
Example AXI design for a Logic Tile
on top of AXI Versatile base boards

Document number: ARM DAI 0151G

Issued: June 2008

Copyright ARM Limited 2008

ii Application Note 151
ARM DAI 0151G

July 21, 2005 A First release

December 1, 2005 B Getting started section added

April 20, 2006 C Corrected table 4-4.1 to show both HRDX and HRDY signals, format updates

June 27, 2007 D Supports all AXI Versatile base boards

July 24, 2007 E Added support for LT-XC4VLX100+ Virtex 4 logic tiles

September 10, 2007 F Added support for LT-XC5VLX330 Virtex 5 logic tile, details for PB11MPCore

Feburary 29, 2008 G Updated for new RTL structure, added details for PB-A8

�

�

�

�

Table of Contents

Application Note 151 1
ARM DAI 0151G

1.1 Purpose of this application note..2
1.2 AXI Versatile baseboard and LT overview..2

3.1 LT architecture ..5
3.2 Module functionality ..5
3.3 Clock architecture ...7
3.4 Interrupt architecture...8
3.5 Reset architecture...8

4.1 Top level (AXILTEx)..9
4.2 AXI subsystem (AXITopLevel) ..9
4.3 AXI multiplexing scheme...9
4.4 Header HDRX and HDRY AXI pin allocation..11
4.5 Header HDRZ pin allocation ...13
4.6 Description of the example master ...13
4.7 LTIDMerge ..14
4.8 Flash interface ..14
4.9 JTAG route through ..14

5.1 LT Memory map on EB...15
5.2 LT APB peripherals...15
5.3 System registers ...16
5.4 Interrupt controller...18
5.5 64bit ZBT SSRAM (LT-XC2V4000+ only) ..21
5.6 64bit Block RAM (LT-XC4VLX100+ only) ...21
5.7 64bit Block RAM (LT-XC5VLX330 only) ...21
5.8 Example slave...21
5.9 Reserved and undefined memory...21

6.1 Directory structure...22
6.2 logical ..22
6.3 physical ...22
6.4 Building the App Note using Microsoft Windows ..23
6.5 Building the App Note using Unix ...23
6.6 Board file selection..23

Introduction

2 Application Note 151
ARM DAI 0151G

This application note discusses the operation of the example AXI Logic Tile (LT) with an AXI Versatile baseboard.
It will examine the contents of the Logic Tile FPGA, the system interconnect, the clock structure, and specifics of
the LT programmer’s model directly relevant to Logic Tile operation.

On reading this Application Note the user should be in a position to make changes to the provided Logic Tile
FPGA design, connect their own AHB or AXI based masters and slaves, or debug and analyze the operation of
the provided image.

Table 1.1 References the AXI Versatile baseboards at time of publishing.

Emulation Baseboard (EB)

PB1176JZF-S

PB11MPCore

PB-A8

This application note is designed to work on an AXI Versatile baseboard, for example EB with a CT11MPCore Tile
fitted in Tile Site 1 and Logic Tile fitted in Tile Site 2, as shown in Figure 1 Example AXI LT on an AXI Versatile
baseboard. This LT example is clocked asynchronously to the EB. It is synthesized for up to 30MHz operation. It
will also work on PB1176JZFS, PB11MPCore and PB-A8.

Getting Started

Application Note 151 3
ARM DAI 0151G

Before you can use this application note with EB, you will need to program the Baseboard with the required FPGA
image to enable the Core Tile fitted in TILE SLOT 1 to function correctly. Please refer to the relevant application
note for details on how to do this (for example AN152). Once you have done this please follow these steps to
program the FPGA image in the Logic Tile with the image provided with this application note.

1. Plug the Logic Tile onto TILE SITE 2 of the Emulation Baseboard or TILE SITE 1 on PB1176JZF-S,
PB11MPCore or PB-A8.

2. Slide the CONFIG switch (S1) to the ON position.
3. Connect RVI or Multi-ICE to the Emulation Baseboard JTAG ICE connector (J18), or a USB cable to the USB

Debug Port.
4. For EB and PB1176JZF-S check the external supply voltage is +12V (positive on center pin, +/-10%, 35W),

and connect it to the power connector (J28).
5. Power-up the boards. The '3V3 OK' and ‘5V OK’ LEDs on the Baseboard should both be lit.
6. If using Multi-ICE, run Multi-ICE Server, press ctrl-L and load the relevant manual configuration file from the

\boardfiles\multi-ice directory. Depending on the version of Multi-ICE used it may also be necessary to add
new devices to Multi-ICE. Please refer to \boardfiles\irlength_arm.txt for information on how to do this.

7. If using the USB connection, ensure that your PC has correctly identified an ARM® RealView™ ICE Micro
Edition device is connected to the USB port. If the Windows operating system requires a USB driver to be
installed please refer to EB \boardfiles\USB_Debug_driver\readme.txt.

8. If using Real View ICE (RVI), you must ensure that the RVI unit is powered and has completed its start-up
sequence (check the LEDs on the front panel have stopped flashing).

9. You can now run the relevant ‘progcards’ utility for the connection you have prepared above.

� progcards_multiice.exe for your Multi ICE connection
� progcards_usb.exe for your USB connection
� progcards_rvi.exe for your RealView ICE connection

When using RVI select the target RVI box you are using.

10. Select the option for the Logic Tile you are using. The utility will report its progress; it may take several
minutes to download. A successful configuration download will be terminated with the message “Programming
Successful”.

11. Power down the boards.
12. Set the configuration switches to load Logic Tile FPGA image 0 (S2 on the Logic Tile set to all OFF).
13. Slide the CONFIG switch to the OFF position, and power-up the boards. Ensure the Logic Tile 'FPGA_OK’

and Emulation Baseboard ‘GLOBAL_DONE’ LEDs are lit. The Character LCD should show the Firmware and
Hardware versions indicating that the Boot monitor firmware is running.

14. The system will now be fully configured and ready for use.

System architecture

4 Application Note 151
ARM DAI 0151G

This system is an AXI (AMBA 3.0) based system. This LT image exposes one master port and one slave port
(both muxed 64 bit AXI) to the base board.

Note that the direction of the arrows indicates the direction of control, i.e. it points from the Master to the Slave. An
AXI bus contains signals going in both directions.

System architecture

Application Note 151 5
ARM DAI 0151G

������������	�
����

�� ��

������

��������

��������

��������	
��

��������	

��������
�

����������

�������

�� �������

���

��������	
�

��������	
�

������

������������	
����

����

��������	
�

��������

��� ���������	
��

��� ��

���������

AXILTEx

��������	
�

���������

�� ���������

���

��������

�������������������� ������������������

������������������

������������������

��

�� �������

���

��������	
�

��������

������� �� ���������

��

The function of each of these blocks is as follows:

This is a simple example 32 bit AHB Master, which can perform a single AHB transfer. In the case of a write, it
accepts a destination address and 32 bit data value from the register block. In the case of a read, it accepts a read
address and returns a 32 bit data value into a register in the register block.

This is a 32 bit bridge which converts an AHBLite transfer into 32 bit AXI transfer (AMBA 3.0).

This is an AXI Expander that converts 32bit AXI transfers into 64 bit transfers.

This is an AXI demux block, which demultiplexes the muxed 64 bit AXI bus on TY. Refer to section 4.3 on the
mux/demux strategy.

This block provides timing isolation between master and slave interfaces on an AXI interconnect.

System architecture

6 Application Note 151
ARM DAI 0151G

This 64 bit AXI matrix provides the bulk of the interconnect structure. It allows either of the 2 slave ports to
connect to any of the 4 slave ports (5 slave ports on a Virtex5 design) without blocking the other master (unless
they both try to access the same slave). It also contains the decoder mapping to determine the address map, and
a scheme to determine priority of competing masters to a single slave.

This is an AXI Downsizer which converts 64bit AXI transfers into 32 bit transfers.

This is a bridge that converts 32 bit AXI transactions into APB3 transfers.

This is the APB register block, which allows the user to program the system registers.

This block allows the user to generate an interrupt to the base board.

This is a 64 bit bridge which converts AXI transfers into ZBT SRAM transfers.

This is a 64 bit bridge which converts AXI transfers into Xilinx BRAM transfers.

This is a serial interface to the LT PLD for control of LEDs, Switches and clocks.

This is a 64bit example AXI slave, which contains 16 64bit registers.

This block merges the ID field on the AXI bus to reduce the width of each ID channel. See section 4.7

This is an AXI mux block, which multiplexes the 64 bit AXI bus M3 from the AXI Matrix onto TX. Refer to section
4.3 on the mux/demux strategy.

System architecture

Application Note 151 7
ARM DAI 0151G

The clock architecture is carefully designed so as to minimize the skew (difference) in the clock edge position
between different components across the system. The User Guides for all the boards used in this design explain
the clock options they support. Please refer to the baseboard user guide for baseboard clock structure, the EB
system is shown below as an example.

The maximum frequency the example Logic Tile design can work at is dependant on the tile used, typically this is
in the 30MHz range.

EB
EBFpgaAXI

GLOBALCLKIN

CLK_OUT_TO_BUF

ICS307

24MHz

Core Tile

Test
Chip

PLL

AXI Logic Tile
-

FPGA
ICS307

CLK_BUF_ LOOP

OSCCLK0

OSCCLK2

CLK_IN_ MINUS1

T1_CLK_NEG_UP_OUT

24MHz

System architecture

8 Application Note 151
ARM DAI 0151G

The interrupt scheme makes use of a simple Interrupt controller to facilitate the connection of LTINT to the
baseboard. The same system is used on PB1176JZF-S, PB11MPCore and PB-A8.

The interrupt controller in the EB FPGA is made up of four Generic Interrupt Controllers (GIC), which can be
configured to generate an IRQ or FIQ on the ARM test chip. The GIC has a large number of interrupt inputs, you
can have up to 8 interrupt sources from the LT without having to cascade interrupt controllers. The example
design in this application note only uses one of these 8 interrupt signals.

For more details about the GIC refer to the EB user guide and the appropriate application note, for example
AN152 for the ARM11MPCore Core Tile.

The signal nSYSRST is used to reset all the peripherals in the Logic Tile. nSYSRST is driven up from the
baseboard.

EBFpga

EBFpgaAXI

Core Tile

Test Chip

Logic Tile

LT FPGA

LTINT
ZL [200]T2_Z[200]T2_INT[0]

GIC

Hardware description

Application Note 151 9
ARM DAI 0151G

The top level of the design is of particular importance for a number of reasons. This level defines the mapping
from the HDRX, HDRY and HDRZ busses from the tile site into their functional allocations.

This level connects all the components together and ties off static pins. This includes all the major blocks as
shown in Figure 2 Block level architecture. The top level RTL is provided so blocks can be added and removed.
AXI blocks are provided as .NGO netlists.

By using a 2:1 multiplexer and latch scheme as shown below it is possible to reduce the pin count for the AXI
buses into a realistic size for implementation on the Tile XL and YL headers.

Logic Tile

AXI multiplexing scheme

Baseboard FPGA

D Q

EN
R Q

0

1

B

A
Dout

DeMux

Mux DeMuxLatch
Din

0

1

B

A
Dout

DeMux

MuxDeMuxLatch
Din

DQ

EN
RQ

The output data is multiplexed on the level of CLKin, to generate the multiplexed bus (Mux). The de-multiplexing is
performed by latching the data (A) generated on the high level of CLKin when CLKin goes low (DeMuxLatch). The
data (B), generated on the low side of CLKin is passed straight through (DeMux). This design assumes data is
always generated and captured on the rising edge of CLKin.

The Valid and Ready signals on AXI can not be multiplexed in this way due to their timing requirements and must
be passed directly between devices.

The Logic Tile supplies two multiplexed AXI buses (TX and TY).

Hardware description

10 Application Note 151
ARM DAI 0151G

The following timing diagram shows the data flow through the design with expected delays from standard
components.

Timing requirements;
Toh min = 0ns (output hold)
Tov max = 2ns (output valid)
Tis max = 2ns (Input setup)
Tih max = 0ns (input hold)
Tmux max = 6ns (multiplexer and board delay)

The CLKin is the clock driven into the MPCore from the board. All I/O timing must be with
respect to this clock.

 AXI timing requirements

Tov

Toh

Tih

Tis

CLKin

Dout

Din

Mux

DeMux

DeMuxLatch A

A B

AB

B

AB

A

Tmux Tmux

Hardware description

Application Note 151 11
ARM DAI 0151G

The two AXI buses connect to the HDRX and HDRY Tile headers as shown. AXI port TX connects to header
HDRX and AXI port TY connects to header HDRY.

0 180 179 WDATA0/32 72 36 35 BID1/3
1 178 177 WDATA1/33 73 34 33 BID4/BID5
2 176 175 WDATA2/34 74 32 31 BRESP0/1
3 174 173 WDATA3/35 75 30 29 BVALID
4 172 171 WDATA4/36 76 28 27 BREADY
5 170 169 WDATA5/37 77 26 25 ARADDR0/16
6 168 167 WDATA6/38 78 24 23 ARADDR1/17
7 166 165 WDATA7/39 79 22 21 ARADDR2/18
8 164 163 WDATA8/40 80 20 19 ARADDR3/19
9 162 161 WDATA9/41 81 18 17 ARADDR4/20
10 160 159 WDATA10/42 82 16 15 ARADDR5/21
11 158 157 WDATA11/43 83 14 13 ARADDR6/22
12 156 155 WDATA12/44 84 12 11 ARADDR7/23
13 154 153 WDATA13/45 85 10 9 ARADDR8/24
14 152 151 WDATA14/46 86 8 7 ARADDR9/25
15 150 149 WDATA15/47 87 6 5 ARADDR10/26
16 148 147 WDATA16/48 88 4 3 ARADDR11/27
17 146 145 WDATA17/49 89 2 1 ARADDR12/28
18 144 143 WDATA18/50 90 1 2 ARADDR13/29
19 142 141 WDATA19/51 91 3 4 ARADDR14/30
20 140 139 WDATA20/52 92 5 6 ARADDR15/31
21 138 137 WDATA21/53 93 7 8 ARID0/2
22 136 135 WDATA22/54 94 9 10 ARID1/3
23 134 133 WDATA23/55 95 11 12 ARLEN0/2
24 132 131 WDATA24/56 96 13 14 ARLEN1/3
25 130 129 WDATA25/57 97 15 16 ARSIZE0/1
26 128 127 WDATA26/58 98 17 18 ARID4/ARPROT2
27 126 125 WDATA27/59 99 19 20 ARPROT0/1
28 124 123 WDATA28/60 100 21 22 ARBURST0/1
29 122 121 WDATA29/61 101 23 24 ARLOCK0/1
30 120 119 WDATA30/62 102 25 26 ARCACHE0/2
31 118 117 WDATA31/63 103 27 28 ARCACHE1/3
32 116 115 WID0/2 104 29 30 ARVALID/ARID5
33 114 113 WID1/3 105 31 32 ARREADY
34 112 111 WSTRB0/4 106 33 34 RDATA0/32
35 110 109 WSTRB1/5 107 35 36 RDATA1/33
36 108 107 WSTRB2/6 108 37 38 RDATA2/34
37 106 105 WSTRB3/7 109 39 40 RDATA3/35
38 104 103 WLAST/WID4 110 41 42 RDATA4/36
39 102 101 WVALID/WID5 111 43 44 RDATA5/37
40 100 99 WREADY 112 45 46 RDATA6/38
41 98 97 AWADDR0/16 113 47 48 RDATA7/39
42 96 95 AWADDR1/17 114 49 50 RDATA8/40
43 94 93 AWADDR2/18 115 51 52 RDATA9/41
44 92 91 AWADDR3/19 116 53 54 RDATA10/42
45 90 89 AWADDR4/20 117 55 56 RDATA11/43
46 88 87 AWADDR5/21 118 57 58 RDATA12/44
47 86 85 AWADDR6/22 119 59 60 RDATA13/45
48 84 83 AWADDR7/23 120 61 62 RDATA14/46
49 82 81 AWADDR8/24 121 63 64 RDATA15/47
50 80 79 AWADDR9/25 122 65 66 RDATA16/48
51 78 77 AWADDR10/26 123 67 68 RDATA17/49

Hardware description

12 Application Note 151
ARM DAI 0151G

52 76 75 AWADDR11/27 124 69 70 RDATA18/50
53 74 73 AWADDR12/28 125 71 72 RDATA19/51
54 72 71 AWADDR13/29 126 73 74 RDATA20/52
55 70 69 AWADDR14/30 127 75 76 RDATA21/53
56 68 67 AWADDR15/31 128 77 78 RDATA22/54
57 66 65 AWID0/2 129 79 80 RDATA23/55
58 64 63 AWID1/3 130 81 82 RDATA24/56
59 62 61 AWLEN0/2 131 83 84 RDATA25/57
60 60 59 AWLEN1/3 132 85 86 RDATA26/58
61 58 57 AWSIZE0/1 133 87 88 RDATA27/59
62 56 55 AWID4/AWPROT2 134 89 90 RDATA28/60
63 54 53 ARM_nRESET 135 91 92 RDATA29/61
64 52 51 AWPROT0/1 136 93 94 RDATA30/62
65 50 49 AWBURST0/1 137 95 96 RDATA31/63
66 48 47 AWLOCK0/1 138 97 98 RID0/2
67 46 45 AWCACHE0/2 139 99 100 RID1/3
68 44 43 AWCACHE1/3 140 101 102 RRESP0/1
69 42 41 AWVALID/AWID5 141 103 104 RLAST/RID4
70 40 39 AWREADY 142 105 106 RVALID/RID5
71 38 37 BID0/2 143 107 108 RREADY

Hardware description

Application Note 151 13
ARM DAI 0151G

The ZL bus is used to connect the Logic Tile interrupt to the baseboard. Only signal ZL[200] and ZL[233:232] are
used for this example Logic Tile.

200 112 LTINT
232 48 BOARDDET0
233 46 BOARDDET1

The ZL[233:233] are used to detect which base board the LT is connected to, and change the base address of the
peripherals to suit the baseboard.

b00 EB 0x80000000
b01 PB1176JZF-S

PB11MPCore
PB-A8 0xC0000000

b10 0xC0000000
b11 0xC0000000

The example master generates a single word (32 bits) access in the system bus when the logic tile push button is
pressed.

The logic tile switch S1 selects the type of transfer:

� If S1-1 is OFF, the enabled master generates a write transfer

� If S1-1 is ON, the enabled master generates a read transfer

The address for the system bus accesses is programmed by writing to logic tile register:
LT_HADDR_TRANSFER.

� LT_HADDR_TRANSFER contains the transfer address for master and is located at offset address
0x24

� LT_EGMASTER_WRITE contains the data to be written in the case of a write transfer (offset address
0x14).

� LT_EGMASTER_READ contains the data read after a read transfer (offset address 0x20).

For example, if you want example master to write the data 0x12345678 to address 0x82000000 using an EB, you
must follow these steps:

� Set S1-1 to OFF, so the transfer is a write transfer

� Write 0x82000000 to register LT_HADDR_TRANSFER at address 0x80000024

� Write 0x12345678 to register LT_EGMASTER_WRITE at address 0x80000014

� Push the logic tile push button, 0x12345678 should be transferred to address 0x82000000.

If you want example master to read back the data at address 0x82000000,using an EB you must follow these
steps:

� Set S1-1 to ON, so the transfer is a read transfer

Hardware description

14 Application Note 151
ARM DAI 0151G

� Write 0x82000000 to register LT_HADDR_TRANSFER at address 0x80000024

� Push the logic tile push button, 0x12345678 should be transferred from address 0x82000000 to
register LT_EGMASTER_READ at address 0x80000020.

By default after reset, HADDR_TRANSFER is programmed to access the LT ZBT SSRAM. Please note this
default value changes depending on baseboard.

� HADDR_TRANSFER = 0x82000000 for EB

If the BOARDDET signals (ZL[233:232]) detected a baseboard other an EB, the base address of all the
peripherals in the LT would change from 0x80000000 to 0xC0000000.

The purpose of this block is to reduce the ID width from 7 to 6 bits before connecting to the baseboard. Bit 4 is
removed as it is always set to b0. Doing this reduces the ID width of each channel by 1 bit.

There is a restriction on the ID value if the example design is to be used with other ARM baseboards. The ID
value must be one of the following to allow the example design to work with future ARM baseboards.
The allowed hex values are 0x02, 0x03, 0x06, 0x07,0x10, 0x11, 0x14, 0x15, 0x20, 0x21, 0x24, 0x25, 0x26, 0x27,
0x30, 0x31, 0x32, 0x33, 0x36 & 0x37.

//Example master ID value
assign AWIDS0 = 6’h24;
assign WIDS0 = 6’h24;
assign ARIDS0 = 6’h24;

The interface to the configuration flash is not used in this example so the interface is tied off.
assign FnOE = 1'b1;
assign FnWE = 1'b1;
assign FA0 = 1'b0;
assign FA1 = 1'b0;
assign FA21 = 1'b0;
assign FA22 = 1'b0;
assign FnBYTE = 1'b1;
assign FnCE = 1'b1;

It is possible to add TAP controllers into the debug scan chain inside this FPGA. This design does not add a TAP
controller, so the JTAG signals are routed through the design.

assign D_TDO = D_TDI;
assign D_RTCK = D_TCK;

Programmer’s model

Application Note 151 15
ARM DAI 0151G

The LT on EB example design provides memory mapped registers and ZBT SSRAM. Note that all masters in the
system can access the slaves on the LT. The LT example master is also able to access slaves on the base board.

EB 0x00000000 0x7FFFFFFF AXI 2GB
APB Peripherals on LT 0x80000000 0x81FFFFFF APB 2MB
ZBT SSRAM (Virtex 2 LT only) 0x82000000 0x823FFFFF AHB 2MB
Block RAM (Virtex 4 LT only) 0x82000000 0x8207FFFF AHB 512KB
ZBT SSRAM (Virtex 5 LT only) 0x82000000 0x83FFFFFF AHB 32MB
Example AXI slave on LT 0x84000000 0x84000FFF AXI 4KB

If the BOARDDET signals (ZL[233:232]) detected a baseboard other an EB, the base address of all the
peripherals in the LT would change from 0x80000000 to 0xC0000000.

System Registers 0x80000000 0x80000FFF APB 4K
System Interrupt
Controller

0x80001000 0x80001FFF APB 4K

If the BOARDDET signals (ZL[233:232]) detected a baseboard other an EB, the base address of all the
peripherals in the LT would change from 0x80000000 to 0xC0000000. The offsets and size remain the same.

Programmer’s model

16 Application Note 151
ARM DAI 0151G

Table 4-3.1 shows the location of the system registers in the example design. The addresses shown are offsets
from the logic tile base address.

0x000 LT_OSC0 0x30406 Read/write 19 Oscillator 0 divisor register

0x004 LT_OSC1 0x30406 Read/write 19 Oscillator 1 divisor register

0x008 LT_OSC2 0x30406 Read/write 19 Oscillator 2 divisor register

0x00C LT_LOCK 0x0000 Read/write 17 Oscillator lock register

0x010 LT_LEDS 0xF/0xFF Read/write 4/81 User LEDs control register (LT)

0x014 LT_EGMASTER_WRITE 0x00000000 Read/write 32 Data for next write transfer

0x018 LT_INT b0 Read/write 1 Push button interrupt register

0x01C LT_SW bxxxx/bxxxxxxxx Read 4/81 Switches register (LT S1)

0x020 LT_EGMASTER_READ 0x00000000 Read 32 Data after last read transfer

0x024 LT_HADDR_TRANSFER 0x82000000 Read/write 32 Address for next transfer from
example master

If the BOARDDET signals (ZL[233:232]) detected a baseboard other an EB, the default LT_HADDR_TRANSFER
would change from 0x82000000 to 0xC2000000.

1 8 LT_LEDS and 8 LT_SWITCHES for LTXC4VLX100+ and LT-XC5VLX330 designs.

Programmer’s model

Application Note 151 17
ARM DAI 0151G

The oscillator registers LT_OSC0, LT_OSC1 and LT-OSC2 control the frequency of the clocks generated by the
three clock generators on the logic tile.

Before writing to the oscillator registers, you must unlock them by writing the value 0x0000A05F to the LT_LOCK
register. After writing the oscillator register, relock it by writing any other value to the LT_LOCK register.

Bits Name Access Function Default

[18:16] OD Read/write Output divider:

b000 = divide by 10

b001 = divide by 2

b010 = divide by 8

b011 = divide by 4

b100 = divide by 5

b101 = divide by 7

b110 = divide by 3

b111 = divide by 6

b000

[15:9] RDW Read/write VCO divider word. Defines the binary value
of the RV[6:0] pins of the clock generator

b0010110

[8:0] VDW Read/write Reference divider word. Defines the binary
value of the V[7:0] pins of the clock
generator

b001110000

The reset value of these registers sets the oscillators to 24MHz. More information about setting up the frequency
of the logic tile oscillators is available in the logic tile User Guide.

The lock register LT_LOCK (at offset 0x0C) controls access to the oscillator registers and allows you to lock them
and unlock them. This mechanism prevents the oscillator registers from being overwritten accidentally.

Bits Name Access Function

[16] LOCKED Read This bit indicates if the oscillator registers are locked
or unlocked:

b0 = unlocked

b1 = locked

[15:0] LOCKVAL Read/write Write the value 0xA05F to this field to enable write
accesses to the oscillator registers.

Write any other value to lock the oscillator registers.

Programmer’s model

18 Application Note 151
ARM DAI 0151G

The LT_LED register (at offset 0x10) controls the 4/8 user LEDs on the logic tile.

Writing the value b1111/b11111111 will light all 4/8 LED’s. LED’s can be lit individually for example writing
b00000011 will light only the LED0 and LED1.

The push button interrupt register LT_INT (at offset 0x18) contains 1 bit. It is a latched indication that the push
button has been pressed. The contents of this register are fed to the interrupt controller registers.

Bits Name Access Function

[0] LT_INT Read

Write

If the push button has been pressed, this bit is set.

Write b0 to this register to clear the latched push button
indication.

Writing b1 to this register has the same effect as pressing the
push button.

Use the LT_SW register (at offset 0x1C) to read the setting of the 4/8-way DIP switch on the logic tile.

LT_HADDR_TRANSFER contains the transfer address for the example master and is located at offset address
0x24

LT_EGMASTER_WRITE contains the data that will be written in the next write transfers and is located at offset
address 0x14.

LT_EGMASTER_READ contains the data read in the last read transfers and is located at offset address 0x20.

Table 4.4 shows the location of the interrupt controller memory mapped registers.

0x1000000 LT_ISTAT Read 8 Interrupt status

0x1000004 LT_IRSTAT Read 8 Interrupt raw status

0x1000008 LT_IENABLE Read 8 Interrupt enable

0x1000008 LT_IENSET Write 8 Interrupt enable set

0x100000C LT_IENCLR Write 8 Interrupt enable clear

0x1000010 LT_SOFTINT Read/write 4 software interrupt

Programmer’s model

Application Note 151 19
ARM DAI 0151G

The interrupt controller included in the example design generates an interrupt signal from a number of interrupt
sources. The output of the interrupt controller is routed to the base board:

The logic tile interrupt controller is designed so that it can accept up to four sources of interrupts and four software
interrupts. In the example design only one source of interrupt is used, which is connected to the logic tile push
button.

The other three sources or interrupts are unused in the example design, but users can use them to connect
interrupt request signals for the peripherals they implement in the logic tile.

The interrupt controller contains registers to enable, disable and monitor the status of the different interrupt
sources.

Table 4.5 shows the interrupt number assigned to each source of interrupt. Each interrupt source is associated
with a bit number in the interrupt controller registers.

Bit Name Function

[7:5] - Spare (not used by the example image)

[4] PBINT Push button interrupt

[3:0] SOFTINT[3:0] Software interrupt generated by writing to LT_SOFTINT

For example, in order to enable the push button interrupt you must set bit 4 of the interrupt enable register.

The way that the interrupt enable, clear, status and raw status registers work is illustrated in Figure 8 Interrupt
controller internal design. This figure shows the control logic for one interrupt source, corresponding to one bit of
all these registers.

Programmer’s model

20 Application Note 151
ARM DAI 0151G

LT_IENSET0

LT_IENCLR0

Set

Clear

LT_IENABLE0

Interrupt source 0

LT_ISTAT0

LT_IRSTAT0
 LTINT

Interrupt source 0

Interrupt source 1

Interrupt source 2

Interrupt source 3

Interrupt source 4

Interrupt source 5

Interrupt source

Interrupt source 7

nINT in the figure is the interrupt request output from the logic tile interrupt controller. This signal is activated when
any bit of LT_ISTAT is set. This signal is passed to the base board as T2_INT[0].

The status register LT_ISTAT, contains the logical AND of the bits in the raw status register and the enable
register.

Therefore a bit of the status register is 1 when its corresponding interrupt source is active and its corresponding
interrupt enable bit has been set.

The raw status register LT_IRSTAT indicates the signal levels on the interrupt request inputs. A bit set to 1
indicates that the corresponding interrupt request is active.

Reading from the interrupt enable register LT_IENABLE returns the current state of the interrupt source enable
bits.

Writing 1 to a bit of the interrupt enable set register LT_IENSET sets the corresponding bit of LT_IENABLE

Writing 1 to a bit of the interrupt enable clear register LT_IENCLR clears the corresponding bit of LT_IENABLE

Writing 0 to a bit of LT_IENSET or LT_IENCLR leaves the corresponding bit of LT_IENABLE unchanged

LT_IENABLE and LT_IENSET share the same address in the memory map.

Programmer’s model

Application Note 151 21
ARM DAI 0151G

This register is used to generate interrupts by software.

Writing 1 to any bit position in LT_SOFTINT register sets the corresponding bit in the interrupt controller registers.
The LT_SOFTINT register has four bits, corresponding to the four software interrupts.

Writing a 0 to this register clears any software interrupts.

Reading from this register shows the raw status of the software interrupts.

The software interrupts should not be confused with the ARM SWI instruction.

The SSRAM is configured as 64 bits wide using two 32 bit chips, it occupies the address space from 0x82000000
to 0x823FFFFF on an EB or from 0xC2000000 to 0xC23FFFFF on any other AXI Versatile base board. It can be
accessed by any master in the system, including those on the baseboard. It is 4MB in size and aliased over this
address range.

The FPGA Block RAM is configured as 64 bits wide, it occupies the address space from 0x82000000 to
0x8207FFFF on an EB or from 0xC2000000 to 0xC207FFFF on any other AXI Versatile base board. It can be
accessed by any master in the system, including those on the baseboard. It is 512KB in size and aliased over this
address range.

The SSRAM is configured as two independently controlled 64 bit wide memory controllers. The first SSRAM block
occupies the address space from 0x82000000 to 0x82FFFFFF on an EB or from 0xC2000000 to 0xC2FFFFFF on
any other AXI Versatile base board, and the second SSRAM block occupies the address space from 0x83000000
to 0x83FFFFFF on an EB or from 0xC3000000 to 0xC3FFFFFF. It can be accessed by any master in the system,
including those on the baseboard. Each memory region is 16MB in size and can operate contiguously between
the two memory regions and is aliased over the whole 32MB address range.

This is a 64bit example AXI slave, which contains 16 64bit registers. It occupies the address space from
0x84000000 to 0x84000FFF on EB or from 0xC4000000 to 0xC4000FFF on any other AXI Versatile base board.

If reserved memory is accessed, it will be caught by the AXI bus matrix and return a decode error (‘DECERR’)
which generates a data abort. The only exception to this is the APB subsystem, which has 14 spare PSEL signals
for expansion. If this address range is accessed the AXIToAPB bridge will return an ‘OKAY’ response.

RTL

22 Application Note 151
ARM DAI 0151G

All of the AHB RTL for this design is provided as verilog. AXI components are supplied as netlists. Example files
are provided to allow building the system with Synplicity, Synplify Pro and Xilinx ISE tools.

The application note has directories. These are:

� docs : Related documents including this document.

� logical : All the verilog RTL required for the design.

� boardfiles : The files required to program the design into ARM development boards.

� physical : Synthesis and place and route (P&R) scripts and builds for target board.

� software : ARM code to run on the AN151 system

The logical directory contains all the verilog required to build the system. The physical directory contains pre-
synthesised components. The function of each block is shown earlier in 3.2 Module functionality.

Each PrimeCell or other large IP block has its own directory (for example AHBToAXI).

The top level for this system is in AXILTEx.

The physical directory contains the scripts for the tools used in the build process.

AN151

docs

logical

boardfiles

software

physical

RTL

Application Note 151 23
ARM DAI 0151G

To build the App Note using Microsoft Windows first run the synplify_synth.bat batch file in the following directory :
AN151/physical/ltxc2v6000/AXILTEx/synplify/scripts. This synthesizes the design.

Next change directory to AN151/physical/ ltxc2v6000/AXILTEx/xilinx/scripts and run the xilinx_par.bat batch file.
This runs place and route on the design pulling in pre synthesized components.

A programmable bit file is generated under

AN151/physical/ ltxc2v6000/AXILTEx/xilinx/netlist

The process is exactly the same for a ltxc2v8000/ltxc4vlx160//ltxc4vlx200 tile, just replace ltxc2v6000 with
ltxc2v8000/ltxc4vlx160/ltxc4vlx200 above.

To build the App Note using Unix first run the synplify_synth.scr script file in the following directory :
AN151/physical/ ltxc2v6000/AXILTEx/synplify/scripts. This synthesizes the design

Next change directory to AN151/physical/ ltxc2v6000/AXILTEx/xilinx/scripts and run the xilinx_par.scr script file.
This runs place and route on the design pulling in pre synthesized components.

A programmable bit file is generated under

AN151/physical/ ltxc2v6000/AXILTEx/xilinx/netlist

The process is exactly the same for a ltxc2v8000/ltxc4vlx160//ltxc4vlx200 tile, just replace ltxc2v6000 with
ltxc2v8000/ltxc4vlx160//ltxc4vlx200 above.

To use the pre-built bit file, use one of the following board files.

an151_ltxc2v4000_102c_xc2v…._axi_mast_slave_buildx.brd

an151_ltxc4vlx100_158a_xc4vlx…_axi_mast_slave_buildx.brd

To use a customer version, use one of the following board files.

an151_ltxc2v4000_102c_xc2v…._customer_rebuild.brd

an151_ltxc4vlx100_158a_xc4vlx…_customer_rebuild.brd

physical

ltxc2v6000

AXILTEx

synplify

xilinx

scripts

scripts

Example software

24 Application Note 151
ARM DAI 0151G

Example software is provided to verify the example design and the logic tile hardware.

The source files included are logic.c, logic.h. Logic.c rw_support.s. Logic.c contains the main code, written in C.
rw_support.s contains several assembler functions to perform word, half-word and byte accesses to the ZBT
SSRAM or FPGA Block RAM.

A batch file with calls to the compiler, assembler and linker; and a built image are also provided for each of the
configurations. The software can be re-built with both ADSv1.2 and RVDSv2.1 or later.

After the FPGA is configured, as indicated by the FPGA_OK LED, you can download and execute the example
software on any ARM processor in the system. For example the software can be executed by an ARM11MPCore
processor on a CT11MPCore tile plugged on Tile Site 1 of the EB baseboard.

The example code communicates with the user via the debugger’s console window. It operates as follows:

1. Reads the baseboard identification register to ensure that the software is executed on the correct system.

2. Sets the logic tile clocks

3. Flashes the LEDs on the logic tile and interface module (if present)

4. Tests the logic tile push button and interrupt controller.

5. Tests the ZBT SSRAM/Block RAMs for word, half-word and byte accesses.

6. Test the User LEDs and Switches.

