ARM Evaluator-7T Board

User Guide

ARM

ARM Evaluator-7T Board
User Guide

Copyright © ARM Limited 2000. All rights reserved.

Release information
Change history

Date Issue Change

1 August 2000 A New document

Proprietary notice
ARM, the ARM Powered logo, Thumb, and StrongARM are registered trademarks of ARM Limited.

The ARM logo, AMBA, Angel, ARMulator, EmbeddedICE, ModelGen, Multi-ICE, PrimeCell,
ARM7TDMI, ARM7TDMI-S, ARM9TDMI, ARM9E-S, ARM946E-S, ARM966E-S, ETM7, ETM9, TDMI,
and STRONG are trademarks of ARM Limited.

All other praducts or sences menbned heran maybe trademaks d their respeatwe owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may
be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM Limited in good faith.
However, all warranties implied or expressed, including but not limited to implied warranties or
merchantability, or fithess for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Federal Communications Commission Notice

NOTE: This equipment has been tested and found to comply with the limits for a class A digital device,
pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against
harmful interference when the equipment is operated in a commercial environment. This equipment
generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the
instruction manual, may cause harmful interference to radio communications. Operation of this equipment in
aresidential area is likely to cause harmful interference in which case the user will be required to correct the
interference at his own expense.

CE Declaration of Conformity

This equipment has been tested according to ISE/IEC Guide 22 and EN 45014. It conforms to the following
product EMC specifications:

The product herewith complies with the requirements of EMC Directive 89/336/EEC as amended.

Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Document confidentiality status

This document is Open Access. This means there is no restriction on the distribution of the information.

Product status

The information in this document is Final (information on a developed product).

ARM web address

http://ww. arm com

ARM DUI 0134A

Copyright © ARM Limited 2000. All rights reserved.

Copyright © ARM Limited 2000. All rights reserved.

ARM DUI 0134A

Contents

ARM Evaluator-7T Board User Guide

Chapter 1

Chapter 2

Preface

ADOUL thiS AOCUMENTveiii et et s e e e e e e e e e e e e e eeeaes viii
T g1 g [T L= To [T o TR TP PPPRPUPPRRPN Xi
FEEADACKottt e e e e e e e e e e e e aaaeaaes Xii

Introduction

1.1 About the Evaluator-7T DOArd...........ccoovviiiiiiiiiieieeeeeeeeeeeee e 1-2
1.2 Evaluator-7T arChit@CtUIE.........oeeie i
1.3 Kit contentsccoeeeevvvvvevvinnnne.

1.4 System requirementsccccceeeeeneee.

15 Setting up the Evaluator-7T
1.6 [(STor= 1T (10 o E PSPPSR

Hardware Description

2.1 The Samsung KS32C50100 mMicroCoNtroller............cccvvveeeriieeiiieeenniee e 2-2
2.2 Reset circuit

2.3 IVIBIMIOTY <.ttt e e e e e e e e e e e e aa e e s e nenrnrenees
2.4 Y= AT 1 oo 4 £ TP UT PRSP
25 LEDSccvvvevenee

2.6 Switches..............

2.7 JTAG port............

2.8 Power supply

ARM DUI 0134A

Copyright © ARM Limited 2000. All rights reserved. v

Chapter 3

Chapter 4

Appendix A

Appendix B

Programmers Reference

3.1 General MEMOIY MAP ...eiiii ittt e e e e e e e e aaneaee s 3-2
3.2 Memory usage

3.3 Microcontroller regiSter USAQGEoueeiiiieeiiiie ittt 3-5
3.4 Accessing LEDS and SWItCheS.........coovueiiiiiiiiieee e 3-6

Bootstrap Loader Reference
4.1 About the bootstrap loader
4.2 Basic setup with the BSL

4.3 BSL commandsccccceeeviivieeeeeene.

4.4 1Y/ To o (U1 SRR

4.5 Preparing a program for downloadccccooviiiiiiiiiniiiine e 4-29
4.6 Production teSt MOAUIE.........cooiiiiiiie e 4-30

Evaluator-7T Mechanical Outline
Al MechaniCal OULIINEcoiiiiiieiee et e e e e e e eeneees A-2

Evaluator-7T Signal Naming
B.1 SIGNAI NAMING ...ttt eesinee s 4

Index

Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Preface

This preface introducesthe ARM Evaluator-7T board and its reference documentation.
It contains the following sections:

. About this document on page viii
. Further reading on page xi
. Feedback on page xii.

ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. vii

About this document

This document describes how to set up and use the Evaluator-7T.

Intended audience
This document has been written for software engineers, hardware engineers, and
students to enable you to gain experience with ARM architecture design techniques.
Using this manual
This document is organized into the following chapters:
Chapter 1 Introduction

Read this chapter for an introduction to the ARM Evaluator-7T board.
This chapter overviews the architecture of the board and identifies the
main components.

Chapter 2 Hardware Description
Read this chapter for a description of the onboard hardware.
Chapter 3 Programmers Reference

Read this chapter for a description of the memory map and on-board
registers.

Chapter 4 Bootstrap Loader Reference

Read this chapter for a description of the bootstrap loader.
Appendix A Evaluator-7T Mechanical Outline

Refer to this appendix for the mechanical outline of the board.
Appendix B Evaluator-7T Sgnal Naming

Refer to this appendix for a description of the signal naming conventions
used on the board schematics.

viii Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Typographical conventions

The following typographical conventions are used in this manual:

bold

italic

typewriter

typewriter

typewiter

typewiter

Highlights ARM processor signal names, and interface elements
such as menu names. Also used for termsin descriptive lists,
where appropriate.

Highlights special terminology, cross-references, and citations.

Denotes text that can be entered at the keyboard, such as
commands, file names and program names, and source code.

Denotes a permitted abbreviation for acommand or option. The
underlined text may be entered instead of the full command or
option name.

italic
Denotes argumentsto commands or functionswhere the argument
isto be replaced by a specific value.

bol d
Denotes language keywords when used outside example code.

ARM DUI 0134A

Copyright © ARM Limited 2000. All rights reserved. ix

Timing diagram conventions

Thismanual contains one or more timing diagrams. The following key explains the
components used in these diagrams. Any variationsare clearly |abeled when they occur.
Therefore, no additional meaning should be attached unless specifically stated.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus

s

Key to timing diagram conventions

Shaded bus and signal areas are undefined, so the bus or signal can assume any value
within the shaded area at that time. The actual level is unimportant and does not affect
normal operation.

X Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Further reading

ARM publications

Other publications

This section lists publications by ARM Limited, and by third parties.

ARM periodically provides updates and corrections to its documentation. See
ht t p: / / www. ar m comfor current errata sheets and addenda.

See also the ARM Frequently Asked Questions list at:
http://ww. arm com DevSupp/ Sal es+Support/faq. ht m

This document contains information that is specific to the Evaluator-7T. Refer to the
following documents for other relevant information:

. ARM7TDMI Data Sheet (ARM DDI 0029)
. ARM Architecture Reference Manual (ARM DDI 0100).

This section lists relevant documents published by third parties.

. Samsung KS32C50100 32-BIT RISC Micro Controller Embedded Network
Controller User’'s Manual.

ARM DUI 0134A

Copyright © ARM Limited 2000. All rights reserved.

Xi

Feedback

ARM Limited welcomes feedback both on the Evaluator-7T, and on the
documentation.

Feedback on the Evaluator-7T

If you have any comments or suggestions about this product, please contact your
supplier giving:

. the product name

. a concise explanation of your comments.

Feedback on this document

Sharing information

If you have any comments about this document, please send email to
errata@rm comgiving:

. the document title

. the document number

. the page number(s) to which your comments refer

. a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.

An email list server is provided by ARM to enable you to share information with other
Evaluator-7T users. To subscribe, send an email to:

subscri be- eval uat or 7t @ir m com

The list server will reply, welcoming you to the Evaluator-7T email group. You can
query other Evaluator-7T users by sending email to:

eval uat or 7t @ar m com

To unsubscribe, send an email to:

unsubscri be-eval uat or 7t @r m com

Xii

Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Chapter 1
Introduction

This chapter introduces the ARM Evaluator-7T board. It contains the following

sections:

About the Evaluator-7T board on page 1-2
Evaluator-7T architecture on page 1-3

Kit contents on page 1-4

System requirements on page 1-5
Precautions on page 1-8

Setting up the Evaluator-7T on page 1-6.

ARM DUI 0134A

Copyright © ARM Limited 2000. All rights reserved.

1-1

Introduction

1.1 About the Evaluator-7T board

The ARM Evaluator-7T board isasimple ARM platform that includes aminimal set of
corefacilities. It is powerful and flexible enough to function as an evaluation platform
for ARM technology. The board enables you to:

. download and debug software images
. attach additional input/output devices and peripherals for experimentation.

Figure 1-1 shows the layout of the Evaluator-7T.

User DIP Interrupt button User LEDs Seven segment User serial port

Multi-ICE/JTAG switches (SW3) (D1-D4) display (COM2)
connector

o \ —
rer \ x)
T, ‘mmmms o000/ o e
o O
. T g i Ol Le

Rriies nuuHuuunuunnuunuuunuuHHuu -

Power connector

/]

O

50-pin
header pads

Figure 1-1 Evaluator-7T board layout

1-2 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Introduction

1.2 Evaluator-7T architecture

The Evaluator-7T board contains the following major components:

L]

Samsung KS32C50100 microcontroller

512KB flash EPROM

512KB SRAM

two 9-pin D-type RS232 connectors

reset and interrupt push buttons

four user-programmable LEDs and a seven-segment LED display
4-way user input DIP switch

Multi-ICE connector

10MHz clock (the processor uses this to generate a 50MHz clock)
3.3V voltage regulator.

The major components are described in detail in Chapter @ware Description.

Figure 1-2 shows the architecture of the Evaluator-7T.

DIP User
switch LEDs

INT seven-segment
switch display

[
‘ 50-pin header

l * SRAM

<+
COMO |« —>
o} [
Ee] e]
s KS32C50100 s Flash
> < <
COM1 |« < —» _ RISC < memory
o microcontroller S
N 3 N
10MHz > — HDLC Additional
! components
clock '4— P Ethernet needed
* t
Power J 50-pin header
supply

Multi-ICE/JTAG

Figure 1-2 Evaluator-7T architecture

ARM DUI 0134A

Copyright © ARM Limited 2000. All rights reserved. 1-3

Introduction

1.3 Kit contents

This section describes the items supplied as part of the ARM Evaluator-7T.

1.3.1 Hardware

The kit includes the following hardware:

. ARM Evaluator-7T board

. 9-pin straight-through RS232 serial cable
. 9V power adapter.

1.3.2 Software and documentation

The kit includes the following CD-ROMSs:
. Evaluator-7T Tools and Documentation containing:
— example code specific to the Evaluator-7T
— source code and binary image of the firmware

— documentation, including this manual and $amsung KS32C50100
User's Guidein PDF format

— aninstaller to copy the files onto your hard disk drive and create a menu
item.

. ARM Developer Suite Evaluation Version containinga fully functional
evaluation copy of thARM Developer Suite (ADS) with a 45-day time limit. It
runs on Microsoft Windows 95, 98, 2000, and NT 4.0. It includes the following
software:

— Cand C++ compilers

— assembler

— linker

— graphical debugger

— project manager

— Cand C++ libraries

— example programs.

Also included on this CD-ROM is the ARM ADS documentation in PDF format.

1-4 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Introduction

1.4 System requirements

Using the Evaluator-7T with the pre-installed boot monitor requires connection of a
computer running a terminal application to the DEBUG serial connector.

To generate and debug code, and to use Angel or Multi-ICE, you will need to connect
acomputer running suitable development tools. The ARM Developer Suite Evaluation
Version CD supplied with the Evaluator-7T provides tools for you to use.

ARM DUI 0134A

Copyright © ARM Limited 2000. All rights reserved. 1-5

Introduction

1.5 Setting up the Evaluator-7T

The ARM Evaluator-7T isacomplete target ARM evaluation platform. Apart from the
host computer, the kit includes all components required to evaluate a simple ARM
system, including a representative software devel opment environment. The ARM
Evaluator-7T can be used in the following ways:

. Using the bootstrap loader
. Using the Angel debug monitor
. Using Multi-ICE on page 1-7.

1.5.1 Using the bootstrap loader

TheBootStrap Loader (BSL) is a component of the resident firmware preloaded into

the bottom of the flash memory (d8@sh memory usage on page 3-4). The BSL is the

first program run by the processor when the system is reset or powered on. For guidance
on how to set up and use BSL, 8asic setup with the BSL on page 4-3.

The bootstrap loader provides the following functionality:

. board configuration commands that enable you to, for example, set the baud rate,
and boot modules

. user help

. flash management tools that allow executable modules, such as Angel, to be
added or removed from flash

. support for downloading applications to SRAM and executing them.

A complete list of the configuration options is given in ChaptBodtstrap Loader
Reference.

1.5.2 Using the Angel debug monitor

To use the Angel debug monitor, connect the host computer running an ARM debugger
to the DEBUG port on the Evaluator-7T using the straight-through RS-232 cable
supplied with the kit.

The Angel debug monitor is preloaded into the flash as a bootstrap loader module. It is
executed by default when the board is powered on (unless you press ¢hekey).
You can change this default behavior (Magules on page 4-19).

Note

Angel uses ADP to communicate with the debugger. Some third-party debuggers also
support ADP.

1-6

Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Introduction

Angel re-initializes the board and sets up acommunication channel with adebugger on
the host PC through the DEBUG port. It is this interaction between the host-based
debugger and Angel that allows you to download and debug software. Angel interacts
with the software and, in some cases, modifiesit, for example, setting software
breakpoints.

153 Using Multi-ICE
Connect the Multi-1CE unit (available separately) as follows:
1. Connect the Multi-ICE unit to the 20-Pin JTAG connector, J1.

2. Connect the Multi-ICE unit to the host computer using the supplied parallel
cable.

The ARM Multi-ICE unit is supported by the ARM Developer Suite provided in each
kit. It allows you to debug, download, and test software on the Evaluator-7T board.
Multi-1CE does not require the use of the Angel debug monitor.

Multi-1CE enables you to monitor software on the Evaluator-7T board.

1.5.4 How Multi-ICE differs from a debug monitor

A debug monitor, such as the Angel debug monitor, isan application that runs on your
target hardware in conjunction with the user application. It requires some resources,
such as memory and access to exception vectors, to be available.

Multi-1CE requires almost no resources. Rather than being an application on the board,
it works by using:

. additional hardware (Embedded ICE logic) that is incorporated into the core

. the Multi-ICE unit to buffer and translate the core signals into a form usable by a
host computer

Multi-ICE is designed to allow debugging using JTAG port and to be as non-intrusive
as possible:

. the target being debugged needs very little special hardware to support debuggin

. in most cases no memory in the system being debugged has to be set aside for
debugging, and no special software need be incorporated into the application

. execution of the system being debugged is only halted when a breakpoint or
watchpoint unit is triggered, or the user requests that execution is halted.

ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 1-7

Introduction

1.6

Precautions

The Evaluator-7T board is intended for use within alaboratory or engineering
development environment and is supplied without an enclosure. The absence of an
enclosure leaves the board sensitive to electrostatic discharges and alows
electromagnetic emissions.

To avoid damaging the Evaluator-7T, you must:
. always wear an earth strap when handling the board
. only hold the board by the edges

Do not use the board near equipment which could be sensitive to electromagnetic
emissions (such as medical equipment) or which is a transmitter of electromagnetic
emissions.

1-8

Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Chapter 2
Hardware Description

This chapter provides hardware and functional description of the Evaluator-7T board.

It contains the following sections:

. The Samsung KS32C50100 microcontroller on page 2-2
. LEDs on page 2-11

. Memory on page 2-5

. Reset circuit on page 2-4

. Serial ports on page 2-9

. Switches on page 2-13

. JTAG port on page 2-14

. Power supply on page 2-15.

ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved.

2-1

Hardware Description

2.1 The Samsung KS32C50100 microcontroller

The KS32C50100 is a square, 208-Pin Quad Flat Pack (QFP), embedded
microcontroller manufactured by Samsung Electronics Co., Ltd. It isa System-on-Chip
(SoC) targeted at the communications market.

The KS32C50100 is an ARM 7TDMI-base microcontroller that incorporates a number
on-chip functions. These are:

. 8KB unified cache/SRAM

. I2C serial interface (master only)
. Ethernet controller

. two-channel DMA controller

. memory controller providing 8/16/32-bit external bus support for ROM/SRAM,
flash, SDRAM, DRAM, and external input/output

. High-level Data Link Control (HDLC) support
. two UARTS

. 18 programmable input/output bit ports

. interrupt controller

. two programmable 32-bit timers.

The KS32C50100 microcontroller is powered by a 3.3V switching regulator and driven
with a single 10MHz clock generator.

The microcontroller pins are connected to four sets of 50-pin connector pads (J2, J3, J4,
and J5). For more information about the microcontroller, consufimsung

KS32C50100 32-BIT RISC Micro Controller Embedded Network Controller User’s

Manual.

Figure 2-1 on page 2-3 shows the block diagram of the KS32C50100.

2-2 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Hardware Description

ARM7TDMI
32-bit 8KB 4 word
RISC CPU unified cache write buffer
A A
CPU interface
v
mus router
A
I’c < »>
Memory
< > controller
with refresh
18 GPIO ports |« >
~ System bus
Interrupt controller < » arbiter
UARTOand1 |« > 2-channel
< » HDLCs
with DMA
32-bit timer 0 and 1|« >
P . Ethernet
" controller
GDMAOand1 |« »
PLL < »
v

Figure 2-1 KS32C50100 block diagram

ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 2-3

Hardware Description

2.2 Reset circuit
The architecture of the reset circuit on the Evaluator-7T board is shown in Figure 2-2.

vce
. ? o

R8

NTRST
* NRESET

MAX6315 .
U13A U13B
SW1 u10 C1

j [

Figure 2-2 Reset circuit

The circuit provides two reset switches and a Maxim MAX6315 reset controller. The
circuit controls two reset signals:

NRESET Thissignal resetsthe ARM7TDMI processor core.

NTRST Thissignal resets the tap controller and EmbeddedI CE logic. This resets
theinternal functionality used by any debugger or other device connected
to the JTAG port.

The MAX6315 provides switch debouncing for the system reset switch and also
provides a power-on reset delay. The resistor and capacitor (R8 and C1) extend the
assertion of the NRESET to guarantee reliable core reset.

The reset switches are used as follows:

SW1 Press the system reset switch, SW1, to reset the entire board and the
assert NRESET and NTRST simultaneously.

SW2 Pressthe corereset switch, SW2, to reset the microcontroller, but not the
TAP controller, by asserting only NRESET.

Pressing SW2 enablesyou to stop and take control of the ARM7TDM I processor before
itsfirst instruction fetch from address 0x0 without resetting other components on the
board.

2-4 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Hardware Description

2.3 Memory
The Evaluator-7T provides two areas of memory:

. flash memory, in which thBootSrap Loader (BSL), Angel, and other
non-volatile programs are stored

. SRAM for general program and data storage.

2.3.1 Flash

The Evaluator-7T includes 512KB of flash memory. When the Evaluator-7T is shipped,
this contains the BSL and debug monitor. The remaining space is available for your owr
programs (seElash memory usage on page 3-4). The flash is implemented as a single
16-bit device and is mapped to memory bankBCS0).

On reset, the KS32C50100 default settings cause memaory bank 0, the flash ROM, to b
mapped at addresx0 with a data bus width of 16-bits and the maximum number of
wait states per memory access.

23.2 SRAM

Two 64K x 32 arrays of SRAM are connected to the microcontroller. The two arrays
provide a total of 512KB. Figure 2-3 on page 2-6 shows one memory array.

The first SRAM array consists of the devices U2 and U5, and is mapped to bank 1. The
second SRAM array consists of U3 and U6 and is mapped to bank 2. U5 and U6 conne
to the lower 16 bits of the microcontroller 32-bit data bus. U2 and U3 connect to the
upper 16 bits. Th&pper Byte (UB) andLower Byte (LB) select pins of each part are
driven by an AND gate combination of tN®OE and correspondingWBEX outputs

from the microcontroller. Th&/E pin of each SRAM part is driven by the AND gate
combination of the twdIWBEX signals that apply to the part.

Note

The microcontroller incorporates an internal address bus shifter that determines the
number of bits to shift the external address bus. This is determined by the data bus widt
value set in thEXTDBWTH configuration register. For more details refer to the
Samsung KS32C50100 32-BIT RISC Micro Controller Embedded Network Controller

User’'s Manual.

ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 2-5

Hardware Description

64K x 16
Samsun A[15:0] SRAM
g : (Us)
KS32C50100 D[31:16]
Uy
° NRCS1 | g
° NOE | o
NBE3 | g
NBE2 | p
NUWWE | \ye
®
NWBE3
64K x 16
o A[15:0] SRAM
NWBE2 D[15:0] (U2)
P NRCS1| g
® NWBE1 NOE | o
NBEL | g
\ NBEO | | g5
NWBEO LB
L 4 / NLWWE | e
NWBE3
NWBE2 37
NWBE1
NWBEO :)—

Figure 2-3 SRAM memory array

2-6

Copyright © ARM Limited 2000. All rights reserved.

ARM DUI 0134A

Hardware Description

Figure 2-4 and Figure 2-5 show the read and write cycle timing diagrams for both

external SRAM arrays.

Cycle 1 0 Cycle 2 ’ Cycle 3 J
e /TN
tADDRh tFZDh
A[15:0] VALID
tAA tRDh
D[31:0] VALID
taree Alg tan turee
NBEX ‘—jfi
tNROE tNROE
NOE
N[L:U]WWE
tyres g teo tyres
NRCSx _\L i
Figure 2-4 SRAM read cycle timing
Cycle 1 J‘ Cycle 2 Cycle 3 J
XCLK / \ }
tADDRh tADDRd
A[15:0] ‘_;< VALID j(
twpg tvon %[
D[31:0] VALID \1
¢ tNWEE tNWEE
NBEx B
NOE
N[L:U]WWE /
fare tace ‘—ﬂ e
NRCSx i l

Figure 2-5 SRAM write cycle timing

ARM DUI 0134A

Copyright © ARM Limited 2000. All rights reserved. 2-

~

Hardware Description

The timing parameters for SRAM read and write accesses are listed in Table 2-1.

Table 2-1 SRAM/ROM access timing

Parameter Description Min Max
tADDRK Address hold time 85 -

tADDRd Address delay time 7.08 175
tNROE ROM and SRAM output enable 5.7 13.6
tNwBE ROM and SRAM write byte enable delay 7.2 19.1
tNRCS ROM and SRAM chip select delay 52 12.4
trRoh Read data hold 3 -

tea Byte accesstime 16.2 28.1
taAA Address access time 28.5 -

tco Chip select to output time 25.2 324

Copyright © ARM Limited 2000. All rights reserved.

ARM DUI 0134A

Hardware Description

2.4 Serial ports
The Evaluator-7T provides two RS232 seria ports:

DEBUG Thisuses COM1 as a console port. It is used by the debug monitor or
bootstrap program running on the board. COM1 is connected to UART1
of the microcontroller.

USER This uses COMO as a general purpose port for program use. COMO is
connected to UARTO of the microcontroller.

The pinout of the two serial connectorsis shown in Figure 2-6.

Figure 2-6 Pinout of the RS232 serial port connectors (P1 and P2)
Table 2-2 shows the signal assignment for the two serial connectors.

Table 2-2 Pinout of the RS-232 serial port connectors (P1 and P2)

Pin Signal Board use
1 DCD NC

2 RXD Connected
3 TXD Connected
4 DTR Connected
5 GND Connected
6 DSR Connected
7 RTS NC

8 CTS NC

9 RI NC

ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 2-9

Hardware Description

Figure 2-7 shows the serial transceivers used to convert the 3.3V logic level of the
microcontroller to the RS232 line levels required at the DB-9 seria port connectors.
Conversion is performed by U4 for COM 1 and U12 for COMO

NUADSR
Samsung > MAX3222
KS32C50100 UATXDL,| " (Ua)
(U1) "
< UARXD1 p
’ UADTRL .
< COM1
(DEBUG)
NUADSRO,
> MAX3222
UATXDO | ()12
UARXDO «
UADTRO P

COMO
(USER)

Figure 2-7 Serial interface architecture

2-10 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Hardware Description

25 LEDs

There are two LED indicator circuits on the ARM Evaluator-7T:
. four surface-mounted LEDs
. a seven-segment LED display.

251 Surface-mounted LEDs

The four user-programmable LEDs, D1 to D4, are connected to a 74HC125 tristate
buffer. The inputs to the buffer are drivenPyO[7:4] from the microcontroller. The
LEDs control architecture is shown in Figure 2-8.

PIO7
PIO6 Uil
PIO5
PIO4
Samsung { { H
KS32C50100
(V1)
D4 D3 Z

2

|
Green Amber\ / Oralr?sfgz Gr(lejelrE
L

Figure 2-8 Architecture of the surface mount LEDs

2.5.2 Seven-segment display

The seven segments are controlledPb®[16:10] from the microcontroller and two
74HC125 tristate buffers. The display also contains a decimal point LED. This is used
as a power ON indicator and is connected to the 3.3V power plane.

Figure 2-9 on page 2-12 shows the assignment of the display segments to the PIO pir
of the microcontroller.

ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 2-11

Hardware Description

Samsung
KS32C50100
(1)

PIO16 PIO15 PIO14 PIO13 PIO12 PIO11 PIO10

Figure 2-9 PIO to segment assignment

Copyright © ARM Limited 2000. All rights reserved.

ARM DUI 0134A

Hardware Description

2.6 Switches

The Evauator-7T provides a 4-way DIP switch, auser interrupt switch, and two reset
switches.

2.6.1 DIP switch

Thefour switcheswithinthe DIP areindependent and are connected to PI O[3: 0]. Select
the ON position to pull the corresponding PIO input HIGH. Select the OFF position to
pull the corresponding PIO input LOW. Figure 2-10 shows the circuit for the DIP
switch.

VCC

I—T—T—o
Samsung

KS32C50100 ot 2
(U1)
PIOO T

I

PIOZﬁ

SW5

—— I

PIO3

Figure 2-10 Schematic of DIP switch

2.6.2 User interrupt switch

The user interrupt switch is a momentary switch SW3. When pressed and released it
resultsin a pulse on the XINREQO/P8 input of the microcontroller.

ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 2-13

Hardware Description

2.7 JTAG port

The 20-pin connector (J1) is connected to the JTAG interface of the microcontroller.
The pinout is compatible with the ARM Multi-ICE interface unit. A pinout of the JTAG
connector is shown in Figure 2-11.

vece e1 20 Vce
NTRST ®3 4@ GND
TDI ®5 6o GND
TMS ®7 ge GND
TCK ®9 10@ GND
RTCK @11 12@ GND
TDO @13 14@ GND
NRESET ®1516@ GND
NC ®17 18@ GND

NC ®1920@ GND

Figure 2-11 Pinout of JTAG connector (J1)

2-14 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Hardware Description

2.8 Power supply

The Evaluator-7T is powered through an external unregulated 9V DC power supply
unit. Thisis plugged into the jack connector J7. It supplies an input to the on-board
switch-mode regulator that suppliesthe 3.3V power to components on the board. Diode
D12 is used to protect against reverse polarity on the power input.

Pin 3 on the jack socket is connected to the VCC (3.3V) power plane and shorts to
ground when the power plug is removed. This discharges the bulk capacitance in the
board power plane.

ARM DUI 0134A

Copyright © ARM Limited 2000. All rights reserved. 2-15

Hardware Description

Copyright © ARM Limited 2000. All rights reserved.

ARM DUI 0134A

Chapter 3

Programmers Reference

This chapter describes the memory map and registers. It contains the following

sections:

General memory map on page 3-2
Memory usage on page 3-3
Microcontroller register usage on page 3-5
Accessing LEDs and switches on page 3-6.

ARM DUI 0134A

Copyright © ARM Limited 2000. All rights reserved.

3-1

Programmers Reference

3.1 General memory map

The Evaluator-7T uses both flash and SRAM memory devices:

. the flash contains thBootSrap Loader (BSL), Angel debug monitor, and
production test code

. you can us the SRAM for read-write data and for code.

On power-up, the microcontroller only has access to the flash memory. The BSL code
modifies registers in the system memory controller to allow access to the installed
memory.

3.1.1 Memory map at system reset
Refer toSamsung KS32C50100 32-BIT RISC Micro Controller Embedded Network
Controller User’s Manual for details on the system memory map at reset.

3.1.2 Memory map after remap

After reset the BSL code begins running from addoess and then reconfigures the
memory map very early in its execution. After the BSL reconfigures the memory map,
it is structured as shown in Table 3-1.

Table 3-1 Memory map after remap

Address range Size Description

0x00000000 to OXO003FFFF 256KB 32 bit SRAM bank, using ROMCON1

0x00040000 to 0OXx0007FFFF 256KB 32 bit SRAM bank, using ROMCON2

0x01800000 to 0x0187FFFF 512KB 16 bit flash bank, using ROMCONO

0x03FEO000 to OX03FELFFF 8KB 32 bit internal SRAM

0Ox03FF0000 to OX03FFFFFF 64KB Microcontroller register space

Note

The BSL does not enable the cache. When the caches are enabled, you cannot use the
32-bit internal SRAM.

3-2 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

3.2 Memory usage

Programmers Reference

Memory usage changes slightly depending on whether BSL or Angel is running.

3.21 SRAM usage under the BSL

Table 3-2 shows the SRAM usage under BSL.

Table 3-2 SRAM usage under BSL

Address range

Description

0x00000000 to 0x0000003F

Exception vector table and address constants

0x00000040 to OXO0O000FFF

Unused

0x00001000 to 0OXxO0007FFF

Read-write data space for BSL

0x00008000 to 0x00077FFF

Available as download area for user code and data

0x00078000 to 0Ox0007FFFF

System and user stacks

3.2.2 SRAM usage under Angel

Table 3-3 shows the SRAM usage under Angel.

Table 3-3 SRAM usage under Angel

Address range

Description

0x00000000 to 0OXxO000003F

Exception vector table and address constants

0x00000040 to 0OXOO0000FF

Unused

0x00000100 to 0OXx00007FFF

Read-write data and privileged mode stacks

0x00008000 to 0x00073FFF

Available as download areafor user code and data

0x00074000 to 0Ox0007FFFF

Angel code execution region

ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 3-3

Programmers Reference

3.2.3 Flash memory usage

Table 3-4 shows the flash memory usage.

Table 3-4 Flash memory usage

ADDRESS RANGE DESCRIPTION

0x01800000 to 0Xx01806FFF Bootstrap loader

0x01807000 to 0x01807FFF Production test

0x01808000 to 0Ox0180FFFF Reserved

0x01810000 to OX0181FFFF Angel

0x01820000 to 0x0187FFFF Available for your programs and data

3-4 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

3.3 Microcontroller register usage

Table 3-5 lists the registers used by the system software.

—— Caution

Programmers Reference

Exercise caution before modifying any of the registersto prevent improper functioning.

For details on how they are used by the system software, refer to
\ Sour ce\ af s11\ uHAL\ Boar ds\ EVALUATOR?7T and

\ Sour ce\ af s11\ angel \ Eval uat or 7t .

Table 3-5 Microcontroller register usage

System manager Input/output Interrupt

group ports controller UART
SYSCFG IOPMOD INTMOD ULCON1
EXTDBWTH IOPCON INTPND UCON1
ROMCONO |IOPDATA INTMSK USTAT1
ROMCON1 - - UTXBUF1
ROMCON2 - - URXBUF1
- - - UBRDIV1

ARM DUI 0134A

Copyright © ARM Limited 2000. All rights reserved.

3-5

Programmers Reference

3.4 Accessing LEDs and switches

3.4.1 Simple LEDs

Refer to Chapter 2 Hardware Description for details on how the LEDs and switchesare
connected to the microcontroller. Y ou are recommended to use a read-modify-write
strategy when writing to system registers.

Note
The example code excerpts shown in this section are taken from
\ Sour ce\ prod_t est\ prodt est. c and segdi sp. h. For other examples see
\ Sour ce\ af s11\ uHAL\ Boar ds\ EVALUATORT7T, \ Sour ce\ exanpl es\ DI PS, and
\ Sour ce\ exanpl es\ Swi t ch.

Use the input/output ports PIO[7:4] to control the four simple LEDs as follows:
. SET bits [7:4] in the register IOPMOD to configure ports as outputs.
. SET bits [7:4] in the register IOPDATA to light LEDs.

. CLEAR bits [7:4] in the register IOPDATA to turn LEDs OFF.

Example 3-1 shows an example code segment used to control the simple LEDS.
Programs that are downloaded under Angel or the BSL can assume the LEDs are
available and ready for use.

Example 3-1 Simple LED control

#define ALL_LEDS OxFO

voi d Set LEDs(unsigned val)
{

*(vol atil e unsigned *)| OPDATA & ~ALL_LEDS;
*(vol atil e unsigned *)| OPDATA | = val << 4;

3-6

Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Programmers Reference

3.4.2 Seven segment LED Display
Use the input/output ports P[16:10] to control the seven segment display as follows:
. SET bits [16:10] in register IOPMOD to configure ports as outputs.
. SET bits [16:10] in register IOPDATA to light segments.
. CLEAR bits[16:10] in the register IOPDATA to turn segments OFF.

Example 3-2 shows a code fragment that controls the seven-segment LED display.
Programs that are downloaded under Angel or the BSL can assume the seven-segme
display is available and ready for use.

Example 3-2 Seven segment display and DIP switch reading

/* The bits taken up by the display in | ODATA register */
#defi ne SEG MASK (0x1f c00)

/* define segnents in terms of 10 1lines */
#def i ne SEG A (1 << 10)
#def i ne SEG B (1 << 11)

(-]

#define DISP_O (SEG_A|SEG_B|SEG_C|SEG_D | SEG_E | SEG_F)
#define DISP_1 (SEG_B|SEG_C)
[..]

const unsigned numeric_display[] = { DISP_0, DISP_1, DISP_2, DISP_3, DISP_4, DISP_5, DISP_6,
DISP_7, DISP_8, DISP_9, DISP_A, DISP_B, DISP_C, DISP_D, DISP_E,
DISP_F };

unsigned poll_dipSwitch(void)
{

unsigned ioData, Switch;

Switch = SWITCH_MASK & *(volatile unsigned *)IOPDATA,;
SetLEDs(Switch);

ioData = numeric_display[Switch];

*(volatile unsigned *)IOPDATA &= ~SEG_MASK;

*(volatile unsigned *)IOPDATA |= ioData;

return(Switch);

ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 3-7

Programmers Reference

3.4.3 DIP switch
Use input/output ports P[3:0] to read the DIP switch SW5 asfollows:
. CLEAR bits [3:0] of register IOPMOD to configure ports as inputs.

. Read the current setting of the switches from the register IOPDATA:

1 = switch set to ON
0 = switch set to OFF.

The DIP switch can be read immediately after system reset, because the power-on
default for IOPCON is zero. See Example 3-2 on page 3-7 for an example of how to
read the DIP switch.

3.4.4 User interrupt switch

The input/output port P8 is connected to SW3. You can use this to as an interrupt input
INTO. To enable this operation:

. SET bit 3 of register IOPCON.

. CLEAR bit 0 of register INTMSK so that an interrupt can be triggered by
pressing the switch.

Example 3-3 shows how the SW3-generated interrupts are enabled and cleared.

You can freely acquire interrupts under the BSL, because it does not use interrupts.
Programs running under Angel need to carefully chain in a new interrupt handler,
because Angel makes use of serial IRQs on the serial port. Refe Ad$ievel oper
Guide.

Example 3-3 User interrupt control

#define Enablelnterrupt(n) (*(volatile unsigned *)INTMSK & ~(1 << n))
#define Disablelnterrupt(n) (*(volatile unsigned *)INTMSK | = (1 << n))

/* Interrupt controller defines, SWB is tied to external |NTO */

#def i ne I NT_GLOBAL (21)
#defi ne | NT_SWB_MASK (1)
#defi ne I NT_SWB_NUM (0)

/* 10 controller defines for SWB */

#defi ne I O_ENABLE_| NTO (1 << 4)
#define 1 O_ACTI VE_HI GH_| NTO (1 << 3)
#def i ne 1 O_RI SI NG_EDGE_| NTO (1)

3-8 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Programmers Reference

unsi gned crmain(void)

{

/* disable interrupts, but pending bit will still be set by an active
interrupt */
Enablelnterrupt(INT_SW3_NUM);
Disablelnterrupt(INT_GLOBAL);

*(volatile unsigned *)IOPCON = 10_ENABLE_INTO | IO_ACTIVE_HIGH_INTO | I0_RISING_EDGE_INTO;

while (0 == ((1 << INT_SW3_NUM) & *(volatile unsigned *)INTPND))
{

} /* wait untill we sense the switch */

*(volatile unsigned *)INTPND |= INT_SW3_MASK; [* clear interrupt */

ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 3-9

Programmers Reference

3-10

Copyright © ARM Limited 2000. All rights reserved.

ARM DUI 0134A

Chapter 4
Bootstrap Loader Reference

This chapter describes the use of the Evaluator-7T bootstrap loader. It contains the
following sections:

. About the bootstrap loader on page 4-2

. Basic setup with the BSL on page 4-3

. BSL command-line editor on page 4-7

. Modules on page 4-19

. Preparing a program for download on page 4-29.

ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved.

41

Bootstrap Loader Reference

4.1

About the bootstrap loader

The BootStrap Loader (BSL) is located in the bottom of flash memory (see Flash
memory usage on page 3-4). The BSL isthe first code to be executed by the

K S32C50100 microcontroller when it powers up or resets. The BSL code has the
following main functions:

connecting to the host using a standard serial port and terminal application
providing facilities to configure the board

providing user help

managing the images in flash as a set of executable modules

allowing you to download applications to SRAM and execute them.

4-2

Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Bootstrap Loader Reference

4.2 Basic setup with the BSL

This section describes how to set up the Evaluator-7T and communicate with the BSL.
The subsections that describe the steps are as follows:

Connecting the Evaluator-7T on page 4-4
Communicating with a Unix host on page 4-4 or
Communicating with a PC host on page 4-5
Resetting the Evaluator-7T on page 4-5

Solving communications problems on page 4-6.

Figure 4-1 shows the Evaluator-7T setup.

Host computer
.
000

‘ R o e |:|‘

Serial cable

Evaluator-7T

==}

BEl 0
o0

il
i D

Power supply

:
i
i

Figure 4-1 Bootstrap loader setup configuration

ARM DUI 0134A

Copyright © ARM Limited 2000. All rights reserved. 4-3

Bootstrap Loader Reference

4.2.1 Connecting the Evaluator-7T
Set up the Evaluator-7T asfollows:

1. Connect the serid cable between the Evaluator-7T board and the host computer.
Make a note of the seria port on the computer that you use.

2. Connect the power adapter to the power connector on the Evaluator-7T board.
3. Connect the power adapter to an AC power socket. The dot on the
seven-segment display lights up as a power indicator.
4.2.2 Communicating with a Unix host

To communicate with the BSL you need to run asimple terminal application on the
Unix host. In thisexampleti p is used.

Tostartti p enter:

tip -<baud-rate> <devi ce nanme>

Where baud- r at e isone of the baud rateslisted in Table 4-1 and devi ce nane is
the name of the device associated with the serial port attached to the board (usually
/dev/ttyaor/dev/ttyb). For example:

tip -38400 /dev/ttya

Table 4-1 Supported BSL serial line settings

Baud rate Data bits Parity Stop bits El)onv'zlrol
9600 8 None 1 None
19200 8 None 1 None
38400 8 None 1 None
57600 8 None 1 None
115200 8 None 1 None

4-4 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Bootstrap Loader Reference

4.2.3 Communicating with a PC host

Y ou can use Windows HyperTerminal to communicate with the BSL. Start and
configure HyperTerminal as follows:

1. To start the HyperTerminal program, select Start, Programs, Accessories, and
then Hyper Terminal. The HyperTerminal Connection Description dialog is

displayed.

2. Enter anamefor this setup in the dialog box (for example ArmEval) and click on
OK. The Connect To dialog is displayed.

3. Select the COM port you have connected the Evaluator-7T to from the Connect
using menu and click on OK. The COMx Properties dialog is displayed.

4. InCOMX Propertiesdiaog, select abaud rate (refer to the of supported baud
rates shown in Table 4-1 on page 4-4). If you are not using a VT100 emulator,
connect initially at 9600 baud. (The board cannot detect the baud rate if you are
not using a VT100 emulator.) You can configure the board later to use a higher
baud rate.

5. Select None from the Flow Control menu and click on OK. HyperTerminal is
now prepared for output from the board.

4.2.4 Resetting the Evaluator-7T

1. Pressthe SYSRESET button (SW1) on the Evaluator-7T. A banner similar to
the following is displayed in the HyperTerm window:

ARM Eval uat or 7T Boot Monitor Rel ease 1.00

Press ENTER within 2 seconds to stop autoboot

Note
If abanner is not displayed, refer to Solving communications problems on page 4-6.

2. PressEnt er within 2 seconds to prevent the board from autobooting any other
modules that may be stored in flash. The prompt Boot : isdisplayed and the
LEDsD3 and D4 arellit.

3. Typeboot at theBoot: prompt. The following response is displayed:
Scanni ng ROM for nodules ...

Found nodul e ' Boot StrapLoader’ at 018057c8

Found nodul e ' ProductionTest’ at 018072cO

Found nodul e ' Angel’ at 0181a818
Boot :

ARM DUI 0134A

Copyright © ARM Limited 2000. All rights reserved. 4-5

Bootstrap Loader Reference

4.2.5 Solving communications problems

If the banner, described in step 6 above, is not displayed, check the following:

1. Check that you are using one of the supported baud rates shown in Table 4-1 on
page 4-4.

2. Check that you are using a VT100 emulator and not another type.

3. Switch to 9600 baud. If the board cannot detect the baud rate you are using it
defaults to 9600 baud.

4. Regardless of the baud rate, always configure your terminal emulator for 8 bits
data, No parity, 1 stop bit. Ensure that you disable any flow control on your
terminal emulator (Xon/Xoff or hardware handshaking). If you cannot disable
hardware flow control then tie some or al of CTS, DSR, and CD lines on your
seria port HIGH.

5. Check that you are using the correct serial cable. The cable requires three
connections, signal ground, Rx, and Tx. Rx, and Tx must not be crossed over
(that is, it must be a straight-through cable).

Note

TheBSL storesenvironment variablesthat are used to configure the board. One of these

environmental variables is used to set the baud rate (see setenv on page 4-9).

4-6 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Bootstrap Loader Reference

4.3 BSL commands
This section describesthe BSL command-line editor and the available BSL commands:

. BSL command-line editor

. Basic commands on page 4-8

. Flash and module management on page 4-12

. Downloading and executing an application on page 4-15.

43.1 BSL command-line editor

The BSL provides a command-line editor that allows you to type in and modify
commands. These editing facilities are built into the BSL Read Line Software Interface
so that any other module that uses this interface can use the editing facilities. The
command-line editor keys are shown in Table 4-2.

Table 4-2 Command-line editor keys

Key Function

Backspace Delete the character
before the cursor.

Del et e Same function as
backspace.

CTRL- A Move the cursor to the
start of the current line.

CTRL-B Move the cursor back
one character.

CTRL-D Forward delete. Delete

the character under the
cursor. If entered on an
empty line CTRL- Dis
treated as End Of File

CTRL-E Move the cursor to the
end of the current line.
CTRL- F Move the cursor
forward one character.
CTRL- R Redraw the current line.
CTRL- U Erase the current line.

ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 4-7

Bootstrap Loader Reference

4.3.2 Basic commands
This section describes the basic commands:

. boot

. help

. setenv on page 4-9

. unsetenv on page 4-11
. printenv on page 4-11.

The commands are not case sensitive.

boot
Usage boot

Use theboot command to scan the flash ROM for bootable modules:
Boot : boot
Scanning ROM for nodules ...

Found nodul e ' Boot StrapLoader’ at 018057c8

Found nodul e ' ProductionTest’ at 018072cO

Found nodul e ' Angel’ at 0181a818

help
Usage hel p <comand>

Enterhel p with no arguments to return a list of commands supported by the BSL. The
hel p command goes through each module in flash ROM and lists all the commands
supported by each module. For example:

Boot: help

Mbdul e i s Boot StrapLoader v1.0 Apr 27 2000 10: 33:58

Hel p is avail able on:

Hel p Modul es ROWbdul es UnPl ug Pl ugln
Kill Set Env UnSet Env Pri nt Env DownLoad
Go GoS Boot PC Fl ashWite

Fl ashLoad Fl ashEr ase

Modul e is ProductionTest v1.0 Apr 27 2000 10:49: 47

Modul e i s Angel 1.31.1 (20 Mar 2000)

4-8 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Bootstrap Loader Reference

To get help on a specific command, enter hel p <Conmand>. This displays a brief
one-line help on the command. For example:

Boot: hel p help

Usage: Hel p [<command>]

Hel p gives help on the command, if none specified, gives a list of
commands.

Y ou can aso specify a module name instead of the <command>. Thislists all the
commands supported by that module. For example:

Boot: hel p boot strapl oader
Mbdul e is Boot StrapLoader v1.0 Apr 27 2000 10: 33:58

Hel p is avail able on:

Hel p Modul es ROWWbdul es UnPl ug Pl ugln
Kill Set Env UnSet Env Print Env DownLoad
Go GoS Boot PC Fl ashWite

Fl ashLoad Fl ashEr ase

This only gives help about the BSL module.

setenv
Usage setenv <vari abl e- nane> <val ue>

Use Set Env to set an environment variable in flash. Y ou can program any variable
name into flash. However, certain variable names are recognized by different modules
in the system to provide for configuration options. These are listed in Table 4-3 on
page 4-10.

If you are writing your own module you are likely to assign your own variable names
to have specific meaning for your module, for example:

Boot: setenv baud 38400

Thistellsthe BSL to use a baud rate of 38400, but does not take effect until the board
IS reset.

Y ou can omit the <val ue> part to set aBOOLEAN type variable that is assumed to be
TRUE if the variable exists or FALSE if it does not. For example:

Boot: setenv baud 38400

Boot : setenv noaut obaud

The command set env noaut obaud tellsthe BSL not to do automatic baud rate
detection on startup. Used in conjunction with the set env baud 38400 command, a
fixed baud rate of 38400 is set on the board.

ARM DUI 0134A

Copyright © ARM Limited 2000. All rights reserved. 4-9

Bootstrap Loader Reference

If you just usetheset env baud 38400 command, then auto baud rate detection
overridesthe configured baud rate. The configured baud rateisapplied only if the board
cannot determine the baud rate you are using. Enter these commands if you had
difficulty getting started with the board and had to revert to 9600 baud.

—— Caution

Do not set the baud rate to abaud rate higher than your terminal can support. If you do,
you might not be able to regain control of the board.

Table 4-3 Environment variables used by the basic BSL

Variable

Value

Effect

noaut oboot

If thisvariableis set then the BSL bypasses the
normal autoboot sequence and goes straight to
the Boot : prompt. You can use thisto prevent
the BSL from automatically starting another
module stored in flash.

boot

<boot - nodul e>

Thisvariable is used to specify the name of a
module to boot at startup. If thisvariableis set,
BSL bootsthat module. Otherwise the BSL boots
the last module in the module list that has the
Aut oBoot bit set.

noaut obaud

Set this variable to force the BSL to bypass the
normal baud rate detection and default to the
configured baud rate, or to 9600 baud if no baud
rateis configured.

baud

<baud-r at e>

Use thisto configure the baud rate for the board
to one of 9600, 19200, 38400, 57600, or 115200.
The BSL first performs automatic baud rate
detection (subject to the setting of the

noaut obaud variable) and only uses thisvalue
if the baud rate could not be determined or if the
noaut obaud variableis set.

4-10

Copyright © ARM Limited 2000. All rights reserved.

ARM DUI 0134A

Bootstrap Loader Reference

unsetenv
Usage unset env <vari abl e- name>
Use UnSet Env to remove an environment variable previously created with set env.

For example:
Boot : unset env noaut obaud
Boot : unsetenv baud

printenv
Usage printenv

Use Pri nt Env tolist the variablescurrently stored in the environment areaintheflash.
For example:

Boot: printenv

Vari abl e Val ue

noaut obaud
baud 38400

ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 4-11

Bootstrap Loader Reference

4.3.3 Flash and module management
The flash memory stores a number of executable modules. The flash shipped with the
evaluation board contains three modules. These are:
. BSL module
. Production test module (s€eoduction test module on page 4-30)
. Angel.
By default, Angel is automatically run unless the BSL is interrupted by pre3sieg
within 2 seconds after startup.
The flash and module management commands are as follows:
. modules
. rommodules on page 4-13
. modulename on page 4-13
. unplug on page 4-13
. plugin on page 4-14
. kill on page 4-14.
modules
Usage nodul es
Usenodul es to display a list of all initialized modules. For example:
Boot: nodul es
Header Base Limt Dat a
018057¢8 01800000 018059e7 00000000 Boot StrapLoader v1.0 Apr 27 2000
018072c0 01807000 01807308 00000000 ProductionTest v1.0 Apr 272 000
0181a818 01810000 0181a860 00000000 Angel 1.31.1 (20 Mar 2000)
where:
Header Is the address of the module header within the module.
Base Is the first address of the module in flash.
Limt Is the last address (+1) of the module in flash.
Dat a Is the address of the modules data (0 => none).

Note

The displayed information for a specific board may be slightly different.

4-12 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Bootstrap Loader Reference

rommodules
Usage r ommodul es

Enter r onmodul es to display alist of all modulesin flash (as opposed to nodul es
which lists only those modules that have been initialized). For each module,
ronmodul es printsthe Header , Base and Li mi t information, asfor nodul es, but
does not print the Dat a information. Thisis because an uninitialized module cannot
have any data.

Thiscommand displaysalist of all modules available in flash with the version number,
date, and base address in flash of each module. For example:

Boot: rommodul es

Header Base Limt

018057¢8 01800000 018059e7 Boot StraplLoader v1.0 Apr 27 2000 10:33:58
018072c0 01807000 01807308 Producti onTest v1.0 Apr 27 2000 10: 49: 47
0181a818 01810000 0181a860 Angel 1.31.1 (20 Mar 2000)

modulename

Usage nmodul enane

Enter the name of a module to run that module. For example:
Boot : boot strapl oader

ARM Eval uat or 7T Boot Mnitor PreRel ease 1.00

Press ENTER within 2 seconds to stop autoboot

Boot :

This reruns the BSL module, which has the effect of rebooting the board.

unplug
Usage unpl ug <nodul e nane>

Enter unpl ug to:
. prevent BSL initializing the specified module when the board is next booted
. kill an active module (which has been initialized).

Theunpl ug command is useful if you have a module that is causing the board to crash
when it is booted. In this situation:

1. Boot the board.
2. PresxENTER> to interrupt the boot.

3. Enterunpl ug <nodul enane>.

ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 4-13

Bootstrap Loader Reference

4, Reboot the board.

Repeat this process to isolate the problem module, and then use the pl ugi n command
to reinstate the modules that you know to be problem free.

Note

Donotunpl ug theBSL itself. However, you can still recover by booting the board and
pressing <ENTER>. The BSL initializes itself allowing you to regain control by using
the pl ugi n command.

plugin
Usage pl ugi n <nodul e nanme>

Enter the pl ugi n command to reinstate a modul e that has been unplugged with the
unpl ug command. The pl ugi n command marks the module so that the BSL finds it
next time the board is booted. The pl ugi n command also initializes the module.

You can usethe pl ugi n command to initialize amodule which failed to initialize at
boot time.

kill

Usage kill <nodul e nane>

Usetheki | I command to halt amodule by calling its finalization code. Unlike the
unpl ug command it does not mark the module as unplugged so the module is
initialized the next time the board is booted.

Useki | | toremove amodule temporarily, or use unpl ug to remove it permanently.

4-14 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Bootstrap Loader Reference

4.3.4 Downloading and executing an application

This section describes commands used to download and execute images on the
Evaluator-7T. These commands are as follows:

. download

.o go

. gos on page 4-17

. pc on page 4-17

. flashwrite on page 4-17
. flashload on page 4-17

. flasherase on page 4-18.

download
Usage downl oad [<addr ess>]

Use thedownl oad command to download an image (for example an application) into
RAM. The image must be converteduteencoded format before it is downloaded. If
no address is specified the image is downloaded at the addegs¥, otherwise it is
downloaded at the address specified.

To download an image:

1. Convert the image tauencoded format, sedreparing a program for
download on page 4-29.

2. Enter thalownl oad command at thBoot : prompt on the terminal connected
to the board.

3. Transmit thaiuencoded file down the serial line using the transmit file option
on your terminal:

a. Ifyou are using HyperTerminal on a PC, selecBdmal Text file option
from theTransfer menu, and enter the name of thencoded file you
want to download in the dialog box.

b. Ifyou are usingi p on a UNIX system, enter the command>< >
followed by the name of theuencoded file you wish to download. (You
might need to pressRETURN> before entering: ~> >.)

If the BSL detects any errors during downloading, it prints a message similar to:

Error: 00000001 errors encountered during downl oad.

ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 4-15

Bootstrap Loader Reference

If this occurs, try downloading again. If you are using a high baud rate (57600 or
115200), try using alower baud rate.

Note

If after having entered downl oad you want to exit the download function without
downloading an image, type CTRL- D.

go
Usage go [<program ar gunent s>]

Usethego command to start User mode execution of a program previously
downloaded using the downl oad command. The starting address of the program is set
to the address at which the program was downl oaded. Argumentsto the program can be
specified after the go command.

For example, if you build and download the following program:
- echo.c ---

#i ncl ude <stdio. h>

int main(int argc, char **argv)

{

int i;

for (i =0; i < argc; i++)

puts(argv[il);

return O;

}

and then run it with the command:
Boot: go 12 3 4

you get the following outpult:

1

2

3

4

Programterm nated with return code 00000000

For details on how to prepare programs for download, refer to Preparing a program for
download on page 4-29.

Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Bootstrap Loader Reference

gos
Usage gos [<program ar gunent s>]

User gos command to execute a program in Supervisor (SVC) modeinstead of in User
mode.

pc
Usage pc <address>

Usethepc command to set the value of the stored Program Counter (PC). This
command is used to set the address before entering ago or gos command. The go and
gos commands read the stored pc into the ARM pc register (r15). If executed without
any argument the pc command prints the current value of the stored pc.

flashwrite
Usage flashwite <address><source><| engt h>

Usethef | ashwr i t e command to write the area of memory specified by sour ce and
| engt h to the flash, starting at the address specified by addr ess. Theaddr ess isthe
mapped address of the flash memory on the board. To convert aflash offset to an
address, add 0x01800000, the base address of the flash in the memory map.

Caution

Y ou must not write to the bottom 64K B of the flash memory (from 0x01800000 to
0x0180FFFF). Thisarea of flash is reserved for the BSL module and production test
module.

flashload
Usage fl ashl oad <address>

Usefl ashl oad to perform adownl oad command and then write the result of the
download into flash at the specified address.

Caution

Aswithfl ashwri t e, do not attempt to load anything into the lower 64K B of flash
memory.

ARM DUI 0134A

Copyright © ARM Limited 2000. All rights reserved. 4-17

Bootstrap Loader Reference

flasherase
Usage fl ashErase <address |ength>

Usefl asher ase to erase the section of flash specified by address and length by
overwriting it with OxFF.

—— Caution

Aswithfl ashwite andf | ashl oad donotattempt to eraseflashinthelower 64KB
region of the flash.

4-18 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Bootstrap Loader Reference

4.4 Modules

The flash on the Evaluator-7T is provided to allow multiple independent programs to
be stored and easily managed by the BSL. A single independent program is described
asamodule.

A module consists of two major components:

. a binary executable image of the program
. aMdul eHeader data structure that describes the image.

The BSL uses thebdul eHeader data structure in each module to manage the flash.
This descriptive data structure is not required to be the first item in the module.

441 The module header data structure

The module header structure must take the following form:
typedef struct Mdul eHeader Mdul eHeader;
struct Modul eHeader {
unsi gned nagi c;
unsi gned fl ags: 16;
unsi gned mmj or: 8;
unsi gned mi nor: 8;
unsi gned checksum
ARMMrd *ro_base;
ARMMrd *ro_limt;
ARMMIrd *rw_base;
ARMMrd *zi _base;
ARMMIrd *zi _limt;
Modul eHeader *sel f;
Start Code start;/* Optional - may be 0 */
InitCode init;/* Optional - may be 0 */
Fi nal Code final;/* Optional - may be 0 */
Servi ceCode service;/* Optional - may be 0 */
TitleString title;
Hel pString hel p;
CnmdTabl e *cndtbl ;/* Optional - may be 0 */
SW Base swi _base;/* Optional - nmay be 0 */
SW Code swi _handler;/* Optional - may be 0 */

ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 4-19

Bootstrap Loader Reference

4.4.2 Module header field descriptions
Table 4-4 lists the fields used in the modul e header.

Table 4-4 Module header fields

Offset Name Description

0x00 magic Magic word (value = 0x4D484944) used to identify this
asamodule.

0x04 flags 16-bit flags field. Theindividual flags are described below.

0x06 major Major version number. Currently this has the value 1.

0x07 minor Minor version number. Currently this has the value 1.

0x08 checksum An EOR checksum of the entire modul e used to validate the

module.
0x0C ro_base The linked read-only base of the module =l nrege$$RO6$Base
0x10 ro_limit The linked read-only limit of the module

=l mage$SROBSLI mi t
0x14 rw_base The linked read-write base of the module

=l mge$$RW$Base
0x18 Zi_base The linked Zero Init base of the module =1 nage$$ZI $$Base
0x1C zi_limit The linked Zero Init limit of the module

=l mage$$ZI $$Li mi t
0x20 self A pointer to the linked address of the module header.
0x24 start The linked address of the start code called to boot a module.
0x28 init The linked address of the init code called to initialize a module.
0x2C final The linked address of the final code called to kill amodule.
0x30 service The linked address of the service call entry of amodule.
0x34 title The linked address of the title string of the module.
0x38 help The linked address of the help string of the module.

4-20 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Bootstrap Loader Reference

Table 4-4 Module header fields (continued)

Offset Name Description

0x3C cmdtbl A pointer to the command table for this module.

0x40 swi_base The base address of the 64 entry SWI chunk handled by this
module.

0x44 swi_handler A pointer to the SWI handler for this module.

The module header fields are as follows:

. magic

. flags on page 4-22

. major, minor on page 4-22
. checksum on page 4-22

. ro_base, ro_limit, rw_base, zZi_base, zi_limit on page 4-22
. start on page 4-24

. init on page 4-24

. final on page 4-25

. service on page 4-25

. title on page 4-25

. help on page 4-26

. cmdtbl on page 4-26

. swi_base on page 4-27

. swi_handler on page 4-27.

magic

This word identifies a module header. You must set this word to the value
MODULE_MAGIC which has the following definition:

#define MODULE_MAGIC 0x4d484944; [*'MHID’ */

Y ou can use the word MAGIC to identify the big-endian or little-endian setting for a
module. Therefore, the above definition must always be used. Because they do not
correctly identify the byte ordering of the module, do not use definitions such as the
following:

#define MODULE_MAGIC’'MHID’

or
#define MODULE_MAGIC *(unsigned *)"MHID"

ARM DUI 0134A

Copyright © ARM Limited 2000. All rights reserved. 4-21

Bootstrap Loader Reference

When the BSL is booted, it searches the ROM(s) for the MODULE_MAGIC word.
Each occurrence of the MODULE_MAGIC word isidentified as a module, provided
that the module checksum succeeds.

flags

The following flags are currently defined:
#def i ne UNPLUGGED_FLAG 0x0001
#def i ne AUTOSTART_FLAG 0x0002

Set dl other bitsin thisfield to zero.

The UNPLUGGED_FLAG is used to identify which modules have been unplugged
(removed fromthelist of modules). Unplugged moduleswill be entered into the module
list. However, none of their entries are ever called.

The AUTOSTART_FLAG is used to identify a single module that is automatically
booted on startup in the absence of a boot module. Usually, the AUTOSTART_FLAG
is set for only one module. In the case that more than one module has the
AUTOSTART_FLAG set, the BSL boots the last such module found in aflash.

major, minor

These fields identify the major and minor version numbers of the module header. Y ou
can use these to allow future extension of the module header. The current version
number is:

#define MAJOR_VERSI ON 1

#defi ne M NOR_VERSI ON 1

checksum

Thisfield is used to validate the module. The checksum is calculated over the range
<real _base>to<real _|imt> Thechecksumvalueis set so that the checksum
over thisrangeisegual to 0. It is calculated as the End of Range (EOR) of eachword in
therange <r eal _base>to<real _| i m t >. The checksumisincluded in the range
<real _base>to<real _|imt>sothereisno need to perform afinal EOR of
checksum to generate a zero result.

ro_base, ro_limit, rw_base, zi_base, zi_limit

Thesefieldsidentify the extents of the module ROM and RAM regions. Y ou should set
these fields to the linked address of the regions.

4-22

Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Bootstrap Loader Reference

Thefollowing list shows how these fields can be defined in an assembly language file
using an ARM assembler:

I MPORT| | mage$$RO6$Base|

| MPORT| | mage$$ROBSLI mi t |

I MPORT| | mage$$RWs$Base|

| MPORT| | mage$$ZI $$Base|

| MPORT| | mage$$ZI $$Li m t |

Mbdul eHeader DCDMODULE_MAG C

DCD| | mrage$$ROB$Base|
DCD| | mege$$ROBSLI mi t |
DCD| | nege$$RWE$SBase|
DCD| | nege$$ZI $$Base|
DCD| | mege$$ZI $$Li mi t |
DCDModul eHeader

The following list shows how these fields can be defined in a Cfile:

extern ARMWWrd | mage$$ROB$Base[] ;
extern ARMAMIrd | mage$$SROBSLIi mit[];
extern ARMMIrd | mage$$RWES$SBase[] ;
extern ARMMIrd | mage$$zl $$Base[];
extern ARMIrd | mage$$zl $$Limt[];
Mbdul eHeader nodul e_header = {

| mge$$RCB$Base,

| mage$$ROBSLI mi t,
| mge$$RWs$Base,

| mage$$ZI $$Base,

| mrage$$Zl $$Limi t,
&modul e_header,

}s

The actual base and limit of the module are calculated as follows (where
<nodul e_addr ess> isthe address where the BSL located the MODULE_MAGIC
word):
<real _RO base> = ro_base + (<npdul e_address> - self)
<real _ROIlimt>=ro_limt + (<nodul e_address> - self)
+ (zi _base - rw_base)

ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 4-23

Bootstrap Loader Reference

Theactual baseand limit of the module RAM region(s) are calculated asfollows (where
<st ati c_base> isthe static base address of the modules instantiation):

<real RWbase> = <static_base>

<real _RWIlimt> = <static_base> + (zi_limt - rw_base)

If amoduleisstatically linked, it does not support position-independent dataor multiple
instantiation, then<st at i c_base> == rw_base. Otherwise<st ati ¢_base> isthe
static base address of the data for the current instantiation which isheld in R9.

The self entry isalso used to calculate the real entry points of the various entry points
of the module as follows.

<real _start>= start + (<npdul e_address> - self)

<real _init>=init + (<nbdul e_address> - self)

<real _final> = final + (<nodul e_address> - self)

<real _service> = service + (<npbdul e_address> - self)

<real title>=title + (<npdul e_address> - self)

<real _hel p> = help + (<npdul e_address> - self)

<real _cmdt bl >= cndtbl + (<nodul e_address> - self)

<real _swi _handl er>= swi _handl er + (<npdul e_address> - self)

start

The start entry point is called to execute amodule. A module does not have to have a
start entry. In this case the start entry must be 0. The start code is only ever called after
the module has been instantiated by acall toitsi ni t entry. A Clanguage definition of
this entry point is as follows:

typedef void (*StartCode)(char *cnd);
Where on entry:
RO = Pointer to static data

R9 = ModuleHandle returned by i ni t

init

The init entry point is called to instantiate amodule. The value returned is used to
identify the modul einstantiation in subsequent callsto other entries. Thevaluereturned
is passed in R9 to other entry points. Usually theinit entry allocates memory for its
static data and initializes the static data. It then returns a pointer to its static datain RO.
If theinit entry is 0, theinit entry is not called. A C language definition of this entry
point is as follows:

typedef struct Mdul el nfo *Mdul eHandl g;

typedef Mdul eHandl e (*I nit Code) (void);

4-24

Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Bootstrap Loader Reference

Where on exit:
RO = Pointer to static data.

R9 = ModuleHandle used in subsequent calls to other entry points.

final

The final entry point is called to finalize a module. The module frees any resources
allocated by it. Usually amodul e freesits static datawhich is pointed to by RO on entry.
Thefinal entry might be 0inwhich casethefina entry isnot called. A C code definition
of thisentry point isas follows:

typedef void (*Final Code)(void);
Where on entry:
R9 = ModuleHandle return by i ni t

service

The service entry is called to aert amodul e of various conditions. The module can use
thisto intercept certain conditions. For example, a debugger moduleinterceptsaGO or
DOWNLOAD servicecall. To intercept a service call the module should return a
service continuation routine pointer in RO. Thisiscalled when the system isunthreaded,
just beforeit returnsto the original caller. If you do not want the moduleto intercept the
call it must return 0 in RO. If a module does not support any service, the value 0 must
be used. The C code definitions for the service entry point as well as a service
continuation routine are shown below:

typedef void (*ServiceCont)(void);
typedef ServiceCont (*ServiceCode)(int service);

Where on entry:

RO = Service number

R9 = ModuleHandle returned by i ni t
And on exit:

RO = Address of service continuation routine.

title

Thetitleentry pointsto thetitle string for the module. Thismust be a0 terminated string
of 16 charactersor less. A C code definition of thisis:

typedef char *TitleString;

ARM DUI 0134A

Copyright © ARM Limited 2000. All rights reserved. 4-25

Bootstrap Loader Reference

help

The help entry pointsto the help string for the module. A C code definition of thisis:
typedef char *Hel pString;

The actual help string must use the following format:
<Modul e Name> V. W (DD MW YYYY) <Conment >

cmdtbl

The command table points to an array of command descriptions:
typedef struct CndTabl e CndTabl e;
typedef void (*CommandCode) (char *cnd);
struct CndTabl e {
char *comand;
CommandCode code;
unsi gned fl ags;
char *syntax;
char *hel p;
b
Thecndt bl array isterminated by an entry with acommand field of O.

The modul e can be rel ocatable and the real address of the command, code, syntax, and
help entries are calculated using the following real address calculations:

<real _command> = comrand + (<nmbdul e_address> - self)

<real _code> = code + (<mpdul e_address> - self)

<real _syntax> = syntax + (<nodul e_address> - self)

<real _hel p> = help + (<npdul e_address> - self)

Thecndt bl field isoptional and can be 0 if no commands are supported.
The cmtdt data structure filed descriptions are as follows:

command This points to the name of the command. The command name must be
less than 16 characters for the help command to work correctly. The
command can be in any mixture of upper and lower case. The Command
Line Interface (CLI) performs a case insensitive match on commands.

code Thisentry is called when a command matching the command field is
entered. For acommand to unthread the system, it should return the
address of acontinuation routinein RO. Thiscan be used, for example, by
adebugger when ago command is executed. The debugger unwinds the

4-26 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Bootstrap Loader Reference

SV C stack before continuing execution of the debugger by returning the
address of acontinuation routinein RO. The C code definition of both the
continuation and command entry-points are shown below:

typedef void (*ComrandCont) (void);

typedef CommandCont (*ConmandCode) (char *cnd);
Where on entry:

RO = command tail.

And on exit:

RO = address of continuation routine.

flags The flags field contains flags for the command. At the moment no flags
are defined, so all bitsin thisword must be zero.

synt ax Thispointsto astring to giveasyntax error message. The syntax message
must be of the form

Usage: <command> <ar gunent s>

hel p This points to help on the command.

swi_base

Theswi _base entry givesa SWI chunk base for the module. A chunk is 64 entries so
bits 0 to 5 must be zerointheswi _base. When a SWI occurs, which isin amodules
swi _chunk range, theswi _handl er entry iscalled. A value of Oisused if no SWis
are supported. The C code definition of thisentry is:

typedef unsi gned SW Base;

swi_handler

The swi_handler entry is called when a SWI is executed in the modules SWI chunk
range. If you want the handler to intercept the SWI and not return to the caler, return
the address of a continuation routinein RO. The system then unwindsthe SV C stack and
calls the continuation routine. A value of 0 can be used if no SWIs are supported. The
C code definition of both the continuation and command entry points are shown below:

typedef void (*SW Cont) (void);
typedef SW Cont (*SW Code) (unsigned swi no, SW Regs *regs);

Where on entry:
RO = the SWI number modulo 64.

ARM DUI 0134A

Copyright © ARM Limited 2000. All rights reserved. 4-27

Bootstrap Loader Reference

R1 = apointer to register RO through R12 on the stack. These registers can be modified
by the SWI handler.

And on exit:

RO = Address of continuation routine.

4-28 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Bootstrap Loader Reference

4.5 Preparing a program for download
To prepare a program for download:
1. Compile or assemble the source code.
2. Link theresulting object files to create a standalone binary image.

3. Convert the binary image into auuencoded format.

The Evaluator-7T tools and documentation CD, which are supplied with the
board, installs auuencode application onto your host PC system. Use this
application to convert alinked application image from DOS command line. For
example:

uuencode dhry. bi n dhry. uue

Thisuuencoded image can be downloaded and debugged using aterminal application
to the BSL on the Evaluator-7T board for execution.

Note

A standalone binary application in this case is defined as a program that is
self-initializing and requires only services that are available directly from the
Evaluator-7T hardware or the BSL. This definition includes any BSL module image.

ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 4-29

Bootstrap Loader Reference

4.6 Production test module

The production test module can be invoked from the bootstrap loader in the usual way
modules are invoked, by entering in its name at the boot prompt:
Boot: productiontest

The production test module operates as follows:
. It first lights all LEDs, D1-D4 and the seven segment display

. When SW3 is pressed, the test module reads the value from the DIP switch and
displays it on the seven segment display.

. Setting the DIP switch toxF and pressing SW3 causes the test module to exit
this part of the test and start a test of the main user SRAM. (This corrupts any
data in the SRAM.)

. If an error is found, LED D2 stays lit while the module waits for SW3 to be
pressed. If no error is detected, the program returns to the boot prompt.

The production test module is automatically started if connect a loopback connection
between COMO and COM1, and then reset the board.

4-30 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Appendix A
Evaluator-7T Mechanical Outline

This appendix contains the mechanical outline of the Evaluator-7T. It contains the
following section:

. Mechanical outline on page A-2.

ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved.

A-1

Evaluator-7T Mechanical Outline

A.1 Mechanical outline

Figure A-1 shows the mechanical outline of the Evaluator-7T.

| |
O EEmres o I
O E—
3.325 T ET O]
Y L
2.786 = %%
%% == 1.814
1.464 §§
- I
000 O HHHHHHHHHHHHHHHHHHHHHHHHH‘ O ‘OéIZD?_O

Figure A-1 Evaluator-7T mechanical outline

A-2 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Appendix B
Evaluator-7T Signal Naming

This appendix describes the signal naming used for the Evaluator-7T. It contains the
following section:

. Sgnal naming on page B-4.

ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. B-3

Evaluator-7T Signal Naming

B.1 Signal naming

The ARM Evaluator-7T schematics and this manual use different signal names to the
Samsung KS32C50100 32-BIT RISC Micro Controller Embedded Network Controller
User’'sManual. In general the Samsung document usesn<SIGNAL_NAM E> and this
document uses N<SIGNAL_NAM E>. For example nWBEOQ becomes NWBEO.

Other naming differences are shown in Table B-1.

Table B-1 Signal name differences

Description This document Samsung
Address bus A[21:0] ADDRJ[21:0]
External data bus D[31:0] XDATA[31:0]
General purposeinput/output lines ~ PI1O[17:0] P[17:0]

B-4

Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Index

Theitemsin thisindex are listed in a phabetical order, with symbols and numerics appearing at the end. The

references given are to page numbers.

A

Address accesstime 2-8
Addressdelay time 2-8
Addresshold time 2-8
Alphanumeric display 2-11
Angel

using 1-6
Angel debug monitor 3-2
Architecture

overview 1-3

reset system 2-4
ARM Multi-ICE unit 1-7
AUTOSTART_FLAG 4-22

B

Boot command 4-8

Bootstrap loader 2-5, 3-2, 4-1
address 3-4
communicating with 4-4
functionality 1-6
functions 4-2
using 1-6

BSL command line editor 4-7

BSL commands 4-7

Byte accesstime 2-8

C

CE Declaration of Conformity ii
Chip Select delay 2-8
Command line editor 4-7
Command line editor keys 4-7

COM1 29
Connectors
header 1-2
Power 1-2
seria 1-2
Contents, product package 1-4
Converting flash offset to an address
4-17
Corereset switch 1-2, 2-4

D

Debug monitor, Angel 1-6
DEBUG port 2-9

DIP switch 1-3, 2-13, 3-8
Download command 4-15
Downloading applicationsto SRAM

Basic commands 4-8 Command lineinterface 4-26 1-6

Basic setupwithBSL 4-3 Communications problems 4-6

Binary executableimage 4-19 Compiling the source code 4-29

Board configuration commands 1-6 COMsports 1-2

Board layout 1-2 COMO 2-9

ARM DUI 0134A-03 Copyright © 2000 ARM Limited. All rights reserved. Index-i

Confidential Draft

Index

E

Erasing a section of flash 4-18

EXTDBWTH configuration register

2-5

F

Federal Communications Commission

i
Feedback, product xii
Flagsfield 4-27

flash 2-2

Flash bootROM 2-5

Flash management 4-12
Flash management tools 1-6
Flash memory 3-4

Flash memory usage 3-4
Flasherase command 4-18
Flashload command 4-17
Flashwrite command 4-17

G

Go command 4-16
Gos command 4-17

H

Help command 4-8
High-level datalink control 2-2
Host system requirements 1-5

Interrupt button 1-2
Interrupt controller 2-2
Interrupt switch 2-13
Itended audience viii
12C serial interface 2-2

J

JTAG connector 1-7

JTAG interface 2-14

K

Kill command 4-14
Kit contents 1-4

L

LED access 3-6

LED-PIO pots assignments 2-11
LEDs 2-11

Lower Byte, SRAM 2-5

M

Main components 1-2
Manual audience viii

Memory
flash 2-5
SRAM 2-5

Memory map 3-2
Memory map after remap 3-2
Memory usage 3-3

Microcontroller block diagram 2-2
Microcontroller pin connections 2-2

Microcontroller power 2-2
Microcontroller register usage 3-5
Microcontroller,overview 2-2

Module header field descriptions 4-20

Module header fields 4-20
Module header structure 4-19
Module management 4-12
modulerelocation 4-26
ModuleHeader data structure 4-19
Modulename command 4-13
Modules 4-19
Modulescommand 4-12
MODULE_MAGIC 4-21
Mulit-ICE

Using 1-7

N

NRESET signa 2-4

NTRST signd 2-4

O

Other ARM publications xi
Output enable 2-8
Overview of Evauator-7T 1-2

P

Pc command 4-17
Plugin command 4-14
Ports

RS232 2-9
Power connector 1-2
Power indicator 2-11
Power supply 2-15
Precautions 1-8
PrintEnv command 4-11
Problems, solving 4-6
Product feedback xii
Product package contents 1-4
Program counter 4-17
Program download 4-29
Program modules 4-19
Programmable 32-bit timers 2-2

R

Read datahold 2-8

Related publications xi

Remap 3-2

Reset cicuit, description 2-4
Reverse polarity protection 2-15
rommodules command 4-13

S

Samsung microcontroller 2-2
SDRAM 2-2
Serial cable requirements 4-6
Serial connector pinout 2-9
Serial interface

circuit 2-10
Serial ports 1-2, 2-9

Index-ii

Copyright © 2000 ARM Limited. All rights reserved.

Confidential Draft

ARM DUI 0134A-03

SetEnv command 4-9
Settingup 1-6
Setting up the Evauator-7T 4-4
Seven-segment display 1-2, 2-11, 3-7
Simple LED control 3-6
SimpleLEDs 3-6
SRAM 2-5,3-2

timing parameters 2-8

usage 3-3

writetiming 2-7
SRAM read timing 2-7
SRAM usage

Angel 3-3

BSL 3-3
Surface mounted LEDs 2-11
Switch

corereset 2-4

DIP 3-8

systemreset 2-4

user interrupt 2-13, 3-8
Switches

corereset 1-2

DIP 2-13

reset 1-2
Switch-mode regulator 2-15
SW1 2-4
SW2 2-4
System requirements, host 1-5
System reset

debounce 2-4

switch 2-4
System reset switch 1-2
System reset, memory map 3-2

T

Timing

SRAM read 2-7
Timing parameters, SRAM 2-8
Tming diagram conventions X
Typographical conventions ix

U

Unplug command 4-13
UNPLUGGED_FLAG 4-22
UnSetEnv command 4-11

Upper Byte, SRAM 2-5
User DIP switches 1-2
User help 1-6

User interrupt switch 3-8
User LEDs 1-2

USER port 2-9

Using Angel 1-6

Using Multi-ICE 1-7

Vv

VT100 emulator 4-6

w

Write byte enable 2-8
Write Byte Enable, SRAM 2-5
Writetiming, SRAM 2-7

Index

ARM DUI 0134A-03 Copyright © 2000 ARM Limited. All rights reserved.

Confidential Draft

Index-iii

Index

Index-iv Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0134A-03
Confidential Draft

	Contents
	Preface
	About this document
	Further reading
	Feedback

	Chapter�1
	Introduction
	1.1 About the Evaluator-7T board
	1.2 Evaluator-7T architecture
	1.3 Kit contents
	1.4 System requirements
	1.5 Setting up the Evaluator-7T
	1.6 Precautions

	Chapter�2
	Hardware Description
	2.1 The Samsung KS32C50100 microcontroller
	2.2 Reset circuit
	2.3 Memory
	2.4 Serial ports
	2.5 LEDs
	2.6 Switches
	2.7 JTAG port
	2.8 Power supply

	Chapter�3
	Programmers Reference
	3.1 General memory map
	3.2 Memory usage
	3.3 Microcontroller register usage
	3.4 Accessing LEDs and switches

	Chapter�4
	Bootstrap Loader Reference
	4.1 About the bootstrap loader
	4.2 Basic setup with the BSL
	4.3 BSL commands
	4.4 Modules
	4.5 Preparing a program for download
	4.6 Production test module

	Appendix A
	Evaluator-7T Mechanical Outline
	A.1 Mechanical outline

	Appendix B
	Evaluator-7T Signal Naming
	B.1 Signal naming
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

