
 PrimeCell® DMA Controller
(PL080/PL081) Cycle Model

Version 9.1.0

User Guide
Non-Confidential
Copyright © 2016 ARM Limited. All rights reserved.
ARM DUI 1068A (ID120516)

PrimeCell® DMA Controller (PL080/PL081) Cycle Model
User Guide

Copyright © 2017 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this document.

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of ARM Limited (“ARM”). No license,
express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to,
and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or
other rights.

This document may include technical inaccuracies or typographical errors.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version shall prevail.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers
is not intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document
at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement specifically
covering this document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of
these terms.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective
owners. You must follow the ARM trademark usage guidelines http://www.arm.com/about/trademarks/guidelines/index.php.

Copyright © ARM Limited or its affiliates. All rights reserved.
ARM Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

In this document, where the term ARM is used to refer to the company it means “ARM or any of its subsidiaries as appropriate”.

Change History

Date Issue Confidentiality Change

February 2017 A Non-Confidential Restamp release
ARM DUI 1068A Copyright © 2016 ARM Limited. All rights reserved. ii
ID120516 Non-Confidential

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com
ARM DUI 1068A Copyright © 2016 ARM Limited. All rights reserved. iii
ID120516 Non-Confidential

ARM DUI 1068A Copyright © 2016 ARM Limited. All rights reserved. iv
ID120516 Non-Confidential

Contents

Chapter 1.
Using the Cycle Model in SoC Designer

PL080/PL081 DMAC Cycle Model Functionality .1
Fully Functional and Accurate Features .2
Fully Functional and Approximate Features .3
Unsupported Hardware Features .4

Adding and Configuring the SoC Designer Component .4
SoC Designer Component Files .4
Adding the Cycle Model to the Component Library .5
Adding the Component to the SoC Designer Canvas .5

Available Component ESL Ports .6
Setting Component Parameters .7
Debug Features .9

Register Information .9
Available Profiling Data .11
ARM DUI 1068A Copyright © 2016 ARM Limited. All rights reserved. v
ID120516 Non-Confidential

ARM DUI 1068A Copyright © 2016 ARM Limited. All rights reserved. vi
ID120516 Non-Confidential

Preface

A Cycle Model component is a library developed from ARM intellectual property (IP) that is
generated through Cycle Model Studio™. The Cycle Model then can be used within a virtual
platform tool, for example, SoC Designer.

About This Guide

This guide provides all the information needed to configure and use the Cycle Model in SoC
Designer.

Audience

This guide is intended for experienced hardware and software developers who create compo-
nents for use with SoC Designer. You should be familiar with the following products and tech-
nology:

• SoC Designer

• Hardware design verification

• Verilog or SystemVerilog programming language
ARM DUI 1068A Copyright © 2016 ARM Limited. All rights reserved. vii
ID120516 Non-Confidential

Conventions

This guide uses the following conventions:

Also note the following references:

• References to C code implicitly apply to C++ as well.

• File names ending in .cc, .cpp, or .cxx indicate a C++ source file.

Convention Description Example

courier Commands, functions,
variables, routines, and
code examples that are set
apart from ordinary text.

sparseMem_t SparseMemCreate-
New();

italic New or unusual words or
phrases appearing for the
first time.

Transactors provide the entry and exit
points for data ...

bold Action that the user per-
forms.

Click Close to close the dialog.

<text> Values that you fill in, or
that the system automati-
cally supplies.

<platform>/ represents the name of
various platforms.

[text] Square brackets [] indicate
optional text.

$CARBON_HOME/bin/modelstudio
[<filename>]

[text1 | text2] The vertical bar | indicates
“OR,” meaning that you
can supply text1 or text 2.

$CARBON_HOME/bin/modelstudio
[<name>.symtab.db |
<name>.ccfg]
ARM DUI 1068A Copyright © 2016 ARM Limited. All rights reserved. viii
ID120516 Non-Confidential

Further reading

This section lists related publications. The following publications provide information that
relate directly to SoC Designer:

• SoC Designer Installation Guide

• SoC Designer User Guide

• SoC Designer Standard Component Library Reference Manual

The following publications provide reference information about ARM® products:

• AMBA 3 AHB-Lite Overview

• AMBA Specification (Rev 2.0)

• AMBA AHB Transaction Level Modeling Specification

• Architecture Reference Manual

See http://infocenter.arm.com/help/index.jsp for access to ARM documentation.

The following publications provide additional information on simulation:

• IEEE 1666™ SystemC Language Reference Manual, (IEEE Standards Association)

• SPIRIT User Guide, Revision 1.2, SPIRIT Consortium.
ARM DUI 1068A Copyright © 2016 ARM Limited. All rights reserved. ix
ID120516 Non-Confidential

http://infocenter.arm.com/help/index.jsp

Glossary

AMBA Advanced Microcontroller Bus Architecture. The ARM open standard on-chip
bus specification that describes a strategy for the interconnection and manage-
ment of functional blocks that make up a System-on-Chip (SoC).

AHB Advanced High-performance Bus. A bus protocol with a fixed pipeline
between address/control and data phases. It only supports a subset of the func-
tionality provided by the AMBA AXI protocol.

APB Advanced Peripheral Bus. A simpler bus protocol than AXI and AHB. It is
designed for use with ancillary or general-purpose peripherals such as timers,
interrupt controllers, UARTs, and I/O ports.

AXI Advanced eXtensible Interface. A bus protocol that is targeted at high perfor-
mance, high clock frequency system designs and includes a number of fea-
tures that make it very suitable for high speed sub-micron interconnect.

Cycle Model A software object created by the Cycle Model Studio (or Cycle Model Com-
piler) from an RTL design. The Cycle Model contains a cycle- and register-
accurate model of the hardware design.

Cycle Model
Studio

Graphical tool for generating, validating, and executing hardware-accurate
software models. It creates a Cycle Model, and it also takes a Cycle Model as
input and generates a component that can be used in SoC Designer, Platform
Architect, or Accellera SystemC for simulation.

CASI ESL API Simulation Interface, is based on the SystemC communication
library and manages the interconnection of components and communication
between components.

CADI ESL API Debug Interface, enables reading and writing memory and register
values and also provides the interface to external debuggers.

CAPI ESL API Profiling Interface, enables collecting historical data from a compo-
nent and displaying the results in various formats.

Component Building blocks used to create simulated systems. Components are connected
together with unidirectional transaction-level or signal-level connections.

ESL Electronic System Level. A type of design and verification methodology that
models the behavior of an entire system using a high-level language such as C
or C++.

HDL Hardware Description Language. A language for formal description of elec-
tronic circuits, for example, Verilog.

RTL Register Transfer Level. A high-level hardware description language (HDL)
for defining digital circuits.

SoC Designer High-performance, cycle accurate simulation framework which is targeted at
System-on-a-Chip hardware and software debug as well as architectural
exploration.

SystemC SystemC is a single, unified design and verification language that enables ver-
ification at the system level, independent of any detailed hardware and soft-
ware implementation, as well as enabling co-verification with RTL design.

Transactor Transaction adaptors. You add transactors to your component to connect your
component directly to transaction level interface ports for your particular plat-
form.
ARM DUI 1068A Copyright © 2016 ARM Limited. All rights reserved. x
ID120516 Non-Confidential

Chapter 1

Using the Cycle Model in SoC Designer

This chapter describes the functionality of the Cycle Model, and how to use it in
SoC Designer. It contains the following sections:

• PL080/PL081 DMAC Cycle Model Functionality

• Adding and Configuring the SoC Designer Component

• Available Component ESL Ports

• Setting Component Parameters

• Debug Features

• Available Profiling Data

1.1 PL080/PL081 DMAC Cycle Model Functionality
The ARM® PrimeCell® Dynamic Memory Access Controller (DMAC) is an AMBA compli-
ant System-on-Chip peripheral that provides AHB bus masters for DMA transfers. The DMAC
PL080 has two master ports and eight DMA channels. The DMAC PL081 has just a single mas-
ter port and two DMA channels. It supports data transfer between memory to memory, memory
to peripheral, and peripheral to peripheral. It is programmed and controlled by an AHB slave
interface.

This section provides a summary of the functionality of the Cycle Model compared to that of
the hardware, and the performance and accuracy of the Cycle Model. For details of the func-
tionality of the hardware that the Cycle Model represents, refer to the ARM PrimeCell Dynamic
Memory Access Controller (PL080) Technical Reference Manual or ARM PrimeCell Dynamic
Memory Access Controller (PL081) Technical Reference Manual.
ARM DUI 1068A Copyright © 2016 ARM Limited. All rights reserved. 11
ID120516 Non-Confidential

This section provides a summary of the functionality of the Cycle Model compared to that of
the hardware, and the performance and accuracy of the Cycle Model.

• Fully Functional and Accurate Features

• Fully Functional and Approximate Features

• Unsupported Hardware Features

• Differences from the ARM RVML Model

1.1.1 Fully Functional and Accurate Features
The following features of the DMAC PL080/PL081 hardware are fully implemented in the
DMAC PL080 and PL081 Cycle Model:

• Compliance to the AMBA (Rev 2.0) Specification.

• Eight (PL080) or two (PL081) DMA channels. Each channel can support a unidirectional
transfer.

• Single DMA and burst DMA request signals. Each peripheral connected to the DMAC can
assert either a burst DMA request or a single DMA request. You set the DMA burst size by
programming the DMAC.

• Memory-to-memory, memory-to-peripheral, peripheral-to-memory, and peripheral-to-
peripheral transfers.

• Scatter or gather DMA support through the use of linked lists.

• Hardware DMA channel priority. Each DMA channel has a specific hardware priority.
DMA channel 0 has the highest priority and channel 7 has the lowest priority. If requests
from two channels become active at the same time, the channel with the highest priority is
serviced first.

• AHB slave DMA programming interface. You program the DMAC by writing to the DMA
control registers over the AHB slave interface.

• Two (PL080) or one (PL081) AHB bus masters for transferring data. Use these interfaces to
transfer data when a DMA request goes active.

• 32-bit AHB master bus width.

• Incrementing or non-incrementing addressing for source and destination.

• Setable DMA burst size. You can program the DMA burst size to transfer data more effi-
ciently. The burst size is usually set to half the size of the FIFO in the peripheral.

• Internal four word FIFO per channel.

• Supports 8, 16, and 32-bit wide transactions.

• Separate and combined DMA error and DMA count interrupt requests. You can generate an
interrupt to the processor on a DMA error or when a DMA count has reached 0 (this is usu-
ally used to indicate that a transfer has finished). There are three interrupt request signals to
do this:

– DMACINTTC signals when a transfer has completed.

– DMACINTERR signals when an error has occurred.

– DMACINTR combines both the DMACINTTC and DMACINTERR.
ARM DUI 1068A Copyright © 2016 ARM Limited. All rights reserved. 2
ID120516 Non-Confidential

You can use the DMACINTR interrupt request in systems that have few interrupt controller
request inputs. The signal is driven by calling the function:

driveSignal (MxU32 value, MxU32 *extValue) from input signal port of the Inter-
rupt controller or the core.

It is expected that the parameter “value” is set to the Interrupt line number and the “ext-
value” to the signal value.

• Interrupt masking. You can mask the DMA error and DMA terminal count interrupt
requests.

• Raw interrupt status. You can read the DMA error and DMA count raw interrupt status prior
to masking.

• Identification registers that uniquely identify the DMAC. An operating system can use
these to automatically configure itself.

1.1.2 Fully Functional and Approximate Features
The following features of the DMAC PL080/PL081 hardware are implemented in the DMAC
PL080 and PL081 Cycle Model, but the exact behavior of the hardware implementation is not
accurately reproduced because some approximations and optimizations have been made for
simulation performance:

• The AHB interface is modeled as an AHB transaction interface.

For more information, refer to the SoC Designer AHBv2 Protocol Bundle User Guide,
which is provided with the SoC Designer installation.

• 16 DMA requests (peripheral side requests). The DMAC provides 16 peripheral DMA
request lines. The request signals breq, sreq, lbreq, and lsreq are modeled as signal slave
ports. Up to 16 peripherals can be connected. The signals can be driven by calling the func-
tion:

driveSignal (MxU32 value, MxU32 *extValue);

It is expected that the parameter “value” is set to the peripheral ID that has been assigned to
the specific peripheral. The ID can be set in powers of 2 only.

There is no need to encode the value of the signal itself, calling driveSignal() implicitly
means that the signal is asserted for this cycle. On the other hand, not calling driveSig-
nal() implicitly means that the signal is low for this cycle. The driveSignal() should
be called for a single cycle for every transaction.

The same scheme applies to the response signals clr and tc. To raise these signals for one
cycle, the DMAC Cycle Model calls driveSignal() with the first argument containing
the peripheral ID (powers of 2 only) of the target. All connected models with a different ID
should ignore the call. For sequence of operation for various modes of DMAC, see the
PL080 or PL081 Technical Reference Manual.

• INCR transfers of undefined length are accurate functionally, but they are not modeled
accurately as RTL timing.
ARM DUI 1068A Copyright © 2016 ARM Limited. All rights reserved. 3
ID120516 Non-Confidential

1.1.3 Unsupported Hardware Features
The following features of the DMAC PL080/PL081 hardware are not implemented in the
DMAC PL080 and PL081 Cycle Model:

• Pack/Unpack logic and burst operations are functionally accurate.

• ERROR/SPLIT/RETRY response is not supported.

• Lock transactions are not supported.

1.2 Adding and Configuring the SoC Designer Component
The following topics briefly describe how to use the component. See the SoC Designer User
Guide for more information.

• SoC Designer Component Files

• Adding the Cycle Model to the Component Library

• Adding the Component to the SoC Designer Canvas

1.2.1 SoC Designer Component Files
The component files are the final output from the Cycle Model Studio compile and are the input
to SoC Designer. There are two versions of the component; an optimized release version for
normal operation, and a debug version.

On Linux the debug version of the component is compiled without optimizations and includes
debug symbols for use with gdb. The release version is compiled without debug information
and is optimized for performance.

On Windows the debug version of the component is compiled referencing the debug runtime
libraries, so it can be linked with the debug version of SoC Designer. The release version is
compiled referencing the release runtime library. Both release and debug versions generate
debug symbols for use with the Visual C++ debugger on Windows.

The provided component files are listed below:

Additionally, this User Guide PDF file is provided with the component.

Table 1-1 SoC Designer Component Files

Platform File Description

Linux maxlib.lib<model_name>.conf

lib<component_name>.mx.so

lib<component_name>.mx_DBG.so

SoC Designer configuration file

SoC Designer component runtime file

SoC Designer component debug file

Windows maxlib.lib<model_name>.windows.conf

lib<component_name>.mx.dll

lib<component_name>.mx_DBG.dll

SoC Designer configuration file

SoC Designer component runtime file

SoC Designer component debug file
ARM DUI 1068A Copyright © 2016 ARM Limited. All rights reserved. 4
ID120516 Non-Confidential

1.2.2 Adding the Cycle Model to the Component Library
The compiled Cycle Model component is provided as a configuration file (.conf). To make the
component available in the Component Window in SoC Designer Canvas, perform the follow-
ing steps:

1. Launch SoC Designer Canvas.

2. From the File menu, select Preferences.

3. Click on Component Library in the list on the left.

4. Under the Additional Component Configuration Files window, click Add.

5. Browse to the location where the Cycle Model is located and select the component configu-
ration file:

– maxlib.lib<model_name>.conf (for Linux)

– maxlib.lib<model_name>.windows.conf (for Windows)

6. Click OK.

7. To save the preferences permanently, click the OK & Save button.

The component is now available from the SoC Designer Component Window.

1.2.3 Adding the Component to the SoC Designer Canvas
Locate the component in the Component Window and drag it out to the Canvas.
ARM DUI 1068A Copyright © 2016 ARM Limited. All rights reserved. 5
ID120516 Non-Confidential

1.3 Available Component ESL Ports
Table 1-2 describes the ESL ports of the component that are exposed in SoC Designer. See the
ARM PrimeCell DMA Controller Integration Manual for more information.

All pins that are not listed in this table have been either tied or disconnected for performance
reasons.

Table 1-2 ESL Component Ports

Name Description Direction Type

ahbs AHB slave port (configuration). Input AHB transaction
slave

breq Burst Request signal for the peripheral. Input Signal slave

lbreq Last Burst Request signal for the peripheral. Input Signal slave

lsreq Last Single Request signal for the peripheral. Input Signal slave

reset Input reset. Reset port for receiving reset signal. Input Signal slave

sreq Single Request signal for the peripheral. Input Signal slave

clk-in Input clock. Input Clock slave

ahbm0 AHB master port (DMA). Output AHB transaction
master

ahbm1 AHB master port (DMA). (Exists only in the
PL080)

Output AHB transaction
master

clr Request Acknowledge Clear signal for the periph-
eral.

Output Signal master

intp Interrupt Master Port. Output Signal master

tc Terminal Count signal for the peripheral. Output Signal master
ARM DUI 1068A Copyright © 2016 ARM Limited. All rights reserved. 6
ID120516 Non-Confidential

1.4 Setting Component Parameters
You can change the settings of all the component parameters in SoC Designer Canvas, and of
some of the parameters in SoC Designer Simulator. To modify the Cycle Model parameters:

1. In the Canvas, right-click on the Cycle Model and select Edit Parameters.... You can also
double-click the component.

2. In the Parameters window, double-click the Value field of the parameter that you want to
modify.

3. If it is a text field, type a new value in the Value field. If a menu choice is offered, select the
desired option. The parameters are described in Table 1-3.

Table 1-3 Component Parameters

Name Description Allowed Values Default Value Runtime1

ahbm0 Align Data Whether halfword and byte transactions
will align data to the transaction size for the
ahbm0 port. By default, data is not aligned.

true, false false No

ahbm0 Big Endian Whether AHB data is treated as big endian
for the ahbm0 port. By default, data is not
sent as big endian.

true, false false No

ahbm0 Enable Debug
Messages

Whether debug messages are logged for the
ahbm0 port.

true, false false Yes

ahbm1 Align Data Whether halfword and byte transactions
will align data to the transaction size for the
ahbm1 port. By default, data is not aligned.

true, false false No

ahbm1 Big Endian Whether AHB data is treated as big endian
for the ahbm1 port. By default, data is not
sent as big endian.

true, false false No

ahbm1 Enable Debug
Messages

Whether debug messages are logged for the
ahbm1 port.

true, false false Yes

ahbs Align Data Whether halfword and byte transactions
will align data to the transaction size for the
ahbs port. By default, data is not aligned.

true, false false No

ahbs Big Endian Whether AHB data is treated as big endian
for the ahbs port. By default, data is not
sent as big endian.

true, false false No

ahbs Enable Debug
Messages

Whether debug messages are logged for the
non-secure ahbs port.

true, false false Yes

ahbs Filter HREADYIN Whether the HREADYIN signal is filtered
to prevent it from reaching the Cycle
Model.

true, false false No

ahbs region size 0 Region size of the non-secure AHB inter-
face.

0x0 -
0xFFFFFFFF

0x100000000 No

ahbs region size [1-5] Unused Not used 0x0 No
ARM DUI 1068A Copyright © 2016 ARM Limited. All rights reserved. 7
ID120516 Non-Confidential

ahbs region start 0 Base address of the non-secure AHB inter-
face.

0x0 - 0xffffffff 0x0 No

ahbs region start [1-5] Unused Not used 0x0 No

ahbs Subtract Base
Address

Whether the Base Address parameter is
subtracted from the actual transaction
address before being passed to the compo-
nent. By default, the actual transaction
address is passed directly to the component.

true, false false No

ahbs Subtract Base
Address Dbg

Same description as for ahbs Subtract Base
Address, except this is for debug transac-
tions.

true, false true No

Align Waveforms When set to true, waveforms dumped from
the component are aligned with the SoC
Designer simulation time. The reset
sequence, however, is not included in the
data.

When set to false, the reset sequence is
dumped to the waveform data, however, the
component time is not aligned with the SoC
Designer time.

true, false true No

Carbon DB Path Sets the directory path to the database file. Not Used empty No

Dump Waveforms Whether SoC Designer dumps waveforms
for this component.

true, false false Yes

Enable Debug
Messages

Whether debug messages are logged for the
component.

true, false false Yes

intp int_1 id The ID used to identify the DMACINTR
interrupt.

user-defined
value

1 Yes

intp int_2 id The ID used to identify the DMACIN-
TERR interrupt.

user-defined
value

2 Yes

intp int_3 id The ID used to identify the DMACINTTC
interrupt.

user-defined
value

3 Yes

Waveform File 2 Name of the waveform file. string arm_cm_[mod
el_name|].vcd

No

Waveform Timescale Sets the timescale to be used in the wave-
form.

Many values in
drop-down

1 ns No

1. Yes means the parameter can be dynamically changed during simulation, No means it can be changed only when
building the system, Reset means it can be changed during simulation, but its new value will be taken into account
only at the next reset.

2. When enabled, SoC Designer writes accumulated waveforms to the waveform file in the following situations: when
the waveform buffer fills, when validation is paused and when validation finishes, and at the end of each validation
run.

Table 1-3 Component Parameters (continued)

Name Description Allowed Values Default Value Runtime1
ARM DUI 1068A Copyright © 2016 ARM Limited. All rights reserved. 8
ID120516 Non-Confidential

1.5 Debug Features
The PL080/PL081 Cycle Model has a debug interface (CADI) that allows the user to view,
manipulate, and control the registers and memory in SoC Designer Simulator, or any debugger
that supports CADI. A view can be accessed in SoC Designer by right clicking on the Cycle
Model and choosing the appropriate menu entry.

1.5.1 Register Information
The PL080/PL081 Cycle Model has four sets of registers that are accessible via the debug inter-
face. Registers are grouped into sets according to functional area. The DMAC PL081 Cycle
Model has only two DMA channels, therefore, only the registers corresponding to the two
DMA channels are present in the PL081 Cycle Model.

The registers are listed below:

• General Registers

• Peripheral Identification Registers

• PrimeCell Identification Registers

• Test Registers

See the ARM PrimeCell Dynamic Memory Access Controller Technical Reference Manual for
detailed descriptions of these registers.

1.5.1.1 General Registers

The General group contains registers that control the DMAC.

Table 1-4 General Registers Summary

Name Description Type

DMACIntStatus Interrupt Status. Shows the status of the interrupts
after masking.

read-only

DMACIntTCStatus Interrupt Terminal Count Status. Indicates the sta-
tus of the terminal count after masking.

read-only

DMACIntTCClear Interrupt Terminal Count Clear. Clears a terminal
count interrupt request.

write-only

DMACIntErrorStatus Interrupt Error Status. Indicates the status of the
error request after masking.

read-only

DMACIntErrClr Interrupt Error Clear. Clears the error interrupt
requests.

write-only

DMACRawIntTCStatus Raw Interrupt Terminal Count Status. Indicates the
DMA channels that are requesting a transfer com-
plete, terminal count interrupt, prior to masking.

read-only

DMACRawIntErrorStatus Raw Interrupt Error Status. Indicates the DMA
channels that are requesting an error interrupt prior
to masking.

read-only

DMACEnbldChns Enabled Channels. Indicates the DMA channels
that are enabled.

read-only
ARM DUI 1068A Copyright © 2016 ARM Limited. All rights reserved. 9
ID120516 Non-Confidential

1.5.1.2 Peripheral Identification Registers

The Peripheral ID group contains registers that enable system firmware to identify a peripheral.

DMACSoftBReq Software Burst Transfer Request. Enables DMA
burst requests to be generated by software.

read-write

DMACSoftSReq Software Single Transfer Request. Enables DMA
single requests to be generated by software.

read-write

DMACSoftLBReq Software Last Burst Transfer Request. Enables
software to generate DMA last burst requests.

read-write

DMACSoftLSReq Software Last Single Transfer Request. Enables
software to generate DMA last single requests.

read-write

DMACConfiguration DMAC Configuration. Configures the operation of
the DMAC.

read-write

DMACSync DMAC Synchronization. Enables or disables syn-
chronization logic for the DMA request signals.

read-write

DMACC0SrcAddr -

DMACC7SrcAddr 1
Channel Source Address Registers. These 8 regis-
ters contain the current source address, byte-
aligned, of the data to be transferred.

read-write

DMACC0DestAddr -

DMACC7DstAddr 1
Channel Destination Address Registers. These 8
registers contain the current destination address,
byte-aligned, of the data to be transferred.

read-write

DMACC0LLI -

DMACC7LLI 1
Channel Linked List Item Registers. These 8 regis-
ters contain a word-aligned address of the next
LLI.

read-write

DMACC0Control -

DMACC7Control 1
Channel Control Registers. These 8 registers con-
tain DMA channel control information such as the
transfer size, burst size, and transfer width.

read-write

DMACC0Config -

DMACC7Config 1
Channel Configuration Registers. These 8 registers
configure the DMA channel.

read-write

1. The PL081 provides only two of each of these registers (DMACC0 and DMACC1) because
it has only two DMA channels.

Table 1-5 Peripheral Registers Summary

Name Description Type

DMACPeriphID0 Peripheral ID 0 read-only

DMACPeriphID1 Peripheral ID 1 read-only

DMACPeriphID2 Peripheral ID 2 read-only

DMACPeriphID3 Peripheral ID 3 read-only

Table 1-4 General Registers Summary (continued)

Name Description Type
ARM DUI 1068A Copyright © 2016 ARM Limited. All rights reserved. 10
ID120516 Non-Confidential

1.5.1.3 PrimeCell Identification Registers

The PrimeCell ID group contains registers that enable system firmware to identify a PrimeCell
component.

1.5.1.4 Test Registers

The Test group contains the DMAC test registers.

1.6 Available Profiling Data
The PL080/PL081 Cycle Model component has no profiling capabilities.

Table 1-6 PrimeCell Registers Summary

Name Description Type

DMACPCellID0 PrimeCell ID 0 read-only

DMACPCellID1 PrimeCell ID 1 read-only

DMACPCellID2 PrimeCell ID 2 read-only

DMACPCellID3 PrimeCell ID 3 read-only

Table 1-7 Test Registers Summary

Name Description Type

DMACITCR Test control. Enables you to test the DMAC. read-write

DMACITOP1 Integration test output register 1. read-only

DMACITOP2 Integration test output register 2. read-only

DMACITOP3 Integration test output register 3. read-only
ARM DUI 1068A Copyright © 2016 ARM Limited. All rights reserved. 11
ID120516 Non-Confidential

ARM DUI 1068A Copyright © 2016 ARM Limited. All rights reserved. 12
ID120516 Non-Confidential

	Preface
	Using the Cycle Model in SoC Designer
	1.1 PL080/PL081 DMAC Cycle Model Functionality
	1.1.1 Fully Functional and Accurate Features
	1.1.2 Fully Functional and Approximate Features
	1.1.3 Unsupported Hardware Features

	1.2 Adding and Configuring the SoC Designer Component
	1.2.1 SoC Designer Component Files
	1.2.2 Adding the Cycle Model to the Component Library
	1.2.3 Adding the Component to the SoC Designer Canvas

	1.3 Available Component ESL Ports
	1.4 Setting Component Parameters
	1.5 Debug Features
	1.5.1 Register Information

	1.6 Available Profiling Data

