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RTL Style Guide

The RTL coding styles you use to create designs can directly impact the efficiency of the Cycle 
Model that is generated by the Cycle Model Studio tool compiler. This document describes the 
recommended coding styles that yield the best performance from a Cycle Model. Where appli-
cable, this document also describes methods for finding and correcting RTL constructs that are 
not optimal.

For a complete list of Verilog and SystemVerilog constructs that are currently supported, see the 
Cycle Model Compiler Verilog and SystemVerilog Language Support Guide (ARM 100972). 

In some cases, using Cycle Model compiler options and directives can also improve the effi-
ciency of a Cycle Model. Some of these options are also discussed in this document.

1.1  Cycles
Although Cycle Model Studio handles asynchronous cycles in a design, they execute much 
more slowly than non-cyclic logic. This is because the logic in a cycle must be executed multi-
ple times to resolve the final values for the nodes in the cycle. Cycle Model Studio identifies 
each cycle and writes them to a file called libdesign.cycles. You can use this file to trace 
the nodes in the cycle and determine if there is a good way to break the cyclic path. This can be 
done by adding a flop or by fixing the logic so that it does not cycle. To make debugging easier, 
use the –g option with Cycle Model Studio; this exposes more intermediate nodes of the cycle. 

Note that sometimes the Cycle Model Studio tool detects false cycles through bits in a vector 
where no real cycle exists. The Cycle Model Studio tool does this conservatively to guarantee 
correctness. For example, the following code is a false cycle:

input [3:0] in;
reg [3:0] veca, vecb;

always @(veca)
vecb[3:0] = {veca[2:0], in[3]};
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always @(vecb)
veca[3:0] = {in[2:0], vecb[0]};

There is no real cycle here because if the vectors are broken into bits there would be no cycle. 
The Cycle Model Studio tool pessimistically detects a loop only because each vector is depen-
dent on the other in a combinational loop (no posedge or negedge clock blocks between them). 
After determining that there is no real cycle, it is very easy to remove it. To break the loop, the 
following code could be used:

input [3:0] in;
reg vecb_0;
reg [3:1] vecb;
reg [3:0] veca;

always @(veca or in)
begin

vecb[3:1] = veca[2:0];
vecb_0 = in[3];

end

always @(in or vecb_0)
veca[3:0] = {in[2:0], vecb_0};

There are also cases were the Cycle Model Studio tool detects false cycles through bits of a vec-
tor when the vector crosses a module boundary. Often, these cycles are eliminated with the 
proper use of Cycle Model compiler flattening options.

1.2  Latches
Although the Cycle Model Studio tool handles latches, they do not execute as fast as edge-
based logic. There are two reasons for this: 1. the flow-through nature of latches reduces the 
optimizations that the Cycle Model Studio tool can perform on the surrounding logic, and 2. 
latches are much more likely to cause asynchronous cycles in the logic. Refer to “Cycles” on 
page 1-1, which describes why asynchronous cycles cause non-optimal behavior.

The latch count of a design is listed in the libdesign.costs file that the Cycle Model Studio 
tool generates. The latches are also listed in the Cycle Model compiler output if the 
-verboseLatches option is used.

If latches can be removed or remodeled as edge-based components, the Cycle Model Studio tool 
generates a more optimal Cycle Model. For example, take the following master-slave latch 
logic:

always @(in or clka)
if (clka)

tmp <= in;
always @(tmp or clkb)

if (clkb)
out <= tmp;

If clka and clkb are complements of each other, then the above logic could easily be remod-
eled as a flip-flop.
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always @(posedge clkb)
out <= in;

1.2.1  Latch-Based Designs (LSSD)
Many latch-based designs model all of the storage elements in the design with two latches 
arranged in master/slave fashion. These designs can be converted to more efficient flop-based 
designs under certain situations. A level sensitive scan design (LSSD) example is provided here 
for illustrative purposes, but the techniques described can be used with other latch-based meth-
odologies.

In the LSSD case, data is clocked into the storage device using two phase-inverted non-overlap-
ping clocks typically called L1CLK and L2CLK. There are two additional clocks (typically called 
ACLK and BCLK) that enter into any storage element and are used to scan data in and out of the 
devices. LSSD storage elements are normally instantiated directly into the design as either sin-
gle bits or ranks of bits. LSSD latch pairs can be remodeled more efficiently for use with Cycle 
Models under the appropriate conditions.

1. Determine how the LSSD devices are initialized. LSSD devices are typically initialized 
by either scanning data into the elements, or by holding L1CLK and L2CLK high for sev-
eral clock cycles while holding the data inputs low. On many devices the storage ele-
ments are simply used for datapath and are not even initialized. A good understanding 
of initialization makes remodeling much easier.

2. Examine the design to make sure that the output of the L1 latch is used only as the input 
of the L2 latch. If it is used any other way, you are not able to optimize away the L1 
latch. Proving how L1OUT is used is typically simple because most LSSD storage ele-
ments are wrapped in a false hierarchy level, which hides it from the instantiating mod-
ule, and simply passed to L2IN.

3. If L1OUT is used only as L2IN, remove the contents of the LSSD device and replace it 
with a simple flop (or rank of flops). Leave L1CLK open and use L2CLK to clock the 
flop. Refer to scan in step 4 below.
If L1OUT is used outside of the storage element, remove the contents of the LSSD 
device and replace it with two flops–one for L1 and the other for L2.

4. If scan is not used as part of initialization, make sure to disconnect the scan pins. If scan 
is used, mux the scan clock with the L2CLK based on the value of the scan enable pin. 
Note that scan initialization is rare.

Following is an example of LSSD remodeling. The original (L1 latch goes only to L2 latch):

module msff(l1_in,l1_si,l2_si,c1,c2,aclk,bclk,l2_out);
input  l1_in,l1_si,l2_si,c1,c2,aclk,bclk;
output l2_out;
reg    L1; // master_latch
reg    L2; // slave_latch
event  trig;

always @(c1 or aclk or l1_in or l1_si or trig)
if (c1)        L1 <= l1_in;
else if (aclk) L1 <= l1_si;

else        L1 <= L1;
always @(c2 or bclk or L1 or l2_si or trig)

if (c2)        L2 <= L1;
ARM DUI 1088B Copyright © 2017 ARM Limited. All rights reserved. 3
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else if (bclk) L2 <= l2_si;
else        L2 <= L2;

assign l2_out = L2;
endmodule

Remodeled:
module msff(l1_in,l1_si,l2_si,c1,c2,aclk,bclk,l2_out);
input  l1_in,l1_si,l2_si,c1,c2,aclk,bclk;
output l2_out;
reg    L2; // slave_latch

always @(posedge c2)
L2 <= l1_in;

assign l2_out = L2;
endmodule

1.3  Scalar Logic
Although the Cycle Model Studio tool takes every opportunity to vectorize logic, sometimes it 
cannot recombine vectors due to the complexities of the logic or hierarchy. For instance, a chip 
design may have vectored busses as ports to the top-level module, but breaks them into individ-
ual bits in the pad cells and then recombines them back into vectors at the core level of the chip. 
In such a case, the generated Cycle Model is inefficient because a larger number of operations 
are required to transfer data. Remodeling the pads so that they do not scalarize the vectors 
results in an optimal Cycle Model. For example, if the pad logic is as follows:

inpad a0 (.out(a[0]), .in(apad[0]));
inpad a1 (.out(a[1]), .in(apad[1]));
inpad a2 (.out(a[2]), .in(apad[2]));

a more efficient remodeling is:

assign a[2:0] = apad[2:0];

Note that memories often break up vectors into scalars as well. It is common for the top-level 
module of a memory to have vectored ports that are broken into scalar bits at lower levels, and 
then recombined into vectors again at even lower levels. Removing the levels that break apart 
the vectors, or remodeling those levels to keep the vectors intact results in a more efficient 
Cycle Model. Remodeling would look very similar to the pad example above.

1.4  Memories
The Cycle Model Studio tool supports most kinds of memory models, but some memories are 
modelled in a more complex manner than is required for pure 2-state functionality. Timing 
checks are sometimes added, as well as X checking. This extra modelling adds very little to the 
functional value of the model, and if removed/remodelled can have a positive impact on the 
resulting Cycle Model’s performance. Often a very complex timing-accurate memory with X 
checking can be replaced with a much simpler 2-state functional model.
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1.5  Gate-Level Constructs
The Cycle Model Studio tool is most effective at optimizing high-level RTL constructs. 
Although the Cycle Model Studio tool supports most gate-level constructs, these constructs do 
not execute as fast as their RTL counterparts and removing them improves the performance of 
the Cycle Model.

Frequently, test logic is implemented at the gate-level and because many environments do not 
care about the test logic, it can be safely removed. One easy method of doing this is by using the 
tieNet directive on input test clocks and control pins. The tieNet directive sets the test pins 
to a constant inactive state. The Cycle Model Studio tool then has a better opportunity to opti-
mize the associated test logic away.

Remodelling gate-level constructs into higher-level constructs also improves performance. For 
example, this pad cell model:

buf (inbuf, in);
buf (enn, en);
not (enp, en);
pmos (pad, inbuf, enp);
nmos (pad, inbuf, enn);
not (outbuf, pad);
not (out, outbuf);

could easily be remodelled more efficiently as follows:

assign pad = en ? in : 1’bz;
assign out = pad;

DesignWare components are a good candidate for this type of substitution. A DesignWare com-
ponent of an adder may be implemented with very low-level or gate-level logic. Replacing the 
original DesignWare adder module with a higher-level RTL module (out <= a + b) improves 
performance of the Cycle Model.

1.6  Low-level Modeling
As with the gate-level constructs, modeling RTL at a very low level can have a negative impact 
on the Cycle Model’s performance. Examples of this type of modeling could contain many con-
tinuous assign statements to implement higher-level functions. For instance:

assign sel0 = (sel == 2’b00);
assign sel1 = (sel == 2’b01);
assign sel2 = (sel == 2’b10);
assign sel3 = (sel == 2’b11);
assign out = sel3 ? in3 : (sel2 ? in2 : (sel1 ? in1 : (sel0 ? in0 : 8’b0)));

This could easily be remodeled as:

always @(sel or in0 or in1 or in2 or in3) 
case (sel)

2’b00 : out = in0;
2’b01 : out = in1;
2’b10 : out = in2;
ARM DUI 1088B Copyright © 2017 ARM Limited. All rights reserved. 5
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2’b11 : out = in3;
endcase

Other examples include bit-slicing or vector slicing logic instead of operating at the full vector 
widths. See “Gate-Level Constructs” on page 1-5 for a discussion about DesignWare compo-
nents.

1.7  Hierarchical References
Using hierarchical references inside Verilog code affects the performance of a Cycle Model. 
The same is true if using the Cycle Model API to reference signals in the design (i.e., making 
signals depositable or observable). This is because optimizations have to be turned off at the 
signals that are hierarchically referenced. Reducing the number of hierarchical references 
improves Cycle Model performance. If these references are required, try to specify only state 
points (flop outputs) as being depositable, observable, or hierarchically referenced from Ver-
ilog. The advantage here is that state points are much less sensitive to performance degradation 
due to hierarchical referencing or outside referencing via the API.

Most of the time, hierarchical references are used by the testbench logic to examine signals 
inside the design. When using Cycle Model tools, it is better to obtain the values of signals 
using the Cycle Model API, which provides full access to any signal in the design. All that may 
be required is an observeSignal compiler directive on the accessed signals.

1.8  System Tasks
The inclusion of Verilog system tasks in a design can negatively affect Cycle Model perfor-
mance.

Output system tasks that send data to the screen or to a file, such as $display, $write, $fdisplay, 
$fwrite, etc., slow down performance because they create observable points in the RTL that 
cannot be optimized by the Cycle Model Studio tool. They can also generate a significant 
amount of file I/O. Reducing or eliminating the output system tasks in a design enables the 
Cycle Model Studio tool to create a more efficient Cycle Model.

The inclusion of the simulation control system tasks, $stop and $finish, can also negatively 
affect Cycle Model performance. Because these system tasks imply a strict execution order, rel-
ative to the updating of variables, no optimizations of RTL variables near these tasks can be per-
formed. If the exact execution order between $stop and $finish and the surrounding assignments 
is not required, Cycle Model performance can be improved by isolating the control system tasks 
from the data assignments in separate always blocks. For example:

always @(sel or in1 or in2)
case (sel)

1’b0: begin
a = in1;
b = a;

end
1’b1: begin

a = in2;
$stop;
b = a;
ARM DUI 1088B Copyright © 2017 ARM Limited. All rights reserved. 6
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end
endcase

This could be remodeled more efficiently as (losing the ordering between $stop and the a and b 
assignments):

always @(sel or in1 or in2)
case (sel)

1’b0: begin
a = in1;
b = a;

end
1’b1: begin

a = in2;
// $stop;
b = a;

end
endcase

always @(sel)
if (sel == 1’b1)

$stop;

1.9  Clock Simplification
Cycle Model Studio handles any type of clocking (gated, asynchronous domains, etc.) effi-
ciently. Even so, you can improve performance by simplifying the logic required to generate 
clocks.

An easy improvement is to remove test signals and test clocks from the clock tree if the test 
functionality is not required. (Usually the test logic is not exercised in the applications for Cycle 
Models, making this simplification a good candidate for performance improvement). The 
tieNet directive can be used to tie test signals and clocks to constants. The test logic can also 
be removed from the clock tree. For example:

assign clk = test_en ? test_clk : clk_in;

can be remodeled as:

assign clk = clk_in;

Another option is to use the Cycle Model compiler tieNet directive to set the test signals to 
constants. The tied nets are propagated to all associated parts of the design. For example:

tieNet 1'b0 top.test_en
tieNet 1'b0 top.test_clk

Another easy method to simplify the clocking is to use the API to drive the clocks as far down-
stream in the clock tree as possible. This removes much of the gating logic, and allows the API 
to efficiently drive the clocks. For example:

assign int_clk = test_en ? test_clk : clk_in;
always @(posedge int_clk)

half_clk = ~half_clk;
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In this example, if the API was used to drive half_clk directly (and remove the assign state-
ment and always block), it would be more efficient than having the API drive clk_in (and 
keeping the assign statement and always block).

1.10  Test Logic
In general, removing test logic makes Cycle Models run faster. Most of the time, the test logic is 
not used in the same applications that Cycle Models are. This includes jtag functionality, BIST, 
and scan.

An easy way to remove test logic is to use the tieNet directive to tie test pins (clocks and con-
trol) to their de-asserted state. Another way is to actually remove this logic from the library cells 
that use them. Library cells such as pad, latches, flops, and memories often contain test logic. 
Remodeling these libraries to remove the test logic improves Cycle Model performance.

1.11  Remodeling Example
The following example shows the benefits of using vectors instead of scalars, and using a 
casex statement instead of a case. The casex is more efficient because the one-hot code 
requires fewer bits to compare.

Original:

reg [0:N] x, a, b;
x_0 = (a [0] ^ b[0]);
x_1 = ~x_0 & (a[1] ^ b[1]);
x_2 = ~x_0 & ~x_1 & (a[2] ^ b[2]);
...
x_N = ~x_1 ... x_N-1 & (a[N] ^ b[N]);
x = {x_0,x_1,x_2,x_3,...x_N}
case (x)

100..:
010..:
001..:
...
00..1:

endcase

Remodeled:

reg [0:N] x, a, b;
x = a ^ b;
casex (x)

1??..:
01??.:
...
00..1:

endcase

Note that the value ’x’ takes is not changed between the original and revised model, however 
the output from the case statement is consistent.
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