
Copyright © 2002, 2003 ARM Limited. All rights reserved.
ARM DUI 0202C

RealView™ Compilation Tools
Version 2.0

Essentials Guide

ii Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0202C

RealView Compilation Tools
Essentials Guide

Copyright © 2002, 2003 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited. Other
brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Confidentiality Status

This document is Open Access. This document has no restriction on distribution.

Product Status

The information in this document is final (information on a developed product).

Web Address

http://www.arm.com

Change History

Date Issue Change

August 2002 A Release 1.2

January 2003 B Release 2.0

September 2003 C Release 2.0.1 for RVDS 2.0

ARM DUI 0202C Copyright © 2002, 2003 ARM Limited. All rights reserved. iii

Contents
RealView Compilation Tools Essentials Guide

Preface
About this book .. vi
Feedback ... ix

Chapter 1 Introduction
1.1 About the RealView Compilation Tools ... 1-2
1.2 Online documentation ... 1-5

Chapter 2 Differences
2.1 Overview ... 2-2
2.2 Changes between RVCT v2.0 and RVCT v1.2 ... 2-3
2.3 Changes between RVCT v1.2 and ADS v1.2 ... 2-6

Chapter 3 Creating an Application
3.1 Building an application .. 3-2
3.2 Using ARM libraries .. 3-9
3.3 Using your own libraries .. 3-12

Glossary

iv Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0202C

ARM DUI 0202C Copyright © 2002, 2003 ARM Limited. All rights reserved. v

Preface

This preface introduces the RealView™ Compilation Tools v2.0 Essentials Guide and
other user documentation. It contains the following sections:

• About this book on page vi

• Feedback on page ix.

Preface

vi Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0202C

About this book

This book provides an overview of the RealView Compilation Tools (RVCT) v2.0 tools
and documentation.

Intended audience

This book is written for all developers who are producing applications using RVCT. It
assumes that you are an experienced software developer.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an introduction to RVCT. The components of RVCT
and the online documentation are described.

Chapter 2 Differences

Read this chapter for details of the differences between RVCT v2.0,
RVCT v1.2, and the ARM Developer Suite v1.2 (ADS v1.2).

Chapter 3 Creating an Application

Read this chapter for a brief overview of how to create an application
using RVCT.

Typographical conventions

The following typographical conventions are used in this book:

italic Highlights important notes, introduces special terminology,
denotes internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes
ARM processor signal names. Also used for terms in descriptive
lists, where appropriate.

monospace Denotes text that can be entered at the keyboard, such as
commands, file and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. The
underlined text can be entered instead of the full command or
option name.

Preface

ARM DUI 0202C Copyright © 2002, 2003 ARM Limited. All rights reserved. vii

monospace italic Denotes arguments to commands and functions where the
argument is to be replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

Further reading

This section lists publications from ARM Limited that provide additional information
on developing code for the ARM family of processors.

ARM Limited periodically provides updates and corrections to its documentation. See
http://www.arm.com for current errata sheets and addenda, and the ARM Frequently
Asked Questions.

ARM publications

This book contains general information about RVCT. Other publications included in the
suite are:

• RealView Compilation Tools v2.0 Developer Guide (ARM DUI 0203). This book
provides tutorial information on writing code targeted at the ARM family of
processors.

• RealView Compilation Tools v2.0 Assembler Guide (ARM DUI 0204). This book
provides reference and tutorial information on the ARM assembler.

• RealView Compilation Tools v2.0 Compiler and Libraries Guide (ARM DUI
0205). This book provides reference information for RVCT. It describes the
command-line options to the compiler and gives reference material on the ARM
implementation of the C and C++ compiler and the C libraries.

• RealView Compilation Tools v2.0 Linker and Utilities Guide (ARM DUI 0206).
This book provides reference information on the command-line options to the
linker and the fromELF utility.

The following additional documentation is provided with RealView Compilation Tools:

• ARM FLEXlm License Management Guide (ARM DUI 0209). This is supplied in
DynaText format as part of the online books, and as a PDF file in
install_directory\Documentation\FLEXlm\3.0\release\platform\PDF.

• ARM ELF specification (SWS ESPC 0003). This is supplied as a PDF file,
ARMELF.pdf, in
install_directory\Documentation\Specifications\1.0\release\platform\PDF.

• TIS DWARF 2 specification. This is supplied as a PDF file, TIS-DWARF2.pdf, in
install_directory\Documentation\Specifications\1.0\release\platform\PDF.

Preface

viii Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0202C

• ARM-Thumb Procedure Call Standard specification. This is supplied as a PDF
file, ATPCS.pdf, in
install_directory\Documentation\Specifications\1.0\release\platform\PDF.

In addition, refer to the following documentation for specific information relating to
ARM products:

• RealView ARMulator ISS v1.3 User Guide (ARM IDE 0170)

• ARM Reference Peripheral Specification (ARM DDI 0062)

• the ARM datasheet or technical reference manual for your hardware device.

Preface

ARM DUI 0202C Copyright © 2002, 2003 ARM Limited. All rights reserved. ix

Feedback

ARM Limited welcomes feedback on both RealView Compilation Tools and its
documentation.

Feedback on the RealView Compilation Tools

If you have any problems with RealView Compilation Tools, contact your supplier. To
help them provide a rapid and useful response, give:

• your name and company

• the serial number of the product

• details of the release you are using

• details of the platform you are running on, such as the hardware platform,
operating system type and version

• a small standalone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

• the commands you used, including any command-line options

• sample output illustrating the problem

• the version string of the tool, including the version number and date.

Feedback on this book

If you notice any errors or omissions in this book, send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments apply

• a concise explanation of the problem.

General suggestions for additions and improvements are also welcome.

Preface

x Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0202C

ARM DUI 0202C Copyright © 2002, 2003 ARM Limited. All rights reserved. 1-1

Chapter 1
Introduction

This chapter introduces RealView Compilation Tools v2.0 (RVCT v2.0) and describes
its software components and documentation. It contains the following sections:

• About the RealView Compilation Tools on page 1-2

• Online documentation on page 1-5.

Introduction

1-2 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0202C

1.1 About the RealView Compilation Tools

RVCT consists of a suite of tools, together with supporting documentation and
examples, that enable you to write and build applications for the ARM family of RISC
processors.

You can use RVCT to build C, C++, or ARM assembly language programs.

1.1.1 Components of RVCT

RVCT consists of the following major components:

• Development tools

• Utilities on page 1-3

• Supporting software on page 1-4.

Development tools

The following development tools are provided:

armcc The ARM and Thumb C and C++ compiler. The compiler is tested
against the Plum Hall C Validation Suite for ISO conformance. It
compiles:

• ISO C source into 32-bit ARM code

• ISO C++ source into 32-bit ARM code

• ISO C source into 16-bit Thumb® code

• ISO C++ source into 16-bit Thumb code

armasm The ARM and Thumb assembler. This assembles both ARM assembly
language and Thumb assembly language source.

armlink The ARM linker. This combines the contents of one or more object files
with selected parts of one or more object libraries to produce an
executable program. The ARM linker creates ELF executable images.

Rogue Wave C++ library

The Rogue Wave library provides an implementation of the standard C++
library as defined in the ISO/IEC 14822:1998 International Standard for
C++. For more information on the Rogue Wave library, see the online
HTML documentation on the CD ROM.

support libraries

The ARM C libraries provide additional components to enable support
for C++ and to compile code for different architectures and processors.

Introduction

ARM DUI 0202C Copyright © 2002, 2003 ARM Limited. All rights reserved. 1-3

Utilities

The following utility tools are provided to support the main development tools:

fromELF The ARM image conversion utility. This accepts ELF format input files
and converts them to a variety of output formats, including:

• plain binary

• Motorola 32-bit S-record format

• Intel Hex 32 format

• Verilog-like hex format.

fromELF can also generate text information about the input image, such
as code and data size.

armar The ARM librarian enables sets of ELF format object files to be collected
together and maintained in libraries. You can pass such a library to the
linker in place of several ELF files.

Supported standards

The industry standards supported by RVCT include:

ar UNIX-style archive files are supported by armar.

DWARF2 DWARF2 debug tables are supported by the compiler, linker, and
ELF/DWARF2 compatible debuggers.

ISO C The ARM compiler accepts ISO C as input. The option --strict can be
used to enforce strict ISO compliance.

C++ The ARM compiler supports the full ISO C++ language, except for
exceptions.

ELF The ARM tools produce ELF format files. The fromELF utility can
translate ELF files into other formats.

EABI The ARM Embedded Application Binary Interface (EABI) enables you
to use the ARM and Thumb objects and libraries from different producers
that support the EABI For more details, see the ARM EABI home page on the
ARM DevZone™. You can access the ARM DevZone from
http://www.arm.com.

Introduction

1-4 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0202C

Supporting software

To debug your programs under simulation, or on ARM-based hardware, use an
ELF/DWARF2 compatible debugger.

The following support software is available to enable you to debug your programs under
simulation:

RealView ARMulator® ISS

RealView ARMulator Instruction Set Simulator (RealView ARMulator
ISS) is the ARM core simulator. This provides instruction-accurate
simulation of ARM processors, and enables ARM and Thumb executable
programs to be run on non-native hardware. RealView ARMulator ISS
provides a series of modules that:

• model the ARM processor core

• model the memory used by the processor.

There are alternative predefined models for each of these parts. However,
you can create your own models if a supplied model does not meet your
requirements. For more details, see the RealView ARMulator ISS v1.3
User Guide.

1.1.2 Documentation

See the Further Reading sections in each book for related publications from ARM, and
from third parties.

Introduction

ARM DUI 0202C Copyright © 2002, 2003 ARM Limited. All rights reserved. 1-5

1.2 Online documentation

The RVCT documentation is also available online as DynaText electronic books. The
content of the DynaText manuals is identical to that of the PDF documentation.

In addition, documentation for the Rogue Wave C++ library is available in HTML
format. See HTML on page 1-12 for more information.

PDFs of the RVCT manuals are installed only for a Full installation. The Typical
installation only installs PDFs of related documentation that is not available in the
DynaText online books.

1.2.1 DynaText

The manuals for RVCT are provided on the CD-ROM as DynaText electronic books.
The DynaText browser is installed by default for a Typical or Full installation.

To display the online documentation, either:

• select Online Books from the ARM RealView Compilation Tools v2.0 program
group

• execute Dtext.exe in
install_directory\Documentation\DynaText\4.1\release\win_32-pentium\bin.

The DynaText browser displays a list of available collections and books (Figure 1-1 on
page 1-6).

Introduction

1-6 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0202C

Figure 1-1 DynaText browser with list of available books

Opening a book

Double-click on a title in the book list to open the book. The table of contents for the
book is displayed in the left panel and the text is displayed in the right panel (see
Figure 1-2 on page 1-7).

Introduction

ARM DUI 0202C Copyright © 2002, 2003 ARM Limited. All rights reserved. 1-7

Figure 1-2 Opening a book

Navigating through the book

Click on a section in the table of contents to display the text for that section. For
example, selecting C and C++ libraries displays the text for that section (see Figure 1-3
on page 1-8).

Introduction

1-8 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0202C

Figure 1-3 Selecting a section from the table of contents

Navigating using hyperlinks

Text in blue indicates a link that displays a different section of a book, or a different
book. Plain blue text indicates that the link is within the current chapter. Underlined
blue text indicates that the link is either to another chapter within the current book, or
to a different book. Hyperlinks behave differently depending on their target:

• if the link is within the current chapter (plain blue text), DynaText scrolls the
current window to display the target

• if the link is to another chapter in the current book, DynaText opens a new window
without a Table of Contents

• if the link is to another book, DynaText opens a new window with a Table of
Contents.

Figure 1-4 on page 1-9 shows the browser displaying the text for the linked text.

Introduction

ARM DUI 0202C Copyright © 2002, 2003 ARM Limited. All rights reserved. 1-9

Figure 1-4 Using text links

Displaying graphics

Graphics are not displayed inline in the DynaText browser. If a graphic symbol is
displayed, select it to display the linked graphic in its own window (see Figure 1-5).

Figure 1-5 Link to a figure

Clicking on the figure icon displays the figure in its own window (see Figure 1-6 on
page 1-10).

Introduction

1-10 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0202C

Figure 1-6 Graphic displayed

Navigating to a different book

If the blue link text refers to a different book, clicking on the link text displays the linked
book in its own window (see Figure 1-7 on page 1-11).

Introduction

ARM DUI 0202C Copyright © 2002, 2003 ARM Limited. All rights reserved. 1-11

Figure 1-7 Navigating to a different book

Displaying help for DynaText

Select Help → Reader Guide to display help on how to use DynaText.

Introduction

1-12 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0202C

1.2.2 HTML

The manuals for the Rogue Wave C++ library for RVCT are provided on the CD-ROM
in HTML files. Use a web browser, such as Netscape Communicator or Internet
Explorer, to view these files. For example, select
install_directory\Documentation\RogueWave\1.0\release\stdref\index.htm to display
the HTML documentation for Rogue Wave (see Figure 1-8 where the install_directory
is C:\Program Files\ARM).

Figure 1-8 HTML browser

ARM DUI 0202C Copyright © 2002, 2003 ARM Limited. All rights reserved. 2-1

Chapter 2
Differences

This chapter describes the major differences between RVCT v2.0, RVCT v1.2, and
ADS v1.2. It contains the following sections:

• Overview on page 2-2

• Changes between RVCT v2.0 and RVCT v1.2 on page 2-3

• Changes between RVCT v1.2 and ADS v1.2 on page 2-6.

Differences

2-2 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0202C

2.1 Overview

This chapter describes the changes that have been made between RVCT v2.0, RVCT
v1.2, ADS v1.2.

The most important differences between RVCT v2.0 and RVCT v1.2 are:

• The RVCT v2.0 compiler:

— There is a new front-end to the RVCT v2.0 compiler that includes changes
to the command-line options. The options available in the older ARM
compilers are supported for backwards compatibility.

— The four individual compilers, armcc, tcc, armcpp and tcpp, are merged into
a single compiler, armcc. However, to aid migration to the new compiler,
you can invoke the RVCT v2.0 compiler using the individual compiler
names.

— The RVCT v2.0 compiler is compliant with the ARM Embedded
Application Binary Interface (EABI).

• There is full ISO C++ support as defined by the ISO/IEC 14822 :1998
International Standard for C++, by way of the EDG (Edison Design Group)
front-end. This includes namespaces, templates and intelligent implementation of
Run-Time Type Information (RTTI), but excludes exceptions.

• Support for ARM Architecture v6.

• Compiance with the ARM Embedded Application Binary Interface (EABI).

• Re-engineered inline assembler and new embedded assembler.

• ARM and Thumb compilation on a per-function basis.

• Unicode and multibyte characters are supported.

• There are no temporary licenses.

For a summary of the changes between RVCT v1.2 and ADS v1.2, see Changes between
RVCT v1.2 and ADS v1.2 on page 2-6.

Differences

ARM DUI 0202C Copyright © 2002, 2003 ARM Limited. All rights reserved. 2-3

2.2 Changes between RVCT v2.0 and RVCT v1.2

This section describes the changes between RVCT v2.0 and RVCT v1.2, and includes:

• General changes

• Changes to the ARM compiler

• Changes to the ARM linker on page 2-4

• Changes to the ARM assembler on page 2-5.

2.2.1 General changes

The following changes have been made to RVCT:

• Support for ARM architecture v6.

• Compliance with the ARM Embedded Application Binary Interface (EABI). See
the ARM EABI home page on the ARM DevZone™. You can access the ARM
DevZone from http://www.arm.com/.

• Support for double dashes "--" to indicate command-line keywords (for example,
--cpp) and single dashes "-" for command-line single-letter options, with or
without arguments (for example, -S).

Note
 The single-dash command-line options used in previous versions of ADS and

RVCT are still supported for backwards-compatibility.

2.2.2 Changes to the ARM compiler

The major changes that have been made to the ARM compiler (armcc) are as follows:

• There is a new front-end to the RVCT v2.0 compiler that includes changes to the
command-line options. The options available in the older ARM compilers are
supported for backwards compatibility.

• The four individual compilers, armcc, tcc, armcpp and tcpp, are now merged into
a single compiler, armcc. However, to aid migration to the new compiler, you can
invoke the RVCT v2.0 compiler using the individual compiler names.

• Support for ARMv6, and exploits the unaligned access behavior of ARMv6.

• A new embedded assembler to complement the inline assembler.

• ARM and Thumb compilation on a per-function basis, #pragma arm and #pragma
thumb.

Differences

2-4 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0202C

• Four floating-point models using the --fpmode option.

• The behavior of the --list option is different from that in the older compilers.

• C++ template instantiation.

• C++ namespaces.

• You can specify the level of pointer alignment.

• Control and manipulation of diagnostic messages. Also, the numbering of
diagnostic messages has changed. Messages now have the number format #nnnn
or #nnnn-D. The message numbers for messages with the -D suffix can be used in
those options that enable you to manipulate the diagnostic messages.

• Many old compiler options are not supported in the new interface. However, for
backwards compatibility, these options are available if you use the --old_cfe
option. See the appendix describing the older compiler options in the RealView
Compilation Tools v2.0 Compiler and Libraries Guide for more details. Where
applicable, this appendix also shows how the old compiler options map to the new
compiler options. For those messages listed in the RealView Compilation Tools
v2.0 Compiler and Libraries Guide, the appendix also shows the equivalent
messages that are output by the new compiler interface.

Note
 If you use the --old_cfe option, then the older numbering format is used for

messages output by the compiler.

Other changes include the addition of new pragmas and predefined macros, additional
C and C++ language extensions, and changes to the ARM C and C++ libraries.

2.2.3 Changes to the ARM linker

The following changes have been made to the ARM linker (armlink):

• The -unresolved option is now applicable to partial linking.

• A new steering file command, RESOLVE, has been added, and is used when
performing partial linking. RESOLVE is similar in use to the armlink option
-unresolved.

• The option -edit now accepts multiple files.

• There is a new option -pad to specify a value for padding bytes.

• New scatter-loading attributes, EMPTY and ZEROPAD, have been added.

Differences

ARM DUI 0202C Copyright © 2002, 2003 ARM Limited. All rights reserved. 2-5

2.2.4 Changes to the ARM assembler

The following changes have been made to the ARM assembler (armasm):

• Support for new ARM architecture v6 instructions has been added. These include
saturating instructions, parallel instructions, and packing and unpacking
instructions.

• The ALIGN directive has an additional parameter, to specify the contents of any
padding. This parameter is optional.

• There is a new AREA directive, NOALLOC.

• There are two new directives, ELIF and FRAME RETURN ADDRESS.

• There are four new built-in variables {AREANAME}, {COMMANDLINE}, {LINENUM}, and
{INPUTFILE}.

Differences

2-6 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0202C

2.3 Changes between RVCT v1.2 and ADS v1.2

The most important differences between RVCT v1.2 and ADS v1.2 are:

• The CodeWarrior IDE for managing projects has been removed.

• The ARM eXtended Debugger (AXD) and ARM symbolic debugger (armsd) have
been removed.

• The RealView ARMulator instruction set simulator is not included in RVCT. This
is now provided with other ARM debuggers and as a separate product.

• The ARM Profiler (armprof) has been removed.

• The ARM Applications Library is not included.

ARM DUI 0202C Copyright © 2002, 2003 ARM Limited. All rights reserved. 3-1

Chapter 3
Creating an Application

This chapter describes how to create an application using RVCT. It contains the
following sections:

• Building an application on page 3-2

• Using ARM libraries on page 3-9

• Using your own libraries on page 3-12.

Creating an Application

3-2 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0202C

3.1 Building an application

This section describes how to build an application using:

• the compiler (see Using the compilers)

• the assembler (see Using the assembler on page 3-5)

• the linker (see Setting linker options on page 3-6).

3.1.1 Using the compilers

The ARM compiler, armcc, can compile C and C++ source into 32-bit ARM code, or
16-bit Thumb code.

Typically, the ARM compiler is invoked as follows:

armcc [options] ifile_1 ... ifile_n

You can specify one or more input files ifile_1 ... ifile_n. If you specify a dash - for
an input file, the compiler reads from stdin.

Default behavior

By default the file suffix you specify changes the configuration assumed by the ARM
compiler at start-up. Table 3-1 shows how the compiler start-up configuration is
adjusted by the filename extension you specify.

Table 3-1 Start-up configuration as adjusted by filename extension

Filename
extension

Instruction
set

Source
language

.cpp No
adjustment

C++

.c No
adjustment

No
adjustment

.tc Thumb C

.tcpp Thumb C++

.ac ARM C

.acpp ARM C++

Creating an Application

ARM DUI 0202C Copyright © 2002, 2003 ARM Limited. All rights reserved. 3-3

Invoking the ARM compiler using older tool names

For backwards compatibility, you can still invoke the ARM compiler using one of the
four tool names that were supported in the ARM compilation tools before RVCT v2.0.
The startup configuration associated with each of the older tool names is shown in
Table 3-2.

Overriding the default behavior

The command-line options shown in Table 3-3 enable you to override the adjustments
that the ARM compiler makes based on the filename extension (see Table 3-1 on
page 3-2) or the tool name you used to invoke the compiler (see Table 3-2).

Table 3-2 Start-up configuration based on old tool names

Tool
name

Instruction
set

Source
language

armcca

a. This is included for completeness, even
though it is the same tool name as the
ARM compiler for RVCT v2.0.

ARM C

tcc Thumb C

armcpp ARM C++

tcpp Thumb C++

Table 3-3 Start-up configuration as adjusted by overriding options

Command-
line option

Instruction
set

Source
language

--c90 No
adjustment

C

--cpp No
adjustment

C++

--arm ARM no
adjustment

--thumb Thumb no
adjustment

Creating an Application

3-4 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0202C

For example, the following command-line causes the compiler to make determinations
as shown in Table 3-4:

tcpp foo.acpp --c90

The configuration that results from these considerations is shown in the Result row at
the bottom of the table.

To summarize, the filename extension overrides the default configuration determined by
the tool name used to invoke the ARM compiler, and the command-line option overrides
the default configuration determined by the filename extension.

Building an example

Sample C source code for a simple application is in
install_directory\Rvct\Examples\2.0\build_num\windows\embedded\embed\main.c.

To build the example:

1. Compile the C file main.c with either:

armcc -g -O1 -c main.c (for ARM)

armcc --thumb -g -O1 -c main.c (for Thumb)

where:

-g Tells the compiler to add debug tables.

-O1 Tells the compiler to select the best possible optimization while
maintaining an adequate debug view.

-c Tells the compiler to compile only (not to link).

--thumb Tells the compiler to generate Thumb code. (The alternative option,
--arm, tells the compiler to generate ARM code, and is the default.)

Table 3-4 Example configuration

Example
Command
Component

Description
Instruction
set

Source
language

tcpp tool name Thumb C++

.acpp filename
extension

ARM C++

--c90 command-line
option

No
adjustment

C

Result ARM C

Creating an Application

ARM DUI 0202C Copyright © 2002, 2003 ARM Limited. All rights reserved. 3-5

2. Link the image using the following command:

armlink main.o -o embed.axf

where:

-o Specifies the output file as embed.axf.

3. Use an ELF/DWARF2 compatible debugger to load and test the image.

3.1.2 Using the assembler

The basic syntax to use the ARM assembler (armasm) is:

armasm inputfile

For example, to assemble the code in a file called myfile.s, type:

armasm -list myfile.lst myfile.s

This produces an object file called myfile.o, and a listing file called myfile.lst.

For full details of the options and syntax, refer to the RealView Compilation Tools v2.0
Assembler Guide.

Example 3-1 shows a small interworking ARM/Thumb assembly language program.
You can use it to explore the use of the assembler, and linker.

Example 3-1

 AREA AddReg,CODE,READONLY ; Name this block of code.
 ENTRY ; Mark first instruction to call.
main
 ADR r0, ThumbProg + 1 ; Generate branch target address and set bit 0
 ; hence arrive at target in Thumb state.
 BX r0 ; Branch and exchange to ThumbProg.
 CODE16 ; Subsequent instructions are Thumb code.
ThumbProg
 MOV r2, #2 ; Load r2 with value 2.
 MOV r3, #3 ; Load r3 with value 3.
 ADD r2, r2, r3 ; r2 = r2 + r3
 ADR r0, ARMProg ; Generate branch target address with bit 0 zero.
 BX r0 ; Branch and exchange to ARMProg.
 CODE32 ; Subsequent instructions are ARM code.
ARMProg
 MOV r4, #4
 MOV r5, #5
 ADD r4, r4, r5
stop MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit

Creating an Application

3-6 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0202C

 SWI 0x0123456 ; ARM semihosting SWI

 END ; Mark end of this file.

Building the example

To build the example:

1. Enter the code using any text editor and save the file in your current working
directory as addreg.s.

2. Type armasm -list addreg.lst addreg.s at the command prompt to assemble the
source file.

3. Type armlink addreg.o -o addreg to link the file.

4. Use an ELF/DWARF2 compatible debugger to load and test the image. Step
through the program, and examine the registers to see how they change (see your
debugger documentation for details on how to do this).

For more details on ARM and Thumb assembly language, see the RealView
Compilation Tools v2.0 Assembler Guide.

3.1.3 Setting linker options

The ARM linker, armlink, enables you to:

• link a collection of objects and libraries into an executable ELF image

• partially link a collection of objects into an object that can be used as input for a
future link step

• specify where the code and data will be located in memory

• produce debug and reference information about the linked files.

Objects consist of input sections that contain code, initialized data, or the locations of
memory that must be set to zero. Input sections can be Read-Only (RO), Read/Write
(RW), or Zero-Initialized (ZI). These attributes are used by armlink to group input
sections into bigger building blocks called output sections, regions and images. Output
sections are approximately equivalent to ELF segments.

The default output from the linker is a non-relocatable image where the code starts at
0x8000 and the data section is placed immediately after the code. You can specify
exactly where the code and data sections are located by using linker options or a
scatter-load description file.

Creating an Application

ARM DUI 0202C Copyright © 2002, 2003 ARM Limited. All rights reserved. 3-7

Linker input and output

Input to armlink consists of:

• one or more object files in ELF Object Format

• optionally, one or more libraries created by armar.

Output from a successful invocation of armlink is one of the following:

• an executable image in ELF executable format

• a partially linked object in ELF object format.

For simple images, ELF executable files contain segments that are approximately
equivalent to RO and RW output sections in the image. An ELF executable file also has
ELF sections that contain the image output sections.

An executable image in ELF executable format can be converted to other file formats
by using the fromELF utility. See the RealView Compilation Tools v2.0 Linker and
Utilities Guide for information on the fromELF utility.

Linker syntax

The linker command syntax is of the form:

armlink [-help_options] [-output_options] [-via_options] [-memory_map_options]
[-image_content_options] [-image_info_options] [-diagnostic_options]

See the RealView Compilation Tools v2.0 Linker and Utilities Guide for a detailed list
of the linker options.

Using linker options to position sections

The following linker options control how sections are arranged in the final image and
whether the code and data can be moved to a new location after the application starts:

-ropi This option makes the load and execution region containing the RO
output section position-independent. If this option is not used the region
is marked as absolute.

-ro-base address

This option sets the execution addresses of the region containing the RO
output section at address. The default address is 0x8000.

-rw-base address

This option sets the execution addresses of the region containing the RW
output section at address. The default address is at the end of the RW
section.

Creating an Application

3-8 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0202C

-rwpi This option makes the load and execution region containing the RW and
ZI output section position-independent. If this option is not used the
region is marked as absolute. The -rwpi option is ignored if -rw-base is
not also used. Usually each writable input section must be read-write
position-independent.

If you want more control over how the sections are placed in an image, use the -scatter
option and specify a scatter-load description file.

Using scatter-load description files for a simple image

The command-line options (-ro-base, -rw-base, -ropi, and -rwpi) create simple images.

You can create the more complex images by using the -scatter option to specify a
scatter-load description file. The -scatter option is mutually exclusive with the use of
any of the simple memory map options -ro-base, -rw-base, -ropi, or -rwpi.

For more information on the linker and scatter-load description files, see the RealView
Compilation Tools v2.0 Linker and Utilities Guide and the chapter on embedded
software development in the RealView Compilation Tools v2.0 Developer Guide.

Creating an Application

ARM DUI 0202C Copyright © 2002, 2003 ARM Limited. All rights reserved. 3-9

3.2 Using ARM libraries

The following run-time libraries are provided to support compiled C and C++:

ISO C The C libraries consist of:

• The functions defined by the ISO C library standard.

• Target-dependent functions used to implement the C library
functions in the semihosted execution environment. You can
redefine these functions in your own application.

• Helper functions used by the C and C++ compilers.

C++ The C++ libraries contain the functions defined by the ISO C++ library
standard. The C++ library depends on the C library for target-specific
support and there are no target dependencies in the C++ library. This
library consists of:

• the Rogue Wave Standard C++ Library version 2.01.01

• helper functions for the C++ compiler

• additional C++ functions not supported by the Rogue Wave library.

As supplied, the ISO C libraries use the standard ARM semihosted environment to
provide facilities such as file input/output. This environment is supported by the
ARMulator, RealMonitor, Angel, and Multi-ICE. You can use the ARM development
tools in RVCT to develop applications. To load and test the application under the
ARMulator or on a development board, use an ELF/DWARF2 compatible debugger.
See the chapter on Semihosting in the RealView Compilation Tools v2.0 Compiler and
Libraries Guide for more information.

You can re-implement any of the target-dependent functions of the C library as part of
your application. This enables you to tailor the C library, and therefore the C++ library,
to your own execution environment.

The libraries are installed in the following subdirectories within
install_directory\RVCT\Data\2.0\build_num\lib:

armlib Contains the variants of the ARM C library, the floating-point arithmetic
library, and the math library. The accompanying header files are in
install_directory\RVCT\Data\2.0\build_num\include.

cpplib Contains the variants of the Rogue Wave C++ library and supporting C++
functions. The Rogue Wave and supporting C++ functions are
collectively referred to as the ARM C++ Libraries. The accompanying
header files are installed in
install_directory\RVCT\Data\2.0\build_num\include.

Creating an Application

3-10 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0202C

Note

 • The ARM C libraries are supplied in binary form only.

• The ARM libraries should not be modified. If you want to create a new
implementation of a library function, place the new function in an object file, or
your own library, and include it when you link the application. Your version of the
function will be used instead of the standard library version.

• Normally, only a few functions in the ISO C library require re-implementation in
order to create a target-dependent application.

• The source for the Rogue Wave Standard C++ Library is not freely distributable.
It can be obtained from Rogue Wave Software Inc., or through ARM Limited, for
an additional licence fee. See the Rogue Wave online documentation in
install_directory\Documentation\RogueWave\1.0\release for more about the
C++ library.

3.2.1 Using the ARM libraries in a semihosted environment

If you are developing an application to run in a semihosted environment for debugging,
you must have an execution environment that supports the ARM and Thumb
semihosting SWIs and has sufficient memory.

The execution environment can be provided by either:

• using the standard semihosting functionality that is present by default in, for
example, ARMulator, RealMonitor, Angel, and Multi-ICE

• implementing your own SWI handler for the semihosting SWI.

You do not have to write any new functions or include files if you are using the default
semihosting functionality of the library.

See the chapter on Semihosting in the RealView Compilation Tools v2.0 Compiler and
Libraries Guide for more information.

3.2.2 Using the ARM libraries in a nonsemihosted environment

If you do not want to use any semihosting functionality, you must ensure that either no
calls are made to any function that uses semihosting or that such functions are replaced
by your own nonsemihosted functions.

To build an application that does not use semihosting functionality:

1. Create the source files to implement the target-dependent features.

2. Use #pragma import(__use_no_semihosting_swi) to guard the source.

Creating an Application

ARM DUI 0202C Copyright © 2002, 2003 ARM Limited. All rights reserved. 3-11

3. Link the new objects with your application.

4. Use the new configuration when creating the target-dependent application.

You must re-implement functions that the C library uses to insulate itself from target
dependencies. For example, if you use printf() you must re-implement fputc(). If you
do not use the higher level input/output functions like printf(), you do not have to
re-implement the lower level functions like fputc().

If you are building an application for a different execution environment, you can
re-implement the target-dependent functions (functions that use the semihosting SWI
or that depend on the target memory map). There are no target-dependent functions in
the C++ library. See the chapter on C and C++ libraries in the RealView Compilation
Tools v2.0 Compiler and Libraries Guide for more information.

3.2.3 Building an application without the ARM libraries

Creating an application that has a main() function causes the C library initialization
functions to be included.

If your application does not have a main() function, the C library is not initialized and
the following features are not available to your application:

• software stack checking

• low-level stdio

• signal-handling functions, signal() and raise() in signal.h

• atexit()

• alloca().

You can create an application that consists of customized startup code, instead of the
library initialization code, and still use many of the library functions. You must either:

• avoid functions that require initialization

• provide the initialization and low-level support functions.

These applications will not automatically use the full C run-time environment provided
by the C library. Even though you are creating an application without the library, some
helper functions from the library must be included. There are also many library
functions that can be made available with only minor re-implementations. See the
chapter on C and C++ libraries in the RealView Compilation Tools v2.0 Compiler and
Libraries Guide for more information.

Creating an Application

3-12 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0202C

3.3 Using your own libraries

The ARM librarian, armar, enables sets of ELF object files to be collected together and
maintained in libraries. Such a library can then be passed to armlink in place of several
object files. However, linking with an object library file does not necessarily produce
the same results as linking with all the object files collected into the object library file.
This is because armlink processes the input list and libraries differently:

• each object file in the input list appears in the output unconditionally, although
unused areas are eliminated if the armlink -remove option is specified

• a member of a library file is included in the output only if it is referred to by an
object file or a previously processed library file.

To create a new library called my_lib and add all the object files in the current directory,
type:

armar -create my_lib *.o

To delete all objects from the library that have a name starting with sys_, type:

armar -d my_lib sys_*

To replace, or add, three objects in the library with the version located in the current
directory, type:

armar -r my_lib obj1.o obj2.o obj3.o

For more information on armar, see the RealView Compilation Tools v2.0 Linker and
Utilities Guide.

Note
 The ARM libraries must not be modified. If you want to create a new implementation
of a library function, place the new function in an object file or your own library. Include
your object or library when you link the application. Your version of the function is used
instead of the standard library version.

ARM DUI 0202C Copyright © 2002, 2003 ARM Limited. All rights reserved. Glossary-1

Glossary

American National Standards Institute (ANSI)
An organization that specifies standards for, among other things, computer software.
This is superseded by the International Standards Organization.

Angel A debug monitor that enables you to develop and debug applications running on
ARM-based hardware. Angel can debug applications running in either ARM state or
Thumb state.

ANSI See American National Standards Institute.

APCS ARM Procedure Call Standard.

API See Application Programming Interface.

Application Programming Interface
The syntax of the functions and procedures within a module or library.

Archive A package containing all the files associated with a release of a built model.

ARM instruction A word that specifies an operation for an ARM processor to perform. ARM instructions
must be word-aligned.

ARM state A processor that is executing ARM (32-bit) instructions is operating in ARM state.

See also Thumb State.

armasm The ARM assembler.

Glossary

Glossary-2 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0202C

armcc The ARM C compiler.

ARM-Thumb Procedure Call Standard (ATPCS)
Defines how registers and the stack are used for subroutine calls.

ARMulator See RealView ARMulator ISS.

ATPCS See ARM-Thumb Procedure Call Standard.

Big-endian Memory organization in which the least significant byte of a word is at a higher address
than the most significant byte.

Bit Binary digit.

Breakpoint A location in the image. If execution reaches this location, the debugger halts execution
of the image.

See also Watchpoint.

Byte An 8-bit data item.

C file A file containing C source code.

Cache A block of high-speed memory locations whose addresses are changed automatically in
response to those memory locations the processor is accessing, and whose purpose is to
increase the average speed of a memory access.

Class A C++ class involved in the image.

CLI C Language Interface/Command-Line Interface.

Command-line Interface
You can operate any ARM debugger by issuing commands in response to command-line
prompts. This is the only way of operating armsd, but ADW, ADU and AXD all offer a
graphical user interface in addition. A command-line interface is particularly useful
when you have to run the same sequence of commands repeatedly. You can store the
commands in a file and submit that file to the command-line interface of the debugger.

Compilation The process of converting a high-level language (such as C or C++) into an object file.

Coprocessor An additional processor used for certain operations. Usually used for floating-point
math calculations, signal processing, or memory management.

CPSR Current Program Status Register.

See also Program Status Register.

CPU Central Processor Unit.

C, C++ Programming languages.

Glossary

ARM DUI 0202C Copyright © 2002, 2003 ARM Limited. All rights reserved. Glossary-3

Debugger An application that monitors and controls the execution of a second application. Usually
used to find errors in the application program flow.

Deprecated A deprecated option or feature is one that you are strongly discouraged from using.
Deprecated options and features will not be supported in future versions of the product.

DLL See Dynamic Linked Library.

DWARF Debug With Arbitrary Record Format.

Dynamic Linked Library
A collection of programs, any of which can be called when required by an executing
program. A small program that helps a larger program communicate with a device such
as a printer or keyboard is often packaged as a DLL.

ELF Executable and Linking Format.

Embedded Applications that are developed as firmware. Assembler functions placed out-of-line in
a C or C++ program.

See also Inline.

Exception Handles an event. For example, an exception could handle an external interrupt or an
undefined instruction.

FIQ Fast Interrupt.

Flash memory Nonvolatile memory that is often used to hold application code.

Floating-point Convention used to represent real (as opposed to integer) numeric values. Several such
conventions exist, trading storage space required against numerical precision.

FP See Floating-point

FPA Floating-Point Accelerator.

FPE Floating-Point Emulator.

FPU Floating-Point Unit.

GCC The Gnu C Compiler.

Global variables Variables with global scope within the image.

GUI Graphical User Interface.

Heap The portion of computer memory that can be used for creating new variables.

Host A computer that provides data and other services to another computer.

ICE In-Circuit Emulator.

Glossary

Glossary-4 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0202C

IEEE Institute of Electrical and Electronic Engineers (USA).

Image An execution file that has been loaded onto a processor for execution.

Immediate values Values that are encoded directly in the instruction and used as numeric data when the
instruction is executed. Many ARM and Thumb instructions allow small numeric values
to be encoded as immediate values within the instruction that operates on them.

Inline Functions that are repeated in code each time they are used rather than having a
common subroutine. Assembler code placed within a C or C++ program.

See also Embedded.

Input section Contains code or initialized data or describes a fragment of memory that must be set to
zero before the application starts.

Interworking A method of working that allows branches between ARM and Thumb code.

IRQ Interrupt Request.

International Standards Organization (ISO)
An organization that specifies standards for, among other things, computer software.
This supersedes the American National Standards Institute.

ISO See International Standards Organization.

I/O In/out.

Library A collection of assembler or compiler output objects grouped together into a single
repository.

Linker Software that produces a single image from one or more source assembler or compiler
output objects.

Little-endian Memory organization in which most significant byte of a word is at a higher address
than the least significant byte.

Local An object that is only accessible to the subroutine that created it.

Memory Management Unit (MMU)
Allows detailed control of a memory system. Most of the control is provided through
translation tables held in memory.

MMU See Memory Management Unit.

Multi-ICE A multi-processor JTAG-based debug tool for embedded systems. Multi-ICE is an
ARM registered trademark.

Glossary

ARM DUI 0202C Copyright © 2002, 2003 ARM Limited. All rights reserved. Glossary-5

Output section A contiguous sequence of input sections that have the same RO, RW, or ZI attributes.
The sections are grouped together in larger fragments called regions. The regions are
grouped together into the final executable image.

PC See Program Counter.

PI Position-Independent.

Processor An actual processor, real or emulated running on the target. A processor always has at
least one context of execution.

Processor Status Register
See Program Status Register.

Program Counter (PC)
Integer register R15.

Program Status Register (PSR)
Contains some information about the current program and some information about the
current processor. Often, therefore, also referred to as Processor Status Register. Also
referred to as Current PSR (CPSR), to emphasize the distinction between it and the
Saved PSR (SPSR). The SPSR holds the value the PSR had when the current function
was called, and which will be restored when control is returned.

An Enhanced Program Status Register (EPSR) contains an additional bit (the Q bit,
signifying saturation) used by some ARM processors, including the ARM9E.

RAM Random Access Memory.

RDI See Remote Debug Interface.

Read-Only Position Independent
Code and read-only data addresses can be changed at run-time.

Read/Write Position Independent
Read/write data addresses can be changed at run-time.

Regions A contiguous sequence of one to three output sections (RO, RW, and ZI) in an image.

RealView ARMulator ISS
RealView ARMulator instruction set simulator (RealView ARMulator ISS). A
collection of modules that simulate the instruction sets and architecture of various ARM
processors. See the RealView ARMulator ISS v1.3 User Guide for more information.

Register A processor register.

Glossary

Glossary-6 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0202C

Remote Debug Interface (RDI)
The Remote Debug Interface is an ARM standard procedural interface between a
debugger and the debug agent. RDI gives the debugger a uniform way to communicate
with:

• a debug agent running on the host (for example, ARMulator)

• a debug monitor running on ARM-based hardware accessed through a
communication link (for example, Angel)

• a debug agent controlling an ARM processor through hardware debug support
(for example, Multi-ICE).

Retargeting The process of moving code designed for one execution environment to a new execution
environment.

RISC Reduced Instruction Set Computer.

ROM Read Only Memory.

ROPI See Read Only Position Independent.

Rounding modes Specify how the exact result of a floating-point operation is rounded to a value that is
representable in the destination format.

RPS Reference Peripheral System.

RWPI See Read Write Position Independent.

Saved Program Status Register
See Program Status Register.

Scatter loading Assigning the address and grouping of code and data sections individually rather than
using single large blocks.

Scope The accessibility of a function or variable at a particular point in the application code.
Symbols that have global scope are always accessible. Symbols with local or private
scope are only accessible to code in the same subroutine or object.

Script A file specifying a sequence of debugger commands that you can submit to the
command-line interface using the obey command. This saves you from having to enter
the commands individually, and is particularly helpful when you have to issue a
sequence of commands repeatedly.

SDT See Software Development Toolkit.

Semihosting A mechanism whereby the target communicates I/O requests made in the application
code to the host system, rather than attempting to support the I/O itself.

Glossary

ARM DUI 0202C Copyright © 2002, 2003 ARM Limited. All rights reserved. Glossary-7

Software Development Toolkit
Software Development Toolkit (SDT) is an ARM product still supported but superseded
by the ARM Development Suite (ADS) and RealView Compilation Tools (RVCT).

Source File A file that is processed as part of the image building process. Source files are associated
with images.

SP (Stack Pointer) Integer register R13.

SPSR Saved Program Status Register.

See also Program Status Register.

Software Interrupt (SWI)
An instruction that causes the processor to call a programer-specified subroutine. Used
by ARM to handle semihosting.

SWI See Software Interrupt.

Target The actual target processor, (real or simulated), on which the application is running.

The fundamental object in any debugging session. The basis of the debugging system.
The environment in which the target software will run. It is essentially a collection of
real or simulated processors.

TCC Thumb C Compiler.

Thumb instruction A halfword that specifies an operation for an ARM processor in Thumb state to
perform. Thumb instructions must be halfword-aligned.

Thumb state A processor that is executing Thumb (16-bit) instructions is operating in Thumb state.

See also ARM state.

Translation tables Tables held in memory that define the properties of memory areas of various sizes from
1KB to 1MB.

Unsigned data types
Represent a non-negative integer in the range 0 to + 2N-1, using normal binary format.

Variable A named memory location of an appropriate size to hold a specific data item.

VFP Vector Floating-Point.

Word Value held in four contiguous bytes. A 32-bit unit of information. Contents are taken as
being an unsigned integer unless otherwised stated.

Glossary

Glossary-8 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0202C

ARM DUI 0202C Copyright © 2002, 2003 ARM Limited. All rights reserved. Index-1

Index

The items in this index are listed in alphabetical order, with symbols and numerics appearing at the end. The
references given are to page numbers.

A
ANSI C library 1-3

ISO C standard
ar 1-3
armar 1-3, 3-12
armasm 1-2
armcc 1-2
armlib 3-9
armlink 1-2
ARMulator 1-4
Assembler

mode changing 3-5
using from the command line 3-5

B
Books

Assembler Guide vii
Compilers and Libraries Guide vii
Developer Guide vii
HTML 1-12

Linker and Utilities Guide vii

C
Command line

compiling from 3-2
development tools 1-2
linker options 3-6
using the assembler from 3-5

Compiler
default behaviour 3-2
overriding default behaviour 3-3
using from the command line 3-2

Components 1-2
C++ library

Rogue Wave 3-10
source 3-10

D
Documentation

online 1-5
DWARF2 1-3
Dyna Text 1-5

E
EABI 1-3
ELF 1-3
Embedded Application Binary Interface

1-3

F
fromELF 1-3

L
Librarian 3-12
Libraries

ARM 3-9

Index

Index-2 Copyright © 2002, 2003 ARM Limited. All rights reserved. ARM DUI 0202C

armar 3-12
custom 3-12
C++ 3-9
embedded 3-10
non-hosted environment 3-10
programing without 3-11
RogueWave 3-9
semihosting 3-10
semihosting dependencies 3-11
support 1-2

Linker
syntax 3-7

Linker options
setting from the command line 3-6
syntax 3-7

O
Online documentation 1-5

R
Rogue Wave C++ library 1-2

S
Scatter loading 3-8
Semihosting 3-10
Standards 1-3

	Contents
	Preface
	About this book
	Intended audience
	Using this book
	Further reading
	ARM publications

	Feedback
	Feedback on the RealView Compilation Tools
	Feedback on this book

	Introduction
	1.1 About the RealView Compilation Tools
	1.1.1 Components of RVCT
	Development tools
	Utilities
	Supported standards
	Supporting software

	1.1.2 Documentation

	1.2 Online documentation
	1.2.1 DynaText
	Opening a book
	Navigating through the book
	Navigating using hyperlinks
	Displaying graphics
	Navigating to a different book
	Displaying help for DynaText

	1.2.2 HTML

	Differences
	2.1 Overview
	2.2 Changes between RVCT v2.0 and RVCT v1.2
	2.2.1 General changes
	2.2.2 Changes to the ARM compiler
	2.2.3 Changes to the ARM linker
	2.2.4 Changes to the ARM assembler

	2.3 Changes between RVCT v1.2 and ADS v1.2

	Creating an Application
	3.1 Building an application
	3.1.1 Using the compilers
	Default behavior
	Invoking the ARM compiler using older tool names
	Overriding the default behavior
	Building an example

	3.1.2 Using the assembler
	Building the example

	3.1.3 Setting linker options
	Linker input and output
	Linker syntax
	Using linker options to position sections
	Using scatter-load description files for a simple image

	3.2 Using ARM libraries
	3.2.1 Using the ARM libraries in a semihosted environment
	3.2.2 Using the ARM libraries in a nonsemihosted environment
	3.2.3 Building an application without the ARM libraries

	3.3 Using your own libraries

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	L
	O
	R
	S

