTM32 are to be included in the project to initialize its own peripherals.
Again, Keil provided these files, and you can find them in most of the MCBSTM32 project folders,
such as \...\KeilARM\Boards\Kei\MCBSTM32\Blinky\. Copy and paste the files STM32_lInit.c,
STM32_Init.h, and STM32_Reg from an MCBSTM32 project folder into
\...\FreeRTOS\Demo\CORTEX_STM32F103RB_KEIL\include\, and replace the line #i ncl ude
"pdc. h" with #i ncl ude "STM32 I nit.c" inmain.c. Also, replace #i ncl ude "pdc. h" with
#i nclude "STM32_Init. h" in partest.c.

Startup Files and Exception Vector Table

The last major file swap involves the startup files that are responsible for some specific chip and
peripheral initialization, stack and heap setup, core exception modes and registers setup, in addition
to initializing the exception vector table. Using the same steps as above, remove, delete, and replace
\...\FreeRTOS\Demo\CORTEX_STM32F103RB_KEIL\init\Startup.s with

Copyright © 2008 ARM Limited. All rights reserved. ARM DAI 0201A
Open Access

Running FreeRTOS on the Keil MCBSTM32 Board with the RVMDK Evaluation Tools

041 - Vector Table Mapped to Address 0 at Reset
042
043 AREL FEZET, DATL, READCNLY
44 EXFORT _ Vectors
145
46 IMPORT xPortPendiVHandler
047 IMNPCORET xPort3ysTickHandler
045 IMPORT wUART ISR
149 IMPORT wPort3IVCHandler
n&0
051 _ Vectors DCh __initial =p
152 DD Reset Handler
053 LD NMI Handler
154 DD HardFault Handler
055 DCD MemManage Handler
56 DD EusFault Handler
057 DCD UsageFault Handler
58 DCD]
159 DCD]
160 DCD]
0E1 DCDh]
162 DD vPort3VCHandler
063 DCD DebugMon Handler
0e4 DCD]
(65 DD xPortPend3VHandler
(] 5151 DCD ¥Port3yvaTickHandler
neT

Figure 4. STM32F10x.s vector table

\...\KeiNARM\Startup\ST\STM32F10x.s in
\...\FreeRTOS\Demo\CORTEX_STM32F103RB_KEIL\init\. Because the startup code is the first
code that the processor executes, it calls the mai n() function, and is never referenced by other files.
STM32F10x.s must be manually added to the Demo folder in the Project Workspace by right-

clicking the folder and selecting Add Files to Group ‘Demo’.

The current vector table in STM32F10x.s only implements dummy handlers. These files are for the
programmer to modify (depending on the system). The FreeRTOS source and demo application
make use of four different exception types and provide the exception handlers. These handlers are
vPort SVCHandl er, xPort PendSVHandl er, xPort SysTi ckHandl er, and vUART | SR. The
dummy handler calls in STM32F10x.s must be replaced with calls to these FreeRTOS handlers.

r Top of Stack

* Reset Handler

r NMT Handler

r Hapd Fault Handler
r MPIU Fauplt Handler

r Bus Fault Handler

r Usage Fault Handler
r Reserved

r Reserved

r Reserved

* Reserved

r SVCall Handler

* Debug Monitor Hamdler
 Reservead

r PepdsV Handler

* BEvaTick Handler

The dummy handlers below the vector can now be removed or commented out.

Again, the code for these handlers is written in other parts of the application. Most notably, the
FreeRTOS scheduler is started in the xPor t PendSVHandl| er handler, and all context switches are
performed in this handler as well. Tasks that are blocked (waiting) are awakened by the tick interrupt.
On the Cortex-M3, the tick interrupt is generated by the core SysTick timer (which is actually part of

the Cortex-M3 core).

You can find more information on these particular handlers at www.FreeRTOS.org.

4.3 Modifying the Source Files

Now that most of the “house-cleaning” steps are out of the way, you can try actual code modifications

and build tests.

ARM DAI 0201A

Copyright © 2008 ARM Limited. All rights reserved.

Open Access

Running FreeRTOS on the Keil MCBSTM32 Board with the RVMDK Evaluation Tools

4.3.1 Hardware Setup/Initialization

Rebuilding the project from this point using the rebuild all button will turn up a multitude of
errors, most of them (if not all) in main.c. These errors occur because of the LM3S102 functions and
identifiers that were defined in the library and initialization files that we removed in the last section.

The function pr vSet upHar dwar e() calls functions that setup specific peripherals of the LM3S102,
and those functions can all be removed and replaced with a single call to the st n82_1ni t ()
function found in STM32_init.c. The function St n82_1 ni t () initializes some of the STM32F103RB
peripherals, including the clocks, timers, GPIOs, and USART interfaces.

Because we removed the only call to vPar Test | ni ti al i se(), the definition of this function can be
completely removed as well (from ParTest.c).

The function vSeri al I ni t () and its prototype in main.c can also be removed completely because
it is specific to the LM3S102 and is no longer needed.

More initialization is still needed, including initializing the interrupt controller of the STM32F103RB.
Fortunately, this needed code has already been written, and can be found in the existing STM32F103
FreeRTOS port demo for the IAR tools found in the file serial.c in
\.\FreeRTOS\Demo\CORTEX_STM32F103_IAR\serial (keep this file handy because more will be
needed from it later). We will need most of the code in the function xSeri al Port 1 ni t M ni mal (),
but some of the unsupported features of it must be stripped away and changed.

The new function that needs to be added to main.c vSeri al Port | nitM ni mal () is shown here:

10

Copyright © 2008 ARM Limited. All rights reserved. ARM DAI 0201A
Open Access

Running FreeRTOS on the Keil MCBSTM32 Board with the RVMDK Evaluation Tools

248 woid v3erialPortInitMinimal | unsigned portLONG ulWantedBaud)
2431
280 | USART InitTypelef USART Initldtructure;
251 | NWWIC InitTypelef NWIC Init3tructure;
252 | GPID InitTypelef GFIQ Initdtructure;
253
254 F* Enable USARTI clock *7
205 RCC _APEZFeriphClockCmd| RCC_APBZFeriph USART1 | RCC_APBZPeriph GPIOA, ENAELE) ;
256
257 F* Configure USARTI REx (PALIQ) as input floating *7
258 GPIO Initdtructure.GFIQ Pin = GPIQ Fin 10;
259 GPIO Initdtructure.GFI0 Mode = GPIQ Mode IN FLOATING:
260 GPIO Init| GPIOA, &GPIO Init3tructure);
261
262 A% Configure USARTI Tx (PAR) as alternate function push-pull #7
263 GPIO Init3tructure.GPIO Pin = GPIO Pin 9;
264 GPIO Initdtructure.GFIO Speed = GPIOQ Speed SOMHz:
265 GPIO Initdtructure.GFIO Mode = GPIOQ Mode AF FP:
266 GPIO Init| GPIOA, &GPIO Init3tructure);
267
268 UIART InitStructure.UIART BaudRate = ulWantedBaud:
2R4 USART InitStructure.UIART WordLength = USART WordLength Sh:
270 UIART InitStructure.UIART StopBits = USART JtopBits 1:
271 UIART InitStructure.UIART Parity = UIART Parity No ;
272 UIART InitStructure.UIART HardwareFlowControl = UJART HardwareFlowControl None;
273 UIART InitStructure.UIART Mode = UZART Mode Ex | USART Mode Tx:
274 USART InitStructure.UIART Clock = UIART Clock Disable:
275 USART InitStructure.U3ART CPOL = UZART CPOL Low;
276 USART InitStructure.U3ART CPHA = USART CPHA ZEdge:
277 USART InitStructure.UIART LastBit = USART LastBit Disable;
278
274 USART Init(U3IART1, &LUIART Init3tructure |;
280
281 USART ITConfig(U3ART1, USART IT RXNE, ENAELE |:
282
283 NVIC InitStructure.NWIC IRQChannel = U3IART1 IRQChannel;
284 NVIC InitZtructure.NWIC IRQChannelPreemptionPrioricy = 0O;
285 NVIC InitStructure.NWIC IRQChannel3ubPriority = 0O}
286 NVIC InitStructure.NWIC IRQChannelCmd = ENAELE;
287 NVIC Init(&NWIC Init3tructure |;
288
289 USART Cwd| USART1, ENAELE):;
290 | b
Figure 5. More needed initialization viavSeri al PortInitM ni mal ()
Now simply call this function from pr vSet upHar dwar e() with the needed baud rate as shown here:
292 =tatic void prvietupHardware | wvoid)
{
294 A% Initiglise the hardwsare used to talk to the LOD, LED's ard TART. *7
295 stw3Z_ Init();
296 vierialPortInitMinimal [mainBATD RATE |;
Figure 6. Calling the initialization functions from pr vSet upHar dwar e()
Make sure that mai nBAUD_RATE is setto 11520 at the top of main.c. This is the new baud rate for
the STM32F103RB’s USART.
ARM DAI 0201A Copyright © 2008 ARM Limited. All rights reserved. 11

Open Access

Running FreeRTOS on the Keil MCBSTM32 Board with the RVMDK Evaluation Tools

4.3.2 Getting the Status LEDs to Work

Since FreeRTOS makes use of on-board LEDs to provide status and feedback information, it's
important to get the LEDs working before running the OS itself. Generic instructions on how to do this
for any platform can be found at www.FreeRTOS.org under Demo App Introduction -> Modifying a
demo. A dummy main() is provided to test the LEDs, and should be used temporarily instead of the
current main() function. However, instead of calling vParTestlnitialise() to initialize the 10, make a call
to prvSetupHardware(). Also, the system is currently setup to periodically cause an interrupt (the
details are not important now), and FreeRTOS isn’t actually going to be running yet to handle this, so
delete the crude delay loop, as we will single-step through the code to test the LEDs. Also, comment
out the entire original main() function for now.

The functions that blink the LEDs (vParTestToggleLED() and vParTestSetLED()) are defined in
ParTest.c, and must be modified for the new hardware. These functions configure the
ucOutputValue variable depending on what LED needs to be lit or toggled. A call to the LM3S102’s
peripheral control write function (PDCWrite()) is then made, passing that variable. First we must
include the library files to make use of the new hardware by adding the line #include "stm32f10x_lib.h"
to ParTest.c. Then, delete the calls to PDCWrite(), and replace them each with the line:

GPl OB- >ODR = (GPlI OB->0DR & OxFFFFOOFF) | (ucQut putVal ue << 8);
The function prvPDCWrite() itself (and its declaration) in main.c should also be removed.

The file Stm32f10x_map.h is provided by RVMDK and contains all of the STM32F103RB’s peripheral
registers’ definitions and memory mappings. ST uses C structures for this particular chip to address
these registers. The structure component GPIOB->ODR refers to GPIOB’s port output data register.
The 8 LEDs on the MCBSTM32 are connected to GPIOB pins [15:8], and can be lit'toggled by writing
to these bits of GPIOB->ODR.

For more information about the STM32F103RB’s peripherals and peripheral registers, see the
STM32F103xx Reference Manual.

At this point, a build of the project will still turn up many errors regarding more references to
LM3S102-specific hardware. Comment out each of these errors, since we only want to confirm that
we have the LEDs working at this time. In the uVision3 IDE, double-click each error to bring the
cursor to the error line, and comment out each one. Ignore the warning messages for now.

Note: Make sure to use the latest version of the Cortex-M3 FreeRTOS port layer, as it had been
updated during the writing of this application note, and older versions will require different
modifications than the ones in this note.

To confirm that the LEDs are working, all of the hardware must be connected as described in Section
3 above, and uVision3 must be running in hardware mode (instead of simulation mode). To ensure

uVision3d is in hardware mode, click on the Options for Target icon AN click on the Debug tab, and
ensure that Use: ULINK Cortex Debugger is selected (not Use Simulator).

Once the build is error free and an executable image is created, click the Download to Flash
LOAD

Memory icon *1. The flash download attempt will fail! To this point, we have not changed the flash
download and execution address to reflect the STM32F103RB’s memory map. The flash memory of
the STM32F103RB starts at address 0x08000000 and should be used as the R/O Base under the
Linker tab under Options for Target. The R/O Base sets the address for constants and code
containing the RO (Read-Only) output section. The R/O Base also sets the initial program entry
address. Also, be sure to remove any Misc controls linker options that might be there (such as —
first Reset_Handler) that override the Linker Control String specifically for the LM3S102. The
Linker tab under Options for Target should look like this:

12

Copyright © 2008 ARM Limited. All rights reserved. ARM DAI 0201A
Open Access

Running FreeRTOS on the Keil MCBSTM32 Board with the RVMDK Evaluation Tools

Options for Target ‘5STM32F103RB

Device] T arget] Output] Lizting] Ilzer] CAC++] BAzm
I
[Make B\ Sections Position Independent
| Make RO Sections Fosition |ndependent
I Don't Search Standard Libraries
v Report 'might fail' Conditions as Errors

Linker | Debug | Utlties |

B0 Base |msnnnnnn

R/ Base |nnznnnnnnn

dizable Warnings: |E3UE

Scatter
File

e

bizc
controls

glring

Linker %o -device DARMSTM -ro-baze 023000000 -entry Feset Handler -mw-base 020000000 --firgt . We A
confrol |--info zizes -info totals -info unused -info veneers

]

Cancel Defaultz Help

Figure 7. Options for Target Linker dialogue for STM32F103RB

For more information on ARM compilation tools output sections, see the RealView Compilation Tools
for uVision Essentials Guide and the RealView Compilation Tools for uVision Developer Guide.

Another attempt at a flash download will turn up another problem. uVision3 uses specific, built-in
flash download algorithms depending on the chip. Under the Utilities tab in the Options for Target,
click on the ULINK Cortex Debugger Settings, ensuring that the Flash Download tab is selected.
Click on the LM3Sxxx 8kB Flash programming algorithm, then click the Remove button. Click the
Add button, scroll down and select the STM32F10x 128kB Flash algorithm, click Add, and finally

click OK twice to apply the changes.

Now building the code and downloading the executable to flash should work correctly, and the

uVision3 output window should verify this.

@ The

Click the Start/Stop Debug Session icon

uVision3 debugger will come up with the Program Counter pointing to the first line in mai n() .

[T

Single-step through the code using the Step Over button Each step over the calls to
vPar Test Toggl eLED() should toggle the corresponding LED on the MCBSTM32.

4.3.3 LED Co-routines

Now that we know the LEDs work, restore the original mai n() function and delete the dummy
mai n() function. At this point we want to create the LED co-routines with:

vSt art Fl ashCoRout i nes(mai nNUM_FLASH CO_ROUTI NES) ;

ARM DAI 0201A Copyright © 2008 ARM Limited. All rights reserved. 13

Open Access

Running FreeRTOS on the Keil MCBSTM32 Board with the RVMDK Evaluation Tools

4.3.4

The co-routines use FreeRTOS to blink 5 LEDs at different rates. Make sure to comment out the
UART transmission co-routine, the LCD task, as well as the UART receive task (it will take a bit more
work to get these running).

Rebuild the project using the rebuild all button , download the executable to flash, and press the
RESET push-button on the MCBSTM32 to run the code out of flash. The first five LEDs (PB8 —
PB12) should all continuously blink at different rates. These LEDs are under the control of the flash
co-routines, each flashing at a specific frequency, with PB8 being the fastest and PB12 being the
slowest.

Information about FreeRTOS tasks and co-routines can be found at www.FreeRTOS.org.

Creating the Queues for the USART
Memory queues are used in FreeRTOS port demos to implement USART functionality.

For this demo modification, create two separate queues in memory for the Tx and Rx sides of the
USART communication instead of using the single xCormsQueue that was created in the first line in
mai n() . To do this, replace the line:

xComsQueue = xQueueCreat e(mai NRX_QUEUE LEN, si zeof (port CHAR));
with the lines:

XxRxedChars = xQueueCreat e(mai nRX_QUEUE _LEN, (unsigned portBASE TYPE)
si zeof (si gned port CHAR)) ;

and

xChar sFor Tx = xQueueCreat e(mai NRX_ QUEUE LEN + 1, (unsigned portBASE TYPE)
si zeof (signed port CHAR)) ;

The use of two queues instead of one implements a slightly different functionality by transmitting
characters over one queue and interrupts reading/receiving characters from the other queue. The
characters are then sent over the USART. The LMS3102’s version that uses only one queue uses
the queue to only receive characters, with transmitted characters sent directly from the USART Tx
buffer by an interrupt.

These queues are created with xQueueCr eat e (which takes in the size of the queue in bytes and the
data size for each element), and must be declared at the top of main.c with the lines:

stati c xQueueHandl e xRxedChars;
stati c xQueueHandl e xChar sFor Tx;

Also, be sure to remove the old declaration for xConms Queue to avoid warnings about it being
declared and not used.

There is one additional step to be done in order to get the two-queue model working. To create the
extra queue, we must increase the heap size slightly, otherwise the scheduler won't start (because
the idle task won't be created, but that is beyond the scope of this note). To do this, set the constant
confi gTOTAL_HEAP_SI ZE to 2468 instead of 1468 in FreeRTOSCOnfig.h. This is an application-
specific hardware configuration file for FreeRTOS.

The parameter conf i gTOTAL_HEAP_SI ZE might need to be increased even more if new tasks and
co-routines are created as per Section 5 of this note.

14

Copyright © 2008 ARM Limited. All rights reserved. ARM DAI 0201A
Open Access

Running FreeRTOS on the Keil MCBSTM32 Board with the RVMDK Evaluation Tools

4.3.5

428
429
430
43
432
433
434
135
436
437
433
433
440

USART Tx Co-routine

Now that the queues have been created, we can bring up the USART transmission co-routine that
initiates the transmission of sequential characters. This requires editing some code that is specific to
the LM3S102. The creation of the co-routine is called in mai n() with:

xCoRout i neCreat e(vSeri al TxCoRouti ne, mai nTX_CO_ROUTI NE_PRI ORI TY,
mai nTX_CO_ROUTI NE_I NDEX) ;

Some STM32F103RB USART1 settings must be changed in STM32_Init.c. The USART
configuration definitions are around line 2150 of that file. Change the declaration #def i ne
__USART1_DATABI TS from 0x0 to 0x8 and change the declaration #def i ne __ USART1
STOPBI TS from 0xO0 to Ox1.

In general, the definitions in this file are left for the programmer to define depending on the specific
hardware.

More modifications must be made. In main.c, all instances of UARTO_BASE must be replaced with
USART1 BASE (defined in STM32F10x_map.h) to reflect the memory-mapped address of the
STM32F103RB’s USART interface. Similarly, there are obsolete instances of UART _| NT_TX, which
is the transmit interrupt status bit. Replace all instances of this with the STM32F103RB’s equivalent,
USART_I T_TXE.

The routine vSeri al TxCoRout i ne() in main.c is the USART transmission co-routine, and needs a
few modifications to work on the MCBSTM32. This part of the existing LMS103 code disables UART
transmission interrupts before sending a sequential character, then re-enables the UART
transmission interrupts:

UARTIntDisable (TARTO _EASE, UART INT TXI):
i
S#% Fend the first character. #7
if| ! HWREG] T_TARTD_BASE L T.TART_O_FR 1 & T.TJLRT_FR_TXFF 10
i
HUREG [TARTO EASE + UART O DE) = cHNextChar:

b

A% Move the variable to the char to Tx on so the ISE transmits
the next character in the string once this one has complebed. *°
cNextChar++;

H

TARTIntEnahle (UARTD_BJLSE, UJLRT_INT_TX:I H

Figure 8. Part of the LMS3102’s vSerialTxCoRoutine()

ARM DAI

0201A Copyright © 2008 ARM Limited. All rights reserved. 15
Open Access

Running FreeRTOS on the Keil MCBSTM32 Board with the RVMDK Evaluation Tools

437
458
433
500
501
502
503
504
505
506
507
508

This part of the code should be replaced with the following code:

USART ITConfig(USART1, USART IT TXE, DI3ZAELE |
{
S Fend the first character. *7°
if (cMextChar == '{')
cNextChar = '0';
ser putechar (cNextChar) ;

A% Move the varigble to the char to Tx on so the ISR transmits
the next character in the string once this one has completed. *7
cHNextChar++;

H

USART ITConfig(USART1, USART IT TXE, ENLELE j:

Figure 9. Part of the new STM32F103RB’s vSerialTxCoRoutine()

The definition of ser _put char () is found in serial.c and the definition of USART | TConfi g() is
contained in the firmware library file STM32F10xR.LIB. Both of these files must be manually added
to the Project Workspace in the uVision3 IDE.

We only want to transmit and receive ASCII characters ‘0’ to ‘z’, so we use the i f statement to restart
cNext Char .

More information about the routines found in STM32F10xR.LIB can be found in the ARM-based 32-
bit MCU STM32F101xx and STM32F103xx Firmware Library document from STMicroelectronics.

The LM3S102 port at the time of writing this application note is coded so that nothing but the ‘0’
character is sent out the serial port. It's more interesting to see all of the sequential characters, so
within vSeri al TxCoRout i ne(), move the line

cNext Char = mai nFI RST_TX CHAR;
from inside of the infinite f or (; ;) loop to outside of it right below the line
cr START(xHandle);

To verify that the USART transmission under control of FreeRTOS is actually working, a ‘dumb’
terminal program must be used, such as Windows HyperTerminal. If it's not already, connect the
serial cable from the MCBSTM32 to a working and verified serial port (or another port using a
converter) on the host PC.

In Windows XP, start HyperTerminal by clicking Start = All Programs = Accessories =2
Communications = HyperTerminal. Enter a New Connection Name (perhaps “USART Tx"), click
on the Connect using drop-down menu and select the correct COM port, and click OK. The Port
Settings for the COM port are shown, and enter the settings that match those of the STM32F103RB’s
STM32_Init.c file,shown below.

16

Copyright © 2008 ARM Limited. All rights reserved. ARM DAI 0201A
Open Access

Running FreeRTOS on the Keil MCBSTM32 Board with the RVMDK Evaluation Tools

COM1 Properties

Fort Settings i
Bitz per zecond: |'I152EIEI V_|
D ats bits: |E vl|
Farity: |N|:.ne v|
Stop bits: |1 v |
Flow contral: | V|
[Restore Defaultz]
E k. ; [Cancel] [Apply]

Figure 10. Serial COM port properties for PC in Windows HyperTerminal

Reprogram the flash of the MCBSTM32 with the updated executable and press the RESET push-
button on the board. Sequential characters should show up on the terminal window starting at ‘0’, as
shown in Fig. 11.

ARM DAI 0201A Copyright © 2008 ARM Limited. All rights reserved. 17
Open Access

Running FreeRTOS on the Keil MCBSTM32 Board with the RVMDK Evaluation Tools

“& LISART Tx - HyperTerminal
File Edit Miew Call Transfer Help

0123456789 ; <=>7EABCDEFGHIJKLMNOPQRSTUVWXYZIN]™_"abcdefghijklmnopars
496789 : ; <=>7@ABCDEFGHIJKLMNOPQRSTUVHRYZ[N17_"abcdefghijklmnoparstuvesx

9::<=>7@ABCDEFGHIJKLMNOPQRSTUYWRYZ[\]1"_"abcdefghi jklmnoparstuvwxyz012:
>7EABCDEFGHIJKLMNOPORSTUYWRYZ[N]1™_"abcdefghi jklmnoparstuvwxyz01234567
CDEFGHIJKLMMOPOQRSTUVHKYZIN]T™ "abcdefghijklmnoparstuvwxyz0123456789: :<

HIJKLMHOPQRSTUVWEYZ[M\]1™_ "abcdeftghi jklmnopagrstuvwxyzB8123456789 : ; <=>7@0I

MNOPQRSTUYHKEYZ[M]1"_"abcdefghi jklmnoparstuvexyz0123456789: : <=>7@ABCDE |
:<=>7@ABCDEFGHIJKLMNOPQRSTUVHKYZ[N]1™_"ab B123456789: :<=>7E@ABCDEF 0123

7@ABCDEFGHIJKLMNOPQRSTUVWKYZINT™_"abcdefghi jklmnoparstuvwxyz012345678

DEFGHIJKLMHOPQRSTUVHXYZ[N]™_"abcdefghijklmnoparstuvwsyz01234061789: ;<=

TJKLMNOPQRSTUYWRYZIN]™_"abcdefghi jklmnoparstuvwxyz0123456789: ; <=>7EABI

NOPOQRSTUVWKYZIN]™_"abcdefghijklmnoparstuvwxyz0123456789: : <=>7@ABCDEFGI

STUVHHEYZIN]T "abedefghi jklmnopgrstuvwsyz0123456789: : <=>7@ABCDEFGHIJKLI

KYZIN]T_"abedefghijklmnoparstuvexyz0123456 789 : <=>7E@ABCDEFGHI JKLMNOPQI

17 "abcdefghijklmnoparstuvexyz0123456789: ; <=>7@ABCDEFGHT JKL MNOPQRSTUV!
bedefghijklmnoparstuvwxyz0123456789: : <=>7@ABCDEFGHIJKLMNOPQRSTUVHKYZ['

£ >
Connected 0:00:29 Auto detect 115200 8-N-1

Figure 11. STM32F103RB’s USART transmit results in HyperTerminal

The sixth LED on the MCBSTM32 (marked PB13) should also be flashing to indicate successful
USART character transmissions.

4.3.6 LCD Task

Going in sequential order in mai n() , the next part of the demo to modify is the LCD task vLCDTask.
This is much simpler than it looks due to the level of abstraction used in the LCD functions in
LCD_4bit.c.

You can get as creative as you want with the LCD functionality, but for a simple test, just try using the
following instead of the LM3S102’s version of vLCDTask:

18 Copyright © 2008 ARM Limited. All rights reserved. ARM DAI 0201A
Open Access

Running FreeRTOS on the Keil MCBSTM32 Board with the RVMDK Evaluation Tools

38 woid vLCDTask(wold * pvParameters)

303 {

30 JS* Configure the LCD, =7

a1 vTaskDelay| mainCHAR WRITE DELAY |:

32 led init ()

33

4 S Clear displav. *7

315 vTaskDelay(wainCHAR. WRITE DELAY) ;

Ak led clear ()

N7

38 for(::]

49 i

320 J% Digplay the string on the LCD. =5
3 led print (" MCESTM3Z DEMO ")

322 Set_cursor (0, 1);:

323 led print ("www.FreeRTOI.com™) :;

324 vTaskDelay| wain3TRING WRITE DELAY * 3):
325 led clear ()

326 vwTaskDelay | main3TRING WRITE DELAY * 3) ;
327 }

328 i

Figure 12. New vLCDTask()

This code simply flashes the text givento | cd_print () so thatit all fits on the MCBSTM32’s LCD
screen. Notice that we no longer need prvWiteString() forthissimple test, so it and its
declaration at the top of main.c can be removed.

Be sure to include LCD_4bit.c in uVision3's Project Workspace in order to make use of the new
library functions if it's not there already, and declare the functions somewhere at the top of main.c
(otherwise warnings will be generated at build time about these LCD library functions being declared
implicitly. Also, make sure to uncomment the LCD task creation line in mai n() :

TaskCreat e(vLCDTask, "LCD', configM N MAL STACK SI ZE, NULL,
mai nLCD_TASK_PRI ORI TY, NULL);

Again, reprogram the flash of the MCBSTM32 with the new executable, and reset the board to
confirm that the LCD is working.

4.3.7 USART Rx Task

The next part of the demo to be modified is the USART Rx task vCommsRxTask() . Only a very
small modification needs to be done here, and that is to change the name of the queue that is used
for this task. Just replace the instances of xCormsQueue in the calls to xQueueRecei ve() with
xRxedChars. xQueueRecei ve() is a generic function which receives data from a specified queue.

For more details on the queues and queue functions used by FreeRTOS, see www.FreeRTOS.org.

4.3.8 USART Interrupt Service Routine

The final part of the demo to be changed is the USART Interrupt Service Routine VUART _| SR() . In
Section 4.2.3 of this note, this ISR call was added to the Cortex-M3’s vector table.

Similar to other changes described in this note, the code for this routine can be found in the existing
STM32F103 FreeRTOS port demo for the IAR tools, located in the file serial.c in
\..\FreeRTOS\Demo\CORTEX_STM32F103_IAR\serial. This is the same file from which we pulled
initialization code in Section 4.3.1 of this note

ARM DAI 0201A Copyright © 2008 ARM Limited. All rights reserved. 19
Open Access

Running FreeRTOS on the Keil MCBSTM32 Board with the RVMDK Evaluation Tools

451

4521

453
454
455
456
457
458
459
460
481
462
463
464
465
466
467
468
469
4710
471
472
473
474
475
476
477
478

473 -

The routine vUARTI nt er r upt Handl er () is the code we need. Use the body of this routine in
VUART | SR() in main.c. VUART | SR() in serial.c should now look like this:

void vULRT IZR(void)

{

portBASE TYPE xTaskWokenByTx = pdFALSE, xTaskWokenBEyPost = pdFALSE:
portCHAR cChar;

if [USART GetITStatus{ USART1, USART IT TXE | == JET |
1
A% The interrupt was caused by the THE becopung empty. Are there any
more characters to transmdib? =7
if [xOueueReceiwveFromI3R | =xCharsForTx, &cChar, &£xTaskWokenBvyTx | == pdTRUE |
{
A% A charadcter was retrieved from the gueus so can be sent to the
THE now. */
U3ART SendData(UISART1, ecChar |:

}
else

{
USART ITConfig| USART1, USART IT TXE, DISABLE)

i
if | USART GetIT3tatus(| U3ART1, USART IT RXNE | == 3ET |
cChar = USART ReceiveData(USARTL ;
®TaskWokenEyFPost = xOueueSendFromI3R | xExedChars, &cChar, xTasklWokenByFPost |7

}

portEND SWITCHING ISR(xTaskWokenByPost || xTaskWokenEByTx):

Figure 13. New VUART | SR()

4.3.9

Again, many of the functions here are defined by the FreeRTOS port layer and the ARM-based 32-bit
MCU STM32F101xx and STM32F103xx Firmware Library document from STMicroelectronics.

Now if you haven't done so already, uncomment the USART RXx task creation line in mai n() :

xTaskCreat e(vCommsRxTask, "CMS", configM N MAL_STACK SI ZE, NULL,
mai NnCOMVB_RX TASK PRI ORI TY, NULL);
Testing the Modified Demo

If all of the steps have been performed correctly to this point, a re-build of the project should turn up
no errors or warnings.

Re-build the project using the re-build all button download the executable to flash, and press
the RESET push-button on the MCBSTM32 to run the code out of flash. The first seven LEDs (PB8 —
PB14) should all continuously blink at different rates, with PB8 blinking the fastest and PB14 blinking
the slowest.

Again, the first five LEDs are under the control of the flash co-routines, each flashing at a particular
frequency, with PB8 being the fastest and PB12 being the slowest. PB13 will flash each time a
character is transmitted on the serial port. PB14 will flash each time a character is received and
validated on the serial port though the loopback connector.

PB15 is used to indicate that an error has been detected and should remain off, unless of course the
loopback connector is removed. Try it and see!

20

Copyright © 2008 ARM Limited. All rights reserved. ARM DAI 0201A
Open Access

Running FreeRTOS on the Keil MCBSTM32 Board with the RVMDK Evaluation Tools

The LCD will display a message, depending on what was done in Section 4.3.6.

5 New Task/Co-routine Creation and Exercises

Now that we have a working port demo for the MCBSTM32, you can add new tasks to be used by
FreeRTOS. Be careful not to go over the 16K code limitation of the RVMDK evaluation tools.

General information about tasks and adding new ones can be found in the documentation at
www.FreeRTOS.org.

5.1 More LED Task Functionality

Try creating a task that blinks a single LED by passing in the particular LED like so:

voi d LEDTask(void *uxLED)
{/ 1 code}

Use a crude delay mechanism to create a particular blink rate. When this single task is created and
the scheduler is started, watch the blink rate. What happens to the blink rate if you create an identical
task for a different LED and run both simultaneously? Why?

What happens when the priority of one of these tasks is changed, and why?

Instead of using a crude delay mechanism, call vTaskDel ay(). What happens now, and why?

5.2 Analogue-To-Digital Conversion

For a slightly more difficult example, try using the tick hook functionality to periodically trigger an
analogue-to-digital conversion. Create a new co-routine that receives the result from the
STMF103RB ADC’s ADC | R@Handl er and prints the result to the LCD.

For this, crhook.c must be added from \...\FreeRTOS\Demo\Common\Minimal.

6 Conclusion

With the steps outlined in this application note, you should be able to get FreeRTOS up and running
on the MCBSTM32 with an extendable demo application, using the license-free RVMDK evaluation
tools from ARM/Keil. This is useful in seeing FreeRTOS run in real hardware (using one of ARM'’s
latest processor cores: the Cortex-M3) with a completely free set of tools.

ARM DAI 0201A Copyright © 2008 ARM Limited. All rights reserved. 21
Open Access

