
ARM Evaluator-7T Board
User Guide
ARM DUI 0134A

e,
inst

 with the
ent in
ct the

owing

nt may
ht

ll
ith.

 liable
ion in
ARM Evaluator-7T Board
User Guide
Copyright © ARM Limited 2000. All rights reserved.

Release information

Proprietary notice

ARM, the ARM Powered logo, Thumb, and StrongARM are registered trademarks of ARM Limited.

The ARM logo, AMBA, Angel, ARMulator, EmbeddedICE, ModelGen, Multi-ICE, PrimeCell,
ARM7TDMI, ARM7TDMI-S, ARM9TDMI, ARM9E-S, ARM946E-S, ARM966E-S, ETM7, ETM9, TDMI,
and STRONG are trademarks of ARM Limited.

Federal Communications Commission Notice

NOTE: This equipment has been tested and found to comply with the limits for a class A digital devic
pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection aga
harmful interference when the equipment is operated in a commercial environment. This equipment
generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance
instruction manual, may cause harmful interference to radio communications. Operation of this equipm
a residential area is likely to cause harmful interference in which case the user will be required to corre
interference at his own expense.

CE Declaration of Conformity

This equipment has been tested according to ISE/IEC Guide 22 and EN 45014. It conforms to the foll
product EMC specifications:

The product herewith complies with the requirements of EMC Directive 89/336/EEC as amended.

Change history

Date Issue Change

1 August 2000 A New document

All other products or services mentioned herein may be trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this docume
be adapted or reproduced in any material form except with the prior written permission of the copyrig
holder.

The product described in this document is subject to continuous developments and improvements. A
particulars of the product and its use contained in this document are given by ARM Limited in good fa
However, all warranties implied or expressed, including but not limited to implied warranties or
merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be
for any loss or damage arising from the use of any information in this document, or any error or omiss
such information, or any incorrect use of the product.
ii Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Document confidentiality status

This document is Open Access. This means there is no restriction on the distribution of the information.

Product status

The information in this document is Final (information on a developed product).

ARM web address

http://www.arm.com
ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. iii

iv Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Contents
ARM Evaluator-7T Board User Guide
Preface
About this document .. viii
Further reading...xi
Feedback ..xii

 Chapter 1 Introduction
1.1 About the Evaluator-7T board...1-2
1.2 Evaluator-7T architecture..1-3
1.3 Kit contents ...1-4
1.4 System requirements ..1-5
1.5 Setting up the Evaluator-7T ..1-6
1.6 Precautions ...1-8

 Chapter 2 Hardware Description
2.1 The Samsung KS32C50100 microcontroller...2-2
2.2 Reset circuit ..2-4
2.3 Memory ...2-5
2.4 Serial ports..2-9
2.5 LEDs ...2-11
2.6 Switches..2-13
2.7 JTAG port..2-14
2.8 Power supply ..2-15
ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. v

 Chapter 3 Programmers Reference
3.1 General memory map... 3-2
3.2 Memory usage.. 3-3
3.3 Microcontroller register usage .. 3-5
3.4 Accessing LEDs and switches.. 3-6

 Chapter 4 Bootstrap Loader Reference
4.1 About the bootstrap loader ... 4-2
4.2 Basic setup with the BSL.. 4-3
4.3 BSL commands .. 4-7
4.4 Modules .. 4-19
4.5 Preparing a program for download ... 4-29
4.6 Production test module... 4-30

 Appendix A Evaluator-7T Mechanical Outline
A.1 Mechanical outline.. A-2

 Appendix B Evaluator-7T Signal Naming
B.1 Signal naming...4

Index
vi Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Preface

This preface introduces the ARM Evaluator-7T board and its reference documentation.
It contains the following sections:

• About this document on page viii

• Further reading on page xi

• Feedback on page xii.
ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. vii

About this document

This document describes how to set up and use the Evaluator-7T.

Intended audience

This document has been written for software engineers, hardware engineers, and
students to enable you to gain experience with ARM architecture design techniques.

Using this manual

This document is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an introduction to the ARM Evaluator-7T board.
This chapter overviews the architecture of the board and identifies the
main components.

Chapter 2 Hardware Description

Read this chapter for a description of the onboard hardware.

Chapter 3 Programmers Reference

Read this chapter for a description of the memory map and on-board
registers.

Chapter 4 Bootstrap Loader Reference

Read this chapter for a description of the bootstrap loader.

Appendix A Evaluator-7T Mechanical Outline

Refer to this appendix for the mechanical outline of the board.

Appendix B Evaluator-7T Signal Naming

Refer to this appendix for a description of the signal naming conventions
used on the board schematics.
viii Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Typographical conventions

The following typographical conventions are used in this manual:

bold Highlights ARM processor signal names, and interface elements
such as menu names. Also used for terms in descriptive lists,
where appropriate.

italic Highlights special terminology, cross-references, and citations.

typewriter Denotes text that can be entered at the keyboard, such as
commands, file names and program names, and source code.

typewriter Denotes a permitted abbreviation for a command or option. The
underlined text may be entered instead of the full command or
option name.

typewriter italic
Denotes arguments to commands or functions where the argument
is to be replaced by a specific value.

typewriter bold
Denotes language keywords when used outside example code.
ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. ix

Timing diagram conventions

This manual contains one or more timing diagrams. The following key explains the
components used in these diagrams. Any variations are clearly labeled when they occur.
Therefore, no additional meaning should be attached unless specifically stated.

Key to timing diagram conventions

Shaded bus and signal areas are undefined, so the bus or signal can assume any value
within the shaded area at that time. The actual level is unimportant and does not affect
normal operation.

Clock

Bus stable

HIGH to LOW

Transient

Bus to high impedance

Bus change

HIGH/LOW to HIGH

High impedance to stable bus
x Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Further reading

This section lists publications by ARM Limited, and by third parties.

ARM periodically provides updates and corrections to its documentation. See
http://www.arm.com for current errata sheets and addenda.

See also the ARM Frequently Asked Questions list at:
http://www.arm.com/DevSupp/Sales+Support/faq.html

ARM publications

This document contains information that is specific to the Evaluator-7T. Refer to the
following documents for other relevant information:

• ARM7TDMI Data Sheet (ARM DDI 0029)

• ARM Architecture Reference Manual (ARM DDI 0100).

Other publications

This section lists relevant documents published by third parties.

• Samsung KS32C50100 32-BIT RISC Micro Controller Embedded Network
Controller User’s Manual.
ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. xi

her

n
Feedback

ARM Limited welcomes feedback both on the Evaluator-7T, and on the
documentation.

Feedback on the Evaluator-7T

If you have any comments or suggestions about this product, please contact your
supplier giving:

• the product name

• a concise explanation of your comments.

Feedback on this document

If you have any comments about this document, please send email to
errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments refer

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.

Sharing information

An email list server is provided by ARM to enable you to share information with ot
Evaluator-7T users. To subscribe, send an email to:
subscribe-evaluator7t@arm.com

The list server will reply, welcoming you to the Evaluator-7T email group. You ca
query other Evaluator-7T users by sending email to:
evaluator7t@arm.com

To unsubscribe, send an email to:
unsubscribe-evaluator7t@arm.com
xii Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Chapter 1
Introduction

This chapter introduces the ARM Evaluator-7T board. It contains the following
sections:

• About the Evaluator-7T board on page 1-2

• Evaluator-7T architecture on page 1-3

• Kit contents on page 1-4

• System requirements on page 1-5

• Precautions on page 1-8

• Setting up the Evaluator-7T on page 1-6.
ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 1-1

Introduction
1.1 About the Evaluator-7T board

The ARM Evaluator-7T board is a simple ARM platform that includes a minimal set of
core facilities. It is powerful and flexible enough to function as an evaluation platform
for ARM technology. The board enables you to:

• download and debug software images

• attach additional input/output devices and peripherals for experimentation.

Figure 1-1 shows the layout of the Evaluator-7T.

Figure 1-1 Evaluator-7T board layout

User serial port
(COM2)

User LEDs
(D1-D4)

Interrupt button
(SW3)Multi-ICE/JTAG

connector
(J1)

User DIP
switches

Seven segment
display

Debug serial port
(COM1)

Core reset
(SW2)

System reset
(SW1)

50-pin
header pads

Power connector
1-2 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Introduction
1.2 Evaluator-7T architecture

The Evaluator-7T board contains the following major components:

• Samsung KS32C50100 microcontroller

• 512KB flash EPROM

• 512KB SRAM

• two 9-pin D-type RS232 connectors

• reset and interrupt push buttons

• four user-programmable LEDs and a seven-segment LED display

• 4-way user input DIP switch

• Multi-ICE connector

• 10MHz clock (the processor uses this to generate a 50MHz clock)

• 3.3V voltage regulator.

The major components are described in detail in Chapter 2 Hardware Description.

Figure 1-2 shows the architecture of the Evaluator-7T.

Figure 1-2 Evaluator-7T architecture

KS32C50100
RISC

microcontroller

DIP
switch

INT
switch

User
LEDs

seven-segment
display

COM0

COM1

10MHz
clock

SRAM

Flash
memory

HDLC

Ethernet

Power
supply

Multi-ICE/JTAG

50-pin header

50-pin header

50
-p

in
 h

ea
de

r

50
-p

in
 h

ea
de

r

Additional
components
needed
ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 1-3

Introduction

nu

ng

at.
1.3 Kit contents

This section describes the items supplied as part of the ARM Evaluator-7T.

1.3.1 Hardware

The kit includes the following hardware:

• ARM Evaluator-7T board

• 9-pin straight-through RS232 serial cable

• 9V power adapter.

1.3.2 Software and documentation

The kit includes the following CD-ROMs:

• Evaluator-7T Tools and Documentation containing:

— example code specific to the Evaluator-7T

— source code and binary image of the firmware

— documentation, including this manual and the Samsung KS32C50100
User’s Guide, in PDF format

— an installer to copy the files onto your hard disk drive and create a me
item.

• ARM Developer Suite Evaluation Version containing a fully functional
evaluation copy of the ARM Developer Suite (ADS) with a 45-day time limit. It
runs on Microsoft Windows 95, 98, 2000, and NT 4.0. It includes the followi
software:

— C and C++ compilers

— assembler

— linker

— graphical debugger

— project manager

— C and C++ libraries

— example programs.

Also included on this CD-ROM is the ARM ADS documentation in PDF form
1-4 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Introduction
1.4 System requirements

Using the Evaluator-7T with the pre-installed boot monitor requires connection of a
computer running a terminal application to the DEBUG serial connector.

To generate and debug code, and to use Angel or Multi-ICE, you will need to connect
a computer running suitable development tools. The ARM Developer Suite Evaluation
Version CD supplied with the Evaluator-7T provides tools for you to use.
ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 1-5

Introduction

o

dance

 rate,

e

gger

. It is

 also
1.5 Setting up the Evaluator-7T

The ARM Evaluator-7T is a complete target ARM evaluation platform. Apart from the
host computer, the kit includes all components required to evaluate a simple ARM
system, including a representative software development environment. The ARM
Evaluator-7T can be used in the following ways:

• Using the bootstrap loader

• Using the Angel debug monitor

• Using Multi-ICE on page 1-7.

1.5.1 Using the bootstrap loader

The BootStrap Loader (BSL) is a component of the resident firmware preloaded int
the bottom of the flash memory (see Flash memory usage on page 3-4). The BSL is the
first program run by the processor when the system is reset or powered on. For gui
on how to set up and use BSL, see Basic setup with the BSL on page 4-3.

The bootstrap loader provides the following functionality:

• board configuration commands that enable you to, for example, set the baud
and boot modules

• user help

• flash management tools that allow executable modules, such as Angel, to b
added or removed from flash

• support for downloading applications to SRAM and executing them.

A complete list of the configuration options is given in Chapter 4 Bootstrap Loader
Reference.

1.5.2 Using the Angel debug monitor

To use the Angel debug monitor, connect the host computer running an ARM debu
to the DEBUG port on the Evaluator-7T using the straight-through RS-232 cable
supplied with the kit.

The Angel debug monitor is preloaded into the flash as a bootstrap loader module
executed by default when the board is powered on (unless you press the Enter key).
You can change this default behavior (see Modules on page 4-19).

Note

Angel uses ADP to communicate with the debugger. Some third-party debuggers
support ADP.
1-6 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Introduction

y a

sive

gging

e for
n

r
Angel re-initializes the board and sets up a communication channel with a debugger on
the host PC through the DEBUG port. It is this interaction between the host-based
debugger and Angel that allows you to download and debug software. Angel interacts
with the software and, in some cases, modifies it, for example, setting software
breakpoints.

1.5.3 Using Multi-ICE

Connect the Multi-ICE unit (available separately) as follows:

1. Connect the Multi-ICE unit to the 20-Pin JTAG connector, J1.

2. Connect the Multi-ICE unit to the host computer using the supplied parallel
cable.

The ARM Multi-ICE unit is supported by the ARM Developer Suite provided in each
kit. It allows you to debug, download, and test software on the Evaluator-7T board.
Multi-ICE does not require the use of the Angel debug monitor.

Multi-ICE enables you to monitor software on the Evaluator-7T board.

1.5.4 How Multi-ICE differs from a debug monitor

A debug monitor, such as the Angel debug monitor, is an application that runs on your
target hardware in conjunction with the user application. It requires some resources,
such as memory and access to exception vectors, to be available.

Multi-ICE requires almost no resources. Rather than being an application on the board,
it works by using:

• additional hardware (Embedded ICE logic) that is incorporated into the core

• the Multi-ICE unit to buffer and translate the core signals into a form usable b
host computer

Multi-ICE is designed to allow debugging using JTAG port and to be as non-intru
as possible:

• the target being debugged needs very little special hardware to support debu

• in most cases no memory in the system being debugged has to be set asid
debugging, and no special software need be incorporated into the applicatio

• execution of the system being debugged is only halted when a breakpoint o
watchpoint unit is triggered, or the user requests that execution is halted.
ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 1-7

Introduction

c
tic
1.6 Precautions

The Evaluator-7T board is intended for use within a laboratory or engineering
development environment and is supplied without an enclosure. The absence of an
enclosure leaves the board sensitive to electrostatic discharges and allows
electromagnetic emissions.

To avoid damaging the Evaluator-7T, you must:

• always wear an earth strap when handling the board

• only hold the board by the edges

Do not use the board near equipment which could be sensitive to electromagneti
emissions (such as medical equipment) or which is a transmitter of electromagne
emissions.
1-8 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Chapter 2
Hardware Description

This chapter provides hardware and functional description of the Evaluator-7T board.
It contains the following sections:

• The Samsung KS32C50100 microcontroller on page 2-2

• LEDs on page 2-11

• Memory on page 2-5

• Reset circuit on page 2-4

• Serial ports on page 2-9

• Switches on page 2-13

• JTAG port on page 2-14

• Power supply on page 2-15.
ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 2-1

Hardware Description

,

iven

3, J4,
2.1 The Samsung KS32C50100 microcontroller

The KS32C50100 is a square, 208-Pin Quad Flat Pack (QFP), embedded
microcontroller manufactured by Samsung Electronics Co., Ltd. It is a System-on-Chip
(SoC) targeted at the communications market.

The KS32C50100 is an ARM7TDMI-base microcontroller that incorporates a number
on-chip functions. These are:

• 8KB unified cache/SRAM

• I2C serial interface (master only)

• Ethernet controller

• two-channel DMA controller

• memory controller providing 8/16/32-bit external bus support for ROM/SRAM
flash, SDRAM, DRAM, and external input/output

• High-level Data Link Control (HDLC) support

• two UARTS

• 18 programmable input/output bit ports

• interrupt controller

• two programmable 32-bit timers.

The KS32C50100 microcontroller is powered by a 3.3V switching regulator and dr
with a single 10MHz clock generator.

The microcontroller pins are connected to four sets of 50-pin connector pads (J2, J
and J5). For more information about the microcontroller, consult the Samsung
KS32C50100 32-BIT RISC Micro Controller Embedded Network Controller User’s
Manual.

Figure 2-1 on page 2-3 shows the block diagram of the KS32C50100.
2-2 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Hardware Description
Figure 2-1 KS32C50100 block diagram

PLL

GDMA 0 and 1

32-bit timer 0 and 1

UART 0 and 1

Interrupt controller

18 GPIO ports

I C2

Bus router

CPU interface

ARM7TDMI
32-bit

RISC CPU

Memory
controller

with refresh

System bus
arbiter

2-channel
HDLCs

with DMA

Ethernet
controller

8KB
unified cache

4 word
write buffer
ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 2-3

Hardware Description
2.2 Reset circuit

The architecture of the reset circuit on the Evaluator-7T board is shown in Figure 2-2.

Figure 2-2 Reset circuit

The circuit provides two reset switches and a Maxim MAX6315 reset controller. The
circuit controls two reset signals:

NRESET This signal resets the ARM7TDMI processor core.

NTRST This signal resets the tap controller and EmbeddedICE logic. This resets
the internal functionality used by any debugger or other device connected
to the JTAG port.

The MAX6315 provides switch debouncing for the system reset switch and also
provides a power-on reset delay. The resistor and capacitor (R8 and C1) extend the
assertion of the NRESET to guarantee reliable core reset.

The reset switches are used as follows:

SW1 Press the system reset switch, SW1, to reset the entire board and the
assert NRESET and NTRST simultaneously.

SW2 Press the core reset switch, SW2, to reset the microcontroller, but not the
TAP controller, by asserting only NRESET.

Pressing SW2 enables you to stop and take control of the ARM7TDMI processor before
its first instruction fetch from address 0x0 without resetting other components on the
board.

U13A U13B U13C
MAX6315

U10SW1

SW2

C1

NTRST

NRESET

VCC

R8
2-4 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Hardware Description

ped,
r own
le

, to be
f

ys

. The
nnect
he

he
 width
2.3 Memory

The Evaluator-7T provides two areas of memory:

• flash memory, in which the BootStrap Loader (BSL), Angel, and other
non-volatile programs are stored

• SRAM for general program and data storage.

2.3.1 Flash

The Evaluator-7T includes 512KB of flash memory. When the Evaluator-7T is ship
this contains the BSL and debug monitor. The remaining space is available for you
programs (see Flash memory usage on page 3-4). The flash is implemented as a sing
16-bit device and is mapped to memory bank 0 (NRCS0).

On reset, the KS32C50100 default settings cause memory bank 0, the flash ROM
mapped at address 0x0 with a data bus width of 16-bits and the maximum number o
wait states per memory access.

2.3.2 SRAM

Two 64K x 32 arrays of SRAM are connected to the microcontroller. The two arra
provide a total of 512KB. Figure 2-3 on page 2-6 shows one memory array.

The first SRAM array consists of the devices U2 and U5, and is mapped to bank 1
second SRAM array consists of U3 and U6 and is mapped to bank 2. U5 and U6 co
to the lower 16 bits of the microcontroller 32-bit data bus. U2 and U3 connect to t
upper 16 bits. The Upper Byte (UB) and Lower Byte (LB) select pins of each part are
driven by an AND gate combination of the NOE and corresponding NWBEx outputs
from the microcontroller. The WE pin of each SRAM part is driven by the AND gate
combination of the two NWBEx signals that apply to the part.

Note

The microcontroller incorporates an internal address bus shifter that determines t
number of bits to shift the external address bus. This is determined by the data bus
value set in the EXTDBWTH configuration register. For more details refer to the
Samsung KS32C50100 32-BIT RISC Micro Controller Embedded Network Controller
User’s Manual.
ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 2-5

Hardware Description
.

Figure 2-3 SRAM memory array

NBE0

A[15:0]

A[15:0]

D[31:16]

D[15:0]

NRCS1

NRCS1

NOE

NOE

NWBE0

NWBE0

NWBE1

NWBE1

NWBE2

NWBE2

NWBE3

NWBE3

NBE3

NBE1

NBE2

NUWWE

NLWWE

CS

CS

OE

OE

UB

UB

LB

LB

WE

WE

64K x 16
SRAM
(U5)Samsung

KS32C50100
(U1)

64K x 16
SRAM
(U2)
2-6 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Hardware Description
Figure 2-4 and Figure 2-5 show the read and write cycle timing diagrams for both
external SRAM arrays.

Figure 2-4 SRAM read cycle timing

Figure 2-5 SRAM write cycle timing

XCLK

VALID

NBEx

N[L:U]WWE

D[31:0]

A[15:0]

NOE

NRCSx

VALID

t
ADDRh

t
RDh

t
AA

t
RDh

t
NRBE

t
BA

t
NRBE

t
NROE

t
NROE

t
NRCS

t
CO

t
NRCS

Cycle 1 Cycle 2 Cycle 3

XCLK

VALID

NBEx

N[L:U]WWE

D[31:0]

A[15:0]

NOE

NRCSx

VALID

t
ADDRh

t
ADDRd

t
WDd

t
WDh

t
NWBE

t
NWBE

t
NRCS

t
ACC

t
NRCS

Cycle 1 Cycle 2 Cycle 3
ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 2-7

Hardware Description
The timing parameters for SRAM read and write accesses are listed in Table 2-1.

Table 2-1 SRAM/ROM access timing

Parameter Description Min Max

tADDRh Address hold time 8.5 -

tADDRd Address delay time 7.08 17.5

tNROE ROM and SRAM output enable 5.7 13.6

tNWBE ROM and SRAM write byte enable delay 7.2 19.1

tNRCS ROM and SRAM chip select delay 5.2 12.4

tRDh Read data hold 3 -

tBA Byte access time 16.2 28.1

tAA Address access time 28.5 -

tCO Chip select to output time 25.2 32.4
2-8 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Hardware Description
2.4 Serial ports

The Evaluator-7T provides two RS232 serial ports:

DEBUG This uses COM1 as a console port. It is used by the debug monitor or
bootstrap program running on the board. COM1 is connected to UART1
of the microcontroller.

USER This uses COM0 as a general purpose port for program use. COM0 is
connected to UART0 of the microcontroller.

The pinout of the two serial connectors is shown in Figure 2-6.

Figure 2-6 Pinout of the RS232 serial port connectors (P1 and P2)

Table 2-2 shows the signal assignment for the two serial connectors.

Table 2-2 Pinout of the RS-232 serial port connectors (P1 and P2)

Pin Signal Board use

1 DCD NC

2 RXD Connected

3 TXD Connected

4 DTR Connected

5 GND Connected

6 DSR Connected

7 RTS NC

8 CTS NC

9 RI NC

5 4 3 2

9 8 67

1

ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 2-9

Hardware Description
Figure 2-7 shows the serial transceivers used to convert the 3.3V logic level of the
microcontroller to the RS232 line levels required at the DB-9 serial port connectors.
Conversion is performed by U4 for COM1 and U12 for COM0

Figure 2-7 Serial interface architecture

MAX3222
(U4)

MAX3222
(U12)

Samsung
KS32C50100

(U1)

5 4 3 2

9 8 67

1

5 4 3 2

9 8 67

1

NUADSR1

NUADSR0

UARXD1

UARXD0

UADTR1

UADTR0

UATXD1

UATXD0

COM1
(DEBUG)

COM0
(USER)
2-10 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Hardware Description

te

used

 pins
2.5 LEDs

There are two LED indicator circuits on the ARM Evaluator-7T:

• four surface-mounted LEDs

• a seven-segment LED display.

2.5.1 Surface-mounted LEDs

The four user-programmable LEDs, D1 to D4, are connected to a 74HC125 trista
buffer. The inputs to the buffer are driven by PIO[7:4] from the microcontroller. The
LEDs control architecture is shown in Figure 2-8.

Figure 2-8 Architecture of the surface mount LEDs

2.5.2 Seven-segment display

The seven segments are controlled by PIO[16:10] from the microcontroller and two
74HC125 tristate buffers. The display also contains a decimal point LED. This is
as a power ON indicator and is connected to the 3.3V power plane.

Figure 2-9 on page 2-12 shows the assignment of the display segments to the PIO
of the microcontroller.

U11

Samsung
KS32C50100

(U1)

PIO4

D4 D3 D2 D1

PIO5

PIO6

PIO7

Green Amber Orange Green
ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 2-11

Hardware Description
Figure 2-9 PIO to segment assignment

Samsung
KS32C50100

(U1)

PIO13PIO14PIO15PIO16 PIO12 PIO11 PIO10

A

B

C

D

E

F

G

2-12 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Hardware Description
2.6 Switches

The Evaluator-7T provides a 4-way DIP switch, a user interrupt switch, and two reset
switches.

2.6.1 DIP switch

The four switches within the DIP are independent and are connected to PIO[3:0]. Select
the ON position to pull the corresponding PIO input HIGH. Select the OFF position to
pull the corresponding PIO input LOW. Figure 2-10 shows the circuit for the DIP
switch.

Figure 2-10 Schematic of DIP switch

2.6.2 User interrupt switch

The user interrupt switch is a momentary switch SW3. When pressed and released it
results in a pulse on the XINREQ0/P8 input of the microcontroller.

Samsung
KS32C50100

(U1)

PIO0

PIO1

PIO2

PIO3

VCC

SW51 2 3 4
ON
ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 2-13

Hardware Description
2.7 JTAG port

The 20-pin connector (J1) is connected to the JTAG interface of the microcontroller.
The pinout is compatible with the ARM Multi-ICE interface unit. A pinout of the JTAG
connector is shown in Figure 2-11.

Figure 2-11 Pinout of JTAG connector (J1)

20

18

16

14

6

10

12

8

2

4

19

17

15

13

11

9

7

5

3

1Vcc

NTRST

TDI

TMS

TCK

RTCK

TDO

NRESET

NC

NC

Vcc

GND

GND

GND

GND

GND

GND

GND

GND

GND
2-14 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Hardware Description
2.8 Power supply

The Evaluator-7T is powered through an external unregulated 9V DC power supply
unit. This is plugged into the jack connector J7. It supplies an input to the on-board
switch-mode regulator that supplies the 3.3V power to components on the board. Diode
D12 is used to protect against reverse polarity on the power input.

Pin 3 on the jack socket is connected to the VCC (3.3V) power plane and shorts to
ground when the power plug is removed. This discharges the bulk capacitance in the
board power plane.
ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 2-15

Hardware Description
2-16 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Chapter 3
Programmers Reference

This chapter describes the memory map and registers. It contains the following
sections:

• General memory map on page 3-2

• Memory usage on page 3-3

• Microcontroller register usage on page 3-5

• Accessing LEDs and switches on page 3-6.
ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 3-1

Programmers Reference

code
d

ap,

se the
3.1 General memory map

The Evaluator-7T uses both flash and SRAM memory devices:

• the flash contains the BootStrap Loader (BSL), Angel debug monitor, and
production test code

• you can us the SRAM for read-write data and for code.

On power-up, the microcontroller only has access to the flash memory. The BSL
modifies registers in the system memory controller to allow access to the installe
memory.

3.1.1 Memory map at system reset

Refer to Samsung KS32C50100 32-BIT RISC Micro Controller Embedded Network
Controller User’s Manual for details on the system memory map at reset.

3.1.2 Memory map after remap

After reset the BSL code begins running from address 0x0, and then reconfigures the
memory map very early in its execution. After the BSL reconfigures the memory m
it is structured as shown in Table 3-1.

Note

The BSL does not enable the cache. When the caches are enabled, you cannot u
32-bit internal SRAM.

Table 3-1 Memory map after remap

Address range Size Description

0x00000000 to 0x0003FFFF 256KB 32 bit SRAM bank, using ROMCON1

0x00040000 to 0x0007FFFF 256KB 32 bit SRAM bank, using ROMCON2

0x01800000 to 0x0187FFFF 512KB 16 bit flash bank, using ROMCON0

0x03FE0000 to 0x03FE1FFF 8KB 32 bit internal SRAM

0x03FF0000 to 0x03FFFFFF 64KB Microcontroller register space
3-2 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Programmers Reference
3.2 Memory usage

Memory usage changes slightly depending on whether BSL or Angel is running.

3.2.1 SRAM usage under the BSL

Table 3-2 shows the SRAM usage under BSL.

3.2.2 SRAM usage under Angel

Table 3-3 shows the SRAM usage under Angel.

Table 3-2 SRAM usage under BSL

Address range Description

0x00000000 to 0x0000003F Exception vector table and address constants

0x00000040 to 0x00000FFF Unused

0x00001000 to 0x00007FFF Read-write data space for BSL

0x00008000 to 0x00077FFF Available as download area for user code and data

0x00078000 to 0x0007FFFF System and user stacks

Table 3-3 SRAM usage under Angel

Address range Description

0x00000000 to 0x0000003F Exception vector table and address constants

0x00000040 to 0x000000FF Unused

0x00000100 to 0x00007FFF Read-write data and privileged mode stacks

0x00008000 to 0x00073FFF Available as download area for user code and data

0x00074000 to 0x0007FFFF Angel code execution region
ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 3-3

Programmers Reference
3.2.3 Flash memory usage

Table 3-4 shows the flash memory usage.

Table 3-4 Flash memory usage

ADDRESS RANGE DESCRIPTION

0x01800000 to 0x01806FFF Bootstrap loader

0x01807000 to 0x01807FFF Production test

0x01808000 to 0x0180FFFF Reserved

0x01810000 to 0x0181FFFF Angel

0x01820000 to 0x0187FFFF Available for your programs and data
3-4 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Programmers Reference
3.3 Microcontroller register usage

Table 3-5 lists the registers used by the system software.

Caution
Exercise caution before modifying any of the registers to prevent improper functioning.

For details on how they are used by the system software, refer to
\Source\afs11\uHAL\Boards\EVALUATOR7T and
\Source\afs11\angel\Evaluator7t.

Table 3-5 Microcontroller register usage

System manager
group

Input/output
ports

Interrupt
controller

UART

SYSCFG IOPMOD INTMOD ULCON1

EXTDBWTH IOPCON INTPND UCON1

ROMCON0 IOPDATA INTMSK USTAT1

ROMCON1 - - UTXBUF1

ROMCON2 - - URXBUF1

- - - UBRDIV1
ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 3-5

Programmers Reference

e
3.4 Accessing LEDs and switches

Refer to Chapter 2 Hardware Description for details on how the LEDs and switches are
connected to the microcontroller. You are recommended to use a read-modify-write
strategy when writing to system registers.

Note

The example code excerpts shown in this section are taken from
\Source\prod_test\prodtest.c and segdisp.h. For other examples see
\Source\afs11\uHAL\Boards\EVALUATOR7T, \Source\examples\DIPS, and
\Source\examples\Switch.

3.4.1 Simple LEDs

Use the input/output ports PIO[7:4] to control the four simple LEDs as follows:

• SET bits [7:4] in the register IOPMOD to configure ports as outputs.

• SET bits [7:4] in the register IOPDATA to light LEDs.

• CLEAR bits [7:4] in the register IOPDATA to turn LEDs OFF.

Example 3-1 shows an example code segment used to control the simple LEDS.
Programs that are downloaded under Angel or the BSL can assume the LEDs ar
available and ready for use.

Example 3-1 Simple LED control

#define ALL_LEDS 0xF0

void SetLEDs(unsigned val)

{

*(volatile unsigned *)IOPDATA &= ~ALL_LEDS;

*(volatile unsigned *)IOPDATA |= val << 4;

}

3-6 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Programmers Reference

y.
gment
3.4.2 Seven segment LED Display

Use the input/output ports P[16:10] to control the seven segment display as follows:

• SET bits [16:10] in register IOPMOD to configure ports as outputs.

• SET bits [16:10] in register IOPDATA to light segments.

• CLEAR bits[16:10] in the register IOPDATA to turn segments OFF.

Example 3-2 shows a code fragment that controls the seven-segment LED displa
Programs that are downloaded under Angel or the BSL can assume the seven-se
display is available and ready for use.

Example 3-2 Seven segment display and DIP switch reading

/* The bits taken up by the display in IODATA register */

#define SEG_MASK (0x1fc00)

/* define segments in terms of IO lines */

#define SEG_A (1 << 10)

#define SEG_B (1 << 11)

[…]

#define DISP_0 (SEG_A | SEG_B | SEG_C | SEG_D | SEG_E | SEG_F)

#define DISP_1 (SEG_B | SEG_C)

[…]

const unsigned numeric_display[] = { DISP_0, DISP_1, DISP_2, DISP_3, DISP_4, DISP_5, DISP_6,
DISP_7, DISP_8, DISP_9, DISP_A, DISP_B, DISP_C, DISP_D, DISP_E,
DISP_F };

unsigned poll_dipSwitch(void)

{

unsigned ioData, Switch;

Switch = SWITCH_MASK & *(volatile unsigned *)IOPDATA;

SetLEDs(Switch);

ioData = numeric_display[Switch];

*(volatile unsigned *)IOPDATA &= ~SEG_MASK;

*(volatile unsigned *)IOPDATA |= ioData;

return(Switch);

}

ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 3-7

Programmers Reference

n
 to

 input

ts.

3.4.3 DIP switch

Use input/output ports P[3:0] to read the DIP switch SW5 as follows:

• CLEAR bits [3:0] of register IOPMOD to configure ports as inputs.

• Read the current setting of the switches from the register IOPDATA:

1 = switch set to ON

0 = switch set to OFF.

The DIP switch can be read immediately after system reset, because the power-o
default for IOPCON is zero. See Example 3-2 on page 3-7 for an example of how
read the DIP switch.

3.4.4 User interrupt switch

The input/output port P8 is connected to SW3. You can use this to as an interrupt
INT0. To enable this operation:

• SET bit 3 of register IOPCON.

• CLEAR bit 0 of register INTMSK so that an interrupt can be triggered by
pressing the switch.

Example 3-3 shows how the SW3-generated interrupts are enabled and cleared.

You can freely acquire interrupts under the BSL, because it does not use interrup
Programs running under Angel need to carefully chain in a new interrupt handler,
because Angel makes use of serial IRQs on the serial port. Refer to the ADS Developer
Guide.

Example 3-3 User interrupt control

#define EnableInterrupt(n) (*(volatile unsigned *)INTMSK &= ~(1 << n))

#define DisableInterrupt(n) (*(volatile unsigned *)INTMSK |= (1 << n))

/* Interrupt controller defines, SW3 is tied to external INT0 */

#define INT_GLOBAL (21)

#define INT_SW3_MASK (1)

#define INT_SW3_NUM (0)

/* IO controller defines for SW3 */

#define IO_ENABLE_INT0 (1 << 4)

#define IO_ACTIVE_HIGH_INT0 (1 << 3)

#define IO_RISING_EDGE_INT0 (1)
3-8 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Programmers Reference
unsigned cmain(void)

{

[…]

/* disable interrupts, but pending bit will still be set by an active

interrupt */

EnableInterrupt(INT_SW3_NUM);

DisableInterrupt(INT_GLOBAL);

*(volatile unsigned *)IOPCON = IO_ENABLE_INT0 | IO_ACTIVE_HIGH_INT0 | IO_RISING_EDGE_INT0;

[…]

while (0 == ((1 << INT_SW3_NUM) & *(volatile unsigned *)INTPND))

{

;

 } /* wait untill we sense the switch */

*(volatile unsigned *)INTPND |= INT_SW3_MASK; /* clear interrupt */

[…]

}

ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 3-9

Programmers Reference
3-10 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Chapter 4
Bootstrap Loader Reference

This chapter describes the use of the Evaluator-7T bootstrap loader. It contains the
following sections:

• About the bootstrap loader on page 4-2

• Basic setup with the BSL on page 4-3

• BSL command-line editor on page 4-7

• Modules on page 4-19

• Preparing a program for download on page 4-29.
ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 4-1

Bootstrap Loader Reference
4.1 About the bootstrap loader

The BootStrap Loader (BSL) is located in the bottom of flash memory (see Flash
memory usage on page 3-4). The BSL is the first code to be executed by the
KS32C50100 microcontroller when it powers up or resets. The BSL code has the
following main functions:

• connecting to the host using a standard serial port and terminal application

• providing facilities to configure the board

• providing user help

• managing the images in flash as a set of executable modules

• allowing you to download applications to SRAM and execute them.
4-2 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Bootstrap Loader Reference
4.2 Basic setup with the BSL
This section describes how to set up the Evaluator-7T and communicate with the BSL.

The subsections that describe the steps are as follows:

• Connecting the Evaluator-7T on page 4-4

• Communicating with a Unix host on page 4-4 or

• Communicating with a PC host on page 4-5

• Resetting the Evaluator-7T on page 4-5

• Solving communications problems on page 4-6.

Figure 4-1 shows the Evaluator-7T setup.

Figure 4-1 Bootstrap loader setup configuration

Host computer

Serial cable

Power supply

Evaluator-7T
ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 4-3

Bootstrap Loader Reference
4.2.1 Connecting the Evaluator-7T

Set up the Evaluator-7T as follows:

1. Connect the serial cable between the Evaluator-7T board and the host computer.
Make a note of the serial port on the computer that you use.

2. Connect the power adapter to the power connector on the Evaluator-7T board.

3. Connect the power adapter to an AC power socket. The dot on the
seven-segment display lights up as a power indicator.

4.2.2 Communicating with a Unix host

To communicate with the BSL you need to run a simple terminal application on the
Unix host. In this example tip is used.

To start tip enter:
tip -<baud-rate> <device name>

Where baud-rate is one of the baud rates listed in Table 4-1 and device name is
the name of the device associated with the serial port attached to the board (usually
/dev/ttya or /dev/ttyb). For example:
tip -38400 /dev/ttya

Table 4-1 Supported BSL serial line settings

Baud rate Data bits Parity Stop bits
Flow
control

9600 8 None 1 None

19200 8 None 1 None

38400 8 None 1 None

57600 8 None 1 None

115200 8 None 1 None
4-4 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Bootstrap Loader Reference
4.2.3 Communicating with a PC host

You can use Windows HyperTerminal to communicate with the BSL. Start and
configure HyperTerminal as follows:

1. To start the HyperTerminal program, select Start, Programs, Accessories, and
then HyperTerminal. The HyperTerminal Connection Description dialog is
displayed.

2. Enter a name for this setup in the dialog box (for example ArmEval) and click on
OK. The Connect To dialog is displayed.

3. Select the COM port you have connected the Evaluator-7T to from the Connect
using menu and click on OK. The COMx Properties dialog is displayed.

4. In COMx Properties dialog, select a baud rate (refer to the of supported baud
rates shown in Table 4-1 on page 4-4). If you are not using a VT100 emulator,
connect initially at 9600 baud. (The board cannot detect the baud rate if you are
not using a VT100 emulator.) You can configure the board later to use a higher
baud rate.

5. Select None from the Flow Control menu and click on OK. HyperTerminal is
now prepared for output from the board.

4.2.4 Resetting the Evaluator-7T

1. Press the SYS RESET button (SW1) on the Evaluator-7T. A banner similar to
the following is displayed in the HyperTerm window:

ARM Evaluator7T Boot Monitor Release 1.00

Press ENTER within 2 seconds to stop autoboot

Note

If a banner is not displayed, refer to Solving communications problems on page 4-6.

2. Press Enter within 2 seconds to prevent the board from autobooting any other
modules that may be stored in flash. The prompt Boot: is displayed and the
LEDs D3 and D4 are lit.

3. Type boot at the Boot: prompt. The following response is displayed:
Scanning ROM for modules ...

Found module ’BootStrapLoader’ at 018057c8

Found module ’ProductionTest’ at 018072c0

Found module ’Angel’ at 0181a818

Boot:
ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 4-5

Bootstrap Loader Reference
4.2.5 Solving communications problems
If the banner, described in step 6 above, is not displayed, check the following:

1. Check that you are using one of the supported baud rates shown in Table 4-1 on
page 4-4.

2. Check that you are using a VT100 emulator and not another type.

3. Switch to 9600 baud. If the board cannot detect the baud rate you are using it
defaults to 9600 baud.

4. Regardless of the baud rate, always configure your terminal emulator for 8 bits
data, No parity, 1 stop bit. Ensure that you disable any flow control on your
terminal emulator (Xon/Xoff or hardware handshaking). If you cannot disable
hardware flow control then tie some or all of CTS, DSR, and CD lines on your
serial port HIGH.

5. Check that you are using the correct serial cable. The cable requires three
connections, signal ground, Rx, and Tx. Rx, and Tx must not be crossed over
(that is, it must be a straight-through cable).

Note

The BSL stores environment variables that are used to configure the board. One of these
environmental variables is used to set the baud rate (see setenv on page 4-9).
4-6 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Bootstrap Loader Reference

face
e
4.3 BSL commands

This section describes the BSL command-line editor and the available BSL commands:

• BSL command-line editor

• Basic commands on page 4-8

• Flash and module management on page 4-12

• Downloading and executing an application on page 4-15.

4.3.1 BSL command-line editor

The BSL provides a command-line editor that allows you to type in and modify
commands. These editing facilities are built into the BSL Read Line Software Inter
so that any other module that uses this interface can use the editing facilities. Th
command-line editor keys are shown in Table 4-2.

Table 4-2 Command-line editor keys

Key Function

Backspace Delete the character
before the cursor.

Delete Same function as
backspace.

CTRL-A Move the cursor to the
start of the current line.

CTRL-B Move the cursor back
one character.

CTRL-D Forward delete. Delete
the character under the
cursor. If entered on an
empty line CTRL-D is
treated as End Of File

CTRL-E Move the cursor to the
end of the current line.

CTRL-F Move the cursor
forward one character.

CTRL-R Redraw the current line.

CTRL-U Erase the current line.
ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 4-7

Bootstrap Loader Reference

The
ds
4.3.2 Basic commands

This section describes the basic commands:

• boot

• help

• setenv on page 4-9

• unsetenv on page 4-11

• printenv on page 4-11.

The commands are not case sensitive.

boot

Usage boot

Use the boot command to scan the flash ROM for bootable modules:
Boot: boot

Scanning ROM for modules ...

 Found module ’BootStrapLoader’ at 018057c8

 Found module ’ProductionTest’ at 018072c0

 Found module ’Angel’ at 0181a818

help

Usage help <command>

Enter help with no arguments to return a list of commands supported by the BSL.
help command goes through each module in flash ROM and lists all the comman
supported by each module. For example:
Boot: help

Module is BootStrapLoader v1.0 Apr 27 2000 10:33:58

Help is available on:

Help Modules ROMModules UnPlug PlugIn

Kill SetEnv UnSetEnv PrintEnv DownLoad

Go GoS Boot PC FlashWrite

FlashLoad FlashErase

Module is ProductionTest v1.0 Apr 27 2000 10:49:47

Module is Angel 1.31.1 (20 Mar 2000)
4-8 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Bootstrap Loader Reference
To get help on a specific command, enter help <Command>. This displays a brief
one-line help on the command. For example:
Boot: help help

Usage: Help [<command>]

Help gives help on the command, if none specified, gives a list of
commands.

You can also specify a module name instead of the <command>. This lists all the
commands supported by that module. For example:
Boot: help bootstraploader

Module is BootStrapLoader v1.0 Apr 27 2000 10:33:58

Help is available on:

Help Modules ROMModules UnPlug PlugIn

Kill SetEnv UnSetEnv PrintEnv DownLoad

Go GoS Boot PC FlashWrite

FlashLoad FlashErase

This only gives help about the BSL module.

setenv

Usage setenv <variable-name> <value>

Use SetEnv to set an environment variable in flash. You can program any variable
name into flash. However, certain variable names are recognized by different modules
in the system to provide for configuration options. These are listed in Table 4-3 on
page 4-10.

If you are writing your own module you are likely to assign your own variable names
to have specific meaning for your module, for example:
Boot: setenv baud 38400

This tells the BSL to use a baud rate of 38400, but does not take effect until the board
is reset.

You can omit the <value> part to set a BOOLEAN type variable that is assumed to be
TRUE if the variable exists or FALSE if it does not. For example:

Boot: setenv baud 38400

Boot: setenv noautobaud

The command setenv noautobaud tells the BSL not to do automatic baud rate
detection on startup. Used in conjunction with the setenv baud 38400 command, a
fixed baud rate of 38400 is set on the board.
ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 4-9

Bootstrap Loader Reference
If you just use the setenv baud 38400 command, then auto baud rate detection
overrides the configured baud rate. The configured baud rate is applied only if the board
cannot determine the baud rate you are using. Enter these commands if you had
difficulty getting started with the board and had to revert to 9600 baud.

Caution
Do not set the baud rate to a baud rate higher than your terminal can support. If you do,
you might not be able to regain control of the board.

Table 4-3 Environment variables used by the basic BSL

Variable Value Effect

noautoboot If this variable is set then the BSL bypasses the
normal autoboot sequence and goes straight to
the Boot: prompt. You can use this to prevent
the BSL from automatically starting another
module stored in flash.

boot <boot-module> This variable is used to specify the name of a
module to boot at startup. If this variable is set,
BSL boots that module. Otherwise the BSL boots
the last module in the module list that has the
AutoBoot bit set.

noautobaud Set this variable to force the BSL to bypass the
normal baud rate detection and default to the
configured baud rate, or to 9600 baud if no baud
rate is configured.

baud <baud-rate> Use this to configure the baud rate for the board
to one of 9600, 19200, 38400, 57600, or 115200.
The BSL first performs automatic baud rate
detection (subject to the setting of the
noautobaud variable) and only uses this value
if the baud rate could not be determined or if the
noautobaud variable is set.
4-10 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Bootstrap Loader Reference
unsetenv

Usage unsetenv <variable-name>

Use UnSetEnv to remove an environment variable previously created with setenv.

For example:
Boot: unsetenv noautobaud

Boot: unsetenv baud

printenv

Usage printenv

Use PrintEnv to list the variables currently stored in the environment area in the flash.
For example:
Boot: printenv

Variable Value

======== =====

noautobaud

baud 38400
ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 4-11

Bootstrap Loader Reference
4.3.3 Flash and module management

The flash memory stores a number of executable modules. The flash shipped with the
evaluation board contains three modules. These are:

• BSL module

• Production test module (see Production test module on page 4-30)

• Angel.

By default, Angel is automatically run unless the BSL is interrupted by pressing Enter
within 2 seconds after startup.

The flash and module management commands are as follows:

• modules

• rommodules on page 4-13

• modulename on page 4-13

• unplug on page 4-13

• plugin on page 4-14

• kill on page 4-14.

modules

Usage modules

Use modules to display a list of all initialized modules. For example:
Boot: modules

Header Base Limit Data

018057c8 01800000 018059e7 00000000 BootStrapLoader v1.0 Apr 27 2000

018072c0 01807000 01807308 00000000 ProductionTest v1.0 Apr 272 000

0181a818 01810000 0181a860 00000000 Angel 1.31.1 (20 Mar 2000)

where:

Header Is the address of the module header within the module.

Base Is the first address of the module in flash.

Limit Is the last address (+1) of the module in flash.

Data Is the address of the modules data (0 => none).

Note

The displayed information for a specific board may be slightly different.
4-12 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Bootstrap Loader Reference

rash
rommodules

Usage rommodules

Enter rommodules to display a list of all modules in flash (as opposed to modules
which lists only those modules that have been initialized). For each module,
rommodules prints the Header, Base and Limit information, as for modules, but
does not print the Data information. This is because an uninitialized module cannot
have any data.

This command displays a list of all modules available in flash with the version number,
date, and base address in flash of each module. For example:
Boot: rommodules

Header Base Limit

018057c8 01800000 018059e7 BootStrapLoader v1.0 Apr 27 2000 10:33:58

018072c0 01807000 01807308 ProductionTest v1.0 Apr 27 2000 10:49:47

0181a818 01810000 0181a860 Angel 1.31.1 (20 Mar 2000)

modulename

Usage modulename

Enter the name of a module to run that module. For example:
Boot: bootstraploader

ARM Evaluator7T Boot Monitor PreRelease 1.00

Press ENTER within 2 seconds to stop autoboot

Boot:

This reruns the BSL module, which has the effect of rebooting the board.

unplug

Usage unplug <module name>

Enter unplug to:

• prevent BSL initializing the specified module when the board is next booted

• kill an active module (which has been initialized).

The unplug command is useful if you have a module that is causing the board to c
when it is booted. In this situation:

1. Boot the board.

2. Press <ENTER> to interrupt the boot.

3. Enter unplug <modulename>.
ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 4-13

Bootstrap Loader Reference
4. Reboot the board.

Repeat this process to isolate the problem module, and then use the plugin command
to reinstate the modules that you know to be problem free.

Note

Do not unplug the BSL itself. However, you can still recover by booting the board and
pressing <ENTER>. The BSL initializes itself allowing you to regain control by using
the plugin command.

plugin

Usage plugin <module name>

Enter the plugin command to reinstate a module that has been unplugged with the
unplug command. The plugin command marks the module so that the BSL finds it
next time the board is booted. The plugin command also initializes the module.

You can use the plugin command to initialize a module which failed to initialize at
boot time.

kill

Usage kill <module name>

Use the kill command to halt a module by calling its finalization code. Unlike the
unplug command it does not mark the module as unplugged so the module is
initialized the next time the board is booted.

Use kill to remove a module temporarily, or use unplug to remove it permanently.
4-14 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Bootstrap Loader Reference

to

4.3.4 Downloading and executing an application

This section describes commands used to download and execute images on the
Evaluator-7T. These commands are as follows:

• download

• go

• gos on page 4-17

• pc on page 4-17

• flashwrite on page 4-17

• flashload on page 4-17

• flasherase on page 4-18.

download

Usage download [<address>]

Use the download command to download an image (for example an application) in
RAM. The image must be converted to uuencoded format before it is downloaded. If
no address is specified the image is downloaded at the address 0x8000, otherwise it is
downloaded at the address specified.

To download an image:

1. Convert the image to uuencoded format, see Preparing a program for
download on page 4-29.

2. Enter the download command at the Boot: prompt on the terminal connected
to the board.

3. Transmit the uuencoded file down the serial line using the transmit file option
on your terminal:

a. If you are using HyperTerminal on a PC, select the Send Text file option
from the Transfer menu, and enter the name of the uuencoded file you
want to download in the dialog box.

b. If you are using tip on a UNIX system, enter the command < ~> >
followed by the name of the uuencoded file you wish to download. (You
might need to press <RETURN> before entering < ~> >.)

If the BSL detects any errors during downloading, it prints a message similar to:
Error: 00000001 errors encountered during download.
ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 4-15

Bootstrap Loader Reference
If this occurs, try downloading again. If you are using a high baud rate (57600 or
115200), try using a lower baud rate.

Note

If after having entered download you want to exit the download function without
downloading an image, type CTRL-D.

go

Usage go [<program arguments>]

Use the go command to start User mode execution of a program previously
downloaded using the download command. The starting address of the program is set
to the address at which the program was downloaded. Arguments to the program can be
specified after the go command.

For example, if you build and download the following program:
--- echo.c ---

#include <stdio.h>

int main(int argc, char **argv)

{

int i;

for (i = 0; i < argc; i++)

puts(argv[i]);

return 0;

}

and then run it with the command:
Boot: go 1 2 3 4

you get the following output:
1

2

3

4

Program terminated with return code 00000000

For details on how to prepare programs for download, refer to Preparing a program for
download on page 4-29.
4-16 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Bootstrap Loader Reference
gos

Usage gos [<program arguments>]

User gos command to execute a program in Supervisor (SVC) mode instead of in User
mode.

pc

Usage pc <address>

Use the pc command to set the value of the stored Program Counter (PC). This
command is used to set the address before entering a go or gos command. The go and
gos commands read the stored pc into the ARM pc register (r15). If executed without
any argument the pc command prints the current value of the stored pc.

flashwrite

Usage flashwrite <address><source><length>

Use the flashwrite command to write the area of memory specified by source and
length to the flash, starting at the address specified by address. The address is the
mapped address of the flash memory on the board. To convert a flash offset to an
address, add 0x01800000, the base address of the flash in the memory map.

Caution
You must not write to the bottom 64KB of the flash memory (from 0x01800000 to
0x0180FFFF). This area of flash is reserved for the BSL module and production test
module.

flashload

Usage flashload <address>

Use flashload to perform a download command and then write the result of the
download into flash at the specified address.

Caution
As with flashwrite, do not attempt to load anything into the lower 64KB of flash
memory.
ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 4-17

Bootstrap Loader Reference
flasherase

Usage flashErase <address length>

Use flasherase to erase the section of flash specified by address and length by
overwriting it with 0xFF.

Caution
As with flashwrite and flashload do not attempt to erase flash in the lower 64KB
region of the flash.
4-18 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Bootstrap Loader Reference

h.
4.4 Modules

The flash on the Evaluator-7T is provided to allow multiple independent programs to
be stored and easily managed by the BSL. A single independent program is described
as a module.

A module consists of two major components:

• a binary executable image of the program

• a ModuleHeader data structure that describes the image.

The BSL uses the ModuleHeader data structure in each module to manage the flas
This descriptive data structure is not required to be the first item in the module.

4.4.1 The module header data structure

The module header structure must take the following form:
typedef struct ModuleHeader ModuleHeader;

struct ModuleHeader {

unsigned magic;

unsigned flags:16;

unsigned major:8;

unsigned minor:8;

unsigned checksum;

ARMWord *ro_base;

ARMWord *ro_limit;

ARMWord *rw_base;

ARMWord *zi_base;

ARMWord *zi_limit;

ModuleHeader *self;

StartCode start;/* Optional - may be 0 */

InitCode init;/* Optional - may be 0 */

FinalCode final;/* Optional - may be 0 */

ServiceCode service;/* Optional - may be 0 */

TitleString title;

HelpString help;

CmdTable *cmdtbl;/* Optional - may be 0 */

SWIBase swi_base;/* Optional - may be 0 */

SWICode swi_handler;/* Optional - may be 0 */

};
ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 4-19

Bootstrap Loader Reference
4.4.2 Module header field descriptions

Table 4-4 lists the fields used in the module header.

Table 4-4 Module header fields

Offset Name Description

0x00 magic Magic word (value = 0x4D484944) used to identify this
as a module.

0x04 flags 16-bit flags field. The individual flags are described below.

0x06 major Major version number. Currently this has the value 1.

0x07 minor Minor version number. Currently this has the value 1.

0x08 checksum An EOR checksum of the entire module used to validate the
module.

0x0C ro_base The linked read-only base of the module =Image$$RO$$Base

0x10 ro_limit The linked read-only limit of the module
=Image$$RO$$Limit

0x14 rw_base The linked read-write base of the module
=Image$$RW$$Base

0x18 zi_base The linked Zero Init base of the module =Image$$ZI$$Base

0x1C zi_limit The linked Zero Init limit of the module
=Image$$ZI$$Limit

0x20 self A pointer to the linked address of the module header.

0x24 start The linked address of the start code called to boot a module.

0x28 init The linked address of the init code called to initialize a module.

0x2C final The linked address of the final code called to kill a module.

0x30 service The linked address of the service call entry of a module.

0x34 title The linked address of the title string of the module.

0x38 help The linked address of the help string of the module.
4-20 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Bootstrap Loader Reference
The module header fields are as follows:

• magic

• flags on page 4-22

• major, minor on page 4-22

• checksum on page 4-22

• ro_base, ro_limit, rw_base, zi_base, zi_limit on page 4-22

• start on page 4-24

• init on page 4-24

• final on page 4-25

• service on page 4-25

• title on page 4-25

• help on page 4-26

• cmdtbl on page 4-26

• swi_base on page 4-27

• swi_handler on page 4-27.

magic

This word identifies a module header. You must set this word to the value
MODULE_MAGIC which has the following definition:
#define MODULE_MAGIC 0x4d484944; /* ’MHID’ */

You can use the word MAGIC to identify the big-endian or little-endian setting for a
module. Therefore, the above definition must always be used. Because they do not
correctly identify the byte ordering of the module, do not use definitions such as the
following:
#define MODULE_MAGIC’MHID’

or
#define MODULE_MAGIC *(unsigned *)"MHID"

0x3C cmdtbl A pointer to the command table for this module.

0x40 swi_base The base address of the 64 entry SWI chunk handled by this
module.

0x44 swi_handler A pointer to the SWI handler for this module.

Table 4-4 Module header fields (continued)

Offset Name Description
ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 4-21

Bootstrap Loader Reference
When the BSL is booted, it searches the ROM(s) for the MODULE_MAGIC word.
Each occurrence of the MODULE_MAGIC word is identified as a module, provided
that the module checksum succeeds.

flags

The following flags are currently defined:
#define UNPLUGGED_FLAG 0x0001

#define AUTOSTART_FLAG 0x0002

Set all other bits in this field to zero.

The UNPLUGGED_FLAG is used to identify which modules have been unplugged
(removed from the list of modules). Unplugged modules will be entered into the module
list. However, none of their entries are ever called.

The AUTOSTART_FLAG is used to identify a single module that is automatically
booted on startup in the absence of a boot module. Usually, the AUTOSTART_FLAG
is set for only one module. In the case that more than one module has the
AUTOSTART_FLAG set, the BSL boots the last such module found in a flash.

major, minor

These fields identify the major and minor version numbers of the module header. You
can use these to allow future extension of the module header. The current version
number is:
#define MAJOR_VERSION 1

#define MINOR_VERSION 1

checksum

This field is used to validate the module. The checksum is calculated over the range
<real_base> to <real_limit>. The checksum value is set so that the checksum
over this range is equal to 0. It is calculated as the End of Range (EOR) of each word in
the range <real_base> to <real_limit>. The checksum is included in the range
<real_base> to <real_limit> so there is no need to perform a final EOR of
checksum to generate a zero result.

ro_base, ro_limit, rw_base, zi_base, zi_limit

These fields identify the extents of the module ROM and RAM regions. You should set
these fields to the linked address of the regions.
4-22 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Bootstrap Loader Reference
The following list shows how these fields can be defined in an assembly language file
using an ARM assembler:
IMPORT|Image$$RO$$Base|

IMPORT|Image$$RO$$Limit|

IMPORT|Image$$RW$$Base|

IMPORT|Image$$ZI$$Base|

IMPORT|Image$$ZI$$Limit|

ModuleHeaderDCDMODULE_MAGIC

...

DCD|Image$$RO$$Base|

DCD|Image$$RO$$Limit|

DCD|Image$$RW$$Base|

DCD|Image$$ZI$$Base|

DCD|Image$$ZI$$Limit|

DCDModuleHeader

...

The following list shows how these fields can be defined in a C file:

extern ARMWord Image$$RO$$Base[];

extern ARMWord Image$$RO$$Limit[];

extern ARMWord Image$$RW$$Base[];

extern ARMWord Image$$ZI$$Base[];

extern ARMWord Image$$ZI$$Limit[];

ModuleHeader module_header = {

...

Image$$RO$$Base,

Image$$RO$$Limit,

Image$$RW$$Base,

Image$$ZI$$Base,

Image$$ZI$$Limit,

&module_header,

...

};

The actual base and limit of the module are calculated as follows (where
<module_address> is the address where the BSL located the MODULE_MAGIC
word):
<real_RO_base> = ro_base + (<module_address> - self)

<real_RO_limit> = ro_limit + (<module_address> - self)

+ (zi_base - rw_base)
ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 4-23

Bootstrap Loader Reference
The actual base and limit of the module RAM region(s) are calculated as follows (where
<static_base> is the static base address of the modules instantiation):
<real_RW_base> = <static_base>

<real_RW_limit> = <static_base> + (zi_limit - rw_base)

If a module is statically linked, it does not support position-independent data or multiple
instantiation, then <static_base> == rw_base. Otherwise <static_base> is the
static base address of the data for the current instantiation which is held in R9.

The self entry is also used to calculate the real entry points of the various entry points
of the module as follows.
<real_start>= start + (<module_address> - self)

<real_init>= init + (<module_address> - self)

<real_final> = final + (<module_address> - self)

<real_service> = service + (<module_address> - self)

<real_title>= title + (<module_address> - self)

<real_help> = help + (<module_address> - self)

<real_cmdtbl>= cmdtbl + (<module_address> - self)

<real_swi_handler>= swi_handler + (<module_address> - self)

start

The start entry point is called to execute a module. A module does not have to have a
start entry. In this case the start entry must be 0. The start code is only ever called after
the module has been instantiated by a call to its init entry. A C language definition of
this entry point is as follows:
typedef void (*StartCode)(char *cmd);

Where on entry:

R0 = Pointer to static data

R9 = ModuleHandle returned by init

init

The init entry point is called to instantiate a module. The value returned is used to
identify the module instantiation in subsequent calls to other entries. The value returned
is passed in R9 to other entry points. Usually the init entry allocates memory for its
static data and initializes the static data. It then returns a pointer to its static data in R0.
If the init entry is 0, the init entry is not called. A C language definition of this entry
point is as follows:
typedef struct ModuleInfo *ModuleHandle;

typedef ModuleHandle (*InitCode)(void);
4-24 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Bootstrap Loader Reference
Where on exit:

R0 = Pointer to static data.

R9 = ModuleHandle used in subsequent calls to other entry points.

final

The final entry point is called to finalize a module. The module frees any resources
allocated by it. Usually a module frees its static data which is pointed to by R0 on entry.
The final entry might be 0 in which case the final entry is not called. A C code definition
of this entry point is as follows:
typedef void (*FinalCode)(void);

Where on entry:

R9 = ModuleHandle return by init

service

The service entry is called to alert a module of various conditions. The module can use
this to intercept certain conditions. For example, a debugger module intercepts a GO or
DOWNLOAD service call. To intercept a service call the module should return a
service continuation routine pointer in R0. This is called when the system is unthreaded,
just before it returns to the original caller. If you do not want the module to intercept the
call it must return 0 in R0. If a module does not support any service, the value 0 must
be used. The C code definitions for the service entry point as well as a service
continuation routine are shown below:
typedef void (*ServiceCont)(void);

typedef ServiceCont (*ServiceCode)(int service);

Where on entry:

R0 = Service number

R9 = ModuleHandle returned by init

And on exit:

R0 = Address of service continuation routine.

title

The title entry points to the title string for the module. This must be a 0 terminated string
of 16 characters or less. A C code definition of this is:
typedef char *TitleString;
ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 4-25

Bootstrap Loader Reference
help

The help entry points to the help string for the module. A C code definition of this is:
typedef char *HelpString;

The actual help string must use the following format:
<Module Name> V.VV (DD MMM YYYY) <Comment>

cmdtbl

The command table points to an array of command descriptions:
typedef struct CmdTable CmdTable;

typedef void (*CommandCode)(char *cmd);

struct CmdTable {

char *command;

CommandCode code;

unsigned flags;

char *syntax;

char *help;

};

The cmdtbl array is terminated by an entry with a command field of 0.

The module can be relocatable and the real address of the command, code, syntax, and
help entries are calculated using the following real address calculations:
<real_command> = command + (<module_address> - self)

<real_code> = code + (<module_address> - self)

<real_syntax> = syntax + (<module_address> - self)

<real_help> = help + (<module_address> - self)

The cmdtbl field is optional and can be 0 if no commands are supported.

The cmtdt data structure filed descriptions are as follows:

command This points to the name of the command. The command name must be
less than 16 characters for the help command to work correctly. The
command can be in any mixture of upper and lower case. The Command
Line Interface (CLI) performs a case insensitive match on commands.

code This entry is called when a command matching the command field is
entered. For a command to unthread the system, it should return the
address of a continuation routine in R0. This can be used, for example, by
a debugger when a go command is executed. The debugger unwinds the
4-26 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Bootstrap Loader Reference
SVC stack before continuing execution of the debugger by returning the
address of a continuation routine in R0. The C code definition of both the
continuation and command entry-points are shown below:

typedef void (*CommandCont)(void);

typedef CommandCont (*CommandCode)(char *cmd);

Where on entry:

R0 = command tail.

And on exit:

R0 = address of continuation routine.

flags The flags field contains flags for the command. At the moment no flags
are defined, so all bits in this word must be zero.

syntax This points to a string to give a syntax error message. The syntax message
must be of the form

Usage: <command> <arguments>

help This points to help on the command.

swi_base

The swi_base entry gives a SWI chunk base for the module. A chunk is 64 entries so
bits 0 to 5 must be zero in the swi_base. When a SWI occurs, which is in a modules
swi_chunk range, the swi_handler entry is called. A value of 0 is used if no SWIs
are supported. The C code definition of this entry is:
typedef unsigned SWIBase;

swi_handler

The swi_handler entry is called when a SWI is executed in the modules SWI chunk
range. If you want the handler to intercept the SWI and not return to the caller, return
the address of a continuation routine in R0. The system then unwinds the SVC stack and
calls the continuation routine. A value of 0 can be used if no SWIs are supported. The
C code definition of both the continuation and command entry points are shown below:
typedef void (*SWICont)(void);

typedef SWICont (*SWICode)(unsigned swino, SWIRegs *regs);

Where on entry:

R0 = the SWI number modulo 64.
ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 4-27

Bootstrap Loader Reference
R1 = a pointer to register R0 through R12 on the stack. These registers can be modified
by the SWI handler.

And on exit:

R0 = Address of continuation routine.
4-28 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Bootstrap Loader Reference
4.5 Preparing a program for download

To prepare a program for download:

1. Compile or assemble the source code.

2. Link the resulting object files to create a standalone binary image.

3. Convert the binary image into a uuencoded format.

The Evaluator-7T tools and documentation CD, which are supplied with the
board, installs a uuencode application onto your host PC system. Use this
application to convert a linked application image from DOS command line. For
example:

uuencode dhry.bin dhry.uue

This uuencoded image can be downloaded and debugged using a terminal application
to the BSL on the Evaluator-7T board for execution.

Note

A standalone binary application in this case is defined as a program that is
self-initializing and requires only services that are available directly from the
Evaluator-7T hardware or the BSL. This definition includes any BSL module image.
ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. 4-29

Bootstrap Loader Reference

 and

it
ny

tion
4.6 Production test module

The production test module can be invoked from the bootstrap loader in the usual way
modules are invoked, by entering in its name at the boot prompt:
Boot: productiontest

The production test module operates as follows:

• It first lights all LEDs, D1-D4 and the seven segment display

• When SW3 is pressed, the test module reads the value from the DIP switch
displays it on the seven segment display.

• Setting the DIP switch to 0xF and pressing SW3 causes the test module to ex
this part of the test and start a test of the main user SRAM. (This corrupts a
data in the SRAM.)

• If an error is found, LED D2 stays lit while the module waits for SW3 to be
pressed. If no error is detected, the program returns to the boot prompt.

The production test module is automatically started if connect a loopback connec
between COM0 and COM1, and then reset the board.
4-30 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Appendix A
Evaluator-7T Mechanical Outline

This appendix contains the mechanical outline of the Evaluator-7T. It contains the
following section:

• Mechanical outline on page A-2.
ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. A-1

Evaluator-7T Mechanical Outline
A.1 Mechanical outline

Figure A-1 shows the mechanical outline of the Evaluator-7T.

Figure A-1 Evaluator-7T mechanical outline

.0
00

.000

.600

1.464

2.786

3.325

.2
50

2P
L

.7
14

2.
03

6

4.
75

0
2P

L

4.750
2PL

3.136

1.814

0.250
2PL

.5
89

.2
75

1.
91

1

4.
50

0

A-2 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Appendix B
Evaluator-7T Signal Naming

This appendix describes the signal naming used for the Evaluator-7T. It contains the
following section:

• Signal naming on page B-4.
ARM DUI 0134A Copyright © ARM Limited 2000. All rights reserved. B-3

Evaluator-7T Signal Naming
B.1 Signal naming

The ARM Evaluator-7T schematics and this manual use different signal names to the
Samsung KS32C50100 32-BIT RISC Micro Controller Embedded Network Controller
User’s Manual. In general the Samsung document uses n<SIGNAL_NAME> and this
document uses N<SIGNAL_NAME>. For example nWBE0 becomes NWBE0.

Other naming differences are shown in Table B-1.

Table B-1 Signal name differences

Description This document Samsung

Address bus A[21:0] ADDR[21:0]

External data bus D[31:0] XDATA[31:0]

General purpose input/output lines PIO[17:0] P[17:0]
B-4 Copyright © ARM Limited 2000. All rights reserved. ARM DUI 0134A

Index

The items in this index are listed in alphabetical order, with symbols and numerics appearing at the end. The
references given are to page numbers.
A
Address access time 2-8
Address delay time 2-8
Address hold time 2-8
Alphanumeric display 2-11
Angel

using 1-6
Angel debug monitor 3-2
Architecture

overview 1-3
reset system 2-4

ARM Multi-ICE unit 1-7
AUTOSTART_FLAG 4-22

B
Basic commands 4-8
Basic setup with BSL 4-3
Binary executable image 4-19
Board configuration commands 1-6
Board layout 1-2

Boot command 4-8
Bootstrap loader 2-5, 3-2, 4-1

address 3-4
communicating with 4-4
functionality 1-6
functions 4-2
using 1-6

BSL command line editor 4-7
BSL commands 4-7
Byte access time 2-8

C
CE Declaration of Conformity ii
Chip Select delay 2-8
Command line editor 4-7
Command line editor keys 4-7
Command line interface 4-26
Communications problems 4-6
Compiling the source code 4-29
COMs ports 1-2
COM0 2-9

COM1 2-9
Connectors

header 1-2
Power 1-2
serial 1-2

Contents, product package 1-4
Converting flash offset to an address

4-17
Core reset switch 1-2, 2-4

D
Debug monitor, Angel 1-6
DEBUG port 2-9
DIP switch 1-3, 2-13, 3-8
Download command 4-15
Downloading applications to SRAM

1-6
ARM DUI 0134A-03 Copyright © 2000 ARM Limited. All rights reserved. Index-i
Confidential Draft

Index
E
Erasing a section of flash 4-18
EXTDBWTH configuration register

2-5

F
Federal Communications Commission

ii
Feedback, product xii
Flags field 4-27
flash 2-2
Flash bootROM 2-5
Flash management 4-12
Flash management tools 1-6
Flash memory 3-4
Flash memory usage 3-4
Flasherase command 4-18
Flashload command 4-17
Flashwrite command 4-17

G
Go command 4-16
Gos command 4-17

H
Help command 4-8
High-level data link control 2-2
Host system requirements 1-5

I
Interrupt button 1-2
Interrupt controller 2-2
Interrupt switch 2-13
Itended audience viii
I2C serial interface 2-2

J
JTAG connector 1-7

JTAG interface 2-14

K
Kill command 4-14
Kit contents 1-4

L
LED access 3-6
LED-PIO pots assignments 2-11
LEDs 2-11
Lower Byte, SRAM 2-5

M
Main components 1-2
Manual audience viii
Memory

flash 2-5
SRAM 2-5

Memory map 3-2
Memory map after remap 3-2
Memory usage 3-3
Microcontroller block diagram 2-2
Microcontroller pin connections 2-2
Microcontroller power 2-2
Microcontroller register usage 3-5
Microcontroller,overview 2-2
Module header field descriptions 4-20
Module header fields 4-20
Module header structure 4-19
Module management 4-12
module relocation 4-26
ModuleHeader data structure 4-19
Modulename command 4-13
Modules 4-19
Modules command 4-12
MODULE_MAGIC 4-21
Mulit-ICE

Using 1-7

N
NRESET signal 2-4

NTRST signal 2-4

O
Other ARM publications xi
Output enable 2-8
Overview of Evaluator-7T 1-2

P
Pc command 4-17
Plugin command 4-14
Ports

RS232 2-9
Power connector 1-2
Power indicator 2-11
Power supply 2-15
Precautions 1-8
PrintEnv command 4-11
Problems, solving 4-6
Product feedback xii
Product package contents 1-4
Program counter 4-17
Program download 4-29
Program modules 4-19
Programmable 32-bit timers 2-2

R
Read data hold 2-8
Related publications xi
Remap 3-2
Reset cicuit, description 2-4
Reverse polarity protection 2-15
rommodules command 4-13

S
Samsung microcontroller 2-2
SDRAM 2-2
Serial cable requirements 4-6
Serial connector pinout 2-9
Serial interface

circuit 2-10
Serial ports 1-2, 2-9
Index-ii Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0134A-03
Confidential Draft

Index
SetEnv command 4-9
Setting up 1-6
Setting up the Evaluator-7T 4-4
Seven-segment display 1-2, 2-11, 3-7
Simple LED control 3-6
Simple LEDs 3-6
SRAM 2-5, 3-2

timing parameters 2-8
usage 3-3
write timing 2-7

SRAM read timing 2-7
SRAM usage

Angel 3-3
BSL 3-3

Surface mounted LEDs 2-11
Switch

core reset 2-4
DIP 3-8
system reset 2-4
user interrupt 2-13, 3-8

Switches
core reset 1-2
DIP 2-13
reset 1-2

Switch-mode regulator 2-15
SW1 2-4
SW2 2-4
System requirements, host 1-5
System reset

debounce 2-4
switch 2-4

System reset switch 1-2
System reset, memory map 3-2

T
Timing

SRAM read 2-7
Timing parameters, SRAM 2-8
Tming diagram conventions x
Typographical conventions ix

U
Unplug command 4-13
UNPLUGGED_FLAG 4-22
UnSetEnv command 4-11

Upper Byte, SRAM 2-5
User DIP switches 1-2
User help 1-6
User interrupt switch 3-8
User LEDs 1-2
USER port 2-9
Using Angel 1-6
Using Multi-ICE 1-7

V
VT100 emulator 4-6

W
Write byte enable 2-8
Write Byte Enable, SRAM 2-5
Write timing, SRAM 2-7
ARM DUI 0134A-03 Copyright © 2000 ARM Limited. All rights reserved. Index-iii
Confidential Draft

Index
Index-iv Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0134A-03
Confidential Draft

	Contents
	Preface
	About this document
	Further reading
	Feedback

	Chapter�1
	Introduction
	1.1 About the Evaluator-7T board
	1.2 Evaluator-7T architecture
	1.3 Kit contents
	1.4 System requirements
	1.5 Setting up the Evaluator-7T
	1.6 Precautions

	Chapter�2
	Hardware Description
	2.1 The Samsung KS32C50100 microcontroller
	2.2 Reset circuit
	2.3 Memory
	2.4 Serial ports
	2.5 LEDs
	2.6 Switches
	2.7 JTAG port
	2.8 Power supply

	Chapter�3
	Programmers Reference
	3.1 General memory map
	3.2 Memory usage
	3.3 Microcontroller register usage
	3.4 Accessing LEDs and switches

	Chapter�4
	Bootstrap Loader Reference
	4.1 About the bootstrap loader
	4.2 Basic setup with the BSL
	4.3 BSL commands
	4.4 Modules
	4.5 Preparing a program for download
	4.6 Production test module

	Appendix A
	Evaluator-7T Mechanical Outline
	A.1 Mechanical outline

	Appendix B
	Evaluator-7T Signal Naming
	B.1 Signal naming
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

